
a. i}
BASIC

 Programmier-
Handbuch

NATARI /

DEMENTI

Es wurden alle erdenklichen Maßnahmen getroffen, um die Richtigkeit dieser Pro-
dukt-Dokumentation zu gewährleisten. Da die Firma ATARI jedoch ständig Verbes-
serungen und Nacharbeiten an ihrer Computer-Hardware und -Software vornimmt,
können wir keine Garantie für die Vollständigkeit und Richtigkeit dieser Dokumenta-
tion seit ihrem Erscheinen übernehmen und schließen alle Gewährleistungsansprüche
aufgrund unvollständiger, unrichtiger oder nachträglich veränderter Angaben aus.

Die Vervielfältigung dieser Dokumentation, auch auszugsweise, ist ohne die schriftli-
che Genehmigung der ATARI Corp. nicht gestattet.

ATARI, ST, ST BASIC und ST sind Warenzeichen bzw. eingetragene Warenzei-
chen der ATARI Corp.

GEM ist ein Warenzeichen der Firma Digital Research, Inc.

IN ATARI"
© 1986 Atari Corp.
Alle Rechte vorbehalten.

EINFÜHRUNG

BASIC ist die beliebteste und am meisten verwendete Programmiersprache. Sie ist
leicht zu erlernen und dennoch ein leistungsfähiges Hilfsmittel bei der Programmie-
rung. ST BASIC gleicht im wesentlichen den allgemeinen BASIC-Dialekten, zieht je-
doch Vorteile aus der Fenstertechnik, den Drop-Down-Menüs und Grafik-Abbildern |
des GEM-Desktop. Diese BASIC-Version nutzt zudem die Geschwindigkeit sowie
die grafischen Fähigkeiten des ST Computer-Systemes.

Das ST BASIC Programmierhandbuch ist so aufgebaut, daß der Programmierer pro-
blemlos Zugriff auf alle benötigten Informationen nehmen kann. Neulinge in der
BASIC-Programmierung sollten zuerst die Beispiele in Kapitel 1 des Handbuches

 durcharbeiten. Hier werden die besonderen Charakteristika von ST BASIC und dem
BASIC-Dektop demonstriert und erläutert.

In Kapitel 2, Anhänge, erhalten Sie leicht verständliche Erklärungen zu jedem Aspekt
dieser Sprache. Dabei handelt es sich um Beschreibungen aller reservierten Wörter,
der logischen Operatoren, Vorrangregeln und Fehlermeldungen. Außerdem finden
Sıe hier Beispielprogramme für die Mehrzahl der erklärten Begriffe.

Unabhängig davon, ob Sie gerade erst mit dem Programmieren begonnen haben, oder
ob Sie bereits ein Experte auf diesem Gebiet sind, sollten Sie sich vor Ihrer Arbeit mit
ST BASIC ein Sicherungsduplikat Ihrer STBASIC-Programmdiskette anfertigen. Le-
sen Sie bitte im ATARI ST Bedienungshandbuch nach, um zu erfahren, wie ein Si-

_ cherungsduplikat erstellt werden kann.

INHALTSVERZEICHNIS

KAPITEL 1: EINFÜHRUNG IN ST BASIC 1

Ladeanweisungen 2.2.2.2 reeeeeeeeeeeeee een 1
Überblick über das GEM-Desktop Korn 2
Fenster ee 2
Menüs ... 0... . Coon. See ee eee 5
Dialogfelder und Fehlermeldungen ee 5
Sonderfunktionen ...::.: 2:2: Cm Con eee 5
Schreiben von Programmen inSTBASIC _..........:: 2. 6
Eingabe „2.2: o Coon 6
Programmlauf ... 1... ee 8
Editieren von Programmen 0.0. ee eee 8
Fehlerbehebung eee rn. 11
Speichern von Programmen 0.0 eee eee ee ee 13
Laden von Programmen 00. eee eee eee 14
Verknupfen von Programmen ee eee 14
Löschen von Programmen cn Come ee ee eee 15
Beenden des Programmes ST BASIC... ee ee 15
Befehlseingabe über Tastatur Cocoon 15
Gespeicherte Grafiken 2:2 2 Cocoon eee 16
Erweiterung des Arbeitsspeichers für ST 7S) (Or 17

KAPITEL 2: ANHANGE

Anhang A: Reservierte Wörter inSTBASIC004. A-1

Anhang B: Logische Operatoren, Vorrangregeln und Funktionen von ST BASIC B-1

Anhang C: Befehle, Funktionen und Anweisungen C-1

Anhang D: Fehlermeldungen en Be ... D-l

Anhang E: Der ASCII-Zeichensatz des ST Computers E-1

Anhang F: Assembler-Sprachmodule 002200020 F-1

Anhang G: Abgeleitete Funktionen een DEE . en G-1

Anhang H: Beispielprogramme nen Eee ren H-1

KAPITEL 1

EINFÜHRUNG IN ST BASIC

Das erste Kapitel dieses Handbuches beinhaltet eine allgemeine Einführung in
ST BASIC und demonstriert die Arbeitsweise von ST BASIC innerhalb der Desktop-
Oberfläche des ST Computer-Systemes.

Das Kapitel ist in drei Abschnitte untergliedert:

@ Ladeanweisungen
® Überblick über das GEM-Desktop
© Schreiben von Programmen in ST BASIC

Anmerkung: Bevor Sie damit beginnen, in ST BASIC zu programmieren, sollten Sie
sich ein Sicherungsduplikat Ihrer Programmdiskette anfertigen. Damit schützen Sie
sich vor einem Verlust der Daten auf Ihrer ST BASIC-Diskette, sofern die Programm-
diskette versehentlich einmal gelöscht oder zerstört wird. Lesen Sie bitte im
ATARI ST .Bedienungshandbuch nach, um zu erfahren, wie ein Sicherungsdupli-
kat angefertigt werden kann.

LADEANWEISUNGEN
Bevor sie mit ST BASIC arbeiten können, müssen Sie die Programmdiskette in den

- Arbeitsspeicher des ST Computers laden. Befolgen Sie hierzu die nachstehenden An-
weisungen. Wenn Sic ein Computer-System mit nur einem Laufwerk besitzen, lesen
Sie bitte die Instruktionen unter “Ladeanweisung bei einem angeschlossenen Disket-
tenlaufwerk“. Demzufolge gelten die Hinweise unter “Ladeanweisung bei zwei ange-

| schlossenen Laufwerken” für Computer-Systeme mit zwei Diskettenlaufwerken.

Ladeanweisung bei einem angeschlossenen Laufwerk
1. Schalten Sie den ST Computer ein. Wenn das GEM- Desktop auf dem Bildschirm

. zu sehen ist, klicken Sie zweimal auf das “Diskstation B“-Abbild.

2. Sobald Sie über ein Dialogfeld dazu aufgefordert werden, die Diskette B in Lauf-
werk A einzulegen, entfernen Sie die TOS Systemdiskette aus Laufwerk A und
legen die ST BASIC-Programmdiskette ein.
Drücken Sıe dann die RETURN-Taste.

3. Nachdem sich das Diskettenfenster geöffnet hat, klicken Sie zweimal auf das
“BASIC.PRG“- Abbild. Daraufhin erscheint das BASIC- -Desktop auf dem Bild-
schirm.

Ladeanweisung bei zwei angeschlossenen Laufwerken
1. Schalten Sie den ST Computer ein. Wenn das GEM-Desktop auf dem Bildschirm

zu sehen ist, legen Sie die ST BASIC-Programmdiskette in Laufwerk B ein und
klicken zweimal auf das “Diskstation B“- Abbild.

2. Nachdem sich das Diskettenfenster geöffnet hat, klicken Sie zweimal auf das

“BASIC.PRG“-Abbild. Daraufhin erscheint das BASIC- -Desktop auf dem Bild-
schirm.

Desk File Run Edit Debug © |

LIST OUTPUT bad

S
a
n

G
E
R
a
s
a
n

o
n
e
n
e
s
s

rE
—

|

o
p

“
.
.
.

Ok #

I-
.e
-n
or
m

r
S
I

BH
ES
HR
E

> aa
 ry L$ >

Das BASIC-Desktop ist Ihr wichtigster Bezugspunkt für alle Arbeiten mit ST BASIC.
In den nächsten beiden Abschnitten dieses Kapitels wird beschrieben, wie ein kleines
Programm in ST BASIC geschrieben wird, und wie das BASIC- -Desktop für die Arbeit
mit ST BASIC verwendet werden kann.

UBERBLICK UBER DAS GEM-DESKTOP-
ST BASIC arbeitet mit den Standard-Operationen des GEM-Desktop. Die Arbeits-
schritte für den Zugriff auf Menübegriffe, die Auswahl von Optionen, die Handha-
bung von Fenstern und die Ladevorgänge werden detailliert ım ATARI ST
Bedienungshandbuch beschrieben. |

Fenster | |
Für die Arbeit mit tST BASIC stehen Ihnen vier unterschiedliche Fenster zur Verft-
gung: Das Befehlsfenster (Command), das Ausgabefenster (Output), das Auflistungs-
fenster (List) und das Bearbeitungsfenster (Editor). Nachdem Sie das Programm ST
BASIC geladen haben und das BASIC-Desktop auf dem Bildschirm zu sehen ist, ist
das Befehlsfenster aktiviert. Alle vier Fenster sind verfügbar (wobei das Bearbeitungs-
fenster zu einem Großteil von den anderen Fenstern überlagert wird und daher nur
teilweise zu sehen ist).

Die Verfahren für das Bewegen, Vergrößern, Öffnen, Schließen, Rollen und Anord-
nen von Fenstern entsprechen den Methoden, die in Kapitel 4 des ATARI ST
Bedienungshandbuches beschrieben sind. Bitte lesen Sie dort nach, ı um weitere Infor-
mationen zu diesem Thema zu erhalten. ©

Das Befehlsfenster |
BASIC-Befehle und Programmzeilen werden in das Befehlsfenster eingegeben. Die
Anfrage “Ok“ zeigt an, daß ST BASIC bereit für eine Befehlseingabe ist. Geben Sie

PRINT “HALLO“

ein und drücken Sie RETURN. Das Wort “HALLO“ erscheint nun im Ausgabefen-
ster. Geben Sie Ihren Namen ein und drücken Sie die RETURN-Taste, um die Ar-
beitsweise von ST BASIC kennenzulernen.

Anmerkung: Wenn Sie eine Eingabe vornehmen, die ST BASIC nicht kennt, er-
scheint die Fehlermeldung “Something is wrong“ (fehlerhafte Eingabe) im Befehls-
fenster. Durch ein Exponentialzeichen (*) wird die Stelle innerhalb der Programm-
Anweisung gekennzeichnet, bei der ST BASIC den Fehler lokalisiert hat. Eine voll-
ständige Auflistung aller vorkommenden Fehlermeldungen von ST BASIC finden Sie

in Anhang D.

Ihr ST Computer kann auch die F unktion eines Taschenrechners übernehmen. Geben
Sie beispielsweise

PRINT 2+2 [RETURN]

in das Befehlsfenster ein. Im Ausgabefenster erscheint das Ergebnis, 4.

Sie können für Ihre Berechnungen auch den numerischen Tastaturblock verwenden.
Geben Sie ein: |

? [Leertaste] |

Geben Sie dann über den numerischen Tastaturblock

- (5+3)*(6+2)/4+2 [Enter]

ein. Das Ergebnis, 18, erscheint wiederum im Ausgabefenster. Beachten Sie hierbei,
wie ST BASIC arithmetische Operationen handhabt. Die Reihenfolge der einzelnen
Rechenarten ist | |

1. Multiplikation
2. Division

3. Addition
4. Subtraktion

Anmerkung: Die Schreibweise eines Wortes in eckigen Klammern innerhalb eines
Programm-Beispieles (z.B. [RETURN] oder [Esc] bedeutet, daß Sie die angegebene
Taste auf der ST Tastatur betätigen sollen.

Das Ausgabefenster |
Das Ausgabefenster von ST BASIC wird dazu verwendet, um die Resultate eingege-
bener Befehle oder von Programm-Operationen anzuzeigen. Alle Programmeingaben
und Ausgaben an den Monitor erscheinen in diesem Fenster.

Geben Sie

INPUT A

ein. Sobald Sie die RETURN-Taste drücken, erscheint ein Fragezeichen im Ausgabe-
fenster. Wenn Sie nun die Zahl 2 eintippen, erscheint diese im Ausgabefenster. Drük-
ken Sie dann RETURN. Im Befehlsfenster ist wieder die Anfrage “Ok“ zu sehen.

Geben Sie | | |

10 PRINT “HALLO“ [RETURN]

ein. Sie haben gerade ein einzeiliges BASIC-Programm geschrieben. Geben Sie

RUN [RETURN]

ein. Das Wort “HALLO erscheint im Ausgabefenster.

Das Auflistungsfenster
Geben Sie

LIST [RETURN]

ein. Ihr einzeiliges Programm erscheint daraufhin ım Auflistungsfenster. In diesem
Fenster wird immer das Programm angezeigt, das sich derzeit im Arbeitsspeicher des
Computers befindet. Wenn Sie einen Drucker an Ihren ST Computer angeschlossen
haben, können Sie durch Eingabe von LLIST eine Auflistung Ihres Programmes über
den Drucker ausdrucken lassen.

Das Bearbeitungsfenster
Geben Sie

EDIT [RETURN]

ein. Ihr Programm wird nun im Bearbeitungsfenster dargestellt. Veränderungen am
‚Programm können nur innerhalb dieses Fensters vorgenommen werden. Lesen Sie bit-
te unter dem Abschnitt “Schreiben eines Programmes in ST BASIC“ nach, um aus-
führlichere Informationen über das Bearbeitungsfenster zu erhalten. Durch Betätigen

- der Funktiunstaste [F10] verlassen Sie den Editor.

Menüs
Die Menüleiste erstreckt sich über den oberen Rand des ST Desktop. Die Meniititel
lauten “Desk“, “File“, “Run“, “Edit“ und “Debug“. Für jeden Menütitel existiert ein
eigenes Menü. Um die einzelnen Menüoptionen ablesen zu Können, richten Sie den
Maus-Zeiger auf den Menütitel. Das Menü wird automatisch unter dem Meniititel
hervorgezogen. Wollen Sie keinen Menübegriff auswählen, klicken Sie auf eine freie
Stelle des ST BASIC- “Desktop. Daraufhin verschwindet das Menü wieder unter sei-
nem Menüititel.

Dialogfelder und Fehlermeldungen
Dialogfelder erscheinen auf dem ST BASIC-Desktop, sobald das Programm Informa-
tionen von Ihnen benötigt, die aus dem Programmlisting nicht zu entnehmen sind.
Falls eine Fehlermeldung dargestellt wird, wird eine Information angezeigt, die sich
auf ein ST BASIC-Format oder -Programm bezieht. Eine vollständige Auflistung aller
vorkommenden Fehlermeldungen von ST BASIC finden Sie in Anhang D.

Um ein Dialogfeld verlassen zu können, zeigen Sie auf eines der beiden “Exit“-Felder
und klicken einmal die linke Maustaste. Ist ein “Exit“-Feld mit einem verstärkten
Rand versehen, entspricht ein Betätigen der RETURN-Taste einem Klicken in dieses
Feld.

Sonderfunktionen |
In ST BASIC stehen Ihnen drei Sonderfunktionen zur Verfügung, durch die das Ein-
geben und Lesen Ihrer Programme vereinfacht werden kann: die Funktionen AUTO
und RENUM, sowie die Verwendung von Sprungmarken.

AUTO Zeilennummer
Geben Sie

AUTO [RETURN]

ein. Im Befehlsfenster erscheinen zwei Sternchen und die Zahl 10. Die Zahl 10 ist die
erste Zeilennummer, die von der AUTO-Funktion generiert wurde. Die beiden Stern-
chen signalisieren, daß im Arbeitsspeicher bereits eine Programmzeile mit der Num-
mer 10 existiert.

Drücken Sie die RETURN-Taste. ST BASIC wartet nun auf die Eingabe der Pro-
grammzeile 20. Da Sie bisher noch keine Zeile mit der Nummer 20 eingegeben hatten,
befinden sich vor der Zahl keine Sternchen.

Geben Sie

PRINT “ICH BIN EIN TOLLER ATARI COMPUTER“ [RETURN]

ein. Im Arbeitsspeicher befindet sich jetzt ein zweizeiliges Programm. Um die auto-
matische Zeilennumerierung abzuschalten, betätigen Sie die Tastenkombination
[CONTROL][G].

Im Befehlsfenster erscheint wieder die Anfrage “Ok“. Geben Sie LIST ein, um Ihr
Programm aufzulisten. Da Zeile 20 für die Darstellung i im Auflistungsfenster zu lang
ist, müssen Sie in das Größeneinstellungsfeld in der unteren rechten Ecke des Aufli-
stungsfensters klicken und das Fenster so weit vergrößern, bis das gesamte Programm-
listing sichtbar ist.

Renum
STBASIC verfügt über eine RENUM-Funktion, über die 2 Sie Ihr Programm automa-
tisch neu numerieren lassen können. RENUM nimmt Zugriff auf die Diskette. Aus
diesem Grund sollten Sie vor Verwendung dieser Funktion sicherstellen, daß sich eine
Diskette im Laufwerk befindet. |

Anmerkung: Die Funktion RENUM arbeitet nicht, wenn die eingelegte Diskette mit
einem Schreibschutz versehen ist. Weitere Informationen hierzu erhalten Sie in Kapi-
tel6 des ATARI ST Bedienungshandbuches.

Geben Sie

RENUM 30,10,5 [RETURN]

ein. Sobald die Anfrage “Ok“ auf dem Bildschirm erscheint, können Sie Ihr Pro-
gramm durch Eingeben von LIST auflisten lassen. Die ehemalige Zeile 10 hat jetzt die
Nummer 30. Die Erhöhungen der Zeilennummern erfolgen in Fünferschritten. Des-
halb wird die nächste Zeilennummer 35 sein. Nähere Erklärungen zur RENUM-Funk-

_ tion erhalten Sie in Anhang C.

Sprungmarken
ST BASIC gestattet die Verwendung von n Sprungmarken (Labels) für die Kennzeich-
nung von Programmzeilen. Eine Anweisung GOTO DONE ist beispielsweise leichter
zu lesen als GOTO 300 und erleichtert ein Nachvollziehen der Auswirkungen be-
stimmter Programmzeilen auf Ihren Programmlauf.

SCHREIBEN VON PROGRAMMEN IN ST BASIC
In diesem Abschnitt erfahren Sie, wie einfache Programmiertechniken innerhalb der
GEM-Benutzeroberfläche eingesetzt werden. Betolgen Sie die nachstehenden An-
weisungen sorgfältig.

. Anmerkung: Sie können ST BASIC- -Programme 1 in Großbuchstaben oder in normaler
Schreibschrift eingeben. |

| Eingabe
Sofern sich im Auflistungsfenster bereits ein Programmlisting befindet, löschen Sie
dieses Listing durch Eingeben von

CLEARW 1

Geben Sie dann

NEW [RETURN]

ein. Dadurch wird ein im Arbeitsspeicher des Computers befindliches Programm
gelöscht. Geben Sie

LIST [RETURN]

ein. Das Auflistungsfenster müßte nun unbeschrieben sein. Geben Sie

AUTO [RETURN]

ein und schreiben Sie das nachstehende Programm. Beachten Sie, daB die Zeilennum-
mern von ST BASIC vorgegeben werden. Sie müssen diese Zahlen nicht selbst einge-
ben.

10 REM ZAEHL.BAS
20 C=0 |
30 ZAEHL:’ ERHOEHUNG DER VARIABLEN C
40 C=C+1
S50 PRINT C; | |
60 IF C=5 THEN PRINT “WIEDERHOLUNG!*: GOTO 20
70 GOTO ZAEHL

Das Programm ZAEHL.BAS befindet sich nun im Arbeitsspeicher.

Geben Sie [CONTROL][G] ein, um AUTO abzuschalten.

Anhand dieses einfachen Programmes werden bereits einige Funktionen von ST
BASIC illustriert. |

In Zeile 10 steht eine Anmerkung (REM), die die nachfolgende Funktion verdeutli-
chen soll. Das REM wird von ST BASIC nicht beachtet. Sie können anstelle von REM

auch ein einfaches Anführungszeichen (*) verwenden (siehe Zeile 30).

Zeile 30 wird durch die Sprungmarke ZAEHL identifiziert. In Zeile 70 wird dieselbe
Sprungmarke innerhalb einer GOTO-Anweisung verwendet. Bei der ersten Defini-
tion muß eine Sprungmarke von einem Doppelpunkt (:) gefolgt werden. Eine Sprung-
marke darf kein reserviertes Wort von ST BASIC sein, muß mit einem Buchstabenzei-
chen beginnen und darf keine Leerstellen enthalten.

In Zeile 60 wird gezeigt, wie das Doppelpunktzeichen eingesetzt werden kann, um
mehrere Befehle in eine Programmzeile schreiben zu können. Sie können beliebig vie-
le Befehle in eine Programmzeile setzen, solange diese durch Doppelpunktzeichen
voneinander abgetrennt werden und die Zeile nicht länger als 249 Zeichen wird.

Programmlauf

Desk File Mil Edit Debug
Run OUTPUT =
Break ia
‘Stop — if
Continue is
Step u

IV Buf Graphics =
is
w-
| @
ı®

ı®
Im
La
|

ul

a nm

=

v
n

u
n

m

o
w

e
l
e

Lwi
swi

as

Ok
|

Öffnen Sie das Menü “Run“ und klicken Sie auf “Run“. Daraufhin wird im Ausgabe-
fenster wiederholt

Ls
u‘

.

=

e
e

o

L
I

12345 WIEDERHOLUNG!

ausgegeben. Um das Programm anzuhalten, klicken Sie auf “Break“ im Menü “Run“.
Durch die Mitteilung --Break -- at line .. erfahren Sie, in welcher Programmzeile der
Programmlauf abgebrochen wurde. Geben Sie STOP [RETURN] ein, um den Break- |
Modus zu verlassen. Innerhalb des Break-Modus können sämtliche Programmier- -Be-
fehle verwendet werden.
Sie können Ihr Programm zeilenweise ausführen lassen. Dazu wählen Sie “Step“ aus.
dem Menü “Run“ aus. Nach jedem Betätigen der RETURN-Taste wird die nächste
Programmzeile ausgeführt. Beachten Sie, daß die Nummer der gerade ausgeführten
Programmzeile im Befehlsfenster dargestellt wird. Geben Sie nun |

END [RETURN]

ein, um die Option “Step. abzuschalten..

Editieren von Programmen
ST BASIC verfiigt tiber einen leicht zu bedienenden Editor, mit dem Veranderungen
an Ihren Programmen vorgenommen werden können, ohne dabei eine vollständige
Programmzeile neu eingeben zu müssen. Um ein Programm zu editieren, wählen Sie
das Menü “Edit“ aus und klicken auf die Option “Start Edit“. . Sie können auch ED
eingeben.)

Bringen Sie den Cursor zum Buchstaben “W“ von Wiederholung“ in Zeile 60. J etzt
können sie dieses Wort überschreiben. Schreiben Sie stattdessen “Weiter“. Beachten
Sie, daß das Schriftbild sich verändert,um kennzuzeichnen, daß Sie in dieser Pro-
grammzeile Änderungen vorgenommen haben, die noch nicht in den Programmspei-
cher übernommen wurden. Drücken Sie die RETURN-Taste. Sie müssen nun noch

die verbliebenen Buchstaben “holung“ löschen.

Die Funktionstasten
Bevor Sie mit Ihrer Arbeit fortfahren, sollten Sie die Option “Help Edit“ i im Menü
“Edit“ auswählen. |

Desk File Run Edit Debug

LIST | IM OUTPUT u
| i

is
i.

HELP EDIT: 1s

InsertSpace -F1 _
DeleteChar -F2 is
InsertLine -F8 is
Delete Line - F4 ı m
Page Up -F5 a
Page Down - F6 =
Load Text -F7

‚Save Text -F8 — ="
New Buffer -F9 em
Exit Edit - F18 (oa |

I:
os
| m

_i28

e] 20907

Aus dem daraufhin erscheinenden Dialogfeld können Sie eine Beschreibung aller
 Funktionstasten-Befehle von ST BASIC entnehmen.

Klicken Sie in das “Ok“-Feld, um das Dialogfeld auszublenden.

Im nachfolgenden Beispiel werden die Funktionstasten für die Editierung des Pro-
grammes verwendet. Sie können jedoch auch mit der Maus und den Optionen des Me-
nüs “Edit“ arbeiten, wenn Sie dies vorziehen.

Zeichen löschen/einfügen (Delete Char/Insert Space)
Während sich der Cursor über dem ersten Buchstaben des zu löschenden Wortteiles
“holung“ befindet, drücken Sie die Funktionstaste [F2]. Jedes Drücken von [F2] löscht
das derzeit unter dem Cursor befindliche Zeichen und verschiebt die rechts daneben-
liegenden Zeichen um eine Position nach links. Löschen Sie nun alle Zeichen auf diese
Weise.

Bewegen Sıe den Cursor auf den Buchstaben “W“ von “Weiter“. Drücken Sie fünfmal
die Funktionstaste [Fl]. Geben Sie dann |

MACH

ein. In der Programmzeile steht nun:

60 IF C=5 THEN PRINT “MACH WEITER": GOTO 20

Neuer Speicherinhalt (New Buffer)
Wenn Sie [RETURN] drücken, werden die im Bearbeitungsfenster dargestellten Pro-
grammzeilen in den Programmspeicher übertragen. Um zu sehen, was sich derzeitim
Programmspeicher befindet, drücken Sie |F9], New Buffer. Der Inhalt des Pro gramm-
speichers wird daraufhin in das Bearbeitungsfenster einkopiert. Haben Sie die
RETURN-Taste noch nicht gedrückt, erscheint im Editierfenster Ihr ursprüngliches
Programm ohne die gerade vorgenommenen Veränderungen.

9

Zeile einfügen/löschen (Insert Line/Delete Line)
Bewegen Sie den Cursor in Zeile 30. Drücken Sie dann [F4]. Zeile 30 wird daraufhin
aus dem Programmspeicher entfernt, wıe Sie anhand des veränderten Schriftbildes er-
kennen können. Diese Zeile verbleibt allerdings solange im Bearbeitungsfenster, bis
Sie [RETURN] drücken. Diese Funktion vereinfacht Korrekturarbeiten erheblich.
Bringen Sie den Cursor einfach in Zeile 30 und drücken Sie [RETURN]. Sobald Sie
[F9] für “New Buffer“ drücken, wird die Zeile sowohl im Programmspeicher, als auch
im Editier-Speicher gelöscht.

‚Drücken Sie [F9] für “New Buffer“. Zeile 30 wird nun gelöscht.

Bewegen Sie den Cursor in Zeile 50 und drücken Sie [F3] für “Insert Line“. Dadurch
wird Platz für die Eingabe einer neuen Programmzeile geschaffen.

Da die Numerierung Ihrer Programmzeilen langsam unordentlich wird, sollten Sie sie
neu durchnumerieren lassen. |

Schaffen Sie zuerst durch Drücken von [F3] Platz für eine neue Programmzeile. Geben
Sie dann RENUM [RETURN] ein. Sobald der Cursor wieder sichtbar wird, können
Sie “New Buffer“ aufrufen, um zu sehen, wie Ihr Programm nun numeriert ist.

Durch Ihre Veränderungen hat sich ein Fehler eingeschlichen. In Zeile 70 steht
“GOTO ZAEHL“, aber die Zeile mit der Sprungmarke “ZAEHL wurde von Ihnen
soeben gelöscht.

Verändern Sie Zeile 30 wie folgt:

30 ZAEHL:C=C+1

Sie können den Programmlauf direkt über das Bearbeitungsfenster aufnehmen lassen.
Schaffen Sie Platz für eine neue Zeile und geben Sie

RUN [RETURN] |

ein.

Mit [CONTROL]C] kann das Programm angehalten werden. Sie kehren damit wie-
der ins Bearbeitungsfenster zurück.

Text laden/speichern (Load Text/Save Text)
Der ST BASIC Editor speichert den Inhalt des Bearbeitungsfensters auf Diskette.
Allerdings ist die Speicherkapazität hier auf 24 Textzeilen beschränkt. Umfaßt Ihr
Programm mehr als 24 Zeilen, werden die außerhalb des Fensters liegenden Textzei-
len nicht auf Diskette abgelegt. |

Anmerkung: Diese Funktion unterscheidet sich von der Funktion “Save As“ im Menü
“File“. Mit Hilfe der Funktion “Save As“ können Sie vollständige Programme spei-
chern, die dann wieder geladen und gestartet werden können. Bei Verwendung der
Funktion “Load Text/Save Text“ kann zudem kein Dateiname angegeben werden.
Der gespeicherte Text muß nicht unbedingt ein ST BASIC-Programm sein.

Betätigen Sie die Funktionstaste [F8] für “Load Text“. Dann drücken Sie [RETURN]
für jede Programmzeile. Wenn Sie jetzt [F9] drücken, befindet sich Ihr Programm so-

_ wohl im Bearbeitungsfenster, als auch im Programmspeicher.

10

Vorhergehende/Nachfolgende Seite (Page Up/Page Down)
Die Funktionen Page Up [F5] und Page Down [F6] ermöglichen die Bearbeitung von
Programmen, die mehr als einen Fensterausschnitt umfassen. Mit Page Up [F5] wer-
den Programmzeilen sichtbar gemacht, die sich überhalb des aktuellen Fensteraus-
schnittes befunden hatten. Umgekehrt können Sie mit [F6] in die letzten beiden Pro-
grammzeilen gelangen.

Anmerkung: Die maximal sichtbare Zeilenlänge umfaßt 80 Zeichen. Falls Sie über.
den rechten Rand des sichtbaren Fensterausschnittes hinausschreiben, verschiebt sich
der Text im Fenster nach links, um diese Eingaben sichtbar zu machen. Im Bearbei-
tungsfenster können Sie maximal 80 Zeichen pro Zeile eingeben. Wenn Sie beabsich-
tigen, ein Programm zu editieren, das Zeilen mit mehr als 80 Zeichen enthält, wird der
Teil der Zeile, der hinter dem achtzigsten Zeichen liegt, in die darunterliegende Zeile
geschoben. Dabei wird dieser Teil nur dann als Teil der darüberliegenden Zeile ange- ©
sehen, wenn das erste Zeichen der zweiten Zeile ein Leerzeichen ist. Andernfalls müs-
sen Sie die Zeilensegmente so verändern, daß Sie sie als zwei separat numerierte Pro-
grammzeilen eingeben können.

Sie können den Editor durch Klicken auf die Funktion “Exit Edit“, oder durch Drük-
ken von [F10] verlassen.

Fehlerbehebung |
Mit den Möglichkeiten, die Ihnen innerhalb des Menüs “Debug“ zur Verfügung ste- _
hen, ist die Beseitigung von Fehlern eine problemlose Tätigkeit. Zwei Optionen des.
Menüs “Debug“ helfen Ihnen dabei, festzustellen, was ein Programm gerade tut und
welches Problem aufgetreten sein könnte. Bei diesen Optionen handelt es sich um
“Trace“ und “Tron“.

Wählen Sie das Menü “Debug“ aus.

Desk File Run Edit pyrene

UST | tron LI _ OUTPUT u
Troff . i.
Trace | fs
Untrace i §

{
{i @
i m
i p
ı =
ig
ı @
ı u
ı 8
|
En |

i @

Ti

COMMAND

o
m
:
 .

& = |

? o
P
s

h
e
e

11

Klicken Sie auf die Option “Trace“.

Desk File Run Edit Debug

Le LIST OUTPUT In.

.TRACE: Debugging on lines...

|

co
e

fh
e

re
cre

e
en

e
ee
e

er
e

ce
e

ee
n

we

co
w

oot

oe

oe
s

Oe
we

we

en

as
he

n
u
n
a
s
n
n
n
n
g
a
n
e
n
s

| Lines Entered |

be
4

3

a
w

we

o
o

o
F

=
D

B
u
a
u
n

[CANCEL |

L
DE
E

Ok LIST
ok ff
©

S
ha

l

Klicken Sie in das “Ok“-Feld im Dialogfeld. _

Jetzt können Sie Ihr Programm mit “Run“ ablaufen lassen. Während eine Programm-
zeile ausgeführt wird, listet “Trace“ diese Zeile im Befehlsfenster auf.

Um die Option “Trace“ zu verlassen, halten Sie das Programm an, öffnen das Menü
“Debug“ und wählen “Untrace“ aus. Bestätigen Sie Ihre Wahl durch Klicken in das
“Ok“-Feld im “Trace“-Dialogfeld.

Klicken Sie auf die Option “Tron“ im Menü “Debug“.

Desk File Run Edit Debug

LIST OUTPUT

TRON: Debugging on lines...

|

| Lines Entered |

— [CANCEL]

a
h
e
n
u
n
a
s
u
n
n
n
u
a
n
e
n
n
i
e
d

n
s

I
n

wa
h

So
me

m
n

m

u
n

m
n

G
e
e

e
e
e

m
n

n
e

a

o
m

Om

an

o
e

o
w

S a Ti
1

—

pe

ey

os

0

.

n
u
d
u
a
u

he

BA
RR
R:

Ok LIST :

¢ | | | EB

& = :

12

“Tron“ zeigt die Nummer der derzeit in Ausführung befindlichen Programmzeile an.

Klicken Sie in das “Ok“-Feld im Dialogfeld.

Starten Sie Ihr Programm nochmals. Während die Programmzeilen nacheinander aus-
geführt werden, erscheinen die entsprechenden Zeilennummern im Befehlsfenster.

Um die Option “Tron“ wieder abzuschalten, halten Sie Ihr Programm an, Öffnen das
Menü “Debug“ und klicken auf die Option “Troff“. Bestätigen Sie auch hier Ihre
Wahl durch Klicken in das “Ok“-Feld im Dialogfeld. |

TRACE und TRON werden in Anhang C noch ausführlich beschrieben.

Speichern von Programmen
Um ein Programm auf Diskette zu speichern, öffnen Sie das Menü “File und klicken
auf die Option “Save As“. |

Desk File Run Edit Debug = OUTPUT = m ia 1S
ITEM SELECTOR

.
Directory:

| 5 *.BAS
is F ‘== *,BAS = election: a 3 = | 1s

1318

u 1: .
in !

S n
e
s
 |

| | Cancel | J

B

Nn

&

o
n

o
e

o
e

o
m

o
w
 .

n
w
a
u
u

im

ma
rs

ok fi
©

L. Mi

A
E
E
 Li

Geben Sie ZAEHL in das Auswahlfeld (ITEM SELECTOR) ein. Beachten Sie, daß
von ST BASIC automatisch der Extender .BAS an Ihren Dateinamen angefügt wird.
Durch den Extender wird ST BASIC kenntlich gemacht, daß es sich bei der Datei um
eine ST BASIC-Programmdatei handelt. Um die Datei auf Diskette zu speichern,
klicken Sie in das “Ok“-Feld. Sobald die Bestätigung auf dem Bildschirm erscheint, ist
Ihre Datei auf der Diskette abgelegt. |

Sie können.ein Programm auch durch Eingeben von

SAVE ZAEHL [RETURN]

speichern. ST BASIC legt diese Datei als ZAEHL.BAS auf Diskette ab.

13

Anmerkung: Die Option “Save As“ ersetzt (überschreibt) jede Datei auf der Diskette,
die unter demselben Dateinamen abgelegt wurde. Wenn Sie “SAVE“ im Befehlsfen-
ster eintippen, wird im Gegensatz dazu eine gegebenenfalls bereits bestehende Datei
mit demselben Namen nicht gelöscht. |

Laden von Programmen
Geben Sie NEW [RETURN] ein, um das im Arbeitsspeicher befindliche Programm zu
löschen. Vergewissern s sie sich durch Eingeben von LIST, daß der Arbeitsspeicher frei
ist.

Um das zuvor gespeicherte Programm von Diskette ın den Arbeitsspeicher zu laden,
öffnen Sie das Menü “File“ und klicken auf die Option “Load“. Im Auswahlfeld er-
scheint die Angabe ZAEHL.BAS. Sie können ZAEHL.BAS durch Klicken auf den
Dateinamen und nachfolgendes Klicken in das “Ok“-Feld auswählen. Sobald die An-
frage “Ok“ auf dem Bildschirm erscheint, befindet sich Ihr Programm im Speicher.
Um sich hiervon zu vergewissern, können Sie es über LIST auflisten lassen. Die Kopf-
zeile, “List of ZAEHL.BAS“ dient als Hinweis für Sie, daß das aufgelistete Programm
unter dem Namen ZAEHL. BAS abgelegt ist.

Sie können ein Programm auch durch Eingeben von

LOAD ZAEHL

in den Arbeitsspeicher des Computers laden.

_ Verknupfen von Programmen
Manchmal ist es einfacher und bequemer, ein Programm in einzelnen Modulen zu
schreiben und diese zu einem späteren Zeitpunkt zu assemblieren. Diese Möglichkeit
besteht über die Funktion MERGE.

Geben Sie das nachstehende Programm ein und speichern Sie es unter dem Namen
NACHTRAG.BAS. |

20 PRINT “VERLAENGERT DURCH VERKNUEPFEN*
30 END

Geben Sie NEW ein und schreiben Sie dieses Programm

10 PRINT “DAS ISTEIN KURZES PROGRAMM“
20 END ©

Geben Sie RUN ein, um das Programm ablaufen zu lassen.

Wahlen Sie dann die Option “Merge“ aus dem Menü “File“ aus. Daraufhin klicken Sie
auf “NACHTRAG.BAS* im Auswahlfeld und bestätigen Ihre Wahl über das “Ok*-
Feld.

14

Listen sie Ihr Programm auf. Wie Sie sehen können, wurden die beiden Programmseg-
mente verbunden. Wenn Sie die Zeile 20 betrachten, werden Sie feststellen, daß die
Zeile 20 des ersten Programmes, END, durch Zeile 20 des damit verknüpften Pro-
grammes ersetzt wurde. Aus diesem Grund sollten Sie Ihre Zeilennumerierung sehr
sorgfältig vornehmen, wenn sie mit der Option MERGE arbeiten.

Löschen von Programmen
Um ein Programm zu löschen, klicken Sie auf die Option “Delete File“ im Menü
“File“. Wählen Sie durch Klicken den Namen der zu löschenden Datei, wie beispiels-
weise NACHTRAG.BAS, aus und bestätigen Sie diese Wahl durch Klicken in das
“Ok“-Feld. Sobald die Anfrage “Ok“ auf dem Bildschirm erscheint, ist diese Datei
gelöscht.

Beenden des Programmes ST BASIC
Um die Arbeit mit ST BASIC zu beenden, öffnen Sie das Menü “File“ und klicken hier

auf die Option “Quit“.

Befehlseingabe über Tastatur
Sofern Sie dies vorziehen, können Sie. Programmierbefehle über die ST Tastatur ein-
geben, anstatt sie unter Verwendung der Maus auszuwählen. Diese abgekürzten Ein-
gaben sind:

AUTO | |
[CONTROL][G] Hält ein Programm an oder beendet die automatische Zeilen-

numerierung
[CONTROL][C] Hält ein Programm an und beendet es, ohne eine Möglichkeit zu

bieten, mit diesem Programm fortzufahren

CONT oder [RETURN] (um mit einem Programmlauf fortzufahren)
DELETE <Zeilennummern-Liste> (um Programmzeilen zu löschen)
EDIT oder ED (um in den Editier-Modus zu gelangen)
ERA <Dateiname> (um eine Datei zu löschen)
LOAD <Dateiname> (um eine Datei zu laden)
MERGE <Dateiname> (um Programme zu verknüpfen)
NEW (um den Arbeitsspeicher zu löschen)
QUIT (um ST BASIC zu beenden)
RUN <Dateiname> (um ein Programm ablaufen zu lassen)
SAVE <Dateiname> (um ein Programm zu speichern)
STEP (um ein Programm schrittweise zu durchlaufen)
TRACE (um die Fehkeraufdeckung einzuschalten)
TROFF (um die Zeilennummern-Anzeige abzuschalten)
TRON (um die Zeilennummern-Anzeige einzuschalten)
UNTRACE (um die Fehleraufdeckung abzuschalten)

Eine vollständige Auflistung aller ST BASIC-Befehle finden sie in Anhang A dieses
Handbuches.

15

Gespeicherte Grafiken
Um gespeicherte Grafiken mitSTBASIC auf Ihrem ST Computer- -System verwen-
den zu können, müssen Sie Platz im Arbeitsspeicher schaffen.

Wenn Sie auf das Schreibtischzubehör des GEM-Desktop verzichten, können Sie
30.000 Bytes Speicherplatz gewinnen. Um das Schreibtischzubehör zu entfernen, kön-
nen sie zwei Methoden anwenden:

1. Löschen Sie das Schreibtischzubehör auf dem Sicherungsduplikat der ST BASIC
Programmdiskette. Dazu Öffnen Sie einfach das Diskettenfenster der Programm-
diskette und werfen die Datei DESK. ACC in den Papierkorb. In diesem Fall haben
Sie das Schreibtischzubehör noch immer auf Ihrer Originaldiskette gespeichert und
können es von dort wieder auf das Sicherungsduplikat zurückkopieren und ver- .
wenden.

Geben Sie der Datei DESK.ACC einen neuen Namen. Dann können Sie die Datei

-DESK.ACC auswählen, das Menü “File“ öffnen und die Option “Show Info“ aus-
wählen. Im daraufhin erscheinenden Dialogfeld steht em Cursor am Ende des

Dateinamens. Durch Drücken der [Backspace]-Taste kann der Dateiname
DESK.ACC nun gelöscht werden. Verwenden sie als neuen Namen eine beliebige
Bezeichnung. Lediglich der Extender darf nicht auf .ACC lauten.

Anmerkung: Genauere Informationen über das Löschen und Umbenennen von Da-
teien erhalten Sie im ATARI ST Bedienungshandbuch.

16

ERWEITERUNG DES ARBEITSSPEICHERS
FÜR ST BASIC
Nachdem Sie TOS von der Systemdiskette, und ST BASIC von der ST Programmadis-
kette in den Arbeitsspeicher des ST Computers geladen haben, verbleibt lediglich ein
geringfügiger Teil des Speicherplatzes für Ihre Programmierung.

Für die Erweiterung des verfügbaren Speicherplatzes stehen Ihnen zwei Möglichkei-
ten zur Verfügung:

1. Schalten Sie die Option “Buffer Graphics“ ab. Damit gewinnen Sie zusätzliche
32.000 Bytes an verfügbarem Speicherplatz. Zeigen Sie hierzu auf das Menü “Run“
und kontrollieren Sie, ob sich vor der Option “Buf Graphics“ ein Häkchen be-
findet. In diesem Fall wählen Sie die Option aus und klicken in dem daraufhin er-
scheinenden Dialogfeld in das “Ok“- Feld, um die Option abzuschalten.

Anmerkung: Falls Sie die Option “Buf Graphics“ abschalten, während sich ein Pro-
gramm im Arbeitsspeicher befindet, wird dieses Programm im Speicher gelöscht.

2. Wenn Sie auf die Verwendung des Schreibtischzubehörs verzichten können, kön-
nen Sie über weitere 30.000 Bytes an Speicherplatz für Ihre Programmierarbeiten
verfügen. Lesen Sie hierzu auf Seite 16 dieses Handbuches nach.

17

ANHANG Aı

RESERVIERTE WÖRTER IN ST BASIC

Nachfolgend sehen Sie eine Auflistung aller reservierten Wörter, die in ST BASIC
verwendet werden. Falls Sie eines dieser Wörter als Variablennamen benutzen, er-
scheint die Fehlermeldung “something is wrong“. Eine detaillierte Beschreibung aller
reservierten Wörter erhalten Sie in Anhang C.

ABS
ALL
AND
AS
ASC
ATN
AUTO
BASE
BLOAD |
BREAK
BSAVE
CALL
CDBL
CHAIN
CHR$
CINT
CIRCLE
CLEAR
CLEARW
CLOSE
CLOSEW
COLOR
COMMON
CONT
CONTRL
CONT
COS
CSNG
CVD
CVI
CVS —
DATA

DEF
DEF FN
DEF SEG
DEFDBL
DEFINT
DEFSNG
DEFSTR
DELETE
DIM
DIR
EDIT
ELLIPSE
ELSE
END
EOF
EQV
ERA
ERASE
ERL
ERR
ERROR
EXP
FIELD
FIELD+
FILL
FIX
FLOAT
FOLLOW

A-1

FOR
FRE
FULLW
GB
GEMSYS
GET
GET+
GO
GOSUB
GOTO
GOTOXY >
HEX$
IF
IMP
INKEY$
INP
INPUT

_ INPUT$
INPUT$
INSTR
INT
INTIN
INTOUT
KILL
LEFT$ |
LEN
LET
LINE INPUT

- LINE INPUT+
LINEF
LIST

LLIST
LOAD
LOC
LOF
LOG
LOG10
LPOS
~LPRINT
LSET
MERGE
MID$
MKD$
MKI$ _
MKS$
MOD
NAME
NEW
NEXT
NOT
OCT$
OLD
ON
OPEN
OPENW
OPTION
OR
OUT
PCIRCLE
PEEK
PELLIPSE
POKE
POS
PRINT
PRINT=+
PRINT USING
PTSIN
PTSOUT
PUT

AUT —s
RANDOMIZE
READ
REM

RENUM
REPLACE
RESET

~ RESTORE
RESUME ©
RETURN
RIGHT$

-RND
. RSET

RUN
SAVE

_. SGN
SIN.

~ SOUND
SPACES

„SPC
SOR
STEP
STOP
STR$

A-2

STRING$
SWAP
SYSDBG
SYSTAB
SYSTEM
TAB
TAN
THEN
TO |
TRACE —

~ TROFF
TRON

. UNBREAK
_ UNFOLLOW
_ UNTRACE
USING

VAL
VARPTR

_ VDISYS
WAIT
WAVE

. WEND
WHILE
WIDTH
WRITE
WRITE#
.XOR

ANHANG B

LOGISCHE OPERATOREN, VORRANGREGELN
UND FUNKTIONEN VON ST BASIC

LOGISCHE OPERATOREN
Die von ST BASIC anerkannten Operatoren sind NOT, AND, OR, XOR, IMP und
EOV. Diese logischen Operatoren arbeiten auf der Basis von Flags, die aus logischen
Ausdrücken resultieren. Eine TRUE-Flag entspricht -1, eine FALSE-Flag 0. Deshalb
ergibt die Anweisung “A=1: B=2: PRINT A=B“ den Wert 0, während die Anwei-
sung “A=1: B=2: PRINT A<>B“ das Resultat -1 ergibt.

Das Ergebnis von AND ist TRUE, wenn beide Argumente wahr sind.
Beispiel: 2+2=4 AND 3+2=5 ergibt TRUE.

Das Ergebnis von OR ist TRUE, wenn eines der Argumente wahr ıst.
Beispiel: 2+2=4 OR 3+2=7 ergibt TRUE.

IMP ist die Abkürzung für IMPLICATION (Folgerung). IMP arbeitet auf der Basis
logischer Ausdrücke und überprüft die Gültigkeit von Prämissen und Folgerungen.
IMP ist in allen Fällen gültig, es sei denn, eine Prämisse ergibt TRUE, die Folgerung
dagegen FALSE.

Die Anweisung “2+2=4 IMP 3+2=6“ ergibt FALSE.

Die nachfolgenden Anweisungen sind gültige Folgerungen und ergeben TRUE:

2+2=4 IMP 3+3=6
2+2=3 IMP 3+3=6
2+2=3 IMP 3+3=7

Die nachstehenden Operatoren arbeiten bitweise mit Ein-Byte Integerwerten wie
folgt:

AND ergibt ein Resultat, in dem ein Bit nur dann 1 entspricht, wenn beide Argumente
eine 1 enthalten. So ergibt “A% =5: B% =3: C% =A% AND B% fiir C% den Wert 1.

OR produziert ein Ergebnis, in dem ein Bit 1 entspricht, wenn eines der Argumente e1-
ne 1 enthält. Beispielsweise entspricht in “A% =5: B% =3: C%=A% OR B%“ C%
dem Wert 7. | Ä

XOR erstellt Ergebnisse, in denen ein Bit dann 1 entspricht, wenn lediglich ein Argu-
ment eine 1 enthält. In.diesem Fall ergibt “A%=5: B% =3: C% =A% XOR B%“ für
C% den Wert 6.

EQV ergibt Resultate, in denen ein Bit 1 entspricht, wenn entweder in beiden Argu-
menten eine 1, oder in beiden Argumenten eine 0 enthalten ist. Ein Bit entspricht dann
0, wenn die Bits in den beiden Argumenten unterschiedlich sind. Demnach ergibt
“A%=5: B% =3: C%=A% EQV B%“ den Wert -7 für C%. |

B-1

TRUE-Tabelle für logische Operationen

NOT XOR X NOTX X. Y XXOR Y
0 1 0 0 0
1 0 0 1 1

h 1 h AND], : x Y XAND Y 3
0 0 0 MP Ix Y XIMPY
0 1 0 0 . 0 1
1 0 0 0 1 1
1 1 1 1. 0 0

OR 1 1 1
Y XORY

- Tr 2 EQV |x Y XEQVY
0 1 1 10 0. 1
1 0 1 0 1 0
1 1 1 1 0 0

1 1 1

_ Arithmetische Operatoren | |
Symbol | Name Beispiel

+ Addition | X+Y
— Subtraktion | | X-Y
* Multiplikation xX*y
/ Division oo. X/Y

| Integer-Division | xX Y
MOD ~ Modul | | XMODY
ß | Exponierung xX* Y

Relationale Operatoren |
Symbol Bedeutung | Beispiel

= Gleichzeichen a — X=Y
<> Ungleichzeichen | X<>Y
< Kleiner als - Zeichen | xX<Y

> Größer als - Zeichen | X>Y
<= Kleiner Gleich - Zeichen X<=Y

Größer Gleich- Zeichen _ X>=Y

Vorrangregeln der Operatoren
Operator Erklärung

() Begriffe in Klammern haben höchste Priorität
. Exponierung |
— Negatives Vorzeichen
* Multiplikation
/ Fließkomma- und Integer-Division
MOD Modul
+, Addition, Subtraktion
=,<>,<,>,<=,>= Relationale Operatoren
NOT, AND, OR, XOR Logische Operatoren in der angegebenen
IMP, EQV Reihenfolge

Zusammenfassung der Funktionen von ST BASIC
Funktionen arbeiten mit Konstanten und Variablen, um Werte für Variablen zu erhal- |
ten. Eine Konstante ist eine Zahl wie beispielsweise 250.4 oder eine Zeichenkette wie
z.B. “HALLO“. Eine Variable ist ein bezeichneter numerischer Wert wie GESAMT
oder ein bezeichneter String wie NAMES.

Variablennamen |
Variablennamen dürfen keine Leerzeichen enthalten. Sie dürfen beliebig lang sein.
Allerdings ist zu beachten, daß lediglich die ersten 31 Zeichen einer Variablen als Un-
terscheidungsmerkmal von ST BASIC verwendet werden. |

Numerische Variablen

Numerische Variablen gibt es in unterschiedlichen Formen. In der nachstehenden Ta-
belle finden sie eine Zusammenstellung von Variablentypen.

ZEICHEN FUR DIE VARIABLENDEKLARATION
Zeichen Typ Beispiel

$ String | NAMES
% Integerzahl Oo DATEN.NUMMER%

! Ä Realzahl GESAMT.GEWINN!

Typendeklaration
Die nachfolgenden Anweisungen d deklarieren Variablentypen 1 in ST BASIC. (Lesen
Sie hierzu auch in Anhang C nach.) |

DEFSTR bezeichnet String-Variablen
DEFINT bezeichnet Integer-Variablen
DEFSNG bezeichnet Realzahlen-Variablen

Numerische Funktionen
Die in ST BASIC verfügbaren numerischen Funktionen können Sie der nachstehen-
den Tabelle entnehmen.

NUMERISCHE FUNKTIONEN
Funktion Erklärung

ABS Gibt den absoluten Wert einer Zahl aus
ATN Gibt den Arcustangens einer Zahl aus
COS Gibt den Cosinus einer Zahl aus
EXP Gibt die Potenz e eines Wertes aus
LOG Gibt den natürlichen Logarithmus einer Zahl aus
LOGO. Gibt den Basis 10 - Logarithmus einer Zahl aus
RND Generiert eine Folge zufällig gewählter Zahlen
SIN Gibt den Sinus einer Zahl in Radian aus
SOR Gibt die Quadratwurzel einer Zahl aus
TAN Gibt den Tangens einer Zahl in Radian aus

String-Funktionen
Strings können mit Pluszeichen (+) verkettet werden (z.B. A$ = B$ + C$). In der
nachstehenden Tabelle sehen Sie die anderen in ST BASIC verfügbaren String-Funk-
tionen.

STRING-FUNKTIONEN
Funktion Erklarung

INSTR Sucht das erste Vorkommen einer bestimmten Zeichenfolge
In einem String und gibt deren Position aus.

LEFTS — Gibt die ersten Zeichen einer Zeichenkette aus.
LEN Gibt die Zeichenlange eines Strings aus.
MID$ Entfernt einen String aus einer Zeichenkette.
RIGHTS Gibt die letzten Zeichen eines Strings aus.
SPACE$ Gibt einen String aus, der aus Leerzeichen besteht.

_ STR$ Wandelt eine Zahl in einen String um.
STRING$ Gibt einen String mit der angegebenen Lange aus.

Arrays |
ST BASIC verfügt über numerische und String-Arrays. Über die Anweisung DIM
werden Variablen dimensioniert. Im Bezug auf Arrays beziehen sich Unterbereiche
auf Reihen, Spalten und Ebenen - in dieser Reihenfolge. Werte von Unterbereichen
können jede gültige numerische Konstante, Variable oder beliebige numerische Aus-
drücke sein. Am effizientesten ist die Verwendung von Integerzahlen, da bei der An-
gabe von Realzahlen diese für eine Verwendung als Unterbereich in einem Array zu-
vor in Integerzahlen umgewandelt werden. Arrays akzeptieren direkte Eingaben und
können wie jede andere Variable in einer BASIC-Anweisung verwendet werden.

B-4

ZWEIDIMENSIONALES ARRAY
(0) (1) (2)

(0) (0,0) (0.1) (0.2) so
1) (do) (1.1) (1.2) MO
2) (2.0) (2.1) (2.2) DI
(3) (3.0) (3.1) (3.2) MI
(4) (4.0) (4.1) (4.2) DO
(5) (65.0) (5.1) (5.2) FR
(6) (6.0) (6.1) (6.2) SA

6AM 2PM 10PM

Die maximale Anzahl von Elementen in einem Array ist durch den verfügbaren Spei-
_cherplatz eingeschränkt. Elemente unterschiedlicher Datentypen belegen unter-
schiedlich viel Speicherplatz.

INTEGERZAHLEN belegen 2 Bytes
REALZAHLEN belegen 4 Bytes ~
STRINGS belegen 6 Bytes.

Zeilenformat

Das Zeilenformat in ST BASIC ist:

<Zeilennummer> <Sprungmarke:> <Anweisung> <:Anweisung> <!’REM>

Die Angabe einer Sprungmarke ist optional. Eine Sprungmarke kann anstelle einer
Zeilennummer als Zeilenangabe innerhalb einer GOTO- oder GOSUB-Anweisung
verwendet werden.

Einschränkungen bei der Angabe des Dateinamens
ST BASIC Programmzeilen verwenden den Extender .BAS, um als BASIC-Program-
me gekennzeichnet zu sein. Ein Dateiname darf nicht mehr als 8 Zeichen, und der
Extender nicht mehr als 3 Zeichen umfassen. Der Dateiname STBASIC.DAT ist bei-
spielsweise eine gültige Angabe.

ANHANG C

BEFEHLE, FUNKTIONEN UND ANWEISUNGEN

In diesem Abschnitt werden die Befehle, Funktionen und Anweisungen von ST
BASIC in alphabetischer Reihenfolge aufgeführt und beschrieben. Die Schreibweise
der Syntax-Angaben hat folgende Bedeutung:

@ ® @ Wörter in spitzen Klammern, < >, beschreiben die Datenart, die Sie hier
eingeben müssen. Diese Angaben erklären sich selbst. So bedeutet beispielsweise
<Variable>, daß Sıe an dieser Position innerhalb einer Anweisung eine Variable vor-
geben müssen. -

eee Begriffe i in eckigen Klammern, | |, Können optional verwendet werden, dür-
fen jedoch nicht mehrmals hintereinander geschrieben werden. _

© @ @ Begriffe in runden Klammern, (), können optional verwendet werden. Im
Gegensatz zu Angaben in eckigen Klammern können diese Begriffe mehrmals hinter-
einander geschrieben werden.

© © © In Großbuchstaben geschriebene Wörter sind ST BASIC Befehlswörter.

ABS | X=ABS (N) . oo FUNKTION

Syntax: X = ABS (<numerischer Ausdruck>)

Effekt: Gibt den absoluten Wert einer Zahl aus. Der absolute Werteiner

Zahl ist immer positiv oder Null.

Erklärung:

ABS gibt einen Integer-Wert für ein Integer-Argument aus. Bei Realzahlen hat der
ausgegebene Wert dieselbe Genauigkeit wie das Argument.

Beispiel:

Ok 101% = ABS (-9)
Ok 20 PRINT I%
Ok 30 X! = ABS(325556.244)
OK 40 PRINT X!
Ok 50 END
Ok RUN

9
325556

Ok

C-1

ABS X=ABS(N) | | | FUNKTION

Syntax: | X = ABS (<numerischer Ausdruck>)

Effekt: Gibt den absoluten Wert einer Zahl aus. Der absolute Wert einer

5 Zahl ist immer positiv oder Null. | |

Erklärung:

ABS gibt einen Integer-Wert für ein Integer-Argument aus. Bei Realzahlen hat der
ausgegebene Wert dieselbe Genauigkeit wie das Argument.

Beispiel:

Ok 101% = ABS (-9)
Ok 20 PRINT I%
Ok 30 X! = ABS(325556.244)
OK 40 PRINT X!
Ok 50 END
Ok RUN

9
325556

Ok

ATN X!I=zATN(N%) | FUNKTION

Syntax: X! = ATN (<numerischer Ausdruck>)

Effekt: Errechnet den Arcustangens einer Zahl.

Erklärung:

Die Funktion ATN gibt eine Realzahl mit einfacher Genauigkeit aus. Die Zahl ist ein
Winkel in Radian, der zwischen -PV2 und PI/2 liegt. Die Funktion TAN ist das Gegen-
stück zu ATN. | |

Beispiel:

Ok 10 RADIAN! = ATN (0.99999)
Ok 20 PRINT “Der Winkel in Radian ist “;RADIAN!
Ok 30 PRINT |
Ok 40 PI = 3.14159
Ok 50 GRAD = RADIAN! * 180/PI
Ok 60 PRINT “Der Winkel in Grad ist “=;CINT(GRAD)
Ok RUN
Der Winkel in Radian ist .785393
Der Winkel in Grad ist 45
Ok

C-2

AUTO AUTO BEFEHL
AUTO 50,25
AUTO ‚20
AUTO 50

Syntax: AUTO [<erste Zeilennummer>] |,<Erhöhung>]

Effekt: Erstellt für jedes Betätigen der RETURN-Taste eine Zeilennum-
mer. Mit [CTRL] [G] wird AUTO abgeschaltet. Eine Zeilennum-
mer darf nicht größer als 65535 sein. Der Befehl AUTO kann
innerhalb des Editors nicht verwendet werden.

Erklärung:

Sie geben die erste zu erstellende Zeilennummer, sowie die Erhöhung zur nächsten zu
generierenden Zeilennumer an. Wenn Sie die erste zu erstellende Zeilennummer
nicht angeben, beginnt AUTO mit Zeilennummer 10. Geben Sie keine Erhöhung vor,
erfolgt die Erhöhung entweder in Zehnersprüngen oder in der zuletzt durch einen
AUTO-Befehl angegebenen Weise.

Existiert eine Zeilennummer bereits, druckt AUTO zwei Sternchen vor diese Num-
mer (**10). Wenn Sie eine neue Programmzeile eingeben, wird die alte Zeilennum-
mer nach Betätigen der RETURN- Taste durch die neue Zeile ersetzt. Drücken Sie
lediglich die RETURN-Taste, bleibt die alte Zeilennummer unverändert.

Mit [CTRL] [G] wird AUTO abgeschaltet. [CTRL] [G] entspricht von der Funktion
her nicht der RETURN-Taste. [CTRL] [G] gibt keine Programmzeile ein und verän-
dert eine bereits vorhandene Zeile nicht. |

Beispiele:

Ok AUTO Ok AUTO 50, 25
10 50
20 75
30 100

Ok AUTO, 20 Ok AUTO 50
10 50
30 70
50 90

C-3

BLOAD BLOAD TEST.DAT, 250 ANWEISUNG

Syntax: BLOAD <Dateiangabe,>[,<Adresse>]

Effekt: Lädt eine Datei iin den Arbeitsspeicher.

Erklärung:

BLOAD wird verwendet, um Maschinensprache-Programme und Arrays sowie deren
Inhalt zu laden. BLOAD kann zudem Bildschirmbilder darstellen.

BLOAD lädt eine Datei an der von Ihnen angegebenen Adresse in den Arbeitsspei-
cher. Die Dateiangabe ist der vollständige Dateiname inclusive Extender. Die Adres-
se ist der numerische Ausdruck, bei dem mit dem Laden begonnen werden soll.

Wenn Sie die Adresse nicht angeben, wird der mit BSAVE spezifizierte Startpunkt an-
genommen. Die Datei wird an dieselbe Adresse geladen, an der sie sich zuvor befand.

BLOAD überprüft keine Adressen. Obwohl es möglich ist, an jeder beliebigen Stelle
die Anweisung BLOAD zu verwenden, sollten Sie sie nicht über Datenbereiche von
BASIC oder über Ihr Programm laden. In diesem Fall könnte Ihr Programm ab-
stürzen. | 2 nn |

Beispiel:

Ok 110 BLOAD “ARRAY“,23

C-4

BREAK BREAK - 40 . | | BEFEHL
BREAK 10 - 40
BREAK 40, 125
BREAK
BREAK 40

Syntax: BREAK [<Zeilennummern-Liste>|

Effekt: — ‘Hält den Programmlauf an.

Erklärung:

BREAK, alleine verwendet, bewirkt, daß der Programmlauf nach Ausführung jeder
Programmzeile angehalten wird. Sowohl die Programmzeile, als auch jede eventuelle
Ausgabe wird ausgegeben. Durch Betätigen von [RETURN] oder Eingeben von
CONT wird die nächste Programmzeile ausgeführt. Damit entspricht BREAK dem
Befehl SIEP.

Geben Sie hinter BREAK Zeilennummern an, hält das Programm nur in den betref-
fenden Zeilen an.

"Der BREAK-Modus wird durch den Befehl UNBREAK abgeschaltet.

Beispiel:

Ok10N=5

Ok 20 FOR X = 1TO5

Ok30N=N-1

Ok 40 PRINT N

Ok 50 NEXT X

Ok BREAK 50

Ok RUN
4

b 50 NEXT X

Br

BSAVE BSAVE TEST.DAT, 250, 500 | ANWEISUNG

Syntax: BSAVE <Dateiangabe>,<Adresse>,<Länge>

Effekt: Legt einen Teil des Arbeitsspeichers in einer Datei ab.

Erklärung:

BSAVE speichert Maschinensprache-Programme, Daten oder Bildschirmbilder ab.

<Dateiangabe> ist die Angabe Ihres Dateinamens.

Die Adresse ist ein numerischer Ausdruck.

Beispiel:

Ok BSAVE “ARRAY“ ‚23,650

C-6

CALL_ CALL DRAW &,Y, Z) _. ANWEISUNG |

Syntax: CALL <numerischer Variable> [(<Parameter Liste>)]

Effekt: Gibt die Programmkontrolle an eine Maschinensprache-Unter-
routine ab.

Erklärung:

Die numerische Variable ist die Anfangs-Speicheradresse der Maschinensprache-Un-
terroutine. Die Routine wird mit BLOAD in den Arbeitsspeicher geladen.

Die optionale Parameter-Liste besteht aus Ausdrücken, die als Argumente für die Da-
tenübertragung zwischen Hauptprogramm und Assembler-Routine dienen. Die Para-
meter-Liste wird in Klammern eingeschlossen und muß durch Kommata abgegrenzt
werden. | |

Beispiel:

Ok 500 BLOAD “ASHLER“ 185000
Ok 550 CHART = 185666
Ok 600 CALL CHART(I%, A$,X)

Anmerkung: Die Assembler-Routine, die über den Befehl CALL aufgerufen wird,
sucht nach 2 Parametern im Anwender-Stack (A7). Der erste Parameter ist eine 2-By-
te-Integerzahl, die die Anzahl formaler Parameter angibt, die vom Anwenderpro-
gramm übertragen wurden (in Zeile 600 im obigen Beispiel wäre die Anzahl der Para-
meter 3). Jeder dieser Werte belegt 8 Bytes im Array, unabhängig davon, ob es sich bei
dem formalen Parameter um eine Integerzahl, Realzahl oder andere Werte handelt.
In jedem Fall enthält bei Verwendung einer String-Variablen als formaler Paramater
der 8-Byte-Wert im Array einen Zeiger zur Speicheradresse, in der dieser String abge-
legt ist.

C-7

CHAIN CHAIN NEUPROG, 100, ALL ANWEISUNG
CHAIN MERGE NEUPROG, 100 DELETE 500-600 |

Syntax: CHAIN <Dateiname>[,<Zeilenangabe>][, ALL]
CHAIN MERGE <Dateiname>[,Zeilenangabe>]
|, DELETE<Zeilenangabe-Liste> |

Effekt: Ubergibt die Kontrolle und überträgt Variablen an ein anderes
Programm. Der Extender .BAS wird automatisch an den Datei-
namen angesetzt, sofern Sie nicht selbst einen anderen Extender
vorgeben. |

Erklarung:

Das Programm, das Sie über die CHAIN-Anweisung spezifizieren, ersetzt das derzei-
tige Programm im Arbeitsspeicher. Das mit CHAIN eingebrachte Programm wird oft
auch Overlay genannt, da es das ursprüngliche Programm oder Teile davon über-
schreibt. <Dateiname> ist der Dateiname des neuen Programmes. Es kann sich um
jeden beliebigen String-Ausdruck eines legalen Dateinamens handeln.

Die Option MERGE verknüpft ein ein Programm mit einem existenten Programm,
anstatt es zu ersetzen. CHAIN MERGE speichert alle Variablen, Typendeklaratio-
nen, Anweisungen und Optionen. Wenn Sie die Option MERGE weglassen, müssen
Sie alle DEF-Anweisungen in jedem mit CHAIN neu angefügten Programm neu auf-
stellen. Die Option MERGE ersetzt die Anweisungen im neuen Programm durch die
Anweisungen im ursprünglichen Programm. Sind einige der Zeilennummern im neu-
en Programm identisch zu Zeilennummern im ursprünglichen Programm, ersetzen die
neuen Programmzeilen die alten.

Sie können nach dem Dateinamen eine Zeilenangabe spezifizieren, durch die ange-
zeigt wird, ab welcher Zeile im neuen Programm mit der Programmausführung begon-
nen werden soll. Andernfalls beginnt der Programmlauf mit der ersten ausführbaren
Anweisung.

Die Option ALL zeigt an, daß alle Variablen aus dem ursprünglichen Programm an
das neue Programm übertragen werden. ALL in Verbindung mit CHAIN MERGE ist
nicht gültig.

Wird die Option ALL weggelassen, müssen Sie mit der Anweisung COMMON ange-
ben, welche Variablen sowohl von dem ursprünglichen, als auch vom neuen Pro-
gramm verwendet werden können.

Lesen Sie hierzu auch unter COMMON nach.

Verwenden Sie die Option DELETE nur in Verbindung mit CHAIN MERGE. Mit
DELETE können Sie Teile des alten Programmes aus dem Arbeitsspeicher entfernen,
um Platz für das neue Programm zu schaffen. Die Option DELETE löscht Zeilen aus
dem alten Programm, bevor es mit dem neuen Programm <Dateiname> verbunden
wird. Geben Sie nach dem Befehlswort DELETE die Zeilennummern an, die gelöscht

werden sollen.

C8

Beispiele:

Die nachfolgende Anweisung bindet ein Programm mit dem Namen KURS.BAS ein:

Ok 400 CHAIN “KURS“

In diesem Beispiel wird das Programm KURS.BAS eingebunden. Der Programmlauf
beginnt bei Zeile 1200. Alle Programm-Variablen können vom ursprünglichen Pro-
gramm in das neue Programm übernommen werden.

Ok 400 CHAIN “KURS“, 1200, ALL

Im letzten Beispiel werden die Zeilen eines Overlays mit dem Namen GESAMT.OVR
mit dem bereits im Arbeitsspeicher befindlichen Programm verknüpft. Die Program-
mausführung beginnt bei Zeile 900. Bevor die verknüpfte Datei in den Speicher gela-
den wird, wird durch die Anweisung eine > Zeilenangabe- -Liste, die von Zeile 900 bis zu
Zeile 2000 reicht, gelöscht.

Ok 710 CHAIN MERGE «GESAMT.OVR“, 900, DELETE 900-2000

C-9

CHR$ A$ = CHR$(97) | FUNKTION

Syntax: A$ = CHR$(<numerischer Ausdruck>)

Effekt: Gibt das Zeichen aus, dessen ASCII-Wert der eingegebenen
| Dezimalzahl entspricht.

Erklärung:

CHR$ gibt einen Ein-Zeichen-String aus.

Der numerische Ausdruck muß einer legalen Integerzahl entsprechen.

Der ASCH-Wert des ausgegebenen Zeichens ist <Ausdruck>MOD 256. Das bedeu-
tet, daß der Ausdruck in eine Zahl zwischen 0 und 256 konvertiert wird. Ist der Aus-
druck größer als 256, wird er wie ein Restwert einer Division durch 256 behandelt
(siehe Beispiele).

CHR$ wandelt Realzahlen in Integerzahlen um.

Verwenden Sie die Funktion CHR$, um Sonderzeichen wie Zeilenvorschübe oder
Zeilenschaltungen an einen Ausgabe- Datenkanal zu übermitteln.

CHR$ ist das Gegenstück zu ASC.

Beispiel:

Ok 10 PRINT CHR$(83)
Ok 20 PRINT CHR$(100)
Ok 30 PRINT CHR$(356)
Ok RUN
S
d
d
Ok

C-10

CINT I% = CINT(N) FUNKTION

Syntax: I% = CINT(<numerischer Ausdruck>)

Effekt: Rundet eine Zahl auf die nächste Integerzahl auf oder ab.

Erklarung:

Der numerische Ausdruck muß zwischen -32768 und 32767 liegen. Andernfalls tritt ein
Uberlauffehler auf.

Lesen Sie auch unter FIX und INT nach.

Beispiel: |

Ok 10 PRINT CINT(5.2)
Ok 20 PRINT CINT(62.89)
Ok 30 PRINT CINT(-456.61)
Ok RUN |

5

63
-457
Ok

C-11

CIRCLE CIRCLE 50,80,50 ANWEISUNG
CIRCLE 50,80,50,900,1800

Syntax: CIRCLE <horizont. Mittelpunkt, vertik. Mittelpunkt,
| Radius>[<,Anfangswinkel, Endwinkel>]

Effekt: - CIRCLE zeichnet Kreise und Kreisausschnitte.

Erklärung:

CIRCLE zeichnet einen Kreis, dessen Mittelpunkt an dem Punkt liegt, der durch die
ersten beiden Parameter (horizontaler und vertikaler Mittelpunkt) vorgegeben wur-
de. Die Positionen werden in Pixel angegeben und von der oberen linken Ecke des
Ausgabefensters aus gezählt.

Der dritte Parameter (Radius) wird ebenfalls in Pixel ausgedrückt. Die horizontale
und vertikale Pixelangabe ist abhängig von der gewählten Auflösung, sowie von der
Größe des Ausgabefensters. Der Kreis wird in der festgelegten Zeichenfarbe (Para-
meter 3 der COLOR-Anweisung) dargestellt.

Die letzten beiden Parameter (Anfangs- und Endwinkel) sind optional. Wird hier
nichts angegeben, zeichnet CIRCLE einen Kreis. Andernfalls zieht CIRCLE einen
Kreisausschnitt zwischen den beiden Punkten. CIRCLE zeichnet allerdings nur einen
Kreisbogen und kein eingefärbtes Kreissegment. Winkel werden ın Grad mal 10 ange-
geben. So werden 45 Grad als 450, 180 Grad als 1800 usw. angegeben. O Grad zeigt
zum rechten Rand des Fensters, 90 Grad zum oberen, 180 Grad zum linken und 270
Grad zum unteren Fensterrand. ‘CIRCLE 100,30,30,0 3600 zeichnet einen vollständi-
gen schwarzen Kreis.

Lesen Sie auch unter PCIRCLE, ELLIPSE und PELLIPSE nach.

Beispiel:

Ok 10 COLOR 1,0,1: CLEARW 2
Ok 20 CIRCLE 100,50,40
Ok 30 COLOR 1,0,2
Ok 40 CIRCLE 100,50,40,300,90
Ok RUN
[Im Ausgabefenster erscheint ein schwarzer Kreis mit einem roten Kreisaus-
schnitt über 60 Grad, beginnend bei 30 Grad] |
Ok

C-12

CLEAR CLEAR | ANWEISUNG

Syntax: CLEAR

Effekt: Bereinigt den mit Programmdaten belegten Arbeitsspeicher, ohne
das derzeit im Arbeitsspeicher befindliche Programm zu löschen.

Erklärung:

CLEAR setzt alle numerischen Variablen und String-Variablen auf Null. Der Befehl
CLEAR macht alle Arrays undefiniert.

Beispiele:

Das nachfolgende Beispiel löscht alle Daten aus dem Speicher, ohne das Originalpro- |
gramm zu löschen:

Ok CLEAR

CLEARW CLEARW 2 | ANWEISUNG

Syntax: CLEARW <numerischer Ausdruck>

Effekt: CLEARW löscht BASIC-Fensterinhalte.

Erklärung:

CLEARW löscht den Inhalt des angegebenen Fensters. Dabei werden die Fenster fol-
gendermaßen bezeichnet:

0 = Bearbeitungsfenster
1 = Auflistungsfenster
2 = Ausgabefenster
3 = Befehlsfenster

Beispiel:

Ok 10 CLEARW 2
Ok 20 PRINT “HALLO“
Ok RUN

C-13

CLOSE -——C CLOSE ... ANWEISUNG
CLOSE +1
CLOSE I, 3,4

Syntax: > CLOSE [#]<Dateinummer> —

Effekt: SchlieBt geöffnete Disketten-Dateien und schließt jede Ein- oder
Ausgabe ab.

Erklärung: |

Die CLOSE-Anweisung schließt geöffnete Dateien, beläßt die Dateinummern unver-
ändert und gibt den gesamten Speicherplatz frei, der von der Datei verwendet wird.
Die Dateien müssen unter Verwendung der OPEN-Anweisung geöffnet worden sein.

Die Dateinummer ist die Kennummer, die Sie einer Datei in der OPEN-Anweisung
zuordnen. Sie können eine beliebige Anzahl von Dateinummern in der optionalen
CLOSE-Anweisung angeben. Trennen Sie hierbei die einzelnen Dateinummern
durch Kommata ab.

Ein Nummernzeichen (#) vor der Dateinummer kann optional gesetzt werden.

Dateinummern können jeder beliebige numerische Ausdruck sein. Der Ausdruck
muß einer Zahl zwischen 1 und 15 entsprechen. 15 ıst die maximal erlaubte Anzahl von
Dateien. Andernfalls tritt ein “Bad File Number“-Fehler auf. Entsprechen Dateinum-
mern Realzahlen, wandelt CLOSE diese in Integerzahlen um. |

Wenn Sie nach dem Befehlswort CLOSE keine Dateinummer vorgeben, schließt die
Anweisung alle derzeit geöffneten Dateien.

ANMERKUNG: NEW, END, RUN, LOAD, OLD, QUIT und SYSTEM schließen
alle geöffneten Dateien automatisch. Die STOP- -Anweisung schließt keine Disketten-
Dateien.

Beispiele:

Die nachfolgende Anweisung schließt alle geöffneten Disketten- Dateien:

Ok 310 CLOSE

In diesem Beispiel werden die geöffneten Disketten-Dateien, denen die Dateinum-
mern 3 und 7 zugeordnet wurden, geschlossen:

Ok 600 CLOSE #3, #7 |

C-14

CLOSEW CLOSEW1 a ANWEISUNG

Syntax: | CLOSEW <Fenster-Nummer>

Effekt: - SchlieBt eines der BASIC-Fenster.

Erklärung:

CLOSEW wird verwendet, um eines der vier BASIC-Fenster zu schließen. Dieser
Aufruf muß zum Schließen aller Fenster für jedes separat vorgenommen werden. Die
Angabe <F enster-Nummer> lautet folgendermaßen:

0 - Bearbeitungsfenster
1 - Auflistungsfenster
2 - Ausgabefenster
3 - Befehlsfenster

Anmerkung: CLOSEW gibt eine interne Meldung an den BASIC- Interpreter, um
dem System eine Kontrolle des jeweiligen Fenster- Status zu ermöglichen. Aus diesem
Grund sollten Sie BASIC-Fenster niemals über direkte AES-Aufrufe schließen.

C-15

COLOR _ COLOR 10,111 | ANWEISUNG

Syntax: COLOR <Textfarbe, Füllfärbe, Linienfarbe, Index, Stil>

Effekt: Legt die Text-, Füll- und Zeichenfarbe, sowie die Füllmuster fest.

Erklärung:

COLOR setzt die Farbe des im Ausgabefenster gedruckten Textes, des Hintergrundes
(Füllfarbe) und der im Ausgabefenster gezeichneten Linien fest. Zudem werden Far-
ben und Muster, mit denen die gezeichneten Formen gefüllt werden sollen, festgelegt.
COLOR beeinflußt nachfolgende PRINT und Grafik-Farben, verändert allerdings
bereits im Ausgabefenster vorhandene Texte oder Zeichnungen nicht.

Die untenstehende Tabelle zeigt die einzelnen F arbwerte 1 in unterschiedlichen Auflö-
sungen:

FARBWERT NIEDRIG MITTEL HOCH
0 x X X
1 X xX x
2 x x
3 x x

4 x
5 x
6 X
7 x
8 x
9 X
10 X
11 x
12 x
13 X
14 X
15 x

Die nachfolgende Tabelle zeigt die Muster, die über Parameter 4 und 5 ausgewählt
werden können, sowie den verfügbaren Füll- Stil. Unter jedem Kästchen sind zwei
Zahlen angegeben, die durch ein Komma voneinander abgetrennt sind. Die Zahl links
neben dem Komma gibt den Füll-Stil an (Unausgefüllt, ausgefüllt mit einem Muster,
oder ausgefüllt mit einer Schraffierung). Die Zahl rechts neben dem Komma steht für
den Index des gewählten Musters bzw. der Schraffierung.

C-16

Ok
****% in roter Schrift *****

Ok 10 COLOR 1,2,3,1,1
Ok 20 FULLW 2: CLEARW 2
Ok 30 K=(K+10) MOD 3600
Ok 40 FOR I=3 TO 11
Ok COLOR 1.1.1.1.2
Ok 60 J = 1*400 |
Ok 70 PCIRCLE 150,80,80,(J+K+3600) MOD 3600, (J+K+400) MOD 3600
Ok 80 NEXT
Ok 90 GOTO 30

C-17

fe po hes fle a} t- 7 “

iat Ei
wy! oot Slee Pes ee...

m Er ...

2,14 2,15 2,16

ee WO ee
a iresteeat 00666

VELEN ee EEE 5
2,17 2,18 2,19 2,20 2, 21 2,22 2, 23 2,24

EA | SS ee l !
WORTE, RR | i l
LINE LE EA j Ni Ij

3,1 3,2 3,3 3,4 3,5 3,6

TT IVA AOS FH
Zw 7 WAS ” SS |
ff Af. L: X) Slssel errr il

3,7 3,8 3,9 3,10 3,11 3,12

Beispiele:

Ok 10 COLOR 10,1 |

Ok 20 PRINT “SCHWARZ“

Ok 30 COLOR 2,0,1

Ok 40 PRINT “ROT

Ok 50 COLOR 1,0,1

Ok RUN |

SCHWARZ ***** in schwarzer Schrift *****

ROT

COMMON __COMMONA$,COUNT,N _ ANWEISUNG

Syntax: _ COMMON <Variable> <,Variable> |

Effekt: Gibt die Variablen an, die ein Programm an ein mit CHAIN
-eingebundenes Programm übergeben kann. :

Erklarung:

ST BASIC behandelt alle COMMON. -Anweisungen in in einem Programm als eine ein-
zige konsekutive Liste von Variablen. Aus diesem Grund kann ein Programm eine be-
liebige Anzahl von COMMON-Anweisungen enthalten. |

COMMON-Anweisungen können an jeder beliebigen Stelle innerhalb eines Program-
mes erscheinen. Am günstigsten ist eine Plazierung dieser Anweisungen am Anfang
des Programmes. :

COMMON wird in Verbindung mit CHAIN verwendet.

Lesen Sie hierzu auch unter CHAIN nach.

Beispiel:

Das nachfolgende Beispiel bindet in ein Programm mit dem Namen “STBASIC“ ein
und übergibt die Variablen VAL!, NAME und die Feld-Variable SCALE().

Oki 0 COMMON VAL!, NAME$, SCALE()
Ok: 0 CHAIN “STBASIC“

C-18

CONT — CONT | = BEFEHL

Syntax: CONT

Effekt: | Nimmt einen durch BREAK, STOP oder CTRL-G unterbrochen-
en Programmlauf wieder auf.

Erklärung:

Eine BREAK- oder STOP- Anweisung i in einem Programm, bzw. das Betätigen
von CTRL-G (sofern nicht getrapped) bringt ST BASIC in den BREAK-Modus. Im
BREAK-Modus können Sie Direktmodus- Anweisungen verwenden, um dazwischen-
liegende Programmwerte zu verändern. |

Mit CONT wird der Programmlauf fortgesetzt.

Sie können auch eine Direktmodus GOTO-Anweisung verwenden, um die Programm-
ausführung in eine spezielle Programmzeile zu leiten.

Beispiel:

Ok10N=5
Ok 20 FOR X = 1TO5
Ok30N=N-1
Ok 40 PRINT N
Ok 50 NEXT X
Ok RUN

4

3
2

[drücke [CTRL] [G]]
-- Break -- at line 30

Ok CONT
1
0

Ok

C-19

cos X=COS(V FUNKTION

Syntax: X = COS (<numerischer Ausdruck>)

_ Effekt: Gibt den Cosinus einer Zahl aus.

Erklärung:

Die COS-Funktion gibt eine Realzahl mit einfacher Genauigkeit aus. Die Zahl ist der
Cosinus-Wert des Winkels im numerischen Ausdruck.

Alle trigonometrischen Funktionen in ATARI BASIC erfordern die Angabe des Win-
kels in Radian.

Beispiel:

Ok 10 PI = 3.14159
Ok 20 DEGREES = 180
Ok 30 RADIANS = DEGREES * (PU 180)
Ok 40 ANS! = COS(RADIANS)
Ok 50 PRINT “der Cosinus ist“; ANS!
Ok RUN
Der Cosinus ist -1
Ok

C-20

CVD, CVI,CVS CVD(AS) A$ = 8 Byte String | FUNKTION
| CVI(B$) B$ = 2 Byte String | |

CVS(C$) C$ = 4 Byte String

Syntax: CVD(<8-Byte String>)
CVI(<2-Byte String>)
CVS(<4-Byte String>)

Effekt: CVD-, CVI- und CVS-Funktionen wandeln Byte Strings in nu-
merische Variablen um. Dient zur Umwandlung in ASCII-Zahlen,
die aus Random- Dateien ausgelesen werden können.

Erklärung:

ST BASIC speichert Zahlen in einer Random-Datei als Byte Strings. Um die Zahlen
aus der Datei auszulesen, müssen die Strings in die dazugehörigen numerischen Da-

 ten-Typen konvertiert werden. Die Funktionen verändern nicht den Wert der Zahl,
sondern lediglich den Daten-Typ. Diese Strings sind die exakte Byte-Repräsentation
der gespeicherten Zahlen. Es handelt sich dabei NICHT um Zeichen-Strings, die
gedruckt werden können. \ |

Die Funktion CVD konvertiert einen 8- -Byte String in eine Realzahl mit doppelter
Genauigkeit.

Die Funktion CVI wandelt einen 2-Byte String in eine Integerzahl um.

Die Funktion CVS konvertiert einen 4-Byte String in eine Realzahl mit einfacher
Genauigkeit.

Falls der String, der aus der Datei ausgelesen wird, kürzer ist als für die Konvertierung
erforderlich, wird er nach rechts mit Binär-Nullen aufgefüllt.

MKD$, MKI$ und MKS$ sind die gegensätzlichen Funktionen zu CVD, CVI und
CVS.

Beispiel:

Ok 10 OPEN “R“,#1,“NUMBERS“
Ok 20 FIELD #1,2 AS A$, 4 AS B$, 8 AS C$
Ok 30 GET #1, REC%
Ok 401% = CVI(A$)
Ok 50 X! = CVS(B$)
Ok 60 Y+# = CVD(C$)
Ok 70 PRINT I%, X!, Y#
Ok 80 CLOSE #1
Ok 90 END

Uber diesen Programmlauf wird ein Satz Zahlen aus der Datei entnommen und ausge-
druckt.

C-21

DATA DATA 25,15,925,Wort | a ANWEISUNG

Syntax: DATA <Konstante> ,<Konstante>

Effekt: Definiert eine Liste von Konstanten, die eine READ- Anweisung
Variablen zuordnen kann.

Erklärung:

DATA-Anweisungen ermöglichen Ihnen, feste Werte Variablen zuzuordnen. Die
Werte werden gemäß ihrer Reihenfolge in einer DATA-Anweisung zugeordnet.

Jede DATA-Konstante muß eine dazugehörige READ-Variable besitzen und umge-
kehrt. Die Konstanten und Variablen passen gemäß der Reihenfolge, in der sie aufge-
listet sind, zusammen; die erste DATA- Konstante ist von der ersten READ-Varia-
blen abhängig ı USW. 7

DATA-Konstante können Integerzahlen, Realzahlen oder Strings in jeder beliebigen
Kombination sein. Die Daten-Typen für die Konstanten in der DATA-Liste müssen
jedoch mit den Variablen zusammenpassen, die ihnen in einer READ- -Anweisung Zu-
geordnet wurden. Setzen Sie keine Anführungszeichen um Strings in einer DATA-
Anweisung.

DATA-Anweisungen können beliebig lang sein. Sie Können jedoch in eine Zeile, die
eine DATA-Anweisung enthält, keine anderen, zusätzlichen Anweisungen mehr
schreiben.

Obwohl jede Konstante eine zugehörige Variable besitzen muß, brauchen Sie nicht für
jede DATA _ ınweisung eine READ-Anweisung. Sie können mehrere DATA-An-
weisungen ir in Programm einarbeiten, denen Sie innerhalb einer einzigen READ-
Anweisung ' riablen zuordnen. In diesem Fall passen sie zuerst gemäß der Reihen-
folge der Kc itanten im Programm, und danach gemäß ihrer Reihenfolge innerhalb
der Zeilen zı ımmen. | :

Die RESTO E-Anweisung ordnet READ-Anweisungen DATA-Anweisungszeilen
ZU. | .

Lesen Sie hierzu auch unter READ und RESTORE nach.

Beispiel: |

Ok 10 READ X
Ok 20 DATA 33.3, 5, “"PLATZRESERVIERUNG“
Ok 30 PRINT X
Ok 40 READ X, Y$
Ok 50 PRINT X, Y$
Ok RUN

33.3
5 PLATZRESERVIERUNG

C-22

DEFFN DEF FNA (A) = A*2+5 | | ANWEISUNG

Syntax: DEF FN<Funktionsname>| (<Parameter, Parameter>)] =
<Definition>

Effekt: Definiert anwenderspezifische Funktionen.

Erklarung:

DEF FN erlaubt Ihnen die Definition eigener Funktionen fur die Verwendung in ei-
nem Programm. Der Name für die Funktion kann ein beliebiger, gültiger Variablen-
name sein. |

Die Variablenliste in Klammern ist optional. Sie können jeden Variablen-Typ mit
Ausnahme von Arrays verwenden. Diese Variablen sind an die definierte Funktion
gebunden und beeinflussen Variablen mit demselben Namen an einer anderen Stelle
im Programm nicht. Die Variablen in Klammern können als “Platzreservierungen“ für
die Werte, die beim Aufrufen der Funktion an sie übertragen werden, angesehen wer-
den. Die Werte, dıe Sie an die Funktion übertragen, müssen bezüglich des Typs und
der Zahl mit den Werten in Klammern zusammenpassen.

Sie können beliebige globale Variablen innerhalb der Funktionsdefinition in Ihrem
Programm verwenden. Sie werden genauso behandelt wie von der Funktionsdefin-
ition angegeben. Wenn Sie ihre Werte innerhalb der Funktion verändern, behalten sie
ihre neuen Werte während des gesamten Programmes bei.

Die Definition ist ein Ausdruck, der die Arbeitsweise der Funktion festlegt. Die Be-
schreibung ist auf eine Programmzeile beschränkt. Enthält der Funktionsname eine
Typen-Spezifikation wie beispielsweise FNA$, muß die Definition mit diesem Typ zu-
sammenpassen. Die Parameter, die an die Funktion übertragen werden (in Klammern
gesetzt) müssen sich ebenfalls an diesen Typ anpassen.

Beispiel:

Ok 10 INPUT “BREITE MATERIAL IN CM“:
MATERIAL.BREITE
Ok 20 INPUT “BREITE FENSTERBANK IN CM“:
FENSTER.BREITE
Ok 30 BRETTER.NOETIG = FENSTER.BREITE / MATERIAL.BREITE
Ok 40 INPUT “LAENGE FENSTERBANK IN CM“;
FENSTER.LAENGE
Ok 50 MENGENMETER.NOETIG = BRETTER.NOETIG
* FENSTER.LAENGE
Ok 60 INPUT “MATERIALPREIS PRO METER“;
PREIS.METER!
Ok 70 DEF FNMATERIAL = METER.NOETIG /
15 + MENGENMETER.NOETIG
Ok 80 DEF FNKOST! = (PREIS.METER) * FNMATERIAL
Ok 90 PRINT “SIE BRAUCHEN “;MATERIAL;“ CM AN
“MATERIAL .BREITE:“ CM MATERIAL.“:PRINT “IHRE KOSTEN
SIND: “;FNKOST!
Ok 100 DEF FNIN METERN = MATERIAL / 36

C-23

Ok 110 PRINT MATERIAL; CM IN METERN IST “; FNINMETERN
Ok RUN | | |
BREITE MATERIAL IN CM? 30
BREITE FENSTERBANK IN CM? 60
LAENGE FENSTERBANK IN CM? 60
MATERIALPREIS PRO METER? 2.00 |
SIE BRAUCHEN 128 CM AN 30 CM MATERIAL. IHRE KOSTEN
SIND 7.1111 |
128 CM IN METER IST 3.5556

Ok

C-24

DEF SEG DEF SEG 0 | ANWEISUNG
DEF SEG1

Syntax: DEF SEG [<numerischer Ausdruck>]

Effekt: DEFSEG etabliert den Operationsmodus von PEEK und POKE,
sowie das von den Befehlen verwendete Offset.

Erklärung:

Die Operationsmodi werden wie folgt definiert:

Ist DEF SEG > 0, wird ein Byte gePEEKt oder gePOKEt. Der in DEF SEG ver-
wendete Wert des numerischen Ausdruckes wird als Offset für die in PEEK oder
POKE spezifizierte Adresse angesehen.

Ist DEF SEG = 0, werden zwei Bytes gePEEKt oder gePOKEt. Der Wert des
in DEF SEG verwendeten numerischen Ausdruckes wird als Offset fur die in PEEK
oder POKE spezifizierte Adresse angesehen.

Wenn DEF SEG = Oist und gleichzeitig die Adresse durch DEFDBL angegeben
wurde, werden vier Bytes (Long-Integer) gePEEKt oder gePOKEt.

Beispiele:

82.6 Ok 10 DEF SEG=0
Ok 20 DEFDBL S:S=SYSTAB+20:’ZEIGER GRAFIK-SPEICHER
Ok 30 X=PEEK(S):’xIST EIN 4-BYTE WERT
Ok 40 RESET: LEGT DEN AKTUELLEN BILDSCHIRM IM GRAFIK-

SPEICHER AB
Ok 50 BSAVE “BILD*“,X,32767
Ok 60 CLEARW 2: ’LOESCHE BILDSCHIRM |
Ok 70 BLOAD “BILD“,X: LADEN DES BILDES IN DEN GRAFIK-

SPEICHER
Ok 80 OPENW 2: "DARSTELLUNG DES GRAFIK-SPEICHERS
IM FENSTER

Ok 10 DEF SEG=100
Ok 20 PRINT PEEK(500)

Anmerkung: Damit wird eine 1-Byte Integerzahl aus der absoluten Speicherstelle 600.
ausgegeben.

Ok 10 DEF SEG=0
Ok 20 LOC+#=175000
Ok 30 PRINT PEEK(LOC+#)

Anmerkung: Damit wird eine 4-Byte Integerzahl aus der Speicherstelle 175000 ausge-
geben.

C-25

DEFDBL __DEFDBLA | ANWEISUNG
DEFDBLA-D

Syntax: DEFDBL <Buchstabe> <-Buchstabe>

Effekt: Gibt einen Buchstaben, bzw. einen Bereich von Buchstaben an,
der als Realzahl mit doppelter Genauigkeit definiert werden soll.

Erklärung:

Die DEFDBL-Anweisung gibt vor, daß die Variablen, deren Namen mit einem der
angegebenen Buchstaben beginnen, Realzahlen mit doppelter Genauigkeit sind. Sie
können einen einzelnen Buchstaben oder einen Bereich von Buchstaben, wie bei-
spielsweise A-D, als Parameter angeben.

Typenangabe-Zeichen haben generell Vorrang vor DEFDBL-Anweisungen.
DEFDBL-Anweisungen können nur als erste Anweisungen in einem Programm ein-
gegeben werden. DEFDBL wird immer in Verbindung mit DEF SEG, PEEK oder
POKE verwendet.

Anmerkung: DEFDBL- "Anweisungen verändern die ST BASIC ’ Interpretatior von
Programmzeilen. a |

Beispiel:

Ok 10 DEFDBL X-Y
Ok 20 X = 123123412345123456
Ok 30 Y = $H333.
Ok 40 PRINT X,Y
Ok RUN
1.23123392D +017 819

Ok

C-26

DEFINT | DEFINT A | ANWEISUNG
DEFINT A-D

Syntax: DEFINT <Buchstabe> <-Buchstabe>

Effekt: Gibt einen Buchstaben oder Bereich von Buchstaben an, der als
Integerzahl definiert werden soll.

Erklarung:

Die DEFINT-Anweisung gibt vor, daß die Variablen, deren Namen mit einem der an-
gegebenen Buchstaben beginnen, Integerzahlen sind. Sie können einen einzelnen
Buchstaben oder einen Bereich von Buchstaben, wie beispielsweise M-Z, als Parame-
ter verwenden. |

Typenangabe-Zeichen haben generell Vorrang vor DEFINT -Anweisungen.

Anmerkung: DEFINT-Anweisungen verändern die ST BASIC Interpretation von
Programmzeilen. Wenn Sie eine Variable mit der DEFINT-Anweisung als Integerzahl
vorgeben, behandelt ST BASIC sie auch dann als Integerzahl, wenn Sie die DEFINT-
Anweisung nachtraglich loschen.

Beispiel:

Ok 10 DEFINT X-Y
Ok 20 X = 78.9
Ok 30 Y = 78.1
Ok 40 PRINT X,Y
Ok RUN |

78 78
Ok

C-27

DEFSNG DEFSNG A ANWEISUNG
DEFSNG A-D

Syntax: DEFSNG <Buchstabe> <-Buchstabe>

Effekt: Gibt einen Buchstaben oder Bereich von Buchstaben an, der als
Realzahl definiert werden soll.

Erklärung:

Die DEFSNG-Anweisung definiert die Variablennamen, die mit einem der angegebe-
nen Buchstaben beginnen, als Realzahlen. Sie können einen einzelnen Buchstaben
oder einen Bereich von Buchstaben, wie beispielsweise A-D, als Parameter verwen-
den.

Typenangabe-Zeichen haben generell Vorrang vor DEFSNG- Anweisungen.

Anmerkung: DEFSNG- "Anweisungen verändern die ST BASIC Interpretation von
Programmzeilen.

Beispiel:

Ok 10 DEFSNG X-Y
Ok 20 X = 23D+16
Ok 30 Y = 456654456654
Ok 40 PRINT X,Y
Ok RUN
2.3E+17 4.56654E+11

C-28

DEFSTR DEFSTR A ANWEISUNG
DEFSTRA-D

Syntax: DEFSTR <Buchstabe> <-Buchstabe>

Effekt: Gibt einen Buchstaben oder Bereich von Buchstaben an, der als
Zeichenkette definiert werden soll.

Erklärung:

Die DEFSTR-Anweisung gibt vor, daß alle Variablen, deren Anfangsbuchstaben in
der Parameterliste aufgeführt sind, Strings sind. Sie können einen einzelnen Buchsta-
ben oder einen Bereich von Buchstaben, wie beispielsweise M-Z, als Parameter ver-
wenden.

 Typenangabe-Zeichen haben generell Vorrang vor DEFSTR- Anweisungen. Der vor-
gegebene Variablentyp ist eine Realzahl.

Anmerkung: DEFSTR-Anweisungen verändern die ST BASIC Interpretation von
Programmzeilen. Wenn Sie eine Variable mit der DEFSTR-Anweisung als String vor-
geben, behandelt ST BASIC sie auch dann als Realzahl, wenn Sie die DEFSTR-An-
weisung nachträglich löschen.

Beispiel:

Ok 10 DEFSTR A-C
Ok 20 A = “12.7.42“
Ok 30 B = “1066“
Ok 40 C = “4.12. XX“
Ok 50 PRINT A,B,C
Ok RUN
12.7.42 1066 4.12.XX
Ok |

C-29

DELETE DELETE - 40 | u BEFEHI
DELETE 20 |

DELETE 20, 30
DELETE 20 - 30

Syntax: DELETE <Zeilennummer Liste>

Effekt: DELETE löscht Programmzeilen aus dem Arbeitsspeicher.

Erklärung:

DELETE löscht die von Ihnen angegebenen Programmzeilen. Das Löschen einer ein-
zelnen Programmzeile erfolgt besser über die Eingabe der Zeilennummer und Betäti-
gen der RETURN-Taste.

Beispiel:

Ok 10 X = 10
Ok 20 Z = 10
Ok 30 PRINT X,Z
Ok DELETE 20-30
Ok LIST
Ok 10 X = 10
Ok

C-30

DIM | DIM A$ 6) u ANWEISUNG
DIMX 6, 10, 4) .
DIM B$(10) ‚C$20)
DIM X(5,10,4) ,Y(1,2.8)

Syntax: DIM<Array- -Name>(<Unterbereich> < ‚Unterbereich>)
(,<Array-Name>[<Unterbereich>])

Effekt: Definiert die Anzahl der Dimensionierungen und die Anzahl der
Elemente in einem Array.

Erklärung:

Die DIM-Anweisung reserviert Platz für einen String oder ein numerisches Array
durch Spezifizieren der Anzahl von Dimensionierungen und der oberen Grenze der
Elemente in jeder Dimension. Die Anzahl der Dimensionierungen ist abhängig von
der Anzahl der Unterbereiche. Ein Unterbereich entspricht einer Dimensionierung,
zwei Unterbereiche entsprechen zwei Dimensionierungen usw. Die Anzahl der Ele-
mente und Dimensionierungen, die Sie spezifizieren können, ist abhängig vom verfüg-
baren Speicherplatz. Allerdings ist die maximale Anzahl der Dimensionierungen in
jedem Fall auf 15 begrenzt.

Die untere Grenze jeder Dimensionierung ist 0 oder 1, abhängig von OPTION BASE. |

DIM setzt den Anfangswert der Elemente automatisch auf 0.

In ST BASIC sind Arrays dynamisch. Sie können Arrays mit DIM dimensionieren,
das Array später im Programm löschen und dann mit DIM unter Verwendung dessel-
ben Namens, aber mit neuen Dimensionierungen erneut einrichten. Bei dynamischen
Arrays können Sie das Array auch unter Verwendung einer numerischen Variablen
dimensionieren.

Sie können ein Array verwenden, ohne es zuvor mit einer DIM- Anweisung zu definie-
ren. In diesem Fall wird für das Array automatisch eine obere Grenze von 10 Elemen-
ten in jeder Dimension vorgegeben. Ist beispielsweise die erste Referenz zu
ARRAYA

ARRAY A(7,3)

wird das Array so eingerichtet, als wäre es mit

DIM A(10,10)

definiert worden.

Die vorgegebene Anzahl von erlaubten Dimensionen ist 4 für Integerzahlen und 3 für
Strings sowie Realzahlen.

C-31

Anmerkung: In ST BASIC können 30 % des verfügbaren Speicherplatzes als Arrays
bezeichnet werden. Allerdings dürfen alle Arrays zusammen nicht mehr als 32 K um-
fassen, unabhängig vom insgesamt verfügbaren Speicherplatz.

Beispiel:

Ok 10 DIM HAEUSERS$ (1,1,1)
Ok 20 HAEUSERS$ (0,0,0) = “ETAGENPLANI“
Ok 30 HAEUSER$ (0,0,1) = “ETAGENPLAN3“
Ok 40 HAEUSERS$ (0,1,0) = “ETAGENPLAN3“
Ok 50 HAEUSERS$ (0,1,1) = “ETAGENPLAN3“
Ok 60 HAEUSER$ (1,0,0) = “ETAGENPLANI“
Ok 70 HAEUSERS$ (1,0,1) = “ETAGENPLAN2‘
Ok 80 HAEUSERS$ (1,1,1) = “ETAGENPLAN2‘“
Ok 90 IF HAEUSER$ (‚0,0) = “ETAGENPLAN2“ THEN GOTO 300

C-32

DIRA:
DIR B:BAS.PRG
DIR B:*.PRG
DIR B:BAS.*
DIR B:*.*
DIR B:BAS.PR?

DIR DIR | BEFEHL

Syntax: - DIR [<Laufwerk:>][<Dateiname, Dateiart>]

Effekt: — Listet die Dateien einer Diskette auf.

Erklärung:

Der Befehl DIR zeigt das Verzeichnis der in das angesteuerte Laufwerk eingelegten
Diskette an.

Sie können angeben, welches Laufwerk und welche Dateien Sie anzeigen lassen wol-
len. Das Sternchen [*] und das Fragezeichen [?] gelten als “Joker“-Benennungen.

Das Zeichen [*] zeigt eine “Unbedeutend“-Spezifikation für ein beliebiges Feld an. So
bedeutet *.BAS, daß jede Datei mit dem Extender .BAS aufgelistet werden soll.
FIG.* gilt entsprechend für alle Dateiarten mit dem Namen FIG, und B*.BAS für alle
Dateiarten mit dem Extender .BAS, die mit dem Anfangsbuchstaben B beginnen.

Das Fragezeichen [?] gilt als “Unbedeutend“-Spezifikation für ein einzelnes Zeichen.
So bedeutet ?IG.BAS, daß jede Datei, deren Name drei Buchstaben umfaßt und mit
IG.BAS endet (z.B. BIG.BAS, PIG.BAS, FIG.BAS usw.), aufgelistet wird.

Beispiel:

Ok DIR Verzeichnis aller Dateien auf der eingelegten Diskette
Ok DIRA: Verzeichnis aller Dateien auf Diskette A
Ok DIRB:BAS.PRG Sucht nach der Datei BAS.PRG auf Diskette B

Ok DIRB:* -PRG Verzeichnis aller Dateien mit dem Extender .PRG auf

Diskette B
Ok DIRB:BAS.* Verzeichnis aller Dateien jeder Art mit dem Namen

BAS auf Diskette B
Ok DIRB:*.* Verzeichnis aller Dateien jeder Art auf Diskette B
Ok DIRB:BAS.PR? Verzeichnis aller Dateien auf Diskette B, die mit BAS

| beginnen und über einen Extender mit den Anfangs-
buchstaben PR verfügen.

-C-33

EDIT | EDIT ED BEFEHL
EDIT 30 ED 30

Syntax: | EDIT <Zeilennummer> ED <Zeilennummer>

Effekt: Ruft den ST BASIC Editor auf.

Erklarung:

Der Befehl EDIT ruft den ST BASIC Editor auf. Sie können eine Zeilennummer an-
geben, in der mit dem Editieren begonnen werden soll. Wird keine Zeilennummer
vorgegeben, beginnt EDIT in der ersten Zeile des derzeit im Speicher befindlichen
Programmes. |

C-34

ELLIPSE ELLIPSE 50,80,100,50 ANWEISUNG
ELLIPSE 50,80,100,50,900,1800

Syntax: ELLIPSE <horizont. Mittelpunkt, vertik. Mittelpunkt, horizont.
Radius, vertik. Radius>[<,Anfangswinkel, Endwinkel> |

Effekt: ELLIPSE zeichnet Ellipsen und Kreisausschnitte.

Erklärung:

ELLIPSE zeichnet eine Ellipse, deren Mittelpunkt an dem Punkt liegt, der durch die
ersten beiden Parameter (horizontaler und vertikaler Mittelpunkt) vorgegeben wur-
de. Die Positionen werden in Pixel angegeben und von der oberen linken Ecke des
Ausgabefensters aus gezählt.

Der dritte und vierte Parameter (horizontaler und vertikaler Radius) wird ebenfalls in
Pixel ausgedrückt. Die horizontale und vertikale Pıxelangabe ist abhängig von der ge-
wählten Auflösung, sowie von der Größe des Ausgabefensters.

Die Ellipse wird in der festgelegten Zeichenfarbe (Parameter 3 der COLOR- Anwei-
sung) dargestellt.

Die letzten beiden Parameter (Anfangs- und Endwinkel) sind optional. Wird hier
nichts angegeben, zeichnet ELLIPSE eine vollständige Ellipse. Andernfalls zieht
ELLIPSE einen Ellipsenausschnitt zwischen den beiden Punkten. ELLIPSE zeichnet
allerdings nur einen Kreisbogen und kein eingefärbtes Kreissegment. Winkel werden
in Grad mal 10 ausgedrückt. So werden 45 Grad als 450, 180 Grad als 1800 usw. ange-
geben. O Grad zeigt zum rechten Rand des Fensters, 90 Grad zum oberen, 180 Grad
zum linken und 270 Grad zum unteren F ensterrand, ELLIPSE 100,80 ‚40. ‚>0,0,3600
zeichnet eine vollständige Ellipse.

Lesen Sie auch unter PELLIPSE, CIRCLE und PCIRCLE nach.

Beispiel:

Ok 10 COLOR 1,0,1:CLEARW 2
Ok 20 ELLIPSE 100,80,40,80
Ok 30 COLOR 1,02 |
Ok 40 ELLIPSE 100,80,40,80,300,90
Ok RUN | |
[Im Ausgabefenster wird eine schwarze Ellipse mit einem roten Kreisbogen über
60 Grad, beginnend bei 30 Grad, gezeichnet]
Ok

C35

END END ANWEISUNC

Syntax: | END

Effekt: Beendet einen Programmlauf, schließt alle Dateien und kehrt zum
| Befehls-Levelzurück.

Erklärung:

Sie können eine END-Anweisung an jede beliebige Stelle, an der Sie zum Befehls-
Level zurückkehren wollen, setzen. Ein END am Ende des Programmes kann optio-

nal verwendet werden.

END unterscheidet sich von STOP dahingehend, daß hier alle Dateien geschlossen
werden und zum Befehls-Level zurückgekehrt, jedoch keine STOP-Meldung ausgege-
ben wird. |

Beispiel:

Ok 10 PRINT “DAS PROGRAMM“
Ok 20 PRINT “LAEUFT“
Ok 30 PRINT “ABER ES ERREICHT“
Ok 40 PRINT “NIEMALS DAS LETZTE“
Ok 50 PRINT “WORT DIESES“
Ok 60 END
Ok 70 PRINT *PROGRAMMES“
Ok RUN
DAS PROGRAMM
LAEUFT
ABER ES ERREICHT
NIEMALS DAS LETZTE
WORT DIESES
Ok

C-36

EOF X = EOF (D | FUNKTION

Syntax: X = EOF (<Dateinummer>)

Effekt: Gibt TRUE (-1) am Ende einer sequentiellen oder Random
Access - Datei aus.

Erklarung:

Wenn Sie in eine sequentielle Datei schreiben, wird automatisch dessen Ende mar-
kiert. Versuchen Sie, über das Ende der Datei hinaus zu lesen, tritt ein Fehler auf. Mit
EOF können Sie überprüfen, ob Sie sich am Dateiende befinden.

EOF gibt -1 aus, wenn Sie sich am Dateiende befinden. Andernfalls wird 0 aus-
gegeben. | |

Beispiel:

Ok 100 INPUT “DATEI “;F$
Ok 110 IF LEN(F$) = 0 THEN END
Ok 120 ON ERROR GOTO 20000
Ok 130 OPEN “I“,1,F$
Ok 140 WHILE NOT EOF(1)
Ok 150 LINE INPUT #1,R$: ?R$
Ok 160 WEND
Ok 200 ?:CLOSE 1: GOTO 100
Ok 20000 IF ERR = 53 THEN ?“DATEI“;F$:
“ NICHT GEFUNDEN“: RESUME 100 ELSE ON ERROR GOTO 100

 C-37

ERA ERA DATELTXT | Ä BEFEHL
ERA B: DATELTXT

Syntax: ERA [<Laufwerk:>]<Dateiname>

Effekt: Löscht eine Datei von Diskette.

Erklarung:

Der Befehl ERA löscht alle Dateien mit dem angegebenen Dateinamen von der Dis-
kette im angesteuerten Laufwerk. Eine gelöschte Datei kann nicht wieder zurückge-
holt werden. |

ERASE ERASEA$,B$,C | . ANWEISUNG

Syntax: ERASE <Array-Name> ‚<Array-Name>

Effekt: Löscht Arrays.

Erklärung:

ERASE löscht ein Array, so daß Sie es neu dimensionieren oder den dadurch belegten
Speicherplatz wiedergewinnen können. Sie müssen Felder grundsätzlich löschen, be-
vor Sie sie neu dimensionieren.

Lesen Sie hierzu auch unter DIM nach.

Beispiel:

Ok 10 DIM RECHNUNGS (10,10)

Ok 20 RECHNUNGS$ (0,0) = “BEYELSTEIN, KARIN“

Ok 30 ERASE RECHNUNG$
Ok 40 DIM RECHNUNGS$(5,5,5)

C-38

ERL, ERR X=ERL FUNKTION
X= ERR

Syntax: X= ERL
X=ERR

Effekt: Die Variablen ERL und ERR sind reservierte Variablen, die in
Unterroutinen für Fehlerbehandlung verwendet werden.

Erklärung:

ERL enthält die Zeilennummer, in der ein Fehler auftrat. ERR enthält den Fehler-
Code. ERL und ERR sind reservierte Variablen, was bedeutet, daß Sie diese nicht
links neben ein Gleichzeichen in einer Zuordnungs-Anweisung schreiben dürfen.

Ist die Anweisung oder der Befehl, in dem der Fehler auftrat, im Direkt-Modus ge-
schrieben, ist der Wert von ERL Null. Tritt im Direkt-Modus ein Fehler auf, wird der
Programmlauf grundsatzlich angehalten.

Ist die Anweisung im indirekten Modus geschrieben, schreiben Sie IF- -Anweisungen
wie folgt:

IF ERL = <Fehlerzeile> THEN <auszuführende Anweisung>
IF ERR = <Fehler-Code> THEN <auszuführende Anweisung>

Lesen Sie hierzu auch unter ERROR nach, um weitere Informationen über Fehlerauf-
deckung, sowie Beispiele für die Verwendung von ERL und ERR in Fehlerbehand-
lungs-Unterroutinen zu erhalten. |

C-39

ERROR ERROR X | ANWEISUNG

Syntax: ERROR <numerischer Ausdruck >

Effekt: Simuliert einen BASIC Laufzeitfehler und übergibt die Kontrolle
an eine Fehleraufdeckungs-Routine.

Erklärung:

Sie können Fehler und Fehlermeldungen in Ihren Programmen mit der ERROR-An-
weisung definieren. ERROR ordnet einem Fehler eine Fehler-Codezahl zu. Die Zahl
muß ein Integer-Ausdruck sein.

Bei jedem Auftreten des Fehlers bezicht sich das Programm auf die Fehler-Codezahl.
Entspricht der Fehler-Code einem ST BASIC Fehler-Code, wird die ST BASIC Feh-
lermeldung ausgedruckt. Ist dagegen eine von Ihnen geschriebene Fehleraufdeckung
aktiviert, wird die Programmkontrolle ; an Ihre F ehleraufdeckungs- -Routine über-
geben.

Zwei vordefinierte Variablen sind der ERROR-Anweisung zugeordnet: ERL und
ERR. |

Beim Auftreten eines Fehlers enthält ERR die Fehlercode-Konstante. Diese kann
zum Schreiben von Fehlermeldungen verwendet werden (z.B.:
IFERR = 100 THEN PRINT “BITTE ZAHL PRUEF EN UND NEU
EINGEBEN“.) |

ERL enthält die Zeilennummer, in der der Fehler auftrat.

Wurde keine Anwender-Fehleraufdeckung gesetzt, wird die Meldung, die dem Wert
in ERR entspricht, ausgegeben. Das Programm wird angehalten. Dieser Fall tritt auch
ein, wenn eine ERROR-Anweisung im Direkt-Modus ausgeführt wird, unabhängig
davon, ob Sıe eine Fehleraufdeckung gesetzt haben oder nicht.

Wenn Sie eine Fehleraufdeckung setzen, springt das Programm in die Fehleraufdek-
kungs-Routine. Sie können ERR und ERL wie jede beliebige numerische Variable
verwenden. Um die Fehleraufdeckung zu verlassen, verwenden Sie RESUME. Dabei
ist es unerheblich, ob in die Fehleraufdeckung aufgrund eines aufdeckbaren

- ST BASIC Fehlers, oder aufgrund einer ERROR-Anweisung gesprungen wurde.

Entspricht der Fehler-Code einem vordefinierten ST BASIC Fehler-Code, simuliert
das Programm den Fehler und druckt die Fehlermeldung für diesen Code. Die
ST BASIC Fehlermeldungen finden Sie im Anhang D dieses Handbuches.

Wenn Sie eigene Fehler definieren, sollten Sie möglichst Ihren Fehler-Codes Werte
geben, die erheblich größer sind als die Codes von ST BASIC. In diesem Fall wird es
niemals erforderlich werden, Ihr Programm nachträglich zu verändern, wenn zu einem
späteren Zeitpunkt die Fehler-Codes von ST BASIC überarbeitet und verändert wer-

. den sollten.

Lesen Sie hierzu auch unter ON ERROR GOTO, GOTO und RESUME nach.

C-40

Beispiele:

Sie können Fehler sowohl im direkten, als auch im indirekten Modus simulieren.

Nachfolgend sehen Sie ein Beispiel für Direkt- Modus:

Ok ERROR 55
Eine bereits geöffnete Datei kann nicht gelöscht (KILL) oder geöffnet (OPEN)
werden

Nachfolgendes Beispiel betrifft den Indirekt-Modus:

Ok 500 ON ERROR GOTO 550
Ok 510 INPUT “WOLLEN SIE EINEN DISPOSITIONSRAHMEN FUER

IHR KONTO“; E$
Ok 515 IF E$ = “NEIN“ THEN GOTO 600 |
Ok 520 INPUT “ IST DER IN ZEILE 33 AUFGEFUEHRTE BETRAG

- KLEINER ALS $10,000“;X$
Ok 525 IFX$ = “NEIN“ THEN ERROR 200
Ok 530 IF ERR = 200 THEN
Ok 535 PRINT “SIE SIND NICHT KREDITWUERDIG.“
Ok 540 IFERL = 525 THEN GOTO 600
Ok 550 RESUME

Ok RUN
WOLLEN SIE EINEN DISPOSITIONSRAHMEN FUER IHR KONTO? JA
IST DER IN ZEILE 33 AUFGEFUEHRTE BETRAG KLEINER ALS
$10,000? NEIN SIE SIND NICHT KREDITWUERDIG.

C-41

EXP | X = EXP (Y) FUNKTION

Syntax: X = EXP (<numerischer Ausdruck>)

Effekt: Gibt die Konstante e, erhöht um einen Exponenten, aus.

Erklärung:

Die Konstante e ist die Basis natürlicher Logarithmen und entspricht ungefähr 2.7182.
EXP gibt eine Realzahl aus.

Der numerische Ausdruck muß kleiner gleich 43.6682 sein.

Beispiel:

Ok 10X = EXP(3.254)
Ok 20 Y = EXP(8.97)
Ok 30 PRINT X,Y
Ok RUN
25.8937 7863.59

Ok

C-42

FIELD FIELD +1, 8 AS X$, 4 AS Y$, 2 AS S$ ANWEISUNG

Syntax: F IELD #+<Dateinummer>,<Feldbreite> AS <String-
Variable> <,Feldbreite> AS <String-Variable>

Effekt: Weist Variablen Platze in zufallig gewählten Datei- Speichern zu.

Erklärung:

Sie müssen eine FIELD-Anweisung schreiben, um Informationen zwischen Random-
Dateidisketten und -speichern zu übertragen. Die FIELD- -Anweisung ordnet lediglich
Variablen-Plätze zu; sie verschiebt keine Daten.

Die Dateinummer ist die Zahl, die Sie der Datei beim Öffnen zugewiesen hatten. Die
Feldbreite definiert die Anzahl der Bytes, die an die String-Variable gegeben werden
sollen. So ordnet beispielsweise FIELD #10, 20 AS X$, 30 AS Z$ die ersten 20 Bytes
Speicher X$, und die nächsten 30 Bytes Z$ zu.

Sie können nicht mehr Speicherplatz zuordnen als Sie beim Öffnen der Datei geschaf-
fen hatten. Die vorgegebene Datensatzlänge ist 128 Bytes. Sie können für jede Datei
beliebig viele FIELD-Anweisungen schreiben.

Eine Neuzuweisung von Feldplätzen löscht die ursprüngliche Aufzeichnung
(mapping) nicht. Im Gegenteil können zwei Maps zusammen bestehen. Wenn Sie
beispielsweise

FIELD #10, 20 AS X$, 40 AS Z$, 10 AS Y$

und

FIELD +10, 70 AS N$

spezifizieren, sind die ersten 20 Bytes von N$ ebenfalls in X$, die nachsten 40 Bytes
auch in Z$, und die letzten 10 Bytes auch in Y$enthalten.

Verwenden Sie niemals INPUT oder LET, um Eingaben in eine Variable vorzuneh-
men, die in einer FIELD-Anweisung deklariert wurde. In diesem Fall würde der Va-
riablen-Zeiger an den String-Platz, und nicht in den Speicher bewegt.

Beispiel:

Ok 100 OPEN “R“, #5, “STEUER“, 40
Ok 110 FIELD #5, 20 AS IS, 10 AS D$, 10 ASE$

C-43

FILL FILL 150,80 ANWEISUNG

Syntax: FILL <numerischer X-Ausdruck>,<numerischer Y- Ausdruck >

Effekt: | Füllt Formen mit Farben oder Mustern aus.

Erklärung:

Füllt gezeichnete Formen mit Farben oder Mustern, die zuvor in einer COLOR-An-
weisung definiert wurden, aus. Die X- und Y- Koordinaten bezeichnen die Anfangs-
position für FILL.

Lesen Sie hierzu auch unter COLOR nach.

Beispiel:

Ok 10 COLOR 1,2,1
Ok 20 CIRCLE 150,80,80
Ok 30 FILL 150,80
Ok 40 COLOR 1,1,1,4,4
Ok 50 FILL 150,80

FIX X= FIX) © FUNKTION

Syntax: X = FIX(Zahl) u

Effekt: Verkürzt eine Realzahl in eine Integerzahl.

Erklärung:

FIX rundet Zahlen nicht auf oder ab, sondern entfernt lediglich die Dezimalstellen
hinter dem Komma. Der Integer-Ausdruck muß zwischen -32768 und 32767 liegen.

Lesen Sie hierzu auch unter CINT und INT nach.

Beispiel:

Ok 10 X = 239.77
Ok 20 PRINT FIX(X)
Ok 30 PRINT FIX(-678.3)
Or RUN

239
-678
Ok

C-44

FLOAT X = FLOAT(Y) FUNKTION

Syntax: X = FLOAT (<Integer-Ausdruck>)

Effekt: Wandelt eine Inte gerzahl in eine Realzahl um.

Erklarung:

FLOAT verändert die Darstellung der Integerzahl nicht, odnet ihr jedoch mehr Spei-
cherplatz zu. Der Integer-Ausdruck muß zwischen -32768 und 32767 liegen.

Beispiel:

Ok 10 X = FLOAT(97)
Ok 20 PRINT X
Ok RUN

97

C-45

FOLLOW FOLLOWN BEFEHL
FOLLOWN, B

Syntax: FOLLOW <Variable>[|,<Variable>]

Effekt: Verfolgt die Werte von Programm-Variablen.

Erklärung:

Der Befehl FOLLOW ist eine Fehlerbehebungshilfe, die die Übersicht über alle Pro-
gramm-Variablen behält. Nach jedem Verändern des Wertes einer angegebenen Va-
riablen druckt FOLLOW den Variablennamen, ihren Wert und die Programmzeile, in
der die Veränderung eintrat, aus. Der Befehl UNFOLLOW beendet FOLLOW.

‚Beispiel:

Ok 10 FORX=1TO3
Ok20N=N+#1
Ok30B=B+1
Ok 40 PRINT N
Ok 50 PRINT B
Ok 60 NEXT X
Ok RUN

OW

W
N

N
e

Ok FOLLOW N,B
Ok RUN
N! = 1 at line 20

B! = 1 at line 30

1
1

N! = 2 at line 20

B! = 2 at line 30
2

N! = 3 at line 20
B! = 3 at line 30

3
Ok UNFOLLOW
Ok |

C-46

FOR FORI=1TO5STEP1 | ANWEISUNG

Syntax: FOR <Zähl-Variable> = <numerischer Ausdruck> TO
| <numerischer Ausdruck> [STEP<numerischer Ausdruck >]

Effekt: Erstellt eine Schleife, die so oft ausgeführt wird, wie angegeben
wurde. :

Erklarung:

Die FOR-Anweisung setzt die Anfangs- und Endwerte einer Zähl- Variablen, sowie
_ den in jeder ausgeführten FOR...NEXT Schleife hinzuzuaddierenden Wert fest.

Der Wert, der zu der Zähl- Variablen hinzuaddiert wird, ist grundsätzlich 1, sofern Sie
nicht mit STEP eine unterschiedliche Erhöhung vorgeben. Der Wert hinter STEP
kann positiv oder negativ sein.

NEXT bewirkt, daß die Instruktionen zwischen FOR und NEXT ausgeführt werden,
solange der Wert der Zähl-Variablen kleiner als der durch TO vorgegebene Endwert
ist. Ist der absolute Wert der Zähl-Variablen größer als der absolute Endwert, wird die
Programmausführung an die hinter NEXT folgende Programmzeile weitergegeben.

Sie können FOR...NEXT Anweisungen auch verschachteln. Das bedeutet, daß Sie in-
nerhalb einer Schleife eine weitere Schleife einbringen können. Wenn. Sie Schleifen
verschachteln, muß die NEXT- "Anweisung für die innere Schleife vor die der äußeren
Schleife gesetzt werden. |

Lesen Sie hierzu auch unter NEXT nach.

Beispiele:

Ok 10 FOR X = 1TO5
Ok 20 PRINT X

Ok 30 NEXT

Ok 40 PRINT “DER WERT DER ZAEHL-VARIABLEN IST “X
Ok RUN |

1
2
3
4

5
DER WERT DER ZAEHL- VARIABLEN IST 6

Ok

C-47

Ok 10 FORX=2TO1STEP -1
Ok 20 FOR Y = 1TO5
Ok 30 PRINT X Ok 40 PRINT Y
Ok 50 NEXT Y
Ok 60 NEXT X
Ok RUN

Ok

O

n
r

B
P
R

W
R

N
O
R

R
R

r
b

B
N

W
N

NY

N
F

bd

C-48

FRE X = FRE(0) FUNKTION

Syntax: X = FRE (<Test-Argument>)

Effekt: Gibt die Anzahl nicht verwendeter Bytes im Arbeitsspeicher aus.

Erklärung:

FRE erfordert ein Test-Argument. Verwenden Sie ein beliebiges Argument, um die
Anzahl freier Bytes im aktuellen Speichersegment zu erfahren.

Beispiel:

Ok PRINT FRE(0)
43000 |

Anmerkung: Der Umfang der BASIC-Arrays ist auf 32 K beschränkt, unabhängig
vom verfügbaren Speicherplatz. Die Arrays dürfen nicht mehr als ein Drittel des ge-
samten zur Verfügung stehenden Speicherplatzes einnehmen.

FULLW FULLW 2 ANWEISUNG

Syntax: FULLW <numerischer Ausdruck>

Effekt: Erweitert BASIC-Fenster auf die volle Bildschirmgröße.

Erklärung:

 FULLW vergrößert das angegebene Fenster auf den vollen Bildschirm-Umfang. Die
Fenster werden wie folgt angegeben:

0 = Bearbeitungsfenster
1 = Auflistungsfenster
2 = Ausgabefenster
3 = Befehlsfenster

Beispiel:

Ok 10 FULLW 2:CLEARW 2
Ok 20 PRINT “HALLO“
Ok RUN

C-49

GET GETI#L5 2.2... ANWEISUNG

Syntax: - GET [+]<Dateinummer> [,<Datensatz-Nummer>|]

Effekt: - Liest einen Datensatz von einer Random- Diskettendatei in den

Datei-Speicher.

Erklärung:

Die Dateinummer ist die Zahl, die Sie der Datei beim Öffnen zugewiesen hatten. Die
Datensatz-Nummer ist optional. Falls Sie diese Angabe entfallen lassen, wird der Da-
tensatz, der der ersten GET- oder PUT-Angabe folgt, in den Speicher eingelesen. Die
größte verwendbare Datensatz-Nummer ist 32767.

Lesen Sie unter OPEN nach, um ein Beispiel für die Verwendung von GETi im Zusam-
menhang zu erhalten.

Beispiel:

Ok 100 IF X$ = “JA“ THEN GETS, TYPE%: GOTO 200

C-50

GOSUB GOSUB 250 ANWEISUNG
GOSUB ENTRY

Syntax: GOSUB <Zeilennummer> oder GOSUB <Sprungmarken-
Name>

Effekt: Gibt die Pro grammkontrolle an eine Unterroutine ab.

Erklärung:

Die GOSUB-Anweisung ist mit der RETURN-Anweisung kombiniert, die die Pro-
grammkontrolle an die direkt nach der GOSUB-Anweisung folgende Programm-
anweisung zurückgibt.

Die Zeilennummer oder Sprungmarke zeigt die Zeile an, in der die Unterroutine
beginnt. —

Sie können innerhalb einer Unterroutine eine weitere Unterroutine aufrufen. Unter-

routinen dürfen nicht mehr als 16- fach verschachtelt werden.

Sie können mehr als eine RETURN-Anweisung in Ihre Unterroutine schreiben.
Wenn Sie Bedingungen überprüfen, die den Programmlauf festlegen, werden Sie
mehrere RETURN-Anweisungen in einer einzigen Unterroutine benötigen.

Anmerkung: Es wäre ratsam, bei einer GOSUB-Anweisung anstelle der Zeilennum-
mern Sprungmarken-Namen anzugeben. Zeilennummern werden durch Verwendung
der RENUM-Anweisung verändert. Deshalb müßten Sie nach Verwendung einer

~ RENUM-Anweisung alle GOSUB <Zeilennummer>-Anweisungen dahingehend
überprüfen, ob die angegebenen Zeilennummern sich noch auf die dazugehörigen Un-
terroutinen beziehen. Bei Verwendung von GOSUB <Sprungmarken-Name> wer-
den alle Zeilenadressen von ST BASIC automatisch an die neuen Gegebenheiten

angepaßt. |

Beispiel:

Ok 10 GOSUB 100 |
Ok 20 REM RETURN-PUNKT DER UNTERROUTINE
Ok 30 PRINT A
Ok40END |
Ok 100 REM ANFANG UNTERROUTINE
Ok 110 GOSUB BOO
Ok 120 A = 5*5_
Ok 130 RETURN
Ok 140 BOO: PRINT “BOO!
Ok 150 RETURN
Ok RUN

15625
BOO!
25

Ok

C-51

GOTO GOTO 50 | ANWEISUNG
GOTO ENTRY

Syntax: GOTO <Zeilennummer> oder GOTO <Sprungmarken-Name>

Effekt: Gibt die Programmkontrolle bedingungslos an eine angegebene
Zeilennummer ab.

Erklärung:

Die GOTO-Anweisung übergibt die Programmkontrolle an eine angegebene Zeile
und fährt dort mit der Programmausführung fort. Wenn Sie mit GOTO in eine nicht
ausführbare Anweisung springen, beginnt die Programmausführung bei der nächsten
ausführbaren Anweisung nach der angegebenen Zelle.

Anmerkung: Es wäre ratsam, bei einer GOTO-Anweisung anstelle der Zeilennum-
mern Sprungmarken-Namen anzugeben. Zeilennummern werden durch Verwendung
der RENUM-Anweisung verändert. Deshalb müßten Sie nach Verwendung einer
RENUM-Anweisung alle GOTO <Zeilennummer>-Anweisungen dahingehend
überprüfen, ob die angegebenen Zeilennummern sich noch auf die dazugehörigen Un-
terroutinen beziehen. Bei Verwendung von GOTO <Sprungmarken-Name> werden
alle Zeilenadressen von ST BASIC automatisch an die neuen 1 Gegebenheiten ange-
paßt.

Beispiel:

Ok 10 TOP: INPUT “BITTE NAMEN EINGEBEN“: NAME$

Ok 100 INPUT “WOLLEN SIE DAS PROGRAMM BEENDEN“:
ANTWORTS

Ok 120 IF ANTWORTS$ = “JA“ THEN GOTO 200 ©
Ok 130 GOTO TOP
Ok 200 END

C-52

GOTOXY | GOTOXY X,Y | ANWEISUNG

Syntax: GOTOXY <Spaltenposition>,<Reihenposition>

Effekt: Setzt den Ausgabe-Cursor an den Schnittpunkt der angegebenen
Reihe/Spalte.

Erklärung:

GOTOXY setzt den Ausgabe-Cursor an den Schnittpunkt der Reihe/Spalte, die durch
die beiden Parameter vorgegeben wurde.

Beispiel:

Ok 10 GOTOXY 2,3 |
Ok 20 PRINT “SPALTE2, REIHE3«

C-53

HEX$ a X = HEX$(y) | | FUNKTION

Syntax: X = HEX$(numerischer Ausdruck) |

Effekt: Gibt eine Zeichenkette aus, die dem Hexadezimalwert einer Zahl
entspricht. |

Erklärung:

Eine Hexadezimalzahl ist eine Basıs 16 Integerzahl. Hexadezimalzahlen werden in
den Zahlen 0 bis 9, gefolgt von den Zeichen A bis F dargestellt und repräsentieren die
Werte 1 bis 15. |

HEXS$ stellt der ausgegebenen Hexadezimalzahl kein &H voran. Wollen Sie den Wert
in einem Programm verwenden, müssen Sie ihm das Zeichen &H voranstellen, um
kennzuzeichnen, daß es sich um einen hexadezimalen Wert handelt.

HEX$ rundet Realzahlen vor der Umwandlung in Hexadezimal in Integerzahlen auf
oder ab.

Der normale gültige Bereich für Integerzahlen liegt zwischen -32768 und 65535.

Wenn Sie einen Adressen-Ausdruck einer Integer-Variablen zuordnen wollen, müs-
sen Sie den Wert unter Verwendung von VAL der Variablen zuordnen, um einen
Integer-Überlauffehler zu vermeiden (siehe auch nachstehendes Beispiel).

Beispiel:

Ok 10 A% = VAL(“&H“ + HEX$(FRE(0)))
Ok 20 PRINT A%
Ok RUN
-22536
Ok

C-54

IF IF X=Y THEN PRINT A: GOTO 250 ANWEISUNG
ELSE GOTO 30

Syntax: IF <logischer Ausdruck> THEN <Anweisung> <:Anweisung>
[ELSE <Anweisung> <:Anweisung>]

Eftekt: Stellt Bedingungen auf, die den Programmlauf festlegen.

Erklärung:

Die IF-Anweisung entspricht einem Ausdruck, der entweder wahr (nicht 0) oder
falsch (0) ist. Ist der Ausdruck wahr, werden die Anweisungen hinter THEN ausge-
führt. Ist er falsch, fährt das Programm bei der Anweisung hinter ELSE mit der Aus-
führung fort. Wurde kein ELSE angegeben, wird die Programmausführung in der
nächsten ausführbaren Programmzeile wieder aufgenommen.

Sie können IF-Anweisungen innerhalb einer IF-Anweisung verwenden. Jede ELSE-
Angabe bezieht sich auf das nächstliegende THEN. THEN- und ELSE-Bestimmun-
gen haben nur in Verbindung mit einer IF- Anweisung Gültigkeit.

Sie können innerhalb der THEN- oder ELSE-Bestimmung einer IF- Anweisung eine
FOR- oder WHILE-Schleife schreiben. Die FOR- oder WHILE-Anweisung muß sich
vollständig innerhalb der THEN- oder ELSE-Bestimmung befinden: das dazugehöri-
ge NEXT muß sich in derselben Bestimmung wie die FOR-Anweisung, bzw. das ent-
sprechende WEND in derselben Bestimmung wie die WHILE-Anweisung befinden
(siehe auch nachstehendes Beispiel 1).

Wenn Sie eine IF- Anweisung innerhalb einer FOR- oder WHILE-Anweisung verwen-
den (wobei alle Segmente in derselben Anweisungszeile stehen müssen), schließt ein
NEXT oder WEND auch die IF-Konstruktion (siehe auch nachstehendes Beispiel 2).

Beispiel 1:

Ok5A%=5
Ok 10 IF A%>3 THEN FOR K%=1 TO

5:PRINT A%*K%: NEXT ELSE FOR
K%=1 TO 5: PRINT A%/K%:NEXT

Ok RUN
5

10
15
20
25

Ok

C-55

Beispiel 2:

Ok 10 FOR X = 1TO 5:IF X3 THEN PRINT X*X:NEXT: PRINT
“DONE“ |
Ok RUN

1
A

DONE
(Die NEXT-Bestimmung wird immer ausgeführt)

INP X = INP @G) | | FUNKTION

Syntax: X = INP (<Datenkanal-Nummer>)

Effekt: Gibt einen Byte-Wert von einem ausgewählten Datenkanal aus.

Erklärung:

Die Datenkanal-Nummer muß zwischen 0 und 65535 liegen. Die Funktion INP ist das
Gegenstück zur OUT-Anweisung. |

Um den Status des Datenkanals lesen zu können, wird ein negativer Datenkanal-Wert
(z.B. INP(-3)) eingegeben. Eine Null zeigt an, daß kein Zeichen verfügbar ist; -1
signalisiert, daß ein Zeichen verfügbar ist.

Für den ATARI ST Computer gelten folgende Datankanal-Zuweisungen:

0 = PRINTER (Parallel-Port)
1 = AUX (RS-232) |
2 = CONSOLE (Bildschirm)
3 = MIDI (Musical Instrument Digital Interface)
4= KEYBOARD (Tastatur)

Beispiel:

Ok 200 Y = INP (3)
Ok 210 IF INP (3) » X THEN GOTO 200

C-56

INPUT INPUT A$ ANWEISUNG
INPUT “NAME: “, A$ — |
INPUT NAME“; A$
INPUT X, Y, Z |
INPUT “Hoehe, Breite, Alter“, X, Y, Z

Syntax: INPUT |;] [|<Prompt-String><; oder, >] <Variable> ,
<Variable<

Effekt: Ermöglicht eine Dateneingabe während des Programmlaufes und
ordnet diese Daten den Programm-Variablen zu.

Erklärung:

Die INPUT-Anweisung bittet um eine Dateneingabe während der Programmausfüh-
rung und erwartet Ihre Antwort. Nach erfolgter Eingabe muß die RETURN-Taste ge-

_ drückt werden, um die Eingabe an das Programm zu übermitteln.

Der Prompt-String ist eine String-Konstante und muß in Anführungszeichen gesetzt
werden. Die Variablen können Zeichenketten oder Zahlen sein. Ihre Eingaben miis-
sen in der passenden Variablenart erfolgen. Zeichenketten-Antworten werden nicht
in Anführungszeichen gesetzt.

Wenn Sie einen Prompt-String verwenden, druckt die INPUT-Anweisung diese Zei-
chenkette als Anfrage auf den Bildschirm. Dabei wird der Prompt-String als Frage
oder Aufforderung dargestellt, abhängig davon, ob Sie die Eingabe des Strings mit ei
nem Komma oder einem Strichpunkt-Zeichen abgeschlossen haben.

Wird der Prompt-String mit einem Strichpunkt von den Variablen abgetrennt, fügt die
INPUT-Anweisung am Ende des Prompt-Strings ein Fragezeichen, gefolgt von einer
Leerstelle, an.

Trennen Sie den Prompt-String mit einem Komma von den Variablen ab, wird die Ein-
gabe ohne Fragezeichen und ohne Leerstelle auf dem Bildschirm ausgegeben. Ihre
Antwort wird in dieselbe Zeile eingegeben. Aus diesem Grund müssen Sie als letztes
Zeichen in Ihrem Prompt-String eine Leerstelle eingeben, falls Sie einen Abstand zwi-
schen der Anfrage und der Antwort auf dem Bildschirm wünschen.

Wenn Sie keinen Prompt-String bzw. einen Null-String schreiben, druckt INPUT ein
Fragezeichen und eine Leerstelle auf den Bildschirm und wartet Ihre Antwort ab.

Die INPUT-Anweisung gibt eine Anfrage für jede Variable aus. Dabei entspricht jede
Antwort einer INPUT-Variablen. Weicht die Anzahl der Variablen von der Anzahl
der Antworten ab, tritt ein Fehler auf.

Sie müssen individuelle Antworten durch Kommata voneinander absetzen. Sie kön-

nen auch innerhalb einer Antwort Kommata verwenden. Allerdings muß der Ant-
wort-String dann in Anführungszeichen gesetzt werden.

C-57

Sie können als Antwort auf eine INPUT-Anfrage eine vollständige Zeile mit Zeichen
eingeben. Eine Zeilenschaltung oder ein Zeilenumbruch schließt die Eingabezeile ab.
Die maximale Zeilenlänge ist 255 Zeichen. Ä

Beispiel:

Ok 10 INPUT “HEUTIGES DATUM EINGEBEN: “, X$
Ok 20 INPUT “KENNUMMER EINGEBEN: “,Z$ |
Ok 30 IF Z$ = “359152“ THEN GOTO 100
Ok 40 PRINT “UNBEFUGTER DATENZUGRIFF NICHT ERLAUBT“:

END
Ok 100 PRINT “ZUGRIFF AUF DATEN GESTATTET!“: END.
Ok RUN
HEUTIGES DATUM EINGEBEN: 9 NOVEMBER 1985
KENNUMMER EINGEBEN: 359152
ZUGRIFF AUF DATEN GESTATTET!
Ok

C-58

INPUT+ INPUT+1,A$,X | ANWEISUNG

Syntax: INPUT# <Dateinummer>, <Variable>, <Variable>

Effekt: Liest Daten aus einer sequentiellen Diskettendatei i in Programm-
Variablen ein. |

Erklärung:

Die Dateinummer ist die Zahl, die Sie der Datei beim Öffnen zugewiesen hatten. Sie
ordnen die Daten der Datei Variablen zu. Die Typen einer Variablen und der ihr zuge-
ordneten Daten müssen übereinstimmen.

Die INPUT+-Anweisung arbeitet ähnlich wie die INPUT-Anweisung. Allerdings er-
scheint keine Meldung. Bevor Sie die eingegebenen Daten-Begriffe einer Variablen
zuordnen, entfernt INPUT+ alle vorangestellten Leerzeichen, Tabulatoren, Zeilen-
schaltungen und Zeilenvorschübe, die Sie zusammen mit den Daten eingegeben hat-
ten. Das erste Zeichen nach den oben angeführten Sonderzeichen wird als Anfangs-
punkt der Daten angesehen. Ein Leerzeichen, eine Zeilenschaltung, ein Zeilenvor-
schub, ein Komma oder das Erreichen von 255 Zeichen signalisiert den Endpunkt der
Daten.

Es gibt drei Arten von Daten für die INPUT#-Anweisung: Zahlen in allen numeri-
schen Formaten, angeführte und nicht angeführte Strings.

Daten werden als Zahl angesehen, wenn die Variable, der sie zugeordnet werden, nu-
merischen Charakter hat. Andernfalls werden sie als String behandelt. Zahlen werden
durch Erreichen des Dateiendes bzw. nach 255 Zeichen, durch eine Zeilenschaltung,
einen Zeilenvorschub, ein Komma oder ein nicht numerisches Zeichen beendet.

Strings werden als angeführt behandelt, wenn das erste Zeichen nach eventuellen
Leerstellen ein Anführungszeichen ist. Alle zwischen zwei Anführungszeichen gesetz-
te Daten werden als Daten in angeführten Strings angesehen. Anführungszeichen dür-
fen innerhalb eines angeführten Strings.nicht als reguläre Zeichen verwendet werden,
da hierdurch fälschlicherweise das Ende des Strings markiert würde. Angeführte
Strings werden ebenfalls durch Erreichen des Dateiendes bzw. nach 255 Zeichen been-
det.

Nicht angeführte Strings können im Gegensatz zu angeführten Strings Anführungszei-
chen enthalten. Sie werden durch eine Zeilenschaltung, einen Zeilenvorschub, ein
Komma oder durch Erreichen des Dateiendes bzw. nach 255 Zeichen beendet. Voran-
gestellte Leerzeichen in nicht angeführten Strings werden ignoriert.

Beispiel:

Ok 10 OPEN “I“, #1, “RECHNUNG“ |
Ok 20 INPUT+#1, KUNDE$, RECHNUNG% , DATUM$

C-59

INPUTS X$ = INPUTS$ (6) | _ FUNKTION
X$ = INPUTS (6, +D

Syntax: INPUT$(<Anzahl der Zeichen>[,[#]<Dateinummer<])

Effekt: Gibt die angegebene Zahl von Zeichen tiber Tastatur oder eine
Daten-Datei aus.

Erklarung:

INPUTS liest die angegebene Anzahl von Zeichen über Tastatur oder eine Datei aus
und gibt einen String aus, der diese Zeichen enthält. Alle Zeichen werden ausnahms-
los ohne Übersetzung und genau in der eingegebenen Form ausgegeben. So wird bei-
spielsweise ein [CONTROL] [G] vom Terminal und ein [CONTROL] [Z] von der Da-
ten-Datei an den String geleitet. | |

Wenn Sie den String aus einer Datei eingeben, müssen Sie eine geöffnete Dateinum-
mer angeben. Versuchen Sie, nach dem Dateiende Daten auszulesen, erhalten Sie
einen Fehler. =

Lesen Sie hierzu auch unter EOF nach.

Beispiel:

Ok 20 X$ = INPUTS(6)
Ok 30 IF X$ = “GEORG“ THEN 1000 ELSE PRINT “UNGUELTIG“: END
Ok 1000 PRINT “GUELTIG“
Ok RUN
KENNWORT?
ARNOLD
UNGUELTIG-
Ok

C-60

INSTR X = INSTR @,A$,“DO“) FUNKTION
X= INSTR @,A$,B$)

Syntax: X = INSTR([<Anfangspunkt>,] <Zielstring- -Ausdruck>,
<Musterstring>)

Effekt: Sucht eine Zeichenkette innerhalb eines anderen Strings und gibt
| deren Position aus.

Erklärung:

INSTR sucht nach dem ersten Vorkommen eines Musterstrings innerhalb eines Ziel-
strings und gibt dessen Position aus. |

Sie können einen Anfangspunkt für die Suche vorgeben. Der optionale Anfangspunkt
ist eine Integerzahl zwischen 1 und 255.

Zielstring und Musterstring können String-Konstanten, Ausdrücke oder Variablen
sein.

Ist der Musterstring länger als der Zielstring, oder ist der Zielstring ein Nullstring,
oder kommt der Musterstring im Zielstring nicht vor, gibt INSTR 0 aus.

Ist der Musterstring 0, gibt INSTR die Anfangsposition Null aus.

Beispiel:

Ok 10 X$ = “WIE GEHT ES DIR?“
Ok 20 X = INSTR(@,X$,“GE“)
Ok 30 PRINTX
Ok RUN

5
Ok

C-61

INT X=INT(Y) Bu _ FUNKTION

Syntax: X = INT(numerischer Ausdruck)

Effekt: Wandelt eine Zahl oder einen Ausdruck in eine Integerzahl um.

Erklärung: |

INT entfernt Dezimalstellen.

Beispiel:

Ok 10 X = INT(2.999)
| Ok20 PRINT X

_ Ok RUN-
2

Ok

KILL | KILL DATELDAT | ANWEISUNG

Syntax: KILL<String-Ausdruck>

Effekt: Löscht eine Diskettendatei.

Erklärung:

Der String-Ausdruck entspricht einem Dateinamen. KILL löscht die Datei mit dem
angegebenen Dateinamen. So löscht KILL A$ die Datei, die über A spezifiziert wur-
de. Sie können mit KILL jede Art von Diskettendatei löschen. Sie können eine Datei
jedoch nicht mit KILL löschen, die derzeit geöffnet ist. In diesem Fall erhalten Sie eine
Fehlermeldung. © | |

Im nachstehenden Beispiel wird eine Datei mit dem Namen ATARI.BAS erstellt.
Diese Datei wird dann über die KILL-Anweisung gelöscht.

Im Gegensatz zu ERA kann KILL auch innerhalb eines ST BASIC Programmes ver-
wendet werden (z.B. Ok 10 KILL “DATEN.1“).

Beispiel:

Ok NEW
Ok 10 A=45:B=56
Ok 20 PRINT A+B
Ok 30 END
Ok SAVE ATARI
Ok B $=“ATARI.BAS“
Ok KILL B$
Ok

C-62

LEFT X$ = LEFT$ (A$, 5) a FUNKTION

Syntax: X$ = LEFT$(<Zielstring><Anzahl der Zeichen>)

Effekt: Gibt eine Zeichenkette aus, die die ersten Zeichen eines Strings, _
gerechnet von links aus, enthalt.

Erklarung:

LEFT$ beginnt beim ersten Zeichen von links und gibt die von Ihnen spezifizierte An-
zahl von Zeichen, gezählt nach rechts, aus. Die Anzahl der Zeichen muß eine positive
Zahl zwischen 1 und 255 sein. Real-Ausdrücke werden in Integerzahlen umgewandelt.

Der Zielstring kann eine String-Konstante, "Variable oder ein String- -Ausdruck sein.

Ist die Anzahl der Zeichen größer als die Länge des Zielstrings, gibt LEFT$ den g ge-
samten Zielstring aus. Ist die Anzahl der Zeichen 0, gibt LEFT$ einen Nullstring aus.

Beispiel:

Ok 10 INPUT “RADIUS“;R
Ok 20 PRINT 3.1416*R”2
Ok 30 INPUT “NEUER BEREICH“;C$
Ok 40 IF LEFT$(C$,1)=“J“THEN 10
Ok 50 END

RADIUS ?3
28.2735
NEUER BEREICH ?J
RADIUS ?

C-63

LEN Z=LENAH ae FUNKTION

Syntax: Z = LEN(<String-Ausdruck>)

Effekt: Gibtdie Länge einer Zeichenkette aus.

Erklärung: | |

LEN gibt die Anzahl von Zeichen in einer Zeichenkette als Integerzahl a aus. - Ist der
Ausdruck ein Nullstring, gibt LEN Null aus. |

Beispiele:

Ok 10 ADDRESS$ = “2114 PARKER ST, BIRDLAND, NEW YORK“
Ok 20 FOR X =1TO LEN(ADDRESSS)
Ok 40 PRINT CHR$(42);
Ok 50 NEXT X
Ok RUN
FEIERT ok OK ok OK ok OK ok OK 3 EFF Ok

Ok

Ok 10 A$=“DER STRING IST 30 ZEICHEN LANG“
Ok 20 PRINT A$
Ok 30 PRINT LEN(A$)

_ Ok RUN
DER STRING IST 30 ZEICHEN LANG

30

C-64

LET LETXD=Y | ANWEISUNG
LET X=Y | |

. Syntax: LET <Variable>= <Ausdruck>

Effekt: | Ordnet einen Wert einer Variablen oder Array- Variablen zu.

Erklärung:

Die Verwendung von LET für die Zuordnung von Werten zu Variablen ist optional.
So ist beispielsweise LET X = Y identisch zu X = Y. Sowohl Variable, als auch Aus-
druck können Strings oder Zahlen sein. Bei numerischen Variablen und Ausdrücken
wird die Art des Ausdruckes umgewandelt, um dem Variablentyp zu entsprechen.

Beispiel:

Ok 10 LET NAME$ = “BEYELSTEIN“ |
Ok 20 WOHNORTS = “ELTVILLE, HESSEN“
Ok 30 LET REISEZIEL$ = HAWAII“
Ok 40 TAG.DER.ABREISE = 10.11.
Ok 50 TAG.DER.RUECKKEHR = 28.11.
Ok 60 DAUER.DER.REISE = TAG.DER.RUECKKEHR -

TAG.DER.ABREISE

Ok 70 PRINT NAMES
Ok 80 PRINT WOHNORTS$
Ok 90 PRINT “REISEZIEL: “: REISEZIEL$
Ok 100 PRINT “DAUER DER REISE: “ DAUER.DER.REISE
Ok RUN
BEYELSTEIN
ELTVILLE, HESSEN
REISEZIEL: HAWAII
DAUER DER REISE: .18
Ok

C-65

LINE INPUT LINE INPUT “NAME? “; A$ | ANWEISUNG
LINE INPUT; “NAME? “; AS

Syntax: LINE INPUT[;] [<Prompt>[,oder ;]]<String-Variable>

Effekt: — | Erfordert eine Eingabe über Tastatur und ordnet diese Eingabe
| einer String-Variablen zu. |

Erklärung:

LINE INPUT entspricht in etwa der INPUT-Anweisung, da hier eine Eingabe über
Tastatur gefordert wird. LINE INPUT erlaubt jedoch die Eingabe einer vollständigen
Zeile mit 255 Zeichen als Antwort. Ihre Antwort wird der String-Variablen zugeord-
net. Eine Zeilenschaltung oder ein Zeilenvorschub schließt Ihre Eingabe ab und über-
mittelt sie dem Computer. :

Die optionale Prompt-Angabe ist ein String, den Sie als Aufforderung ftir eine Einga-
be schreiben können. LINE INPUT stellt diese Prompt-Angabe im Ausgabefenster
dar und wartet auf Ihre Antwort. LINE INPUT ergänzt die Prompt-Angabe nicht
automatisch mit einem Fragezeichen oder einer Leerstelle. Sie können jedoch selbst
ein Fragezeichen oder eine Leerstelle innerhalb des Prompt-Strings eintragen. Das
Einfügen einer Leerstelle ist ratsam, da ansonsten Ihre Eingabe direkt hinter die
Prompt-Angabe gesetzt würde. |

Beispiel:

Ok 10 LINE INPUT “GRUND FUER DIE RUECKSENDUNG*: ;R$
Ok 20 PRINT “DANKE! WIR BEARBEITEN IHRE RETOURE“

Ok RUN
GRUND FUER DIE RUECKSENDUNG? |
FALSCHE GROESSE, FALSCHE FARBE, GEFAELLT NICHT.
DANKE! WIR BEARBEITEN IHRE RETOURE.
Ok

C-66

LINEINPUT+ LINE INPUT#1, A$ ANWEISUNG

Syntax: LINE INPUT+ <Dateinummer> , <String-Variable>

Effekt: Erfordert eine Eingabe tiber eine sequentielle Diskettendatei
und ordnet diese Eingabe einer String- Variablen zu.

Erklärung:

Wie LINE INPUT ordnet auch LINE INPUT+ eine Zeile mit maximal 254 Zeichen
Länge einer String-Variablen als Eingabe zu. Allerdings kommt hier die Eingabe von
einer sequentiellen Diskettendatei. Die Dateinummer ist die Zahl, die Sie der Datei
beim Öffnen zugewiesen hatten.

LINE INPUT liest alle Zeichen in einer sequentiellen Datei, bis es bei einer Zeilen-

schaltung angelangt. Dann werden diese Zeichen der String-Variablen zugeordnet.
Die nächste LINE INPUT+- Anweisung beginnt am Endpunkt der ersten LINE
INPUT#-Anweisung und ordnet die nachfolgende Zeile, wiederum bis zu einer Zei-
lenschaltung, der nächsten String-Variablen zu.

Folgt einem Zeilenvorschub direkt eine Zeilenschaltung, werden diese Zeichen als ı re-
guläre Zeichen behandelt und markieren kein Zeilenende.

Beispiel:

Ok 10 OPEN “O“, #4, “PUNKTE“
Ok 20 LINE INPUT “ANGABE TEAMS, SIEGER UND PUNKTE.“, S$
Ok 30 PRINT#4, S$ |
Ok 40 CLOSE 44
Ok 50 OPEN “T“, #4, “PUNKTE“
Ok 60 LINE INPUT#4,S$
Ok 70 PRINT S$
Ok 80 CLOSE +4
Ok RUN ©
ANGABE TEAMS, SIEGER UND PUNKTE.
HSV & FCB: FCB. 3-0; HERTA BSC & FC KOELN: FC KOELN. 2-1
HSV & FCB: FCB. 3-0; BORUSSIA & FC KOELN: FC KOELN. 2-1
Ok

C-67

LINEF ____LINEF30,50,90,100 | ANWEISUNG

Syntax: | LINEF[<Koordinatenpunkt, Koordinatenpunkt>] —

Effekt: | - LINEF zeichnet eine Linie.

Erklärung:

LINEF zeichnet eine Linie zwischen den beiden angegebenen Koordinatenpunkten.
Die Koordinatenpunkte sind Pixel-Positionen, die von der oberen linken Ecke (0,0)
des Ausgabefensters aus gezählt werden. Die Anzahl verfügbarer Punkte in der Hori-
zontalen und Vertikalen ist abhängig von der gewählten Auflösung, |

Beispiel:

Ok 10 COLOR 1,0,1:CLEARW 2
Ok LINEF 50,50 ‚80, 80 .
Ok RUN
[Im Ausgabefenster erscheint eine Linie zwischen den beiden
Koordinatenpunkten]
Ok Zu

C-68

LIST LIST BEFEHL
Ä LIST 10-50

LIST 10, 30, 50
LIST 10-30, 70-90
LIST - 30

Syntax: LIST [<Zeilenangabe, Liste>]

Effekt: Zeigt Programmzeilen im Auflistungsfenster an.

Erklarung:

LIST zeigt von Ihnen spezifizierte Zeilen des aktuellen Programmes im Auflistungs-
fenster an.

LIST listet das vollständige Programm auf.

LIST 10 zeigt lediglich Zeile 10 des Programmes an.

LIST 10-50 zeigt die Programmzeilen 10 bis 50 an.

LIST 10, 30, 50 zeigt die Zeilen 10, 30 und 50 des Programmes an.

LIST 10-30, 70-90 listet zwei Gruppen von Zeilen auf, einmal Zeile 10 bis 30, und ein-
mal Zeile 70 bis 90.

LIST - 30 listet alle Zeilen vom Anfang des Programmes bis zur Zeile 30 auf.

Durch Betätigen von [CONTROL] [G] beenden Sie das Auflisten und kehren zurück
ins Befehlsfenster.

LLIST LLIST | | BEFEHL
LLIST 10-50
LLIST 10, 30, 50
LLIST 10-30, 70-90
LLIST - 30

‚Syntax: LLIST [<Zeilenangabe, Liste>]

Effekt: LLIST listet das Programm auf dem Drucker auf.

_Erklarung:

LLIST arbeitet genauso wie LIST; allerdings werden die angegebenen Zeilen uber den
Drucker ausgegeben.
Der Befehl WIDTH LPRINT stellt die Zeilenbreite fiir den Drucker ein. ST BASIC
setzt die Zeilenbreite automatisch auf 72 Zeichen fest. WIDTH LPRINT 40 würde |
diese Voreinstellung auf 40 Zeichen pro Zeile verandern.

C-69

LOAD LOADDATEI | BEFEHL

Syntax: LOAD <Dateiname>

Effekt: LOAD lädt Programmdateien in den Arbeitsspeicher.

Erklärung:

LOAD lädt ST BASIC Programmdateien in den Arbeitsspeicher des Computers.
LOAD nimmt einen .BAS Extender an, sofern Sie keine anderweitigen Vorgaben

_Testlegen. Wenn Sie ein Programm mit LOAD in den Arbeitsspeicher laden, wird ein
noch im Speicher befindliches Programm mit sämtlichen Variablen dadurch gelöscht.

LOAD entspricht dem Befehl OLD.

LOC X=LOCO FUNKTION

Syntax: X = LOC(<Dateinummer>)

Effekt: Gibt entweder eine Datensatz-Nummer, oder die Anzahl der

| Bytes, die von einer Datei gelesen, bzw. in eine Datei geschrieben
wurden, aus.

Erklärung:

Bei Verwendung nach GET oder PUT für eine Random- Diskettendatei gibt LOC die
Nummer des Datensatzes aus, die zuletzt mit GET oder PUT gelesen oder geschrieben
wurde.

GET #1
PUT #1,LOC(1)

ersetzt den Datensatz #1 in dem Slot, aus dem er gelesen wurde.

Bei Verwendung mit sequentiellen Dateien gibt LOC die Anzahl von Bytes aus, die
seit dem Öffnen der Datei gelesen oder geschrieben wurden. |

Beispiel:

Ok 10 OPEN “R“, #8, “DATEI“
Ok 20 FIELD #8, 20 AS Z$, 3 AS V$
Ok 30 GET #8, C%
Ok 40 IF LOC(8) > 25 THEN GOTO 90

C-70

LOF X=LOF() | : FUNKTION

Syntax: | X = LOF(<Dateinummer>) ©

Effekt: Gibt die Anzahl der Bytes in der Datei aus.

Erklarung:

Bei einer Datei, die gerade für eine Ausgabe geöffnet wurde, entspricht die Anzahl
der Bytes 0.

Beispiel:

Ok 100 X = LOF(+#5)
Ok 110 IF X > 100 THEN PRINT “OEFFNE NEUE DATEI“: GOTO 200

LOG X=LOG(W) FUNKTION

Syntax: X= LOG(<numerischer Ausdruck>)

Effekt: Gibt den natürlichen Logarithmus einer Zahl aus.

Erklärung: |

Der numerische Ausdruck muß größer als Null sein.

Beispiel:

Ok 10 PRINT LOG@3)LOG@)
Ok RUN
4.52356

Ok

C-71

LOGI0 X=LOGI0(Y) | FUNKTION

Syntax: X = LOG10(<numerischer Ausdruck>)

Effekt: Gibt den Basis 10 - Logarithmus einer Zahl aus.

Erklarung:

Der numerische Ausdruck muß größer als Null sein.

Beispiel:

Ok 10 X = LOG10(1000)
Ok 20 PRINTX
Ok RUN

3

LPOS -1POSO FUNKTION

Syntax: LPOS(X)

Effekt: Gibt die Position des Druckkopfes des Zeilendruckers innerhalb
des Zeilendrucker-Speichers aus. |

Erklärung:

Die ausgegebene Position ist Anzahl der Zeichen, die seit der letzten Zeilenschaltung
gedruckt wurden. Die Rücktaste wird mit -1 gezählt. Falls Sie Drucker-Kontrollzei-
chen verwenden, durch die die Position des Druckkopfes verändert wird, kann LPOS |
die genaue Position des Druckkopfes nicht reflektieren.

Beispiel:

Ok 10 X = 90
Ok 20 IF LPOS(X) > 45 THEN GOTO 100

C-72

LPRINT LPRINT A$; “ = “; X ANWEISUNG
LPRINT USING F$; A$, X

Syntax: LPRINT [<Liste mit Ausdrücken>]
LPRINT USING <Formatstring-Ausdruck>;<Liste mit

Ausdrücken> |

Effekt: Leitet die Ausgabe an den Drucker.

Erklärung:

Die LPRINT-Anweisung arbeitet wie die PRINT- und PRINT USING- Anweisun-
gen. Allerdings geht hier die Ausgabe an einen Zeilendrucker. Sie können die Zeilen-
breite für den Drucker über die WIDTH LPRINT-Anweisung einstellen. Die Vorein-
stellung liegt bei 72 Zeichen pro Zeile. Der Formatstring-Ausdruck muß durch einen
Strichpunkt von der Variablen-Liste abgetrennt werden. Die aufgelisteten Ausdrücke
müssen durch Kommata voneinander abgesetzt sein. |

Lesen Sie hierzu auch unter WIDTH LPRINT nach.

Beispiel:

~ Ok 10 LPRINT “DIESE AUSGABE ERFOLGT AN DEN DRUCKER“

C-73

LSET LSETA$=B$ ANWEISUNG

Syntax: LSET<String-Variable>=<String-Ausdruck>

Effekt: Verschiebt einen String in eine spezifizierte String-Variable, ohne
die String-Variable neu zuzuordnen.

Erklärung:

LSET wird normalerweise dazu verwendet, um Daten in Datei- Speicher zu übertra-
gen. Dazu werden die Daten in Variable übertragen, die über eine vorhergegangene
FIELD-Anweisung in Datei-Speichern aufgezeichnet wurden. LSET ist in seinen Ver-
wendungsmöglichkeiten allerdings nicht allein darauf beschränkt.

Belegt der String-Ausdruck eine geringere Anzahl an Bytes, als Sie der String-Varia-
blen in einer FIELD-Anweisung zugeteilt hatten, justiert LSET den linken Rand und
verschiebt den String durch Einsetzen von Leerstellen weiter nach rechts.

Ist der String länger als die Ziel-Stringvariable, werden die zusätzlichen Zeichen von
LSET ignoriert.

Belegt ein String eine größere Anzahl an Bytes, als Sie ihm in der F IELD-Anweisung
zugeteilt haben, werden die rechts liegenden Zeichen entfernt.

Sie müssen Zahlen und numerische Variable mit MKD$, MKS$ oder MKIS$ in Strings
umwandeln, bevor Sie sie mit LSET verschieben. |

Das Gegenstück zu LSET ist RSET.

Beispiel: |

Ok 10 OPEN “I“, #2, “TEST, 5
Ok 20 FIELD #2, 5 AS S$
Ok 30 LSET N$ = NN$

C-74

MERGE MERGE DATELBAS | BEFEHL

Syntax: MERGE <Dateiname>

Effekt: Fügt eine ST BASIC Diskettendatei in ein Programm im Arbeits-
speicher ein.

Erklärung:

Der MERGE-Befehl fügt eine Datei von Diskette in die bereits im Arbeitsspeicher be-
findliche Datei ein. Solange die Zeilennummern der beiden Dateien unterschiedlich
sind, löscht MERGE die Originaldatei nicht. Stimmen dagegen Zeilennummern der
Diskettendatei mit Zeilennummern der Datei im Speicher überein, werden die Pro-
grammzeilen im Arbeitsspeicher gegen die gleichlautenden Zeilennummern der Dis-
kettendatei ersetzt.

Lesen Sie hierzu auch unter CHAIN nach.

Beispiel:

Ok 10 PRINT “DAS IST DAS ORIGINALPROGRAMM“
Ok 20 PRINT “DIESE ZEILE WIRD DURCH MERGE GELOESCHT“
Ok 30 PRINT “DIESE ZEILE BLEIBT WEGEN IHRER
UNTERSCHIEDLICHEN ZEILENNUMMER ERHALTEN“
Ok SAVE ORIGINAL
Ok NEW
Ok 15 PRINT “DAS ISTDAS OVERLAY“
Ok 20 PRINT “DIESE ZEILE ERSETZT ZEILE 20 IM ORIGINAL“
Ok SAVE OVERLAY
Ok LOAD ORIGINAL
Ok MERGE OVERLAY
Ok RUN
DAS IST DAS ORIGINALPROGRAMM
DAS IST DAS OVERLAY
DIESE ZEILE ERSETZT ZEILE 20 IM ORIGINAL
DIESE ZEILE BLEIBT WEGEN IHRER UNTERSCHIEDLICHEN
ZEILENNUMMER ERHALTEN
ok

C-75

MID$ MID$(A$,5,10) = BS FUNKTION/ANWEISUNG
MID$(A$,5,5) = “HALLO“

Syntax: MID$(<String-Ausdruck> ,<Anfangspunkt>[,Lange]) =
| (<String-Ausdruck>)

Effekt: Funktion: Gibt ein Segment einer Zeichenkette aus.
Anweisung: Ordnet einem String-Segment einen Wert zu.

Erklärung:

MID$ gibt ein Segment eines Strings aus. Der Anfangspunkt ist ein numerischer Aus-
druck, der auf den Anfang des Segmentes zeigt. Die Länge ist ein numerischer Aus-
druck, der die Länge des Segmentes rechts neben dem Anfangspunkt spezifiziert.
Wenn Sie die Längenangabe entfallen lassen, gibt MID alle Zeichen hinter dem An-
fangspunkt aus.

Ist die Angabe für den Anfangspunkt höher als die Stringlänge, eibt MID$ einen Null-
‚string aus.

Falls die Länge des Segmentes größer ist als die Anzahl von Zeichen rechts neben dem
Anfangspunkt, werden alle Zeichen hinter dem Anfangspunkt ausgegeben.

MID$ kann auch dazu verwendet werden, um ein String-Segment zu definieren.

Lesen Sie hierzu auch unter RIGHT$ und LEFTS$ nach.

Beispiel: |

Ok 10X$ = “MR. JAMES GRAHAM SCOTT“
Ok 20 Y$ = MID$(X$,18,5)
Ok 30 PRINT Y$
Ok RUN
SCOTT
Ok

C76

MKDS$, MKIS,
MKS$

X$ = MKD$ (A) FUNKTION ©
X$ = MKIS$ (B) |
X$ = MKS$ (C)

Syntax:

Effekt:

Erklarung:

X$ = MKD$(<numerischer Ausdruck>)
X$ = MKI$(<Integerwert>)
X$ = MKS$(<numerischer Ausdruck >)

Die Funktionen MKD$, MKI$ und MKS$ wandeln ASCII-
Strings, die Zahlen repräsentieren, in Byte-Strings für die Ver-
wendungin Random-Dateispeichern um.

MKI$ gibt einen 2-Byte String aus.
MKS$ gibt einen 4-Byte String aus.
MKDS$ gibt einen 8-Byte String aus. |

Sie müssen ASCIH-Werte mit diesen Funktionen in Zeichenketten umwandeln, bevor
Sie sie mit RSET oder LSET in einen Random-Dateispeicher übertragen können. Die
Funktionen CVD, CVI] und CVS sind die Gegenstücke zu MKD$, MKI$ und MKS$.

Beispiel:

Ok 100 FINAL = (100/X) * (100 - Y)
Ok 110 FIELD #2, 5 AS Z$, 5 AS B$
Ok 120 LSET Z$ = MKI$(FINAL)
Ok 130 LSET B$ = T$
Ok 140 PUT #2.

C-77

NAME NAME AUG.DAT AS SEPT.DAT ANWEISUNG

Syntax: NAME <alter String-Ausdruck> AS <neuer String- Ausdruck >

Effekt: Benennteine Dateineu.

Erklärung:

Die NAME-Anweisung gibt einer bereits bestehenden Datei lediglich einen neuen
Namen. NAME verändert weder die Datei, noch den Disketten-Inhalt. Vergewissern
Sie sich, daß die alte Datei wirklich auf der Diskette vorhanden ist und der neue Name
nicht bereits für eine andere Datei verwendet wurde. Ansonsten würde ein Fehler auf-
treten.

Beispiel:

Ok NAME “VERSION2.BAS“ AS “VERSION3.BAS“

NEW = NEWNEUPRG.BAS BEFEHL

Syntax: | NEW [NAME]

Effekt: Löscht eine Dateiim Arbeitsspeicher und benennt optional das
| neue Programm. |

Erklärung:

Verwenden Sie NEW, wenn Sie beabsichtigen, ein neues Programm zu schreiben.
Falls Sie das derzeit im Arbeitsspeicher befindliche Programm nicht gespeichert
haben, wird dieses durch NEW gelöscht. Wenn Sie die Option NAME verwenden,
können Sie den SAVE-Befehl später ohne Namensangabe verwenden.

Beispiel:

Ok 10 X = SOR(25)
Ok 20 PRINT X
Ok NEW
Ok LIST
Ok

C-78

NEXT _ NEXTX ANWEISUNG
NEXT X, Y

Syntax: NEXT [<Zähler>] ‚Zähler

Effekt: | Markiert das Ende einer FOR/NEXT-Schleife.

Erklarung:

Die NEXT-Anweisung in einer FOR/NEXT-Schleife tibergibt die Programmkontrol-
le an den Schleifenanfang. Die Schleife wird erneut durchlaufen, wenn die Zähl-Varia-
ble noch nicht größer ist als die in der FOR-Anweisung vorgegebene Obergrenze.

Die Angabe des Namens für die Zähl-Variable ist optional. Die NEXT-Anweisung
nimmt die nächstliegende Zähl-Variable an.

Haben Sie Schleifen verschachtelt, müssen Sie angeben, zu welcher Zähl-Variablen
Sie am Ende der Schleifenausführung zurückkehren wollen. Verwenden Sie NEXT,
um die Programmausführung zuerst an die verschachtelte Schleife, und danach an die
äußere Schleife zu übergeben. Hierzu wird als Erstes die verschachtelte Zähl-Varia-
ble, und danach die äußere Zähl-Variable angegeben.

Lesen Sie hierzu auch unter FOR nach.

Beispiel:

Ok 10 FOR Z = 1 TO 3
Ok 20 PRINT “Y“
Ok 30 FOR Q=1TO2
Ok 40 PRINT “X“
Ok 50 NEXT Q,Z
Ok RUN

O
R
K

K
K
M

K
K

K
K

C-79

OCT$ X$ =OCT$ (Y) FUNKTION

Syntax: X$ = OCT$ (<numerischer Ausdruck>)

Effekt: Gibt den String-Ausdruck einer Basis 8-Zahl aus.

Erklarung:

OCTS$ gibt eine Zeichenkette aus, die dem Basis 8 — Wert eines Hexadezimal- oder
Dezimalwertes entspricht. Der Wert des Dezimal- oder Hexadezimalausdruckes wird
auf eine Integerzahl gerundet, bevor er umgewandelt wird. Er muß zwischen —32768
und 32767 liegen.

Lesen Sie hierzu auch unter HEX$ und STR$ nach.

Beispiel:

Ok 10 X$ = OCT$(3.4) ©
Ok 20 PRINT X$ |
Ok RUN |
3

OLD OLD TEST BEFEHL

Syntax: OLD <Dateiname>

Effekt: Ladt eine bestehende Programm-Datei in den Arbeitsspeicher.
OLD ist identisch mit LOAD.

Erklärung:

OLD schließt alle geöffneten Dateien und löscht alle Variablen oder Daten im Ar-
beitsspeicher, bevor die angegebene Datei von Diskette in den Speicher geladen wird.
OLD löscht alle ST BASIC Programme im Arbeitsspeicher.

Der Dateiname ist der Name, den Sie der Datei beim Speichern zugewiesen hatten.
Sie mussen dabei den Dateityp .BAS nicht angeben.

Beispiel:

~ Ok OLD TEST
Ok
Das Programm TEST.BAS befindet sich nun im Arbeitsspeicher

C-80

ON ON X GOTO INIT, 100, ENTRY,DONE - __ANWEISUNG
ON X GOSUB INIT, 100, ENTRY, DONE |

Syntax: ON <numerischer Ausdruck> GOTO <Zeilenangabe>
<Zeilenangabe>
ON <numerischer Ausdruck> GOSUB <Sprungmarke> ,
<Sprungmarke>

Effekt: Ubergibt die Programmkontrolle an eine Programmzeile in einer
Auflistung, abhängig vom errechneten Ergebnis des numerischen
Ausdruckes. Die ON-Anweisung hat zwei Formen.

Erklärung:

Der Wert des numerischen Ausdruckes legt fest, wohin die Programmausführung
übergeben wird. Entspricht der Wert des Ausdruckes 1, übergibt ON die Kontrolle an
die erste Sprungmarke. Entspricht er 2, wird die Kontrolle entsprechend an die 2 zweite
Sprungmarke ubergeben, usw.

Uberpriifen Sie den Wert des Ausdruckes, bevor Sie eine ON- Anweisung schreiben.

Nicht-Integerzahlen werden auf die nachste ganze Zahl auf- oder abgerundet.

In einer ON GOSUB-Anweisung muß jeder numerische Ausdruck die Zahl der ersten
Zeile einer Unterroutine sein. Die RETURN- Anweisung in der Unterroutine über-
gibt die Programmkontrolle an die erste ausführbare Anweisung, die der ON-Anwei-
sung folgt. |

Sie können in einer ON-Anweisung jede gültige Zeilenangabe verwenden. Eine ON-
Anweisung kann an jeder beliebigen Stelle im Programm geschrieben werden.

10 ON X GOTO 200, PAINT, 400

Falls der Wert von X 1 ist, springt das Programm in Zeile 200; ist der Wert 2, springt
das Programm in die Anweisung mit der Sprungmarke PAINT, usw.

Beispiel:

Ok 10 X = 1
Ok 20 ON X GOTO 70,80,90,990
Ok 70 PRINT “MONAT DES JAHRES:“X +1
Ok 80 PRINT “MONAT DES JAHRES:“X + 2
Ok 90 PRINT “MONAT DES JAHRES:“X + 3
Ok 120 X=X+1: GOTO 20
Ok 990 END |
Ok RUN
MONAT DES JAHRES: 2
MONAT DES JAHRES: 3
MONAT DES JAHRES: 4
MONAT DES JAHRES: 4
MONAT DES JAHRES: 5
MONAT DES JAHRES: 6
Ok

C-81

ONERROR- ON ERROR GOTO 200 u ANWEISUNG
GOTO | |

Syntax: ON ERROR GOTO <Zeilenangabe>

Effekt: Ermöglicht die Aufdeckung eines Laufzeit-Fehlers und übergibt
die Kontrolle an eine Zeilennummer, sobald ein Fehler auftritt.

Erklärung:

ON ERROR GOTO springt in eine angegebene Programmzeile, sobald ST BASIC ei-
nen Fehler entdeckt, und ermöglicht dadurch die Handhabung von Laufzeitfehlern.
Als Parameter muß eine Zeilennummer verwendet werden. Die Angabe einer
Sprungmarke ist nicht möglich.

Sie können diese Fehlerbehandlung deaktivieren oder die ursprüngliche Fehlerbe-
handlung von ST BASIC wieder einrichten, wenn Sie ON ERROR GOTO 0 verwen-
den.

Wenn Sie ON ERROR GOTO 0 in einer Fehleraufdeckungsroutine verwenden,
druckt ST BASIC seine Original- -Fehlermeldung aus und halt das Programm an. Sie
sollten in einer Fehleraufdeckungsroutine immer ON ERROR GOTO 0 verwenden,
um unerwartete Fehler feststellen zu können.

Lesen Sie hierzu auch unter RESUME, sowie in Anhang D, Fehlermeldungen, nach.

| Beispiel:

Ok 80 ON ERROR GOTO 100

C-82

OPEN OPEN “O“,+#1,“DATELDAT“, 128 | ANWEISUNG
| OPEN “T*,+#1,“DATELDAT“, 128 |

OPEN “R“,#1,“DATELDAT“, 128

Syntax: OPEN <Modus>,[#]<Dateinummer>,<Dateiname>
|,<Datensatzlange>|

Effekt: Ermöglicht die Ein- oder Ausgabe an eine Datei oder einen Daten-
: kanal.

Erklarung:

Sie müssen eine Diskettendatei mit OPEN öffnen, bevor Sie Daten daraus entneh-
men, bzw. in sie einlesen können. Die OPEN-Anweisung ordnet der Datei einen I/O-
Speicher zu und legt den Modus fest, unter dem für eine Ein- und Ausgabe Zugriff auf
die Datei genommen werden kann. |

Die Dateinummer ist ein Integer-Ausdruck mit einem Wert zwischen 1 und 15. Eine
Dateinummer ist einer Datei zugeordnet, solange diese geöffnet ist. Das Schließen
einer Datei löscht die zugeordnete Dateinummer. Damit kann diese Nummer neu
verwendet werden. Die Datensatzlänge ist ein Integer- Ausdruck, über den die Daten-
satzlänge für Random-Dateien festgelegt wird. Diese Angabe ist optional. Die vor-
gegebene Länge ist 128 Bytes. Die Angabe einer Datensatzlänge für sequentielle Da-
teien wird nicht beachtet.

Der Datei-Modus ist entweder eine sequentielle Ausgabe/Eingabe oder eine Random-
Eingabe/Ausgabe. Der Modus wird durch Eingabe einer der nachfolgenden I Kenn-
buchstaben festgelegt: | |

O Ausgabe für sequentielle Dateien
I Eingabe für sequentielle Dateien
R Ein- und Ausgabe für Random-Dateien

Die Eingabe dieser Kennbuchstaben muß in Großschreibung erfolgen.

Wenn Sie Random Access-Datensätze eingeben, muß. die erste Datensatz-Nummer
mit “1“ eingegeben werden. Alle nachfolgenden Datensatz-Nummern müssen se-
quentiell sein. D.h., die erste Datensatz-Nummer ist “1“, die Nummer für den zweiten
Datensatz ist “2“, für den dritten “3“ usw. Diese Eingabe kann über eine FOR/NEXT=
Schleife erfolgen. Datensätze, die in einer falschen Reihenfolge eingegeben werden,
verursachen einen Fehler. Sobald die Datei etabliert ist, Können die Datensätze (mit
GET #1,VAR) in jeder beliebigen Reihenfolge aufgerufen werden.

Beispiel:

Ok 10 OPEN “R“, #1, GUTHABEN“
Ok 20 FIELD #1,10 AS V$, 10 AS X$,30 AS N$
Ok 30 INPUT “4-STELLIGEN CODE EINGEBEN“, CODE!
Ok 40 GET #1, CODE!

C-83 _

OPENW | OPENW2 7 . ANWEISUNG

Syntax: OPENW <F enster-Nummer>

Effekt: Offnet ein ST BASIC-Fenster.

Erklarung:

OPENW wird verwendet, um ein ST BASIC-Fenster zu Öffnen, das zuvor über den
Befehl CLOSEW geschlossen worden war. Das geöffnete Fenster wird im Vorder-
grund des Bildschirmes dargestellt. Wurde das Fenster bereits geöffnet, verbleibt es
als oberstes Fenster auf dem Bildschirm. Die <Fenster-Nummer> spezifiziert die
ST BASIC- Fenster wie folgt:

0 = Bearbeitungsfenster
1 = Auflistungsfenster
2 = Ausgabefenster
3 = Befehlsfenster

Anmerkung: OPENW gibt eine interne Meldung an den BASIC- Interpreter, durch
die das System den Status der Fenster nachvollziehen kann. Aus diesem Grund sollten
Sie ST BASIC-Fenster (die tiber CLOSEW geschlossen wurden) nicht über Direkt-
aufrufe von AES Öffnen.

C-84

OPTION BASE OPTION BASE0 ANWEISUNG
OPTION BASE1

Syntax: OPTION BASE <1 oder 0>

Effekt: Setzt die Basis fiir Array-Dimensionierungen.

Erklarung:

OPTION BASE wird für die Festsetzung des Mindestwertes für Array-Unterbereiche
innerhalb einer Dimensionierung verwendet. Die vorgegebene Basis ist Null. Aus die-
sem
Grund hat das erste Element in einem Array einen Unterbereich Null. Sie können die
Array-Dimensionierungen so setzen, daß sie bei 1 beginnen, oder sie auf Null belassen.

Sie können OPTION BASE beliebig oft verwenden.

Lesen Sie hierzu auch unter DIM nach.

Beispiel:

Ok 10 OPTION BASE 1
Ok 20 DIM A% (10)
Ok 30 OPTION BASE 0
Ok 40 DIM B% (10)

A% hat nun 10 Elemente (1-10) und B% 11 Elemente (0-10).

OUT | OUT2,X ANWEISUNG

Syntax: | OUT <Integer- Ausdruck >, <Integer-Ausdruck>

Effekt: Übermittelt ein Byte an einen Datenaus gabekanal.

Erklärung:

Der erste Integer-Ausdruck ist die Datenkanal-Nummer. Der zweite Ausdruck ist das _
Byte, das Sie an den Ausgabekanal leiten wollen. Der Wert des Bytes muß zwischen 0 —
und 65535 liegen.

Die Datenkanäle des ATARI ST Computers lauten wie folgt:

0 = PRINTER (Parallel-Port)
1 = AUX (RS-232)
2 = CONSOLE (Bildschirm)
3 = MIDI (Musical Instrument Digital Interface) 4 = KEYBOARD (Tastatur)

Beispiel:

Ok 100 If X% >5 THEN OUT 3,(X-2)

C-85

PCIRCLE PCIRCLE 50,80,50 ANWEISUNG
| PCIRCLE 50,80,50,900,1800 |

Syntax: PCIRCLE <horizont. Mittelpunkt, vertik. Mittelpunkt, Radius>
[<,Anfangswinkel, Endwinkel>]

Effekt: PCIRCLE zeichnet ausgefüllte Kreise und Kreisausschnitt-Formen.

Erklärung:

PCIRCLE zeichnet vollständig in einer Farbe und mit einem Muster ausgefüllte Krei-
se. Der Kreismittelpunkt liegt am Schnittpunkt der beiden ersten Parameter (horizon-
taler und vertikaler Mittelpunkt). Die Positionen werden in Pixel angegeben, gerech-
net von der oberen linken Ecke des Ausgabefensters.

Der dritte Parameter, Radius, wird ebenfalls in Pixel angegeben. Die horizontale und
vertikale Pıxelanzahl ist abhängig von der gewählten Auflösung. Der Kreis wird in der
angegebenen FILL-Farbe (Parameter 2 der COLOR-Anweisung) gezeichnet.

Die letzten beiden Parameter, Anfangs- und Endwinkel, sind optional verwendbar.
Werden sie nicht angegeben, zeichnet PCIRCLE einen vollständigen Kreis. Bei Anga-
be eines Anfangs- und Endwinkels wird ein Kreisausschnitt gezeichnet, der zwischen
den beiden Punkten liegt. PCIRCLE zeichnet ein ausgefülltes Kreissegment und kei-
nen Kreisbogen. Die Winkel werden in Grad mal 10 angegeben. So werden 45 Grad als
450, 180 Grad als 1800, usw. angegeben. 0 Grad zeigt im Ausgabefenster nach rechts,
90 Grad nach oben, 180 Grad nach links und 270 Grad nach unten. COLOR
1,3,1:PCIRCLE 100,30,30,0,3600 zeichnet einen vollständigen, grün ausgefüllten
Kreis.

Lesen Sie hierzu auch unter CIRCLE, ELLIPSE und PELLIPSE nach.

Beispiel:

Ok 10 COLOR 1,0,1:CLEARW 2
Ok 20 CIRCLE 100,50,40
Ok 30 COLOR 1,2,1
Ok 40 PCIRCLE 100,50,40,300,900
Ok RUN |
[Im Ausgabefenster erscheint ein schwarzer Kreis mit einem rot ausgefüllten
Kreissegment, beginnend bei 30 Grad, über eine Länge von 60 Grad]
Ok |

C-86

PEEK X = PEEK (Y) — FUNKTION

Syntax: | X = PEEK (<Speicheradresse>)

Effekt: _ Gibt den Inhalt einer Speicheradresse aus.

Erklärung:

PEEK gibt das an der angegebenen Speicheradresse befindliche Byte aus. Der Typ des
ausgegebenen Wertes ist wie folgt von der letzten DEF SEG-Anweisung abhangig:

Ist DEF SEG > 0, gibt PEEK ein Byte aus, unabhängig davon, wie die PEEK-
Adresse spezifiziert wurde. Die in PEEK angegebene. Adresse wird durch den
Wert, der in der letzten DEF SEG- Anweisung angegeben wurde, eingerichtet.

Wenn DEF SEG gleich Null ist, gibt PEEK ein 2-Byte Wort aus, sofern die
PEEK-Adresse als FLOAT-Ausdruck angegeben wurde.

Falls DEF SEG gleich Null ist und gleichzeitig die Adresse durch DEFDBL spe-
zifiziert wurde, gibt PEEK einen 4-Byte Long-Integerwert aus.

Sie müssen die Speicheradresse über eine Variable, und nicht über eine Konstante spe-
zifizieren (siehe nachstehendes Beispiel).

Lesen Sie hierzu auch unter POKE und SEG nach.

Anmerkung: Beim PEEKen wird der ST Computer in den Supervisor-Modus um-
geschaltet. D.h., Sie können auf jede Speicheradresse, also auch auf geschützte Spei-
cherplätze, Zugriff nehmen.

Beispiel:

Ok 100 BYTE% = PEEK(234)

C-87

PELLIPSE PELLIPSE 50,80,100,50 BE ANWEISUNG
| PELLIPSE 50,80,100,50,900,1800

Syntax: PELLIPSE <horizont. Mittelpunkt,vertik. Mittelpunkt,
horizont. Radius, vertik. Radius>[<,Anfangswinkel,Endwinkel>]

Effekt: PELLIPSE zeichnet ausgefüllte Ellipsen und elliptische Kreis-
formen.

Erklärung:

PELLIPSE zeichnet eine Ellipse, deren Mittelpunkt durch die beiden ersten Parame-
ter (horizontaler und vertikaler Mittelpunkt) festgelegt wird. Die Positionen werden
in Pixel ausgedrückt, gerechnet von der oberen linken Ecke des Ausgabefensters. Pa-
rameter 3 und 4, horizontaler und vertikaler Radius, werden ebenfalls in Pixel angege-
ben. Die horizontale und vertikale Pixelanzahl ist abhängig von der gewählten Auflö-
sung. Die Ellipse wird in der vorgegebenen Zeichenfarbe (Parameter 3 der COLOR-
Anweisung) gezeichnet.

Die letzten beiden Parameter, Anfangs- und Endwinkel, sind optional verwendbar.
Werden sie nicht angegeben, zeichnet PELLIPSE eine vollständige Ellipse. Bei Anza-
be eines Anfangs- und Endwinkels wird ein Ellipsenausschnitt gezeichnet, der zwi- —
schen den beiden Punkten liegt. PELLIPSE zeichnet ein ausgefülltes Kreissegment
und keinen Kreisbogen.

Die Winkel werden in Grad mal 10 angegeben. So werden 45 Grad als 450, 180 Grad
als 1800, usw. angegeben. 0 Grad zeigt im Ausgabefenster nach rechts, 90 Grad nach
oben, 180 Grad nach links und 270 Grad nach unten. COLOR 1 3, 1:PELLIPSE
100 50 ‚>0,50,0,3600 zeichnet eine vollständige, grün ausgefüllte Ellipse.

Lesen Sie hierzu auch unter ELLIPSE, CIRCLE und PCIRCLE nach.

Beispiel:

Ok 10 COLOR 1,0,1:CLEARW 2
Ok 20 PELLIPSE 100,80,40,80
Ok 30 COLOR 1,2,1
Ok 40 PELLIPSE 100,80,40,80,300,900
Ok RUN
[Auf dem Bildschirm wird eine schwarze Ellipse mit einem roten Kreisbogen
über 60 Grad, beginnend bei 30 Grad, gezeichnet]
Ok

C-88

POKE POKE 1565,X 2 ANWEISUNG |

Syntax: POKE<Adresse zum POKEn>,<Daten zum POKEn>

Effekt: Schreibt POKE-Daten in den Speicher.

Erklärung:

POKE speichert einen Wert der Daten, die mit POKE in eine Speicher- Adresse ge-
bracht werden sollen. Die POKE-Adresse ist eine absolute Adresse, die als numeri-
scher Ausdruck angegeben wird. Der Datentyp wird durch die letzte DEF SEG-An-
weisung, sowie durch die Art der Spezifikation der POKE-Adresse definiert. |

Die in POKE angegebene Adresse wird durch den Wert, der in der letzten DEF
SEG-Anweisung angegeben wurde, eingerichtet.

Wenn DEF SEG gleich Null ist, entsprechen die Daten einem 2-Byte-Wort,
sofern die POKE-Adresse als FLOAT-Ausdruck angegeben wurde.

Falls DEF SEG gleich Null ist und gleichzeitig die Adresse durch DEFDBL spe-
zifiziert wurde, sind die Daten ein 4- Byte Long-Integerwert.

Liegt der Daten-Ausdruck außerhalb des gültigen Bereiches von 0 bis 255, speichert
POKE das niederwertige Byte des Ergebnisses. So hat beispielsweise

Ok 5 DEF SEG=300000
Ok 10 POKE X% ‚257

den gleichen Effekt wie

Ok 5 DEF SEG=300000
Ok 10 POKE X% ‚1

Das Gegenstück zu POKE ist PEEK. sie können PEEK und POKE für die Übermitt-
lung von Argumenten und Daten in Maschinensprache-Unterroutinen verwenden.

Lesen Sie hierzu auch unter PEEK und DEF SEG nach.

Beispiel:

Ok 100 FOR LOC% =1 TO LEN(OUT,MSG$)
Ok 120 POKE MSG.LOC% +LOC% ‚ASC(MID$(OUT,MSG$,LOC$,))
Ok 130 NEXT LOC%

Anmerkung: Beim PEEKen und POKEn wird der 520ST Computer in den Supervi-
sor-Modus umgeschaltet. D.h., Sie können auf jede Speicheradresse, also auch auf
geschützte Speicherplätze, Zugriff nehmen.

Das System stürzt ab, wenn Sie in Speicherplätze POKEn, die vom TOS Betriebs-
system belegt sind. Bei einem Systemabsturz müssen Sie neu booten.

C-89

POS X=POS(0) FUNKTION

Syntax: | X= POS(<Test-Argument>)

Effekt: _ Gibt die derzeitige Cursorposition am Bildschirm oder Drucker aus.

Erklarung:

Die am weitesten links liegende Cursorposition ist Null. POS gibt nicht unbedingt die
physikalische Position des Druckkopfes an.

Lesen Sie hierzu auch unter LPOS nach.

Beispiel:

Ok 40 X = POS(0)

Ok 50 PRINT “DRUCKKOPF SITZT IN SPALTE: “; X
Ok 60 IF WIDTH.LINE <POS(0) THEN WIDTH.CHR = X

C-90

PRINT ____ PRINT X.Y ANWEISUNG
PRINT X:Y
PRINT A$
?A$

i

Syntax: PRINT [<Ausdruck> <,oder ;><Ausdruck [<, oder ;>]]

Effekt: Ä Druckt Daten im Ausgabefenster aus.

Erklarung:

PRINT übermittelt Ausdrücke an das Ausgabefenster. Sie können eine beliebige Anzahl
von Ausdrücken zusammen mit der PRINT-Anweisung verwenden. Die einzelnen Aus-
drücke müssen durch Kommata oder Strichpunkte voneinander abgetrennt werden.

Die Interpunktionszeichen, die für die Abtrennung der einzelnen Ausdrücke verwen-
det werden, legen die Positionen der Ausdrücke auf dem Bildschirm fest. ST BASIC
unterteilt eine Zeile in einzelne Druckzonen, die jeweils 14 Stellen umfassen. Wenn
Sie die Ausdrücke ın der PRINT-Anweisung durch Kommata abtrennen, wird jeder
Ausdruck von ST BASIC in der nächsten verfügbaren Druckzone dargestellt. Bei Ver-
wendung eines Strichpunktes werden die String-Ausdrücke vonSTBASIC konsekutiv
und ohne abtrennende Leerstellen ausgedruckt. Numerische Ausdrücke werden zu-
sammenhängend gedruckt, wobei zwischen dem Vorzeichen und der Zahl eine Leer-
stelle gesetzt wird.

Wenn Sie eine Auflistung von Ausdrücken mit einem Komma abschließen, springt ST
BASIC in die nachfolgende Druckzone, geht jedoch nicht weiter zu einer neuen Zeile.
Schließen Sie eine Auflistung mit einem Strichpunkt ab, beläßt ST BASIC den Cursor
am Ende des letzten Ausdruckes.

Anstelle von PRINT kann in ST BASIC Programmen auch ein Fragezeichen verwen-
det werden. ? A entspricht PRINT A.

Beispiel:

Ok 10 PRINT “TEST VON ST BASIC“
Ok 20 PRINT
Ok 30 A$ = “EINS“ : B$ = “ZWEI“ : C$ = “DREI“ .
Ok 40 A=23:B0567:C=5 |
Ok 50 PRINT A$,B$,C$
Ok 60 PRINT A$;B$;C$
Ok 70 PRINT A,B,C
Ok 80 PRINT A;B;C;
Ok 90 END
Ok RUN
TEST VON ST BASIC

EINS ZWEI DREI
EINSZWEIDREI

23 567 5
23 567 5

Ok

C-91

PRINT+ PRINT+ 1,A$,X | ANWEISUNG
+e

Syntax: PRINT# <Dateinummer>,<Ausdruck>,<Ausdruck>

Effekt: Gibt Daten an eine Diskettendatei aus.

Erklärung:

Die PRINT#-Anweisung schreibt Ausdrücke in die Datei, die durch die Dateinum-
mer vorgegeben wurde. Die Dateinummer ist die Kennzahl, die Sie der Datei beim
Öffnen zugewiesen hatten. Jede PRINT#-Anweisung erstellt einen eigenen Daten-
satz. Jeder Ausdruck in einer PRINT+-Anweisung erstellt ein eigenes Feld.

Sie können eine beliebige Anzahl von Ausdrücken zusammen mit der PRINT+-
Anweisung verwenden. Die Ausdrücke müssen durch Kommata oder Strichpunkte
voneinander abgetrennt werden.

PRINT+ schreibt die Daten exakt in der Form in die Datei, in der sie auch mit der

PRINT-Anweisung auf dem Bildschirm dargestellt würden.

Sie müssen über die entsprechenden Interpunktionszeichen genau angeben, wie die
Daten in der Datei erscheinen sollen. |

Beispiel:
1 X$ = “Lewis“
Z$ =C.S.“

Gewunschte Darstellungsform auf der Diskette: Lewis, C.S.

Da weder vor “Lewis“, noch hinter “C.S.“ ein Komma gesetzt wurde, schreibt die
Anweisung

1 Ok PRINT+1,X5$;Z$

Lewis C.S.

auf Diskette.

Wollen Sie ein Komma als Abgrenzungszeichen verwenden, müssen Sie die Anweisung

Ok PRINT#1,X$;“,“;Z$

verwenden, wobei das Kommazeichen als literaler String in Anführungszeichen
gesetzt werden muß.

Beispiel:

Ok 50 PRINT#VIER.TEX; A$,B$,C$

C-92

PRINTUSING PRINT USING FORMS;X,Y.Z _ ANWEISUNG
PRINT+ 1, USING FORMS;X,Y,Z
?USING

Syntax: PRINT USING<String-Ausdruck>;<“Liste der Ausdrücke“ >;
| : | PRINT#<Dateinummer>, USING<“String-Ausdruck“ >

<Liste der Ausdrücke>

Effekt: - Druckt eine Ausgabe gemäß dem vorge gebenen Format.

Erklärung:

Die PRINT USING-Anweisung druckt Daten auf den Bildschirm. Die PRINT+
USING-Anweisung druckt Daten in eine Diskettendatei. Sie können Strings oder
Zahlen über beliebige Anweisungen drucken. Bei der PRINT# USING-Anweisung
ist die Dateinummer die Kennzahl, die Sie der Datei beim Öffnen zugewiesen hatten.

Bei beiden Anweisungen entspricht der String-Ausdruck in Anführungszeichen einer
Liste von Zeichen, über die die Felder und Formate der gedruckten Daten festgelegt
werden. Die Auflistung enthält die zu druckenden Begriffe, die durch Kommata oder
Strichpunkte voneinander abgetrennt sein müssen. Wird. die Auflistung mit einem
Strichpunkt beendet, wird der Cursor am Ende des letzten Ausdruckes belassen.

Die Zeichen in der Format-Spezifikation werden durch die Daten in der Druckliste
ersetzt, es sei denn, es handelt sich um literale Zeichen.

Die nachfolgende Tabelle enthält die Formatierzeichen von ST BASIC.

Formatierzeichen für String-Felder

Zeichen Erklärung

Gibt der Anweisung an, daß das erste Zeichen jedes spezifizierten
Strings gedruckt werden soll.

\Zeichen\ — Zeichen plus 2 zeigt die Gesamtanzahl von Zeichen an, die von
dem spezifizierten String gedruckt werden soll.

& Spezifiziert ein String-Feld mit variabler Lange.

C-93

Zeichen

tt

$$

EE

A AAA

Formatierzeichen fur numerische Felder

Erklarung

Reprasentiert jede Ziffernposition in einem numerischen Feld.

F ügt Nullen ein, um eventuelle Ziffernpositionen aufzufüllen.

Druckt das Vorzeichen der Zahl, Plus oder Minus, vor der ge-
druckten Zahl aus.

Druckt negative Zahlen mit einem vorangestellten Minuszeichen
aus.

Füllt Leerstellen in einem numerischen Feld mit Sternchen auf.

Setzt direkt links neben die gedruckte Zahl ein Dollarzeichen.

Füllt Leerstellen mit Sternchen auf und setzt links neben. die Zahl

ein Dollarzeichen.

Fügt links neben dem Dezimalpunkt nach jeder dritten Ziffer ein
Komma ein.

Spezifiziert ein Exponential-Format.

Druckt das nachfolgende Zeichen als literales Zeichen.

Sie können String-Konstanten in einen Format-String einfügen, wie im nachfolgenden
Beispiel demonstriert wird:

Beispiel:

Ok 10 PRINT USING “DAS IST DATEI _44+4+*;4
Ok RUN
DASISTDATEI #4
Ok

C-94

PUT | PUT #1,5 ANWEISUNG

Syntax: PUT [#]<Dateinummer>,<Datensatz-Nummer>

Effekt: Schreibt einen Datensatz von einem Speicher in eine Random-
Diskettendatei.

Erklärung:

Die Dateinummer ist die Kennzahl, die Sie der Datei beim Öffnen zugewiesen hatten.
Die Datensatz-Nummer ist optional verwendbar. Sofern Sie eine Datensatz-Nummer
angeben, muß diese bei Eins beginnen und in sequentieller Folge fortfahren. Für die
Zuordnung von Datensatz-Nummern in einer Datei wird am besten eine FOR TO
NEXT-Schleife geschrieben. Geben Sie keine Datensatz-Nummer an, verwendet
PUT die nächste Datensatz-Nummer nach der letzten GET- oder PUT-Anweisung.

Die größte gültige Datensatz-Nummer ist 32767.

Sie sollten vor der Verwendung von PUT LSET oder RSET s setzen, um die Daten in
den Random-Speicher zu bringen. |

Beispiel:

Ok 100 LSET 0$=X$
Ok 120 PUT#2,RCORD%

QUIT QUIT BEFEHL

Syntax: QUIT

Effekt: Beendet ST BASIC und kehrt zurück zum GEM.

Erklärung:

QUIT schließt alle Dateien und bringt Sie zum GEM-Befehlslevel zurück. Jedes ım
Arbeitsspeicher befindliche Programm wird gelöscht, sofern es nicht zuvor gespei-
chert wurde.

QUIT entspricht SYSTEM.

Beispiel:

Ok QUIT

C-95

RANDOMIZE RANDOMIZEX ANWEISUNG

Syntax: ~ RANDOMIZE [<numerischer Ausdruck>]

Effekt: Setzt den Random-Zahlengenerator.

Erklarung:

RANDOMIZE wird zusammen mit der RND-Funktion verwendet, um zufällig be-
stimmte Zahlen zu generieren. Wenn Sie den optional verwendbaren numerischen
Ausdruck nicht angeben, fragt ST BASIC nach einer "Zahl, auf der RAND OMIZE ba-
sieren soll.

Falls Sie am Anfang eines Programmes, das mit zufällig bestimmten Zahlen arbeitet,
kein RANDOMIZE mit dem Parameter Null verwenden, gibt die Funktion RND bei
jedem Programmlauf dieselbe Sequenz von Zahlen in gleicher Reihenfolge aus.

Lesen Sie auch unter RND nach, um weitere Informationen über die Generierung ZU-
fällig bestimmter Zahlen zu erhalten. |

Beispiel:

Ok 10 RANDOMIZE 0
Ok20FORX=1TO 10
Ok 30 PRINT RND
Ok 40 NEXTX
Ok RUN
957395
‚427143
806267
0206223
86628
886706
435054
199773
505868
801594
Ok

C-96

READ | READ A,B,A$ oe . ANWEISUNG

Syntax: READ<Variable>, <Variable>

Effekt: Ordnet Werte auseiner DATA-Anweisung Variablen zu.
Erklärung: | | | |

Die Anweisungen READ und DATA werden immer in Kombination verwendet. |

READ ordnet die in DATA aufgelisteten Werte nacheinander einer damit korrespon-
dierenden Auflistung von Variablen zu. Die Variablen können numerische Ausdrücke
oder Strings sein. Sie müssen vom Typ her den Konstanten-Werten in der DATA-An-

_ weisung entsprechen. Andernfalls würde ein Fehler auftreten.

Sie können eine READ-Anweisung mit mehreren DATA-Anweisungen zusammen
verwenden. Umgekehrt können Sie mehrere READ-Anweisungen mit einer DATA-
Anweisung kombinieren. Ist die Anzahl von Werten in der DATA-Anweisung größer
als die Anzahl von Variablen inder READ-Anweisung, greift die nächste READ-An-
weisung die verbliebenen Konstanten aus der ersten DATA-Anweisung auf und ord-
net diese den Variablen ihrer Liste zu. Gibt es keine nachfolgende READ-Anwei-
sung, werden die verbliebenen Daten ignoriert.

Gibt es weniger Werte in der DATA-Anweisung als in der READ-Anweisung, wird
die nächste DATA-Anweisung angesteuert und ausgelesen. Folgt keine weitere
DATA-Anweisung, tritt ein Fehler Nr. 4 (zuwenig Werte) auf.

Sie können über die RESTORE-Anweisung DATA -Begriffe vom Anfang einer spezi-
fizierten Zeilennummer neu lesen lassen.

Lesen Sie hierzu auch unter DATA und RESTORE nach.

Beispiel:

Ok 10 READ X,Y,Z
Ok 20 RESTORE
Ok 30 DURCHSCHNITT = (X+Y+Z)/3
Ok 40 DATA 23.4,89.2,77 |
Ok 50 PRINT DURCHSCHNITT
Ok 60 READ X,Y,Z
Ok 70 ERGEBNIS = X* Y*Z
Ok 80 PRINT ERGEBNIS
Ok 90 END
Ok RUN

63.2
160720

Ok

C-97

REM REM ANMERKUNG ANWEISUNG
’ANMERKUNG

Syntax: REM <Anmerkung>

Effekt: | Ermöglicht Anmerkungen im Programmcode.

Erklärung:

Anmerkungen dienen dazu, die Logik eines Programmes deutlich zu machen. REMs
erscheinen im Programmlisting in der Form, in der Sie sie geschrieben hatten, haben
jedoch keine Auswirkungen auf die Programmausführung. Anmerkungen dürfen ma-
ximal 245 Zeichen lang sein. Schreiben Sie eine Anmerkung, die länger ist als die Bild-
schirmbreite, können Sie die Zeile mit einem Zeilenvorschub verlängern. |

Wenn Sie über eine GOTO- oder GOSUB-Anweisung in eine REM-Zeile springen,
wird der Programmlauf in der ersten ausführbaren Zeile nach REM fortgeführt.

Das einfache Apostroph-Zeichen bewirkt denselben Effekt wie REM. So ist beispiels-
weise

Ok 100 ’das ist eine Anmerkung

eine gültige Anweisung.

Beispiel: _

Ok 10 REM DIESES PROGRAMM ERRECHNET QUADRATZAHLEN
Ok 20 INPUT “ZAHL EINGEBEN, DIE POTENTIERT WERDEN SOLL“;X
Ok 30 S=X*X
Ok 40 PRINT SS
Ok 50 RÜCKKEHR ZUR ZEILE FUR DIE ZAHLENEINGABE
Ok 60 GOTO 20
Ok 70 END
Ok RUN

C-98

RENUM RENUM 50,10,20 ANWEISUNG

Syntax: 9 RENUM [<neue erste Zeile>][,<Anfangszeile>][,<Erhohung>}]

Effekt: Numeriert Programmzeilen neu.

Erklärung:

Enthält Ihr Programm unregelmäßige Zeilennummern, die durch nachträgliches Ein-
fügen neuer Zeilen zwischen bereits erstellte Zeilen entstanden sind, können Sie das
gesamte Programm neu durchnumerieren, ohne dabei GOTO- oder andere Adressen-
abhängige Anweisungen anpassen zu müssen.

Wird RENUM alleine verwendet, wird das Programm in Zehnerschritten, beginnend
bei Zeilennummer 10, fortlaufend durchnumeriert.

Sie können auch eine neue Zeilennummer für die erste Zeile des Programmes vorge-
ben. Zudem ist möglich, eine Anfangszeilennummer anzugeben, ab der das Pro-
gramm neu numeriert werden soll.

Außerdem können Sie festlegen, in welchen Schritten die Zeilennummern erhöht wer-
den. Mit der Anweisung

RENUM 10,30,10

beginnt die Neunumerierung in der ehemaligen Zeile 30, die die neue Zeilennummer
10 erhält. Die Zeilennummern werden in Zehnerschritten erhöht.

RENUM 10,30,20

bewirkt eine Neunumerierung bei der ehemaligen Zeile 30, die die neue Zeilennum-
mer 10 zugeordnet bekommt. Die Erhöhung erfolgt in Zwanzigerschritten, also 10, 30,
50, 70 usw.

Sie können jede einzelne Option von RENUM alleinstehend verwenden. Wenn Sie
jedoch beispielsweise nur eine unterschiedliche Erhöhung festlegen, sollten Sie für die
beiden ersten Optionen Kommata als Stellenmerker setzen, um kennzuzeichnen, daß
Sie einen Erhöhungswert und nicht eine neue erste Zeilennummer oder Anfangszeile
angeben wollen (z.B. RENUM ,,20).

RENUM paßt alle Zeilennummern-Referenzen in GOTO-, GOSUB-, IF... THEN ...
ELSE-, ON ... GOTO- und ON ... GOSUB-Anweisungen an die neue Zeilennume-
rierung an. Haben Sie in einer dieser Anweisungen eine nicht existierende Zeilennum-
mer verwendet, wird diese unverändert belassen.

Sie können RENUM nicht dazu verwenden, um die Reihenfolge der Programmzeilen
zu verändern.

RENUM legt eine Datei mit der Bezeichnung BASIC.WRK auf der derzeit im Lauf-
werk befindlichen Diskette an. Aus diesem Grund darf die eingelegte Diskette nicht
mit einem Schreibschutz versehen sein.

C-99

Beispiel:

Ok 15 X=5
Ok 20 Z=3
Ok 25 Y=10
Ok 30 PRINT X+ Y-Z
Ok RENUM

LIST
10 X=5
20 Z=3
30 Y=10 |
ADPRINTX+Y-Z
Ok

C-100

REPLACE ‘REPLACE DATELBAS ss ANWEISUNG
REPLACE DATELBAS, 100-800

Syntax: REPLACE [<Dateiname>][,<Zeilennummern-Liste>]

Effekt: Ersetzt eine alte Version einer Datei durch eine neue Version. u

Erklärung:

REPLACE wird zusammen mit OLD oder LOAD verwendet. Nachdem Sie eine alte
Datei geladen und überarbeitet haben, wird mit REPLACE die überarbeitete F assung
der Datei auf Diskette abgelegt, wobei die alte Datei gelöscht wird.

Wenn Sie einen Dateinamen angeben, speichert REPLACE das Originalprogramm
unter <Dateiname> und nicht unter dem Original-Dateinamen. Sie können Teile
eines Programmes speichern, wenn Sie die betreffenden Zeilennummern hinter
REPLACE angeben.

In der Regel entspricht REPLACE dem Befehl SAVE. Es besteht lediglich der Unter-
schied, daß mit REPLACE der Name der Datei, die Sie speichern wollen, bereits ei-
ner anderen Datei zugeordnet worden sein darf. In untenstehendem Beispiel wird das
Programm ZAEHLEN in den Arbeitsspeicher geladen, die Zeile 130 ersetzt und die
überarbeitete Fassung auf Diskette gespeichert. |

Beispiel:

Ok OLD ZAEHLEN
Ok 130 IFX = 10 THEN END
Ok REPLACE
Ok

C-101

_ RESET RESET ANWEISUNG

Syntax: RESET

Effekt: RESET legt den Inhalt des Ausgabefensters in den Grafik-Spei-
cher ab.

Erklärung:

Wenn die Option “Buffered Graphics“ aktiviert ıst, kopiert RESET den Inhalt des
Ausgabefensters in den Grafik-Speicher. Dadurch kann eine Grafik auf Diskette ab-
gelegt, und nach der Ausführung weiterer Grafik-Operationen wieder ins Ausgabe-
fenster eingebracht werden. Über die Anweisung OPENW wird der Inhalt des Grafik-
Speichers wieder zurück ins Ausgabefenster gebracht.

Beispiel:

10 COLOR 1,1,1,1,1:FULLW 2
Ok 20 CIRCLE 100,100,50
Ok 30 RESET: ’LEGT DAS BILD IM SFEICHER AB
Ok 40 CLEARW 2 |
Ok 50 PCIRCLE 100,100,50
Ok 60 FOR I=1 TO 1000:NEXT
Ok 70 OPENW 2
Ok 80 END

C-102

RESTORE RESTORE 200 | ANWEISUNG

Syntax: RESTORE <Zeilenangabe>
Effekt: Liest DATA-Anweisungen neu.

Erklärung: |

RESTORE ermöglicht eine Spezifikation der DATA-Anweisung, die Sie zusammen
mit READ-Anweisungen verwenden wollen. RESTORE sucht den ersten Begriff der
ersten DATA-Anweisung in oder nach der angegebenen Programmzeile und kenn-
zeichnet diesen als Startpunkt für die nächste READ-Anweisung.

Sie können jede beliebige DATA-Anweisung durch Angeben der betreffenden Zei-
lennummer als Objekt einer RESTORE-Anweisung festlegen. Die mit RESTORE
verwendete Zeilenangabe muß sich nicht auf die DATA-Anweisung beziehen; die an-
gegebene Zeilennummer muß auch nicht unbedingt im Programm vorhanden sein.
Die nächste READ-Anweisung sucht die DATA-Anweisung direkt ın der angegebe-
nen Programmzeile, bzw. in den darauffolgenden Zeilen.

Beispiel:

Ok 10 READ X, Y,Z
Ok 20 RESTORE
Ok 30 DURCHSCHNITT = (X + Y + Z)/3
Ok 40 DATA 23.4, 89.2, 77
Ok 50 PRINT DURCHSCHNITT
Ok 60 READ X, Y,Z
Ok 70 ERGEBNIS = X* Y*Z_
Ok 80 PRINT ERGEBNIS
Ok 90 END
Ok RUN

63.2
160720

Ok

C-103

RESUME RESUME (0) | . ANWEISUNG
2RESUMENEXT
RESUME 200 _

Syntax: RESUME (0)
RESUMENEXT
RESUME <Zeilenangabe>

Effekt: Fährt nach einem Fehler mit dem Pro grammlauf fort.

Erklärung:

Nach der Aufdeckung und Behebung eines Fehlers wird mit RESUME der normale
Programmlauf wieder aufgenommen. Sie dürfen eine RESUME-Anweisung nur am
Ende einer Fehleraufdeckungs-Routine schreiben. Die Ausführung einer RESUME-
Anweisung an einer anderen Stelle innerhalb eines Programmes würde einen unauf-
findbaren Fehler ergeben. :

RESUME allein oder mit einer nachgestellten Null gibt die Programmkontrolle an die
Anweisung zurück, bei der der Fehler auftrat. |

RESUME NEXT übergibt die Programmkontrolle an die nächste Anweisung nach
der Anweisung, die den Fehler verursachte.

RESUME <Zeilenangabe> übergibt die Programmkontrolle an die angegebene Zei-
lennummer. | |

Beispiel:

Ok 100 ON ERROR GOTO 700

Ok 700 IF (ERR = 300) AND (ERR = 150) THEN PRINT
“MINDESTANZAHL ABHANGIGER WERTE IST 1“: RESUME 140

C-104

RETURN RETURN Oo ANWEISUNG

Syntax: ~ RETURN

Effekt: Ubergibt die Kontrolle von einer Unterroutine an die Anweisung,
die dem letzten GOSUB folgte.

Erklärung:

RETURN übergibt die Pro grammausführung an die erste ausführbare Anweisung im
Hauptprogramm hinter einem Unterroutinen-Aufruf. Die Unterroutine kann eine
GOSUB- oder eine ON ... GOSUB- "Anweisung sein.

Beispiel:

Ok 10 GOSUB ALPHA
Ok 20 REM RÜCKKEHRPUNKT DER UNTERROUTINE —
Ok 30 PRINT A
Ok 40 GOTO 200
Ok ALPHA: REM BEGINN DER UNTERROUTINE
0k 110 A=5*6
Ok 120 RETURN
Ok 200 END
Ok RUN

30
Ok

C-105

RIGHTS X$ = RIGHT$(A$,5) FUNKTION

Syntax: X$ = RIGHT$(<Zielstring>,<Anzahl der Zeichen>)

Effekt: Gibt die letzten Zeichen, gerechnet von rechts, einer Zeichen-
kette aus. |

Erklärung:

RIGHTS$ ordnet die von Ihnen angegebene Anzahl von Zeichen in einem Zielstring,
gerechnet von rechts, einer neuen String- Variablen zu. Ist die angegebene Zeichenan-
zahl größer oder gleich der Stringlänge, wird der gesamte String ausgegeben. Geben
Sie als Anzahl Null an, wird ein Null-String ausgegeben.

Beispiele:

Ok 10 A$ = “Marketing-Strategie“
Ok 20 B$ = “Regionale Aktionen“
Ok 30 C$ = “Testergebnisse“
Ok 40 INPUT “KATALOG NUMMER“; KATALOGS$
Ok 50 IF RIGHT$(KATALOGS$,1) = “1“ THEN PRINT “SIE HABEN
GEWAEHLT: “ 2
Ok 60 PRINT “TEST KATALOG SERIE 1“
Ok 70 PRINT “BITTE WAEHLEN SIE AUS: “
Ok 80 PRINT A$
Ok 90 PRINT B$
Ok 100 PRINT C$
Ok RUN |
KATALOG NUMMER? ATARI GESAMTKATALOG 201
SIE HABEN GEWAEHLT: |
TEST KATALOG SERIE 1.
BITTE WAEHLEN SIE AUS:
Marketing-Strategie
Regionale Aktionen
Testergebnisse
Ok

Ok 10 A$ = “ST BASIC“
Ok 20 B$ = RIGHT$(A$,5)
Ok 30 PRINT B$
RUN
BASIC
Ok

C-106

RND X=RND FUNKTION
X=RND(Y)
X=RND(0)
X=RND (-Y)

Syntax: | X = RND [(<numerischer Ausdruck>)]

Effekt: Generiert eine Random-Zahl und gibt sie aus.

Erklarung:

RND gibt eine uniform verteilte Zufallszahl, die zwischen 0 und 1 liegt, aus. Falls Sie
vor Verwendung der RND-Anweisung keine RANDOMIZE-Anweisung gesetzt ha-
ben, wird dieselbe Folge zufallig gewahlter Zahlen bei jedem Programmlauf wieder
generiert. |

Die Funktionsweise von RND ist unterschiedlich, abhängig davon, ob der numerische
Ausdruck eine positive oder negative Zahl oder eine Null ist:

RND (<positive Zahl>) gibt die nächste Zahl der derzeitigen Sequenz aus.

RND (0) gibt die zuletzt erstellte Random-Zahl aus, ohne die derzeitige Sequenz zu
beeinflussen.

RND (<negative Zahl>) setzt den Random-Zahlengenerator mit der negativen Zahl
neu und gibt die erste zufällig gewählte Zahl innerhalb der neuen Sequenz aus.

Die Angabe des numerischen Ausdruckes ist optional. Wird hierfür keine Angabe
gemacht, handelt RND, als hätten Sie einen positiven Ausdruck als Argument einge-
setzt.

Anmerkung: Lesen Sie hierzu auch unter RANDOMIZE nach.

Beispiel:

Ok 10 RANDOMIZE
Ok22X=RND
Ok 30 WURF$ = “ZAHL“
Ok 40 IFX >.5 THEN WURF$ = “KOPF“
Ok 50 INPUT “KOPF ODER ZAHL“;W$ |
Ok 60 IF W$ = WURF$ THEN PRINT “GEWONNEN“ ELSE PRINT
“VERLOREN“
Ok RUN

Angabe der Random-Zahl (zwischen -32768 und +32767)? 2
KOPF ODER ZAHL? ZAHL
GEWONNEN
Ok

C-107

RSET | RSET A$=B$ | ANWEISUNG

Syntax: RSET <String-Variable>= <String-Ausdruck>

Effekt: Verschiebt eine Zeichenkette in eine angegebene String-Variable,
ohne die String-Variable neu zuzuordnen.

Erklärung:

RSET wird in der Regel dazu verwendet, um Daten in Datei-Speicher einzubringen.
Dazu werden die Daten in Variablen zurückgesetzt, die über eine vorhergehende
F IELD- "Anweisung 1 in Dateispeichern abgelegt wurden.

Ist der zu verschiebende String kürzer als der Ziel- ‘String, s setzt RSET den String
rechtsbündig an und füllt ihn links mit Leerzeichen auf. Ist die Zeichenkette länger als
der Ziel-String, werden die zusätzlichen Zeichen von RSET nicht beachtet.

Zahlen müssen mit RSET oder LSET umgewandelt werden, bevor sie mit MKS$,
MKI$ oder MKD$ verwendet werden können.

Beispiel:

Ok 10 OPEN “R“,#3,“TEST“
Ok 20 FIELD #3,20 AS A$,20 AS B$
Ok 30 RSET A$=X$ |
Ok 40 RSET B$=STRESS$

C-108

RUN RUN en BEFEHL
RUN ‚200 | | | |
RUN DATELBAS

Syntax: RUN
| RUN <,Zeilenangabe>

RUN <Dateiname>

Effekt: Be ginnt einen Programmlauf.

Erklärung:

RUN führt ein derzeit im Speicher oder auf einer Diskettendatei befindliches Pro-
gramm aus. Die Programmausführung beginnt in der ersten Programmzeile, sofern
Sıe nicht andere Vorgaben gemacht haben. Ist das auszuführende Programm in einer
Diskettendatei abgelegt, löscht RUN jedes im Arbeitsspeicher befindliche Pro gramm,
bevor das angegebene Programm geladen wird.

Programmausgaben erscheinen im Ausgabefenster.

Um den Programmlauf anzuhalten und den BREAK-Modus zu aktivieren, betätigen
Sie die Tastenkombination [CONTROL][G] oder klicken auf die Option “Break“ im
Menü “Run“. |

Wollen Sie mit der Programmausführung fortfahren, geben Sie CONT ein oder drük-
ken Sie [RETURN].

Wenn Sie den BREAK-Modus verlassen und gleichzeitig die Programmausführung
beenden wollen, geben Sie STOP oder END ein. Mit [CONTROL][C] wird der Pro-
grammlauf abgebrochen und Sie kehren zurück zuST BASIC. a

C-109

SAVE SAVE DATEI BEFEHL
SAVE DATEI, 20-30 | |
SAVE DATEI, 10, 30, 70, 80
SAVE DATEI, -30

Syntax: . SAVE [<Dateiname>], [<Zeilenangabe-Liste>]

Effekt: Speichert Programmzeilen auf Diskette.

Erklärung:

SAVE legt ein Programm, bzw. die von Ihnen angegebenen Zeilen eines Programmes
in einer Diskettendatei ab. SAVE ergänzt den Dateinamen mit dem Extender .BAS,
sofern Sie keine anderen Vorgaben machen. Wenn Sie versuchen, ein Programm mit
SAVE unter einem bereits auf der Diskette befindlichen Dateinamen zu speichern, er-
halten Sıe eine Fehlermeldung. SAVE ersetzt eine bereits bestehende Diskettendatei
nicht durch ein neues Programm.

Um eine bestehende Diskettendatei mit einem neuen Programm zu überschreiben,
verwenden Sie REPLACE.

SGN _X=SCNW | | FUNKTION

Syntax: - X=SGN(<numerischer Ausdruck>)

Effekt: | Gibt das Vorzeichen einer Zahl aus.

Erklärung: | |

SGN gibt 1 aus, wenn der numerische Ausdruck positiv ist, —1, wenn er negativ ist,
und 0, wenn der Ausdruck Null entspricht.

- Beispiel:

Ok 10 X = SGN(-3)
Ok 20 Y = SGN(0)
Ok 30 Z = SGN(2)
Ok 40 PRINT X
Ok 50 PRINT Y
Ok 60 PRINT Z
Ok RUN
-1

0
1

Ok

C-110

sIN X=SINM _ FUNKTION

Syntax: X= SIN(<numerischer Ausdruck>)

Effekt: Gibt den Sinus eines Argumentes ‚das in Radian ausgedrückt wird,
aus. a

Erklarung:

Die Funktion SIN geht davon aus, daß der Ausdruck ein in Radian angegebener Win-
kel ist. Um Gradzahlen in Radianzahlen umzuwandeln, multiplizieren Sie die Grad-

zahl mit Pi und teilen das Ergebnis durch 180 (Pi = 3.141593). SIN wandelt Integerzah-
len in Realzahlen um und gibt Realzahlen aus.

Beispiel:

Ok 10 PRINT SIN(23)
Ok RUN
— .84622
Ok

C-111

SOUND SOUND STIMME, LAUTSTÄRKE, NOTE, ANWEISUNG
OKTAVE, STIMME

Syntax: SOUND <numerischer Ausdruck> , <numerischer Ausdruck>,
| <numerischer Ausdruck>, <numerischer Ausdruck>, <numeri-

scher Ausdruck >,

Effekt: | SOUND steuert die drei Tonkanäle.

Erklärung:

Mit SOUND werden Musiknoten generiert.

Für STIMME (voice) wird die Kennzahl des verwendeten Tonkanales (1-3) angege-
ben.

Über LAUTSTÄRKE (volume) kann die Lautstärke geregelt werden 0 = Aus, 15 =
größte Lautstärke).

Mit NOTE (note) und OKTAVE (octave) wird die Tonhöhe einer Note eingestellt.
Sie geben eine Oktaven-Kennzahl (zwischen 1 und 8), sowie eine Noten-Kennzahl
(zwischen 1 und 12) an. Die Noten-Kennzahlen entsprechen den Noten-Positionen auf
der Tonleiter. Ein 440 Hz A entspricht Note 10 in Oktave 4.

DAUER (duration) entspricht der Zeitdauer (gerechnet in 1/50 Sekunden), über die
eine Note gehalten wird, bevor der nächste Ton beginnen soll. Die letzte SOUND-An-
weisung für jede Stimme sollte grundsätzlich den Ton abschalten (z.B. SOUND
3,0,0,0,0). Sie können die SOUND-Anweisung auch als Timing-Funktion verwenden.
Setzen Sie hierzu die Lautstärke auf 0 und die Dauer auf die gewünschte Verzögerung.

Beispiel:

Ok 10 SOUND 1,8,12,4,
Ok 20 SOUND 1,8,9,4,2

. Ok 30 SOUND 1,0,0,0,0

25
5

> oat Beate Dy ole)

C-112

SPACE$ X$ = SPACE$(Y) FUNKTION.

Syntax: x$ = SPACE$(<numerischer Ausdruck>)

Effekt: Gibt einen String mit Leerzeichen aus.

Erklärung:

SPACE$ gibt die iber den numerischen Ausdruck von Ihnen angegebene Anzahl von
Leerzeichen aus. Der Wert des Ausdruckes muB zwischen 0 und 255 liegen.

Anmerkung: Wenn Sie lediglich zum Drucken eine Anzahl von Leerzeichen erstellen j
wollen, sollten Sie besser die Funktion SPC (X) verwenden.

Beispiel:

Ok10X=10 |
Ok20FORV=1TOS |
Ok 30 PRINT SPACE$(X); ““
Ok 40 NEXT V
OkS0FORZ=1TO21
Ok 60 PRINT “-“;
Ok 70 NEXTZ
Ok RUN

> Gap GaP a> Gh GD Gm 4 GENE sm Gm GP Gi GEN Ge GP & Mike Gin

C-113

SPC PRINT SPC(X) — FUNKTION

Syntax: PRINT SPC(<numerischer Ausdruck>)

Effekt: Gibt Leerzeichzen an eine PRINT-Anweisung aus.

Erklärung:

SPC druckt die Anzahl von Leerzeichen aus, die Sie über den numerischen Ausdruck
vorgeben. Der Ausdruck muß zwischen 32768 und 32767 liegen.
Ist die vorgegebene Anzahl von Leerzeichen größer als die eingestellte Zeilenbreite
für den Drucker, wird der Wert über MOD entsprechend umgewandelt. (Nähere In-
formationen über die Umwandlung von Zeichen mit MOD erhalten Sie unter CHR$.)

Wenn beispielsweise die Zeilenbreite auf 72 Zeichen eingestellt ist und der numerische
Ausdruck mit 100 eingegeben wird, fügt SPC 28 Leerzeichen ein.

Ist der numerische Ausdruck größer als 255, entspricht die Anzahl il eingefügter Leer-
zeichen dem numerischen Ausdruck MOD 255.

Anmerkung: Verwenden sie SPC immer nur zusammen mit PRINT, LPRENT und
_ PRINT.

Beispiel:

Ok 10 PRINT “ALPHABET“
Ok 20 PRINT
Ok 30 PRINT “A“SPC(3)"a*SPC(T)"B*SPC(3)"b"SPC(T)*C*SPC(3)* “
Ok RUN
ALPHABET |
A a B b Coc

SOR X=SQR() a _ FUNKTION

Syntax: - X=SOQR(numerischer Ausdruck)

Effekt: Gibt die Quadratwurzel einer Zahl aus.

Erklärung:

Die Zahl darf kein negatives Vorzeichen haben. SOR gibt eine Realzahl aus.

Beispiel:

Ok 10 PRINT SOR(9)
Ok RUN

3
Ok

C-114

STEP STEP | BEFEHL
STEP, 200
STEP PROGR.BAS

Syntax: STEP
STEP < ‚Zeilenangabe>
STEP <Dateiname>

Effekt: Führt ein Pro gramm zeilenweise aus.

Erklärung:

STEP führt ein Programm zeilenweise aus, wobei jede Zeile und eventuelle Ausgabe
dargestellt wird. Erst nach Betätigen von [RETURN] wird die nächste Zeile ausge-
führt.

 Umden STEP-Modus zu verlassen, geben Sie CONT ein. Damit wird der Programm- |
lauf weitergeführt. Wollen Sie die Programmausführung nach STEP abbrechen,
geben Sie END ein.

Beispiel:

Ok10X=9
Ok 20 PRINTX
Ok 30 PRINT “WIE GEHT ES DIR?“
Ok 40 END |
Ok STEP, 10
S10 X=9
BR [RETURN]
S 20 PRINT X
BR [RETURN]
S 30 PRINT “WIE GEHT ES DIR?
BR [RETURN]
WIE GEHT ES DIR?»
S 40 END
BR [RETURN]
Ok

C-115

STOP STOP | ANWEISUNG

Syntax: | STOP

Effekt: STOP hält die Programmausführung an und übergibt die Kontrolle
über BASIC an das Befehlsfenster.

Erklärung:

Nach der Eingabe von STOP ist das Programm im BREAK-Level. Sie können ein Pro-
gramm an jeder Stelle über STOP anhalten. Im Gegensatz zu END beläßt STOP Da-
teien geöffnet, springt in den BREAK-Modus und ermöglicht ein Fortfahren mit der
Programmausführung zu einem späteren Zeitpunkt. Zudem wird bei Verwendung von
STOP die Meldung “STOP“ ausgegeben.

Mit CONT oder [RETURN] können Sie den Programmlauf wieder aufnehmen.

Beispiel:

Ok 10 A=4:B=6:C=8
Ok 20 PRINT A,A*B
Ok 30 STOP
Ok 40 PRINT C*A
Ok 50 END
Ok RUN

4 24
Stop at line 30
Br CONT

32
Ok

C-116

STR$ X$ = STRS(Y) FUNKTION

Syntax: X$ = STR$(<numerischer Ausdruck>)

Effekt: _ Gibt einen String aus, der das dem Argument entsprechende Dezi-
malzeichen enthält.

Erklarung:

Der ausgegebene String enthält die Standard-Repräsentation des Ausdruckes. Er
beinhaltet die Zeichen, die ausgedruckt würden, wenn eine PRINT-Anweisung ausge-
führt worden ware.

Bei positiven Zahlen setzt STR$ ein Leerzeichen für das Pluszeichen vor die Zahl.
STR$ löscht alle Leerzeichen, die hinter einer Zahl angegeben wurden.

VAL ist das Gegenstück zuSTR$.

Lesen Sie hierzu auch unter OCT$ und HEX$ nach. |

Beispiel:

Ok 10 VORWAHL = 089
Ok 20 PRINT STRS(VORWAHL) + (MUENCHEN):
OkRUN
089 (MUENCHEN)
Ok

C-117 ©

STRINGS X$ = STRING$(Y,A$) | FUNKTION
X$ = STRING$(Y,N)

Syntax: X$ = STRINGS (<numerischer Ausdruck> ‚<numerischer oder
String-Ausdruck>) —

Effekt: Gibt einen String mit der angegebenen Länge aus. Die Zeichen
werden durch das zweite Argument definiert.

| Erklärung:

Der erste numerische Ausdruck gibt die Länge des Strings aus, der über STRING$
ausgegeben wird. Er muß zwischen 0 und 255 liegen.

Für den zweiten Parameter können Sie sowohl einen numerischen, als auch einen
String-Ausdruck verwenden. Innerhalb eines numerischen Ausdruckes muß die
Angabe eines Zeichens über seinen ASCII-Code erfolgen. Ein String- -Zeichen kann in
beliebiger Weise angegeben werden.

STRINGS$ gibt eine Zeichenkette in der angegebenen Länge aus, die das Zeichen ent-
hält, das entweder über den ASCII-Code oder den ersten Buchstaben des String-Aus-
druckes spezifiziert wurde.

STRINGS$ produziert eine geringfügigere Speicheraufsplittung und arbeitet erheblich
schneller als ein Verketten. Wenn Sie eine Zeichenkette erstellen, die eine Anzahl
verschiedener Zeichen enthält, ist die Verwendung von STRING$ oder SPACES$ für

- die Generierung eines Strings in der erforderlichen Lange, sowie die Verwendung von
MIDS$ für das Einbringen individueller Zeichen in diesen String effizienter als ein Ver-
ketten von Zeichenketten.

Beispiel:

Ok 10 Z$ = STRING$(20,“*“)
Ok 20 PRINT Z$
Ok RUN
KKRKKKKKKKKKKKKKKEKKK |

Ok

C-118

Syntax: SWAP <erste Variable>,<zweite Variable>

Effekt: Vertauscht die Werte zweier Variablen.

Erklärung:

Sie können jeden Variablentyp mit SWAP austauschen. Allerdings müssen die beiden
Variablen, zwischen denen Werte getauscht werden sollen, vom gleichen Typ sein. Es
besteht die Möglichkeit, Array-Variablen auszutauschen. Arrays selbst können dage-
gen nicht getauscht werden. |

SWAP A%(3),B%(7,5) ist eine gültige Anweisung
SWAP A%(),B%() ist ungültig

Beispiel:

Ok 10 X$ = “THOMAS BERGER“
Ok 20 Y$ = “ANNE MEIER“
Ok 30 O$ = “EHEMALIGER“
Ok 40 C$. = “NEUER“ |
Ok 50 M$ = “ MARKETING MANAGER: “
Ok 60 PRINT O$;M$;X$ |
Ok 70 SWAP X3$,Y$
Ok 80 SWAP O$,C$
Ok 90 PRINT O$;M$;X$

~ Ok RUN
EHEMALIGER MARKETING MANAGER: THOMAS BERGER
NEUER MARKETING MANAGER: ANNA MEIER
Ok

~C-119

SYSTAB X = PEEK(SYSTAB+OFFSET) | VARIABLE

Syntax: X = PEEK(SYSTAB+OFFSET)

Effekt: Systemzeiger-Tabelle.

Erklärung:

SYSTAB ist die Anfangs-Speicheradresse einer Tabelle mit Systemparametern und
-zeigern. Mit Ausnahme der Adresse SYSTAB+2, die eine READ/WRITE-Spei-
cherstelle ist, ist SYSTAB eine READ/ONLY-Speicherstelle.

SYSTAB enthält lediglich 2-Byte Werte. LediglichSYSTAB+20, der Grafikspeicher-
Zeiger, enthält eine 4-Byte Long-Integeradresse.

Der Grafikspeicher umfaßt 32768 Bytes. SYSTAB ist folgendermaßen organisiert:

Offset Funktion

0 Grafik-Auflösung (Ebenen) 1 = HI,2 = MED,4=LO
2 Aussehen der “Ghostline“ im Editor (siehe nachstehende Tabelle)

*4 EDIT AES Handhabung
*6 LIST AES Handhabung
*8 OUTPUT AES Handhabung

*10 © COMMAND AES Handhabung
12 EDIT Offnungs-Flag (0 = geschlossen, 1 = geöffnet)
14 LIST Offnungs-Flag (0 = geschlossen, 1 = geöffnet)
16 OUTPUT Öffnungs-Flag (0 = geschlossen, 1 = geöffnet)
18 COMMAND Öffnungs-Flag (0 = geschlossen. 1 = geöffnet)
20 Grafik-Speicher (4-Byte Zeiger auf 32768 Byte Speicher, sofern

BUFFERED GRAPHICS aktiviert ist)
“24 GEMFLAG (0 = Normal, 1= Aus)

BIT BESCHREIBUNG

0 Verstarkt
1 Intensitat

2 Schrag
3 Unterstrichen

4 Invertiert

5 Schattiert

C-120

* Die Verwendung der mit einem Sternchen (*) gekennzeichneten Offsets setzt
Kenntnisse über das TOS Betriebssystem voraus.

** GEMDOS kann dazu verwendet werden, um die Wechselwirkung zwischen ST
BASIC und GEM abzuschalten und dadurch die Verarbeitungsgeschwindigkeit zu
steigern. Ist BASIC abgeschaltet, können keinerlei BASIC-Funktionen ausgeführt
werden, bei denen der Bildschirm, die Maus oder die Tastatur involviert ist. Disk I/O-
und Verarbeitungsfunktionen sind verfügbar. In Ihrem Programm muß diese Wech-
selwirkung wieder aktiviert werden, bevor Anwender-Eingaben in irgendeiner Form
angenommen werden Können. :

SYSTEM SYSTEM BEFEHL

Syntax: SYSTEM |

Effekt: Verläßt ST BASIC und kehrt zurück zum GEM.

Erklärung:

SYSTEM schließt alle Dateien und bringt Sie zurück zum GEM- Befehlslevel. Jedes
im Arbeitsspeicher befindliche Programm, das nicht zuvor auf Diskette gespeichert
wurde, wird damit gelöscht.

SYSTEM ist von der Funktion her identisch mit QUIT.

Beispiel:

Ok SYSTEM

C-121

TAB | PRINT TABBY) | _ FUNKTION

Syntax: PRINT TAB(<Tabulatorposition>)

Effekt: Bewegt den Cursor an eine ange gebene Tabulatorposition.

Erklärung:

TAB wird in Kombination mit PRINT, LPRINT und PRINT# verwendet.

Die Angabe der Tabulatorposition muß im Bereich zwischen -32768 und +32767
liegen. Liegt die derzeitige Druckposition bereits hinter der spezifizierten Tabulator-
position, springt TAB in die nächste Zeile und dort an die Tabulatorposition, die Sie
vorgegeben haben. Spalte 1 ist die am weitesten links liegende Tabulatorposition. Die
äußerste rechte Position wird durch eine WIDTH-Anweisung definiert. Ist die angege-
bene Position größer als 255, wird die Angabe über MOD 255 umgerechnet. Ist die Po-
sition größer oder gleich der vorgegebenen Zeilenbreite, wird ebenfalls über MOD
(Breite) umgerechnet.

Nähere Informationen über das Umrechnen von Werten mit MOD erhalten Sie unter

CHR$.

| Beispiel:

Ok 10 PRINT “1985 EINKUENFTE IM QUARTAL* |
Ok 20 PRINT : |
Ok 30 PRINT TAB (10)“WINTER“
Ok 40 PRINT TAB (70)“ZU WEIT“
Ok 50 PR"NT TAB (100)“SOMMER“
Ok 60EN ?
OkRUN
1985 EIN) UENFTE IM QUARTAL

WINTER
ZU WEI

| SOMMER

C-122

TAN | X= TAN(Y) | _ Ä FUNKTION

Syntax: X = TAN(< Winkel in Radian>)

Effekt: | Gibt die Tangente einer Zahl aus.

Erklärung:

Die Funktion TAN arbeitet auf der Basis trigonometrischer Werte und gibt eine Real-
zahl aus. Um Gradzahlen in Radianangaben umzuwandeln, multiplizieren Sie die
Gradzahl mit PI. (PI = 3.141593.) Dann teilen Sie das Ergebnis durch 180.

Anmerkung: Alle trigonometrischen Funktionen von ST BASIC erfordern eine Anga-
be der Winkel in Radian.

Beispiel:

Ok 10 RADIAN! = 34
Ok 20 TANGENTE! = TAN(RADIAN!)
Ok 30 PRINT TANGENTE!
Ok RUN
— 6235
Ok

C123

TRACE | TRACE BEFEHL
| TRACE 20,40

TRACE 20-40
TRACE -40

Syntax: TRACE [<Zeilenangaben-Liste>]

Effekt: Verfolgt den Programmlauf Zeile für Zeile und druckt selektiv die
gesamte Zeile aus.

Erklärung:

Sie können den Befehl TRACE für die Aufdeckung und Behebung von Programmier-
fehlern verwenden, um die Programmzeilen während ihrer Ausführung darstellen zu
lassen. |

TRACE zeigt jede Programmzeile an, bevor sie ausgeführt wird.

TRACE 20, 40 stellt die Zeilen 20 und 40 jedesmal dar, wenn sie ausgeführt werden.

TRACE 20-40 druckt die Zeilen 20 bis 40 bei jeder Ausführung aus.

UNTRACE beendet den TRACE-Modus.

Lesen Sie hierzu auch unter TRON und FOLLOW nach.

Beispiel:

Ok 10 FOR X = 1TO2
Ok20N=N+4+1
Ok30B=B+1
Ok 40 PRINT N
Ok 50 PRINT B
Ok 60 NEXT X |
Ok RUN

O TRACE
OQ RUN
Tl }FORX=1TO2
T20N=N+1
T30B=B+1
T40PRINTN |

1
T 50 PRINT B

1
T 60 NEXT X
T20N=N+1
T30B=B+1

C-124

T40 PRINTN
1

T 50 PRINT B
2

T 60 NEXT X
Ok UNTRACE
Ok

TROFF TROFF BEFEHL
TROFF 10, 40
TROFF 10-40
TROFF -40

Syntax: TROFF [<Zeilenangabe-Liste>]

Effekt: TROFF schaltet den Befehl TRON ab.

Erklarung: |

TROFF schaltet den Befehl TRON entweder vollständig, oder lediglich für bestimmte
Programmzeilen ab.

Lesen Sie hierzu auch unter TRON nach.

TRON TRON | | BEFEHL
| TRON 20,40 |

TRON 20-40.
TRON -40

Syntax: TRON [<Zeilenangabe-Liste>]

Effekt: Verfolgt selektiv den Programmlauf und druckt die Zeilen-
nummern aus.

Erklärung:
TRON wird für die Fehleraufdeckung und -behebung verwendet, um den Programm-
lauf zeilenweise nachvollziehen zu können.

TRON stellt jede Programmzeile während ihrer Ausführung dar und behält die Über-
sicht über die Werte von Variablen. Die Zeilenangabe erfolgt in eckigen Klammern.

Mit TROFF wird der Befehl TRON abgeschaltet.

Lesen sie hierzu auch unter TRACE und FOLLOW nach.

C-125

Beispiel:

Ok 10 FOR X = 1TO3
Ok20N= N+1
Ok30B= B+1
Ok 40 PRINT N
Ok 50 PRINT B
Ok 60 NEXT X
Ok RUN

W
W

W
N

NO

m

Ok TRON
Ok RUN
[10]
20)
30]
40]
50]
60) 50)
=

40]
50)

[60]

20) 50)
=

[40

[30]

50]

60)
-

u

Jh

2
2

ww

Oo

(erscheint im Ausgabefenster)
(erscheint im Ausgabefenster)

(erscheint im Ausgabefenster)
(erscheint im Ausgabefenster)

(erscheint im Ausgabefenster)
(erscheint im Ausgabefenster)

Ok TROFF
Ok

C-126

UNBREAK UNBREAK | _ BEFEHL
UNBREAK 20, 50
UNBREAK -50
UNBREAK 20-50

Syntax:

Effekt:

Erklärung:

UNBREAK[<Zeilenangabe-Liste>]

Widerruft selektiveinen BREAK-Befehl.

UNBREAK widerruft den Befehl BREAK entweder vollständig oder für die angege-
benen Zeilen.

Lesen Sie hierzu auch unter BREAK nach.

UNFOLLOW u BEFEHL UNFOLLOW
| UNFOLLOW X,Y

Syntax: UNFOLLOW [<Variable<],[<Variable>]

Effekt: _ Widerruft den Befehl FOLLOW entweder vollständig oder fur die
angegebenen Variablen. |

Erklärung: |

UNFOLLOW hebt den Befehl FOLLOW entweder vollständig, oder lediglich für die
angegebenen Variablen auf.

Lesen Sie hierzu auch unter FOLLOW nach.

C-127

UNTRACE UNTRACE | — BEFEHL
UNTRACE 10, 40, 70
UNTRACE 10-40
UNTRACE -40

Syntax: _ UNTRACE |<Zeilenangabe-Liste>|

Effekt: Widerruft den Befehl TRACE.

Erklarung:

UNTRACE widerruft den Befehl TRACE entweder vollständig o oder für angegebene
Zeilennummern.

Lesen Sie hierzu auch unter TRACE nach.

VAL | X = VAL(A$) = FUNKTION

Syntax: X= VAL(<Ziffernstring-Ausdruck>)

Effekt: — Durchsucht einen Zeichen- -String und wandelt die Zeichen in Real-
7 zahlen um. |

Erklarung:

VAL durchläuft eine Zeichenkette von links nach rechts und überspringt dabei voran-
gestellte Leerzeichen, Tabulatorenstops und Zeilenvorschtibe, bis das Ende der Zei-
chenkette erreicht, bzw. bis ein Zeichen gefunden wurde, das keiner Ziffer entspricht.
VAL durchsucht Strings i in derselben Weise, in der die Anweisung INPUT# in nume-
rischen Variablen liest.

Ist das erste Zeichen des Strings kein gültiger Teil einer Zahl, gibt VAL eine Null aus.

VAL ist das Gegenstück zu STR$.

Beispiel:

Ok 10 READ ID$
Ok 20 IF VAL(ID$) < 300 THEN 30
Ok 30 VERFALLDATUM$ = “1. JAN. 1986“
Ok 40 IF VAL(ID$) > 300 THEN 50
Ok 50 VERFALLDATUM$ = “1. JAN. 1990“

C-128

VARPTR X = VARPTR(Y) FUNKTION
X= VARPTRG)D

Syntax: X= VARPTR(<Variable>)
X = VARPTR(#<Dateinummer>)

Effekt: Gibt die Adresse einer Variablen aus.

Erklärung:

Sie können VARPTR dazu verwenden, um die Adresse von Variablen zu erfahren,
die an eine Maschinensprache-Unterroutine übergeben werden sollen. Die Variable
kann beliebiger Art (also auch ein Array) sein. Sie müssen ihr jedoch einen Wert zu-
gewiesen haben, bevor Sie über VARPTR ihre Adresse erfahren können. VARPTR
gibt einen Wert aus, der der absoluten Adresse des ersten Bytes der bezeichneten
Variablen entspricht.

Im Falle einer Datei entspricht die Dateinummer der Kennzahl, die Sie der Datei beim
Öffnen zugewiesen hatten. VARPTR gibt die Startadresse des Eingabe- Ausgabe.
speichers der Datei aus.

Beispiel:

Ok 50 X = VARPTR(MATERIAL)

VDISYS VDISYS() u FUNKTION

Syntax: VDISYS(<Test- Argument<)

Effekt: Ermöglicht dem Anwender, Zugriff auf das VDI Interface des
Betriebssystemes zu nehmen.

Erklärung:

Um Zugriff auf das VDI Interface zu nehmen, müssen Sie die Arrays CONTRL,
INTIN UND PTSIN mit den entsprechenden Werten POKEn, bevor Sie VDISYS auf-
rufen. Über die Arrays INTOUT und PTSOUT kann eine Ausgabe vom VDI-Level
aus erfolgen.

Beispiel:

Ok 10 REM KREIS BEI 50,50 MIT RADIUS 25
Ok 20 COLOR 1,1,1,1,1:FULLW2
Ok 30 POKE CONTRL,11
Ok 40 POKE CONTRL+2,3
Ok 50 POKE CONTRL+6,0.
Ok 60 POKE CONTRL+10,4
Ok 70 POKE PTSIN,50
Ok 80 POKE PTSIN+2,50
Ok 90 POKE PTSIN+8,25
Ok 100 VDISYS(1) 109

WAIT WAIT 200,X,Y | ANWEISUNG

| Syntax: WAIT <Datenkanal- Nummer> „<Integer-Ausdruck>
| [‚<Integer-Ausdruck>]

Effekt: Hält das Programm an und wartet darauf, daß vom V/O- Daten-
kanal ein Bit-Muster entwickelt wird. |

Erklärung:

WAIT unterbricht einen Programmlauf solange, bis in einem Eingabekanal des
Rechners ein vorgegebenes Bit-Muster erstellt wurde. Der logische Operator XOR
überprüft die Daten des Kanals daraufhin, ob sie dem optional anzugebenden zweiten
Integer- Ausdruck entsprechen. Wird für den zweiten Integer- -Ausdruck keine Anga-
be gemacht, wird als Wert Null angenommen.

Der Operator AND überprüft die Daten dann gegen den ersten Ausdruck. Entspricht
der Wert Null, wird die Programmausführung in einer Schleife wieder zurückgesetzt
und wartet auf die nächsten Daten aus dem Kanal.

Findet WAIT kein Bit-Muster, das als Ergebnis Null ausweist, springt das Programm
in eine Endlosschleife und Sie müssen den Rechner neu booten.

Beispiel:

Ok 100 WAIT 5,&H2,&H3
Ok 110 PRINT “ZAHL GEFUNDEN“

C-130

WAVE = ~—s WAVE STIMME, HULLKURVE, FORM, ANWEISUNG
DAUER, VERZOGERUNG .

Syntax: WAVE <numerischer Ausdruck>, <numerischer Ausdruck > ,
<numerischer Ausdruck>, <numerischer Ausdruck >,
<numerischer Ausdruck>, |

Effekt: Mit WAVE können die Wellenformen in einer SOUND-Anwei-
sung eingestellt werden. | | | |

Erklärung:

STIMME (voice) gilt für das Mixer-Register des Tongenerators. Eine Null auf den
Bits 0-2 aktiviert die Stimmen 1-3. Eine Null auf den Bits 3-5 setzt “noise“ für die Stim-
men 1-3. Sie können mehr als eine Stimme gleichzeitig aktivieren.

HÜLLKURVE (envelope) ist das Hüllkurvengenerator-Register. Der Wert 1 auf den
Bits 0-2 aktiviert die Hüllkurve für die Stimmen 1-3. Es können mehrere Hüllkurven
gleichzeitig aktiviert werden. | a

FORM (shape) steht für das Register der Hüllkurvenform und Zykluseinstellung. Die
Bits 0-3 werden gemäß der untenstehenden Tabelle gesetzt. . |

DAUER (period) legt die Zeitdauer der Hüllkurve fest.

VERZÖGERUNG (delay) dient zur Einstellung der Zeitintervalle (in 1/50 Sekun-
_ den-Erhéhungen), bevor ST BASIC mit dem Programmlauf fortfährt.

Das Registermodell des Tonerzeugungs-ICs
Register Bit 87 B6 85 BS B3 B2 B1 BO

RO Kanal A | untere 8 Bit (Ton A)
Tonhöhe | | nn

R1 . obere 4 Bit (A)

R2 Kanal B | untere 8 Bit .(Ton B)

Tonhöhe |

R3 | | obere 4 Bit (B)

R4 Kanal C untere 8 Bit (Ton C)

Tonhöhe |

R5 — | | obere 4 Bit (C)

R6 Rauschen oo | 5 Bit Rauschperiode

R7 Zuordnung Ä ein/aus Rauschen Ton
| 1/08 I/OA. C B A Cc. B A

R8 Amplitude A | M 13 i2 44 LO

R9 Amplitude B . M i, 12 ‘Li. LO

R10 | Amplitude C M L3 L2 LT LO

R11 Hüllkurven Ä untere 8 Bit (Feinabstimmung)
Frequenz | | | |

R12 Hüllkurven obere 8 Bit (Grobabstimmung)

Frequenz | | |

R13 Hüllkurve E3 E2 Et EO

R14 E/A-Port A 8 Bit Parallelport A

R15 E/A-PortB - 8 Bit Parallelport B

C-131

WEND WEND ANWEISUNG

Syntax: WEND

Effekt: | Kennzeichnet das Ende einer WHILE/WEND-Schleife.

Erklärung:

WEND kann nur in Verbindung mit WHILE verwendet werden. Es übergibt die Pro-
grammausführung wieder zurück an die WHILE-Anweisung. Ein verschachteltes
WEND nimmt Bezug auf die nächstgelegene WHILE-Anweisung.

Lesen Sie hierzu auch unter WHILE nach.

| Beispiel: |

Ok 10 X=8
Ok 20 WHILE X
Ok 30 PRINT “$“;
Ok 40 X=X-1
Ok 50 WEND
Ok 60 END
Ok RUN
S$$$$H$$
Ok

C-132

WHILE WHILEA<B ANWEISUNG

Syntax: WHILE <logischer Ausdruck<

Effekt: Stellt eine Bedingung auf, die eine WHILE/WEND- Schleife
steuert.

Erklärung:

WHILE beginnt eine WHILE/WEND-Schleife, die solange ausgeführt wird, bis der
logische Ausdruck falsch ist (z.B. 0). Die Anweisungen zwischen WHILE und WEND
werden ausgeführt, solange der konditionale Ausdruck innerhalb der WHILE-Anwei-
sung wahr ist. |

Die Anweisung WEND am Ende der Schleife gıbt die Programmausführung wieder
zurück an die WHILE-Bedingung. Die Bedingung der WHILE-Schleife wird zahlen-
mäßig berechnet und die Schleife wird solange erneut ausgeführt, bis die Bedingung
nicht mehr wahr ist (0). Sobald die Bedingung falsch ist, wird der Programmlauf bei
der Anweisung hinter WEND aufgenommen.

Sie können WHILE/WEND-Schleifen verschachteln. Jedes WEND gilt fur das
nächstgelegene WHILE. Die Verwendung von WHILE ohne dazugehöriges WEND
oder umgekehrt verursacht eine Fehlermeldung.

Lesen Sie hierzu auch unter WEND nach.

Beispiel:

Ok 10 M=10
Ok 20 P=5
Ok 30 WHILE M>P
Ok 40 PRINT “ZAEHLSCHLEIFE“
Ok 50 M=M-1
Ok 60 WEND
Ok 70 END
Ok RUN
ZAEHLSCHLEIFE
ZAEHLSCHLEIFE
ZAEHLSCHLEIFE
ZAEHLSCHLEIFE
ZAEHLSCHLEIFE
Ok

C-133

WIDTH WIDTH 72 | ANWEISUNG
WIDTH LPRINT 72

Syntax: WIDTH [LPRINT] <Integer-Ausdruck>

Effekt: Stellt die Zeilenbreite für den Bildschirm oder Drucker ein.

Erklärung:

Die vorgegebene Zeilenbreite für den Bildschirm und den Drucker liegt bei 72 Zei-
chen. Diese Voreinstellung kann über WIDTH geändert werden.

Der Integer-Ausdruck entspricht der Zeichenanzahl pro Zeile und muß zwischen 14
und 255 liegen. Mit der Option LPRINT können Sie die Zeilenbreite für den Drucker
angeben. Andernfalls wird lediglich die Zeilenbreite für die Bildschirmdarstellung
verändert.

Bei einem Ausdruck setzt ST BASIC vor jedes Zeichen, das normalerweise hinter
dem vorgegebenen Zeilenende gedruckt werden würde, eine Zeilenschaltung. Um un-
erwünschte Zeilenschaltungen bei einem Ausdruck zu verhindern, sollten Sie die Zei-
lenbreite auf 255 Zeichen setzen. ST BASIC geht dann davon aus, daß das angeschlos-
sene Gerät eine unbegrenzte Zeilenbreite hat und fügt keine Zeilenschaltungen ein.

Lesen Sie hierzu auch unter POS und LPOS nach.

Beispiel:

Ok 10 WIDTH 33
Ok 20 FOR I=1 TO 50
Ok 30 PRINT “—“;
Ok 40 NEXT
Ok RUN

Ok

C-134

WRITE WRITE X,Y,A$ ANWEISUNG

Syntax: WRITE[<Ausdruck>],<Ausdruck>

Effekt: ‚Gibt Daten an das Terminal aus.

Erklärung:

Wie PRINT sendet auch WRITE Ausgaben an den Bildschirm. Allerdings setzt
WRITE Kommata zwischen einzelne Begriffe und Anführungszeichen um Strings.

Jeder Begriff wird auf dem Terminal durch ein Kommazeichen vom nachfolgenden
Besriff abgesetzt.

String-Werte werden in Anführungszeichen gesetzt. Nach dem letzten Begriff springt
der Cursor an den Anfang der nächsten Zeile. |

WRITE zeigt eine Leerzeile am Terminal an, wenn Sie keine Auflistung von Ausdrük-
ken für eine Ausgabe vorgeben.

Lesen Sie hierzu auch unter PRINT und PRINT=# nach.

Beispiel:

Ok 100 X$=“HALLO“
Ok 110 Z=010583
Ok 120 WRITE Z
Ok 130 WRITE
Ok 140 WRITE X$
Ok RUN

10583

“HALLO“
Ok

C-135

WRITE+ WRITE +1,X,Y,A$ | ANWEISUNG

Syntax: WRITE#[<Ausdruck>],<Ausdruck>

Effekt: Gibt Daten an eine sequentielle Datei aus.

Erklärung:

WRITE# ist von der Funktion her ähnlich wie WRITE. Allerdings werden mit
WRITE=+# die Daten an eine sequentielle Datei, und nicht an das Terminal gesandt.
Die Dateinummer ist die Kennzahl, die Sie der Datei beim Öffnen zugewiesen hatten.
Sie müssen die Datei im O-Modus geöffnet haben.

WRITE# ist der Anweisung PRINT=# vorzuziehen, wenn Sie beabsichtigen, die Da-
ten über eine Reihe von INPUT#-Anweisungen wieder zurückzulesen. Die Ausgabe
von WRITE=# erfolgt in der für ein akkurates Zurücklesen der Daten erforderlichen
Form. | Ä

Die Richtlinien für die Form der Ausdrücke entsprechen den Vorgaben für PRINT=#.

Lesen Sie hierzu auch unter PRINT und PRINT=# nach.

Beispiel:

Ok 10 KWS=34.275
Ok 20 K$=“DURCHSCHNITTLICHE KILOWATISTUNDEN PRO WOCHE“
Ok 30 WRITE #2,K$,KWS

Damit wird wie folgt auf die Diskette geschrieben:

“DURCHSCHNITTLICHE KILOWATTSTUNDEN PRO WOCHE“ ‚34.275

Schließen Sie nun die Datei und Öffnen Sie sie neu. Lesen Sie die Datei dann mit:

Ok 40 INPUT+#2,K$,KWS

“DURCHSCHNITTLICHE KILOWATTSTUNDEN PRO WOCHE“ für K$
und 34.275 für B$

C-136

ANHANG D

FEHLERMELDUNGEN

Kennziffer Meldung

2 Fehlerhafte Eingabe
3 RETURN-Anweisung erfordert entsprechendes GOSUB
4 READ-Anweisung hat zuwenig DATA-Werte
5 Funktionsaufruf nicht erlaubt
6 Zahl zu groß
7 Zu wenig Speicherplatz
8 Anweisung oder Befehl bezieht sich auf nicht vorhandene Zeile
9 Unterbereich bezieht sich auf ein Element auBerhalb des Arrays

10 Array mehr als einmal definiert
11 Division durch Nullnichtmoéglich
12 Anweisung im Direkt-Modus ungültig
13 Werte stimmen vom Typ her nicht überein
14 Undefinierter Fehler
15 String länger als 255 Zeichen
16 Ausdruck zu lang oder zu komplex
77 CONT arbeitetnurım BREAK-Modus
18 Funktion muß erst über DEF FN definiert werden
19 Undefinierter Fehler
20 RESUME-Anweisung vor Aufrufen der F ehler- Routine
21 Nicht belegt
22 Ausdruck enthält Operator ohne nachfolgenden Operanden
23 Programmzeile zu lang |

24-29 Nicht belegt
30 Ungültige Fenster-Nummer
31 Argument außerhalb des gültigen Bereiches
32 Befehl kann im Editor nicht ausgeführt werden
33 Zeile zukomplex

34-49 Nicht belegt
50 FIELD-Anweisung verursacht Überlauf
51 Ungültige Gerate-Nummer |
52 Dateiname oder -nummer ungültig
53 Dateiim angegebenen Laufwerk nicht gefunden
54 Ungiltiger Datei-Modus
55 Löschen (KILL) oder Öffnen (OPEN) geöffneter Dateien nicht

möglich
56 Undefinierter Fehler |
57 Disketten-Eingabe/Ausgabefehler
58 Datei bereits vorhanden

59 - 60 Nicht belegt
61 | Diskette voll

D-1

62 Dateiende erreicht

63 Datensatz-Nummer in PUT oder GET größer als 32767 oder 0
64 Ungültiger Dateiname
65 Ungültiges Zeichen ın der Programmdatei
66 Programmdatei enthält Anweisung ohne Zeilennummer

67-98 Nicht belegt
99 — —Break- —

100 Undefinierter Fehler
101 Zu viele Programmzeilen
102 ON-Anweisung außerhalb des gültigen Bereiches
103 Ungültige Zeilennummer
104 Variablen-Eingabe erforderlich
105 Undefinierter Fehler
106 Zeilennummer existiert nicht
107 | Zahl zu groß für eine Integer
108 Eingegebene Daten ungültig. Eingabe ab dem ersten Begriff neu

beginnen
109 — STOP
110 Unterroutinen-Aufruf zu verschachtelt
111 Ungültige BLOAD-Datei

! 12-201 Nicht belegt
202 Befehl hier nicht möglich
203 Zeilennummernangabe erforderlich
204 FOR-Anweisung ohne abschließendes NEXT oder WHILE-

Anweisung ohne abschließendes WEND
205 NEXT-Anweisung ohne vorhergehendes FOR oder WEND-
oe Anweisung ohne vorhergehendes WHILE
206 Komma fehlt
207 Klammer fehlt
208 OPTION BASE muß 0 oder 1 sein
209 Abschluß der Anweisung erforderlich
210 Zu viele Argumente in der Liste
211 Nicht belegt
212 Neudefinition von Variablen nicht möglich
213 Funktion mehr als einmal definiert
214 Sprung in eine Schleife nicht möglich

215 - 220 Nicht belegt
221 Systemfehler #X, Neustart erforderlich
222 Programm läuft nıcht
223 Zu viele FOR-Schleifen

ANHANG E

DER ASCH-ZEICHENSATZ DES ST COMPUTERS

In den nachfolgenden Tabellen werden sämtliche Zeichensätze aufgeführt, die Ihnen
mit dem ST Computer zur Verfügung stehen. Um eines dieser Zeichen in ST BASIC
zu verwenden, geben Sie das nachstehende Programm ein und starten Sie es:

5
6
10 |
20

30
40
50
60

70
80
90

100
110
120
130
140
150

’AUFLISTUNG ALLER ST ASCII-ZEICHEN
"UND IHRER CODES
FULLW 2:CLEARW2
GOTOXY 1,2:?“LISTE DER ST ASCII-ZEICHEN“:
GOTOXY 0,4
P=0:1=0
FOR C=1 TO 255
IF P>4 THEN P=0:1=1+1:?
IF 1=10 THEN GOTOXY 1,14: INPUT “WEITER MIT
[RETURN]... “A$
IF 1=10 THEN 1=0:GOTOXY 0,4
IF C=10 THEN ? “10=[RETURN]“;:GOTO 120
IF C=7 THEN ? “7=[GLOCKE]“;:GOTO 120
IF C=251 THEN GOTOXY 0,124
? C; co oc, ‚CHR$(C); Ce 6G,

P= P+1
NEXTC
GOTOXY 1,16: INPUT “BEENDEN MIT [RETURN] .. AS
END

Es gibt zwei Zeichen-Tabellen. Die erste gilt fur 8x16 Zeichen, die zweite entspre-
chend fiir 16x16 Zeichen. Die verschiedenen Zeichensatz- Größen werden für die
unterschiedlichen Bildschirmauflösungen verwendet.

u ss 16 | 32/48/64) 80] 96/112) 128 | 144) 160/176 192|208 224|240

me} Oo} 1/213] 4 CIplE|F

Io |o Ei
| EHER
1/1 air HE

2|2 Be
313

44
—

{3,9

25008 HOUR

E-1

.
s
o
n
e

u
M
I
I
y

Fr
[II

W
H
T

w
o

94
HH

te
43

bi.
N

>
a
a
a

B
a

a
a
a

®
if

2
4
4
1
1

3
8
4
7

Ty
U
F

[
1

53008
OG

E
a
n
e
s

a
u
a
c
e

L
I
I
I
I
T
I
M
T
D
I
I
I

DIN
r
i
m

4
1
4
1
7
7

q

1
1

1
T
T
T

1400668
m
I
T
]

ag
4

IIIIrl
|

e
a
n
e

e
e
a
e

¢

9
0
9
2
9
8

q
0
0
%

.

+

+

T
T
T

+
-

4
s
a
n
s

r
“
y
.

4

t
2

8
8

I
I
m

N

ttt
In

117
e
u
g
e
e
n
a
n
a
s
|

)
3

bd
e

a |
wae

B
E
a
g
E
s
e
e
s
o
n

s
e
c
s

n
y
e
g
n
t
n
e
n
g
e
n
g
ä
n
e

R
i

eee
H
H

4
4
4
4

e
4

eeaew
Y

IT
eee

°

bc
A

i?
ba

E
T

TI
a
n
n
e

"
x

.
a

&

a
a

®
e
n

o
m

km
L

=
o
n

an
a

-
Ld

€
=

e
e
s
e

N

L
eee

e

+

1
a
n
n
a

+

—-4
n
u
n
,

4

r
eoce

N

1
II

ry
F

.os.a
+

+t
G
R
U
I
L
I
I
I
O
I
D

e

an
eae

e
e
c
e

4
I

>
4

.
.
>
»

4

?
a
s
a
s

f
e
e
}

m

s
a
m
:

r
t

®

.
4

8
a
a
n

e
e
e

se
v
o
n

e
s
e

4

=
a

„
5
7
2

&

®
+

u
n

v
u
n
.

u
>

aad
+

a
e

a
4

4
s
a
s
e

>
>

D
ry

5
5
.

(
N

207
>

ee
+
4

a
e
e
e

®
e

bees
e
n
.

ence
jeseseus:

ss
s
u
n

e
p
a
a
v
e
e
s
e
p
s

6
®

TITITITE
T
L

a
“

us...
s
e
s

°
p
e
g
n
n
e
s
e
s
e
e
:

ase

a
s
e
s
a
t

e
s

L
p
e
e

a
e
s
e

N

u
n
u

4
4
4
4
4

„
e
u
.

a
4

e
|

~
dod

u
n

a
n
y

e
e
e

a
>

&
8

8
H
H

e
ry

s
e
s
"

a
a
a

Hs
4-4

q
|

bad
>

4
4-4-4

=
®

v
e
r
e

“
u
w

a
e
e

&
Dir

2
-

+

8
T
I
T
Y

ST
®

ry
t
t

=

e
a
a
a

a
e
a
d

17]
ee

s
I

ry
I
T
I
r
I
I
E

B
a
a

n
e
n
n

a
v
e

a
.

+
}

.

—

b
h

a
n
t
i

S
E
S

6
9
8
8
9
8
8
8
8
9
0

6
)

b
a
d

e
d

TY
44

a
m
e
:

_
e
e

O
e

_

4
|
H
F

T
I
I
L
I
E
K

an.
s
o
n
e

e
o
n
e

e
.

®

e
pene

T
ae

sans
Te]

ssen
®

®
8

a
e

2

+
t

e
e

a
a
a
a

=
ba

4

i
=

=
~~

:
s

ER
:

HH
Pe

OO
Ae

:
:

:
+
+
+

a
n
e

~

.
‘

|
u
n

8
a

sees
s

q
{

i
i

Bt
n
n

=

a
q

4
ve

z
u
m
.
m

o
n

oe
om

a
=

«
a

§
i
t

+
2
4

7

I
a
a
m
m

(
o
w

|
e
o
n
e

a

pod
a
e

=

e
>

®

1
ae

if
,

n
e
u
e

s
o
n
e

m
=

=
s

e

>
=

band
z
u
m

Be
a

pd
®

8

4
baad

=
n

m
a
m

.

H
u
n

I
1

A
H

_”
trrttt

eee
oe

8
+

IIIII
2131

Dutuhebuhuhuhhuth
e
e
e

Dean
eens

I
®

I
N

a
z
u
m
m

x

Z
n

pad
m

>
4

a
T
y

a
a
n
a
n

b
a
i
n

=
©

a
a

2

a
e

n
a
n
a
n

y
y

c
n

v
o
.

=
®

a
=

if
a
a
0
0

-
u
m

-
-

n
a
n
a
n

=

a
a
e

>

u
u

.
S

eean
Y

»
LITT

N

4
ae

T
R
I
I
L
I
I
I
I
R

N
TT

=
=

.
ss

o
e

r

1}
>

.
n
u
.

ase
s
a
n
:

ag
T
T
I
Y
i
t
r

Tritt’
H
H

668
as

e
-

He
HH

+
-

Se
5

+
+

s
a
s
e

N

o
o

®
s

u

pe
s
e
e
s

-
s
e

a
8

u

e
n
a

o
s

n
e
a

u

T
+
7

r
e
e

Y
Y

-

i
.

LI
t
i
t

i

t
h
d

I
I
I

S
e
e
s

T
H

+
+

+
H

4
4

pace
dena:

sase
N

oes
I

r

-
2

®
u

+4
®

8
m

g
m

f
'

op
®

®
>

4
“

s
e
a
s

a
e
s

8

.
Tr

4
6

s
h
a
n

7
Y

a
s
e

Be
L

L
]

‘
&

IlLiI
s

se
IN

TT
TY

Y7
Ir

pac
oe

euee

pasar
Y

8
T

p
e
g
a
e
e
n

V
E
I
L
I
L
I
Y
I
E
I
T
I
I
I
I
I
K

e
a
e
s
e

I
I
r

a
e

s

$44.
e

3
7
T

e
a

s
e
e
s

+

e
s

.
4

+
+

-
e

e
a
n
a

=
2
7
7
5
]

5

~
~

-

[7
e

a
m

m
4
-
4
4

m

c
e

a
4

®
a
e
n
e

i
i

u
+
t

m
.

=
bon

r
4

>
tt+t

+
+

4

ee
es

se
s
e
n
s

a
c
e
s

+

e
e
n
s

e
e

“
r
y

++

L.
}
e
s
a
n
e
c
e
s

I
i
f

D
T
i
t

Eg
4

e
e

H
L

HM
L
I
E

I
I
I

L
I
I
I
I
T

2
a

me
>

e
e

o
n
e

ee
L
I
T
I
I
T
T
Y

T
I
I
X
ı
T
T
ı
ı
T
r

Sue
e
e
v
e
e
s

=
c
a
s
e

es
4

s
e

AL
t
A
4
-
4
4
4
4

q
e

L
I
I
m
r

P
I
T
T
I

ITT

LITT]
ae

°
4

ae

=
.

m
e
a
n

N

s
-

>

7

a
n

1
n
n
.

o
d

=
4

2

4

}
s
o
n

oe
aa

®
8

ae
passaansa:

r
s

sees
5

ae
4

H
oe

i
r
o
n

44
]

-
| UR

O
S
G
A
B
E

|
u

ge

H
2

44
A
|
;

L
I
I
A

n
u
0

0
8
9
8
8

e
v
e
s

TY
u

e
e

I
t
t

4
+
4

4
>

4
4

4
4

s
a
n
e

ae
2

=
+

4
+

4
e

-
=
.
.
n

+
f

on
an

bod
a
n

a
b
d

En

‘
a
a
n
.

m
a

nd
m

4

4
1
7
7

4
4

H
H
H

a
e

a
m

a
e
s

+

8
s
e
s

9
5
5
.

+

+
+

„
2

4
a
e

r
q

®
ttrtyT

-
sees

IN
I

eo

Bi
‘

P
0000084

7
I

T
I
I
I
I
I
I
I
T

oe
I
p

TT
ILYIIII

q

®
ees

)#
BEREUENE

Seeuscee
auanue:

jeesesus
wae

I
u
r
n

ae
be

of
aneee

%
»

i
t
i

T
i
t
i

it
s
e
a
v
e
e
c
e
n
e

e
u
s
e
a

f
e
e
!

e
e

u
.

6
6

e
e

. |

a
a
a

a
>

2
57

=
=

a
n

~
~

-
.
+

4

a

a

4

e
a
e

4

m

>.
+

T
T
T

+
+

H
=

a
4

+

9
e

H
H

x

e
s
e

4

4

4
4

+
$

«
«

e
I
1
1
1
!

T
I
T
?

r
e

s
u
s
a
e

®
X
}

L
I

s
e
s
e
e

8
I
A
I

T
O
T

71

ar
TT

T
I
I
I
I
I
X

y
a

ee
n

IYI
TIT

Y
Be96

OFGee
TH

S
P
S
S
C
R
T
S
L
S
S
S
H
S
S

9
0
9
0
0
0
0
8

aut
p
a
p
e
r

z
e
e
e

ent
so...

]
YıI

T
I
I
E

T
I
T

”

qbnges
r
i
n
d

w
r
i
t
e

¥
e
e
e

8
sesese

Sees
(
N

oe
n
i
i
t

89

o
s
e

q
e

}
+

+
4

+

L
I
T
T

8
8
8
8
8

4
4

q

+
4-4

4
4

bd
e
e

a
e
c
e

a
p
}

e
s

{
t
t

rt
4

~
=

a
|

q
o
m
a
n

a

8
e

4
L
I
I
I
I
I
I
I
I
I
T
T

e

+4
H
+

tH
®

4
N

ene
|

e
sece

pUOSESPCSEDESSS
SESSSEOLESQEESEE

¢
geuedes s

508
99!

és
nein

p
e
t

ead
S
e
e

|
I

T
e
"

—
—

y
y

T
r
o
y

d
u
s

r
Y

pe
-

m
=

+

8
q

a
e

4
+
+

t
t

#
1
4

+
+
+

a
n
e
s

r
+
+
t
+

nr
o
s

a
e

a
u
n
.

aa
a
e

d
a
s

8
e

4
q

ee
11

TTI
n
u
n

T
e
)

aeee
4

u
]

e
a

+
ge

R
i

I
T
I
I
I

t
I
M
]

a
s
u
s

e
m

H
i
t

B
e
e
s
o
n

s
4

“6
+.

S
t

4
s
e
e
d

q
»

84
a

“
u
.

2
.
8

4
=

+
o

5
+

4

“
u
n
e
.
.
.

peg
q

+
a
e
n
e

y
n

+
+

=
r

-
T
T

b
a
b

I
H
u
U
n

§
1
2
7
7
7

4
L
I
Y
I
I
I
I
I
T
T

gece
6

gseacase
auanes

098
02989508;

H
(
T
A

I
6a

——
a.

an i’
ah

a
P
r

P
P
T
Y
T
T
Y
T
T
r

T
Y
T
N

a
m

r
n

€

L
i
t
t

a
m
a
n

t
4-4-4

sees
cesses.

H
H
R

FF
i
e

s
e
e
s

a
a
n

>
4

4
a
a
n

a
e

n
a

+
4
4

4
a
c
e
s

+
r
h

:

6
s
e
s
e

n
n

a
s
0
9

e
s
e
e

A
I
L
A
L
L
I
I
I

L
I
L
H
I
L
L
I

4
J

‘an
d
n

a

.
.

e
n

an
a

an
Oh

e
r

a
n

as
i

ah
ab

i
i

o
r

e
c
o
n

.
.

2

©

>
]

+4

- s
s
.
.
.

.
o
g

3

a
t
h
e

h
o
e
s

§
o
s

4

a
4

4

W
i
r
y
)

ol
ar

ae
a
r
o
;

SI
W

|
&

a
:

xyz
o

-
ı
N

N
H
i

"
e
s
e

.
.

o
t

©

-
14

3
4
4

o
n
e

ake
.

2
%
>

>
.

e
n

e
e

7
a
n
a

om
oe

.
n
n

b
a
a
d

4
8
4

a
n
a

2
@

B
E
L
.

0
7

$
4

+o
o
e

O
p
e

NT
MO]

re]
if

HH
$3

|
Hl

ep
HEE

.
.

4-4
-

2
5
7
9

bab
>

L
T
E

e
l
r
i
o
|
j
l
a

ae
13

BEE,
o

-
HEH

ON
N

:
u

eon
Cae

ou
=

=

HHH
je

see
eae

>
a
m
:

den

t

E-2

E-3

8
9p

]
Y
T
Y
ı
ı
Y
J

p
a
n
g
e
s
t

I
W

4
W
y
l
i
n
n
d

1
2

®
bees

11
17777

Bi
1

1
1
1
7
7
7
3

I
T
y

a
a
n
a

a
a
n

+
H

a
a
n
a

s
a
n

t
t

one
t

e
a
s

at
e
n
e

4
=
=

3
”

e
e
e
e
r
s

bade
hele

t
e
m
a

s
v
r

-
—

r
i

=

pa
h
a

=+’——
r

8
se

®
see

H
H

Q
eee

a
-

=
4
-
8

e
e

4
+
4

u
w
“

=
s
e

4

=
+
4

+
4

bf
bd

b
d

=

a
4

b
d

s
s

=

bd
a

e
e

P
e
e
e
c
e
e
s

=
a
4

4

“
u

+4
b>

o
a
d

=
bf

=
355

|
'

S
F

4

4-4
4

s
s

2

K
L
I

I
T

I
{

a
n
e
s

as
e

I
anaae

ase

q
+
4
4

n
u
n
.

4
=
“

.
u
-
n

4
a

4
4
4

e
s
e

e
v
e

+
4

8
t
t

S
s

s
e
r
e

=
4

4
4

v
u
n

+4
4

4
t
h

4
w
w

e
u
r
e

4
4

i
d

n
u
.

§
44

Li
4

eo
es

nur
4

j
44

zus
Pi

4
4

4
-
4
4

“
n
u
n

5

44.
o
n
e

4
4

4
s
e
e

$
+
4
4
.

a
=

4
u
.
.
.

4
n
u
n

4
4

e
a
t

4
1
3

s
u
e

rt
+4

ana
ae

S
e
e
s

Ret
+4

41
4

4
;

444
ese

.
ean

8
e
a
n
e
s
a
i

say
I
I
H
H
I
D

as
T
r
i
t
t

L
i
n
t

ene

T
T
S
]

a6ee
TI
I
I
I
T
I

I
N

II
T

pepesges:
n
o
n
e

T
i
s
T

as
W
i
r

I
eee

+
44

p
O
H
S
D
S
E
S
E
S

5!
o
a
8
8

e
s
e

er
8

g
e
c
e

3
4
4

S
u
.
.
.

—
[

4
q

pase
os

s
e
e
s

e
e
n
s

2
.
.
.

eas
s
e
e
s

H
H

+

4
4
4
4
4

8
+-h-5

4
4

a
e

n
n
.

e
e
e

+
d

4
4

}-
+
4
4

H
H

i
t
a

„
=
.
.
.

e
g

a
a

a
n
a

„
u
.
.
.

Su.
4

=

4
4

1
H

peasouen
I
H
H
H
t
I

LITE
TI

&
]

eone
i
t
t

eee
a

j
e
e
a
n
n
e
s
s
t

j
a
n
e
p
s
e
n
s
a
s

I
Banat

p
a
g
d
a
c
e
n
s
a
g
e
s
c
a
s
s
 a:

s
o
n
.

as
e
e
c
c
e
s
s
e
e
s

7
TTY

TI
se

H
H
H

n
a
i

Geese
I
n

7)
(II

I
7777

4

x
a

a
b

-4
=

®
®

ies
e
e
n

&
4

u
n
“

w
w
.
“

4

s
=

4

w
e
n
n

=

ef
H

es
easest

it
gee

.
s

esses
G
a
a
u
a
e
e

S
e
e
e
e
e

Jr
1
1
 3,

1
Ri

p
a
g
e
d

eae
H
r
n

s.098
4

71
1
1
1
7

eces
I
7

9
a
e
s

o
s

S
s
o

o
a

|
3
4
-
1

=

a
8

=
e

„
u
.

sont
I
H
N

as
8

peeeeneneesel
T

oe
pf

m
t

I
I
I
T
I
r

Li
i

A
I

LI
I
T

il
i
t

I
4

j
i
t

pe
©

L
i

T
i

Al
1
3
1
3

H
u

®
4

es
es

se
44

Lf
+

+
o

4

s
a
n

H
H

+

a
=

+
d

n
u
”

5

-
4

.
H

a
a
e

=

“
u

}
=

2
=

4
R
e
e
t

i
i
i
t

n
n

s
tit

8
as

e
e
e

tt
esent

L
i
i
i
l

O
V
E
R

S
R
R
a
E
t

T
I
T

I
I

T
I
T

AS
T
I
L

es
e
s
e
t

oe
2

1
1
1
1
1
1

1171
a

e
|

.
vw.

4
a
e

=
=

a
®

ees
4

+4
4

g
s

4
a

Lf
4

+
4

a
e

a

+
4

=

I
3

4
a

e
e

F
S
S
R
R
G
R
R
E
R
I

:
ı
1
1
i

I
R
E
P
B
E
S
U
R
U
M
G
E

¥
4

3
4
4

I
h
r

H
H

trHitt
IT

tt
‚8

e
e
e

i
i
i

4
4

s
a
m

44
T

ses
+4

6
s
u
n

pi
Bi

I

4-4
2

t
o
d

€

k
T

X
LU

af
8

I
I
I
I
l

I
f
T
i

Cy

¥
W
h
y

Y
I
1
I
I
I
I
ı

III
1]

H
J

4
3
3
1
3
1
7
7

e
@

-
H
H

s
H

a
a
d

e
a

4
5
4

m

-

a
s

n
n

+
4

4-4-4
q
f

4
4
4

>

=

4

ae

pa
11

{
8

i
t

4
1
1

i
k

1
1
3
1

7

u
n

p
e
n
e
e
e
n
'

11
111

ie!
a

1
1
1
0
1

I
IL

a8

31
I
I
:

e
I

I
I
I
T
ı

a
13

17
q

8
os

rT
T

s
e
g
s

8
1
F
I
A
T

g
u
g
g
g
n
s
n
s
n
n
e
n
e
:

(

w
w

H
u

4

4

4
+

4
bs

+
4

a
b

4

4
=

Wt
fT

fF
4

6

4

®
HH

I
ss

»
1
4
H

®
s
s

4

m4
4
4

ii
J_

52
e

ei
rT

T
I

a

q
J
i
l

6
e

4
1]

4
a4

4
4
4
}

4
4

4
3
4

a
t
r

=

w
s

=

=

+
4

14
4
4
4

“

+
a
8

H

8

> +
4

-
4

+

-
“

4
=

4
e
e

4

s
y

4

+4
+
H

+
|

4
a

o
d

8
M

T
H

T
YI

I
n
n

N
I
I

I
paneesegs

®
444

o9
T
i

9
og

e
e
e

11
I

ttl

i
l
l

L
Bi

a
o
e

z
e

„
u
.

4

4
4

ss
gs

se
2.

4
a6

+
=

L
4
6
4

b 4
-e-4

+
4
4

s
a
n
d

s
u
n
.

+ 4
S
e
r
e

b 4
4

4
+

e
s
s
e
s

b-4
=

e
r
e
s

a
4

+

T
T

a
n

+
7

t
a

a
s
e
e

+
1
7

Tit
L
I
T
I
I

IT
I
I
I

W
i
t
t
y

I
T

e
u
r
e
:

TT

8
IL

IH
H
I
H
I

HIT.
1

TH
poet

+
+
.

4
4
4
4
4

4-4
884

a
a
a

4
T

+
4
4

+
4
4

+
4-5-4

+

+
+

v
u
n

4

1
1

T
r

>

+
n
n
.

4

F
H
T

RE
;

W
H
p
i
n
n

m

ttt
6
6
6
0
6
9
9

809699998
8
0
9
9
9
9
9
0
9
9
9
9
8
"

T
i
t
t
y

S
S
V
H
O
S
K
H
E
S
H
H
T
S
S
H
S

P
S
S
A
H
e
e
R
E
S
S
S
S

Hee
F
e
R
e
G
a

St
vn

n
r

“yy
9-9-9

9
T
T
I
T
I
I
T
I
H

IH
I
D

4
I
n

4
4

gos
4
1

g
e
e
,

+

as
+
+

$e
+

1
bs

++
44

e
e

1
1
1
7

+
2

4

+
3
3

4
4
4

=

1

+
7
2

e
s

®
s
s

1
‘
.
.
.
 1

q
44

4
4
4

4
0...

oe
e
e

es
s
o
g
e
s
e
s

9
4
4
4
4
4
4
7

4
4

+
@

4
$-4+

=
5

os

a
a

a
a

-
=

a
4

+
4
4

5
gnnepesseseses

pguabs
T
c
H

It
H
H

tt
pesgevccess

waggeeee
4

T
T
T

w
e

-
‘i:

m
i

a
n
 a

T
T
)

a
e

ae
an

u
.

o
a
n

an
on

T
I
I
I

=
a

o
e

+ o
w

4

4
+

a
2
7
7
9
7
5

+

q

4
+1

8
eee

4
.
„
.
.
.
.

q
§

111
7]

4
4

B
O
9
S
9
D

ETW
4

44
6

4
4
4
4
-
4
4

2
O
R
G

rt
e

it
o
m

L
e
s
a

F4
4
4

4
+
4

B

1
tt

e
e
e

++
H
H

e
s

a4
8

}
H

+444
4

4
}

Il
T-

i
i
t

T
y

1
1
1

1H}
H
E
H
E

H
E
H
E

H
H

HH
HH

H
H

KH
5

Ld
4

U
B
S

$44
4

}
v
u
.

q
2

2
9
5
7

m
n

e
e
e

+

+
4
4

+
4

s
e
a

aake
e
a
s
e

r
Bae

4

HHL
MO

HEART
De

a
He

Ht}
Q

Li
Li,

HH
]

e
-i-o-e-e

FT
T4

a
+
3
4
4

+
4
]

444
4

444
,

4
9
.
.
.

eee
een

H
H

44
4

1
1

Due
e
r
r

v
u
.

e
v
e
l

o
n
t

aa
+
4
4

1}
2

y
7
a

]
ry

eeqeceRr
zs

a
k
a
n

a
a
n

n
a
n
a

b
a
s
h

e
a
e
n
e

}
4
;

a
i
e

b 4
p
a
n
e

4
a
b
a

q
44

§
§

1177
4444

41
&

m

O
S
H

144
N

q
[
N

$

N

111

LD
GH

©

TELAT
De

ne)
a

HH
FH

HE
TH

HH
4

a
t

4
2-9-4

4
4

|
1
4

Se
Sen

=

-

H
H

=

=

=

we
HY

4
4

H

4
44

+
4

o
s

4
u
.

a
=

o
r
.

ae
t
h
h

u
n

K
A

i
i
i
.

.
.
_

—

5
t
A
.

n
e
a

9
a
e

ANHANG F

ASSEMBLER-SPRACHMODULE

Die CALL-Anweisung in ST BASIC ermöglicht eine Verwendung von Assembler-
Sprachmodulen. Um ein Modul zu verwenden, müssen Sie dieses über eine BLOAD-
Anweisung in den Arbeitsspeicher laden. Dann muß die Modul-Startadresse einer Va-
riablen zugeordnet, und das Modul über BASIC mit CALL aufgerufen werden (wobei
alle notwendigen Parameter übertragen werden).

Parameter werden in folgender Weise von BASIC an Assemblerprogramme überge-
ben: Das Maschinensprache-Modul sucht nach 2 Parametern auf dem Anwender-
Stack (A7). Der erste Parameter ist eine 2-Byte Integerzahl, durch die die Anzahl der
zu übergebenden Parameter vorgegeben wird. (Im untenstehenden Beispiel handelt
es sich um drei Parameter.) Der zweite Parameter ist ein 4-Byte Zeiger auf ein Array,
das die Parameter enthält. Jeder Parameter im Array belegt 8 Bytes, unabhängig da-
von, welcher Art er ist. Handelt es sich um eine String-Variable, ist der 8- -Byte Wert
ein Zeiger zu dem String.

Bevor eszum BASIC zurückkehrt, kann das Assemblerprogramm alle Parameter, die
an BASIC übergeben werden sollen, in einer vorgegebenen Speicherstelle ablegen.
Später kann das BASIC- Programm über PEEK auf diese Parameter zugreifen.

Beispiel:

500 DIM AS(8):1 1% =70:X=22
510 LISTE=18566: STARTADRESSE DES ASSEMBLER- SPRACHCODES

530 CALL LISTE(I%, A$,X)

F-1

ANHANG G

ABGELEITETE FUNKTIONEN

Hyperbolischer Cosinus

Hyperbolische Tangente

Hyperbolische Sekante

Hyperbolische Cosekante

Hyperbolische Cotangente

 Inverser hyperbolischer Sinus

Inverser hyperbolischer Cosinus

Inverse hyperbolische Tangente

Inverse hyperbolische Sekante

Inverse hyperbolische Cosekante

Inverse hyperbolische Cotangente

Abgeleitete Funktion Terminologie der ST BASIC-Funktion

Sekante DEF FNSEC(X)=1/COS(X)

Cosekante _ DEF FNCSC(X)=1/SIN(X)

Inverser Sinus DEF FNARCSIN(X)=ATN(X/SOR(-X*X+1))

Inverser Cosinus DEF FNARCCOS(X)=-ATN(X/SOR(-X*X+1)
+KONSTANTE)

Inverse Sekante DEF FNARCSEC(X)= AT NO RON 1))+
: (SGN(X- 1)*KONSTANTE)

Inverse Cosekante DEF FNARCCSC(X) ~ ATN(1/SOR(X*X- 1))+
| (SGN(X-1)*KONSTANTE)

Inverse Cotangente DEF FNARCCOT(X)=ATN(X)+KONSTANTE

Hyperbolischer Sinus DEF FNSINH(X)=(EXP(X)-EXP(X))/2

DEF FNCOSH(X)=(EXP(X)+EXP(-X)/2

DEF FNTANH(X)=-EXP(- X)(EXP(X) +EXP
(-X))*2+1

DEFFNSECH(X)=2/(EXP(X)+EXP(-X))

DEFFNCSCH(X)=2/(EXP(X)-EXP(-X))

DEFFNCOTH(X)= EXP(X)/(EXP(X)-EXP
(-X))*2+1

DEFFNARCSINH(X) =LOG(X+ SOR(X*X+1))

DEF FNARCCOSH(X)+LOG(X+SOR(X*X- 1))

DEF FNARCTANH(X)=LOG((1+X)/(1- X))/2

DEF FNARCSECH(X)=LOG((SQOR(- KH)
+1)/X)

DEF FNARCCSCH(X)=LOG((SGN(X)"SOR
(X*X+1)+1)/X)

DEF FNARCCOTH(X)=LOG((X+1)/(X- 1))/2

G1

Anmerkung: In dieser Tabelle entspricht die Variable X in Klammern dem Wert oder
Ausdruck, der über die abgeleitete Funktion berechnet werden soll. Sie können einen be-
liebigen Variablennamen verwenden, solange dieser dem zu berechnenden Wert oder
Ausdruck entspricht. |

G-2

ANHANG H

BEISPIELPROGRAMME

KÄSTCHEN

Das nachfolgende Programm ist ein interessantes Beispiel für die Verwendung der
Anweisung RND mit Farb- Grafiken. Das Programm wurde für Low- Resolution ge-
schrieben.

| 10
20
30
40

60
M
80
90

100
110
120
130
140
150
160
170
180
190

'SYMMETRISCHES AUSFÜLLEN VON KÄSTCHEN
randomize 0:c=0 |
color 1,0,1,1,1:fullw 2:clearw 2
for x=18 to 284 step 19
linef x,0,x,166
nextx

for y=13 to 153 step 14
linef 0,y,303,y
.nexty

c=c+1:ifc=16 then c=1
color 1,c,1 —
col= int(tnd*16)*19-+9: row=int(rnd*12)*14+7
fill col,row,1
if col>151 then cenc=col-151:fill col- (cenc*2),row, 1
if col<152 then colh=302-col:fill colh,row,1
if row>82 then rowh=row-((row- 82)*2): fill col ‚rowh, 1
if row<83 then rowh=164-row:fill col,rowh 1 |
if col>151 then fill col-(cenc*2),rowh, 1 else fill colh,rowh,1
goto 100 |

GEMUSTERTE KREISE

Bei diesem Programm wird ein Kreis gezeichnet und in einzelne Segmente unterteilt.
Die einzelnen Kreissegmente werden dann mit verschiedenen Mustern ausgefüllt. Um
das Programm abzuwandeln, können Sie Zeile 120 folgendermaßen abändern:

120 pellipse x,y,x,y,b,b+ 100

10
20
30
40
SO
60
70
80
90

100
110
120

KREIS MIT 36 GEMUSTERTEN SEGMENTEN
color 1,0,1,1,1:fullw 2:clearw 2
if peek(systab)=1 then 60
if peek(systab)=2 then 70
goto 80
x=306:y=172:s=170:goto 90
x=304:y=83:s=182:goto 90
x=151:y=83:s=91

a=24:1=2:b=0
forp=1toa
color 1,1,1,p,1
pcircle x,y,s,b,b+ 100

H-1

130 b=b+100
140 nextp
150 ifi=1 then end
160 i=3:a=12:goto 100

GEMUSTERTES RASTER

In diesem Programm wird die Bildschirmauflösung automatisch ausgewählt. Dann
werden 36 verschiedene Füllmuster dargestellt.

10 ’RASTER MIT 36 VERSCHIEDENEN FUELLMUSTERN
20 color 1,0,1,1,1:fullw 2:clearw 2
30 if peek(systab)= 1 then 60
40 if peek(systab)=2 then 70
50 goto 80
60 x=102:y=56:a=28:b=308:c=56:d=51:e=561:f=102:goto 90 ©
70 = x=102:w=28:a=14:b=154:c=28:d=51:e=561:f=102: goto 90
80 x=51:y=28:a=14:b=154:c=28:d=25:e=280:f=51
90 forx=f to e-d step f

100 linef x,0,x,345
110 nextx
120 for y=c to b-a step c
130 linef 0,y,615,y
140 nexty
150 i=2:p=1
160 fory=atobstepc
170 forx=dtoestepf
180 color 1,1,1,p,1:fill x,y,1
190 p=p+l:ifp=25 then p=1:i=1+1
200 ıfı=4then end
210 nextx,y

DEMO FÜR NIEDRIGE AUFLÖSUNG
Eine interessante Demonstration über Formen und Farben in niedriger Auflösung.

10 color 1,0,1,1,1:fullw 2:clearw 2
20 KREIS: c=1
30 for b=0 to 3360 step 240
40 color 1,c,1
50 peircle 151 ,83,91,b,b+240
60 c=c+1
70 nextb
80 gosub VERZOEGERUNG
90 OVAL: c=1

100 for b=0 to 3360 step 240
110 color 1,c,1
120 pellipse 151 ‚83,151 83, b ‚b+240
130 c=c+1 u
140 nextb
150 gosub VERZOEGERUNG
160 FILLPTNS: c=1:a=24:1= 2
170 forp=1toa
180 clearw 2
190 for x=61 to 244 step 61
200 linef x,0,x,166
210 nextx
220 for y=55 to 110 step 55
230 linef 0,y,303,y
240 nexty
250 y=2
260 for x=30 to 270 step 60
270 colori,c,1,p,i

280 fillx,y,1
290 c=c+1:ifc=16 then c=1
300 next x
310 y=y+55:if y=167 then 330
320 goto 260
330 nextp
340 ifi=3 then 360
350 a=12:1=3:goto 170
360 gosub VERZOEGERUNG
370 FARBIGERKREIS: c=1:r=91
380 for b=0 to 3600 step 200
390 color 1,c,1
400 pcircle 151,83,r,b,b+200 —
410 c=c+1:f c=16 then c=1
420 nextb |
430 r=r-1:ifr=0 then 450
440 goto 380
450 gosub VERZOEGERUNG

460 FARBIGEELLIPSE: c=1:x=151: y= 83
470 for b=0 to 3600 step 240 \
480 color 1,c,1
490 pellipse 151,83,x,y,b,b+240
500 c=c+1:1f c=16 then c=1
510 nextb
520 x=x-2:y=y-2:f y=3 then 540
530 goto 470
540 gosub VERZOEGERUNG

-550 end
560 VERZOEGERUNG: for z=1 to 3000:next
570 color 1,0,1,1,1:clearw 2
580 return

DEMO FÜR HOHE AUFLÖSUNG

Dieses Programm zeigt die Möglichkeiten Ihres hochauflösenden Monochrom- Moni-
tors.

10 fullw 2:clearw 2
20 QUADRATE: a=2:b=3:1=61:w=56

30 x=a:y=b
40 linef x,y,x+l,y
50. linef x+1,y,x+1,y+w
60 linef x+1,y+w,x,y+w
70 linet x,y+w,x,y
80 x=x+61
90 if x>600 then x=a:y=y+56

100 if y>320 then 120
110 goto 40
120 a=a+2:b=b+2:1=1-4:w=w-4
130 ifw<Othen150 _

140 goto 30
150 gosub VERZOEGERUNG
160 LINIEN: x=0:y=0
170 while x<614 ©
180 linef 307,172,x,y
190 x=x+5
200 wend
210 while y<344
220 linef 307,172,x,y
230 y=yt+3

240 wend
250 while x>0
260 linef 307,172,x,y
270 x=x-5

280 wend
290 while y>0
300 linef 307,172,x,y
310 y=y-3
320 wend
330 gosub VERZOEGERUNG ©
340 ENTWURF: x1=1:x2=614:yl=1:y2=343
350 linef x1,y1,x2,y1
360 linef x2,y1,x2,y2
370 linef x2,y2,x1,y2
380 linefx1,y2,x1,yl
390 x1=x1+2:x2=x2-2:yl=yl+2:y2=y2-2
400 if y2>-22 then 350
410 gosub VERZOEGERUNG

420 end u
430 VERZOEGERUNG: for z=1 to 5000:next
440 clearw 2:return |

TRIGONOMETRISCHE GRAFIKEN |

Mit diesem Programm können Sie beliebige trigonometrische Funktionen grafisch
veranschaulichen. | |

10 ’TRIG GRAPHS
20 ’VON ROB COLLIER
30 pi=3.1415926
40 fullw 2:color 1,0,1:clearw 2
50 BILDSCHIRM:
60 if peek(systab)=4 then goto LOW
70 if peek(systab)=2 then goto MEDIUM
80 if peek(systab)=1 then goto HIGH
90 INIT: t=0:1=0 |

100 Ing=r/4:inc=pi/Ing:off=b/4
110 FUNKTION: value=-2*pi
120 clearw 2 |
130 print“Funktion auswählen:“:print
140 print “1) Sinus“
150 print “2) Cosinus“
160 print “3) Tangente“
170 print “4) Cosekante“
180 print “5) Sekante“
190 print “6) Cotangente“
200 print:input wahl |
210 if wahl>0 and wahl<7 then goto GRAFIK |

220 = ?“wahilen Sie eine dieser Zahlen aus.“

230 goto FUNKTION
240 ZEICHNEN:
250 value=-2*pi
260 x=1:x1=1:yl=b/2

260 x=1:x1=1:yl=b/2
270 on wahl gosub
SINUS,COSINUS, TANGENTE,COSEKANTE,SEKANTE,COTANGENTE |
280 y=off*y:y=b/2-y
290 if y<t or y>b goto SPRUNG
300 if x<1 or x>r goto SPRUNG
310 linef x1,yl1,x,y
320 SPRUNG: x1=x
330 yl=y:x=x+1
340 value=value+inc
350 ifvalue>2*pithen goto ENDE
360 goto 270
370 ENDE: input wait$
380 goto 120
390 GRAFIK: color 1,bg,gr:clearw 2
400 linef 1,b/2,r,b/2
410 linefr/2,t,r/2,b
420 color1,bg,In ©
430 goto ZEICHNEN
440 SINUS: y=sin(value):return
450 COSINUS: y=cos(value):return
460 TANGENTE: y=tan(value):return
470 COSEKANTE: hold=sin(value)
480 if hold=0 then return
490 y=1/hold:return —
500 SEKANTE: hold=cos(value)
510 if hold=0 then return
520 y=1/hold:return
530 COTANGENTE:hold=tan(value)
540 if hold= 0 then return
550 y=1/ho d:return
560 LOW: 1=303:b=167 ©
570 gr=2:ln =14:bg=4
580 gotoINT |
590 MEDIUM: r=608:b=167
600 gr=1:ln =2:bg=3
610 goto INıF
620 HIGH: r= 615:b=343
630 gr=1:ln= :bg=0
640 goto INTI

: |
|

H-6

EFFEKTIVZINS-BERECHNUNG |

Das nachstehende Programm kann fir die Analyse Ihrer Finanzen verwendet werden.

10
20

30
40

50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240°
250
260
270
280
290
300

'Effektivzins-Berechnungsprogramm von Richard Lauck
’Das Programm arbeitet mit einer Formel der Newton’schen Methode zum
Schätzen von Wurzeln
"Es verwendet Integralberechnungen mit Ypsilon, “Y“, definiert in Zeile 100
"Bei den Formeln wird vorausgesetzt, daß alle Zahlungen am Ende eines Zeit-
raumes getätigt werden.
clearw 2:fullw 2:?
? “LETZTE PAUSCHALZAHLUNG = “;: INPUT Ro
? «MONATLICHE RATE = “: „INPUT A | |
? “KAUFPREIS HEUTE = “; INPUT C
? “ANZAHL DER RATEN = “INPUT N
Z=12:1=0.01:Y=0.01:K=0
?:PRINT “ EFFEKTIVER ZINSSATZ BEI: “
PRINT “ “
PRINT “EINE LETZTE PAUSCHALZAHLUNG VON DM“ R
PRINT “EINE MONATLICHE RATE VON DM“;A
PRINT “BEI EINER RATENZAHL VON - “;N |
GOSUB 250 |
F=F+5.0Y-03:F=100*F:F=INT(F):F=F/100
F1=F1+5.0Y-03:F1=100*F1:F1=INT(F1):F1=F1/100
I=11:K=K+1
IF ABS(F)-Y>0 THEN 160
PRINT“ “ |
X=Z*I: PRINT “DER EFFEKTIVE ZINSSATZ IST “;100*X;“% “
PRINT “ “
END
T=(1+D’N
F=C-R/T-A*(1-V/T)A
T2=T*(1+])
F1=R*N/T2+A*(1-V/T-I"N/T2)/VI
I1=I-F/Fi
RETURN

ZAHLENSPIEL

Dieses Programm erstellt ein n selbständig antwortendes Zahlenspiel. Sie geben eine
Zahl ein, der Computer wählt eine zwischen Ihrer Vorgabe und Null liegende Zahl
aus, und Sie müssen diese Zahl erraten.

10 "Ein Spiel, das Sie sich selbst leicht oder schwer machen können - von Rich Lauck.
20 fullw 2:clearw 2
30 goto 0,0
40 7°“ Spielen wir ZAHLEN RATEN?“
50 7“ Geben sie eine Zahl ein und drücken Sie“

60 ?“ RETURN. Ich waehle eine Zahl zwischen“
70 ?“ Ihrer Zahl und “;
80 ?“Null.“
90 ?“ Also, geben Sie eine Zahl ein “

100 INPUT “ und drücken Sie RETURN. “,TOP
110 ?:? “Versuchen Sie, meine Zahl zu erraten “
120 RANDOMIZE 0 |
130 ANTWORT =INT(RND*(TOP))
140 ?:? “ Raten Sie und ich gebe Hinweise.“:goto 180 |
150 ?:input “J für neues Spiel, andere Taste für ENDE. “,neu$:?
160 if neu$=“j“ or neu$=“J“ then 90
170 end
180 input frage
190 if frage > antwort then ?“Zahl zu klein, neuer Versuch. “:goto 180
200 if frage > antwort then ?“Zahl zu groß, neuer Versuch.“:goto 180.
210 ? “Richtig geraten.“:goto 150 | | |

KÄSTCHEN-DEMO

Dieses Farbprogramm in niedriger Auflösung verwendet AES und VDI, um mehrfar-
bige Kästchen an einer von Ihnen gewählten Bildschirmposition zu zeichnen.

AES (Application Environment Services) ist der Teil von GEM, der fiir die Drop-
Down Menüs, Fenster und Dialogfelder zuständig ist. VDI (Virtual Device Interface)
enthält die Grafik- und Textroutinen von GEM. |

Befolgen Sie nachstehende Schritte, um das Programm einzusetzen:

1. Starten Sie das Programm mit RUN

2. Zeigen Sie mit Hilfe der Maus auf die Bildschirmposition, an der das Kästchen ge-
zeichnet werden soll.

3. Drücken Sie die rechte Maustaste, um das Kästchen zu zeichnen.

4. Drücken Sie die linke Maustaste, um das Programm zu beenden.

5 at = gb
10 control = peek (a+)
20 global = peek(a# + 4) 30 gintin = peek(a+ + 8)

H-8

40
50
60

100
1070
1071
1072
1074
1075
2000
2010
2020
2025
2027
2028
2030
3000
3010
3020
3022
3024
3030
3035
3037
3040
3050
3060
3070
3080
3090
3095
3100
3110
3112
3115.
3116
3117
3120
3130

gintout = peek(a# + 12)
addrin = peek(a# + 16)
addrout = peek(a# + 20)
clearw 2:fullw 2

_ poke systab+24,1
noke contrl,122:poke contrl+2,0: poke contrl+6,1
poke intin 0: vdisys(1) |
mouse =1
gemsys(79) _
x = peek(gintout + 2)
y = peek (gintout + 4)
key = peek (gintout + 6)
if key = 2 then gosub 3000
if key = 1 then poke systab+24,0:end
if key=O0 then gosub 3115
goto 1075

rem Kästchen zeichnen mit vdi |
rem oK OK OK OK OO Oe OK OK OK OOK ok OK OK OK OK OK OK OK OK OOK OOK OK ok KOK OK OOK OK OOK OK KOK KOK OK KOK K

color 1,(rnd*15) +1,1,rnd*25,2
if mouse=0 then 3040

mouse=0

poke contrl,123:poke contrl+2,0:poke contrl+6 0 |
vdisys(1) |
poke contrl,11
poke contrl +2,2
poke contrl +6,0
poke contrl +10,1
poke ptsin,x
poke ptsin +2,y
poke ptsin +4,x+50
poke ptsin +6,y+50
vdisys(1)
return |

if mouse=1 then return
poke contrl,122:poke contrl+2,0:poke contrl+6,0
poke intin 0: vdisys(1)
mouse =1: return
end

i

7

DR
aw

NEL
Q

be ix "92 N *
: ®

ee ¥ oo

: “if Gs hin t

fi Re ak Buy

* & \

2 3

a
Pe

\

df

i

¥v

mS Pr

;

RN
r a

vr
» ‘

hoses
Ä

4

Y

« ‘
r *

i
:

>

ty
ze

j

‘ 2

te or

‘

‘

atl . we"

ra

« ‘ 3

KR
f *

Er

:

‘

a

1) ‘

b >

y

%

j
t Ri

f N!
|

Pa
5

|

AR

|

er... ‘,
J

y, s

; 4

a

Bet. Ya yt iat ad
eae “

a

é

, ee

x i

2 ;
:

3

’ , R ¢

. 4 j
i

| Ä

ee. .

:

are 2 %

I

3

p

| |

’
, ‘

i

' {

:

| “|

ot ae he \ Ban
Ome

- a '
;

,

4

We
N

/
a?

i 4

\

\ '

\

\ \

oe

2 PAG
‘ eit

we

~

F N

Pe a io ost a
; re a

; : AR, x ‘

\

a 5

N ;

; .

~
* >

:

-,, =

Ye,

x
no

J

,

5

RR

Er f

‘

i

ae = er me

