SPC Modula-2

Fiar ATARI ST und MEGA ST

Editor

SSWiS

SYSLIB

Compiler

Utilities

STDLIB

Debugger

SPC
MODULA-2

fur den ATARI ST
Benutzerhandbuch

Version 1.4

Advanced Applications Viczena GmbH

Copyright

@ 7987, 1988 71989 Advarnced Applications Viczena GmbH

Hartungsausschiui

£5 wurden alle erdenkiichen Mabnatmen getroffen, wum die Kor-
rekthert aieser Dokumentiation und der dazugehorigen Software zu
gewdliielsten. Da wir jedoch standig Verbesserungen wid Nach-
arberten an unseren FProaukten vomelmern, Konnen wir keme Ge-
walr 1ur aeren Volstandigkert una Korrekthert dbermefmen und
schliersen aeshalb alle Gewdlhileistungsanspriche auigrund von
Feflern der Software oder der Dokumentation aus.

Hanaelsmarker

GEM, GEMDOS sind Warenzerichen bzw. emgetragene Warenzer-
chen aer Djgrial Research /nc.

MOTOROLA, MCE8000 sind Warenzeichen bzw. eingetragene
Warenzerichen der MOTOROLA /nc.

ATARYL 260ST, 52057, 82057+, TOS, MEGA ST smnad emgeltragens
Warenzerchen aer ATAR/ Corp.

Telle aleses Sprachisystems wurden am nstiut fir Informatik ader
Eiagenossischen Techmnischen Hochschule (ETH) Zurich vorn Nik—
/aus Wirth und seinem Team entwickelt

SPC MODULA-2 V1.4

Inhaltsverzeichnis

Vorwort
Das Produktooooiiiiiiieee e 5
Das HandbuChccccee i 6

1 Installation
Lieferumfangcccooee e 1-1
Vorbereitungen ..o 1-1
Installation ..., 1-3
Prifen der Installation.............ccccoovvveiiiniiecee, 1-3
SPC MODULA=-2 DeNUtZeNcccccecvveeviee e 1-8
Weitere Schritte ..., 1-9

2 Einfihrung in SPC MODULA-2
UbersiCht ... 2-1
MOAUI-KONZEPL.......ooiii 2-2
Systemnahe Elemente ... 2-4
Prozedurtyp.......cccoeeiiiiiie e 2-5
Syntaktische Straffungenccocviiiiini 2-5
Zielgruppe von MODULA=-2.........ccccvvvviniiieceieeee, 2-6
Features von SPC MODULA-2...........cccovveiiiiien . 2-7
Die STDLIB ..o, 2-8
Die SPCLIB ..o, 2-11
Die SYSLIB ... 2-13

3 Die xShell
UbersiCht ... 3-1
Pseudo-Multitasking ... 3-1
EinfUNrung ... 3-2
Bedienung..........occoii 3-6
Werkzeuge starten.............cocoeviioniin 3-8
Dateien selektierenccccveviiiiiii i 3-11
UIItES ..o 3-12
JODS o 3-14
Textuelle Kommandos..........co.ccooovieiiiiiceeeee 3-16

SPC MODULA-2 V1.4

4 Der Editor

UBersiChto 4-1
STAMeN ..o . 4-2
Einfache Editierungencccooooiiiiiii 4-3
MENUS ..o 4-5
Block Operationen..........cc.cccoeoviioiiiiiceeee e, 4-5
CliPDOANd......c.oiiiiiiiie e 4-6
Suchen Und ErSetzenooooeviveieeeeeeeeeeeeeeee 4-7
IM Text SPringen ... 4-8
Modieinstellen.............cooooii 4-9
DateieN ... 4-10
Funktionstasten.............coccoooiiiii 4-10
SONSHGES....vieiiieieee e 4-11
5 Der Compiler
UbErSICRt ..o 5-1
SHAMEN ... 5-2
Ein— und Ausgabedateien................cccccovveeiiiiniienee 5-4
Suchpfade ..o 5-4
MOAUISCHIUSSE! ..., 5-7
Die SPC Implementierung............ccccceeiiiiiiencieene 5-9
Pseudomodul SYSTEM ..o 5-12
CODE-Prozeduren.............ocoeeiiiee e 5-14
FORWARD-ANWEISUNGccvcouiiiiiieiaiiereie s 5-14
Standard-Prozedurencoocoevveeiiciiiiee e 5-15
ReStKtONEN ... 5-17
6 Der Debugger
UBEISICNL ...t e 6-1
Laufzeitfehler...........ccccooooovieeeee 6-1
Procedures—Fenster...........c.ccooovieeeeeccieeeccee e 6-2
SOUrCE—FenStercooiiiiee e 6-3°
Data—Fenstercoooiviiiiiiie, 6-4
Modules—Fenster.............cccooiviiiiiiciie e 6-5
7 Die Utilities
FIlr el 7-3
LINK oo 7-23
Prefink. ... 7-27
MBKE .. .o 7-29

SPC MODULA-2 V1.4

PatiS. ... 7-
SEENV ..o 7-
DUMP e 7-
8 SSWiS
UDEISICAL ...t 8-1
Bedienung.......ccccoooviiiiiii 8-3
Formulare.........ccoooviiiii e, 8-8
Programmierschnittstelle.............c.occooceeriiieince 8-10
9 Das Laufzeitsystem
UDBISICAL ... 9-1
Datentypen........cccovveiiiiiiie e 9-2
Modulorganisationoccceveeeeieiiiiieee e 9-3
LadeVOrgangccceeruvriireeieiirie e 9-9
Stackorganisationccceeviicinenienene e 9-10

A Compiler Fehlermeldungen
B MODULA-2 Syntax
C Literaturhinweise
D Beispielprogramme
E Pseudomodul SYSTEM
F Die STDLIB
G Die SPCLIB
H Die SYSLIB
I Index

SPC MODULA-2 V1.4

Edit

File Block Clipd Strings Goto Modes

[TESTSVRELLO.HOD IE3 Terninal LA
._Nno errors logged
I00ULE Hello; [o] Filer Version 1.40 z {
(% Codesize is linited sbout ik Bytes within the demo version. ¥) !
FROH In0ut IMPORT WriteString, Writelnt, Writeln;
FRON SYSTEN INPORT VAL, RDDRESS;
VAR x t ARRAY [1..10) OF CHAR;
[H
» + POINTER TO CHAR; 999
PROCEDURE Mait; xShell

MR 1, J + INTEGER;

BEGIN
lli J::-Lﬂll T0 HAX(INTEGER) 00
iE L
END;
END Nait;
PROCEDURE Count (Nunber + INTEGER);

VAR 1 ¢ INTEGER;

Mritelnt (Number, 2); Kriteln;
n:' I(IIM rl;

IF IMB!I’ O THEM RETURN ELSE Count (Number-1) END;
[END Coun

BEGIN
Mriteln; WriteString (‘Hello Norld'); Writeln;

(¥ To demo the debug !r conpile this progran giving options ! %)
(* conpile hellomod r o *
p:= VAL (RDDRESS,99) ;

HriteString C'Count’ Boun'); Kriteln;
Count (100}

N Hello.

(6] I

P AR -
-— o e -—
o I o I)
FILER SELECTION
FiVe¥_Fol: 9 Flle: ¢
K] eieas
& 2004 16712788
& CUSTOHSH 13712/88
¥ GENDOS 3/04/8
¥ SERVICE 11712/88
15710788
| % STANDARD 1/04/8
§ STUFF 22/12/88
| oa Tests 111288
voos 1B0/88 74X e v
BR o LsT 2/81/83 6iSA g P e
- LI UST 30077 12/04/8) 6:54 o prive: gix |
RELLe BR BL/Bs S:24 g oriel B
RELE T 4 608 g priver oIy |
@ Drive: EN\
G oriver Fi\

SPC MODULA-2 V1.4

Vorwort

SPC MODULA-2 ist ein komplettes Sprachsystem fiir
die Entwicklung von MODULA-2 Programmen auf dem
ATARI ST oder dem MEGA ST. Der Compiler des
Sprachsystems wurde von N. Wirth selbst und seinem
Team an der Eidgenssischen Technischen Hoch-
schule (ETH) Zdirich entwickelt.

Das Sprachsystem beeinhaltet u.a.:

ein deutsches Handbuch
die MODULA-2 Standardbibliotheken
alle GEM-Bibliotheken

o eine grafische Shell

0 einen schnellen Compiler

0 einen sprachsensitiven Editor

0O einen source-level Debugger

0 einen dynamischen linkenden Lader
0 einen Linker

o eine File-Utility

a

]

u]

Die Entwicklung von SPC MODULA-2 war und ist von
dem Ziel getragen, dem Entwickler ein effizientes und
schnelles Werkzeug bereitzustellen, so daB dieser
seine wertvolle Zeit weitestgehend auf die kreativen
Phasen des Programmierens verwenden kann.

Dies wurde vor allem dadurch erreicht, daB auf das
meist zeitaufwendige Binden der Programme verzichtet
werden kann. Einen weiteren Beitrag leistet der Com-
piler mit einer Ubersetzungsgeschwindigkeit von bis zu
5000 Zeilen in der Minute. Der Editor zeigt die vom
Compiler entdeckten Fehler direkt im Programmtext an.
Falls wahrend des Programmtests ein Laufzeitfehler

Das Produkt

Lieferumfang

Entwicklungsziele

Entwicklungskomfort

SPC MODULA-2 V1.4

Das Handbuch

Umfang des
Handbuchs

Organisation des
Handbuchs

entdeckt wird, wird automatisch der Debugger nach-
gestartet. Dieser zeigt dann die fehlerhafte Stelle -
ebenfalls im Quelltext— sowie die Inhalte von Variablen
zur Zeit des Absturzes. Ein Gbriges tut die xShell zum
Komfort beim Programmieren. Sie zeigt in grafischer
Weise die momentane "Umgebung". Darunter wird die
Menge von Dateien und Werkzeugen verstanden, die
der Entwickler gerade am haufigsten bendtigt. Die
meisten Kommandos kdénnen mit einem oder zwei
Maus-Klicks gegeben werden oder indem einfach nur
die &40, --Taste gedrickt wird.

Um das Sprachsystem abzurunden wurde ein Hand-
buch erstellt, bei dem Ubersichtlichkeit eines der wich-
tigsten Kriterien war. Gleichzeitig wurde versucht, alle
far den Entwickler wichtigen Informationen kompakt
darzustellen, um die Menge des zu bewdltigenden
Materials gering zu halten.

Das Handbuch beschreibt die Komponenten des SPC
MODULA-2 Sprachsystems auf dem ATARI ST unter
GEM. Hierzu geh6ren neben den Sprachwerkzeugen
inbesondere die mitgelieferten Bibliotheken. Sie werden
im Detail durch ihre Definitionsmoduln beschrieben.
Neben dem SPC MODULA-2 Handbuch sollten Sie
Uber weitere Literatur verfigen, die die Bedienung
lhres Computers beschreibt. Die Beschreibung der
Programmiersprache MODULA-2 ist ebenfalls nicht Teil
des Handbuchs. Jeder MODULA-2 Programmierer be-
natigt als Nachschlagewerk das Buch von N. Wirth
"Programming in MODULA-2", das auch in der deut-
schen Ubersetzung vorliegt.

Das Handbuch ist in Kapitel und Anhange aufgeteilt.
Die Gliederung orientiert sich an den Komponenten
des Sprachsystems. Die Beschreibung einer Kom-
ponente erfolgt so, daB zuerst beschrieben wird, was
die Komponente leistet. Ein zweiter Teil befaf3t sich
damit, wie man die Leistung in Anspruch nimmt. Ein

SPC MODULA-2 V1.4

dritter, optionaler Teil beschreibt schlieBlich, wie eine
Komponente intern funktioniert, um z.B. Restriktionen
oder Querbeziige aufzuzeigen.

Auf jeder Handbuchseite finden sich am &uBeren Rand
Stichwérter, die auch im Index aufgelistet sind. Namen
von Tasten der Tastatur werden ‘©.ia.7iéxi: gesetzt. Be-
tonungen werden fett gedruckt. Dateinamen werden
GROSS geschrieben.

= In dieser Weise werden wichtige Hinweise hervorge-
hoben. Lesen Sie diese unbedingt, bevor sie Be-
dienungen vornehmen.

Bevor Sie sich nun an die Arbeit machen und lhre
eigenen MODULA-2 Programme entwickeln, soliten Sie
sich die Zeit nehmen, das Handbuch zu lesen. Auch
wenn Sie bereits ein erfahrener MODULA-2 Program-
mierer sind, ist es wichtig, daB Sie sich einen Uber—
blick Gber die Punkte verschaffen, die durch die Doku-
mentation abgedeckt werden. AuBerdem werden an
vielen Stellen Hinweise Uber die richtige und sinnvolle
Benutzung des Sprachsystems gegeben.

notationelle
Konventionen

bevor Sie anfangen

SPC MODULA-2 V1.4

9

Diese Seite wurde aus
satztechnischen Griunden
gelassen

frei

10

SPC MODULA-2 V1.4

Installation und
Inbetriebnahme

Bevor Sie mit der Installation beginnen, iberpriifen Sie
bitte die Vollstandigkeit Ihrer Lieferung und ob die ge-
rateméaBigen Voraussetzungen fir eine Installation ge-—
geben sind. Die Lieferung besteht aus folgenden Tei-
len:

0 1 Handbuch im DIN A5 Ordner

0 3 doppelseitig beschriebene 3.5” Disketten
0 1 Bogen Aufkleber flr Funktionstasten

o 1 Software-Registrierkarte

o 1 Software-Lizenzvertrag

FOr die Installation bendtigen Sie als Mindestausstat—
tung:

0 512 kByte freien Hauptspeichers
0 720 kByte Massenspeicher
@ monochromen Monitor

Sie kénnen SPC-MODULA-2 auch auf einem MEGA
ST mit Blitter-TOS betreiben. Eine Festplatte ist fir ein
produktives Arbeiten sinnvoll. Bitte stellen Sie aber in
jedem Fall sicher, daB 512 kByte im Arbeitsspeicher
frei sind.

Die Diskette ist versiegelt. Bitte beachten Sie, daB Sie
mit dem Offnen der Diskette den Lizenzvertrag akzep-
tieren. Sie verpflichten sich darin ausdriicklich, dieses
Exemplar von SPC-MODULA-2 zu einer Zeit nur auf
einer CPU einzusetzen. Weiter stellen Sie sicher, daB
1hr Exemplar nicht auBerhalb der Lizenzbestimmungen

Kapitel 1

Lieferumfang

Vorberei-
tungen

Lizenzvereinbarung

SPC-MODULA-2 V1.4 Installation

Registrierung

Service Hotline

Serialisierung

Updates

eingesetzt wird, und benachrichtigen den Vertreiber,
falls Sie dennoch davon Kenntnis erhalten sollten.

Fullen Sie die Registrierkarte aus und schicken Sie sie
an den Vertreiber zurlick. Sie werden damit in die Liste
der registrierten Anwender aufgenommen und werden
automatisch Uber neue Versionen informiert. Wahrend
der Garantiezeit von 6 Monaten erhalten Sie Updates
gegen einen Unkostenbeitrag fur Porto und Verpack-
ung. Sollte Ihre Version schon zum Kaufdatum nicht
mehr aktuell sein, dann erhalten Sie nach Eingang der
Registrierkarte eine aktuelle Version.

Der Hersteller unterhalt eine Mailbox, Uber die der Ser-
vice von SPC MODULA-2 abgewickelt wird. Die Mail—
box kann mit einem 300 oder 1200 Baud Modem
(Akustikkoppler) erreicht werden. Die Modem—-Parame—
ter sind:

0= 0721 /700963, 300/1200bd, 8 Datenbits, keine Paritat

Ihr Exemplar von SPC MODULA-2 ist serialisiert, d.h.
daB die Software mit einer Seriennummer versehen ist.
Die Seriennummer ist in einer sogenannten Environ—
ment-Variablen gespeichert. Um zu verhindern, daf
die Seriennummer entfernt wird, wurde sie um einen
Seriencode ergéanzt. Seriennummer und SerienCode
stehen in einem bestimmten Zusammenhang und wer—
den von Zeit zu Zeit durch SPC MODULA-2 abgefragt.
Sie sollten deshalb nicht versuchen, die Nummer zu
verandern oder zu entfernen. lhre eigenen Programme
sind von Seriennummer und Seriencode selbst-
verstandlich unabhéangig. Seriennummer und Serien-
code sind auf lhrer Originaldiskette und auf dem Soft-
ware-Lizenzvertrag vermerkt. Bei jeder Korrespondenz
mit dem Vertreiber sollten Sie Seriennummer und
Seriencode angeben.

07 Updates werden immer ohne Seriennummer aus-—
geliefert. Sie missen deshalb selbst daflr Sorge

Installation SPC-MODULA-2 V1.4

tragen, daB nach dem Einspielen eines Updates das
Profile wieder die Seriennummer enthalt.

Die folgende Installationsprozedur wird von einem SPC
MODULA-2 Programm gesteuert, das sich auf der
Release-Diskette befindet. Das Programm will wissen,
auf welchem Laufwerk Sie SPC MODULA-2 installieren
wollen. Falls Sie SPC MODULA-2 ohne Harddisk be-
treiben wollen, dann missen Sie jetzt zunachst drei
Disketten doppelseitig formatieren. Falls Sie SPC
MODULA-2 auf einer Harddisk installieren méchten,
dann missen Sie eine Partition auswahlen, auf der
noch ca. 1MByte Speicher frei ist.

Gehen Sie nun wie folgt vor:

o Legen Sie die Diskette mit der Beschriftung "Disk 1 of
3" in Laufwerk A:

Offnen Sie den Ordner \SPC\USER
Starten Sie das Programm XSHELL.PRG
Kilcken Sie auf das Icon mit der Beschriftung "Install"

folgen Sie den Anweisungen des Programms bis zu
der Meldung, daB die Installation beendet ist.

[I R =

0> Verstauen Sie die Original-Disketten an einem
sicheren Ort.

Lesen Sie nun zunachst die Datei \SPC\README.1ST.
Sie enthélt letzte Informationen, die nicht im Handbuch
enthalten sind.

SPC MODULA-2 ist nun installiert. Die folgenden
Schritte sollen sicherstellen, daB die Installation erfolg-
reich war. Dazu werden Sie die wesentlichen Kom-
ponenten des Systems kurz kennen lermen. &ffnen Sie
nun das Laufwerk oder die Partition, auf der SPC
MODULA-2 installiert wurde. Der Ordner \SPC enthalt
den ganzen Release. Um neue Versionen ohne Pro-

Installation

INSTALL.OBM

README.1ST

Prufen der
Installation

SPC MODULA-2

starten

xShell

Command Files Touls Utils Jobs

bleme einspielen zu kodnnen, sollten Sie keine eigenen
Dateien in dem Ordner \SPC anlegen. Im Ordner \SPC
befinden sich mehrere weitere Ordner, von denen im
Moment der Ordner \SPC\USER von Interesse ist. Off-
nen Sie diesen Ordner.

Sie finden in dem Ordner das Programm XSHELL.PRG.
Starten Sie dieses Programm. Der Ladevorgang dauert,
wenn Sie mit Diskettenlaufwerken arbeiten, etwas Uber
eine halbe Minute. Danach wird der Desktop initialisiert
und zwei Fenster mit de Titeln "Terminal" und "xShell"
geodffnet. Wenn Sie schon etwas vertrauter mit
MODULA-2 sind, werden Sie wissen, daB Terminal
(bzw. InOut) die Standardein-/-ausgabe auf den
Bildschirm, bzw. von der Tastatur abwickelt. Die xShell
ist ein Programm, von dem aus Sie alle Werkzeuge
und Utilities des Systems komfortabel starten kdonnen.
Die Bedienung der Shell ist sehr einfach und in Kapitel
3 dieses Handbuchs ausfihrlich erlautert. Fur den

HELLO < e

e

e

o

o

-

* Fi\GEMDOS\ETC\HELLO.MOD opened
- Ei\gendos\STDLIB.obj\InOut,SBM
+ Fi\gemdos\ETC\Hello.RFM
+ Fi\gemdos\ETC\Hello.0BH 3388

Installation SPC-MODULA-2 V1.4

Moment verfahren Sie einfach so wie unten beschrie—
ben. Wir werden versuchen, das Programm
HELLO.MOD zu Ubersetzen und zu starten. Dabei ler-
nen Sie neben der xShell den Compiler, den Editor
und den Debugger kennen.

Sie sehen im Fenster der xShell ein Icon mit der Be-
schriftung "HELLO.MOD". Klicken Sie das Icon mit der
linken Maus-Taste. Es wird daraufhin invertiert dar-
gestelit. In der zweiten Icon-Reihe sehen Sie als zwei-
tes von links das Compiler—icon. Klicken Sie auch die-
ses mit der linken Maus-Taste.

Es wird jetzt der Compiler geladen. Der Fortgang
Ubersetzung wird im Terminal-Fenster protokolliert. Die
Ubersetzung wird nicht erfolgreich sein. Das ist normal,
denn die Datei enthdlt, so wie sie geliefert wird, einen
Fehler, den Sie als néachstes beheben sollen.

Inzwischen ist das Editor-Icon (duBerst linkes Icon der
zweiten Reihe) invers dargestellt. Dadurch zeigt die
xShell an, welches Kommando als nachstes vor-
geschlagen wird. Gleichzeitig ist immer noch das Icon
der Datei HELOO.MOD selektiert. Wenn Sie nun die
Lerrtaste (87ACE) drucken, akzeptieren Sie das
Default~-Kommando und der Editor wird gestartet.

Der Editor 6ffnet sofort die Datei HELLO.MOD und
stellt den Cursor auf die Stelle, an der der Fehler vom
Compiler erkannt wurde. Die Zahl 999 hinter dem
Semikolon ist offensichtlich fehlerhaft. Entfernen Sie
diese indem sie 3 mal “ACKE A0 drucken. Verlas—
sen Sie nun den Editor indem Sie die Taste "¢
dricken. Die Datei wird zurlickgeschrieben.

Starten Sie erneut den Compiler, indem Sie die Taste
SPALCT dricken, und damit das Default-Kommando
akzeptieren. So einfach ist das! Die Ubersetzung wird

diesmal erfolgreich sein, was daran zu erkennen ist,

HELLO.MOD

ubersetzen

editieren

SPC-MODULA-2 V1.4 Installation

HELLO.MOD starten

debuggen

Debgt File

daB der Compiler nicht mehr die Meldung ‘Errors
Detected’ ausgibt, sondern eine Zahl.

Nun wollen wir das Programm testen. Das Programm
wurde der Einfachheit halber schon als sogenannte
Utility installiert. Es ist deshalb auch als Icon in der
dritten lcon-Reihe vertreten. Zum Starten brauchen Sie
nur dieses lcon anzuklicken. Leider enthalt das Pro-
gramm auch einen Laufzeitfehler, so daB es abstirzen
wird. Die xShell wird dann automatisch den Debugger
starten.

Das Programm wird einen Count-Down von 10 bis 1
ausgeben, und dann einen Laufzeitfehler melden. In
der Dialog-Box klicken Sie nun bitte Debug an. Es
dauert einen kleinen Moment, bis der Debugger ge-
laden ist. Dieser offnet 3 Fenster auf dem Desktop. Im
oberen Fenster sehen Sie den Quelltext von

R

Source

+\GEMDOS\ETC\Hell0.MOD

Wait;

WriteInt (EvenNumber, 2); Writeln;
c:= x [EvenNunberl;

| IF EvenNumber = 0 THEN RETURN ELSE CountOdd (EvenNumber-1) END;
“END CountEven;

ROCEDURE CountOdd (OddNumber : INTEGER);

===CountEven
Mod{Eount0dd

==mCount0dd
‘ CnuntEven
¢ (CountOdd

in HelloffY CountEven
[N in Hello lgT pe = PROCEDURE
in Hello | JEvenNumber 8 INTEGER
in Hello |::fliEven -32768 INTEGER
in Hello !
in Hello o]

4

Installation SPC-MODULA-2 V1.4

HELLO.MOD und eine invers dargestellte Zeile. Sie
enthdlt das fehlerverursachende Statement. Im linken
Fenster sehen sie die Prozedur—Aufrufkette und die
Fehlerursache, namlich Index—/Range—-Check in diesem
Falle. Wenn Sie nochmals den Quelltext betrachten,
dann sehen Sie, daB der Fehler bei einem Zugriff auf
ein Array x aufgetreten ist. Der Index dabei war i. Die
Variablen und ihre Werte sehen Sie im rechten Fenster.
Der Inhalt von i ist 0. Der Grund fur einen Fehler liegt
darin, daB das Array x mit einem Indexbereich von 1
bis 10 erklart wurde und 0 deshalb unzulssig ist.

Wenn Sie nun -wie allgmein (blich- das File-Meni
anwahlen und darin den Eintrag Quit selektieren, dann
wird der Debugger verlassen.

Die xShell wird wieder die Dialog—Box zeigen, um zu
erfahren, was sie nun weiter mit dem fehlerhaften Pro—
gramm tun soll. Klicken Sie auf Abort um das Pro-
gramm abzubrechen.

Verlassen Sie anschlieBend die xShell, indem Sie die
Taste Q dricken. Die xShell bietet noch ein letztes
Formular an, in dem Sie Quit wahlen. Daraufhin wird
die xShell endgliltig verlassen.

0= Sollten Sie nicht wie beschrieben bis hierher gekom-
men sein, dann ist ihre Installation nicht gelungen.

Eventuell sind beim Einspielen der Dateien Fehler auf-
getreten. Mdglicherweise haben Sie nicht genligend
freien Speicher. Booten Sie ihren’ Rechner noch einmal
ohne Desktop-Accessories und versuchen Sie es noch
einmal. Es kann natirlich auch sein, daf ihre Disketten
defekt sind. In diesem Fall missen Sie sich an den
Handler oder direkt an die Firma Advanced Applica-
tions Viczena GmbH wenden.

xShell verlassen

fehlerhafte
Installation

SPC-MODULA-2 V1.4 Installation

SPC
MODULA-2
benutzen

eigene Projekte

weitere Ordner
anlegen

XSHELL.PRG als
Anwendung
anmelden

DESKTOP.INF
hacken

Sie haben die ganze Zeit in dem Ordner \SPC\USER
gearbeitet. Das war eine Ausnahme.

0 Normalerweise sollten Sie keine eigenen Dateien
unter \SPC anlegen, sondern sich neue Ordner
neben \SPC schaffen, in denen Sie lhre Projekte
organisieren.

Diesen Ordnern kdnnen Sie beliebige Namen geben
(nicht unbedingt USER). Flir den Anfang kopieren Sie
bitte den Ordner \SPC\USER auf das gleiche Laufwerk,
auf dem \SPC liegt, sodaB Sie dort mindestens die
beiden Ordner \SPC und \USER vorfinden. &ffnen Sie
den Ordner \USER und starten Sie noch einmal
XSHELL.PRG. Es sollte sich wieder die xShell melden.
Verlassen Sie die xShell wieder wie oben erlautert.

Wenn Sie schon erfahren im Umgang mit GEM sind,
kénnen Sie nun XSHELL.PRG als Anwendung fur Da-
teien mit der Endung .CNF anmelden.

0 Falls Sie noch nicht genigend mit GEM vertraut
sind, dann uUberspringen Sie diesen Abschnitt. Sie
kobnnen diesen Teil jederzeit auch spéater durchfih-
ren.

Sichern Sie die Arbeit. Starten Sie XSHELL.PRG,
driicken Sie die Taste -~ zum Editieren und wahlen Sie
in der Dateiauswahl-Box die Datei DESKTOP.INF auf
ihrem Boot-Laufwerk aus. Bewegen Sie den Cursor
nach unten bis zu der Zeile, in der XSHELL.PRG steht.
Bewegen Sie den Cursor nach rechts bis auf das Xvon
XSHELL und fugen Sie \SPC\USER)\ ein. Bitte beachten
Sie, daB der Editor das Zeichen \ ohne §hifl auf die
.» —-Taste auflegt. Tragen Sie vor
\SPC\USER\XSHELL.PRG den Namen des Laufwerks
ein, auf dem der Ordner \SPC abliegt, also z.B.: A:, B:
oder eine der Harddisk—Partitions.

Installation SPC-MODULA-2 V1.4

Wenn Sie absolut sicher sind, daB Sie alles richtig ge—
macht haben, dann verlassen Sie den Editor mit 4.

0= Falls Sie Zweifel haben, verlassen Sie den Editor mit
Snt =10 ohne die Datei zuriickzuschreiben. In
diesem Fall kommen Sie bitte zu einem spéteren
Zeitpunkt auf diesen Abschnitt zurtick. Uberspringen
Sie den Rest des Abschnittes.

Falls Sie DESKTOP.INF erfolgreich gehackt haben,
booten Sie lhr System und 6ffnen Sie wieder den Ord-
ner \USER. Ldschen Sie die Datei XSHELL.PRG und
6ffnen Sie (durch Doppelclick) PROFILE.CNF. In der
obersten Zeile ihres Bildschirmes sollte nun der Name
\SPC\USER\XSHELL.PRG erscheinen. Nach einiger Zeit
mufBl sich die xShell melden. Sie haben nun
XSHELL.PRG so montiert, daB sie die Datei nur noch
einmal auf ihrer Diskette halten midssen. In allen wei-
teren Ordnern, in denen Sie eigenstandige Projekte
abwickeln wollen, brauchen Sie nur noch die Datei
PROFILE.CNF. Die Bedeutung dieser Datei lernen Sie
in einem spéateren Kapitel.

Don’t Panic!

Anmeldung war
erfolgreich

i Cy\DESKTOPLINF: il
i a ., modes changed
06 00 60 FF A INTERNE € €]
68 62 08 FF C BOOTE € i
T 00 07 082 FF PAPIERKORBE €
F FF 04 @ ¥,%
D FF 81 € *,%¢ ;
G 03 FF *.PRGE € i
G B3 FF %,APPC € .
F 03 04 *,T0SE €
P 03 04 *,TTPC €
HG B3 B4 \SPC\USER\XSHELL.PRGE ¥,CNFC L
S
<] [S ol
SPC-MODULA-2 V1.4 Installation 1-9

weitere
Schritte

ein Arbeits-Directory
einrichten

SPC MODULA-2
starten

Richten Sie nun einen Ordner auBerhalb des Ordners
\SPC ein, auf dem Sie ihre ersten Programme entwick—
eln. Nennen Sie den Ordner vorldufig einfach \WORK.
Sie kénnen spéter weitere Ordner nach dem gleichen
Muster anlegen, um ihre Arbeiten zu strukturieren.
Kopieren Sie aus dem Ordner \SPC\USER die Datei
PROFILE.CNF. Falls Sie XSHELL.PRG wie oben be-
schrieben als Anwendung montiert haben, sind Sie nun
fertig. Andernfalls missen Sie noch XSHELL.PRG auf
den Ordner \WORK kopieren.

Falls XSHELL.PRG angemeldet ist, kbnnen Sie SPC-
MODULA-2 nun durch Doppel-Klicken von PRO-
FILE.CNF starten. Wenn Sie XSHELL.PRG nicht an-
gemeldet haben, dann starten Sie SPC MODULA-2
vorerst durch Klicken von .PRG. Sie kbnnen dann spa-
ter die Anmeldung durchfihren, um nicht in jedem
Ihrer Ordner immer SHELL.PRG halten zu missen.

1-10

Installation SPC-MODULA-2 V1.4

EinfGhrung in SPC
MODULA-2

Das folgende Kapitel erlautert die besonderen Merk-
male von MODULA-2 als Programmiersprache sowie
die von SPC MODULA-2 als Sprachsystem.

Die Programmiersprache MODULA-2 ist der Nachfolger
von PASCAL. Beide Sprachen wurden von N.Wirth an
der ETH Zirich entwickelt. Gegenliber PASCAL zeich—
net sich MODULA-2 durch Verbesserungen aus, die 4
Kategorien zugeordnet werden konnen:

a Modulkonzept

0 maschinen- bzw. systemnahe Elemente
o Prozedurtyp

0O syntaktische Uberarbeitungen

Die Sprachdefinition von MODULA-2 wird derzeit durch
Wirth’'s Buch "Programming in MODULA-2" gegeben.
Allerdings bleiben einige nicht unwesentliche Details
ungeklart, so daB sich verschiedene Implemen-
tierungen der Sprache durchaus unterscheiden kodnnen.
Da groBten Unterschiede ergeben sich jedoch durch
den Umfang und die Schnittstellen der zum Sprach-
system gehorenden Standard-Bibliotheken.

Die international Standardisierungs—Organisation SO
befaBt sich zur Zeit mit der Normung von MODULA-2.
Es wird damit gerechnet, daB die Norm Ende 1989
vorliegt. SPC MODULA-2 wird dann natirlich der ge-
normten Sprachdefinition entsprechen.

Kapitel 2

Ubersicht

Unterschiede
gegeniber PASCAL

Unterschiede von
MODULA-2
Implementierungen

Normung von
MODULA-2

SPC MODULA-2 V14 EinfGhrung

Modul-
Konzept

Schnittstelle und
Implementierung

Reduktion der
Programm-—
komplexitat

Das Modulkonzept ist die wichtigste Verbesserung von
MODULA-2 gegenliber seinem Vorganger PASCAL.
Erst durch ein Modulkonzept wird eine Sprache fur
groBe Softwareprojekte brauchbar. Das Modulkonzept
ermoglicht es namlich, Schnittstellen zwischen ver—
schiedenen Systemteilen festzuschreiben, und ihre
Einhaltung durch den Compiler bzw. den Lader prifen
zu lassen. Dadurch. kébnnen mehrere Entwickler an
einem groBen System arbeiten. Jeder Entwickler er—
stellt und testet einen, durch klare Schnittstellen be-
schriebenen Modul (oder mehrere). Die Herstellung
eines Moduls bezeichnet man als seine Implemen-
tierung - im Gegensatz zu seiner Schnittstelle, seiner
Definition. ‘

Wie ein Modul implementiert ist, d.h. wie er die von
der Schnittstelle geforderte Leistung erbringt, interes—
siert i.a. auBerhalb des Moduls nicht, da der Modul
durch seine Schnittstelle ausreichend beschrieben ist.
Es liegt also nahe, die Beschreibung der Schnittstelle
von der Implementierung zu trennen. Die Schnittstelle
bezeichnet man in MODULA-2 als einen DEFINITION
MODULE. Die Implementierung heiBt IMPLEMENTA-
TION MODULE. Beide Teile werden getrennt Ubersetzt.
Der DEFINITION MODULE kann insbesondere schon
Ubersetzt werden, ohne daB die Implementierung steht.
Mehrere Entwickler kbnnen also mit ihrer Arbeit begin-
nen, sobald die Schnittstellen der zu realisierenden
Moduln definiert sind. In groBen Projekten ist dies ein
wichtiger Faktor.

Aber auch, wenn man alleine an einem Softwaresystem
arbeitet, ist die Modularisierung wichtig. Die
Schnittstelle eines Moduls ist ndmlich wesentlich weni-
ger komplex als seine Implementierung. Andererseits
beinhaltet sie alles wesentliche eines Moduls, namlich
seine Leistungsbeschreibung. Ein gr6Beres System
wird deshalb leichter durchschaubar und besser wart—
bar. Da alle Teile einzeln Ubersetzt werden koénnen,

Einfuhrung SPC MODULA-2 V1.4

sind alle Ladezeiten kiirzer, der Editierzyklus also
kurzer.

Last not least ist natirlich anzumerken, daB bei geeig-
neter Modularisierung Softwarebausteine (oder auch
Software-Chips) entstehen, die in anderen Projekten
wieder verwendet werden kdnnen. Der Festlegung von
Modulschnittstellen kommt deshalb besondere Bedeu-
tung zu, und Sie soliten sich niemals scheuen, eine fur
ungunstig befundene Schnittstelle zu Uberarbeiten,
auch wenn dies mit Arbeit verbunden ist, die sich fir
den Moment nicht auszuzahlen scheint.

Beispiele fir wiederverwendbare Softwarebausteine fin-
den sich in der MODULA-2 Standardbibliothek. Diese
Moduln werden von den Werkzeugen des Sprach-
systems verwendet, stehen aber auch den Anwen-
dungsprogrammen zur Verfugung. Die Standard-
bibliothek hat ihren Namen daher, daB3 sie Dienste be-
reitstellt, die standardmasig in allen MODULA-2 Imple-
mentierungen angeboten werden sollen. Programme,
die nur solche Dienste verwenden, sind dann offen-
sichtlich portabel, d.h. sie kbnnen leicht von einer
MODULA-2 Implementierung auf eine andere ubertra—
gen werden. Fur fast jeden professionellen Soft-
wareentwickler ist dies eine wichtige Eigenschaft, denn
ein Programm, das auf vielen Systemen angeboten
werden kann, ist bestimmt mehr wert, als eines, das
nur flr eine einzige Maschine zu haben ist.

Programme, die nicht portabel sind, nennt man
systemabhéangig, denn sie verwenden Dienste, die nur
auf dem betreffenden System zur Verfigung stehen.
Solche Dienste werden von den Moduln der System-
bibliothek zur Verfugung gestellt. Auf dem ATARI ST
z.B. enthélt sie die Moduln zur direkten Ansprache des
GEMDOS, des AES und des VDI. Programme, die
diese Moduln verwenden, also auf ihre Schnittstellen
Bezug nehmen, sind nicht ohne weiteres auf andere
Rechner Ubertragbar. Da ein Programm i.a. in mehrere
Moduln zerfallt, muB man *derartige Betrachtungen

wiederverwendbare
Softwarebausteine

Standardbibliothek

systemabhéngige
Moduln

SPC MODULA-2 V1.4 Einfihrung

Systemabhéangig-
keiten isolieren

leider kein
Bibliotheksstandard

systemnahe
Elemente

eigentlich auf die einzelnen -Moduln anwenden. Man
muB deshalb auch nicht gleich das Kind mit dem Bade
ausschitten, wenn man einen systemabhéngigen
Modul verwenden will. Vielmehr wird man versuchen,
die Systemabhangigkeiten in einen oder wenige
Moduln zu konzentrieren, sodaB im Falle eines Falles
nur diese wenigen Moduln anzupassen sind.

Wenn Sie nun die Dienste der Standardbibliothek be-
trachten, dann werden Sie feststellen, daB diese bei
verschiedenen MODULA-2 Implementierungen gering—
fugige Unterschiede aufweisen. Das liegt daran, daf
MODULA-2 momentan noch nicht standardisiert ist.
Erst wenn der MODULA-2 Standard zumindest als
endgdultiger Normvorschlag vorliegt, kann man davon
ausgehen, daB alle MODULA-2 Implementierungen die
gleichen Standard-Bibliotheken bereitstellen.

Systemabhéngige Programme sind nun nicht 2wangs-—
laufig zweitklassige Programme. Vielmehr muf3 es auch
systemabhangige Programme geben, man denke nur
an Betriebssysteme, grafische Subsysteme, etc. Sie
soliten nur immer darauf achten, nicht ein ganzes
groBes Programm durchweg systemabhéngig zu
machen. Wenn Sie nun aber systemabhangige Moduln
schreiben, dann werden Sie Elemente zur maschinen-
nahen Programmierung bendétigen. Dazu gehért z.B.
der Zugriff auf Registerinhalte, der direkte Zugriff auf
bestimmte Speicherstellen und tberhaupt das Vorhan-
densein von Datentypen wie Adressen, Worten, Bytes.
Diese Elemente haben ebenso wie das Modulkonzept
in PASCAL vollkommen gefehlt, denn PASCAL war ur—
spriinglich fur die Ausbildung von Studenten der Infor-
matik entwickelt worden. Fur Ausbildungsaufgaben
hatte man solche maschinennahen Elemente nicht fur
nétig befunden. MODULA-2 tradgt auch hierin moder-
nen Anforderungen Rechnung und rundet die

Einfuhrung SPC MODULA-2 V1.4

Leistungsfahigkeit der Sprache nach unten ab (Anm.:
unten ist bei einem Softwaresystem immer da, wo die
Maschine ist, oben ist da wo die Anwendung ist).

Die Einfihrung eines Prozedurtyps erlaubt es, Pro-
zedurvariablen zu vereinbaren und Prozeduren an sie
zuzuweisen. Die Prozedurvariablen kénnen Uber Para—
meterschnittstellen transportiert und auch sonst wir alle
anderen Variablen behandelt werden. Mit Prozedur—
variablen sind Konstruktionen realisierbar, die in PAS—
CAL oder anderen Sprachen sehr viel umstandlicher zu
programmieren waren.

Abgesehen von dem Modulkonzept, dem Prozedurtyp
und den maschinennahen Elementen unterscheidet
sich MODULA-2 von PASCAL noch durch einige syn-
taktische Anderungen, die hauptsichlich auf Straf-
fungen der PASCAL-Syntax hinauslaufen. Die Kom-
paktheit von PASCAL ist dabei erhalten geblieben.
Kompaktheit einer Programmiersprache hei3t, daB sie
ihnre ganze Leistungsfahigkeit Gber einige wenige Kon-
zepte bereitstellt. Das hat den Vorteil, da Compiler fir
die Sprache leichter zu implementieren sind, und sich
die Sprache deshalb schnell verbreiten kann. Ein wei-
terer Aspekt der Kompaktheit ist, daf die Sprache
leichter zu erlernen ist. Wie schon PASCAL hat N.Wirth
auch die Sprache MODULA-2 in einem kleinen Buch
beschrieben (“Programming in MODULA-2, Springer).
Die formale Sprachbeschreibung umfait darin nur 60
Seiten, weitere 140 Seiten sind einer weniger formalen
EinfUhrung und Beispielen gewidmet.

Prozedurtyp

syntaktische
Straffungen

Kompaktheit

SPC MODULA-2 V1.4 Einfihrung

Zielgruppe
von
MODULA-2

wie Sie anfangen

Zusammenfassend |aBt sich Uber die Sprache
MODULA-2 sagen:

o jeder PASCAL-Programmierer kann an einem langen
Wochenende MODULA-2 erlernen.

DO jeder Programmierneuling findet in MODULA-2 eine
Sprache, die wegen ihrer Kompaktheit und strukturel—
len Kilarheit gut als Lernsprache geeignet ist. SPC
MODULA-2 enthalt zudem einen vollstandigen Pro—
grammierkurs

o gerade fur groBe Programmsysteme ist MODULA-2
gut geeignet, da das Modulkonzept zu besser
strukturierten Programmen fuhrt.

o MODULA-2 wird keine Dialekte wie PASCAL nétig
haben, da alle Erweiterungen als Modulschnittstellen
formuliert werden kénnen.

o Nach der Normung von MODULA-2 wird die Erstel-
lung portabler Programme optimal unterstitzt.

o Selbst fur systemnahe Programme ist MODULA-2
geeignet, da es uUber maschinennahe Elemente
verfugt.

Wenn Sie noch keine Programmiererfahrung besitzen,
dann werden Sie zunidchst kleine Programme schrei-
ben, und keine maschinennahen Sprachelemente ver-
wenden. Sie kommen dann meist mit den Diensten der
Standard-Bibliothek aus. In einem spéateren Kapitel
werden Sie Gelegenheit haben, ein kleines Programm
unter Anleitung zu erstellen. Zundchst sollten Sie sich
mit den Werkzeugen des Sprachsystems vertraut
machen. Dazu sind einige Bemerkungen zum Aufbau
des SPC MODULA-2 Systems erforderlich.

Einfihrung SPC MODULA-2 V1.4

Die folgenden Abschnitte beschreiben den Aufbau und
die Besonderheiten des SPC MODULA-2 Sprach-
systems gegenuber anderen Implementierungen von
MODULA-2.

Normalerweise mussen Programmteile, die einzeln
Ubersetzt wurden, vor der Ausfuhrung zu einem Ge-
samtprogramm gebunden werden. Dazu wird ein
Binder (engl. Linker) benitzt, der als Ausgabe eine
vom Betriebssystem ladbare Datei enthélt. Der Binde-
vorgang fugt also lhre Programmteile mit verschie—
denen Bibliotheks—Moduln zusammen. Je nach GréRe
des Programms kann das Binden durchaus 5-10
Minuten in Anspruch nehmen.

Bei SPC MODULA-2 kdnnen Sie das Binden verges—
sen. SPC MODULA-2 fiuhrt ein sogenanntes dynami-
sches Binden wahrend des Ladens von Moduln aus.
Dazu hat es einen speziellen Lader. Dieser stellt die
Verbindungen zwischen den Moduln dynamisch (d.h.
beim Laden) her, und zwar viel schneller, als das ein
normaler Binder kann. Der Lader ist ein normaler
Modul, der von jedem anderen Modul benutzt werden
kann. Sie kOnnen sich also auch leicht selbst eine
Shell schreiben, oder in ihren Programmen den Lader
benutzen, um nicht immer das ganze Programm im
Hauptspeicher halten zu mussen.

Natdrlich enthalt SPC MODULA-2 auch einen konven-
tionellen Binder, der aus lhren Programmen eigenstan—
dige, unter GEM ausfuhrbare Programme macht. Die-
sen benutzen Sie aber erst am Ende Ihrer Entwicklung,
und zwar ohne daB dadurch Anderungen in threm Pro-
gramm notig werden.

Da ein Programm normalerweise aus vielen Moduln
besteht, muB der Lader bzw. der Linker i.a. mehrere
Dateien laden. Die Dateien, werden in verschiedenen
Ordnern gesucht. Die Aufteilung aller vorhandenen
Moduln in Ordner schafft eine Struktur innerhalb der
Moduln. Im Lieferumfang sind die Moduln auf flnf

Features von
SPC
MODULA-2

Aufgaben eines
Linkers

dynamisches Binden

der dynamisch
bindende Lader

der Linker

den Modulvorrat
strukturieren

SPC MODULA-2 V1.4 Einfihrung

die STDLIB

InOut

Terminal

Ordner verteilt:

0 USER in diesem Ordner liegen zwei kleine Testpro-
gramme, die Sie schon zur Installation benttzt haben.

0 SYSLIB enthalt alle die Moduln, deren Schnittstellen
systemabhangig sind.

o SPCLIB enthdlt Moduin, die sie nur bei SPC
MODULA-2 finden werden, deren Schnittstellen
jedoch nicht systemabhéangig sind.

o STDLIB enthalt die Moduln der MODULA-2
Standardbibliotheken.

o UTILITY enthalt die Hilfsprogramme des Sprach-
systems wie Editor, Compiler, Debugger.

Fur thre ersten Programme sind die Moduln der
Standardbibliothek STDLIB von Bedeutung. Sie enthal-
ten alles, was man braucht, um “konventionelle” Pro-
gramme zu schreiben. Die Leistungen der Moduln der
STDLIB sollen kurz umrissen werden. Eine ausfihrliche
Beschreibung erfolgt an anderer Stelle.

InOut unterstitzt die formattierte Ein— und Ausgabe auf
dem Standardein- bzw. -—ausgabegerat des Sprach-
systems. Dieses ist normalerweise das Terminal.
Jedoch kdnnen Eingabe und Ausgabe auf andere Ge-
rate (Dateien) umgelegt werden. InOut ersetzt die aus
PASCAL bekannten Standarddateien INPUT und OUT-
PUT.

Die elementare Ansprache des interaktiven Terminals
wird vom Modul Terminal geleistet. InOut verwendet
normalerweise diesen Modul, um Zeichen auf das Ter-
minal auszugeben, oder von diesem (bzw. seiner
Tastatur) einzulesen. Im Gegensatz zu InOut bietet
Terminal nur rohe Funktionalitdt und keine Forma-
tierungsfunktionen.

EinfUhrung SPC MODULA-2 V1.4

Ein ByteStream ist ein Strom von Bytes, der vom Pro-
gramm zu einem Gerdt (oder Datei) flieBt, oder um-
gekehrt. Die innere Struktur eines Byte Stream ist nur
dem Anwendungsprogramm bekannt. Der Modul der
STDLIB stellt —neben &ffnen und SchlieBen— nur
Funktionen zum Lesen und Schreiben von Bytes und
Worten bereit. Ein ByteStream kann von und zum Ter-
minal, zum Drucker und von und zu Dateien gehen.

Das Pendant zu ByteStream ist TextStream. Ein Text-
Stream hat eine innere Struktur. Er enth< druckbare
Zeichen, die als Strings, Zahlen oder nur Zeichen for-
matiert sein konnen. Darlberhinaus enthdlt ein Text-
Stream Zeilenende-Zeichen, die von TextStreams auf
das jeweilige Gerat abgebildet werden. InOut ist Gber
zwei TextStreams (INPUT und OUTPUT) realisiert.

Einen direkteren Durchgriff auf das Dateiensystem er—
laubt der Modul FileSystem. Eine Datei von FileSystem
ist im Prinzip ein ByteStream. FileSystem enthalt aus
den Funktionen eines ByteStream solche, um Dateien
umzubennen oder zu loschen.

Die Schnittstelle von FileSystem ist von der Directory-
Struktur des Betriebs unabhangig, indem der Da-
teiname ohne weitere Interpretation an das Betriebs-
system durchgereicht wird. Viele Programme benotigen
jedoch Operationen auf Directories (Ordnern). Sie wer—
den vom Modul Directories bereitgestelit.

Wie fur das Terminal gibt es auch fir den Drucker eine
elementare Schnittstelle. Die in SPC MODULA-2 an-
gebotene Schnittstelle geht allerdings uber das Ele-
mentare weit hinaus. Sie konnen die Druckeranpassung
von !stWord benutzen, um lhren Drucker optimal an—
zusteuern.

Die Darstellung von Uhrzeit und Datum ist auf ver—
schiedenen Rechnern unterschiedlich. Clock verdeckt
diese Unterschiede und konvertiert die system-
abhéngige Darstellung in eine systemunabhangige. Der

ByteStreams

TextStreams

FileSystem

HFS

(Hierarchical File
System)

Printer

Clock

SPC MODULA-2 V1.4 Einflhrung

MathLib und
LMathLib

Strings

NumberConversions

RealConversions

Storage

Coroutines

Modul enthalt Funktionen zum Abfragen und Setzen
der Systemzeit.

MODULA-2 enthalt keine eingebauten (intrinsic) Funk—
tionen fur die hdéheren mathematischen Funktionen.
Diese werdem vom Modul MathLib bereitgestellt. Die
Floating—Point-Arithmetik in SPC MODULA-2 folgt dem
IEEE Floatingpoint-Standard. Alle Operatoren werden
in Single und als Double Precision bereitgestellit.

Die Verarbeitung von Zeichenketten ist in MODULA-2
ebenfalls auf einen Modul der Standardbibliothek ver—
lagert worden. Strings in MODULA-2 sind beliebige
ARRAY OF CHAR. Das Ende eines Strings wird immer
durch ein NUL-Zeichen (0C) angegeben.

Das formatierten von Zahlen zu Strings und das Deko-
dieren von Strings zu Zahlen werden durch den Modul
NumberConversions bereitgestelit.

Die Formattierung von Gleitkomma-Zahlen wird
Ublicherweise getrennt von NumberConversions bereit—
gestellt um nicht jedes Programm mit den Moduln der
Floarting—Point—Arithmetik zu belasten..

Ahnlich wie in PASCAL ist es auch in MODULA-2
moglich, dynamische Datenstrukturen auf einem
sogenannten Heap anzulegen. Die Funktionen zum Er-
zeugen und Ld&schen solcher Datenstrukturen ist in
MODULA-2 auf den Standardmodul Storage ausgela-
gert worden.

MODULA-2 enthélt ein Konzept, welches in einge-
schranktem MaBe nebenlaufige Prozesse zu program-
mieren erlaubt. Diese Prozesse werden Koroutinen ge-
nannt. Gegenuber konkurrierenden Prozessen von
Multitask—-Betriebssystemen kdnnen Koroutinen nicht
vom System unterbrochen werden, um eine andere
Koroutine fortzufiihren (z.B. nach Ablauf einer Zeit-
scheibe). Koroutinen geben immer von sich aus die
Kontrolle an eine andere Koroutine weiter. Das Korou—
tinenkonzept war zunéchst integraler Bestandteil der

2-10

Einfuhrung SPC MODULA-2 V1.4

Sprache. Es wurde jedoch an der ETH Zirich erkannt,
daB Koroutinen auch GUber eine Modulschnittstelle rea-
lisierbar sind, was den Vorteil hat, daB der Compiler
weiter entlastet wird. SPC MODULA-2 folgt diesem
Trend und stellt die Funktionalitdt von Koroutinen Gber
den Modul Coroutines bereit.

Zwischen den durch den (de facto) MODULA-2
Standard definierten Moduln und den systemabhangi-
gen Moduln gibt es eine weitere Schicht von Moduln,
die allerdings in anderen MODULA-2 Implemen-
tierungen Ublicherweise nicht bereitgestellt werden. Sie
sind deshalb SPC-spezifisch und folgerichtig in der
SPCLIB untergebracht.

Wer mit Koroutinen nebenlaufige Prozesse realisieren
will, wird eine Funktionalitdt ben6tigen, die Uber den
elementaren Umfang von Coroutines hinausgeht. Dazu
gehoren z.B. Warteschlangen und Semaphore.

SPC MODULA-2 stellt sogenannte Environment-Varia—
blen zur Verfigung. Uber sie werden z.B. Optionen
gesetzt oder Grundeinstellungen festgelegt. Alle
Environment-Variablen werden bei Verlassen des
Systems auf eine Datei PROFILE.CNF gerettet und
beim néachsten Start wieder geladen.

Die Speicherung und Verwaltung von Textdateien wird
oft gebraucht und verursacht gewohnlich viel Program-
mier— und Testaufwand. SPC MODULA-2 stellt
standardmé&Big den Modul TextFiles bereit, der solche
Aufgaben Ubernimmt.

Die Leistungen der Standardmoduln zur Stringverarbei-
tung sind mitunter nicht ausreichend. SPC MODULA 2
stellt eine erweiterte String bibliothek (eXtendend
Strings) bereit, deren Funktionen flexibler und méacht-
iger sind als die der Standardmoduln.

die SPCLIB

Process

Envionment

TextFiles

XStr

SPC MODULA-2 V1.4 EinfGhrung

2-1

SEWIS

CmdLine

System

Moderne, interaktive Systeme benltzen fensterorien—
tierte Bedieneroberflachen, die normalerweise grafisch
orientiert sind, und mit der Maus bedient werden. GEM
ist nur ein Beispiel. X-Windows ist ein System, das in
Zukunft auf UNIX-Systemen anzutreffen sein wird.
Programme, die solche Fenstersysteme verwenden,
sind i.a. von dem jeweiligen System abhangig und
schlecht portierbar. Eir aufwendige Utilities ist dies ein
schwerer Nachteil. SSWiS steht fir Small Systems
Windowing Standard und soll eine systemunabhangige
Schnittstelle zu einem Fenstersystem bereitstellen, die
in Zukunft auch auf anderen Systemen verfligbar sein
wird. Den Konzepten und der Programmierung von
SSWIS ist ein eigenes Kapitel gewidmet.

Alle Utilities innerhalb des SPC MODULA-2 Sprach-
systems benutzen eine einheitlich aufgebaute Kom-
mandozeile zur Parameterubergabe. Die Ubergabe und
das Interpretieren der Kommandozeile wird vom Modul
CmdLine einheitlich unterstitzt.

Die Implementierung von SPC MODULA-2, insbeson-
dere die Organisation von Moduln im Hauptspeicher,
aber auch viele andere Details, sind im Modul System
implementiert. Bitte verwechseln Sie nicht System mit
dem Pseudo-Modul SYSTEM. Der Zugriff auf diese
Strukturen wird teilweise fur andere Modul bereit—
gestellt. Z.B. der Lader oder der Debugger benitzen
diese Funktionen.

2-12

Einflhrung SPC MODULA-2 V1.4

Die genannten obengenannten Moduln basieren natir-
lich auf systemabhangigen Moduln. Z.B. wird Terminal
auf ein GEM-Window abgebildet. Alle Ein—-Ausgabe-
Funktionen werden auf GEMDOS-Funktionen zuriick-
geflhrt, etc. Diese systemabhangigen Moduln sind in
dem Ordner SYSLIB zusammengefat. Sie sollten von
diesem Moduln sparsamen Gebrauch machen, da lhre
Programme damit systemabhangig werden. Die Moduin
werden hier nicht alle im Einzelnen aufgefthrt. Es han-
delt sich um

o Die Schnittstelien zum GEM-AES

Die Schnittstellen zum GEM-VDI

Die Schnittstelle zu den LineA-Funktionen

Die Schnittstelle zum GEMDOS

Die Schnittstelle zum BIOS

Die SChnittstelle zum XBIOS

0O 0O o0 o 0o

Es soll darauf hingewiesen werden, daB SPC
MODULA-2 eine elegante MoOglichkeit enthalt, Be-
triebssystemfunktionen uber Traps anzusteuern
(sogenannte CODE-Prozeduren). Es ist deshalb uUber-
haupt kein Problem, eigene Bindings -so hei3en die
Schnittstellen zu den Systemfunktionen- zu erstellen.

die SYSLIB

alle Bindings
verfugbar

eigene Bindings
erstellen

SPC MODULA-2 V1.4 Einflihrung

2-13

Diese Seite wurde aus
satztechnischen Grinden frei
gelassen.

2-14 EinfGhrung SPC MODULA-2 V1.4

Die xShell

Die Bedienung des SPC MODULA-2 Sprachsystems
erfolgt ab Version 1.4 Uber die xShell. Die xShell ist eine
grafische, auf SSWiS basierende Shell. Sie wurde
entwickelt, um die Softwareentwicklung mit SPC
MODULA-2 optimal zu unterstitzen.

Wahrend der Entwicklung von Software benutzt der
Entwickler i.a. mehrere Werkzeuge und Hilfsprogramme,
um Dateien verschiedenen Typs in bestimmter Weise zu
bearbeiten. Es gibt folglich zwei Kategorien von Objek—
ten, die wahrend der Entwicklung von Interesse sind:
Dateien und Werkzeuge.

Bei genauerer Betrachtung lassen sich die Werkzeuge
noch untergliedern in die priméren Sprachwerkzeuge,
Hilfsprogramme und Jobs. Alle zusammen werden im
folgenden Werkzeuge genannt und es wird nicht weiter
unterschieden, um welchen Typ es sich im einzelnen
handelt. Dies ist auf der Ebene der Benutzung von
Werkzeugen uber weite Strecken auch uninteressant.

Die Shell ist ein SPC MODULA-2 Programm, welches
direkt unter GEM ablauffahig ist. Alle Werkzeuge sind
SPC MODULA-2 Programme, die vom dynamischen
Lader hinzugeladen werden. Die Shell verwendet die
grafische Oberfliche von SSWiS und bietet damit die
Madglichkeit, mehrere Werkzeuge quasiparallel zu betrei-
ben, indem einfach zwischen den zu den Werkzeugen
gehtrenden Fenstern hin und her gewechselt wird. Fir
den Benutzer entsteht dadurch. der Eindruck eines
Multitasking—Systems, was natiirlich auf GEMDOS nicht
realisierbar ist. Fur die Softwareentwicklung bedeutet es
jedoch einen groBen Fortschritt, wenn mehrere Werk—
zeuge nebeneinander benutzbar sind, ohne daB man

Kapitel 3

Ubersicht

Design-ldee

Dateien, Werkzeuge,
Utilities und Jobs

Pseudo-
Multitasking

SPC MODULA-2 V1.4 Die xShell

eigene Ultilities
einbinden

Eigenschaften von
SSwiS

Einfihrung

Objekte

unmittelbare
Umgebung

mittelbare Um-
gebung

jeweils immmer erst eine Utility verlassen muB, bevor
man die nichste starten kann.

Es ist ohne weiteres mdoglich, weitere Utilities zu
entwickeln, die an diesem Pseudo-Multitasking teilneh-
men. Die einzige Bedingung ist, daB die Utilities in SPC
MODULA-2 geschrieben sind und SSWiS benitzen.
SSWiS ist nicht auf die Fensteranzahl von GEM limitiert,
sondern verwaltet bis zu 32 Fenster. Da aber SSWiS auf
GEM aufsetzt, kénnen maximal 6 Fenster wirklich
gedffnet sein, die restlichen werden als Icons auf dem
Desktop dargestellt und kénnen jederzeit gedffnet wer—
den. Weitere Einzelheiten (ber die Bedienung von
SSWIS Applikationen werden im Kapitel Gber SSWiS
behandelt.

Die Objekte der xShell werden in einem Fenster
dargestelit. Potentiell hat der Entwickler eine (fast)
beliebige Menge von Objekten im Zugriff. Insbesondere
die Anzahl der Dateien ist mitunter sehr groB. In der
praktischen Arbeit kommt man jedoch mit einer wesent-
lich geringerern Zahl aus; daflir méchte man auf diese
wenigen Dateien und Werkzeuge ohne groBe Umstande
zugreifen kbnnen. Es gibt also eine kleine, lberschau—
bare Menge von Objekten, die in der augenblicklichen
Entwicklungsphase von besonderer Bedeutung sind.
Diese sammeln sich im Laufe der Arbeit im Fenster der
xShell an und verbleiben dort, bis sie durch wichtigere
Objekte wieder verdrangt werden. Die Objekte, die sich
im xShell Fenster befinden werden im weiteren Verlauf
die (Objekte der) unmittelbaren Umgebung genannt. Alle
anderen Objekte, die natirlich auch zugreifbar sind,
gehoren zur mittelbaren Umgebung.

Objekte der mittelbaren Umgebung wechseln in die
unmittelbare Umgebung Uber, sobald sie erstmals ver—

Die xShell SPC MODULA-2 V1.4

wendet werden. Sie verbleiben in der unmittelbaren
Umgebung, bis sie entweder zugunsten anderer Objekte
verdrangt werden miussen, oder bis sie vom Benutzer
explizit entfernt werden. Selbst wenn die xShell verlas—
sen wird, um zum GEM Desktop zuriickzukehren,
werden die (Namen der) Objekte der unmittelbaren
Umgebung gespeichert. Bei einem neuerlichen Start
wird die unmittelbare Umgebung wieder hergestelit.

Wie werden nun die Objekte der unmittelbaren Um-
gebung benutzt? Die Werkzeuge, Utilities und Jobs
werden gestartet, indem man sie mit der Maus anklickt.

xShell Command Utils

Files Tools Jobs

die unmittelbare
Umgebung aufbauen

Objekte benutzen

Terninal

Ein gestartetes Werkzeug wird maskiert, da es nicht
noch einmal gestartet werden kann.

Werkzeuge benftigen i.a. Argumente, um sinnvolle
Arbeit zu verrichten. Normalerweise sind Dateien Ge-
genstand der Arbeit eines Werkzeuges. Ob ein Werk-
zeug Dateien als Argumente akzeptiert bzw. bendtigt,
kann eingestellt werden. Es soll vorerst davon aus-
gegangen werden, daf Argumente verlangt werden.

Argumente von
Werkzeugen

SPC MODULA-2 V1.4 Die xShell

Dateien selektieren

mehrere Argumente

wenn keine Datei
selektiert ist

standardisierte
Kommandozeile

Wenn eine Datei der unmittelbaren Umgebung selektiert
ist, dann wird der Name der Datei als Argument an das
aufgerufene Werkzeug Ubergeben. Selektierte Dateien
werden invers dargestellt. Eine Datei kann selektiert
werden, indem sie mit der Maus angeklickt wird. Es
kbnnen auch mehrere Dateien selektiert werden, dann
werden sie alle in der Reihenfolge ihrer Selektion an das
Werkzeug Ubergeben. Mehrere Dateien werden selek-
tiert, indem wahrend der Selektion die SHIFT Taste
gedruckt wird. Auf diese Weise wird eine sogenannte
erweiterte Selektion aufgebaut. Wird eine bereits selek—
tierte Datei mit gedriickter SHIFT Taste angeklickt, dann
wird sie aus der Selektion wieder entfernt. Natirlich
hangt es von dem aufgerufenen Werkzeug ab, ob es
Argumente akzeptiert. Auch der Typ und die Zahi der
zulassigen Argumente hangt von dem jeweiligen Werk-
zeug ab.

Wenn keine Datei der unmittelbaren Umgebung selek—
tiert ist, dann bietet die xShell (vorausgesetzt es werden
Argumente verlangt) eine Datei-Auswahi-Box an. Der
Benutzer kann dann eine beliebige Datei aus der
mittelbaren Umgebung auswahlen. Die ausgewahite
Datei wird alsdann in die unmittelbare Umgebung geholt
und bis auf weiteres im Fenster der xShell dargestelit.
Gleichzeitig wird die Datei selektiert und bleibt vorerst
selektiert. Die letzte Dateiauswahl wird gespeichert und
bei einer erneuten Dateiauswahl wieder als Vorschlags-
wert verwendet.

Die Werkzeuge werden mit einer standardisierten Kom-
mandozeile aufgerufen. Sie enthélt immer den Namen
des Werkzeuges. Darliberhinaus kénnen mehrerere Da—
teinamen als Argumente vertreten sein. Zuletzt kdnnen
noch Optionen angegeben werden. Das Format einer
Kommandozeile sieht damit so aus:

<Kommandozeile>::
<frgument> !
<0ption> H

Werkzeugname> {<Argument>} {<Option>}
' <Dateiname>
! '-1 <Qptionsbuchstabe> [<Zeichenkette>]

-=A

Die xShell SPC MODULA-2 V1.4

Naturlich bestimmt das Werkzeug selbst, ob und wieviele
Argumente und Optionen es akzeptiert, und welche
Bedeutung diesen jeweils zukommt. Das Format der
jeweiligen Kommandozeile ist deshalb bei den Werkzeu-
gen und Utilities selbst dokumentiert.

Die Dateinamen, welche als Argumente Ubergeben
werden, werden von der xShell aus der evtl. erweiterten
Selektion bestimmt. Die Optionen werden vom Bediener
eingestellt und bleiben i.a. wahrend der Arbeit fest. Dazu
wird das Icon, welches ein Werkzeug reprasentiert, bei
gedriickter ALTERNATE-Taste durch Doppelklick ge-—
Offnet. Es erscheint ein Formular, in dem zunéchst eine
Zeichenkette angegeben werden kann. Diese Zeichen—
kette bildet spater des Ende der Kommandozeile, d.h.
sie enthélt normalerweise die letzten Argumente und die
Optionen, oder sie ist leer.

Redefine tool/utility options
-y -r -oL

[_Hold [Files]

Weiterhin kann in dem Formular eingestellt werden, ob
das Werkzeug Dateinamen als Argumente akzeptiert.
Falls die Option gewdhit wird, Ubergibt die xShell auf
jeden Fall mindestens einen Dateinamen als Argument.
Eine weitere Option des Formulars erlaubt einzustellen,
ob das Werkzeug im Speicher gehalten werden soll. Flr
haufig bendtigte Werkzeuge bietet sich das an, um den
Startvorgang zu beschleunigen.

Die komplette, von xShell gebildete Komamndozeile wird
beim Start eines Werkzeuges in der Meldezeile des
Fensters eingeblendet. Nach Beendigung des Werkzeu-
ges wird in der Meldezeile ein Ergebnis angezeigt. Falls
das Programm nicht gestartet werden konnte, wird eine
Fehlermeldung des Laders ausgegeben.

Optionen

Dateiargumente
konfigurieren

Werkzeug im
Hauptspeicher
halten

Resultate anzeigen

SPC MODULA-2 V1.4 Die xShell

der Modul CmdLine

Bedienung

Starten

Terminal Fenster

Der Aufruf von Programmen durch eine Kommandozeile
ist unter SPC MODULA-2 Standard. Entsprechend gibt
es einen Modul, der die Behandlung der Standard-
Kommandozeile unterstitzt (CmdLine). Obwohl die
Kommandozeile in der xShell praktisch durch Selektieren
von Objekten interaktiv aufgebaut wird, handelt es sich
um eine Kommandozeile, wie man sie schon von den
klassischen, zeilenorientierten Shells her kennt. Fir ein
Werkzeug ist es vollkommen unerheblich, wie seine
Kommandozeile entstanden ist. Sie héatte genauso gut
als Text eingelesen werden kbénnen. Von dieser
Mdglichkeit wird Gebrauch gemacht, wenn mit der Batch
Funkion, die in die xShell integriert ist, automatisierte
Arbeitssequenzen erzeugt werden. -

Nach dieser Einfihrung in die Ideen und Konzepte der
xShell wird in den folgenden Abschnitten die Bedienung
im Detail erklart.

Die xShell ist ein SPC MODULA-2 Programm, das mit
dem Linker zu einem unter GEM ablauffahigen Pro-
gramm gemacht wurde (Namesendung .PRG). Das
Programm wird wie Ublich vom Desktop aus durch
Anklicken oder Offnen gestartet. Falls keine Fehler
auftreten, erscheint nach dem Start ein neuer Desktop
mit einer Uhr in der rechten oberen Ecke. Gleichzeitig
wird ein Fenster mit dem Titel Terminal er&ffnet. Uber
dieses Fenster wird spéter die Standard-Ein und Aus-
gabe von Programmen abgewickelt (Moduln Terminal
und InOut). Als néchstes 6ffnet die xShell ihr eigenes
Fenster mit dem Titel xShell. Fir jedes gedffnete Fenster
wurde am linken unteren Bildschirmrand beginnend ein
mit dem Fenstertitel beschrifteter Balken angelegt. Die
Funktion dieser Balken wird in der Beschreibung von
SSWiS erklart.

Die xShell SPC MODULA-2 V1.4

Wenn soweit alles fehlerfrei abgelaufen ist, dann zeigt
die xShell in ihrem Fenster die unmittelbare Umgebung
an, so wie sie zuletzt verlassen wurde. Falls Sie die
xShell zum ersten Male starten ist eine Voreinstellung
gewanhit.

Wenn sich die xShell nicht wie beschrieben starten 1a3t,
kann dies, insbesondere beim erstmaligen Starten,
mehrere Ursachen haben:

Es ist nicht genigend Hauptspeicher vorhanden Die
xShell wird mit einem 30 Kilobytes groBen Stack
geliefert, der der eigentlichen ProgrammgroBe noch
zugeschlagen werden muB. AuBerdem wird sofort ein
sogenannter Heap angelegt, der auch nicht kleiner als
20 kBytes sein darf. Falls Sie also vermuten, daB zu
wenig Speicher zur Verfigung steht, entfernen sie
testhalber geladene RAM-Disks und speicherintensive
Accessories. Bedenken Sie auch, was die Programme
benodtigen, die im AUTO Ordner gestartet werden. Mit
200 kBytes freien Speichers sollten Sie jedoch keine
Probleme haben, die xShell zu laden.

Die Einstellung der unmittelbaren Umgebung sowie viele
andere Parameter werden unter SPC MODULA-2 als
sogenannte Environment-Variablen gehalten. Sie wer—
den bei Beendigung der Shell auf ein sogenanntes
Profile gerettet und bei einem neuerlichen Start wieder
geladen. Dadurch entféllt das lastige Neueinrichten,
wenn man zwischenzeitig aus irgendwelchen Grinden
zum GEM Desktop zuriickkehren mufBite. Das Profile mit
dem Namen PROFILE.CNF wird im aktuellen Ordner
gesucht. Falls es da nicht gefunden wurde, wird es im
Waurzelverzeichnis des aktuellen Laufwerks gesucht. Falls
das Profile nicht gefunden wurde, kénnen verschiedene
Einstellungen nicht vorgenommen werden, und es wird
eine Warnmeldung ausgegeben.

Die xShell benltzt ein sogenanntes Resource File mit
Namen XSHELL.RSC, das die Grafiken enthalt. Diese
Datei wird in dem Ordner \SPC\MISC auf dem Laufwerk

xShell Fenster

wenn Fehler
auftreten

zu wenig freier
Speicher

das Profile wird nicht
gefunden

das RSC File wird
nicht gefunden

SPC MODULA-2 V1.4 Die xShell

Werkzeuge
starten

cm B Q3

Compile

wenn keine Datei
selektiert ist

Optionen

Bedienung Uber
Menus

Bedienung Uber
Tastatur

erwartet, von dem die xShell geladen wurde. Falls die
Datei dort nicht gefunden wurde, wird ebenfalls eine
Warnmeldung ausgegeben und das Programm terminiert
sofort wieder.

Werkzeuge werden in der xShell durch Anklicken des
entsprechenden lcons gestartet. Falls das Werkzeug
Datei-Argumente verlangt werden die selektierten Da-
teinamen Ubergeben, oder es wird durch eine Datei—
Auswahl-Box ein neuer Dateiname erfragt. Dieser wird
dann in die unmittelbare Umgebung Gbernommen. Die
Bedienung der Datei—Auswahl-Box ist in der zu lhrem
Computer gehérenden Dokumentation beschrieben. Das

1 B OB M

K Filer Print Debus

cls
5L99

Icon eines gestarteten Werkzeuges wird maskiert, um
anzudeuten, daB das Werkzeug nicht noch einmal

- gestartet werden kann. Zusammen mit den Argumenten

werden beim Start eines Werkzeuges seine konfigurier—
ten Optionen (bergeben. Die libergebene Kommando-
zeile wird in der Meldezeile des xShell Fensters an-
gezeigt.

Werkzeuge, Utilities und Jobs der unmittelbaren Um-—
gebung kénnen auch (ber die Pull-Down-Meniis (Tools,
Utilities, Jobs) gestartet werden. Dazu wird einfach das
entsprechende Menl heruntergeklappt und das ge-
wiinschte Programm ausgewahit.

Eine letzte Methode gibt es fir die Standardwerkzeuge
von SPC MODULA-2. Neben dem jeweiligen Icon ist der
Anfangsbuchstabe des Programmnamens angegeben.
Wenn der Buchstabe Uber die Tastatur eingegeben wird,
wird das dazugehdrende Programm gestartet. Dies ist
sicher eine sehr effiziente Methode, die besonders beim

Die xShell SPC MODULA-2 V1.4

Wechsel zwischen Editor, Compiler und Linker zum
tragen kommt.

Damit nicht genug. Die Vereinfachung fir den normalen
Entwicklungszyklus geht noch weiter. Die xShell schlagt
namlich immer ein Werkzeug zum Aufruf vor. Das Icon
des Default-Werkzeuges ist invers dargestellt. Das
Default-Werkzeug kann durch Eingeben des Leer—
zeichens gestartet werden.

Beim Starten eines Werkzeuges kdnnen mehrere Pro-
bleme auftreten, die durch eine entsprechende Meldung
im xShell Fenster angezeigt werden:

Das Programm oder einer der dazu gehdérenden Moduln
wurde nicht gefunden. Der Lader, den die xShell zum
Nachladen von Programmen verwendet, sucht zu
ladende Moduln in verschiedenen Ordnern. Der Name
der Datei ergibt sich jeweils aus den ersten 8 Buchsta-
ben des Modulnamens. Die Namensendung ist .OBM.
Die Namen der Ordner, die der Lader durchsucht, sind in
Environment-Variablen gespeichert. Sie werden Lade-
pfade genannt. Weitere Einzelheiten sind im Abschnitt
Uber den Lader beschrieben. In der Grundeinstellung
sucht der Lader in den Ordnern

o .\ aktueller Ordner \SPC\UTILITY\ Ordner mit SPC
MODULA-2 Werkzeugen

o \SPC\SYSLIB\ Ordner mit systemabhéngigen Moduln

o \SPC\SPCLIB\ Ordner mit systemunabhéangigen,
SPC-spezifischen Moduin

o \SPC\STDLIB\ Ordner mit Standard—Moduin

Modulschlussel sind inkonsistent. MODULA-2 Moduin
beeinhalten einen sogenannten Modulschlissel, durch
den sichergestellt wird, daB nur solche Moduln mit—
einander geladen werden, deren Schnittstellen vom
Compiler auf Konsistenz {berpriift wurden. Stellt der
Lader eine Inkonsistenz fest, dann bricht er den Lade-
vorgang ab und entfernt die bis dahin geladenen Moduin
wieder aus dem Speicher. Mit den gelieferten Moduln

Default-Kommando

Fehler beim Starten
von Werkzeugen

ein Modul kann nicht
gefunden werden

sind die Ladepfade
richtig eingestelit

inkonsistente
Modulschliissel

SPC MODULA-2 V1.4 Die xShell

Lesefehler und
defekte Dateien

zu wenig freier
Speicher

zu viele Programme
gestartet

Fehler im gestarteten
Programm

sollten solche Fehler nicht auftreten. Bedenken Sie
jedoch, daB sie lhre eigenen Moduln neu Ubersetzen
mussen, wenn sie eine neue Version von SPC
MODULA-2 eingespielt haben.

Waéhrend des Ladens eines Programmes kdnnen natir—
lich Lesefehler durch defekte Disketten oder Dateien
auftreten. In einem solchen Fall soliten Sie der Ursache
zunéchst auf den Grund gehen, bevor Sie weiterarbeiten.
Meist deutet sich dadurch ein bevorstehender Datenver—
lust an. Lassen Sie es nicht soweit kommen, sondern
stellen Sie genau fest, was das Problem ist.

Es ist nicht mehr geniigend Speicher vorhanden um das
Werkzeug zu laden. Daflr kann es viele Griinde geben.
Zundchst kann es sein, daB sich schon zu viele
Werkzeuge im Speicher befinden, sei es deshalb, weil
sie alle aktiv sind, oder aber weil die Hold-Option
gewahit wurde. Wenn Sie die Shell kurz verlassen und
wieder neu starten, kénnen Sie feststellen, ob das das
Problem war. Moglicherweise steht aber auch aus
anderen Griinden nicht mehr geniigend Speicher fir
SPC-MODULA-2 zur Verfliigung. Griunde kdnnten z.B.
eine RAM-Disk, Accessories oder Programme im Auto-
Ordner sein. Die meisten SPC MODULA-2 Werkzeuge
belegen neben ihrem eigenen Code weiteren Speicher—
platz (z.B. der Editor fiir die geladenen Dateien). Auch
dies kénnte Ursache fir zu knappen Speicher sein.

Derzeit kdnnen bis zu 15 Programme nebeneinander
aktiv sein. Der Lader lehnt es ab, das 16. Programm zu
laden.

Uber die genannten Fehler hinaus konnen naturlich
weitere Fehler innerhalb des gestarteten Programms
selbst auftreten, z.B. falsche Argumente oder Optionen,
etc. Die moglichen Fehler sind bei den Werkzeugen
selbst dokumentiert.

3-10

Die xShell SPC MODULA-2 V1.4

Wenn sich in der unmittebaren Umgebung die momen-
tan benétigten Dateien angesammelt haben, brauchen
i.a. nur noch die lcons der Dateien selektiert zu werden,
um die Werkzeuge mit Argumenten zu versorgen. Genau
wie beim Start von Werkzeugen gibt es auch bei der
Selektion von Dateien mehrere Mdéglichkeiten. Zunéchst

|
HELLO .MOD

kénnen Dateien selektiert werden, indem das zugehdrige
Icon angeklickt wird. Das momentan selektierte lcon wird
dabei deselektiert, so daf im Normalfall immer nur ein
Icon selektiert ist. Es besteht jedoch auch die Moglich—
keit, mehrere Dateien zu selektieren, wenn beim An-
klicken gleichzeitig die SHIFT-Taste gedriickt wird. Ist
das mit gedrickter SHIFT-Taste selektierte Icon jedoch
gerade selektiert, dann wird es wieder deselektiert.

Alle Datei-Icons sind von 1 bis 8 durchnumeriert. Durch
Eingabe einer Zahl von 1 bis 8 wird die entsprechende
Datei selektiert.

“Auch uber ein Pull-Down-Meni (Files) kdénnen die
Dateien selektiert werden. Dazu wird das Mend herun-
tergeklappt und die gewunschte Datei ausgewaéhlt.

Dateien werden deselektiert, indem einfach in den leeren
Bereich des xShell Fensters geklickt wird. Dateien
werden aus der unmittelbaren Umgebung entfernt,
indem das lcon bei gedrickter SHIFT-Taste doppelt
angeklickt wird.

Falls sich schon acht Dateien in der unmittelbaren
Umgebung befinden, dann muB eine Datei wieder
entfernt werden. Die xShell bevorzugt in diesem Fall die
am langsten nicht mehr selektierte Datei. Es kann
deshalb sinnvoll sein, ab und zu aufzurdumen und
gezielt Dateien aus der unmittelbaren Umgebung zu
entfernen.

Dateien
selektieren

erweiterte Selektion

mit der Tastatur
selektieren

Uber Menus
selektieren

deselektieren und
abmelden

SPC MODULA-2 V14 Die xShell

3-11

Utilities

Die wichtigsten Sprachwerkzeuge sind in der zweiten
lconreihe im xShell-Fenster immer prasent, da davon
ausgegangen wird, daB sie standig zugreif-und benutz-
bar sein missen. In der dritten Iconreihe werden
Hilfsprogramme dargestellt, die im weitesten Sinne auch
zu den Werkzeugen gehéren, jedoch sind nie alle
vorhandenen Hilfsprogramme in der unmittelbaren Um-
gebung, sondern nur die, die vom Bediener dort
installiert wurden. Einmal installiert kénnen sie mit den
gleichen Methoden aufgerufen und parameteriert wer—
den, wie die primaren Sprachwerkzeuge.

- 2z -— -.— 2 -.— 2-—

Ny ey Dy Pyl Pty

PATHS

an- und abmelden

starten und
konfigurieren

HELLO DECOBM DUMP FPRELINK

Um eine Utility aus der mittelbaren in die unmittelbare
Umgebung zu holen muB sie installiert werden. Dazu
wird. im Commands—-Meni der Eintrag Inst Utility ge-
wahlt, oder einfach die Taste U gedriickt. Die xShell
erfragt dann Uiber eine Datei-Auswahl-Box den Namen
der Utility. Die Bedienung der Datei-Auswahl-Box ist in
der Dokumentation ihres Rechners beschrieben.

Nachdem ein Dateiname gewahit wurde, wird die Utility
installiert und als Icon mit einem groBen U im xShell-
Fenster dargestelit.

Falls schon acht Utilities installiert sind, wird die am
langsten nicht mehr benutzte Utility wieder entfernt. Alle
Einstellungen sind damit ebenfalls nicht mehr vorhan-
den. Es empfiehlt sich deshalb auch hier, ab und zu
aufzurdumen.

Utilities werdeﬁ, wenn sie einmal installiert sind, wie
Werkzeuge behandelt und bedient. Es ist flur den
Bediener dann auch nicht mehr wichtig, den Unterschied
zwischen Werkzeug und Utility zu kennen. Auch Utilities
werden mit einer Standard—-Kommandozeile parametriert

3-12

Die xShell SPC MODULA-2 V1.4

und die Kommandozeile ergibt sich nach den gleichen
Mechanismen wie die von Werkzeugen.

Man beachts, daB nach der Installation einer Utility noch
keine Optionen eingestellt sind. Optionen von Utilities
kénnen genauso wie die von Werkzeugen eingestelit
werden (s.0.), indem das Icon doppelt geklickt wird und
das daraufhin erscheinende Formular ausgefiillt wird.

Beim Start von Utilities kdnnen natirlich die gleichen
Fehler auftreten, die schon oben fir Werkzeuge be-
schrieben wurden. Der weitere Ablauf nach dem Start
einer Utility hangt natlrlich von der Utility selbst ab. Es
ist gute Praxis, bei eigenen Utilities nach den all-
gemeinen Konventionen die Standard—Kommandozeile
auszuwerten.

Optionen einstellen

Fehler beim Starten
von Utilities

SPC MODULA-2 V1.4 Die xShell

3-13

Jobs

Job Control
Language

MODULA-2 als JCL

Operatoren der
JCL-Ebene

der Modul JCL

Neben den priméren Sprachwerkzeugen und diversen
Utilities benutzt der Softwareentwickler i.a. sogenannte
Jobs. Jobs automatisieren kleinere Ablaufe. Meist wird
durch sie der Aufruf verschiedener Utilities gesteuert. Die
Ablaufe werden in einer Sprache, der Job Control
Language (JCL) beschrieben. Unter UNIX ist die JCL der
Programmiersprache C &hnlich, zumindest, was die
KontrolifluB—Konstrukte angeht.

Innerhalb des SPC MODULA-2 Sprachsystems wird
einfach MODULA-2 als JCL verwendet. Dadurch er-
geben sich einige bemerkenswerte Vorteile gegentber
anderen Ldsungen: '

0 der Software—Entwickler braucht nur eine Sprache zu
lernen.

0 es stehen alle Konstrukte von MODULA-2 zur
Verfugung.

o es stehen alle Bibliotheksfunktionen zur Formulierung
von Jobs zur Verfigung.

Auf der JCL-Ebene benétigt der Entwickler nattrlich im
wesentlichen andere Operatoren, als sie von einer
Programmiersprache bereitgestellt werden. Auf der JCL-
Ebene .werden z.B. Dateien kopiert und nicht Bytes
gelesen und geschrieben; oder es werden Programme
gestartet, weniger Prozeduren aufgerufen.

SPC MODULA-2 stellt diese Operatoren durch den
Modul JCL zur Verfigung. Das Starten von Programmen
ist durch den Lader ideal geldst und der Compiler sorgt
mit seiner Ubersetzungsgeschwindigkeit dafiir, daB ein
Job genauso schnell entwickelt werden kann, als wenn
er interpretiert wirde. Einige weitere Vorteile dieses
Verfahrens sind so wichtig, daB sie extra genannt
werden sollen:

0 jeder Job wird durch den Compiler auf seine
syntaktische Korrektheit gepriift, bevor er ausgefiihrt
wird.

O ein Job unterscheidet sich von auen nicht von
anderen Utilities und kann deshalb auch als Utility

3-14

Die xShell SPC MODULA-2 V1.4

installiert werden.

o die JCL-Operatoren stehen auch "normalen”
Programmen zur Verfigung.

Die Grenzen zwischen Job und Utility bzw. Programm
verschwimmen. Dies ist kein Nachteil, sondern be-
absichtigt. Lediglich die unterschiedliche Behandlung
durch die xShell macht den Unterschied zwischen Job
und Utility aus.

Wenn ein Job durch Anklicken gestartet wird, pruft die
xShell zunéachst anhand des Dateidatums, ob der Job
neu compiliert werden muB. Erst wenn die Ubersetzung
erfolgreich war, wird der Job selbst ausgefihrt. Ein Job
kann auch Uber das betreffende Menu gestartet werden.
AuBerdem sind sind die installierten Jobs auf die
Funktionstasten F1 bis F8 aufgelegt.

F1 Fa2
SINGLE HELLO

Ein Job wird installiert, indem entweder der Eintrag
Install Job im Commands—Meni selektiert wird, oder
indem die Taste J gedrickt wird.

Jobs konnen wie alle anderen Werkzeuge parametriert
werden, indem das Icon bei gedruckter ALTERNATE-
Taste doppelt geklickt wird. Danach kann das ubliche
Formular ausgefullt werden.

Ein Job wird editiert, indem das Icon durch Doppelklick
gedffnet wird. Es wird (wie beim Doppelklicken von
Dateien) implizit der Editor gestartet.

Man beachte, daB beim Starten von Jobs die gleichen
Fehlerbedingungen auftreten kGnnen, wie beim Starten
aller anderen Programme auch.

einen Job starten

einen Job installieren

einen Job para—
metrieren

einen Job editieren

Fehlerbedingungen

SPC MODULA-2 V1.4 Die xShell

3-15

weitere Moglich-
keiten

Textuelle
Kommandos

Kommandozeile
eingeben

zurlckliegende

Ein Job, der zufriedensteliend funktioniert und nicht
mehr geéndert werden muB, kann natirlich als Utility
installiert werden. Umgekehrt bietet es sich an, Pro-
gramme, die in Arbeit sind, einfach als Job anzumelden.

Die xShell bietet eine grafische Oberflache und Methodik
fur die Kommandoeingabe. Dabei werden jedoch die
vom Benutzer gegebenen grafischen Kommandos auf
textuelle Kommandozeilen zurickgefiihrt. Alle Utilities
interpretieren eine standardisierte Kommandozeile wie
sie vom Modul CmdLine unterstitzt wird.

Die xShell bietet nun neben der grafischen Methodik
auch die Gelegenheit, die Kommandozeile Uber die
Tastatur einzugeben. Dazu wird einfach die Taste ESC
gedriickt. Es erscheint ein Formular, in das die Kom-
mandozeile eingeben werden kann. Dabei wird die letzte
Kommandozeile vorgeschlagen.

Uber die Prev— und Next-Buttons kdnnen weiter zu-—
ruckliegende Kommandos aufgebléattert werden.

Kommandos
Redefine tool/utility options
-y - -o|
| _Hold |
[Cancel]
3-16 Die xShell SPC MODULA-2V1.4

Die Shell wird verlassen, indem im Commands—Meni
der Eintrag Quit gewéhit wird, oder indem uber die
Tastatur einfach ein Q eingegeben wird. Zur Sicherheit
wird Uiber ein Formular noch einmal nachgefragt, ob die
xShell wirklich verlassen werden soll.

Durch Anklicken von Quit wird die xShell dann endgiiltig
verlassen. Alle Environment-Variablen werden dabei auf
das Profile zurlickgeschrieben. Dies kann verhindert
werden, wenn statt Quit das Abandon-Feld geklickt wird.
Immer dann, wenn sie das Profile mit dem Editor
verdndert haben, sollten sie die xShell mit Abandon
verlassen.

xShell
verlassen

|
You are about to QUIT SHELL
L Ouit] [Aband | [Cancel |

Die xShell speichert die Inhalte der unmittelbaren
Umgebung in Environment-Variablen ab. Dazu wird eine
Environment-Variable XSH sowie bis zu 32 weitere
Variablen XSH1 bis XSH32 fiir jedes belegte Icon
benutzt.

Optionen

Environment-
Variablen

SPC MODULA-2 V1.4 Die xShell

3-17

Diese Seite wurde aus
satztechnischen Grinden frei
gelassen

3-18 Die xShell SPC MODULA-2 V1.4

Der Editor

SPC MODULA-2 enthélt einen fensterorientierten Edi-
tor, der neben allgemeinen Editierfunktionen weitere
Funktionen enthalt, die lhnen das Programmieren in
MODULA-2 etwas angenehmer gestalten sollen. Hierzu
zahlen insbesondere MaBnahmen, die das Editieren
selbst sowie die Fehlersuche beschleunigen. Es wurde
besonderer Wert darauf gelegt, daB héaufige kleine
Korrekturen besonders gut von der Hand gehen.

Der Editor erlaubt, mehrere Dateien gleichzeitig in ver—
schiedenen Fenstern zu editieren. Das ist bei der
MODULA-2 Programmierung besonders nitzlich, da
verschiedene Moduln in verschiedenen Dateien ablie—
gen. Bei der Programmierung hat man nun &fter Not-
wendigkeit, Schnittstellen zu anderen Moduln zu sich-
ten, oder Anderungen in verschiedenen Moduln einzu-
bringen.

Vom Compiler erzeugte Fehlermeldungen werden vom
Editor direkt im Quelltext mit einer Klartext—-Fehlermel-
dung angezeigt. Kommandos erlauben von einer Feh-
lerstelle zur nachsten zu springen.

Der Editor ist als SSWiS-Applikation realisiert. Seine
Bedienung ist deshalb zu wesentlichen Teilen auch im
Kapitel iber SSWiS beschrieben.

Kapitel 4

Ubersicht

mehrere Dateien
editieren

direkte Fehleran-
zeige

SPC MODULA-2 V1.4 Editor

den Editor
starten

existierende Datei
editieren

neue Datei anlegen

Cursorposition nach
dem Start

Der Editor wird von der xShell aus gestartet. Dazu wird
(s. Kapitel 3) einfach das Editor-Icon geklickt oder
Uber die Tastatur ein & eingegeben. Der Editor ist in
der xShell so konfiguriert, daB er Dateiargumente
akzeptiert. Falls also eine Datei selektiert war, dann
wird sofort diese Datei zum Editieren getffnet. Andern-
falls bietet die xShell eine Dateiauswahl-Box an, Gber
die eine neue Datei ausgewahlt werden kann. Diese
Datei wird anschlieBend editiert und gleichzeitig in die
unmittelbare Umgebung der xShell aufgenommen.

Falls die gewéhite Datei nicht existiert, wird ein leeres
Fenster gedffnet. Wenn Sie keine neue Datei editieren
wollen, dann kénnen Sie das Fenster mit SHIFT F10
wieder schlieBen.

Die Fenster des Editors kénnen wie gewohnt bedient
werden. Der Editor kann mehrere Dateien in verschie—
denen Fenstern 6ffnen. Wie Sie weitere Dateien &ffnen
kénnen, erfahren Sie weiter unten.

Falls die gerade geéffnete Datei dieselbe ist, die zu-
letzt editiert wurde, dann positioniert der Editor den
Cursor gleich an die zuletzt editierte Stelle und bléttert
die entsprechende Seite auf. Das erspart lhnen in den
meisten Féllen, die Stelle, an der Sie gerade arbeiten
immer wieder von neuem suchen zu missen. Die Zeile
bzw. Spalte, in der der Cursor steht, nennen wir im
folgenden die Cursorzeile bzw. die Cursorspalte. Der
Cursor bezeichnet die Stelle, an der Text in die Datei
eingegeben werden kann. Der Cursor ist als kleines
Dreieck reprasentiert.

Editor SPC MODULA-2 V1.4

Der Cursor kann mit den Pfeiltasten in alle vier Rich-
tungen bewegt werden. Wenn er an einem Fensterrand
angekommen ist, dann scrollit der Editor das Fenster
wenn moglich entsprechend weiter, so daB der Cursor
immer sichtbar bleibt. Die Pfeiltasten sind doppelt be-
legt. Werden die horizontalen Pfeiltasten zusammen mit
SHIFT gedrickt, dann springt der Cursor an den An-
fang bzw. an das Ende der Zeile. Werden die vertika—
len Pfeiltasten zusammen mit SHIFT gedriickt, dann
springt der Cursor 10 Zeilen in die gewahlte Richtung.

Wenn das Fenster mit den Scrollbalken weitergescrollt
wird, dann bleibt der Cursor an seiner Position stehen.
Er ist dann i.a. nicht mehr sichtbar. Will man an einer
neuen Stelle weiterarbeiten, dann muf man zuerst den
Cursor dorthin positionieren, indem man die Stelle mit
der Maus anklickt. Will man dagegen wieder an der
Stelle weiterarbeiten, an der der Cursor noch steht,
dann kann man durch Dricken der ESC-Taste die
entsprechende Seite wieder aufblattern. Diese Technik
ist besonders nitzlich, wenn man nur schnell eine an-
dere Stelle in der gleichen Datei sichten will.

Alle Eingaben der Tastatur erfolgen an der Cursorposi-
tion. Der Editor befindet sich normalerweise im Insert—
Modus, d.h. neue Zeichen werden eingegeben, indem
sie in den Text eingefligt werden. Im Replace-Modus
dagegen wird das Zeichen rechts des Cursors mit dem
neu eingegebenen Uberschrieben. Der Wechsel zwi-
schen Insert- und Replace-Modus erfolgt durch
Driicken der INSERT-Taste. Eine Ausgabe in der Mel-
dezeile zeigt stets den eingeschalteten Zustand.

Die Tasten DELETE und BACKSPACIE |6schen das
Zeichen rechts bzw. links des Cursors. Besondere Ver—
héltnisse treten ein, wenn der Cursor am Anfang bzw.
Ende einer Zeile steht. DELETE -am Ende einer Zeile
16scht den Zeilenumbruch, d.h. die der Cursorzeile fol-
gende Zeile wird an die Cursorzeile angehéangt.
BACKSPAGE am Anfang einer Zeile hangt die Cursor—
zeile an die vorangehende Zeile an.

Einfache
Editierungen

den Cursor bewegen

Fenster scrolien

die Cursorzeile
aufblattern

Insert— und
Replace-Modus

Zeichen l6schen

SPC MODULA-2 V1.4 Editor

Zeilenanfang und
—-ende l6schen

Zeilen ldschen

Loschen ruckgangig
machen

Zeilenumbruch
einfigen

Leerzeilen einfligen

Spaltennummern
anzeigen

Zeilennummern
anzeigen

Die Taste CLR~OWE 16scht alle Zeichen vom Cursor
(einschlieBlich) bis zum Ende einer Zeile. SHIFT
GLRHOME loscht alle Zeichen links des Cursors bis
zum Anfang der Zeile.

Die Taste SKHIFT DELETE loscht die Cursorzeile und
positioniert den Cursor in die der geldschten Zeile fol-
genden Zeile.

Alle l6schenden Funktionen kénnen durch Driicken von
UNDO wieder riickgangig gemacht werden. Wenn Sie
z.B. irmumlich CLRHOME gedriickt haben, dann brau-
chen Sie nur UNDO zu driicken und die geldschten
Zeichen werden sofort wieder eingefiigt. Auch mehrere
Fehlbedienungen kénnen durch mehrmaliges Driicken
von UNDO wieder riickgangig gemacht werden. Dies
funktioniert Giber 20 Ebenen.

Die Taste RETURN fligt im Insert-Modus einen Zei-
lenumbruch ein, d.h. der Cursor wird an den Anfang
einer neuen Zeile bewegt. Im Replace-Modus, da-
gegen, wird der Cursor einfach nur auf den Anfang der
néachsten Zeile gesetzt.

Die INSERT-Taste ist doppelt belegt. SHIFT INSERT
erzeugt eine Leerzeile unter der Cursorzeile und posi-
tioniert den Cursor an den Anfang der neu eingefligten
Zeile.

Die Taste SHIFT ESC veranlaBt, daB in der Meldezeile
die Nummer der Cursorspalte angezeigt wird. Die
Spaltenzéhlung beginnt wie die Zeilenzéhlung bei 1.

Die Taste SHIFT HELP veranlaBt, daB die Zeilennu-
merierung ein- bzw. ausgeschaltet wird. Die Bedeu-
tung der Taste HELP wird spéater erldutert.

Editor SPC MODULA-2 V1.4

Weitere Editorfunktionen sind tber Menis zugang-
lich.Der Editor verwendet die von GEM gewohnten
Pull-Down Mends.

Die Menls werden, wie alle Funktionen des Fenster—
systems, Uber SSWiS (s. Kapitel 8) angesprochen. Die
Menlileiste des Editors ist deshalb nur zu sehen, wenn
das aktive Fenster auch vom Editor kontrolliert wird.
Andernfalls ist die Menlleiste einer anderen Anwen-
dung sichtbar.

Die Bedienung der Pull-Down-Menus erfolgt wie
Ublich, indem zuerst ein Mentititel selektiert wird. An—
schlieBend wird im getffneten Meni ein Eintrag aus-
gewahlt.

Die folgenden Abschnitte orientieren sich an den
Menititeln und erlautern die Uber Menus wéahlbaren
Funktionen.

Das Block-Menl erméglicht die Festlegung von Text-
blécken und elementaren Operationen auf ihnen. Mit
der Funktion MarkBeg wird ein neuer Block markiert. Er
beginnt an der Cursorposition und endet (vorerst) an
der Cursorposition. Nachdem der Cursor weiter in
Richtung Dateiende verschoben wurde, kann der Block
mit MarkEnd bis zur Cursorposition ausgedehnt wer-
den. Der Block wird durch eine Hinterlegung der be-
troffenen Zeichen sichtbar gemacht. Eine Kurzform der
Blockselektion ist liber die Maus realisiert. Dricken
(und Halten) der linken Maustaste selektiert einen
neuen Block an der Stelle des Mauszeigers. Nun kann
die Maus bewegt werden. Das Blockende wird durch
Loslassen der Maustaste festgelegt. Weiterhin kann das
Ende des Blockes noch korrigiert werden, wenn die
SHIFT-Taste mit der linken Maustaste gedrickt wird.
VerlaBt man bei gedrickter Maus-Taste das Editor—
Fenster, dann scrollt der Editor das Fenster in die ent-
sprechende Richtung weiter.

Menuls

Block

Operationen

Duplic
Hove
Begin
End

Fi
sF1

SPC MODULA-2 V1.4 Editor

Clipboard

Paste F2
Copy sF2

Append F3
Cut sF3

Die Funktion Duplicate kopiert den ausgwéahlten Block
in einen internen Zwischenpuffer und figt ihn gleich-
zeitig an der Cursorposition wieder ein. Die Cursorpo-
sition wird dabei nicht verdndert. Die Selektion ist da-
nach wieder aufgehoben.

Die Funktion Move kopiert den Block ebenfalls in den
Zwischenpuffer, I6scht ihn aus der Datei und fugt ihn
an der Cursorposition wieder ein.

Eine beim Programmieren in MODULA-2 nitzliche
Funktion besteht darin, ganze Bldécke spaltenweise
nach links oder nach rechts zu bewegen. Dazu wird
der entsprechende Textblock wie oben beschrieben
selektiert und dann bei gedriickter CONTROL-Taste
mit den Cursor-Tasten nach links oder rechts gescho-
ben.

Das Clipboard—Menii stellt weitere Operationen auf
dem Zwischenpuffer bereit. Das Ubernehmen eines
ausgewdhiten Blockes in den Zwischenpuffer erfolgt
mit Copy.

Cut kopiert den Block in den Zwischenpuffer und
Ibscht ihn dann aus der Datei.

Paste fligt den Inhalt des Puffers an der Cursorposition
wieder ein. Die Folge Copy/Paste entspricht also dem
Kommando Copy des Block Meniis. Die Folge Cut-
Paste entspricht dem Move Kommando.

Append erlaubt es, einen Block an das Ende des Puf-
fers anzufiigen. Alle anderen oben erwdhnten Kom-
mandos léschen den alten Inhalt des Zwischenpuffers.

Editor SPC MODULA-2 V1.4

Das String—Menii macht Funktionen zum Suchen und
Ersetzen von Zeichenketten zugénglich. Mit Find kann Suchen und
eine Zeichenkette angegeben werden, nach der ge- Ersetzen
sucht werden soll. Gleichzeitig kann die Suchrichtung
spezifiziert werden. Darauf wird die angegebene
Zeichenkette in der Datei gesucht. Der Fortschritt beim
Suchen sowie der Ausgang der Operation werden in
der Meldezeile angezeigt. Falls die Zeichenkette ge-

Next sFd

Find Fd
funden wurde, wird der Cursor an deren Anfang posi- Replace sFS
. Ch Case F?
tioniert. Up Case sF?

Next erlaubt, die Suche ab der Cursorposition mit den
gleichen Parametern fortzusetzen.

Uber Replace kann eine Zeichenketten-Ersetzung
durchgefihrt werden. Hierzu wird die Zeichenkette an-
gegeben, durch die die zu suchende Zeichenkette er—
setzt werden soll. Weiter kann angegeben werden, ob
vor einer Ersetzung zunéchst eine explizite Bestatigung
verlangt werden soll und ob alle Stellen ersetzt werden
sollen. Falls wahrend der Ersetzung eine Bestatigung
verlangt wird, besteht die Moglichkeit, die Zeichenkette
zu ersetzen, eine Ersetzung abzulehnen oder den gan-
zen Vorgang abzubrechen.

ChCase macht das Zeichen unter dem Cursor zu
einem GroBbuchstaben, wenn es ein Kleinbuchstabe
war und umgekehrt. UpCase macht das Zeichen unter
dem Cursor zu einem GroBbuchstaben.

SPC MODULA-2 V1.4 Editor 4 -7

im Text
springen

Zeilennummer

Marke

Fehlerposition

Line FS
Label sFé
Prev Err sF8
Next Err F8
Set Label F6

Das Goto-Menu erlaubt das Positionieren des Cursors
durch Angabe von Zeilennummern oder auf die Marke
(Label).

Mit Line kann eine Zeilennummer (und eine Spalten—
nummer) angegeben werden, auf die der Cursor posi—
tioniert werden soll.

Label veranlaBt, daB der Cursor zu einer vorher ge-
setzten Marke springt. Das ist nitzlich, wenn man
kurzzeitig eine andere Stelle eines Dokumentes be-
arbeiten will, und anschlieBend an die markierte Stelle
zurtckkehren will.

Next Error positioniert den Cursor auf den néchsten
Fehler nach der momentanen Cursor-Position. Fehler
werden beim Offnen eines Fensters aus der Fehlerda-
tei des Compilers (ERR.LST) Ubernommen und in die
gedffnete Datei eingetragen.

Von besonderem Vorteil ist, daB auch nach dem Ein-
fugen und Ldschen von Zeilen und Zeichen die Fehler
an der richtigen Position angezeigt werden.

Prev Error positioniert den Cursor auf die der Cursor-
Position vorangegangene, Fehlerstelle. Falls Sie den
Fehler schon behoben haben, ist diese Funktion natir-
lich sinnlos.

Editor SPC MODULA-2 V1.4

Das Mode—-Meni unterstiitzt diverse Modi des Editors,
die jeweils ein— oder ausgeschaltet werden kénnen.
Die jeweils eingestellten Modi sind am linken Rand der
Meldezeile kenntlich gemacht.

Numbers schaltet die Zeilennumerierung ein oder aus,
was durch entsprechende Meldungen angezeigt wird.
Es entspricht damit der Taste SHIFT HELP.

Insert schaltet wie die gleichnamige Taste zwischen
dem Insert—- und dem Replace—Modus hin und her.

Autoindent schaltet die automatische Einrickung an
oder aus. Im eingeschalteten Zustand wird eine neue
Zeile (nach RETURN) automatisch genauso weit ein-
geriickt wie die vorangehende Zeile. Im Replace-
Modus wird der Cursor nach RETURN automatisch auf
das erste von Blank verschiedene Zeichen der Zeile
positioniert.

Tab 8 schaltet auf eine 8er Tabulation um. Beim Pro-—
grammieren ist es dagegen meist sinnvoll mit der Taste
~AB auf die Spalte zu positionieren, in der in der vor-
angehenden Zeile Text beginnt (Insert-Modus), bzw.
auf die (Replace-Modus), in der Cursorzeile Text be-
ginnt. Dadurch wird spaltengenaues Formatieren beim
Editieren unterstutzt.

LangSupp schaltet die Sprachunterstitzung ein bzw.
aus. Bei eingeschalteter Unterstltzung interpretiert der
Editor klein geschriebene Wérter als MODULA-2
Schllisselwérter. Sobald Eindeutigkeit besteht (meist
nach dem zweiten oder dritten Zeichen) ersetzt der
Editor die kleinen Buchstaben durch das ganze (groB
geschriebene) Schlisselwort. So gentgt fir die Ein-
gabe des Schlusselwortes PROCEDURE die Eingabe
der Buchstaben pr. Bei der Editierung von Kommen-—
taren kann diese Funktion mitunter hinderlich sein,
weshalb sie abschaltbar ist. Zur Vereinfachung ist die
gleiche Funktion auch auf der Taste HELP aufgelegt.

Modi
einstellen

Zeilennumerierung

Insert und Replace

automatisches
Einricken

Tabulierung

Sprachunterstitzung

Insert
Tab 8
AutoIndent
LangSu

Numbers sHelp

Hel

SPC MODULA-2 V1.4 Editor

Dateien

Offnen und
SchlieBen

Open F9

Close Fio
Backup sF9
Savefis
Abandon sF1i@

ohne zu sichern
verlassen

Funktions-
tasten

Zehnerblock

Das File-Menu enthalt mit die wichtigsten Funktionen
des Editors, namlich die zum &ffnen und SchlieBen
von Dateien.

Open 6ffnet weitere Dateien in weiteren Fenstern. Dazu
bietet der Editor eine Dateiauswahl-Box an.

Close schreibt eine Datei auf Massenspeicher zuriick
und schlieBt das Fenster.

Backup schreibt die Datei zurick, ohne das Fenster zu
schlieBen. Wahrend langerer Editierungen sollte in
jedem Fall zwischendurch Backup aufgerufen werden,
um bei irgendwelchen Problemen keinen allzu groBen
Verlust an Daten zu erleiden.

Abandon schlieBt die Datei ohne auf Massenspeicher
zurlickzuschreiben! Falls die Datei geandert wurde,
wird zuerst noch einmal ber ein Formular nachgefragt.

Die Originaldatei bekommt beim Zuriickschreiben die
Endung .BAK und steht somit weiterhin zur Verfigung.

Einige der Giber Menis bereitgesteliten Funktionen sind
auch uber die Funktionstasten F1 bis F10 und SHIFT
F{ bis SHIFT F10 zuganglich. Dies dient wiederum
der Beschleunigung des Editiervorgangs. Zur Un-
terstlitzung des Bedieners liegen dem Handbuch Auf-
kleber bei, die Uber die entsprechenden Funk-
tionstasten geklebt werden kdnnen. AuBBerdem wird in
den Menus durch eine Beschriftung am Ende des
Menii-Eintrages jeweils angezeigt, ob eine Funktion
auch auf einer Funktionstaste aufliegt.

Auf die Tasten des numerischen Tastenblocks kbnnen
Textmakros aufgelegt werden. Die Textmakros kdnnen
dann an der Cursorposition eingefligt werden. Zur
Definition eines Textmakros wird die entsprechende

4-10

Editor SPC MODULA-2 V1.4

Taste zusammen mit SHIFT gedrickt. In das daraufhin
erscheinende Formular kann ein beliebiger Text einge—
tragen werden.

Fehlermeldungen des Compilers werden in die Datei
ERR.LST geschrieben. Diese Datei wird sofort beim
Starten des Editors gedffnet. Beim Offnen weiterer
Fenster schaut der Editor sofort in der Fehlerdatei
nach, ob fir den neuerlich geo6ffneten Modul vom
Compiler Fehler eingetragen sind. In der Fehlerdatei
stehen alle mit der letzten Compilierung Ubersetzten
Moduln, und jeweils darunter die Fehler (falls Fehler
entdeckt wurden). Die Fehlermeldungen bestehen
jeweils aus drei Zahlen in der Form

<Zeile> <Spalte> <Fehlernummer>.

Sonstiges

SPC MODULA-2 V1.4 Editor

411

diese Seite wurde aus
satztechnischen Grinden frei
gelassen

4-12 Editor SPC MODULA-2 V1.4

Der Compiler

Der Compiler hat die Aufgabe, MODULA-2 Programme
von ihrer Quelltextform in ihre Objektform zu Gberfih—
ren.

Wie jeder MODULA-2 Compiler verarbeitet der SPC
MODULA-2 Compiler zwei Arten von Eingabedateien,
namlich Modulschnittstellen (DEFINITION MODULES)
und Implementierungen (IMPLEMENTATION MODU-
LEs). Je nachdem, von welchem Typ die Eingabeda-
teien sind, werden unterschiedliche Ausgabedateien
erzeugt.

Weiterhin akzeptiert der SPC MODULA-2 Compiler
sogenannte Command-Files. Diese enthalten Namen
von Moduin, die Ubersetzt werden missen. Command-
Files sind wichtig, da mitunter ein ganzes, aus vielen
Moduin bestehendes System (ibersetzt werden muB.
Die Dateien mit der Dateiauswahl-Box anzugeben wére
dann nicht angemessen.

Dank des speziellen Formates der Ubersetzten Moduin
mussen SPC MODULA-2 Moduln nicht mehr explizit
gebunden werden, sondern kbnnen sofort gestartet
werden. Der dabei dennoch notwendige Bindevorgang
wird von einem Lader dynamisch, d.h. wéhrend des
Ladevorgangs ausgefihrt.

Der SPC MODULA-2 ist ein sogenannter Single-Pass-
Compiler (SPC). Als solcher liest er die Eingabedatei
nur einmal und erzeugt keine Zwischendateien, son-
dern baut im Speicher die notwendigen Strukturen auf.
Dadurch wird der Ubersetzungsvorgang enorm be-
schleunigt. Der Mehrbedarf an Speicher ist auf den
moderen Mikrorechnern normalerweise kein Problem
mehr, sodaB der Vorteil der hohen Geschwindigkeit

Kapitel 5

Ubersicht

Kommando-Dateien

dynamisches Binden

Single-Pass-
Compiler

SPC MODULA-2 V1.4 Compiler

Fehlerdatei

Sprachstandard

Uberwiegt. Auf einem ATARI ST kdnnen bei glinstigen
Verhéltnissen Geschwindigkeiten bis zu 5000 Zeilen pro
Minute erreicht werden.

Die Namen aller mit der letzten Ubersetzung libersetz—-
ten Moduin (evtl. nur einer) und dabei evtl. aufgetre-
tene Fehler sind in einer Fehlerdatei vermerkt. Die
Datei kann vom Editor wieder interpretiert werden, um
die Fehler eines Moduls direkt im Quelltext anzuzeigen.

Die vom Compiler implementierte Sprache entspricht
dem neuesten Stand der MODULA-2 Entwicklung an
der ETH-Zurich. Die Details der Sprachimplemen-
tierung werden im Rahmen dieses Kapitels beschrie—
ben. Wenn MODULA-2 vom ISO standardisiert ist, wird
SPC MODULA-2 auf den dann giltigen Sprachstan-
dard umgestellt werden.

Compiler SPC MODULA-2 V1.4

Der Compiler wird (ber eine Standard—Kommandozeile
aufgerufen und parametriert. Die Kommandozeile hat
die Form:

compile <Dateiname> [-r] [-0] [-V]

Die zulassigen Dateinamen werden unten erklart. Der
Compiler akzeptiert nur einen Dateinamen.

Die Option -r schaltet die Bereichsprifung ein. Da-
durch werden alle Zuweisungen an Unterbereichs- und
enumerierte Variablen auf Zuldssigkeit geprift. Neben
Zuweisungen werden die aktuellen Parameter in Pro-—
zeduraufrufen, sowie die Indizes bei Array-Zugriffen
gepruft. Die Zulassigkeit von CASE-Ausdricken wird,
falls keine ELSE-Klausel exisitiert, ebenfalls geprift.

Die Option —o aktiviert die Prifungen auf arithmetische
Uber- bzw. Unterlaufe. Diese sind bei allen arithmeti-
schen Ausdriicken wirksam.

Sowohl die -r als auch die —o Option bewirken, daB
zusétzlicher Code erzeugt wird. Die Option -v (ver-
bose) veranlaBt den Compiler, den Ubersetzungsverlauf
am Terminal zu protokollieren.

Der Compiler wird normalerweise Uber die xShell auf-
gerufen. Der Dateiname wird dann ebenfalls von der
xShell beigesteuert (s. Kapitel 3). Die Optionen kbnnen
durch Parametrieren des Compiler-icons der xShell
eingestelit werden.

Starten

~r Option

-0 Option

-v Option

Uber die xShell
starten

SPC MODULA-2 V1.4 Compiler

Ein- und
Ausgabe-
dateien

.DEF

.MOD

.SBM

.OBM

.RFM

.CMD

Die vom Compiler benutzten Dateien werden durch die
Namenserweiterung (Extension) typisiert. Der Namens—
stamm ergibt sich aus den ersten Buchstaben des
Moduinamens. Die Anzahl der signifikanten Zeichen ist
vom Betriebssystem abhéngig. Unter GEM werden 8
Zeichen ausgewertet. Fiir die Namenserweiterung ge—
lten die folgenden, Konventionen:

.DEF - bezeichnet einen Definitions—Quellimodul. Der
Modul beginnt mit der Konstruktion DEFINITION
MODULE. Fir jeden Definitions—Modul wird auch ein
implementierungs—modul bendtigt.

.MOD - bezeichnet einen Implementierungs—Quelimo-
dul. Handelt es sich um einen sogenannten Pro-
gramm-Modul, dann beginnt der Modul mit der Kon-
struktion MODULE, und der Compiler erwartet keinen
Definitions—Modul. Andernfalls handelt es sich um
einen IMPLEMENTATION MODULE und der Compiler
sucht nach dem entsprechenden Definitions—Modul.

.SBM - ein DEFINITION MODULE wird vom Compiler
in seine Objektform Ubersetzt. Beim Importieren des
Moduls in andere Moduln wird spéater nur die Objekt-
form des DEFINITION MODULEs gelesen. Der
Namensstamm ist der gleiche wie der des Quellmo-
duls.

.OBM - kennzeichnet die Objektform eines Implemen-
tierungs—-Moduls. Der Namensstamm ist der gleiche
wie der der zugehoérigen .MOD Datei. Die Objektmo-
duln werden spéater vom Lader oder vom Linker ver—
arbeitet.

.RFM - bezeichnet eine weitere aus der Ubersetzung
hervorgehende Datei, die Informationen fir den
Debugger enthalt. Der Namensstamm ist gleich dem
des Implementierungs—-Moduls.

.CMD - ist eine Eingabedatei, die eine Liste von Kom-
mandozeilen fur den Compiler enthélt. Der Compiler
erkennt eine solche Datei an ihrer Endung und inter—

Compiler SPC MODULA-2 V14

pretiert alle darin enthaltenen Compiler—-Kommandozei-
len.

ERR.LST - ist die Fehler- und Protokolldatei. Sie ent—
hélt die Namen aller mit der letzten Compilation tber-
setzten Moduln und evtl. aufgetretene Fehler. Die Feh-
ler werden durch die Zeilennummer, die Spaltennum-
mer und die Fehlernummer beschrieben. Obwohl man
die Fehlerdatei mitunter inspizieren will, wird man nor-
malerweise die Funktionen des Editors bendtzten, um
sich den Fehler direkt im Programmtext anzeigen zu
lassen.

Da der Compiler wahrend der Ubersetzung mehrere
Moduln importiert, also verschiedene Dateien erdffnet,
erhebt sich die Frage, wo diese Dateien abliegen mis—
sen, damit sie der Compiler findet. Meist ist es namlich
sinnvoll, Moduln in unterschiedlichen Ordnern unterzu-
bringen, um eine Struktur in der Menge aller Moduin
zu erhalten. Z.B. sind die Moduln der STDLIB in einem
anderen Ordner zusammengefaBt, als die der SYSLIB.
Die Namen der Ordner werden Suchpfade genannt, da
sie vom Compiler durchsucht werden mdissen, um
einen Modul zu finden. Suchpfade werden immer in
einer bestimmten Reihenfolge durchsucht. Die Suche
bricht ab, wenn der Modul bzw. die Datei gefunden
wurde.

Der Compiler erfahrt die Suchpfade aus Environment-
Variablen mit den Namen Path1 bis Path<N>, wobei
<N> im Prinzip beliebig ist. Im Interesse einer schnel-
len Ubersetzung sollte <N> jedoch nicht zu groB sein,
bzw. die meisten Dateien sollten auf Pfaden mit einer
niedrigen Nummer liegen. Der Compiler konstruiert aus
dem Pfadnamen, dem Namensstamm des zu uberset-
zenden oder importierenden Moduls und des benétig-
ten Typs einen Dateinamen und versucht die Datei zu
offnen. Gelingt dies, dann schreitet die Ubersetzung
fort. Anderfalls wird der nachste Pfad (mit der nachst

Fehlerdatei ERR.LST

Suchpfade

Modulvorrat
strukturieren

Path1 bis PathN

SPC MODULA-2 V1.4 Compiler

ObjPath1 bis
ObjPathN

Pfade einstellen

héheren Nummer) herangezogen. Das Verfahren bricht
ab, wenn es keine Environment-Variable mit dem
Namen Path<N+1> gibt.

Mitunter méchte man die Quellmoduin in anderen Ord-
nern halten, als die Ubersetzten Moduln. Immerhin soll-
ten Sie ihre Quellmoduin regelmaBig sichern, wahrend
Sie die Objektformen der Moduln jederzeit wieder neu
erzeugen konnen. Der Compiler unterstutzt eine solche
Organisation, indem er bei allen Objektformen (.SBM,
.OBM, .RFM) zuné&chst nach einer Environment-Varia—
blen ObjPath<N> sucht. Falls eine solche Variable exi—
stiert, werden Objektformen von Moduln die auf
Path<N> gefunden wurden auf ObjPath<N> abgelegt
und von dort importiert. Falls keine entsprechende
Variable existiert, benitzt der Compiler Path<N> auch
fur die Objektformen der Moduln.

Die angegebenen Regeln zum Suchen von Moduin
werden vom Modul Envifonment implementiert und
stehen auch anderen Prorammen zur Verfigung. Ins—
besondere alle anderen Werkzeuge des Sprachsystems
machen davon Gebrauch.

Suchpfade kénnen mit der Utility Paths inspiziert, ge-
setzt und gel6scht werden. Eine andere Methode ist,
das Profile direkt mit dem Editor zu bearbeiten.

I Beachten Sie bitte in diesem Fall, daB sie die xShell
uber Abandon verlassen, da sonst das editierte
Profile wieder Gberschrieben wird.

Compiler SPC MODULA-2V14

Ein MODULA-2 Programm besteht normalerweise aus
vielen Moduln. Hierzu gehéren auch die aus den mit-
gelieferten Bibliotheken benltzten Moduln. Die
Schnittstellen zwischen Moduln sind in den DEFINI-
TION MODULEs beschrieben und werden vom Com-
piler in eine Objektform (.SBM) iibersetzt. Alle Moduln,
die auf diese Schnittstellen Bezug nehmen, werden
vom Compiler auf Konsistenz mit den beniitzten
Schnittstellen gepriift. Dabei werden z.B. falsche Para-
meterbestiickungen von Prozeduraufrufen, etc. ent-
deckt. Durch die automatische Priifung der Schnittstel-
len durch den Compiler werden viele Fehlermdglich—
keiten ausgeschlossen, die in anderen Programmier—
sprachen immer wieder zu hohen Testaufwéanden fiih-
ren.

Da auch DEFINITION MODULEs sich auf andere
Modulschnittstellen beziehen kdnnen, muB eine Rei-
henfolge der Ubersetzung von Moduln eingehalten
werden. Fir alle Moduln eines Systems qilt die fol-
gende einfache Regel:

0> Jeder DEFINITION MODULE muB vor seinem ersten
Import Gbersetzt werden.

Dieser Zusammenhang soll an einem Beispiel ver-
anschaulicht werden. Ein Modul A nehme auf die
Schnittstellen zweier Moduln B1 und B2 Bezug. Die
Schnittstelle von B1 (DEFINITION MODULE) muB auf
jeden Fall vor der Implementierung von B1 (IMPLE-
MENTATION MODULE) ubersetzt werden, da sich
naturlich jede Implementierung auf ihre eigene
Schnittstelle bezieht. Das gleiche gilt fir die
Schnittstelle und die Implementierung von B2. Der
Modul A (Implementierung) kann erst Ubersetzt werden,
wenn seine eigene Schnittstelle und die von B1 und
B2 Ubersetzt sind. Die Moduln A, B1 und B2 passen
nun mit Sicherheit zusammen, da sie sich auf die
gleiche Objektform der Schnittstellen B1 und B2 be-
zogen haben. Die Implementierungen aller Moduin

Modul-
schlussel

automatische
Schnittstellenpriifung

Ubersetzungs—
reihenfolge

Beispiel

SPC MODULA-2 V1.4 Compiler

Inkonsistenzen

Modulschlissel

.CMD Datei
verwenden

kdnnen beliebig oft (bersetzt werden, ohne daB sich
daran etwas andert.

Wenn nun aber einer der Schnittstellenmoduln neu
Ubersetzt wird, besteht die Moglichkeit, daB Moduln,
die sich darauf beziehen nicht mehr von der gleichen
Schnittstelle ausgehen, es sei denn, sie werden nach
den Schnittstellen noch einmal (bersetzt. Unterbleibt
dies, dann muB der Linker bzw. der Lader feststellen,
daB die Moduln nicht zusammenpassen.

Dazu gibt der Compiler jeder Objektform eines Moduls
(.SBM und .OBM) einen sogenannten Modulschlissel
mit, an dem Compiler, Linker und Lader das Zusam-
menpassen von Moduln Uberprifen kénnen. Falls dabei
eine Inkonsistenz entdeckt wird, wird gemeldet, daB
die Moduleschlissel (Module Keys) nicht zusammen-
passen.

Bei einem groBeren System ist es mitunter recht miih—
sam, die richtige Ubersetzungsreihenfolge einzuhalten.
Es ist deshalb ratsam, von Anfang an eine Komman-
dodatei (.CMD) zu erstellen, in der die Moduln in der
richtigen Reihenfolge aufgefiihrt sind. Falls spéter im
System Schnittstellen ge&ndert werden missen, ist es
dann meist am einfachsten, das ganze System neu zu
Ubersetzen.

Compiler SPC MODULA-2 V1.4

Die vom Compiler implementierte Sprache ist durch
N.Wirth’s “Programming in MODULA-2" beschrieben.
Die folgenden Abschnitte beschreiben Details von SPC
- MODULA-2 auf dem ATARI ST.

Die vom Compiler unterstiitzten Datentypen umfassen
die Standarddatentypen, sowie als Erweiterung 32 Bit
lange Varianten von 16-Bit-Typen, sowie einen 64 Bit
langen REAL Typ. Die unterstitzten Typen sind im Ein—
zelnen:

[m]

INTEGER - der Typ belegt 2 Bytes und umfaBt einen
Wertebereich von -32768..32767.

LONGINT - der Typ (Erweiterung) belegt 4 Bytes und
umfaBt einen Wertebereich von -2147483648
2147483647.

CARDINAL - der Typ belegt 2 Bytes und umfaBt
einen Wertebereich von 0..65535.

LONGCARD - der Typ (Erweiterung) belegt 4 Bytes
und umfaBt einen Wertebereich von 0..4294967295.
Der Typ LONGCARD kann auf dem ATARI ST in eine
Adresse konvertiert werden. Programme, die davon
Gebrauch machen, sind naturlich maschinenab-
hangig.

REAL - der Typ belegt 4 Bytes und ist als |IEEE
Single—Precision Real implementiert. Die Mantisse
belegt dabei 23 Bits, der Exponent 8 Bits. Der
Wertebereich reicht von ca. —3.3E38 bis +3.3E38.

LONGREAL - der Typ (Erweiterung) belegt 8 Bytes
und ist als IEEE Double-Precision Real implementiert.
Die Mantisse hat 52 Bits, der Exponent 11 Bits. Der
Wertebereich reicht von —1.79E308 bis +1.79E308.
BITSET — der Typ ist als SET OF [0..15] definiert. Er
belegt 2 Bytes.

LONGBITSET - der Typ (Erweiterung) ist als SET OF
[0..15] definiert. Er belegt 2 Bytes.

CHAR - der Typ belegt ein Byte.

die SPC
Implemen-
tierung

Datentypen

INTEGER

LONGINT

CARDINAL

LONGCARD

REAL

LONGREAL

BITSET

LONGBITSET

CHAR

SPC MODULA-2 V1.4 Compiler

BOOLEAN

Enumerationen

SET OF

PROCEDURE

POINTER TO

zusammengesetzte
Typen

Kompatibilitat

Zuweisungs-—
Kompatibilitat

0 BOOLEAN - der Typ umfaBt die Werte TRUE und
FALSE und belegt 1 Byte.

o Enumerationstypen - belegen 1 Byte, d.h. die Anzahl
der Elemente ist auf 256 beschrankt.

o SET OF - Typen belegen 2 oder 4 Bytes, d.h. die
Anzahl der Elemente ist auf 32 beschrénkt.

o PROCEDURE - Typen belegen 4 Bytes, da sie auf
Pointers zurlickgefiihrt werden.

0 POINTER - Typen belegen 4 Bytes.

Der Compiler legt alle Datenelemente, die mehr als ein
Byte belegen, auf geraden Adressen ab. Alle 1 Byte
Typen kdnnen auch auf ungeraden Adressen zu liegen
kommen.

MODULA-2 verlangt bei allen Ausdriicken, daB die be-
teiligten Operanden vom gleichen (kompatiblen) Typ
sind. Dadurch verbietet es sich, INTEGER Operanden
mit CARDINAL Operanden zu vergleichen, usw. No&ti—
genfalls mussen die Operanden durch eine typkonver—
tierende Funktion auf den richtigen Typ gebracht wer—
den. Die Konvertierungsfunktionen werden spéater
dokumentiert.

Bei der Zuweisung von Werten an Variablen und bei
der Ubergabe von Parametern (nicht VAR-Parameter)
wird bei MODULA-2 eine groBziigigere Regelung an-
gewandt, indem bestimmte Typen zuweisungskompati—
bel sind. INTEGER und CARDINAL sind zuweisungs—
kompatibel, d.h. ein INTEGER-Wert darf einer CAR-
DINAL-Variable ohne weitere Konvertierung zugewie—
sen werden, und umgekehrt. Weiterhin sind bei SPC
MODULA-2 die Typen LONGCARD, LONGINT, CAR-
DINAL und INTEGER untereinander sowie die Typen
REAL und LONGREAL untereinander zuweisungskom-—
patibel. INTEGER und REAL dagegen sind nicht zuwei-
sungskompatibel und missen explizit mit entsprechen-
den Konvertierungs—Funktionen umgewandelt werden.

5-10

Compiler SPC MODULA-2 V1.4

I Man beachte, daB bei Typverengungen u.U. Uber-
laufe auftreten kénnen.

Eine andere Mdglichkeit, den Typ einer Variablen oder
Konstanten zu andern ist durch den sogenannten Typ-
transfer gegeben. Ein Typtransfer schaltet einfach vor-
Ubergehend die Typprufung des Compilers ab. Es wird
kein Code zur Konversion des Typs erzeugt. Das Er-
gebnis eines Typtransfers ist von der Bit-Reprasenta-
tion des Eingangs—- und des Ausgangstyps abhangig.
Ein Typtransfer ist deshalb hochgradig system-
abhangig. Die Typtransfer—Funktion VAL wird deshalb
bei SPC MODULA-2 von dem Pseudo—Modul SYSTEM
exportiert, wodurch sich Moduln, die Typtransfers ver—
wenden, explizit als systemabhéangig erklaren mussen.

Typtransfers — VAL

SPC MODULA-2 V1.4 Compiler

5- 11

Pseudomodul
SYSTEM

ADDRESS und ADR

BYTE und
ARRAY OF BYTE

WORD

SETREG und REG

LONG und SHORT

Weitere systemabhangige Typen und Funktionen wer—
den von dem Pseudo-Modul SYSTEM exportiert.
SYSTEM wird deshalb als Pseudo-Modul bezeichnet,
da es keinen DEFINITION MODULE dafir gibt. Viel-
mehr sind die von SYSTEM exportierten Elemente dem
Compiler selbst bekannt. Zum Zwecke der Dokumen-
tation ist die Schnittstelle von SYSTEM jedoch in An-
hang B als DEFINITION MODULE aufgeschrieben.

Zu den Elementen von SYSTEM gehdrt insbesondere
der Datentyp ADDRESS und der ADR-Operator, der
die Adresse einer Datenstruktur liefert. Der Datentyp
ADDRESS ist kompatibel mit jedem POINTER-Typ,
sowie mit dem Typ LONGCARD, wodurch Adress—
Arithmetik mdglich wird. Die Adresse einer Datenstruk—
tur erhalt man durch die Konstruktion ADR(<Variable>).

Der Datentyp BYTE repréasentiert die kleinste auf der
Maschine adressierbare Speichereinheit. BYTE wird
nicht interpretiert. ARRAY OF BYTE ist mit jedem Typ
kompatibel.

Der Datentyp WORD représentiert ein Maschinenwort.
Beim ATARI ST belegt WORD 2 Bytes und liegt immer
auf geraden Adressen. WORD wird nicht interpretiert.

Der Zugriff auf Register des MC68000 ist Uber die
Funktionen SETREG und REG moglich. Die Register
werden mit Indizes von 0 bis 15 bezeichnet. DO hat
den Index 0, AO 8 und A7 hat den Index 15. Das Er-
gebnis von REG ist vom Typ LONGINT. Das Argument
von SETREG ist vom Typ LONGINT oder von einem
Adress-Typ.

Die Funktion LONG akzeptiert INTEGER- oder CAR-
DINAL-Argumente und liefert ein LONGINT-Ergebnis
zuriick. Die Funktion SHORT dagegen wandelt
LONGINT- oder LONGCARD-Argumente in INTEGER-
Ergebnisse um. Die Funktione z&hlen damit zu den
Typkonvertierungs—Funktionen.

5-12

Compiler SPC MODULA-2 V1.4

Die Funktion SHIFT akzeptiert einen skalaren Typ als
Argument und schiebt das Bitmuster um N Bits nach
links oder rechts, je nachdem ob N gréBer oder kleiner
0 ist.

Die Funktion VAL realisiert den Typtransfer. Da sie
einen Modul systemabhéngig macht, wird sie bei SPC
MODULA-2 von SYSTEM exportiert. Dadurch ist der
Programmierer gezwungen, explizit aus SYSTEM zu
importieren und seinen Modul so deutlich als system-
abhangig zu markieren. FUr den Typtransfer mit VAL
wird kein zuséatzlicher Code erzeugt (unsafe Transfer).

Die Prozedur INLINE erlaubt es, in einem Modul
Maschinecode-Sequenzen abzusetzen. INLINE akzep-
tiert beliebig viele (bis zu einer Obergrenze) CAR-
DINAL-Argumente. Die Argumente werden ohne wei-
tere Interpretation in den Code eingefligt. Man be-
achte, daB durch die Funktionen REG, SETREG, ADR
und das unten erlduterte Konzept der Code-Pro-
zeduren normalerweise keine Notwendigkeit fir IN-
LINE-Code entsteht.

SHIFT

VAL

INLINE

SPC MODULA-2 V1.4 Compiler

5-13

CODE-
Prozeduren

das Betriebssystem
aufrufen

Beispiel

FORWARD

SPC MODULA-2 stellt sogenannte CODE-Prozeduren
zur Verfiigung. Dadurch ist es elegant mdéglich, Be-
triebssystemaufrufe Uber Traps abzusetzen, ohne auf
INLINE-Statements angewiesen zu sein. Eine CODE-
Prozedur hat einen Prozedurkopf (Name und Parame-
terliste) wie jede andere Prozedur auch. Der Prozedur—
rumpf wird jedoch duch die Konstrktion CODE <N>
ersetzt. Der Compiler wird beim Aufruf der Prozedur
zundchst die Parameter auf den Stack bringen, und
dann die Prozedur aufrufen, indem er <N> als Code
absetzt. Die Deklaration

ConOut (Ch : CHAR; Func02 : INTEGER); CODE
4E41H;

beschreibt die Schnittstelle zur GemDos-Funktion
Nummer 2.

0~ Man beachte, da3 die Systemaufrufe auf dem ATARI
ST erwarten, daB der rufende Modul den Stack
abraumt. Dazu ist in SPC-MODULA-2 noch ein
kurzes INLINE-Codestulck erforderlich.

Die Anbindung an Systemaufrufe mit Codeprozeduren
ist am Beispiel des Moduls GemDos in Anhang H er-
lautert.

In SPC MODULA-2 missen alle Prozeduren vor ihrem
erstmaligen Aufruf deklariert werden. Eine Prozedur, die
im DEFINITION MODULE deklariert ist, ist offensichtlich
immer vor ihrem ersten Aufruf deklariert. Bei lokalen
Prozeduren ist die Reihenfolge meist durch die Hin-
schreibung der Prozeduren einhaltbar. In Ausnahmefal-
len muB eine Prozedur FORWARD deklariert werden.
Dazu wird der ganze Prozedurkopf z.B. am Anfang des
Moduls wiederholt, und der Prozedurrumpf durch das
Statement FORWARD ersetzt. Die FORWARD Deklara—
tion muB die volle Parameterliste enthalten und auf der
selben Schachtelungstiefe erfolgen, wie die Prozedur-
deklaration selbst.

5-14

Compiler SPC MODULA-2 V1.4

Standard-Prozeduren sind vordefinierte Prozeduren
oder Funktionen, die dem Compiler selbst bekannt
sind, und die nicht explizit importiert werden mussen.
Die Standard-Prozeduren in SPC MODULA-2 sind in
alphabetischer Reihenfolge:

ABS(x) x ist vom Typ INTEGER, LONGINT, REAL oder
LONGREAL (oder dazu zuweisungskompatibel). Das
Ergebnis ist der Absolutbetrag des Arguments und ist
vom gleichen Typ wie das Argument.

CAP(ch) ch ist vom Typ CHAR. Falls ch ein Klein-
buchstabe ist, dann liefert CAP den entsprechenden
GroBbuchstaben, sonst ch. Das Ergebnis von CAP ist
mithin vom Typ CHAR.

CHR (x) x ist vom Typ INTEGER (oder dazu zuwei-
sungskompatibel). Das Ergebnis ist vom Typ CHAR
und enthélt das Zeichen mit der Ordnungsnummer
(Ordinalitat) x.

DEC (x,n) x ist ein skalarer Typ. DEC erniedrigt die
Ordinalitdt von x um n. n ist folglich vom Typ IN-
TEGER. Die Formt DEC (x) erniedrigt x um 1.

EXCL (s,i) s ist ein SET-Typ, i ist vom Basistyp von s.
Es wird die Operation s:= s — i ausgeflihrt.

FLOAT (x) x ist vom Typ INTEGER oder LONGINT. x
wird in einen REAL-Wert konvertiert und als Ergebnis
zuruckgeliefert.

FLOATD (x) konvertiert x in die LONGREAL Darstel-
lung.

HALT beendet die Programmausfihrung.

HIGH (a) a ist ein Array oder ein Array-Typ. Das Er-
gebnis ist vom yp INTEGER und enthéalt den hdchsten
Index des Arrays a. Man beachte, daB bei sogenann-
ten Conformant Arrays der niedrigste Index zu 0 an-
genommen wird. Die Lange ergibt sich dann zu
HIGH(a)+1.

Standard-
Prozeduren

ABS

CAP

CHR

DEC

EXCL

FLOAT

FLOATD

HALT

HIGH

SPC MODULA-2 V1.4 Compiler

5-15

INC

INCL

MAX

MIN

ODD

ORD

SIZE

TRUNC

TRUNCD

INC (x,n) x ist ein skalarer Typ. INC erhoht die Ordina-
litdt von x um n. n ist folglich vom Typ INTEGER. Die
Form INC (x) erhéht x um 1.

INCL (s,i) s ist ein SET-Typ, i ist vom Basistyp von s.
Es wird die Operation s:= s + i ausgefihrt.

MAX (t) t ist ein skalarer Typ (einschlieBlich REAL und
LONGREAL). Das Ergebnis ist ebenfalls vom Typ t und
enthalt den héchsten durch den Typ t darstellbaren
Wert.

MIN (t) t ist ein skalarer Typ (einschlieBlich REAL und
LONGREAL). Das Ergebnis ist ebenfalls vom Typ t und
enthalt den niedrigsten durch den Typ t darstellbaren
Wert.

ODD(x) x ist vom Typ INTEGER, LONGINT, CARDINAL
oder LONGCARD. Das Ergebnis von ODD ist vom Typ
BOOLEAN und zeigt an, ob x ungerade ist.

ORD (x) x ist vom Typ INTEGER, CARDINAL, CHAR
oder ein Enumerationstyp. Das Ergebnis ist vom Typ
INTEGER und gibt die Ordnungsnummer des Argu-
ments innerhalb des Argumenttyps an.

SIZE (x) x ist entweder eine Variable oder ein Typ. Das
Ergebnis ist vom Typ INTEGER und enthélt die Anzahl
von Bytes, die die Reprasentierung von x belegt.

0 Man beachte, daB3 SIZE nicht von SYSTEM importiert
wird und TSIZE ersetzt.

TRUNC (x) x ist vom Typ REAL. Das Ergebnis vom Typ
INTEGER enthalt den ganzzahligen Anteil von x.

TRUNCD (x) x ist vom Typ LONGRAL. Das Ergebnis
vom Typ LONGINT enthélt den ganzzahligen Anteil von
X.

5-16

Compiler SPC MODULA-2 V1.4

Die CodegréBe eines Moduls ist bei SPC MODULA-2
auf 32k Bytes beschrankt. Die gesamte CodegréBle
eines Programms ist nicht beschrankt.

Die GroBe des globalen Datenbereichs eines Moduls
ist auf 32k Bytes beschrankt. Die gesamte GrdBe aller
Datenbereiche ist nicht beschrankt. AuBerdem ist die
GoéBe der dynamisch allokierten Datenbereiche nicht
begrenzt.

Der Ergebnistyp von Funktionsprozeduren kann nur 1,
2, 4 oder 8 Bytes lang sein. Darin sind alle elemen-
taren Datentypen enthalten.

Die Obergrenze eines Unterbereichstyps mufB kleiner
als 215 sein. Der Wertebereich eines Unterbereichstyps
darf ebenfalls nicht mehr als 215Elemente umfassen.

Opake Typen sind auf POINTER-Typen beschrankt.

Enumerationstypen kbénnen maximal 256 Elemente
haben.

SET Typen kdnnen maximal 32 Elemente haben.

Restriktionen

SPC MODULA-2 V1.4 Compiler

5-17

Diese Seite wurde aus
satztechnischen Grinden frei
gelassen

5-18 Compiler SPC MODULA-2 V1.4

Der Debugger

Das SPC-MODULA-2 Sprachsystem verfligt uber einen
symbolischen Debugger. Der Debugger erlaubt, die
Datenbestande der geladenen Moduln und der zum
Zeitpunkt des Debugger—Aufrufes aktiven Prozeduren
zu untersuchen. Alle Informationen werden auf Source-
Ebene, also mit den MODULA-2 Variablen- und Pro-
zedurnamen angezeigt. Dadurch ist es sehr schnell
moglich zur Fehlerursache vorzusto3en. Die Anzahl der
Testlaufe kann durch den Debugger verringert werden.
Der Debugger ist volistandig in SSWIS integriert. Bei
seiner Aktivierung 6ffnet er 5 Fenster, die in gewohnter
Weise mit der Maus bedient werden kdnnen. Die ver-
schiedenen Fenster zeigen verschiedene Daten-
bestande. Programmtext. die Prozeduraufrutkette, etc.

SPC-MODULA-2 erkennt bestimmte Laufzeitfehler, die
den weiteren Ablauf des Programms gefahrden. Hierzu
z&hlen

o Zuweisungen von Werten, die auzerhalb des zulassi-
gen Wertebereichs liegen.

arithmetische Uber— oder Unterlaufe,

a Division durch 0, Verletzung von ARRAY-Indexberei-
chen,

Q' Zugriffe Gber korrumpierte POINTER, etc.

Die Erkennung von arithmetischen Uber- und Unter—
laufen, sowie die Uberwachung von ARRAY-Indizes
erfordert zusatzlichen Code und -kann uber Optionen
des Compilers ein oder ausgeschaltet werden. Das
Laufzeitsystem gibt nach einem erkannten Fehler die
Maoglichkeit, das Programm abzubrechen, es fortzufiih—
ren oder den Debugger zu aktivieren.

Kapitel 6

Ubersicht

=

Laufzeitfehle;

SPC MODULA-2 V1.4 Debugger

Procedures-
Fenster

Source-
Fenster

Eine weitere Mdaglichkeit ist, den Debugger an einer
bestimmten Stelle aus einem Programm heraus explizit
zu aktivieren. indem z.B. einer der oben beschriebenen
Fehler absichtlich erzeugt wird.

Nach dem Start des Debuggers sind 3 neue Fenster
geobffnet worden. Sie zeigen die Prozeduraufrufkette
zum Zeitpunkt des Fehlers, die Fehlerursache, den
Quelltext des fehlerhaften Moduls (falls vorhanden) und
die lokalen Variablen der fehlerhaften Prozedur.

Das Procs Fenster zeigt die zum Zeitpunkt der Akti—
vierung des Debuggers aktiven Prozeduren und die
Moduln, zu denen die Prozeduren geh6ren. Die un-
terste Zeile nennt die zuerst aufgerufene Prozedur. Die
zweitunterste die von der ersten aufgerufenen, usw. In
der ersten Zeile ist die Fehlerursache angegeben (z.B.
Index/Range Error).

(] Procs [

B
v

IB

Das Source Fenster zeigt den Quelitext eines aus-
gewahlten Moduls. Zu Beginn wird der Quelltext des
fehlerhaften Moduls gezeigt. Dabei ist die Zeile mit
dem fehlerverursachenden Statement fett gedruckt. Der
Debugger sucht die Quelltexte von Moduln nach dem
gleichen Verfahren wie der Compiler. also unter Ver-
wendung der Environment-Variablen PATH<N=>. Falls

Debugger SPC MODULA-2 V1.4

der Quelltext nicht gefunden wurde, gibt der Debugger
die Meldung -no sourcefile- aus.

s faioe S Source T
F :\GEMDOSNETC\Hello.MOD
WriteInt (EvenNumber, 2); Writeln; o
- 4=, X [EvenNunber] ;]
Wait;
IF EvenHumber = 0 THEN RETURN ELSE CountOdd (EvenNumber-1) END;
END CountEven; 1
7
PROCEDURE Count0Odd (OddNumber ! INTEGER); L]
&
ol { [o]®

Das Data-1 Fenster enthélt die Variablen der im Procs
Fenster ausgewahlten Prozedur. Zu Beginn ist dies die
fehlerhafte Prozedur. Die Variablen werden mit ihrem
Namen, ihrem Typ und ihrem Wert ausgegeben. Falls
es sich dabei um einen strukturierten Datentyp (ARRAY
oder RECORD) oder um einen POINTER handelt, dann
ist durch einen Stern (*) angedeutet, daB3 weitere
Details ausgewahlt werden konnen. Dieses erfolgt
durch Anklicken der entsprechenden Zeile des Data-1
Fensters. Die derzeit angezeigte Variable wird in der
Uberschrift des Fensters bezeichnet. Es kdénnen auch
die lokalen Variablen aller anderen aktivierten Pro-
zeduren gesichtet werden. Dazu muf? nur die Prozedur
im Procs Fenster angeklickt werden.

Data_1
CHUREEVEY
[PeSR=XPROCEDUR
EvenHumber) 8 IHTEGER
iEven -32768 INTEGER

Data-Fenster

SPC MODULA-2 V1.4 Debugger

Modules- Im Modules Fenster werden alle geladenen Moduln
angezeigt. Durch Anklicken eines Modulnamens wer-
Fenster den dessen globale Variablen im Data-2 Fenster an-—
gezeigt. Wird beim Auswdahlen gleichzeitig die Alter-
nate-Taste gedriickt. dann wird der Quelitext des
Moduls im Source Fenster angezeigt.
Das Data-2 Fenster zeigt die globalen Variablen eines
ausgewahlten Moduls. Bedienung und Anzeigeformat
sind beim Data—1 Fenster beschrieben.
o Modules [
0 XShell T 45BFO [0
1 InQut 467CC
2 AESForms 46B42
3 AESObjects 46F18
4 AESResources 4712E
5 AltResource 4771E
6 VDIAttributes 48028 [
7 UDIControls 485D8
8 UDIOutputs 43EFD
9 ASCII 48FB0
10 MathLib 49648
11 Clock 49040
12 CmdLine 4a302
13 Environment 4AFD2
14 HFS 4B8A0
15 JCL 4CB2C
16 NumberConversion 4CFEG
17 Lo¢
o] 1] Data_2" e s
Shell B
pe = MODULE
Client & ModuleHandles
Kit FALSE BOOLERK
LastSelection * 60 ARRAY
DefaultCall 9 INTEGER
MsgTimeout * 8 Time
SaveEnv FALSE BOOLEAH
Desk * 96EOE TreePtr
RscData (opaque) DataPtr
CndStack * 2048 ARRAY
CmdTos 1 INTEGER
Objects * 5440 ARRAY
B
o] [o]F
6-4 Debugger SPC MODULA-2 V1.4

Der Debugger wird Gber das File-Menu durch Selek-
tieren des Eintrages Quit verlassen. Danach erscheint
wieder die Meldung des Laufzeitsystems mit der Frage,
ob das Programm fortgesetzt oder abgebrochen wer—
den soll.

0” Man beachte, daB ein Programmmabbruch u.U. dazu
fahrt, daB globale Resourcen nicht wieder freigege-
ben werden, und es deshalb in der Folge zu Fehlern
kommen kann.

SPC MODULA-2 V1.4 Debugge:

Debugger
verlassen

Diese Seite wurde aus
satztechnischen Grinden frei
gelassen

Debugger

SPC MODULA-2 V1.4

Die Utilities

Das SPC MODULA-2 Sprachsystem enthalt eine Reihe
von Utilities, die die Leistungen des Systems abrunden.
Hierzu gehéren insbesondere

[m]

Filer, er unterstitzt die Arbeit mit Dateien und Ord-
ner.

Prelink, damit kdnnen einzelne Moduln in eine einzige
Datei zusammengefaBt werden. Das Laden von
Moduln wird dadurch beschleunigt.

Link, die Utility gestattet es, aus einzelnen .OBM
Dateien ein unter GEM ladbares Programm zu
erstellen.

Print, zum Ausdrucken von Textdateien.

Paths, zum Setzen der Compiler Suchpfade.

SetEnv, zum Setzen und Abfragen von Environment-
Variablen,

DecObm, zum Dekodieren von .OBM Dateien in
Assembler Source-Form.

Make, zur Automatisierung des Compilationsprozes—
ses.

Die Liste der Utilities wird sténdig erweitert. Soweit die
Utilities zum Sprachsystem im engeren Sinne gehd&ren
(Standard-Utilities), werden registrierte Benutzer im
Rahmen des Update—Verfahrens damit versorgt.

Darliberhinaus erhalten unabhéngige Anbieter Uber die
SPC MODULA-2 Vertriebswege die Maglichkeit, zu-
satzliche Utilities anzubieten.

Kapitel 7

SPC MODULA-2 V1.4 Utilities

Diese Seite wurde aus
satztechnischen Griinden frei
gelassen

Utilities

SPC MODULA-2 V1.4

Bei der Softwareentwicklung entstehen viele Dateien.
Einige davon werden nur vortbergehend benétigt, an—
dere wiederum sind so wichtig, daB sie innerhalb des
Systems mehrmals vorhanden sein sollten, um Daten-
verlusten vorzubeugen. Ein sinnvolles Arbeiten mit Da-
teien ist aber nur bei einer klaren Strukturierung der
gesamten Dateimenge mdglich. So ist es ein Muf
jeder Softwareentwickiungsumgebung, Werkzeuge
sowohl zum Bearbeiten von Dateien als auch zum
Modifizieren des Dateisystems zur Verfligung zu stel-
len. Wichtig ist dabei, daB diese Arbeiten schnell,
effektiv. und ohne groBen Aufwand seitens des Pro-
grammierers vonstatten gehen kdnnen.

Die File-Utility wurde unter diesen Gesichtspunkten
geschrieben. Dabei wurde besonders darauf geachtet,
daB alltagliche Arbeiten elegant und ohne groBen Auf-
wand erledigt werden kbnnen.

Der Filer wurde so konzipiert, daB einerseits dem Be-
nutzer eine homogene und leicht zu steuernde Kom-
mandomenge zur Verfugung steht und andererseits alle
in der Entwicklungsumgebung notwendigen Datei-
operatoren auch komplexerer Natur vorhanden sind.
Um dies zu realisieren wurde das Grundprinzip

“Erst Auswahien, dann Bearbeiten’”

eingefihrt, dessen Vorteile Sie im folgenden und beim
Arbeiten mit dem Filer sehen werden. Im Gegensatz
zur kommandozeilenorientierten Eingabe (zuerst Kom-
mando dann Auswahl) ist das Auswahlen unabhangig
vom Kommando selbst. Dadurch kann eine nahezu
beliebige Menge von verschiedenen zu bearbeitenden
Elementen (Dateien, Ordner, Laufwerke) fir eine
Operation zusammengestellt werden. Ein weiterer Vor-
teil liegt darin, daB die Operation unabhangig vom Typ
der Operanden wird, da Sie diesen selbststandig er-
kennt. Der Benutzer kann somit seine Anweisungen auf

Der Filer

Erfordernisse der
Softwareentwickiung

Konzeption

Grundprinzip

SPC MODULA-2 V1.4 Utilities

Feineinstellung von
Kommandos

Beispiel: Backup mit
dem Filer

einer hohen Abstraktionsebene eingeben. Er braucht
sich beispielsweise keine Gedanken mehr dariiber zu
machen, wie sich ein Datei-Loéschen-Kommando von
einem Ordner-Ldschen-Kommando unterscheidet. Er
wahlt einfach das zu l6schende Element - sei es Datei
oder Ordner — aus, und die Sache ist erledigt.

Ein ebenfalls beachtenswerter Aspekt ist die
Feineinstellung von Kommandos. Wenn der Benutzer
beispielsweise einen Kopierbefehl gibt, werden norma—
lerweise die Dateien entsprechend kopiert und even-
tuelle Fehlermeldungen bzw. Erfolgsmeldungen aus-
gegeben. Der Filer wurde nun so erweitert, daB der
Benutzer nicht nur das Was sondern auch das Warum
seines Kommandos angeben kann. Ein einfaches Bei-
spiel soll dies aufzeigen:

Stellen Sie sich vor, Sie mdchten eine Datei aus
Sicherheitsgrinden auf ein anderes Laufwerk kopieren.
Sie bearbeiten diese Datei des &fteren und kon-
sequenterweise ist auch jedesmal ein Sichern auf ihr
Backup-Laufwerk notwendig. Das Problem stelit sich
Ihnen nun bei mehreren Dateien, sagen wir ca. 20. Da
Sie bei dieser Anzahl nicht mehr den Uberblick haben
konnen, welche Dateien alt und welche neu sind, bleibt
Ihnen nichts anderes Ubrig als sténdig alle alten Back-
ups zu léschen und die Dateien neu auf Ihr Backup-
Laufwerk zu kopieren. Dabei kdnnen Sie z.B. ver-
sehentlich auch Dateien léschen, die sich nur noch auf
lhren Backup-Laufwerk befinden. Fazit: Sie brauchen
ein Backup—Programm oder den FILER. Wenn Sie dem
Filer sagen: ‘‘Kopieren (=was) wegen Backup.
(=warum)” sind Sie lhre Sorgen los. Durch Setzen des
BackupFlags der Kopieranweisung wird dem Filer klar,
warum Sie kopieren wollen und er reagiert ent-
sprechend: Dateien, die noch nicht auf dem Backup-
Laufwerk vorhanden sind, werden ganz normal kopiert.
Bei Dateien, die bereits vorhanden sind, wird in Ab-
hangigkeit des Schreibdatums der Dateien kopiert: Ist
das Original neuer, wird kopiert, ansonsten nicht. Ist

Utilities SPC MODULA-2 V1.4

Ihnen das noch nicht genug, dann kénnen Sie zusétz-
lich zum Backup noch ein Verify verlangen: Jetzt wer—
den Original und Kopie noch byteweise verglichen.

Mit den Kommandoflags kann somit ein hoher Dif-
ferenzierungsgrad ein und derselben Operation erreicht
werden. Dabei wird fur den Benutzer die Aktions-
eingabe nicht schwieriger sondern eher verstandlicher
und dies trotz hdéherer Ablaufkomplexitat. Ferner ist der
Gesamtablauf der Kommandos uber Flags beeinflu3-
bar. So wird der Filer den individuellen Winschen ge-
recht (Was fur den einen die Sicherheit ist, ist flir den
anderen die Geschwindigkeit, die Information, etc.).

Es ist unbestreitbar, daB die Verwaltung einer elegan-
ten Benutzeroberflache mit “mitdenkenden” Operatoren
ihnren Preis — namlich Performance-EinbuBen - hat.
D.h., es gibt sicher ein Super—Hyper—Kopierprogramm,
das vielleicht 20-50% schneller kopiert. Aber kann die—
ses Programm z.B. auch alle Dateien von Laufwerk C:,
D: und E: als Backup auf Laufwerk F: kopieren? Selbst
wenn es dies kann, wird es beim zweiten Backup die
Segel streichen missen, da der Filer nur noch viel-
leicht 10% der Dateien real kopieren muss. Weiterhin
sollte man bei Vergleichen, die Zeit, die man selbst
braucht um komplexere Aktionen zu starten, mit-
berlicksichtigen. Im Ubrigen entscheiden Sie selbst
Uber Kommandoflags, ob Sie den Filer zeit-, arbeits—
oder sicherheits—optimierend einsetzen wolien.

Um den individuellen Arbeitsweisen gerecht zu werden,
werden - soweit mdglich und sinnvoll - beide Ein-
gabearten, d.h., maus—- (menue-) und tastaturorientiert,
unterstiitzt. Die Funktionalitdt der einzelnen Komman-
dos wird zumeist anhand der mausorientierten Eingabe
beschrieben. Die zugeordneten Tastaturkommandos
folgen im AnschiuB.

Performance

Eingabearten

SPC MODULA-2 V1.4 Utilities

Beenden

Auswahlen —
Prinzipielles

Kommandotypen

Selection und
Destination

Fensteranwahl

Wenn Sie den Filer beenden wollen, so wahlen Sie
den Menuepunkt ‘Quit’ im ‘Command’-Menue an, oder
dricken Sie einfach die Taste Q. Der Filer wird damit
beendet. Bitte beachten Sie, daB die SSWiS-Um-
gebung es Ihnen erlaubt, durch Aktivieren des Fensters
eines anderen SSWiS-Programms sofort zu diesem
wechseln kénnen, ohne den Filer zu verlassen.

Getreu dem Motto “Zuerst Auswéhlen dann Bearbei-
ten” wird auch das Erstellen der Auswahl zuerst be-—
schrieben. Wenn Sie den Filer aktiviert haben (siehe
dazu xShell) meldet er sich, indem zwei Fenster geotff-
net werden. Zuséatzlich erscheint im Terminal-Fenster
die Versionsnummer des Filers. Es gibt Kommandos
mit einem und mit zwei Parametern:

o Kommandos mit einem Parameter: z.B. Information
Uber “irgendwas” oder Loschen von “irgendwas’”

0o Kommandos mit zwei Parametern: z.B. Kopieren von
“irgendwas” nach “irgendwohin” oder Bewegen von
“irgendwas’ nach “irgendwohin”

Der erste Parameter, das ‘“irgendwas”, wird als Selec-
tion und der zweite, das ‘‘irgendwohin”, als Destination
bezeichnet. Um MiBverstandnissen bei der Auswahl
vorzubeugen, erhalt jeder Parameter sein eigenes Aus—
wahlfenster (Filer-Selection, Filer—Destination).

Sie sind vermutlich mit lhren System soweit vertraut,
daB Sie wissen, daB Eingaben nur im obersten, d.h.
aktiven Fenster moglich sind. Sie kbnnen durch An-
klicken mit der Maus ein nicht-aktives Fenster nach
oben holen und aktivieren. Zwischen den Filer—
Fenstern kénnen Sie zuséatzlich auch durch Drlcken
der Leertaste oder Anwahlen des Menuepunktes
‘Switch’ im ‘Command’-Menue umschalten. Die
Fenster-Infozeile beinhaltet den aktuellen Pfad mit dem
Auswahlkriterium —-soweit langenmaBig darstellbar—, die
Anzahl der Ordner (Fol:) und die Anzahl der Dateien
(Fil:) des eingestellten Pfades. Ist kein Laufwerk geo6ff—

Utilities SPC MODULA-2 V1.4

net, enthalt sie nur ‘Drives’ (Laufwerke). Im Innern der
Fenster werden die Namen der Dateien angezeigt, die
auf dem aktuellen Pfad dem Auswahlkriterium unterlie—
gen. Die Anzeige beginnt immer mit dem SchlieBsym-
bol ”..” und nachfolgend den Ordnern des Pfades. Die
dargestellten Dateien sind nach Namen, GroBe oder
Erstellungsdatum sortierbar. Dies geschieht durch An-
wahlen des entsprechenden Menuepunktes im Menue
Param oder durch Dricken der Tasten = (Namen), -
(Datum) oder =z (Grofe) der Tastatur.

Das Maus-Handling des Filers ist dem der GemDos-
Oberflache angepaBt. Sie kdnnen Laufwerke und Ord-
ner durch Doppelklick 6ffnen, wie auf dem Desktop. Im
Unterschied zum Desktop befinden sich jedoch keine
Laufwerkssymbole auf der Arbeitsoberflache, sondern
diese sind als Urpfad in den Auswahlfenstern zu errei—
chen. Ist ein Laufwerk oder ein Ordner gedffnet wor-
den, erscheint in der ersten Zeile ein Ordnersymbol mit
dem Namen ”..”. Dies représentiert das Laufwerks/
OrdnerschlieBsymbol. Ein Anklicken oder Doppelklicken
dieser Zeile schlieBt den entsprechenden Pfad wieder.

Wenn Sie beispielweise das Laufwerk D: und darauf
einige Ordner gedffnet haben, konnen Sie das aktuelle
Laufwerk durch Anklicken aller erscheinenden Ord-
nerschlieBsymbole bis zum Urpfad wieder verlassen,
um anschlieBend ein anderes Laufwerk zu 6ffnen. Dies
ist jedoch im allgemeinen der umstandlichere Weg.
Einfacher geht es, wenn Sie im Menue Drives, den
MenuePunkt ‘“‘Drives” oder sogar gleich das ge-
winschte Laufwerk anklicken. Noch schneller geht es
mit Hilfe der Tastatur: Wenn Sie auf Laufwerk E: um-
schalten méchten, geben Sie einfach ein £ ein! Analog
kénnen Sie auf jedes Laufwerk lhres Systems ge-
langen. Durch Dricken der O auf der Tastatur (nicht
auf dem numerischen Block!) erreichen Sie den Ur-
pfad. Die néchste Frage, die sich stellt ist, wie gelange
ich schnell zum Ausgangspfad auf D: zuriick ? Auch
hier ist es mit einem Klick oder einem Tastendruck ge-

Ordner und
Laufwerke

Umschalten
zwischen Lauf-
werken

SPC MODULA-2 V1.4 Utilities

sichtbare Dateien
einstellen

Standardtypen
festlegen

schehen. Der Filer speichert fiir jedes Laufwerk den
zuletzt angewahlten Pfad und setzt diesen als Lauf-
werks—Standardpfad ein. Da dies auch lastig sein kann,
wird durch wiederholtes Anwahlen der gleichen Lauf-
werkskennung die oberste Ebene des angewahlten
Laufwerks erreicht. Im Beispiel: Einmal D und Sie sind
wieder in lhren auf D: gedffneten Ordnern, nochmal D
und Sie sind wieder auf der Laufwerksebene von D:.

Da der Umfang der Dateien auf einem Laufwerk oder
in einem Ordner sehr groB sein kann, ist es oft glinstig
der Ubersichtlichkeit willen nur eine spezielle Auswahl
anzusehen. Der Filer bietet hierzu mehrere Mdglich—
keiten:

i Diese Mdglichkeiten bestehen nur fir das Selection—
Fenster.

Grundsétzlich bietet der Filer die Typen “*.*” (alle Da-
teien und Ordner) und “{*.*}” (nur Ordner) an. Der
Benutzer kann bis zu 6 (0..5) weitere eigene Auswahl-
typen definieren. Dies geschieht liber einen Dialog, der
durch Dricken der Taste T oder durch Anklicken des
Menuepunktes ‘Set Types’ im Menue ‘Special’ aktiviert
wird. Ist ein Type definiert worden, so kann er ebenso
wie die Standardtypen im Menue ‘Types’ angewahit
werden. Auch hier ist eine tastenorientierte Anwanhl
mdglich: Alle Mdglichkeiten liegen auf dem numeri—
schen Tastenblock. Die benutzerdefinierten Typen be-
legen die Tasten 0.5, die “*.*”-Anwahl erfolgt mit *
und die “nur Ordner’-Anwahl mit /. Die definierten
Typen werden in einer Environment-Variablen ge-
speichert und sind beim néchsten Aktivieren des Filers
wieder vorhanden.

Die erste Mdglichkeit ist flir das Festlegen von
Standardtypen wie z.B. “*.MOD”, “*.DOC”, “PRO-
JEKT.*” geeignet, die nachfolgende zweite Mdglichkeit
hingegen unterstitzt das interaktive Umschalten im

Utilities SPC MODULA-2 V1.4

Fenster. Wenn Sie beim Anklicken eines Dateinamens
die CONTROI~Taste halten, kbnnen Sie die Typan-
wahl auf zwei Arten andern: Entweder Klicken Sie auf
die Extension (z.B. ‘MOD’ in ‘HELLO.MOD’), dann wer-
den alle Dateien mit dieser Extension angezeigt (ent-
spricht **.MOD’), oder Sie Klicken auf den Dateinamen
selbst (z.B. ‘HELLO’), dann werden alle Dateien mit
diesem Namen und beliebiger Extension angezeigt
(entspricht ‘HELLO.*’). Diese Typanwahl kénnen Sie in
beiden Fallen durch Halten der CONTROL-Taste und
Klicken auf das SchlieBsymbol wieder rickgangig
machen.

Im Destination-Fenster erfolgt das Offnen, SchlieBen
und Memorieren von eingesteliten Pfaden wie im
Selection-Fenster. Im Unterschied zu diesem werden
jedoch im Destination—-Fenster nur Laufwerke und Ord-
ner dargestellt, da eine Datei als Zielumgebungsaus-
wahl nicht sinnvoll ist.

Das Selektieren von Dateien ist einfach. Sie missen
nur im Selection-Fenster in die Zeile klicken, in der
der Name der aus- zuwdhlenden Datei steht. Als
Kennzeichnug der Auswahl erscheint dann am rechten
Rand des Fenstereintrags ein Pfeil. Sie kénnen die
Selektion wieder ruckgéngig machen, indem Sie diesen
Vorgang wiederholen, der Pfeil am rechten Rand ver-
schwindet dann wieder. Mdchten Sie weitere Dateien
auswéhlen, tun Sie dies auf dieselbe Weise. Im Ge-
gensatz zum Desktop wird im Filer die vorange-
gangene Auswahl nicht zurlckgesetzt. Somit kdnnen
Sie auch Dateien aus verschiedenen Ordnern oder
sogar von verschiedenen Laufwerken gleichzeitig aus-
wdéhlen.

Wenn Sie mehrere der dargesteliten Dateien in lhre
Auswahl aufnehmen wollen, geschieht dies analog zum
Desktop: Dricken Sie die Maustaste Uber der obersten
(oder untersten) auszuwdhlenden Datei und ziehen
(draggen) Sie die Maus - bei gehaltener Taste - bis
zur untersten (bzw. obersten) auszuwdahlenden Datei.

Unterschiede:
Selection und
Destination

Dateien auswahlen

erweiterte Auswahl

SPC MODULA-2 V1.4 Utilities

XOR Logik

Dateien eines Typs
auswahlen

Ordner, Laufwerke
auswahlen

Ordner—Auswahl—
Kriterium (OAK)

Sie waren erfolgreich, wenn danach alle auszuwéhlen-
den Dateien mit einem Pfeil gekennzeichnet sind.
Dabei ist zu beachten, daB die Auswahl eine XOR-
Logik beinhaltet, d.h., wie bei der einfachen Selektion
wird eine Datei, die bereits ausgewahlt worden war
durch obige Drag—Aktion wieder aus der Auswahl ent-
fernt.

Méoéchten Sie alle Dateien (nicht die Ordner!) oder alle
Dateien eines Typs des gerade dargesteliten Pfades in
lhre Auswahl aufnehmen, erreichen Sie dies am
schnellsten durch Drucken der .-Taste. Ein Dialog
fragt Sie nach dem Auswahltyp und modifiziert lhre
Auswahl entsprechend. Auch hier gilt, wie bereits oben
erwdhnt, daB bereits ausgewdhlte Dateien dadurch
wieder aus der Auswahl entfernt werden (XOR-Logik).

Die umfangreichste Auswahimdglichkeit des Filers be—
steht in der Selektion von Ordnern und Laufwerken.
Wir wollen uns in der Beschreibung auf Ordner kon-
zentrieren und logische Laufwerke einfach auch als
(sehr groBe) Ordner betrachten; das nachfolgend Ge-
sagte gilt fur diese ebenso. Die Selektion eines Ord-
ners erfolgt genauso wie bereits fir Dateien beschrie-
ben, also durch Anklicken mit der Maus, oder durch
Draggen iiber mehrere auszuwahlende Elemente im
Fenster. Wichtig ist jedoch die unterschiedliche
Semantik der Auswahl:

0 Wenn Sie eine Datei auswéhlen, ist diese und nur
diese gemeint. Wenn Sie einen Ordner auswabhlen, so
ist der Ordner und der gesamte Inhalt mit allen
Dateien und Unterordnern gemeint, falls diese dem
Ordnerauswahlkriterium (Foldertype) geniigen!

Das Ordnerauswahlkriterium ist standardméagig auf “*.*’
(alles) eingestellt. Wéahlen Sie nun einen Ordner an,
sind damit a/e Dateien und Ordner, die sich darin ver—
bergen gemeint. In der Auflistung der Auswahl erken-
nen Sie dies am ‘“*.* hinter dem Ordnernamen. Sie

7-10

Utilities SPC MODULA-2 V1.4

kénnen das Ordnerauswahlkriterium (OAK) genauso wie
die Datei—Anzeigetypen mit ‘Set Types’ im ‘Special'—
Menue &ndern. Das aktuelle OAK erkennen Sie im
Menue ‘Type’ zwischen den geschweiften Klammern
(zB. {**}). Wenn Sie das OAK beispielsweise auf
“*.MOD’ &ndern, bedeutet dies: Es ist mit Ihrer Selek-
tion der gesamte Dateibaum mit allen Ordnern ge-
meint. Aber Dateien sind nur dann betroffen, wenn Sie
das OAK, d.h., im Beispiel **.MOD’ erfiilien. Sie kénnen
also mit dieser Auswahl alle “*.MOD’-Dateien und lhre
angelegte Ordnerstruktur bearbeiten.

Ein konkretes Beispiel: Laufwerk D: enthdlt die Ordner
D:\SPC und D:\SOURCE. D:\Source enthalte 4 ver-
schiedene Projektordner PROJ1,.., PROJ4. Mit OAK =
“*.MOD’ und Selektion von D:\\SOURCE haben Sie alle
MOD-Dateien, die in SOURCE oder einem beliebigem
Unterordner von SOURCE stehen ausgewéhlt. Wenn
Sie nun F:\Backup als Kopierziel angeben, werden alle
MOD-Dateien und die gesamte Ordnerstruktur von
SOURCE in F\BACKUP kopiert. Genauso kdnnen Sie
mit allen ‘DEF’-Dateien verfahren. Sie kdnnen auch als
OAK "*.BAK’ angeben und alle BAK-Dateien auf einmal
I6schen. Vergewissern Sie sich aber vor dem Léschen,
daB Sie tatsachlich nur die BAK-Dateien selektiert
haben, indem Sie sich die Selektion auflisten lassen!
Es solite dort dann D:\SOURCE*.BAK stehen.

Zwei wichtige Bemerkungen:

0= Ordnerstrukturen werden nur dann geéandert, wenn
es sinnvoll erscheint. Wird beispielsweise ein Ordner
durch ein Léschkommando komplett geleert, so wird
auch der Ordner geldscht. Beim Kopieren von
Ordnern wird die Ordnerstruktur auf dem Kopierziel
neu eingerichtet, vorausgesetzt sie ist nicht bereits
vorhanden.

o= Das Andern des OAK hat keinen EinfluB auf vor-
herige Selektionen! D.h., Wenn Sie einen Ordner mit
> *' ausgewdhlt haben und anschlieBend das OAK

Beispiel

Behandlung von
Ordnerstrukturen

Andern des OAK

SPC MODULA-2 V1.4 Utilities

7-1

Auswahl anzeigen
und riacksetzen

Automatische
Auswahllogik

andern, ist fur diesen Ordner immer noch *.*’ gliltig!
Dies hat den Vorteil, daB Sie diverse Ordner mit
jeweils verschiedenen OAKs selektieren kénnen.
Allerdings ist es nicht méglich, einen Ordner gleich—
zeitig mehrfach mit verschiedenen OAK’en aus—
zuwahlen. Dies wurde der Ubersichtlichkeit halber
unterbunden.

Da die ausgewdéhlten Dateien Uber mehrere Ordner
oder Laufwerke verteilt sein kbnnen ist es wichtig, sich
die gesamte Auswahl auflisten lassen zu k&nnen. Dies
geschieht mit dem Menuepunkt ‘Show Sel’ im Com-
mand-Menue. Genauso kodnnen Sie ihre gesamte Aus—
wahl wieder rickgangig machen, indem Sie ‘Clear Sel
im Command-Menue anwahlen. Wenn Sie tasta-
turorientiert arbeiten mdchten, finden Sie diese Funk-
tionen auf der =7 ..o - (Show Sel) bzw. der D~ -
Taste (Clear Sel). Es ist sicher sinnvoll, sich vor groB—
eren Aktionen (z.B. Lbschen einer Harddisk—Partition
0.4.) die gesamte Auswahl auflisten zu lassen, insbe-
sonders dann, wenn Sicherheitsabfragen ausgeschaltet
werden!

Durch die Vielzahl der Méglichkeiten kann es pas-
sieren, daB eine Datei mehrmals ausgewahlt wurde
(z.B. Ordner und Datei im Ordner). Der Filer besitzt
eine zuschaltbare Logik, die die Auswahlliste auf
solche Mehrfachauswahlen Uberpriift und entsprechend
verandert. Dabei wird davon ausgegangen, daB bei
Mehrdeutigkeiten die spétere Auswahl die maBgebliche
istt Wenn Sie eine Datei in einem Ordner auswéhlen
und anschlieBend den Ordner selbst, wird die Auswahl
der Datei ignoriert. Bei umgekehrter Auswahlreihenfolge
wird der Ordner ignoriert. Diese Mdglichkeit ist optional
Uber den Menuepunkt ‘Set Flags' im ‘Special'-Menue
an- bzw. abschaltbar.

7-12

Utilities SPC MODULA-2 V1.4

Fir Aktionen wie Kopieren und Verschieben bendtigen
Sie als zweite Angabe das Ziel (Destination). Um das
Ziel fur diese Aktionen auszuwdhlen, mussen Sie zu—
nachst zur Zielauswahl umschalten. Dies geschieht,
indem Sie das Destination—-Fenster aktivieren. Die Aus—
wahl erfolgt wie im Selection-Fenster, jedoch ist nur
genau ein Laufwerk oder ein Ordner als Zielangabe
moglich. Daher wird auch durch Auswahl eines Ziel
eine eventuelle vorherige Auswahl aufgehoben. Der
ausgewdhite Ordner oder das ausgewahlte Laufwerk
wird durch einen Pfeil nach unten gekennzeichnet.

Auch die Auswahl kann tastaturorientiert erfolgen. Die
gesamte Funktionalitat ist auf dem Cursor-Tastenblock
untergebracht. Mit der Taste Clrimoma kdnnen Sie die
tastenorientierte Auswahl an- bzw. abschalten. Wenn
Sie die Taste gedruckt haben, erscheint in jedem der
beiden Filer-Fenster ein Eintrag invertiert. Der inver—
tierte Eintrag ist die aktuelle Position lhres Selektions—
zeigers. Sie kénnen mit Hilfe der Cursortasten den
Selektionszeiger auf jede Datei positionieren: Mit der
Cursor-Up- und der Cursor-Down-Taste kbnnen Sie
durch das aktuell dargestellte Inhaltsverzeichnis scrol-
len. Dabei wird das Fenster automatisch so mit-
gescrollt, daB der Selektionszeiger immer sichtbar
bleibt. Mit der Cursor-Right- oder der Cursor-Left—
Taste kdonnen Sie Ordner 6ffnen, bzw durch Anwahl
von "..” schlieBen. Wenn Sie eine Datei oder einen
Ordner in lhre Auswahl aufnehmen wollen, driicken Sie
wenn der Selektionszeiger auf dem gewunschten Ele-
ment steht die [nsert-Taste.

Ziel auswahlen

Ziel mit der Tastatur
auswahlen

SPC MODULA-2 V1.4 Utilities

7-13

Kommandos

Kommando-Flags

Verbose-Flag

Der Filer bietet folgende Grundkommandos:

o Copy ©'i Kopieren

o Move 2 Verschieben

o Delete % Loschen

0 Rename 4 Umbenennen

o Info 6 Informationen

o Tree 6 Datei—Inhaltsverzeichnis
o Compare [F7 Vergleichen von Dateien
0 Search ¥8 Suchen von Dateien

Zur Funktionalitat der einzelnen Kommandos lesen Sie
bitte den entsprechenden Abschnitt. Die Kommandos
werden durch Anwéhlen des Kommandonamens im
‘Command’-Menue bzw. durch Dricken der angege-
benen Funktionstasten aktiviert. Zunichst wollen wir
uns mit den Steuerungsmaoglichkeiten beschéaftigen.

Um die einzelnen Kommandos an individuelle Ge-
gebenheiten anzupassen, kdnnen flir jedes Kommando
separat Kommando-Flags angegeben werden. Einige
der nachfolgenden Flags sind bei jedem Kommando
einzustellen, andere sind nur fir ein spezielles Kom-
mando vorhanden. Die Flags lassen sich mit dem
Menuepunkt ‘Set Flags’ im ‘Special'-Menue setzen.

Die Kommando-Flags haben folgende Bedeutung:

Verbos (Geschwatzig), d.h., der Filer gibt bei den ent-
sprechenden Aktionen des Kommandos Nachricht dar-
Uber, was gerade getan wird. Beim ‘Info’ hat dieses
Flag eine gesonderte Bedeutung bei der Ordneran-
wahl: Es werden dann nicht nur globale Informationen
Uber den Ordner bzw. das Laufwerk ausgegeben, son-
dern auch uber die im Ordner enthaltenen Dateien. Die
Ausgabe der Informationen erfolgt entweder ins Ter—
minal-Fenster oder auf eine angegebene Datei. Der
Ablauf der Aktion wird dadurch verlangsamt.

7-14

Utilities SPC MODULA-2 V1.4

Query (Frag mich). Ist diese Flag gesetzt, wird vom
Benutzer vor dem Ausfuhren einer Aktion nochmals
eine Bestatigung verlangt. Wichtig ist hierbei, daB der
Benutzer im Bestétigungs—Dialog die meisten Flags fir
die laufende Aktion modifizieren kann. Diese Flag-An-
derungen betreffen aber nur die gerade laufende
Aktion und nicht die globale Einstellung der Flags!
Darum sollte z.B. bei Ldsch-Aktionen das Query-Flag
nie global abgeschaltet werden. Wenn Sie sicher sind,
daB die laufende Loschaktion korrekt ist, schalten Sie
einfach im Bestatigungs-Dialog das Query-Flag aus.
Sie werden dann fur diese Auswahl nicht mehr be-
lastigt. Bei der nachsten Auswahl ist das Query-Flag
wieder vorhanden und schitzt Sie so vor ungewallten
Aktionen. Der Ablauf der gesamten Aktion wird durch
die Bestatigungsanforderungen langsamer aber auch
wesentlich sicherer.

Replace (Ersetzen). Dieses Flag ist nur beim Kopieren,
Verschieben und Umbenennen vorhanden. Ist es ge-
setzt, werden Namenskonflikte mit existierenden Da-
teien auf dem Zielpfad ignoriert, d.h., eventuell vorhan—
dene Dateien gleichen Namens werden Uberschrieben.
Ist das Flag nicht gesetzt, gibt der Filer eine Warnmel-
dung aus und Sie kdnnen Uber einen Dialog entschei-
den, wie auf den Namenskonflikt reagiert werden soll.

Buffer (Puffern). Dieses Flag ist nur fir Kopiervorgange
relevant. Ist es gesetzt, so wird versucht, zuerst soviel
einzulesen wie Speicherplatz vorhanden ist und erst
anschlieBend wird geschrieben. Dieses Flag optimiert
damit die Ein/Ausgabeoperationen. Insbesondere wenn
Sie von A: nach B: kopieren méchten und das Lauf-
werk B: nur von Ihrem Rechner emuliert wird, kdnnen
Sie damit das Disketten—-Jonglieren wesentlich redu-—
zieren. Der Ablauf der Gesamtaktion wird schneller,
insbesondere dann, wenn Diskettenlaufwerke an-
gesprochen werden. Der allokierte Speicher wird im
AnschluB3 freigegeben, ist innerhalb des SPC-Systems

Query-Flag

Replace-Flag

Buffer-Flag

SPC MODULA-2 V1.4 Utilities

7-15

Backup-Flag

Verify—Flag

Check-Flag

wieder verfugbar (aber nicht flir Accessories!).

Die nachfolgenden Flags sind nur fir das Kopieren zu—
standig und kdnnen auch nur global eingestellt werden.

Backup (Sicherungskopie). Ist dieses Flag gesetzt, wird
der Kopiervorgang als Sicherungsvorgang bewertet,
d.h., daB Namenskonflikte durchaus auftreten durfen.
Tritt er auf, so wird angenommen, daB beide Dateien
verschiedene Versionen der gleichen Datei reprasen—
tieren. Ist nun die zu kopierende Datei neueren Da-
tums, wird die vorhandene Zieldatei uberschrieben. Ist
dies nicht der Fall, ist die Sicherungskopie noch aktuell
und der Kopiervorgang wird unterbunden.

0= Dieses Flag kann nur dann korrekt arbeiten, wenn
Sie lhre Systemuhr immer setzen.

Ist dies der Fall, kdbnnen Sie damit Sicherungskopien
automatisch und zeitoptimiert erstellen.

Verify (Vergewissern). Das Verify-Flag testet erstelite
Kopien auf Konsistenz mit dem Original, d.h., Original
und Kopie werden byteweise verglichen und eventuelle
Unterschiede gemeldet. Dieses Flag ist sinnvoll, wenn
Ihnen lhre Datenkonsistenz sehr wichtig ist. Durch das
Einlesen und Vergleichen von Original und Kopie wird
die gesamte Aktion natirlich erheblich langsamer die
Datensicherheit dafir wesentlich groBer.

Check (Prifen). Das Check-Flag priift bevor die
eigentliche Aktion anlduft, ob genligend Platz auf dem
Speichermedium vorhanden ist, um alle ausgewahlten
Dateien und Ordner darauf unterzubringen. Dabei wird
der Verwaltungsverschnitt mitberlicksichtigt. Die Prufak-
tion kostet natlrlich Zeit. Wird sie abgeschaltet, wird
versucht, alles zu kopieren. Eventuell riskieren Sie
damit Fehler beim Kopiervorgang. Faustregel: Bei
platzkritischen Speichermedien wie Disketten und rela-
tiv vollen Harddiskpartitions das Flag setzen, sonst ab-
schalten.

7-16

Utilities SPC MODULA-2 V1.4

Wenn Sie das Query-Flag nicht gesetzt haben, arbeitet
der Filer das eingegebene Kommando fiir Ihre gesamte
Auswahl ab. Nun kann Ihen aber ein Migeschick pas—
siert sein und Sie missen das Kommando abbrechen.
Hierfir kénnen Sie die Undo-Taste benutzten. Der
Filer meldet sich mit einem Dialog, in dem Sie die
aktuelle Aktion anhalten oder abbrechen kénnen. Der
Filer erkennt den Interrupt an vordefinierten Aufsetz—
punkten und hélt entweder die Aktion an oder bricht
sie ab. Dabei werden begonnene Dateioperationen
vorher zu Ende gefiihrt (wurde z.B. bereits begonnen
eine Kopie zu schreiben, wird diese auch ganz ge-
schrieben). Die Interrupt—-Méglichkeit kann auch mit
dem Menuepunkt ‘Set Flags’ an- bzw. abgeschaltet
werden.

Wurde eine Aktion angehalten, kann Sie durch noch-
maliges Dricken der Undo-Taste wieder fortgesetzt
oder abgebrochen werden. Das Anhalten kann dazu
dienen andere xShell-Programme zu aktivieren, ohne
durch Filer-Aktivitditen Konflikte (z.B Dateizugriffskon—
flikte) zu provozieren.

Das Delete-Kommando dient zum L@schen von Da-
teien und Ordnern. Es werden nur die Directory—Ein-
trage der Dateien, bzw. Ordner geldéscht und der zu-
geordnete Platz auf dem Speichermedium freigegeben.
Um lhre Datei physikalisch zu 16schen, muissen Sie ihr
Speichermedium formatieren. Ordner werden nur dann
geldscht, wenn diese vollstandig geleert sind. Zum
Beispiel I6scht ein Ordner-Delete—Kommando mit Kri-
terium “*.BAK’ diesen nur, wenn in ihm nur ‘BAK'-Da-
teien enthalten sind.

Flags: Verbos [an], Query [an]

Abbrechen von
Kommandos

Delete

SPC MODULA-2 V1.4 Utilities

7-17

Copy

Move

Rename

7-18

Das Copy-Kommando kopiert thre gesamte Auswahl
auf den eingesteliten Zielpfad (Destination—Auswabhl).
Es last sich durch die Kommandoflags vielseitig ein-
setzen.

Flags: Verbos [an], Query [an], Replace [aus],
Backup [aus], Verify [aus], Check [aus]

Das Move-Kommando verschiebt Dateien und Ordner
innerhalb eines logischen Laufwerks. Da nur die Direc—
tory-Eintrage modifiziert werden und die Dateien phy—
sikalisch nicht verschoben werden, ist es im Vergleich
zu einem Kopiervorgang mit anschlieBendem Léschen
der Originale wesentlich effizienter. Ein weiterer Vorteil
ist, daB - abgesehen von Verwaltungsverschnitt fir
verschobene Ordnerstrukturen — kein Platz auf dem
Speichermedium benétigt wird. So lassen sich auch
relativ ausgelastete Speichermedien noch leicht struk—
turieren.

Flags: Verbos [an], Query [an], Replace [aus]

Mit dem Rename-Kommando kénnen Sie Dateien und
Ordner umbennen. Der neue Name wird Uber einen
Bestatigungsdialog abgefragt. Da das Atari-Betrieb—
system (TOS) in der derzeit vorliegenden Version ein
regulares Ordnerumbenennen nicht erlaubt, wird diese
Aktion durch Anlegen eines neuen Ordners, Verschie—
ben der Dateien in den neuen Ordner und L&schen
des alten Ordners simuliert. Sobald die neue TOS-Ver—
sion allgemein freigegeben ist, wird auch der Filer das
direkte Ordnerumbennen unterstiitzen.

Flags: Verbos [an], Query [an], Replace [aus]

Utilities SPC MODULA-2 V1.4

Mit dem Info~Kommando kénnen Sie sich detaillierte
Informationen Uber Dateien, Ordner oder Laufwerke
ausgeben lassen. Die Informationen werden ins Ter-
minal-Fenster bzw. auf Datei ausgegeben und umfas-
sen: Name, GroBe, Zugriffsmodus, Erstellungsdatum,
Anzahl Unterordner und Dateien (fir Ordner u. Lauf-
werke) sowie freier Speicherplatz (Laufwerke). Bei Ord-
nern und Laufwerken werden nur die globalen Informa-
tionen ausgegeben. Sollen hier auch Einzelheiten lber
die im Ordner/Laufwerk enthaltenen Elemente aus-—
gegeben werden, ist das Verbos-Flag zu setzen.

Flags: Verbos [aus], Query [an]

Das Tree—-Kommando listet Ihnen das Datei-Inhaltsver—
zeichnis lhrer ausgewéhiten Elemente. Auch hier kdén-
nen Sie durch das Ordnerauswahlkriterium (OAK) das
inhaltsverzeichnis einschrdnken. Es werden die kom-
pletten Pfadnamen der Dateien auf das Terminal-
Fenster bzw. Datei ausgegeben.

Flags: Verbos [an], Query [an]

Das Compare-Kommando untersucht zwei Dateien auf
Identitat. Die zu vergleichenden Dateien muissen im
Selection-Fenster ausgewahit werden.

Flags: Verbos [an], Query [aus]

Mit dem Search-Kommando koOnnen Sie Dateien auf
lhren Laufwerken suchen lassen. Dies ist insbesondere
bei verschachtelten Ordnerstrukturen sehr nutzlich. Die
zu suchende Datei(en) wird durch einen Dialog abge-

Info

Tree

Compare

Search

SPC MODULA-2 V1.4 Utilities

7-19

fragt. Der eingegebene Name muf3 folgender Syntax
genugen:

<EinzugebenderName> := <Laufwerke> "' <Dateiname>

wobei

<Laufwerke> := *|<LwKennung>|<LwListe>
<LwKennung> = ‘A| .. |'P’

<LwlListe> o= <LwKerinung> -’ <LwKennung>

<Dateiname> := GEMDOS-Dateiname

Zu beachten ist, daB

0 nur existierende Laufwerke angegeben werden soll-
ten.

o durch Angabe der LwListe mehrere nacheinanderfol-
gende Laufwerke durchsucht werden kénnen.

o durch Laufwerksangabe ‘* alle in lhrem System vor-
handenen Laufwerke durchsucht werden.

0 der Dateiname der GEMDOS-Konvention entspricht
und die ent— sprechenden Wildcards erlaubt sind.

o kein Ordnerpfad angegeben werden darf.

Beispiele *HELLO.MOD : Suche alle HELLOD.MOD Dateien im
System.

C-F*MOD : Suche alle Dateien mit Extension ‘MOD’
auf den Laufwerken C:, D:, E: und F:

AHI** : Suche alle Dateien auf Laufwerk A:, deren
Namen mit ‘HI’ beginnen.

Sie erhalten als Ergebnis eine Auflistung der komplet-
ten Pfadnamen der gefundenen Dateien sowie deren
Gesamtanzahl. Die Ausgabe erfolgt ins Terminal-
Fenster oder auf Datei.

7-20 Utilities SPC MODULA-2 V1.4

Die Ausgabe der verschiedenen Kommandos kann statt
in das Terminal-Fensters auch auf eine Datei erfolgen.
Dazu wahlen Sie im ‘Parameter—-Menue den Menue-
punkt ‘File’ an und geben den Namen der gewiinsch-
ten Ausgabedatei an. Die nachfolgenden Ausgabe der
Kommandos werden nun in diese Datei geschrieben.
Wenn Sie im gleichen Menue den Punkt ‘Terminal’ an-
wéhlen, wird die Ausgabe wieder ins Terminal-Fenster
erfolgen. Die Ausgabedatei ist dann geschlossen und
kann beispielsweise mit dem Editor angesehen oder
mit dem Print-Utility ausgedruckt werden.

Die nachfolgenden Méglichkeiten kénnen im Menue
‘Special’ angewahlt werden.

Mit ‘FormatDrive’ kénnen Disketten im Standardformat
formatiert werden. Es erscheint eine Dialogbox zur
Auswahl des Laufwerks (A oder B). AnschlieBend kann
zwischen einseitigem und doppelseitigem Formatieren
gewahlt werden. Mit dem Cancel-Button kann das
Kommando in der jeweiligen Dialogbox abgebrochen
werden.

0= Vor dem Formatieren vergewissern Sie sich bitte
immer, welche Diskette im Laufwerk ist!

Mit ‘New Folder’ kdnnen Sie neue Ordner erzeugen. Im
Dialog erscheint der aktuelle Pfad im Editierfeld, so
daB Sie nur den Namen lhres neuen Ordners eingeben
missen. Mdchten Sie den neuen Ordner nicht in der
aktuellen Umgebung anlegen, so I8schen Sie den
Pfadnamen und geben lhren gewlnschten Pfad an.
Der Ordner wird erzeugt, wenn Name und Pfadname
korrekt angegeben wurden.

Ausgabe umlenken

Disketten forma-
tieren

neuen Ordner
anlegen

SPC MODULA-2 V1.4 Utilities

7 - 21

Pfad explizit andern

Mit 'ChangePath’ kann die Umgebung des aktuellen
Laufwerks explizit neu eingestelit werden. Dies ist dann
sinnvoll, wenn auf einem Laufwerk von einer tiefen
Ordnerschachtelung in eine andere tiefe Ord-
nerschachtelung gewechselt werden soll.

Beispiel: Von D:\ORDA1\ORDB1\ORDC\ORDD nach
D:\ORDA2\ORDB2\ORDX. Ansonsten ist es schneller,
die Ordner zu schlieBen und den neuen Pfad zu 6ff-
nen.

Utilities SPC MODULA-2 V1.4

Der Linker hat die Aufgabe, aus den einzelnen uber—
setzten Moduln ein unter GEM ablauffahiges Programm
mit der Endung .PRG zu erstelien. Dazu geht er vom
Hauptmodul aus und sucht alle unmittelbar und mittel—
bar benutzten Moduln zusammen, verbindet sie nach
bestimmten Regeln untereinander und legt sie in einer
Ausgabedatei ab. Letztere hat den gleichen Namens-
stamm wie der Hauptmodul, jedoch die Endung .PRG.

Daneben wird ein Listing erzeugt, das uber die einge-
bundenen Moduln AufschiuB gibt. Falls der Vorgang
nicht erfolgreich war, muB das Listing inspiziert wer—
den, um die Fehlerursache festzustellen. Das Listing
hat den Namen LINK.LST und liegt auf dem momen-
tanen Arbeits—Directory.

Der Linker wird Uber eine Standard-Kommandozeile
aufgerufen und parametriert. Sie hat die Form:
link <Modulname> [-v] [-s<Stack>]

Der <Modulname> ist der Name des Hauptmoduls. Er
darf eine Dateiendung (z.B. .MOD oder .OBM) enthal-
ten. Es wird in jedem Fall .OBM impliziert und der
Modul wird, wie alle weiteren auch, auf den Compiler-
Suchpfaden gesucht.

Die Option -v (verbose) veranla3t den Linker, den
Fortgang des Linkens durch Angabe der Modul- bzw.
Dateinamen auf dem Terminal zu protokollieren.

Der Linker bestimmt die Stackgrofe des fertigen Pro-
gramms. Diese ist normalerweise 20000 Bytes. Falls ein
anderer Wert gewunscht wird, kann er als Zahl direkt
hinter der —s Option angegeben werden.

Der Linker wird interaktiv Gber die xShell aufgerufen.
Der Dateiname wird dann nach dem gewohnten Ver-
fahren von der xShell beigesteuert. Die Optionen kén-
nen durch Parametrieren des Link-Icons der xShell
eingestellt werden.

Der Linker

Starten

Argumente

Stacksize

Parametrieren

SPC MODULA-2 V1.4 Utilities

Pass 1

Pass 2

Ausgabedatei

bad syntax

io errors occurred

module not found

illegal module ke

Das Linken lauft in zwei Durchgangen (Passen) ab. Im
ersten Durchgang werden die Moduln auf den Com-
piler-Suchpfaden gesucht und registriert. Dabei wird
gepruft, ob die Modulschlissel zueinander passen. Da
jeder Modul weitere Moduln importieren kann, lauft der
Vorgang solange, bis alle benétigten Moduln registriert
sind.

Falls keine Fehler aufgetreten sind, wird der zweite
Durchgang gestartet. Durch ihn werden alle registrier—
ten Moduln in eine einzige Ausgabedatei kopiert. Dabei
werden gleichzeitig Anderungen an den Moduln durch-
geflihit, um sie untereinander geeignet zu verbinden.
SchlieBlich wird der Ausgabedatei ein Prolog vor-
angestellt, der die notwendigsten Initialisierungen
durchfahrt.

Falls auch hier keine Fehler aufgetreten sind, liegt das
fertige Programm im gleichen Ordner, in dem auch der
Hauptmodul gefunden wurde, allerdings mit der
Endung .PRG.

Fehler kébnnen mehrere Ursachen haben:

IO-Fehler kdnnen durch defekte Eingabedateien ver—
ursacht werden. In diesem Fall meldet der Linker ‘bad
syntax’ oder ‘io errors occurred’.

Beim Erzeugen der Ausgabedatei kbnnen Probleme
dadurch auftreten, dass nicht gentgend Platz auf der
Diskette vorhanden ist. Dies wird ebenfalls durch die
Meldung ‘io errors occurred’ angezeigt.

Falls die Compiler-Suchpfade nicht richtig eingestelit
sind, kédnnen Moduln u.U. nicht gefunden werden. Der
Linker meldet dann ‘module not found'.

Der héaufigste Fehler wird durch inkonsistente
Modulschlussel verursacht. Der Linker meldet dann
‘ilegal module key’. Die genaue Ursache ist nur aus
dem Listing zu ersehen. Dort kann mit dem Editor
nach dem Wort ‘illegal’ gesucht werden. Da der Fehler

Utilities SPC MODULA-2 V1.4

immer einen Konflikt zwischen dem von einem impor-
tierenden Modul erwarteten und dem in einem Modul
enthaltenen Schliissel darstellt, kann der Linker nicht
bestimmen, welcher Modul fehlerhaft ist. Wenn man
aber nach weiteren Fehlerstellen sucht, wird man sehr
schnell erkennen, welcher Modul fehlerhaft ist. Dieser
muB dan noch einmal Gbersetzt werden.

Der Aufbau des Listings wird unten ausschnittsweise
gezeigt. Flr jeden eingebundenen Modul wird ein Ein-
trag erzeugt, der Aufschluf3 gibt Gber

m]
[m]
(]

die Datei, die den Modul enthalt
den Modulschitssel

die Langen des Code-, Daten- und Konstanten-—
bereichs

die Zahl der exportierten Prozeduren (inklusive der
Modulinitialisierung)

die relative Adresse des Modul-Deskriptors (siehe
SYSTEM.DEF)

die relative Address des Code-Bereichs
die relative Address des Datenbereichs (StaticBase)

die importierten Moduln und deren erwartete
Modulschlussel

.

import System 000000000000

include module CmdLine

file E\gemdos\SYSLIB.obj\CmdLine.OBM
key 0CC302DDC4D1

code length 1132

data length 426

const length 2

exported procedures 8

descriptor start DED4

frame start DEF2

StaticBase E508

import Environment 0CC302DDCFFD
import Strings 0CC302DD1478

Listing

SPC MODULA-2 V1.4 Utilities

Initialisierungs—
reihenfolge

Zyklen

Ubergang von
dynamic linking zu
static linking

import System 000000000000
import GemDos 0CC302E01B8A
import System 000000000000
include module Environment

Das Listing wird im Erfolgsfalle abgeschlossen durch
eine Liste der Moduln in der Reihenfolge ihrer Initiali-
sierung. Normalerweise wird jeder importierte Modul
vor allen ihn importierenden Moduln initialisiert. Da-
durch wird gewdhrleistet, daB auch in der Modulinitiali-
sierung ein importierter Modul schon operabel (d.h.
selbst initialisiert) ist.

Wenn aber ein Modul A einen Modul B importiert, und
B importiert seinerseits A, dann ist ein sogenannter
Zyklus aufgetreten und die Initialisierungsreihenfolge ist
undefiniert. Sie hadngt dann einzig und allein davon ab,
welcher Modul zuerst in einer Importliste genannt
wurde. Durch die Hinschreibung der Import-Liste (z.B.
des Hauptprogramms) kann also in solchen Féllen die
Initialisierungsreihenfolge beeinfluBt werden.

Da die Anwendung schon unter der xShell getestet
wurde, macht der Ubergang zu einem eigenstandigen
Programm normalerweise keine Probleme. Allerdings
muB der Hauptprogramm-Modul nun das ganze Lauf-
zeitsystem initialisieren, eine Aufgabe, die bis dahin die
xShell Gbernommen hatte. Durch das o.g. Initiali-
sierungsschema erfolgt dies implizit ohne daB beson-
dere MaBnahmen getroffen werden.

Utilities SPC MODULA-2 V1.4

Der Prelinker hat die Aufgabe, mehrere .OBM Dateien
zu einer einzigen Datei, einer Art Bibliothek zusam-
menzufassen. Dazu wird von einem Modul, dem Leit-
modul, ausgegangen und alle importierten Moduln in
die Ausgabedatei kopiert, die davon nicht explizit aus—
geschlossen wurden. Alle notwendigen Angaben wer—
den durch eine Steuerdatei gegeben.

Dadurch, daB3 eine Menge von Moduln in einer ein-
zigen Datei zusammengefaBt (vorgebunden) sind, wird
der Ladevorgang beschleunigt. Alle Werkzeuge des
Sprachsystems sind in dieser Weise vorgebunden. Bei
groBeren Projekten bietet es sich fur alle Moduln an,
die gerade nicht bearbeitet werden.

Der Prelinker wird Uber eine Standard—Kommandozeile
aufgerufen und parametriert. Sie hat die Form:
prelink <Dateiname> [-v]

Der <Dateiname> ist der Name der Steuerdatei. Er hat
normalerweise die Endung .LCM) enthalten.

Die Option -v (verbose) veranlaBt den Prelinker, den
Fortgang des Linkens durch Angabe der eingeschlos-
senen Dateinamen auf dem Terminal zu protokollieren.

Die Steuerdatei muB3 folgenden Aufbau haben :

in der ersten Zeile steht der Name des Leitmoduls
(z.B. Main)

in der zweiten Zeile steht der Pfadname der Ausgabe-
datei (z.B. \USER\LNK\MAIN.OBM)

in allen weiteren Zeilen stehen die Namen der Moduln,
die vom Binden auszuschlieBen sind (z.B. InOut).

Edit
e\gemdos\misc\edit.obm
inout

filesystem

environment

Der Prelinker

Starten

Argumente

Aufbau der
Steuerdatei

SPC MODULA-2 V1.4 Utilities

Protokoll

Starten eines
vorgebundenen
Moduls

Wahrend des Bindens zeigt der Prelinker den Namen
des Hauptmoduls mit einem vorangestellten * an. Die
Ausgabedatei wird mit + markiert. Alle auszuschlieRen-
den Moduln werden mit einem % kenntlich gemacht
und die importierten Moduln zeigt der Prelinker durch
ein vorangestelltes — an.

Ein gebundener Modul wird wie jeder andere Pro-
gramm-Modul gestartet. Man beachte, daB die Aus-
gabedatei den gleichen Namen wie der zu startende
Modul haben muB und auf einem der Compiler—
Suchpfade liegen muB.

Utilities SPC MODULA-2 V1.4

Make ist eine von UNIX bekannte Utility, die bei der
Entwicklung gréBerer Systeme unterstiitzt. Make ist fir
den fortgeschrittenen Anwender und fur groBe Projekte
bestimmt. Die Aufgabe von Make ist es, festzustellen,
welche abhangigen Dateien eines Softwareprojektes
aufgrund von Modifikationen anderer Dateien nicht
mehr aktuell sind, und diese dann (meist durch Com-
pilation) neu zu erzeugen. Dazu bendtigt Make eine
Beschreibung (das Makefile) der gegenseitigen Ab-
hangigkeiten von Dateien, und der Kommandos, mit
denen eine abhangige Datei neu erzeugt werden kann.
DarUberhinaus ist Make natirlich darauf angewiesen,
daB3 die Uhr des Rechners immer richtig gestellt ist.

Zum Verstandnis von Make mussen zunachst einige
Begriffe erklart werden. Eine abhéngige Datei (Ziel,
Target) ist eine Datei, die immer dann nicht mehr
aktuell ist, wenn sie <er als eine von mehreren Be-
zugsdateien (Prerequisiten) ist. Dabei werden die Zeit-
markierungen des Filesystems ausgewertet. Tritt dieser
Fall ein, dann wird eine Kommandosequenz ausgefuhrt,
welche i.a. die abhangige Datei neu erstellt. Die Kom-
mandosequenz kann sich implizit aus dem Typ der ab-
hangigen Datei ergeben, oder sie kann explizit an-
gegeben sein.

Dieser Mechanismus ist sehr allgemein, und kann mit
etwas Ubung auch fur andere Zwecke eingesetzt wer—
den. Im folgenden wird jedoch beschrieben, wie Make
zur Steuerung des Ubersetzungsvorgangs eingesetzt
wird.

Es sei fir die weiteren Erklarungen vorausgesetzt, daB
ein Makefile bestehe, welches die Abhéangigkeiten in
einem Softwaresystem korrekt beschreibt. Es seien
verschiedene Dateien editiert worden, und es soll nun
Make dazu verwendet werden, die betroffenen Moduln
neu zu Ubersetzen. Wegen der Importe von
Schnittstellen in andere Moduln kann die Anderung
eines Definitions-Moduls bekanntermaBen weitere
Ubersetzungen nach sich ziehen.

Make

Begriffe

Ziel, Target
Prerequisiten

Kommandos

SPC MODULA-2 V1.4 Utilities

Starten

Arumente

Optionen

Ablauf

Make wird Uber eine Standard—-Kommandozeile gestar—
tet und parametriert. Die Kommandozeile hat die Syn-
tax:

make <Makefile> [-v] [-i] [-n] [-t <Target>]

<Makefile> ist der Name des Makefiles, das die Be-
schreibung des zu bearbeitenden Programmsystems
beinhaltet

Die —v Option hat wie Ublich die Bedeutung ‘Verbose’
und veranladt Make, Meldungen uber den Fortgang der
Arbeit auf dem Terminal auszugeben.

Die —i Option bestimmt, daB Fehler, die bei der Aus—
filhrung von Kommandos auftreten, ignoriert werden
sollen.

Die Option -n kann zum Testen eines Makefiles be-
nutzt werden. Make wird dann nur die Kommandozei-
len auf dem Terminal ausgeben, ohne die Kommandos
tatsachlich zu starten.

Das Ziel des Make-Prozesses kann gleich als Option
hinter -t angegeben werden. Falls dies nicht der Fall
ist, wird ein Formular ausgegeben, in dem angegeben
werden kann, daB nur ein bestimmtes Ziel neu erzeugt
werden soll (Default ist: alle Ziele neu erzeugen).

Make wird dann ausgehend von dem oder den Zielen
prifen, ob alle Prerequisiten <er sind. Falls die Prere-
quisiten selbst wieder als Ziele auftreten, werden auch
deren Prerequisiten Uberprift, usw. Falls ein Ziel alter
ist, als eines seiner Prerequisiten, wird es neu erzeugt.
Auf diese Weise wird von einem Softwaresystem nur
der Teil Ubersetzt, der von einer Anderung (z.B. Edi-
tierung) wirklich betroffen war.

Wird ein Fehler bei der Ausfuhrung von Kommandos
festgestellt, dann wird der gesamte Vorgang abgebro-
chen, es sei denn, die Option -i war gesetzt.

Das Makefile beschreibt die Abhangigkeiten zwischen

Utilities SPC MODULA-2 V1.4

den Dateien des Softwaresystems und die Komman-
dos, die ausgefuhrt werden muissen, wenn eine Datei
neu erzeugt werden soll.

Ein Makefile wird aus zwei Typen von Eintrdgen auf-
gebaut:

0 Regeln, die die Abhangigkeiten zwischen Zielen und
Prerequisiten und die eventuell auszufihrenden
Kommandos beschreiben.

o Makros, die zur Verkurzung der Hinschreibung einge—
setzt werden kénnen.

Jede Zeile des Makefile darf hinter einem # Kommen-
tare enthalten.

Regeln bestehen aus einer oder mehreren Zielen ge-
folgt von einem Doppelpunkt () hinter dem dann die
Prerequisiten folgen. In den folgenden Zeilen konnen,
sofern die Zeilen mit einem Leerzeichen beginnen,
Kommandos stehen, die ausgefihrt werden sollen, falls
das Ziel neu generiert werden soll. Die Liste der
Prerequisiten kann auch leer sein. In diesem Fall wird
die Anweisungsfolge immer ausgefihrt.

Haufig wiederkehrende Sequenzen kdnnen als Makro
definiert werden. Eine Makrodefinition beginnt mit dem
Namen des Makros gefolgt von einem Gleichzeichen
(=) hinter dem eine Zeichenkette steht. Der Makroname
darf aus einem oder mehreren alphanumerischen Zei—
chen (einschlieBlich des _) bestehen.

Ein Makro wird verwendet, indem anstelle der definier—
ten Zeichenkette ein Dollar-Zeichen ($)' gefolgt vom
Makronamen geschrieben wird. Makronamen, die aus
mehreren Zeichen bestehen, mussen in runde Klam-
mern eingeschlossen werden.

Aufbau des
Makefiles

Regeln

Makrodefinition

Makroaufruf

SPC MODULA-2 V1.4 Utilities

spezielle Makros

Beispiel

implizite Regeln

In den Kommandozeilen kénnen einige spezielle Mak—
ros verwendet werden:

0 @ enthélt Pfad und Namen (ohne Typ) des Ziels.

0 < enthélt den kompletten Namen des gerade be-
arbeiteten Ziels.

@D enthalt den Pfad des Ziels

<D wie @D ,

@F enthalt den Namen (ohne Typ) des Ziels
<F enthélt den Namen (mit Typ) des Ziels

0O 0O 0 DO

Die Datei \SPC\USER\SSWISEXA.MAK enthélt ein Bei-

spiel, mit dem die Beispielprogramme erzeugt werden
kbnnen.

Da Make im SPC MODULA-2 Sprachsystem haupt-
sachlich zur Steuerung des Ubersetzungsvorgangs ein-
gesetzt wird, sind der Utility zwei Regeln implizit be-
kannt:

a eine .SBM Datei wird durch den Compiler aus seinen
Prerequisiten erzeugt.

o eine .OBM Datei wird durch den Compiler aus seinen
Prerequisiten erzeugt.

Utilities SPC MODULA-2 V1.4

Das Ausdrucken von Textdateien wird Uber die xShell
durch die Print-Utility unterstutzt. Print erlaubt be-
stimmte Formatierungen des auszugebenden Textes.
Es ist z.B. mdglich, die MODULA-2 Schlisselworter
hervorzuheben, die Breite des Heftrandes einzustellen,
etc.

Print wird durch das Kommando gestartet:
print [<Filename>]

ist der Name einer Datei die ausgedruckt werden soll.
Falls keine Datei angegeben ist, lauft Print im interakti—
ven Modus als SSWiS-Applikation. Die Utility hat ihr
eigenes Fenster, in dem der Status ausgegeben wird,
sowie einen eigenen Menubalken. Uber die Menus
kénnen verschiedene Einstellungen vorgenommen
werden, die weiter unten erlautert werden.

Print verwendet zur Ausgabe den Standard-Modul
Printer. Dieser wird an den jeweils vorhandenen
Drucker durch eine Wordplus—-Konfigurationsdatei
(*.CFG) angepaBt. Der Name der Printer—Konfigura—
tionsdatei wird als Environment-Variable “PRINTER-
CONF”’ gespeichert. Gleichfalls wird die Anzahl der
Spalten pro Zeile und die Anzahl der Zeilen pro Seite
in dieser Variablen festgehalten. Printer—Konfigurations—
dateien sind flr alle gangigen Druckermodelle in der
Public-Domain erhaltlich.

Uber die Menls kann Print in verschiedenen Parame-
tern eingestelit werden. Das Option-Menili bietet die
Méglichkeit, Die Zeilennumerierung ein- oder aus—
zuschalten, den Schlisselwort-Spezialdruck zu akti—
vieren und die Konfigurationsdatei einzustellen. Alle
Parameter werden als Environment-Variable fir den
nachsten Aufruf gespeichert.

Das Font-Menu bietet die Moglichkeit, die Schriftart zu
wahlen, sowie die Druckerparameter Zeichen/Zeile,
Zeilen/Seite und Breite des Heftrandes einzustellen. Die
Druckerparameter werden vom Modul Printer als

Print

Starten

Anpassung an den
Drucker

Option-Menii

Font-Meni

SPC MODULA-2 V1.4 Utilities

File—Menu

Konfigurations—-Datei

Aufbau der
Konfigurations-Datei

Environment-Variable gespeichert, und werden auch
fur nachfolgende Aufrufe des Moduls Printer verwen-
det.

Das File-Menu dient schlieBlich zur Steuerung des
Druckvorgangs. Dazu kann auch noch die Drucker—
Konfigurationsdatei gewéhlt werden. Alsdann wird Uber
Print die auszugebende Datei gewahlt. Der Druckvor-
gang kann zwischenzeitig unter— oder abgebrochen
werden.

Print kann Uber eine Konfigurations—Datei weitergehend
eingestellt werden. Der Name der Konfigurationsdatei
wird als Environment-Variable “PRINTFLAGS” zusam-
men mit anderen Einstellungen gespeichert. Eine Bei-
spieldatei wird unter dem Namen \SPC\MISC\PRINT.INF
mitgeliefert.

Der Aufbau der Konfigurations-Datei ist zeilenorientiert.
Das Format ist unten beschrieben. Jede Zeile wird
durch einen * abgeschlossen. Danach kann ein belie-
biger Kommentar folgen. Eine einzelne Zeile darf nicht
langer als 80 Zeichen sein.

In der Konfigurationsdatei kdnnen beliebige Schliissel-
worter angegeben werden. Sofern keine Konfigura—
tionsdatei zur Verfigung steht, werden die MODULA-2
Schlusselworter verwendet. Alle Schiiisselwdrter werden
durch Leerzeilen getrennt. Es kénnen maximal 200
Schlisselwoérter mit nicht mehr als 1000 Zeichen ins—
gesamt angegeben werden. Ein einzelnes Schlussel-
wort darf maximal 80 Zeichen lang sein.

o= Man beachte, daB die Indizierung keine syntaktische
Analyse beinhaltet und deshalb i.a. nur korrekt ist,
sofern auch der auszugebende Text und die Schlis-
selwort-Liste korrekt strukturiert sind.

Utilities SPC MODULA-2 V1.4

Fir die Indizierung kann jedes Schilisselwort mit einem Indizierung
optionalen Suffix versehen werden. Dazu kommen in
Frage:
o (Klammer auf, beginnt eine neue Ebene und erhéht
den Index.
o) Klammer zu, beendet eine Ebene und erniedrigt den
Index.
0 = Gleichzeichen, beldBt die Ebene und den Index.
1. Zeile: <Kennung> * Syntax
2. Zeile: <Schrift> <Zeilen> <Zeichen>
<Heftrand> *
3. Zeile: <Kopf> <Nummems> <Spezial>
<Index> <Anzahl SW>
4. Zeile ff. enthalten Schlusselworter
<Kennung> 2434
<Schrift> 0..3 (Pica, Elite, Schmal, Breit)
<Zeilen> Anzahl Zeilen pro Seite
<Spalten> Anzahl Spalten pro Zeile
<Heftrand> Breite des Heftrandes in Spalten
<Kopfzeile> 0: Kopfzeile aus, 1: Kopfzeile an
<Nummern> Breite der Zeilennummern, negative
Werte: keine Zeilennummern
<Spezial> Art der Hervorhebung von
Schiisselwortern. 1: fett, 2:
unterstrichen, negative Werte: keine
_ Hervorhebung
<Index> Art der Indizierung von,
Schlisselwdrtern: 1: Hochstellung, 2:
Tiefstellung, negative Werte: keine
Indizierung _
<Anzahl SW> Anzahl der Schlisselwérter, die ab

Zeile 4 folgen

SPC MODULA-2 V1.4

Utilities

Paths

Quellen und
ableitbare Dateien
trennen

Bedienung

Die vom Compiler und anderen Werkzeugen des
Sprachsystems verwendeten Suchpfade werden als
Environment-Variablen gespeichert. Die Pfade fir die
Quelliformen der Moduln haben die Namen PATH<N>,
wobei <N> die Préferenz angibt. Pfade mit niedrigerer
Préferenz werden zuerst durchsucht. Die Suche hort
auf, wenn eine Variable mit der nachst héheren Pra-
ferenz nicht existiert.

Sollen Objektformen auf anderen Directories gehalten
werden, als die Quellformen, dann kann zu jedem
PATH<N> ein OBJPATH<N> angegeben werden. An-
dernfalls werden die Objektformen ebenfalls auf
PATH<N> abgelegt und dort gesucht.

Paths unterstliitzt die Pflege der entsprechenden
Environment-Variablen. Dabei sorgt Paths dafir, daB
nach dem Ldschen eines Pfades die Kette wieder ge—
schlossen wird und erlaubt das Einfligen an einer be—
stimmten Position (Praferenz) in die Kette.

Paths kennt die Kommandos :
L - Anzeigen aller Pfade mit aufsteigender Praferenz.

M - Moadifizieren einer Pfadkombination (PATH und
OBJPATH). Es muB die Préferenz angegeben werden.
Die neuen Pfadnamen werden Uber eine GEM-Filese-
lektor-Box erfragt. '

D - L&schen einer Pfadkombination.

I - Einfugen einer Pfadkombination. Es wird die Pra-
ferenz der einzugebenden Pfade erwartet. Die Pfade
selbst werden wieder uUber eine Fileselektor-Box er—
fragt.

Q - Quit, verlaBt Paths.

Die Pfade, auf denen die Dateien gesucht werden,
durfen natirlich auch auf verschiedenen Laufwerken
liegen. Dies ist wichtig, wenn Sie mit zwei Disketten-
laufwerken oder einer RAM-Disk arbeiten wollen. In

Utilities SPC MODULA-2 V1.4

diesem Fall missen Sie den entsprechenden Lauf-
werksbuchstaben mit angeben.

Wenn Sie Probleme haben, eine Datei zu ubersetzen,
oder der Compiler eine zu importierende Datei nicht
findet, sind i.d.R. die Suchpfade nicht richtig einge-
stellt.

SPC MODULA-2 V1.4 Utilities

Diese Seite wurde aus
satztechnischen Grinden frei
gelassen

Utilities

SPC MODULA-2 V1.4

SSWiS

SSWiS steht fur Small Systems Windowing Standard
und bedeutet, daB es sich hierbei um eine Gruppe von
Funktionen handelt, die Ublicherweise und gerade von
Fenstersystemen auf kleinen Rechnern bereitgestellt
werden. Die Funktionen von SSWIS werden also i.a.
auf die Funktionen eines unterliegenden Fenster-
systems abgebildet.

Da keine Besonderheiten eines bestimmten Fenster—
systems voraussgesetzt werden, kdnnen SSWiS An-
wendungen leichter portiert werden, als Anwendungen,
die das jeweils vorhandene Fenstersystem direkt an-
sprechen. Damit erbringt SSWiS vor allem zwei wich-
tige Leistungen:
o die Programmierung von fensterorientierten Applika—
tionen wird einfacher, da SSWiS hohere Funktionen
bereitstellt.

o SSWiS Applikationen kdnnen leichter portiert werden,
da zumindest die Ansprache des Fenstersystems
vereinheitlicht ist.

Da alles seinen Preis hat, soll dieser auch hier nicht
verschwiegen werden:

o SSWiS stellt spezielle Funktionen eines Fenster—
systems nicht zur Verfigung, um die Portabilitat nicht
zu gefahrden und das ganze System kompakt und
einfach zu halten.

o Vereinfachungen der Fensterverwaltung, die mitunter
innerhalb einer bestimmten Applikation zuléssig sind,
kénnen von SSWiS nicht angewendet werden, da
unter SSWiS mehrere Applikationen quasiparallel
ablaufen kdnnen.

Kapitel 8

Ubersicht

Vorzuge

Einschrdnkungen

SPC MODULA-2 V1.4 SSWiS

Pseudo-Multitasking

Die inzwischen vorhandenen und mit der Version 1.4
ausgelieferten SSWiS Applikationen (z.B. Editor, Filer,
xShell) beweisen jedoch, daB die Vorteile von SSWiS
die Nachteile bei weitem aufwiegen. Vor allem wegen
der Mdglichkeit, mehrere Anwendungen gleichzeitig zu
betreiben, ohne ein Multitasking Betriebssystem vor—
aussetzen zu mussen, ist die Verwendung von SSWiS
fur interaktive Anwendungen in SPC-MODULA-2
hochinteressant.

Es ist die Philosophie von SSWiS, die Oberflache des
jeweils vorhandenen Systems nicht zu verfremden,
sondern sie aus Grinden der Ergonomie so zu Uber—
nehmen, wie sie der Benutzer auch aus anderen An-—
wendungen kennt.

Wie die meisten Fenstersysteme, so bietet auch SSWiS
neben der Verwaltung von Fenstern Zusatzdienste, wie
Ments und Formulare an.

In den folgenden Abschnitten wird zum einen die Be-
dienung von SSWiS unter GEM auf dem ATARI ST be-
schrieben. Zum zweiten wird die Programmierung von
SSWIS Applikationen erlautert.

SSWiS SPC MODULA-2 V1.4

Die Bedienung einer SSWiS—Applikation (z.B. der Edi-
tor von SPC-MODULA-2) ist im Detail natiirlich von
der Applikation selbst und ihrer Funktionalitdt abhéngig.
Soweit es jedoch darum geht, Fenster, Meniis und
Formulare zu bedienen, sind alle SSWiS Applikationen
gleich. Dies ist Gegenstand der folgenden Abschnitte.

Ein Fenster (engl. Window) ist ein Bereich des
Bildschirmes, in dem eine Applikation einen Teil seiner
Ausgabe abwickelt. Ob diese grafisch oder textuell ist,
ist fir das Fenster zunachst unerheblich. Die GréBe
und die Position des Ausgabebereiches ist sowohl von
der Applikation, als auch vom Benutzer in bestimmten
Grenzen einstellbar. Es kbnnen mehrere Fenster ein-
gerichtet werden, die sich i.a. auch gegenseitig lber-
lappen durfen.

Jedes Fenster hat einen Titel, durch den die Bedeu-
tung des Fensterinhaltes umschrieben wird. Normaler—
weise kann aus dem Titel auch auf die fur das Fenster
zustandige Applikation geschlossen werden. Unter
SSWIS konnen zur gleichen Zeit mehrere Applikationen
aktiv sein. Der Titel wird als Textzeile am oberen Rand
des Fensters dargestellt.

Das Fenster kann bewegt werden, indem man es mit
der Maus an der Titelaeile anfaBt (linken Mausknopf
driicken und und gedruckt halten) und den daraufhin
erscheinenden Rahmen an eine andere Stelle des
Bildschirms bewegt. Sobald der Rahmen losgelassen
wird (linken Mausknopf loslassen), wird das Fenster an
die neue Stelle gebracht.

Der Hintergrund, auf dem ein Fenster abliegt, wird
Desktop (Tischflache) oder Desk genannt, da durch die
ganze Benutzeroberflache ein normaler Schreibtisch
nachempfunden werden soll, auf dem beschriftete
Blatter (Fenster) Ubereinanderliegen und hin- und her
bewegt werden. Der Desktop wird durch eine graue
Flache dargestellt, die fast den ganzen Bildschirm
Uberspannt.

Bedienung

Fenster

Fenstertitel

Fenster bewegen

Desktop

SPC MODULA-2 V1.4 SSWiS

Fenster-Icons

das aktive Fenster

Fenster wieder
schlieBen

Der Desktop steht den Applikationen nicht fir Aus-
gaben zur Verflgung, sondern wird von SSWiS fur die
Verwaltung von Fenstern benétigt. Fir jedes vorhan-
dene Fenster wird in der linken unteren Ecke des
Desktop beginnend ein beschrifteter Balken angelegt.
Die Beschriftung ergibt sich aus den ersten Buchsta-
ben des Fenstertitels. Wozu werden diese Balken ge-
baucht? SSWiS kann bis zu 20 Fenster verwalten. GEM
jedoch beschrankt die Anzahl von Fenstern auf 4 bzw.
6. Wenn nun mehr als 6 Fenster uber SSWiS angelegt
werden, dann schlieBt SSWiS jeweils das hinterste
Fenster (mehr als 6 geb6ffnete Fenster sind auf dem
14” Monitor des ATARI ST auch nicht sinnvoll). Das
geschlossene Fenster wird von SSWiS jedoch weiter
verwaltet und kann jederzeit wieder geo6ffnet werden.
Dies geschienht, indem man den Balken des Fensters
mit der Maus anklickt. Falls schon 6 Fenster gedffnet
sind, muB natlrlich das hinterste wieder geschlossen
werden, usw.

Das oberste Fenster hat bei GEM eine Sonderstellung,
die unter SSWiS so beibehalten wird. Das oberste
Fenster wird das aktuelle Fenster genannt. Alle Tasta-
tureingaben flieBen immer der Applikation zu, der das
oberste Fenster gehdrt. Um das aktuelle Fenster
kenntlich zu machen, wird die Titelzeile des aktuellen
Fensters grau dargestellt, wahrend die Titelzeilen aller
anderen Fenster einen weiBen Hintergrund haben. Ein
Fenster kann zum aktuellen (obersten) Fenster ge-
macht werden, indem entweder, wie oben beschrieben,
der zu dem Fenster gehdrende Balken angeklickt wird,
oder, falls das Fenster schon getffnet ist, einfach in-
das Fenster geklickt wird.

Ein gedffnetes Fenster kann vom Benutzer geschlos-
sen werden, indem die sogenannte SchlieB-Box links
neben der Titelzeile angeklickt wird. Fenster zuschlies—
sen kann sinnvoll sein, um z.B. mehr Ubersicht auf
dem Desktop zu bekommen. Man beachte, daB mit
dem SchlieBen eines Fensters unter SSWiS keines-

SSWiS SPC MODULA-2 V1.4

wegs die dazugehdrige Applikation beendet wird, son-
dern lediglich das sichtbare Fenster vom Desktop ver—
schwindet. Wie oben beschrieben, kann das Fenster
jederzeit wieder geotffnet werden. Die zum Fenster ge—
hérende Applikation merkt davon nichts.

Weitere Bedienungsmdglichkeiten héngen davon ab,
welche Randelemente fur die einzelnen Fenster kon-
figuriert sind. Neben der Titelzeile und der SchlieB-Box
kénnen noch weiterhin konfiguriert werden:

0 eine Meldungszeile zur Ausgabe von einzeiligen Mel-
dungen durch die Applikation.

o ein vertikaler und/oder ein horizontaler Scroll-Balken,
um den Fensterinhalt zu verschieben, falls das
Fenster zu klein ist, diesen vollstandig darzustelien.
Ihre Funktion wird unten weiter erklart.

o eine GréBen-Box, um die GréBe des Fensters inner-
halb konfigurierter Grenzen zu verandern. Dazu wird
das Fenster an der GrdBen-Box (in der rechten
unteren Ecke) angefaBt (linke Maustaste dricken und
gedrickt halten) und das daraufhin erscheinende
Rechteck auf die gewuinschte GréBe gebracht. Nach
dem Loslassen, wird das Fenster entsprechend
vergréBert oder verkleinert, jedoch nur innerhalb der
durch die Applikation zugelassenen Grenzen.

0 eine MaximalgroBen-Box, um das Fenster auf die
maximal zuldssige GroBe und wieder zurlick zu
bringen. Die maximale FenstergréBe wird von der
Applikation bestimmt.

, Innerhalb des Fensters wird von der Applikation ein
Bild ausgegeben, welches i.a. sehr viel groBer ist, als
das Fenster selbst. Jede, in einem Fenstersystem lau-
fende Applikation muB deshalb dafir sorgen, daf sie
keinesfalls Ausgabe auBerhalb der Bildschirmbereiche
erzeugt, die ihr durch das Fenstersystem (in diesem
Fall SSWiS) zugeteilt werden. Das Bild, das innerhalb
des Fensters ausgegeben wird, wird die Welt genannt.
Die Applikation beschreibt die Ausgabe in Weltkoor-
dinaten und empfangt alle Eingaben in Weltkoordina-

Randelemente von
Fenstern

Scroll-Balken

GroBen-Box

MaximalgréBen-Box

Fensterinhalt

Weltkoordinaten

SPC MODULA-2 V1.4 SSWiS

GroBe des
Weltbildes

das Fenster scrollen

Menlus

Titel und Eintrage

MenuUeintrage
selektieren

Mentibalken

ten. Diese sind von der Position des Fensters und
damit von den Bildschirmkoordinaten unabhéangig.

Die Scroll-Balken signalisieren unter GEM die GréBe
des Bildes, indem die Schieber im Verhaltnis zum
Fenster genauso groB sind, wie das Fenster im Ver—
héltnis zur Welt. Mit anderen Worten: wenn der Schie—
ber halb so groB ist wie das Fenster, dann ist das
Fenster halb so groB wie die Welt. Indem der Schieber
mit der Maus bewegt wird, kann das Fenster quasi
Uber die Welt bewegt werden. Anklicken des grauen
Scroll-Balkens selbst bléttert in die entsprechende
Richtung. Die Pfeile kbnnen dazu benutzt werden, das
Fenster schrittweise in die gewlnschte Richtung Uber
die Welt zu bewegen. Die Schrittweite wird von der
jeweiligen Applikation bestimmt.

Um Eingaben an eine Applikation zu machen, kdnnen
neben der Tastatur in einem fensterorientierten System
auch Menils verwendet werden. Menis sind zu Meni-
titeln strukturiert. Ein Mendititel enthélt mehrere, thema-
tisch zusammengehdérige Menleintrage. Wahit man
einen Menleintrag aus, dann gibt man einer Applika—
tion ein Kommando, &hnlich als wenn man eine Funk-
tionstaste driickt. Da Menls konfiguriert werden kon-—
nen, sind sie wesentlich flexibler, als Funktionstasten,
jedoch werden die am héaufigsten benétigten Meni-—
funktion meist auch (ber Funktionstasten zugénglich
gemacht.

Unter GEM sind alle Mendtitel zu einer Meniizeile am
oberen Bildschirmrand zusammengefaBt. Fahrt man mit
der Maus in einen der Mendutitel, dann klappt das
eigentliche Menu mit seinen Menieintragen herunter.
Ein Menueintrag wird durch Anklicken ausgewéhlt. Das
Menu verschwindet danach wieder. Der Menubalken
kann nur die Mendititel einer Applikation enthalten. Da
unter SSWiS mehrere Applikationen nebeneinander
laufen, mussen mehrere Menlbalken verwaltet werden.

SSWiS SPC MODULA-2V1.4

Es ist immer der Menibalken der Applikation sichtbar,
der das aktuelle Fenster gehdrt. Wenn also das
aktuelle Fenster wechselt, andert sich i.a. auch der
Menilibalken, es sei denn, das neue aktuelle Fenster
gehoért der gleichen Applikation. Der Name der
Applikation, deren Menlbalken gerade sichtbar ist, ist
unter SSWIS gleichzeitig der Titel des ersten (links
auBen) Menus. Dieses Menl steht den Applikationen
nicht zur Verfigung, sondern ist unter GEM fir
sogenannte Accessories reserviert.

Menueintrage kdénnen dauernd oder voribergehend
ausgeschaltet (disabled) werden. Ausgeschaltete
Menlieintrdge werden grau dargestellt. Ein anderes
Attribut (abgehakt) wird durch einen kleinen Haken am
linken Rand des Menueintrages dargestellt. Aus-
geschaltete Menueintrdge kdnnen nicht gewéhlt wer—
den. Die Bedeutung des Hakens hangt von der jeweili-
gen Applikation ab und ist dort dokumentiert.

Unter GEM wird der erste Eintrag des ersten Menis
daflir verwendet, die Applikation zu identifizieren.
SSWIS Applikationen tun dies Uber ein vereinheitlichtes
Formular, in dem Programmversion, Autor und ein
Copyright-Vermerk zusammengefaBt sind.

0> Es ist gute Praxis, haufig verwendete Menufunk-
tionen auch Uber die Tastatur zuganglich zu machen.
Daflr bieten sich Funktionstasten und alternativ
belegte Tasten (Taste in Verbindung mit Alternate
oder Control betatigen) an. Die zu einem Menuein-
trag gehdrenden Tastaturkommandos sollten der
leichteren Erlernbarkeit wegen im Menieintrag selbst
angedeutet sein (z.B. ALT A, F1, etc.)

Steuerung des
Menibalkens

Attribute von
Mendeintragen

Identifikation von
Applikationen

Funktionstasten

SPC MODULA-2 V1.4 SSWiS

Formulare

Meldungsformular

Abfrageformular

ldentifikationsformu—
lar

Formulare sind ein weiterer Service von Fenstersyste—
men, um den Dialog zwischen Applikation und Benut-
zer zu verbessern. Der Aufbau und die Verwaltung von
Formularen sind in den verschiedenen Fenstersyste—
men sehr unterschiedlich. Allerdings bendtigt eine typi-
sche Anwendung nur wenige Grundtypen von Formu-
laren. Diese werden von SSWiS zur Verfigung gestellt.

Der erste Formulartyp dient dazu, eine Meldung oder
Mitteilung auszugeben, und sich vom Benutzer eine
Quittung geben zu lassen. Der Meldungstext darf eine
Zeile lang sein. Die Quittung besteht darin, daB einer
von maximal vier konfigurierbaren Knépfen zum Ver-
lassen des Formulars gewé&hit wird. Solange ein For-
mular aufgeschaltet ist, kann unter GEM keine andere
Eingabe gemacht werden, auBer der Formularbe-
dienung.

Ein weiterer Formulartyp ermdglicht es, eine Meldung
auszugeben, und eine Quittung anzufordern. Der
Mechanismus ist der gleiche wie beim Meldungsfor-
mular. Zuséatzlich kann aber ein Text eingegeben wer-
den und bis zu vier konfigurierbare Optionen gewahit
werden. Um den Text einzugeben, muB zuerst die
Textzeile selektiert werden. Sie enthélt i.a. schon einen
Vorschlagswert, der mit den ublichen Editierfunktionen
gedndert werden kann. Die Optionen kénnen durch
Anklicken mit der Maus ein— und ausgeschaltet wer-
den. Der Formulardialog wird durch Anklicken einer der
Quittungstasten wie oben beschrieben beendet.

Dieses Formular wird verwendet, um auf einfache
Weise eine ldentifikation der Applikation zu ermog-
lichen. Die einzige Bedienung ist das Anklicken des
OK-Knopfes.

Mit den genannten Formulartypen wurden inzwischen
eine Reihe von Applikationen erstelit und es hat sich
gezeigt, daB die Formulare fur portable Applikationen
ausreichend sind. Zudem werden die von den ver-
schiedenen Applikationen gefthrten Dialoge etwas ver—

SSWiS SPC MODULA-2 V1.4

einheitlicht, was letztlich wieder der Einfachheit des
Gesamtsystems zugute kommt. Die Bedienung von
SSWiS-Applikationen ist, soweit dies ohne Bezug auf
die Applikation selbst moglich ist, hiermit beschrieben.

SPC MODULA-2 V1.4 SSWiS

Programmier—
Schnittstelle

Struktur von SSWiS
Applikationen

PollEvents Loop

Die folgenden Abschnitte befassen sich mit der Pro-
grammierung von SSWiS Applikationen. Da die
Méglichkeit, mehrere Applikationen unter SSWiS
nebeneinander laufen zu lassen, inzwischen von vielen
Programmierern gerne genutzt wird, liegt es nahe,
neue interaktive Applikationen ebenfalls als SSWiS
Applikation zu realisieren. Allerdings sollte am Anfang
der Realisierung eine grindliche Analyse stehen, um
festzustellen, ob die Mdglichkeiten von SSWiS fir das
Vorhaben ausreichend sind.

SSWIS Applikationen (im folgenden nur noch Applika—
tionen genannt) haben einen bestimmten, durch die
Funktionsweise von SSWiS vorgegebenen Aufbau.
Nachdem sich eine Applikation initialisiert hat, lauft sie
in einer Schleife, innerhalb derer sie standig die Kon-
trolle an SSWiS abgibt, um Ereignisse (Events) zu be-
arbeiten. Die Schleife wird durchlaufen, bis das Pro-
gramm beendet werden soll. Danach folgt i.a. eine ge—
ordnete Terminierung, in der alle Resourcen freigege-
ben werden. Die Grundstruktur ist durch das folgende
Programmstlick wiedergegeben:

MODULE Application;

PROCEDURE Initialise;

BEGIN
SSWiS Register (..., ‘Application’, ...);
END Initialise;

BECIN
Initialise;
REPEAT
SSWiS.PollEvents;
UNTIL Xit;
Terminate;
END Application;

8-10

SSWiS SPC MODULA-2 V1.4

Man beachte, daB sich Applikationen bei SSWiS an-
melden miissen (Register), den SSWiS verwaltet meh-
rere Applikationen nebeneinander, wobei jede ihre
eigenen Fenster und Menis haben kann. Wéahrend der
Terminierung erfolgt naturlich eine entsprechende Ab-
meldung, die hier nicht gezeigt wurde.

Bei der Anmeldung vergibt SSWiS eine Kennung
(Handle) fir jede Applikation. Unter dieser Kennung ist
die Applikation als Klient (Client) von SSWiS registriert.
Bei fast allen Aufrufen ist die Kennung als Parameter
wieder zu Uibergeben, so daB SSWiS den richtigen
Satz von Resourcen (z.B. Fenster) zuordnen kann.

Nun ergibt sich natirlich die Frage, woher die Ein-
gaben des Benutzers fur die Applikation kommen, und
wo sie verarbeitet werden. Eingaben haben zuné&chst
die Form von Ereignissen (Events). Das sind Signale,
die anzeigen, daB etwas passiert ist. Was nun genau
passiert ist, wird durch eine Datenstruktur beschrieben,
die EventReport genannt wird. Alle Ereignisse gelangen
zunachst an SSWIS. Dort sind sie noch in einer sehr
rohen Form und fir Applikationen noch nicht leicht zu
verarbeiten. AuBerdem steht noch nicht fest, welche
Applikation das Ereignis empfangen soll. Die Zuord-
nung und eine weitgehende Vorverarbeitung dbernimmt
SSWiS. Alsdann wird der Event an die richtige Applika—
tion ausgeliefert, die dann ihrerseits das Ereignis
weiterverarbeitet. Die Prozedur der Applikation, welche
die Events aufnehmen und verarbeiten soll wird die
Accept-Prozedur genannt.

Zur Verarbeitung von Ereignissen wird sie zunachst
feststellen, um welchen Typ von Ereignis es sich han-
delt, denn es gibt nur eine Accept-Prozedur, Gber den
alle Ereignisse mitgeteilt werden. Typen von Ereignis—
sen sind z.B. Mausklicks oder Tastatureingaben. Je
nach Event-Typ stehen die benétigten Zusatzinforma-—
tionen (Koordinaten, etc.) im Event-Report, anhand
dessen die Applikation die auszufihrenden Funktionen
geeignet parametrieren kann.

Applikation
anmelden

Application Handle

Eventverarbeitung

Events

EventReport

Accept-Prozedur

Event-Typen

SPC MODULA-2 V1.4 SSWiS

8 - 11

Accept anmelden

Die Accept-Prozedur wird als sogenannte Callback
Procedure realisiert. Eine solche Prozedur wird
typischerweise von einem Modul, in diesem Fall
SSWIS, zu einem spateren Zeitpunkt zurlickgerufen,
eben dann, wenn ein Ereignis eingetreten ist. Dazu
muB sie natdrlich bei SSWiS bekannt gmacht werden.
Dies geschieht wahrend der Anmeldung bei SSWiS.
Das folgende Programmstiick soll den wichtigen
Mechanismus verdeutlichen. Alle momentan nicht
wichtigen Parameter wurden weggelassen.

MODULE Application;

PROCEDURE Accept (.., Report),

BEGIN
CASE Report.Type OF

END;
END Accept;

PROCEDURE Initialise;

BECGIN
SSWiS Register (.., Accept);
END Initialise;

BEGIN
Initialise;
REPEAT
SSWiS.PollEvents;
UNTIL Xit;
Terminate;
END Application;

Die Accept-Prozedur wird wahrend der Anmeldung der
Applikation bekanntgegeben. Hieraus folgt unmittelbar,
daB jede Applikation eine Accept-Prozedur haben
mufB, also in irgendeiner Weise auf die Events von

8-12

SSWiS SPC MODULA-2 V1.4

SSWiS reagiert. Wie die Ereignisse im Detail zu verste-
hen und zu behandeln sind, wird in einem spéateren
Abschnitt erklart.

Um den prinzipiellen Aufbau einer SSWiS-Applikation
zu vervollstandigen, ist es noch notwendig, die Ver—
wendung von Fenstern zu erklaren. Fenster sind die
Basis fir die Verteilung der vorhandenen Bildschirm-
flache an die registrierten Applikationen. Eine Applika—
tion darf deshalb nur innerhalb ihrer eigenen Fenster
Ausgabe erzeugen.

Der AnstoB zur Erzeugung von Ausgabe kann auf ver—
schiedene Ursachen zurickgehen. Zunachst ist klar,
daB Ausgabe erzeugt werden muB, wenn sich das im
Fenster dargestellte Bild gedndert hat. Weiterhin kann
eine neuerliche Ausgabe eines Fensters dadurch not-
wendig werden, daB das Fenster vergroBert wurde,
oder aber, weil sich die gegenseitige Uberlappung von
Fenstern geéandert hat. In einem solchen Fall kommt
der AnstoB nicht von der Applikation selbst, sondern
wird durch uBere Ereignisse hervorgerufen.

In beiden Fallen kann das Gebiet, das den Fensterin—-
halt beschreibt, komplex sein, da das Fenster durch
andere Fenster teilweise verdeckt sein kann. In jedem
Fall besteht dieses Gebiet aber aus einer Reihe von
Rechtecken, deren Kanten parallel zu den Achsen des
Koordinatensystems sind. Da die Lage aller Fenster
und damit das Gebiet, das zu einem bestimmten
Fenster gehort, ist nur SSWIS als koordinierende Stelle
bekannt. Die Applikation stellt lediglich eine Redraw-
Prozedur bereit, die einen Ausschnitt der Ausgabe er-
zeugt. Die Restore—Prozedur wird ebenfalls als Call-
back-Prozedur ausgefiihrt. Sie wird beim Erzeugen des
Fensters angegeben und von SSWiS bei Bedarf auf-
gerufen. Daraus folgt, daB zu jedem Fenster eine
eigene Restore-Prozedur gehért (die u.U. gleich sein
kénnen) und daB eine Applikation mehrere Restore-
Prozeduren haben kann.

Fenster

AnstdBe fur
Ausgaben

Clip—-Gebiete

Redraw-Prozedur

SPC MODULA-2 V1.4 SSWiS

8-13

Aufgabe der
Restore—Prozedur

Es ist wichtig, da die Restore—-Prozedur nichts anderes
tut, als den von SSWIiS angeforderten
Fensterausschnitt zu erneuern. Da die gegenseitige
Verdeckung von Fenstern kompliziert sein kann, ist es
u.U. nétig, daB SSWiS sehr oft hintereinander die
Restore-Prozedur aufrufen muB. Wann und wie oft
dies der Fall ist, kann die Applikation nicht kontrol-
lieren.

Das obige Beispiel wird im folgenden um ein erstes
Fenster erweitert. Der Einfachheit halber wird das
Fenster wahrend der Initialisierung angelegt. Naturlich
kodnnen auch zu jedem anderen Zeitpunkt zwischen der
Initialisierung und der Terminierung weitere Fenster er—
zeugt werden.

MODULE Application,;

PROCEDURE Accept (.., Report);
BEGIN
CASE Report.Type OF

END;
END Accept;

PROCEDURE Restore (...);

BEGIN
END Restore;

PROCEDURE Initialise;
BEGIN
SSWiS.Register (.., Accept);
SSWiS.CreateWindow (..., Restore);
END Initialise;

BEGIN
Initialise;
REPEAT
SSWiS.PollEvents;
UNTIL Xit;
Terminate;
END Application;

8- 14

SSWiS SPC MODULA-2 V1.4

Die Parameter der Restore—Prozedur werden in einem
spateren Abschnitt erklart. Der prinzipielle Aufbau einer
SSWiS-Applikation ist damit vollstandig. Zusétzliche
Funktionen wie Menus und Formulare haben auf die
Struktur des Programms keinen EinfluB mehr.

Eine Applikation erzeugt grafische Ausgabe um am
Bildschirm ein Bild auszugeben. Die Koordinaten, in
denen dieses Bild beschrieben wird, werden allgemein
als Welt-Koordinaten bezeichnet. Das Bild wird des-—
halb auch oft als Welt-Bild oder kurz als Welt be-
zeichnet.

Auf dem Bildschirm, den sich mehrere Applikationen
teilen mussen, kann i.a. nur ein Ausschnitt des Welt-
Bildes dargestellt werden. Dazu mufB3 eine Grafik in
Bildschirm-Koordinaten (Geratekoordinaten) beschrie—
ben werden. Das Gerétekoordinatensystem ist durch
die GroBe des Bildschirms meist sehr eingeschréankt,
z.B. auf 640x400 diskrete Koordinatenwerte.

Durch die unterschiedliche Lage der Welt-Bilder im
Verhaltnis zum Bildschirm missen die Welt-Koordina-
ten zum Zwecke der Ausgabe von der Anwendung in
Bildschirmkoordinaten transformiert werden. SSWiS
sieht dabei lediglich vor, daB das Welt-Koordinaten—
system gegeniber dem Bildschirm-Koordinatensystem
verschoben ist, so daB die Transformation durch Addi-
tionen beschrieben werden kann. Eine Skalierung oder
Rotation ist damit nicht moglich.

SSWiS exportiert die Datentypen sowohl fir Welt-
Koordinaten, als auch fir Bildschirm—Koordinaten. Man
beachte, daB die Welt-Koordinaten durch 32-Bit Werte
beschrieben sind. Dadurch ist auf dem MC68000 ein
gewisser Mehraufwand bei Divisionen und Multiplikatio—
nen nétig. Die Koordinaten—Datentypen werden durch
Datentypen fir Punkte und Strecken ergénzt. Da ein
Rechteck durch seine Diagonale eindeutig beschrieben
ist, wird der Datentyp Lines auch fur Rechtecke ver-
wendet.

Parameter der
Restore—Prozedur

Koordinatensysteme

Welt-Koordinaten

Gerédte—Koordinaten

Transformationen

Datentypen

SPC MODULA-2 V1.4 SSWiS

8-15

Restore—Prozedur

Clipping

erzeugen grafischer
Ausgabe

Die Restore-Prozedur eines Fensters ist dafiir zustan—
dig, in einem angeforderten Bildschirmbereich einen
bestimmten Teil des Weltbildes auszugeben. Da keine
Skalierung und keine Rotation des Weltkoordinaten—
systems gegeniber dem Bildschirm-Koordinaten-
system vorgesehen ist, reicht es aus, nur die Verschie—
bung der beiden Koordinatensysteme als Vektor an-
zugeben. Der Parameter heiBt Offset und bezeichnet
den Punkt des Weltkoordinatensystems, der auf die
linke obere Fensterecke abgebildet wird. Der Parameter
Area beschreibt die Position und die GrdBe eines
Rechtecks im Weltkoordinatensystem, das durch den
aktuellen Aufruf auszugeben ist. Auf jede durch die
Restore—Prozedur auszugebende Koordinate muB also
der Vektor Offset hinzuaddiert werden, um Bildschirm-
Koordinaten zu erhalten.

Weiterhin ist es die Aufgabe der Restore-Prozedur,
dafur zu sorgen, daf keinesfalls auBerhalb des an-
geforderten Rechtecks Ausgabe erzeugt wird, denn das
Gebiet auBerhalb gehdrt i.a. zu einem anderen Fenster,
oder zu Teilen, die nicht von der Applikation verwaltet
werden (z.B. Fenstertitel). Normalerweise wird man
dafir ein Clip—Rechteck verwenden, jedoch sind auch
alle anderen, gleichwertigen Methoden zul&ssig.

Nun bleibt noch die Frage, wie die grafische Ausgabe
selbst erzeugt wird. SSWiS macht dariiber keine An-—
nahmen oder Vorschriften, jedoch werden als Ergan-
zung zu SSWIS Moduln angeboten, die Ausgabefunk-
tionen und systemunabhéangiger Weise bereitstellen
(TextWindows, ...). Dadurch wird die mit SSWiS ge-
wonnene Portabilitdt auch auf die Restore—Prozedur
ausgedehnt. Allerdings ist es auch akzeptabel, die
Ausgabe in geridte— oder systemabhéangiger Weise zu
beschreiben, da die ganze Ausgabe auf die Restore-
Prozedur konzentriert ist. Unter GEM sind VDI, AES
und die Line-A Routinen Beispiele solcher system-
abhangiger Grundfunktionen. Das folgende Programm-
fragment demonstriert eine einfache Restore—Prozedur,

8-16

SSWiS SPC MODULA-2 V1.4

die auf einem hypothetischen Grafiksystem mit den
Aufrufen SetClipping und Circle aufsetzt. Natirlich ist
der Kreis nur sichtbar, wenn tatsachlich Teile davon in
das Clip—Rechteck fallen.

PROCEDURE Restore (Owner . ModuleHandles;
Window : WindowHandles;
WorldArea : Lines;
Offset : Points);

VAR Clip : Screenlines;

BEGIN
Clip.AX:= WorldArea.AX + OffsetX;
Clip.AY:= WorldArea AY + Offset.Y;,
Clip.B.X:= WorldArea.BX;
Clip.B.Y:= WorldArea B.Y;
SetClipping (Clip);
Circle (100000D+Offset.X,100000D+Offset.y,100);
END Restore;

Falls sich die grafische Ausgabe jedoch aufwendiger
gestaltet, dann ist es sinnvoll, die systemabhéangigen
Teile mindestens durch einen Modul zu isolieren. Text—
Windows ist ein Beispiel fur einen solchen Modul. Er
verbirgt die aktuelle Implementierung von Textausgabe
und macht die rufende Restore—Prozedur damit porta-
bel.

Nachdem nun der prinzipielle Aufbau einer SSWiS-
Applikation beschrieben ist, missen noch die Ereig—
nisse erklart werden, die eine Applikation zu verarbei-
ten hat. Ereignisse werden von SSWiS vorverarbeitet,
klassifiziert, mit Detailinformation versehen und einer
bestimmten Applikation zugeordnet. Das Ereignis wird
alsdann der Applikation zur Verarbeitung Uubergeben,
indem ihre Accept-Prozedur aufgerufen wird. Als Para-
meter werden von SSWiS ein sogenannter Event-
Report Ubergeben, der die bendtigte Detail- und Be-
gleitinformation enthait.

Da die meisten Events danach zugeordnet werden, in
welchem Fenster gerade die Maus steht, wird das

Ereignisse

Zuordnung von
Ereignissen

SPC MODULA-2 V1.4 SSWIS

8-17

Ereignisbehandlung

Keyboard-Events

Meta-Tasten

Mausposition

Tasten—-Codes

Handle des entsprechenden Fensters ebenfalls als
Parameter der Accept-Prozedur (bergeben. Unter
GEM werden Ereignisse immer dem obersten (aktiven)
Fenster zugeordnet. Entsteht ein Ereignis auBerhalb
des aktiven Fensters, dann erzwingt GEM zunéchst,
daB dieses Fenster aktiv wird.

Die Accept-Prozedur fahrt daraufhin, als Teil der
Applikation, eine Ereignisbehandlung durch. Daflr ist
zundchst der Ereignistyp maBgebend. Abhangig vom
Ereignistyp enthélt der EventReport unterschiedliche
Detailinformationen, deren Bedeutung im folgenden er—
klart wird.

Alle Tasteneingaben werden als Tastenereignis klassifi-
ziert. Der EventReport enthéalt die gedrickten Tasten.
Dabei werden bis zu 20 Tastenereignisse zu einem
EventReport zusammengefaBt. Von der Applikation wird
erwartet, daB sie darauf entsprechend reagiert. Die
Blockung mehrerer Ereignisse ist immer dann interes—
sant, wenn dadurch die nachfolgende Verarbeitung
effizienter gestaltet werden kann. Je mehr eine
Applikation bei der Verarbeitung von Tastenereignissen
in Rackstand kommt, desto mehr kann sie dann durch
die gréBere Blockung sparen und so wieder aufholen.

Gleichzeitig wird mit den Tastencodes der Status der
Meta-Tasten (Shift, Alternate und Control) (bergeben.
Dabei soll angenommen werden, daf3 die Meta-Tasten
bei allen Gbergebenen Tastencodes gedriickt waren.

SchlieBlich wird noch die momentane Mausposition
Ubergeben. Die Mausposition wird in Welt-Koordinaten
des Fensters Ubergeben, iiber das das Ereignis zu-
geordnet wurde.

Alle Funtions— und Editier-Tasten, die von SSWiS ver—
arbeitet werden, sind als Konstanten deklariert, um ihre
Auswertung zu vereinfachen. Die Codes unterhalb 128
sind durch den ASCIli-Zeichensatz festgelegt; die
Codes zwischen 128 und 255 sind den nationalen

8-18

SSWiS SPC MODULA-2 V1.4

Sonderzeichen vorbehalten und missen applikationss—
pezifisch verarbeitet werden.

Die Maus verursacht verschiedene Ereignisse, die von
Betétigungen der Maustaste (SSWiS geht von einer
Maus mit nur einer Taste aus) herrthren. In jedem Fall
wird der Status der Meta-Tasten, die Position der
Maus (wie oben) und der Status der Maus-Taste (iber—
geben.

Die ereignisverursachende Aktivitdt ist die wichtigste
Information des Maus—Ereignisses. Einfaches und
doppeltes Klicken der Maustaste liefern je eine Ereig—
nis. Wenn die Maustaste gedruckt wird, wird ein Ereig—
nis bearbeitet, genauso, wenn sie wieder losgelassen
wird.

Das Maus-Echo (s.u.) kann so eingestellt sein, daB die
Applikation selbst fur dessen Generierung zustandig ist.
In diesem Falle wird ein Mausereignis immer dann er-
zeugt, wenn die Maus ein vorgebbares Raster (s.u.)
verldBt. Ein Beispiel daflr ist die Markierung der Selek-
tion im SPC Editor.

Wenn bei gedrickter Maustaste das Fenster verlassen
wird, dem das Driicken der Maustaste gemeldet wurde,
dann entstehen mit einer bestimmten Frequenz standig
weitere Ereignisse, die anzeigen, daB sich die Maus
aus dem Fenster entfernt hat. Die Applikation kann in
diesem Fall das Fenster weiterscrollen, um anschlie-
3ende Bereiche sichtbar zu machen.

Uber das aktive Fenster bestimmt SSWiS, welcher
Menudbalken sichtbar sein soll. Beim Wechseln des
aktiven Fensters wechselt i.a. deshalb auch der Meni-
balken. Menus enthalten bis zu sieben Titel und jeder
Titel bis zu 8 Eintrage. Ein Menu-Ereignis ist durch die
Angabe des Titels und des Eintrages vollstandig spezi—-
fiziert.

Mouse—-Events

Mausaktivitat

Motion-Event

Window-Violation

MenUu-Events

SPC MODULA-2 V1.4 SSWiS

8-19

Message-Events

Timer-Events

Identification—-Events

PollEvents Loop

(noch nicht implementiert)

Nachrichten kénnen zwischen Applikationen aus-
getauscht werden, um sich gegenseitg AnstdBe fir
bestimmte Aktivititen zu geben. Es wird ein standar—
disiertes Nachrichtenformat vorgegeben.

Wenn SSWiS auf Ereignisse wartet und keine Ereig-
nisse anfallen, geht SSWiS davon aus, daB der Benut-
zer vorubergehend untétig ist. Die dadurch frei verfig—
bare Prozessorleistung wird dann in Form eines Timer—
Events an die bei SSWIS registrierten Applikationen
reihum vergeben. Ein Timer—-Event kann nicht dazu
verwendet werden, zeitkritische Aktivititen zu steuern,
sondern nur, um in einfacher Weise die Komponente
Zeit in eine Applikation zu bringen. ES dirfen keine
langwierigen Aktivitdten innerhalb des Timer—Events
durchgefuhrt werden, da dadurch die Reaktionsfahigkeit
des Systems leiden wirde.

Die Aufforderung an die Applikation ist deshalb ein
spezielles Feature von SSWIS, da unter SSWIS ver-
schiedene Applikationenen koexistent sein kbnnen. Es
ist deshalb nicht mehr damit getan, eine Startup-Mel-
dung auszugeben, etc. Vielmehr ist die ganze Benut-
zeroberflache unter SSWiS sehr stark standardisiert,
und die Herkunft eines Programms ist nicht ohne wei-
teres ersichtlich. Als Folge des Ereignisses sollte eine
Applikation die SSWiS Funktion Identify aufrufen und
Programmnamen, Autor, Copyright, etc. zur Verfigung
stellen.

Unter GEM wird dieses Ereignis natlrlich durch selek-
tieren des About-Eintrages im Menu erzeugt.

Aus den angegebenen Programmfragmenten ist er—
sichtlich, daB eine Applikation, sobald sie ihre Initiali-
sierung durchgefihrt hat, in eine Schleife eintritt, in der
nur noch SSWiS.PollEvents aufgerufen wird. Innerhalb
von SSWiS werden dann, als Folge von Ereignissen
und Programmaktivitdt die angeschlossenen Applika-

SSwiS SPC MODULA-2V1.4

tionen aktiviert, indem deren Accept- bzw. Restore-
Prozeduren aufgerufen werden.

Diese Programmstruktur ist typisch fur Applikationen
eines Fenstersystems und unterscheidet sich volistéan—
dig vom klassischen, sequentiellen Programmaufbau.
Bei letzterem sind die dialogfihrenden Programmstel—
len in einem sonst sequentiellen Programmablauf ein-
gebettet.

Unter SSWiS wird die ganze Arbeit aller aktiven
Applikationen in den Accept-Prozeduren geleistet. Die
Funktion SSWiS.PollEvents wird i.a. nur in der Schleife
des Hauptprogramms aufgerufen, um Rekursionen zu
vermeiden.

SPC-MODULA-2 bietet die Mdoglichkeit, Programme
zuzuladen. Dieses als Dynamic Linking bezeichnete
Feature ist an anderer Stelle erklart. Unter SSWiS ist
jedoch wichtig zu wissen, daB das Zuladen mittelbar
oder unmittelbar von einer Accept-Prozedur ausgeht
und dadurch naturlich ein neues Hauptprogramm zum
Ablauf kommt. Dieses lauft, nachdem es die neue
Applikation initialisiert hat, ebenfalls in eine PoolEvents
Schleife. SSWiS wird ab dann von deren PollEvents—
Aufruf angetrieben (und nicht mehr von der startenden
Applikation).

Einfacher ausgedrickt: Die PollEvents Schieife der zu-
letzt zugeladenen Applikation ist die SSWiS treibende
Kraft. Damit wird auch klar, warum die Applikationen
nur in der umgekehrten Startreihenfolge terminiert wer—
den. (z.B. beendet sich die xShell erst, wenn alle
Applikationen, die von ihr gestartet wurden, ebenfalls
terminiert wurden).

Eine weitere, sich hieraus ergebende Tatsache ist, daR
alle Applikationen auf dem gleichen Stack laufen.
Durch das Nachladen von Applikationen innerhalb einer
Accept-Prozedur erhodht sich natirlich der Stack-Be-
darf, und zwar um den der zugeladenen Applikation

Dynamic Linking

Starten und
Terminieren von
Applikationen

Benutzung des Stack

SPC MODULA-2 V1.4 SSWiIS

Operatoren

Steuerung von
SSWiS

Anmelden der
Applikation

Fenster Anlegen und
kontrollieren

und den der nachladenden Accept—Prozedur.

Die Operatoren von SSWiS werden in den folgenden
Abschnitten mit der thematischen Ordnung diskutiert,
die auch im DEFINITION MODULE SSWiS angegeben
ist. Wenn die zuvor genannten Konzepte klar geworden
sind, dann sollte es keine Schwierigkeiten bereiten, die
knappen Kommentare des Definitionsmoduls zu lesen.

SSWIS initialisiert sich innerhalb des Modulrumpfes. Die
ordnungsgemaBe Terminierung erfolgt Gber den vom-
System bereitgestellten Terminierungsmechanismus.
Applikationsprogramme brauchen sich deshalb nicht
darum zu kummern.

Die SSWiS treibende Funktion ist PollEvents. Damit
kehrt der Programmablauf immer wieder zu SSWiS zu-
ruck. Mitunter ist es winschenswert, SSWiS nur die
Maoglichkeit zu geben, die Fenster zu restaurieren (z.B.
nachdem eine Dateiauswahl-Box wieder vom
Bildschirm verschwunden ist). Daflr gibt es die Funk-
tion Resync. Reinit veranlast SSWiS, den Desktop, den
Menubalken, etc. zu reinstallieren, nachdem aus einer
fremden Applikation zurickgekehrt wurde (z.B. Tem-
pus).

Applikationen missen sich bei SSWiS an- und abmel-
den, da SSWiS fir jede Applikation einen Satz an
Resourcen vorhalt

Fenster missen von der Applikation angelegt und wie—
der geléscht werden. Die Applikation (nicht SSWiS)
gibt jedem Fenster eine Nummer, Uber die spéater auf
das Fenster wieder Bezug genommen werden kann.

Fenster kbnnen ganz nach vorn oder ganz nach hinten
gebracht werden. Ein Fenster, welches nach hinten
gebracht wird, wird von SSWiS automatisch geschlos-
sen.

Die Randelemente eines Fensters kdnnen in einem
weiten Bereich konfiguriert werden. Weiter kénnen der

SSWiS SPC MODULA-2 V1.4

Fenstertitel und die Meldezeile (falls konfiguriert) ge-
setzt werden.

SSWiS steuert die Restore-Prozeduren so, daf immer
dann, wenn sich das Fenster—Arrangement veréndert
hat, alle Fenster wieder geeignet restauriert werden.
Anderungen, die sich innerhalb des Fensterinhaltes er—
geben (z.B. durch Eingeben von Zeichen in einem
Texteditor) miissen SSWiS explizit mitgeteilt werden
(ExplicitRestore), damit SSWiS die notwendigen
Restore—Aufrufe absetzt.

SSWIS erlaubt der Applikation, die Position und die
GroBe ihrer Fenster zu beeinflussen. Jedoch mussen
unter Umstanden weitere Randbedingungen eingehal-
ten werden, so daB SSWiS den Wiinschen der
Applikation nur teilweise nachkommen kann. Sowohl
die Fensterposition, als auch die FenstergroBe (die
GroéBe des Fensterinhaltes) kénnen von der Applikation
abfragt werden.

Die GroBe des (Welt-) Bildes muB SSWiS bekannt
sein, da sich daraus die Parameter der Scrollelemente
ergeben. Alle Angaben Uber das Bild erfolgen in Welt-
Koordinaten. Ein Raster kan angegeben werden, um
das Inkrement beim Feinscrolling zu steuern.

Die Position der Maus wird durch ein Echo auf dem
Bildschirm signalisiert. Das Echo kann verschiedene
Formen (z.B. RubberLine) annehmen. Zudem ist i.a.
noch ein sogenanntes Sprite sichtbar, also eine kleine
Figur, die den augenblicklichen Standort der Maus an-
zeigt. Das Sprite und die Form des Echos sind von der
Applikation einstellbar. Insbesondere kann eine
applikationsabhangige Form gewahlt werden. In diesem
Fall ist die Applikation selbst dafur verantwortlich, das
Echo zu erzeugen. Die Bewegungen der Maus werden
dann uber die Accept-Prozedur gemeldet. Echoform
und Sprite kbnnen fur jedes Fenster einer Applikation
separat konfiguriert werden. Sie werden jeweils dann
aktiviert, wenn das Fenster aktiv wird.

Fensterposition und
-gréBe

Parameter des
Bildes

Maus und Caret

SPC MODULA-2 V1.4 SSWiS

Mendls

Formulare

Das Caret ist eine zweite Markierung einer Position,
ahnlich dem Mausecho, jedoch wird die Position des
Caret ausschlieBlich durch die Applikation kontrolliert.
Das Caret wird z.B. von TextWindws verwendet, um die
aktuelle Cursorposition anzuzeigen.

Jede Applikation kann bei SSWiS ein eigenes Meni
bestehend aus bis zu 7 Titeln anmelden. Jeder Titel
wird mit einer Beschriftung versehen. Jeder Titel kann
bis zu 8 Eintrdge haben, die wieder jeweils mit einer
Beschriftung versehen werden. Bei Menueintragen
kénnen Uber die Beschriftung gleichzeitig Attribute des
Eintrages konfiguriert werden. So kann ein Eintrag
durch ein der Beschriftung vorangestelltes M maskiert
werden. Es ist dann nicht mdglich, den Eintrag zu
selektieren. Ein C markiert den Eintrag bei GEM durch
einen vorangestellten Haken. Menueintrage und -titel
kénnen zu jeder Zeit von der Applikation wieder um-
konfiguriert werden.

Die Funktionalitdt von Formularsystemen ist so unein-
heitlich, daB fir SSWiS nur einige einfache Mechanis—
men vorgesehen werden, die aber doch recht univer—
sell verwendet werden kénnen.

Ein Formulartyp dient dazu, eine Meldung auszugeben
und eine von maximal 4 Antworten zu erhalten. Die fur
die Antwort zu konfigurierenden Buttons (virtuelle
Tasten) werden als String angegeben. Die genaue
Syntax ist im Definitionsmodul angegeben. Der
Defaultbutton ergibt sich aus dem Eingangswert des
Ergebnisses.

Ein weiteres Formular erlaubt, einen editierbaren Text
und 4 zusétzliche, wahibare Optionen anzugeben. Die
Optionen werden in der gleichen Syntax wie die But-
tons konfiguriert. Jedoch liefern die Optionen ein BIT-
SET als Ergebnis, da auch mehrere Optionen gleich-
zeitig gewéhlt werden kdnnen.

Das dritte Formular wird dazu benutzt, die Applikation

SSWiS SPC MODULA-2 V1.4

zu identifizieren. Neben dem Program, der Version und
dem Autor kann ein Copyright-Vermerk angegeben
werden.

SPC MODULA-2 V1.4 SSWiS

Diese Seite wurde aus satztech—
nischen Griinden freigelassen

SSWiS

SPC MODULA-2 V1.4

Das Laufzeitsystem

Unter dem Begriff Laufzeitsystem werden die Funk-
tionalitdten einer Sprachimplementierung zusammenge-—
faBt, die den Ablauf von Programmen auf einer Hard—
ware und einem Betriebssystem unterstitzen, ohne
daB sie fir den Programmierer direkt sichtbar sind.
Hierzu gehdren u.a. die Reprdsentierung von Datenty—
pen als Bitmuster im Speicher der Maschine, die Ver-
waltung der diversen Speicherbereiche (Stack, Code,
Daten, Konstanten) und Mechanismen zur Verwaltung
des Speichers selbst.

Das Laufzeitsystem ist damit hochgradig maschinenab-
hangig. Weiterhin sind die Funktionalitdten des Lauf-
zeitsystems nicht als Modulschnittstelle (der SYSLIB)
exportiert. Die im folgenden gegebenen Informationen
haben deshalb hauptsachlich den Zweck, die interne
Organisation von SPC MODULA-2 zu dokumentieren.

0= Die an dieser Stelle gegegbenen Informationen sol-
len nicht in Programmen ausgenutzt werden.

Falls sich die Organisation einmal andern wurde, wéaren
solche Programme nicht mehr lauffahig. Weiterhin sind
solche Programme fast nie portabel.

Es versteht sich von selbst, daB Programme niemals
die Funktionalitdten des Laufzeitsystems storen durfen.

Kapitel 9

Ubersicht

Maschinen—
abhangigkeit

SPC MODULA-2 V1.4 Laufzeitsystem

Datentypen

INTEGER

CARDINAL

CHAR

BOOLEAN

BITSET

Enumerationen

Die Reprasentierung von MODULA-2 Datentypen in
Bits, Bytes und Worten des Hauptspeichers ist durch
den CPU-Typ bestimmt. Unterschiedliche Prozessoren
bedingen i.a. unterschiedliche Reprasentierungen. Die
hier gegebenen Informationen beziehen sich auf den
CPU-Typ MOTOROLA MC68000 sowie auf seine kom-—
patiblen Familienmitglieder. Programme, die sich auf
die bitweise Représentierung der Datentypen beziehen,
sind i.a. zwischen Implementierungen auf dem gleichen
Prozessortyp portabel.

Der INTEGER Datentyp ist 16 Bit breit. Negative Werte
werden im Zweierkomplement dargestelit. Der Zahlen-
berich reicht mithin von -32768 bis +32767. Die Da-
tenbreite orientiert sich an der Breite des Maschinen-
wortes, also der Speichereinheit, die von arithmeti-
schen und logischen Operationen standardmé&gig un-
terstutzt wird.

Der CARDINAL Datentyp ist ebenfalls 16 Bit breit,
jedoch umfaBt sein Wertebereich nur die positiven
Zahlen von 0 bis 65535. Die Datenbreite orientiert sich
am Maschinenwort.

Der CHAR Datentyp ist 8 Bit breit und umfaBt die
Werte von CHR(0) bis CHR(255), wobei die Bedeutung
der Werte von CHR(0) bis CHR(127) durch den ASCII-
Zeichensatz bestimmt ist.

Der BOOLEAN Datentyp ist ebenfalls 8 Bit breit.
ORD(FALSE) ist 0, ORD(TRUE) ist 1. Bei der Auswer-
tung von Ausdricken werden jedoch alle von FALSE
verschiedenen Werte als TRUE ausgewertet.

Der BITSET Datentyp belegt ein Maschinenwort, hier 16
Bit, und ist als SET OF [0..15] definiert. Das Bitset 0
entspricht dem INTEGER Wert 1.

Enumerationstypen (Aufzahlungstypen) sind 8 Bit breit,
d.h. ihr Wertebereich kann 256 Elemente umfassen.

Laufzeitsystem SPC MODULA-2 V1.4

Set-Typen sind 16 oder 32 Bit breit, d.h. ihr Basistyp
kann maximal 32 Elemente umfassen. Dabei entspricht
der niederste Wert des Basistyps dem Bit O des Sets.

Pointer-Typen sind 32 Bit breit. Der Wert NIL ent-
spricht der Adresse 0, die i.a. zum Systembereich ge-
hoért und geschutzt ist.

Alle 8 Bit breiten Datentypen werden im Speicher auf
Byte-Grenzen gelegt. Alle 16 und 32 Bit breiten Da-
tentypen werden auf Wortgrenzen gelegt. Bei RECORD
Datentypen kdnnen deshalb unbelegte “Lécher” ent-—
stehen. ARRAY Elemente mit hoheren Indices sowie
spéater deklarierte RECORD Elemente stehen im
Speicher an hdheren Adressen. Strukturierte Datenty—
pen werden immer auf Wortgrenzen gelegt.

Der REAL Datentyp ist 32 Bit breit. Das Format ent-
spricht dem IEEE Standard (single precision). Die
kleinste darstellbare, echt positive Zahl ist 3.3E-38, die
groBte darstellbare Zahl ist 3.3E38 (Dynamikbereich).
Da die Mantisse nur 23 Bit breit ist, ist die Darstel-
lungsgenauigkeit auf 4 bis 5 Dezimalziffern beschrankt.
Die groBte darstellbare, echt negative Zahl ist -3.3E-
38, die kleinste darstellbare Zahl ist -3.3E38. Der Ex-
ponent hat einen sogenannten Versatz (engl. Bias) von
127, d.h. ein Wert von 128 entspricht einem Exponen-
ten von 0. Negative Zahlen werden durch das gesetzte
Vorzeichenbit gekennzeichnet. Da der REAL Datentyp
vom MCG68000 nicht direkt unterstitzt wird, emuliert
SYSTEM die notwendigen Instruktionen.

Der LONGINT Datentyp ist 32 Bit breit, negative Werte
werden im Zweierkomplement dargestellt. Die Multipli-
kation und die Division stehen nicht als Maschinenin-
struktion zur Verfugung und werden deshalb von
SYSTEM emuliert.

Der LONGCARD Datentyp ist 32 Bit breit und umfaBt
die positiven Zahlen von 0 bis 4294967295.

SET OF

POINTER TO

Alignment

strukturierte
Datentypen

REAL

LONGINT

LONGCARD

SPC MODULA-2 V1.4 Laufzeitsystem

LONGBITSET

LONGREAL

Der LONGBITSET Datentyp ist 32 Bit breit, und ist als
SET OF [0..31] definiert. Das Set LONGBITSET 0 ent-
spricht dem LONGINT-Wert 1.

Der LONGREAL Datentyp ist 64 Bit breit. Sein Format
entspricht dem |EEE Standard (double precision). Die
Mantisse ist 52 Bit breit, der Exponent ist 11 Bit breit.
Der Exponent hat einen Versatz von 1023. Die kleinste
darstellbare, echt positive Zahl ist 1.79E-307, die
groBte darstellbare Zahl ist 1.79E308. Die groBte dar-
stellbare, echt negative Zahl ist —-1.79E-307, die
kleinste darstellbare Zahl ist —1.79E308.

Laufzeitsystem SPC MODULA-2 V1.4

In diesem Abschnitt wird die Organisation von Moduln
im Hauptspeicher erklart. Weitere Informationen finden
sich im Definitionsmodul System, der fiir die Organisa—
tion zustandig ist, und die unten genannten Strukturen
teilweise exportiert,

Jedes SPC MODULA-2 Programm besteht aus einem
Hauptprogramm (-modul) und mehreren importierten—
Moduln. Alle zu einem Programm gehd&renden Modul
werden ein Thread genannt. Selbst ein Standalone-—
Programm (gelinktes Programm, keine Shell) besteht
aus mindestens einem Thread, kann aber, falls es den
Loader importiert, auch mehrere haben. Threads sind
numeriert. Die Nummer dient gleichzeitig als Kennung.

Jeder SPC-MODULA-2 Modul besteht im Haupt-
speicher aus mehreren Teilen. Die Einzelteile sind un-
tereinander verzeigert. FlUr gebundene Programme
(.PRG) wird die Verzeigerung vom Linker vorbereitet
und vom Lader des Betriebssystems zur Ladezeit auf
die aktuelle Ladeadresse bezogen (Loadtime Reloca-
tion). Der dynamische Linker (Loader) von SPC
MODULA-2 kann die jeweils schon im Speicher vor-
handene Struktur um weitere, nachzuladende Moduin
erweitern.

Jeder im Hauptspeicher vorhandene Modul ist durch

einen Moduldeskriptor beschrieben. Die Struktur des-—

Moduldeskriptors wird vom Modul System exportiert.

Der Moduldeskriptor enthélt die folgenden Komponen—

ten :

o Next, Zeiger auf den nachsten Deskriptor, letzter Zei—
ger ist NIL

o Frame, Zeiger auf das Code-Segment

o StaticBase, Zeiger auf das Daten-Segment

o ImportedMods, Anzahl der importierten Moduin

0 ExportedProcs, Anzahl der exportierten Prozeduren

o Codelength, Ladnge des Code-Segmentes

o DatalLength, Lange des Datenbereichs

Modul-
organisation

Threads

Moduln

Moduldescriptor

SPC MODULA-2 V1.4 Laufzeitsystem

Hilfsdeskriptor

Code-Segment

Daten-Segment

a ConstLength, Lange des Konstantenbereichs

o Thread, Nummer des Programms, zu dem der Modul
gehort (0..15).

o References, Menge der geladenenen Programme, die
den Modul importieren.

O reservierte Adresse

Desweiteren gibt es' einen Hilfsdeskriptor (AuxDescr),
der im Datenbereich des Moduls liegt und folgende
Komponenten hat:

o Descr, Ruckverweise auf den Deskriptor

o Name, Modulname

o Key, Modulschliissel

0 Flags, 0 falls Modul noch nicht initialisiert

Das Code-Segment beginnt mit einem Zeiger auf das
Daten-Segment (StaticBase), liber den PC-relativ aus
dem Code-Segment heraus das Datensegment er-
reicht werden kann. Danach folgt im Code-Segment
der Code aller Prozeduren des Moduls, einschlieBlich
der Initialisierungsprozedur.

Das Datensegment eines Moduls wird Gber einen Zei-
ger erreicht, der immer im Register A4 gehalten wird
(StaticBase), solange eine Prozedur des Moduls aus-
gefihrt wird. Jede exportierte Prozedur ladt beim Ein-
tritt den Zeiger vom Anfang des Code-Segmentes
(s.0.). Von A4 aus kénnen dann mit positiven Offsets
erreicht werden :

0 Prozedurtabelle
0 Modultabelle
0 Modulkonstanten

sowie mit negativen Offsets :
o Hilfs—Deskriptor
o globale Modulvariablen

Laufzeitsystem SPC MODULA-2 V1.4

Die Prozedurtabelle enthalt die Anfangsadressen aller
exportierten Prozeduren, inklusive der Initialisierungs—
prozedur, die sich aus dem Hauptprogrammteil des
Moduls ergibt. Die Prozedurtabelle wird vom Compiler
aus dem Definitionsmodul abgeleitet. Prozeduren eines
Moduls werden von auBen uber den Index in die Pro-
zedurtabelle erreicht. Jedem importierenden Modul sind
die Indizes aus dem importierten Definitionsmodul be-
kannt. Die absoluten Anfangsadressen werden vom
Lader erst zur Ladezeit in die Tabelle eingetragen. Die-
sen Vorgang nennt man Fixup.

Die Modultabelle eines geladenen Moduls enthélt die
StaticBases der importierten Moduln. Uber den Index
des importierten Moduls gelangt man an die Daten-
segmente aller importierten Moduln und dabei insbe-
sondere an deren Prozedurtabellen. Die StaticBases—
werden vom Lader zur Ladezeit eingetragen (Fixup).

Die Konstanten eines Moduls sind von der ent-
sprechenden StaticBase mit positiven Offsets erreich—
bar. Sie liegen im Speicher Uber der Modultabelle.

Der Hilfsdeskriptor wurde schon oben erwéhnt. Die
Modulflags enthalten den Wert O, falls der Modul noch
nicht initialisiert wurde, sonst einen von 0 verschie-
denen Wert. Hiermit wird verhindert, daB ein Modul
mehrmals seine Initialisierungsprozedur durchlauft. Der
Modulschlissel ist fir den Lader interessant. Aus ihm
wird ermittelt, ob der zu ladende Modul zu allen ge-
ladenen Moduln paBt. Andernfalls wird der Fehler ‘ille-
gal module key’ zurickgegeben. Der Modulname ist
wichtig, um beim Nachladen von Moduln die importier—
ten Moduln zu finden.

Die globalen Modulvariablen sind teils exportiert, teills
sind sie nicht von auBen sichtbar. Sie liegen deshalb
am tiefsten unter der StaticBase.

Zusammenfassend laBt sich bemerken, dafR die Teile,
deren Ausdehnung von auBen nicht bestimmbar ist

Prozedurtabelle

Modultablle

Konstanten

Hilfsdeskriptor

Modulvariablen

SPC MODULA-2 V1.4 Laufzeitsystem

(namentlich die Konstanten und die Variablen), am
oberen und unteren Ende des Datensegmentes an-
gesiedelt sind. Die folgende Grafik veranschaulicht die
genannten Verzeigerungen.

Laufzeitsystem SPC MODULA-2 V1.4

Das dynamische Binden im SPC MODULA-2 Sprach-
system wird dadurch ermdglicht, daB nachzuladende
Moduln mit den bereits geladenen Moduln verzeigert
werden. Dieser Vorgang ist recht komplex und wird
vom Lader bereitgestelit.

Der Lader baut zunéichst im Hauptspeicher eine Liste
von Deskriptoren auf, an denen die dazugehérigen
Daten- und Code-Segmente hangen. Dazu missen
die .OBM Dateien gelesen und interpretiert werden. Es
ist zulassig, daB in einer Datei mehrere Moduln zu-
sammengefaBt sind. Moduln, die aktuell nicht bendtigt
werden, werden vom Lader im Eingabestrom Uber-
sprungen. Verbindungen zu bereits geladenen Moduin
stellt der Lader her, indem er sich von System einen
Zeiger auf einen geladenen Modul geben 146t.

Wenn die neue Modulliste (Thread) komplett ist, wird
sie System U(bergeben, um in die Liste der Threads
eingehangt zu werden. Danach kann das Hauptpro-
gramm gestartet werden.

Nach Beendigung des Programms werden die Moduln
und Deskriptoren wieder aus dem Speicher entfernt, es
sei denn, es ist die Hold-Option gesetzt. In diesem
Fall bleiben die Moduln im Speicher. Es wird jedoch
vermerkt. daB sie erneut initialisiert werden mussen,
wenn spater geladene Moduln darauf wieder Bezug
nehmen.

In diesem Konzept ist es mdglich, dal3 verschiedene
Programme die gleichen Moduln (insbesondere die
gleichen Datenbestédnde) verwenden. Der Modul InOut
wird z.B. von allen Moduln verwendet. Dadurch ist es
auch moglich, eine Kommunikation zwischen verschie—
denen Programmen herzustellen.

der Lade-
vorgang

Modulliste aufbauen

Thread starten

Modulliste abbauen

gemeinsam bentzte
Datenbereiche

SPC MODULA-2 V1.4 Laufzeitsystem

Stack-
organisation

Prozedurrahmen

Parameter

Rucksprung—
Adresse

globale vs. lokale
Prozeduren

Datenbestande, die zur Abarbeitung von Prozeduren
bendtigt werden, werden wie Ublich auf dem Stack an-
gelegt. Der Stack wéchst von hdheren zu niedrigeren
Addressen. Das Ende des Stacks (Top Of Stack) wird
durch das Register A7 des MC68000 bezeichnet.

Fir jede aufgerufene Prozedur wird auf dem Stack ein
Datenbereich angelegt, der einem festen Aufbau folgt.
Die darin enthaltenen Daten sind:

a die Parameter

0 interne Verzeigerungen

o0 lokale Variablen der Prozedur
o Zwischenergebnisse

Der Aufruf von Prozeduren folgt Konventionen, die in
bestimmten Fallen der systemnahen Programmierung
von Interesse sein konnten. Sie werden deshalb im
folgenden offen gelegt.’

Die Prozedurparameter werden beim Aufruf in der Rei-
henfolge ihrer Hinschreibung (von links nach rechts)
auf den Stack gelegt. Der am weitesten links stehende
Parameter kommt deshalb an der héchsten Adresse zu
liegen. Die GréBe von Datenstrukturen ist in vorange—
gangenen Abschnitten dokumentiert worden. Parame-
ter, die nur ein Byte belegen, mussen auf dem Stack
dennoch als Wortgrée abgelegt werden.

Beim Aufruf von Prozeduren wird im AnschluB an die
Parameter die Ricksprungadresse auf den Stack ge-
legt und die Programmausfiihrung mit dem ersten Be-
fehl der Prozedur fortgesetzt. Die ersten Befehle einer
jeden Prozedur gehdren zum sogenannten Prozedur—
Prolog und werden vom Compiler automatisch ge-
neriert.

Dabei wird unterschieden, ob eine Prozedur auf der
Modulebene, also der auBersten Sichtbarkeitsebene
eines Moduls deklariert ist, oder ob sie innerhalb einer
anderen Prozedur erklart wurde.

9-10

Laufzeitsystem SPC MODULA-2 V1.4

Im ersten Fall wird durch den Prolog zunachst der alte
Wert von A4 (Zeiger auf das Datensegment, Static—
Base) auf den Stack gerettet und der Zeiger auf das
Datensegment des die Prozedur enthaltenden Moduls
gesetzt. Dieser wird vom Anfang des Code-Segmentes
des Moduls beschafft.

In beiden Féllen (globale und lokale Prozedur) wird
anschlieBend einheitlich weiter verfahren. Als nachstes
wird der alte Wert des Registers A6 auf den Stack ge-
rettet, der Inhalt des Stackpointers in das Register A6
{bernommen und der Stackpointer um soviele Worte
weitergesetzt (zu tieferen Adressen), wie die lokalen
Variablen der Prozedur in Anspruch nehmen. Das
Register A6 zeigt nun in den sogenannten Stack-
Frame der Prozedur und wird deshalb auch Frame-
Pointer genannt. Der oben beschriebene Aufbau wird
durch die Instruktion LINK des Prozessors unterstitzt.
Von A6 aus sind jetzt mit positiven Offsets zugéanglich:

die Parameter

o die Ricksprungadresse (ReturnAddress)
o der alte Wert von A4 (OldStaticBase)

o der alte Wert von A6 (OldFramePointer)

O

sowie mit negativen Offsets:
o die lokalen Variablen

Der Stackpointer zeigt unter die lokalen Variablen,
sodafl der weitere Aufbau des Stacks den Stack-
Frame nicht zerstort.

Beim Verlassen der Prozedur wird zunéchst der alte
Wert von A6 wieder in das Register ubernommen und
der Stackpointer auf die Adresse oberhalb des alten
A6-Wertes gesetzt (UNLINK). Falls es sich um eine
globale Prozedur handelt, wird danach der alte Wert
von A4 wieder in das Register Ubernommen. In beiden
Falle wird die Ricksprungadresse in das Register A0
Ubernommen und der Stackpointer uber die Parameter
gesetzt. Die Prozedur korrigiert also selbst den Stack

FramePointer

Prozedur verlassen

SPC MODULA-2 V1.4 Laufzeitsystem

9-11

Prolog und Epilog

um die GroBe der Parameter (im Gegensatz zu C). Der
Ricksprung erfolgt Gber das Register AO.

Der erzeugte Code geht davon aus, daB Uber den
Prozeduraufruf die Register A4, A5 und A6 erhalten
bleiben. Weiter wird davon ausgegangen, daB die ge-
rufene Prozedur die Parameter vom Stack nimmt.

Zur Konkretisierung werden im folgenden die Codese-
quenzen fur den Prozedurein— und -austritt angege-
ben:

global: lokal:

MOVEL A4,-(SP) ; entfallt, da A4
MOVEL -d(PC),Ad ; schon geladen ist
LINK A6 *ls LINK A6 #1s

; Prozedurrumpf ; Prozedurrumpf
UNLK A6 UNLK A6
MOVEL (SP)+,A4 ; entfallt

MOVEL (SP)+,A0 MOVEL (SP)+,A0
ADDQ.L #ps,SP ADDQ.L #ps,SP
JMP (a0) JMP (a0)

Hierbei bedeuten d der Abstand zum Anfang des
Code-Segmentes, Is die GroBe der lokalen Variablen
und ps die Groe der Parameter.

Ein Funktionsergebnis wird als O-ter Parameter behan-
delt. Es ist also ein enstprechend groBer Bereich Uber
der Parametern der Prozedur vorhanden (2 oder 4
Bytes).

9-12

Laufzeitsystem SPC MODULA-2V1.4

Compiler Fehlermeldungen

. 24

Anhang A

10 Identifier erwartet Syntax
11 Komma (,) erwartet
12 Semikolon (;) erwartet
13 Doppelpunkt () erwartet
14 Punkt (.) erwartet
156 schlieBende Klammer ()) erwartet
16 schlieBende eckige Klammer (]) erwartet
17 schlieBende geschweifte Klammer () erwartet
18 Gleichheitszeichen (=) erwartet
19 Zuweisung (:=) erwartet
20 END erwartet
21 Ellipse (..) erwartet
22 offnende Klammer (() erwartet
23 OF erwartet
TO erwartet
25 DO erwartet
26 UNTIL erwartet
27 THEN erwartet
28 MODULE erwartet
29 unzuléssige Ziffer oder Zahl zu grof3
SPC MODULA-2 V1.4 Fehlermeldungen A-1

nicht definiert

Klasse und Typ

30
31
32
33

34
35
36

37

38

39

40
41
42
44

45

52

IMPORT erwartet
Faktor beginnt mit unzulédssigem Symbol
Identifier, (oder [erwartet

Identifier, ARRAY, RECORD, SET, POINTER,
PROCEDURE, (oder [erwartet

Type wird von Unzuléssigem Symbol gefolgt
Statement beginnt mit unzuldssigem Symbol

Deklaration wird von unzuldassigem Symbol
gefolgt

Statement Teil ist in DEFINITION MODULE nicht
erlaubt

Exportliste ist in IMPLEMENTATION MODULE
nicht erlaubt

EXIT ist nur innerhalb von LOOP Statements
erlaubt

unzulassiges Zeichen in einer Zahl
Zahl ist zu groB
SchlieBende Kommentarklammer *) fehit

Ausdruck darf nur konstante Operanden
enthalten

Steuerzeichen innerhalb eines Strings

Identifier ist nicht erklart oder nicht sichtbar

Obijekt solite eine Konstante sein

Objekt sollte ein Typ sein

Fehlermeldungen SPC MODULA-2 V1.4

53
54
55
56
57
58
59
60
61

62
63
64
65
66

67

68

69
70

71

72

Obijekt sollte eine Variable sein
Objekt sollte eine Prozedur sein
Objekt sollte ein Modul sein
Objekt sollte ein Untert;ereich sein
Objekt sollte ein RECORD sein
Objekt sollte ein ARRAY sein
Objekt sollte ein SET sein
unzulassiger Basistyp eines SETs

unzulassiger Typ einer Marke oder Unter—
bereichsgrenze

mehr definierte CASE Marke

untere Grenze ist groBer als obere Grenze
mehr aktuelle als fofmale Parameter
weniger aktuelle als formale Parameter

mehr Parameter im IMPLEMENTATION MODULE
als im DEFINITION MODULE

Parameter mit gleichen Typen im IMPLEMENTA-
TION MODULE haben unterschiedliche Typen im
DEFINITION MODULE

Diskrepanz zwischen VAR Spezifikationen
Diskrepanz zwischen Typ Spezifikationen

mehr Parameter in DEFINITION MODULE als in
IMPLEMENTATION MODULE

Diskrepanz zwischen Ergebnistyp—Spezifikationen

Funktion im DEFINITION MODULE, normale
Prozedur im IMPLEMENTATION MODULE

SPC MODULA-2 V1.4 Fehlermeldungen

73

74

75

76
77

78

79
80
81
82
83
84

85

86
88
89

Prozedur hat im DEFINITION MODULE
Parameter, jedoch nicht im IMPLEMENTATION
MODULE

CODE Prozeduren dirfen nicht im DEFINITION
MODULE deklariert werden

unzulassiger Typ der Kontrollvariable eines FOR
Statements

Prozeduraufruf einer Function

Identifier in Kopf und nach END passen nicht
zusammen

neuerliche Definition eines Typs, der im
DEFINITION MODULE deklariert wurde

importierter Modul konnte nicht gefunden werden
offener EXPORT Listeneintrag

unzulassiger Typ des Prozedurergebnisses
unzulassiger Basistyp eines Unterbereichs
unzuléssiger Typ eines CASE Ausdruckes

Ausgabe der Symboldatei (.SBM) war nicht
erfolgreich

Schlissel der importierten Moduln sind nicht
konsistent

fehlerhaftes Format der Symboldatei (.SBM)
Symboldatei konnte nicht gedffnet werden

Prozedur ist im DEFINITION MODULE erklart,
aber nicht im IMPLEMENTATION MODULE

Fehlermeldungen SPC MODULA-2 V1.4

90

91
92
93
94

95
96
97
98

100

101
102
103
104
105
106
107
108

in der Konstruktion a..b muB, falls a eine Implementierung
Konstante ist, b ebenfalls eine Konstante sein

Uberlauf des ldentifier Puffers
zu viele CASEs
zu viele EXIT Statements

Indextyp eines ARRAYs muB ein Unterbereich
sein

Unterbereichsgrenzen missen kleiner 32535sein
zu viele globale Moduin
zu viele Prozeduren im DEFINITION MODULE

zu viele strukturierten Elemente im DEFINITION .

MODULE

mehrfache Definition innerhalb des gleichen mehrfache Definition
Sichtbarkeitsbereichs

unzulassige Verwendung eines Typs Inkompatibilitat

unzulassige Verwendung einer Prozedur
unzulassige Verwendung einer Konstanten
unzulassige Verwendung eines Typs
unzulassige Verwendung einer Prozedur

unzulassige Verwendung eines Ausdrucks

'unzuléssige Verwendung eines Moduls

konstanter Index auBerhalb des zulassigen
Bereichs

SPC MODULA-2 V1.4 Fehlermeldungen A-5

109

110
111

112

113

114

115

116

117

118

119

120

121

122

123

124

indizierte Variable ist kein ARRAY oder der Index
hat den falschen Typ

RECORD Selektor ist kein Feld Identifier
dereferenzierte Variable ist kein Pointer

der Typ des Operanden ist inkompatibel mit dem
Operator Vorzeichenumkehr (=)

der Typ des Operanden ist inkompatibel mit dem
Operator NOT

in dem Ausdruck x IN y ist der Typ von x
verschieden vom Basistyp von y

in dem Ausdruck x IN y ist der Typ von x kein

Basistyp eines SETs oder y ist kein SET

in dem Ausdruck a..b ist a oder b verschieden
vom Basistyp des SETs

inkompatible Operandentypen

der Typ des Operanden ist nicht kompatibel mit
dem Operator *

der Typ des Operanden ist nicht kompatibel mit
dem Operator /

der Typ des Operanden ist nicht kompatibel mit
dem Operator DIV

der Typ des Operanden ist nicht kompatibel mit
dem Operator MOD

der Typ des Operanden ist nicht kompatibel mit
dem Operator AND

der Typ des Operanden ist nicht kompatibel mit
dem Operator +

der Typ des Operanden ist nicht kompatibel mit
dem Operator —

Fehlermeldungen SPC MODULA-2 V1.4

125

126

127

128

129

130

131

132

133
134

135

136
137

139

140

141

der Typ des Operanden ist nicht kompatibel mit
dem Operator OR

der Typ des Operanden ist nicht kompatibel mit
einem Vergleichsoperator

die Prozedur muf3 auf Ebene 0(Modulebene)
deklariert werden

der Ergebnistyp einer Prozedur paBt nicht zum
Ergebnistyp eines Prozedurtyps

ein Parameter einer Prozedur paBt nicht zur
formalen Typenliste eines Pozedurtyps

eine Prozedur hat weniger Parameter als der
Prozedurtyp

eine Prozedur hat mehr Parameter als der
Prozedurtyp

Zuweisung einer negativen Zahl an eine
CARDINAL Variable

inkompatible Zuweisung
Zuweisung an ein Objekt, das keine Variable ist

Typ des Ausdrucks in IF, WHILE oder UNTIL
muB BOOLEAN sein

Aufruf eines Objektes, das keine Prozedur ist

der Typ des VAR Parameters ist nicht kompatibel
mit dem des aktuellen Parameters

der Typ des Ausdrucks nach RETURN ist
verschieden vom Ergebnistyp der Prozedur

unzuldssiger Typ eines CASE Ausdrucks

die Schrittweite eines FOR Statements darf nicht
0 sein

SPC MODULA-2 V1.4 Fehlermeldungen

142 unzuléssiger Typ einer Kontrollvariablen

143 Zuweisung an ein dynamisches Array ist
unzulassig

144 unzuldssiger Typ eines Parameters einer
Standardprozedur

145 dieser Parameter sollte ein Typ Identifier sein
146 der String ist zu lang

147 unzulassige Spezifikation einer Prioritat

Namenskollision 150 ein exportierter Identifier kollidiert mit einem
bereits deklarierten Identifier

System 201 Integer ist zu negativ flr Vorzeichenumkehr
202 ein SET Element ist auBerhalb der Wortlange
203 Uberlauf in einer Multiplikation
204 Uberlauf in einer Division
205 Division durch Ooder Modulo mit negativem Wert
206 Uberlauf in einer Addition
207 Uberlauf in einer Subtraktion

208 der CARDINAL Wert, der einer INTEGER
Variablen zugewiesen wird, ist zu grof3

209 die GroBe eines SETs ist zu groB
210 die GréBe eines ARRAYs ist zu groB

212 eine Komponente eines Character ARRAYs kann
‘kein VAR Parameter werden

214 Elemente eines SETs missen Konstanten sein

A-8 Fehlermeldungen SPC MODULA-2 V1.4

215

der Ausdruck ist zu komplex

222 eine Ausgabedatei konnte nicht gedffnet werden
(Directory voll?)

223 eine Ausgabedatei konnte nicht vollstandig
geschrieben werden (Diskette voll?)

224 zu viele externe Referenzen

225 zu viele Strings

226 das Programm ist zu lang

230 der Ausdruck ist nicht ladbar Maschine

231 der Ausdruck ist nicht addressierbar

232 der Ausdruck ist nicht zulassig

233 der Ausdruck ist nicht zulassig

234 Fehler bei der Registerzuteilung

235 | unzulassiger Selektor

236 zu viele geschachtelte WITH Statements (mehr
als 4)

237 unzulassiger Operand

238 unzulassige Operandengrofie

) 239 Typ solite LONGREAL sein

240 der Parameter sollte ein dynamisches Array sein

241 unzulassiger Typ einer Gleitkomma-Operation

244 unzulassiger Gleitkomma-Vergleich

SPC MODULA-2 V1.4 Fehlermeldungen A-9

Diese Seite wurde aus
satztechnischen Grinden frei
gelassen

A -10 Fehlermeldungen SPC MODULA-2 V1.4

MODULA—2 Syntax

ident
number

integer

real

ScaleFactor
hexDigit

digit

octalDigit

string

qualident
ConstDeclaration
ConstExpression

TypeDeclaration

type

SimpleType

enumeration

I

letter {letter | digit}.

integer | real.

digit {digit} ['D"] | octalDigit
{octalDigit} ("B"|"C") | digit {hexDigit}
"H". .

digit {digit} "." {digit} [ScaleFactor].
“E" ["+"|"-"] digit {digit}.

digit |"A"|"B"|"C"|"D"|"E"|"F".
octalDigit | "8"|"9".
"0""1tm2"|"3"|"4"|"5"|"6"|"7".

" {character} " | "™ {character} ™.
ident {"." ident}.

ident "=" ConstExpression.
expression.

ident "=" type.

SimpleType | ArrayType | RecordType
| SetType | PointerType |
ProcedureType.

qualident | enumeration |
SubrangeType.

“(" IdentList ")".

Anhang B

SPC MODULA-2 V1.4

MODULA-2 Syntax

|
{
Identlist = ident {"" ident}.

SubrangeType = [qualident] "[* ConstExpression ".."
ConstExpression "]".

ArrayType = ARRAY SimpleType {"." SimpleType}
OF type.

RecordType = RECORD FieldListSequence END.
FieldListSequence = FieldList {";" FieldList}.

FieldList = [ldentList ":" type | CASE [ident] ""
qualident OF variant {"|" variant}
[ELSE FieldListSequence] END].

variant = [CaselabelList ":" FieldListSequence].

Casel.abelList

Caselabels {"," CaselLabels}.

Caselabels = ConstExpression ["."
ConstExpression].

SetType = SET OF SimpleType.
PointerType = POINTER TO type.

ProcedureType = PROCEDURE [FormalTypeList].

FormalTypelList = "(" [[VAR] FormalType {"," [VAR]
FormalType}] ")" [:" qualident].

VariableDeclaration = IdentList ":" type.
designator = qualident {"." ident | "[" ExpList "]" |
III\II}.
ExpList = Expression {"," expression}.
expression = SimpleExpression [relation
SimpleExpression].
relation —_ ll=l| | II#II | Il<l! | II<=II | II>II I II>=I| | IN

B-2 MODULA-2 Syntax SPC MODULA-2 V1.4

SimpleExpression

1l

AddOperator

term

MulOperator

factor

1

set

i

element

ActualParameters

statement =

assignment =

ProcedureCall

StatementSequence

]

IfStatement

CaseStatement

["+"]"-"] term {AddOperator term}.
ll+ll | II_II I OR .
factor {MulOperator factor}.

nxn | "/" I DIV ‘ REM I MOD I AND |
u&u .

number | string | set | designator
[ActualParameters] | "(" expression ")"
| NOT factor | "™" factor.

[qualident] "{" [element {"," element}]

ll}ll.

ConstExpression ["."
ConstExpression].

"(" [ExpList])" .

assignment | ProcedureCall |
IfStatement | CaseStatement |
WhileStatement | RepeatStatement |
LoopStatement | ForStatement |
WithStatement | EXIT | RETURN
[expression]].

designator ":=" expression.
designator [ActualParameters].
statement {";" statement}.

IF expression THEN
StatementSequence {ELSIF
expression THEN
StatementSequence} [ELSE
StatementSequence] END.

CASE expression OF case {"I‘" case}
[ELSE StatementSequence] END.

SPC MODULA-2 V1.4

MODULA-2 Syntax B-3

case
WhileStatement
RepeatStatement

ForStatement

LoopStatement

WithStatement

ProcedureDeclaration

ProcedureHeading

block

declaration

FormalParameters

FPSection
FormalType

ModuleDeclaration

priority

]

I

[}

]

[CaseLabelList ":"
StatementSequence].

WHILE expression DO
StatementSequence END.

REPEAT StatementSequence UNTIL
expression.

FOR ident ":=" expression TO
expression [BY ConstExpression] DO
StatementSequence END.

LOOP StatementSequence END.

WITH designator DO
StatementSequence END .

ProcedureHeading “;" (block ident |
FORWARD).

PROCEDURE ident
[FormalParameters].

{declaration} [BEGIN
StatementSequence] END.

CONST {ConstantDeclaration ";"} |
TYPE {TypeDeclaration ";"} | VAR
{VariableDeclaration ";"} |
ProcedureDeclaration ";" |
ModuleDeclaration ";".

‘(" [FPSection {";" FPSection}] ")" [":"
qualident].

[VAR] IdentList ":" FormalType.
[ARRAY OF] qualident.

MODULE ident [priority] ;" {import}
[export] block ident.

"[* ConstExpression "]".

MODULA-2 Syntax

SPC MODULA-2V1.4

export
import

DefinitionModule

definition

ProgramModule

CompilationUnit

EXPORT [QUALIFIED] IdentList ";".
[FROM ident] IMPORT IdentList ";".

DEFINITION MODULE ident *;"
{import} {definition} END ident ".".

CONST {ConstantDeclaration ";"} |
TYPE {ident ["=" type] ";"} | VAR
{VariableDeclaration ";"} |
ProcedureHeading ;" .

MODULE ident [priority] ";" {import}
block ident "." .

DefinitionModule | [IMPLEMENTATION]
ProgramModule.

SPC MODULA-2 V1.4

MODULA-2 Syntax

Diese Seite wurde aus
satztechnischen Grinden frei
gelassen

MODULA-2 Syntax

SPC MODULA-2 V1.4

Literaturhinweise Anhang C

Niklaus Wirth
“Programming in MODULA-2" Third Corrected Edition
Springer, 1985, ISBN 0-387-15078-1

Dieses Werk, vom Erfinder der Sprache selbst verfaBt, dient als
Standardwerk und als Referenz uber MODULA-2. Es erklart in
kurzer und pragnanter Form die Syntax und die Semantik von
MODULA-2. Bis zur Erreichung einer Normung durch das BSI
werden sich Diskussionen Uber die Sprache an diesem Werk
orientieren. Die deutsche Ubersetzung ist ebenfalls erhéltlich. Nicht
zuletzt wegen des relativ geringen Preises gehort es in das
Bicherregal jedes ernsthaften MODULA-2 Programmierers. Aller—
dings mufB eingeschrankt werden, daB es zum Erlernen des Pro-
grammierens an sich nicht geeignet ist.

Herbert Schildt
MODULA-2 Made Easy
McGraw-Hill, 1986, ISBN 0-07-881241-0

Was N.Wirth in seinem Standardwerk vermissen laBt, namlich eine
leicht verstandliche EinfGhrung flr Programmierneulinge ist Herbert
Schildt in hervorragender Weise gelungen. Das Werk ist etwas
umfanglicher, ohne die Ubersicht zu erschweren. Besonders der
Anfanger wird zu schéatzen wissen, daB inzwischen auch eine
deutsche Fassung im Handel ist. Das Buch ist reichlich mit Bei-
spielen versehen und enthdlt einige Ubungsaufgaben, die langsam

SPC MODULA-2 V1.4 Literaturhinweise C-1

aber sicher an des Besondere von MODULA-2 heranfuhren. Eine
ideale Erganzung zum SPC Sprachsystem.

ATARI Corp.
ATARI ST Bedienungshanabuch
ATARI Corp., 1985

Jankowski, Reschke, Rabich
ATAR/ ST ProfibuchH
SYBEX, 1987, ISBN 3-88745-501-0

Wer auf dem ATARI ST Computer programmieren will, kommt ohne
zusatzliche Literartur nicht aus. Unter den Bulchern Uber den ATARI
ST und sein Betriebssystem, die inzwischen im Handel sind, ist
diese Werk eines der umfassendsten. Die Darstellung der Be-
triebssystemschnittstellen sind prazise und sowohl in C- als auch
in Assembler—Notation angegeben. Das Buch kann durchaus zwei
oder mehrere andere Bucher zum gleichen Thema ersetzen.

Hilf, Nausch

M6E8000 Farmilie, Ted 1, Grundiagen und Arclitektur
Te-Wi, 1984

Der Verfasser ist als Mitarbeiter der Firma MOTOROLA ein intimer
Kenner der Architektur des 68000 und der dazugehérigen

Literaturhinweise SPC MODULA-2 V1.4

Bausteine. Wer in die Assemblerprogrammierung einsteigen will,
oder sich an die elementaren Fahigkeiten des Chip herantrauen
will, wird an diesem Buch nicht vorbeikommen. Fir den Einstieg in
MODULA-2 sind die Details der Hardware jedoch weniger interes—
sant, sodaB man im ersten Moment auf die Anschaffung verzich-
ten kann.

Jurgen Gei3, Dieter Gei3
Software-Entwickiung aur dem ATARI ST
Huthig, 1986. ISBN 3-7785-1339-7

Im Gegensatz zum Profibuch geht es in diesem als Taschenbuch
ausgefihrten Werk ausschlieBlich um die Entwicklung von Soft-
ware fir den ST. Dazu wird auf einige Aspekte der Program-
mierung der GEM-Oberfliche genauer eingegangen und einigen
Beispielen die anzuwendenden Techniken vorgefihrt. DaB die
Autoren auf diesem Gebiet fachkundig sind, haben sie schon ein-
drucksvoll vorgefiunhrt.

SPC MODULA-2 V1.4 Literaturhinweise

Diese Seite wurde aus
satztechnischen Grinden frei
gelassen

Literaturhinweise

SPC MODULA-2 V1.4

Beispielprogramme Anhang D

SPC MODULA-2 V1.4 Beispielprogramme D-1

Diese Seite wurde aus
satztechnischen Griinden frei
gelassen

Beispielprogramme

SPC MODULA-2 V1.4

MODULE Hello:

(% Codesize is limited about lk Bytes within the demo version.

FROM InOut 1IMPORT HriteString, WriteInt, Writeln;

FROM SYSTEM IMPORT VAL, ADDRESS;

VAR X ¢ ARRAY [1..18] OF CHAR;
4 i CHAR;
p : POINTER TO CHAR; 998

PROCEDURE Wait;
VAR i, j ¢+ INTEGER; |

BEGIN
FOR j:=-10088 TO MAX (INTEGER) DO
it= 13
END;
END Wait;

PROCEDURE Count (Number
VAR i + INTEGER;

BEGIN

HWriteInt (Number, 2); Writeln;

c:= x[Numberl;

Wait;

IF Number = 8 THEN RETURN ELSE Count
END Count:

BEGIN

+ INTEGER);

(Number-1) END;

WriteLn; WriteString ('Hello World'); Writeln;

(¥ To demo the debugger compile this program giving options :

(% compile hello.mod r o :
p:= VAL (ADDRESS,99);

WriteString ('Count Down'); Writeln;
Count (10);

END Hello.

*)

*)
*)

SPC MODULA-2 V1.4

F+\TESTS\HELLO.MOD

(¥----- Category : Module
(¥ Module Type

[C N Name

* . Function :
[C Version Date :
(¥ Authors

(¥ Product Name
(¥ Copyright

(%===m- Category : Types and Data

IMPORT Terminal

VAR ch : CHAR;

BEGIN
REPEAT

Identification ---- *)
¢ %) MODULE
1 %) Empty;
Empty Test Programm (minimal PRG size) *)
21: 4 16. 1.1989 *)
¢ R.Huetter *)
SPC *)
(c) 1989, Ronald Huetter, D75088 Karlsruhe ¥)
¥)

Terminal .WriteString ('Hello World');

Terminal .Writeln;

Terminal.BusyRead (ch);

UNTIL ch # 8C;

Terminal .WriteString (‘got ");
Terminal .Urite (ch);

Terminal .Hriteln;

Terminal .Read (ch);

Terminal .WriteString ('got ");
Terminal .Hrite (ch);

END Empty.

F:\TESTS\EMPTY .MOD

SPC MODULA-2 V1.4

(¥===-- Category : Module Identification ¥)
(¥ Module Type + %) MODULE

* . Name t %) Dump;

* . Function i File Dump Utility *)
* . Version/Date : 1.8 28.12.87 *)
(¥ Authors ¢t R.Huetter *)
(¥ Product Name t SPC *)
(% Copyright + (c) 1987, Ronald Huetter, 07588 Karlsruhe *)
(¥===== Category : Types and Data *)

FROM SYSTEM IMPORT LONG, SHIFT, VAL, ADDRESS;
FROM InOut IMPORT MWriteString, WriteLn, Writelnt;

IMPORT ByteStreams, CmdLine, Environment, HFS, Strings, TextStreams, XStr;

CONST Version = "Dump V1.0";

VAR i, Jj, k, kBytes : INTEGER:

ch : CHAR;
Name, s ¢ ARRAY [B@..88] OF CHAR;
bs ¢ ByteStreams.Streams;
ts ¢ TextStreams.Streams;
a : ADDRESS;
v, f, d, A 1 ARRAY [@..68] OF CHAR;
asc ¢ ARRAY [@..15]1 OF CHAR;
(¥-=--- Category : Main Program -—=--=-============ocoooommo oo

BEGIN
CmdLine.UtilityName (s);

IF NOT CmdLine.FileArg (Name)

THEN CmdLine.ResultIs (FALSE, 'usage : Dump <filename>');
RETURN;

END;

ByteStreams.Open (bs, Name, ByteStreams.FileIn);

IF bs.Result = ByteStreams.Done

THEN HFS.Decode (Name, v,f,d,t);
HFS.Encode (v,f,d, .LST", s);
TextStreams.Open (ts, s, TextStreams.FileOut);
IF ts.Result # TextStreams.Done
THEN CmdLine.ResultIs (FALSE, ‘cannot open list file');

RETURN;

END;

ELSE CmdLine.ResultIs (FALSE, 'file not found'):
RETURN;

END;

it= @; ji= B8; ai= B; kBytes:= 1008;

LooP
IF j = 256
THEN TextStreams.HritelLn (ts);
ji= 8
DEC (kBytes): IF kBytes <= 8 THEN EXIT END;
END;

SPC MODULA-2 V1.4 F:\STANDARD\UTILITY\DUMP.MOD

IF j=8
THEN TextStreams.WritelLn (ts);
TextStreams.WriteString (ts, ° BN
FOR i:= 8 T0O 15 DO
IF (i MOD 8) = B THEN TextStreams.Write (ts,
TextStreams.WriteHex (ts, i, 3);
END;
TextStreams.WriteLn (ts);
END;

IF (j MOD 16) = @
THEN TextStreams.WriteLn (ts);
TextStreams.WriteAddress (ts,'a, 8);

TextStreams.WriteString (ts, ")
ELSIF (j MOD 8) = 8
THEN TextStreams.Write (ts, ' ');

END;

ByteStreams.ReadByte (bs, ch):

IF bs.Result # ByteStreams.Done

THEN TextStreams.WriteLn (ts);
EXIT;

END;

TextStreams.WriteHex (ts, ORD(ch),3);
IF (ch >= " ") & (ch <= '2")

THEN asclj MOD 161:= ch;

ELSE asc[j MOD 161:= ".°
END;

i

INC (j); INC (a);

IF (j MOD 16) = B
THEN TextStreams.WriteString (ts, * ')
TextStreams.HriteString (ts, asc);
END;
END:

TextStreams.Close (ts);
ByteStreams.Close (bs);

CmdLine.ResultIs (FALSE, ‘done’);
END Dump.

© ") END;

F+\STANDARD\UTILITY\DUMP.MOD

SPC MODULA-2 V1.4

(%----~ Ca

(¥ Module

(% Authors
(¥ Product
(* Copyrig

(¥==mmm Ca

tegory : Module Identification --

Type

Name

Function
Version Date

Name
ht

tegory : Types and Data

: %) IMPLEMENTATION MODULE

*) GemDos;

: GEMDOS Interface to Modula-2
8:38 2. 6.1988

: (c) 1987, Ronald Huetter, D7508 Karlsruhe

R.Huetter
SPC

*)
¥)
%)

*)

FROM SYSTEM IMPORT ADDRESS, INLINE, ADR, VAL, REG, SHIFT, SHORT;
CONST Trap = B4E41H;
AddSP = BODFFCH; (¥ HighCount, LowCount %)

(=== Category : GemDos Interface *)
PROCEDURE None (Code : INTEGER); CODE Trap;
PROCEDURE I (pl : INTEGER;

Code ¢ INTEGER); CODE Trap;
PROCEDURE C (pl : INTEGER;

Code + INTEGER); CODE Trap;
PROCEDURE A (pl : ADDRESS;

Code + INTEGER); CODE Trap:
PROCEDURE L (pl i LONGINT;

Code i+ INTEGER); CODE Trap;
PROCEDURE IL (pl : INTEGER;

p2 ¢ LONGINT;

Code 1 INTEGER); CODE Trap;
PROCEDURE IA (pl : INTEGER;

p2 : ADDRESS;

Code : INTEGER); CODE Trap:
PROCEDURE ALT (pl : ADDRESS;

p2 i LONGINT:

p3 : INTEGER;

Code + INTEGER); CODE Trap;
PROCEDURE IIL (pl, p2 1 INTEGER:

p3 ¢ LONGINT;

Code + INTEGER): CODE Trap:
PROCEDURE IIA (pl, p2 : INTEGER;

p3 + ADDRESS:

Code + INTEGER); CODE Trap;
PROCEDURE II (pl, p2 : INTEGER;

Code t INTEGER): CODE Trap:
PROCEDURE LA (pl : LONGINT;

p2 : ADDRESS;

Code : INTEGER); CODE Trap:
PROCEDURE AAAT (pl, p2, p3 : ADDRESS:

p4 : INTEGER;
SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\GEMDOS .MOD 7

¢ INTEGER); CODE Trap;

: ADDRESS;
: INTEGER); CODE Trap;

ADDRESS;

: INTEGER;
: INTEGER); CODE Trap;

ADDRESS;

¢ LONGINT;
: INTEGER;
-INTEGER) ; CODE Trap;

: INTEGER;
: ADDRESS;
+ INTEGER;
: INTEGER); CODE Trap:

PROCEDURE AA (pl, p2

Code !
PROCEDURE AAI (pl, p2 :

p3

Code
PROCEDURE ALI (pl f

p2

p3 :

Code :
PROCEDURE IAI (pl

p2

p3

Code :
(¥=mmm= Category : GemDos Functions
PROCEDURE Term8;
BEGIN

None (8); INLINE (AddSP, 6,2);
Result:= REG();

END TermB;
PROCEBURE Conln (VAR Ch

VAR ScanCode H
BEGIN

None (1); INLINE (AddSP, 8,2):

Result:= REG(8);

Ch := CHR(Result MOD 256D);

ScanCode:= SHIFT(Result,-16) MOD 2560;
END Conln;

PROCEBURE ConOut (Ch

BEGIN
C (ORD(Ch), 2); INLINE (AddSP, 0,4);
Result:= REG(8);

END ConOut;

PROCEDURE AuxIn (VAR Ch

BEGIN
None (3); INLINE (AddSP, 8,2);
Result:= REG(B);
Ch:= CHR(Result MOD 256D);

END AuxIn;

PROCEDURE AuxOut (Ch

BEGIN
C (ORD(Ch), 4); INLINE (AddSP, 8,4);
Result:= REG(8);

END AuxOut;

¢ CHAR;

ScanCodes) ;

¢ CHAR);

¢ CHAR);

: CHAR);

F:\GEMDOS\SYSLIB\GEMDOS.MOD

SPC MODULA-2 V1.4

PROCEDURE PrnOut (Ch

BEGIN
C (ORD(Ch), 5); INLINE (AddSP, 8,4);
Result:= REG(8);

END PrnOut;

PROCEDURE ConRawI0 (VAR Ch

BEGIN
C (ORD(Ch), 6); INLINE (AddSP, 8,4);
Result:= REG(B);
IF ORD(Ch) = BFFH
THEN
Chi= CHR(Result MOD 256D);
END;
END ConRawIO;

PROCEDURE ConRanwIn (VAR Ch

BEGIN
None (7): INLINE (AddSP, 9,2);
Result:= REG(8);
Ch:= CHR(Result MOD 256D);

END ConRawIn;

PROCEDURE ConNegIn (VAR Ch
BEGIN
None (8); INLINE (AddSP, 8,2);
Result:= REG(B);
Ch:= CHR(Result MOD 256D);
END ConNegIn;
PROCEDURE ConMlriteString(Line

BEGIN

i CHAR) ;

¢ CHAR);

: CHAR);

: CHAR);

¢ ARRAY OF CHAR):

A (ADR(Line), 9); INLINE (AddSP, 8,6):

Result:= REG(B);
END ConWriteString;

PROCEDURE ConReadString (VAR Line

BEGIN
A (ADR(Line), 18); INLINE (AddSP, 8,
Result:= REG(Q);

END ConReadString;

PROCEDURE ConInStat () + BOOLEAN;

BEGIN
None (11); INLINE (AddSP, 8,2):
Result:= REG(B):
RETURN Result # 8D;

END ConInStat;

PROCEDURE SetDrv (Drive

¢ ARRAY OF CHAR);

6);

¢ Drives)

SPC MODULA-2 V1.4

F:\GEMDOS\SYSLIB\GEMDOS.MOD

+ SetOfDrives;

BEGIN
I (Drive, 14); INLINE (AddSP, 8.,4);
Result:= REG(Q);
RETURN VAL (Set0fDrives, Result);
END SetDrv;

PROCEDURE ConOutStat () : BOOLEAN;

BEGIN
None (16); INLINE (AddSP, 0,2);
Result:= REG(8);
RETURN TRUE;

END ConOutStat;

PROCEDURE PrnOutStat () : BOOLEAN;

BEGIN
None (17); INLINE (AddSP, 8,2);
Result:= REG(8);
RETURN Result = -1D;

END PrnOutStat;

PROCEDURE AuxInStat () : BOOLEAN;

BEGIN
None (18); INLINE (AddSP, 8,2);
Result:= REG(@);
RETURN Result = -1D;

END AuxInStat;

PROCEDURE AuxQutStat () + BOOLEAN;

BEGIN
None (19); INLINE (AddSP, 6,2);
Result:= REG(@):;
RETURN Result = -1D;

END AuxOutStat;

PROCEDURE GetDrive () : Drives;

BEGIN
None (25); INLINE (AddSP, 8,2);
Result:= REG(B);
RETURN VAL(Drives, Result);

END GetDrive:

PROCEDURE SetDTA (VAR Dta

BEGIN
A (ADR(Dta), 26): INLINE (AddSP, 8,6);
Result:= REG(8);

END SetDTA;

PROCEDURE Super (VAR Stck

BEGIN

+ DTA);

: LONGINT)

D-18

F:\GEMDOS\SYSLIB\GEMDOS.MOD

SPC MODULA-2 V1.

A (ADR(Stck), 32); INLINE (AddSP, 6,6);
Result:= REG(Q);
END Super;

PROCEDURE GetDate (VAR Today i DosDate);

BEGIN
None (42); INLINE (AddSP, 8,2);
Result:= REG(8);
Today := Result;

END GetDate;

PROCEDURE SetDate (Today ¢ DosDate);

BEGIN
I (Today, 43); INLINE (AddSP, 0,4);
Result:= REG(B);

END SetDate;

PROCEDURE GetTime (VAR Now : DosTime);

BEGIN
None (44); INLINE (AddSP, 8,2);
Result:= REG();
Now:= Result;

END GetTime;

PROCEDURE SetTime (Now ¢ DosTime);

BEGIN
I (Now, 45); INLINE (AddSP, 8,4);
Resulti= REG(8);

END SetTime;

PROCEDURE GetDTA () ¢ DTAPtr;

BEGIN
None (47); INLINE (AddSP, 0,2);
Result:= REG(8);
RETURN VAL (ADDRESS, Result);
END GetDTA:

PROCEDURE Version () : CARDINAL;

BEGIN
None (48); INLINE (AddSP, 8,2);
Result:= REG(B):
RETURN VAL (CARDINAL, Result);
END Version;

PROCEDURE TermResident (Memory ¢ LONGCARD;
Return + INTEGER);

BEGIN
IL (Return, Memory, 49); INLINE (AddSP, 6,8);
Result:= REG(B);

END TermResident;

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\GEMDOS.M0OD

D - 11

PROCEDURE DiskFree (VAR Info i DiskInfo;
Drive + Drives);

BEGIN

IA (Drive, ADR (Info), 54); INLINE (AddSP, 8,8);
Result:= REG(8);
END DiskFree;

PROCEDURE DirCreate (Name + ARRAY OF CHAR):

BEGIN
A (ADR(Name), 57); INLINE (AddSP, ©,6);
Result:= REG(B);

END DirCreate:

PROCEDURE DirDelete (Name ¢ ARRAY OF CHAR);

BEGIN
A (ADR(Name), 58); INLINE (AddSP, 8,6);
Result:= REG(8);

END DirDelete;

PROCEDURE SetPath (Name ! ARRAY OF CHAR);

BEGIN
A (ADR(Name), 59); INLINE (AddSP, 8,6);
Result:= REG(B):

END SetPath;

PROCEDURE Create (Name + ARRAY OF CHAR;
Attribute : SetOfAttributes)
¢ Handles;
BEGIN

IA (VAL (INTEGER, Attribute), ADR(Name), 68);
INLINE (AddSP, 0,8);

Result:= REG(8);

RETURN SHORT (Result);

END Create;
PROCEDURE Open (Name i ARRAY OF CHAR;
Mode : OpenModes)
i Handles;
BEGIN

IA (ORD(Mode), ADR(Name), 61); INLINE (AddSP, 8,8);
Result:= REG(8);
RETURN SHORT (Result);

END Open;

PROCEDURE Close (Handle ¢ Handles);

BEGIN
I (Handle, 62); INLINE (AddSP, 8,4);
Result:= REG(D);

END Close:

D-12 F+\GEMDOS\SYSLIB\GEMDOS .MOD SPC MODULA-2 V1.4

PROCEDURE Read (Handle ¢ Handles;

Buffer ! ADDRESS;
Size ¢ LONGINT)
¢ LONGINT;

BEGIN
ALI (ADR(Buffer), Size, Handle, 63); INLINE (AddSP, 8,12);
Result:= REG(8);
RETURN Result;

END Read;
PROCEBURE Hrite (Handle ¢ Handles;
Buffer : ADDRESS;
Size : LONGINT)
: LONGINT;
BEGIN

ALI (ADR(Buffer), Size, Handle, 64); INLINE (AddSP, @,12);
Result:= REG(8);
RETURN Result;

END Hrite;

PROCEBURE Delete (Name : ARRAY OF CHAR);

BEGIN
A (ADR(Name), 65); INLINE (AddSP, 8,6);
Result:= REG(D);

END Delete;

PROCEBURE Seek (Handle i Handles;
Mode ¢ SeekModes;
Position i LONGINT);

BEGIN

IIL (ORD(Mode), Handle, Position, 66); INLINE (AddSP, ©,18);
Result:= REG(Q);

END Seek;
PROCEDURE Attribute (Name i ARRAY OF CHAR;
Mode ! GetModes;
VAR Attrib i SetOfAttributes);
BEGIN

IIA (VAL (INTEGER, Attrib), ORD(Mode), ADR(Name), 67);
INLINE (AddSP, B8,10);
Result:= REG(8);
Attrib:= VAL (SetOfAttributes, Result);
END Attribute;

PROCEDURE Dup (StdHandle : Handles)
i Handles;

BEGIN
I (StdHandle, 69); INLINE (AddSP, 8,4);
Result:= REG(®);
RETURN SHORT (Result);

END Dup;
PROCEDURE Force (StdHandle : Handles:
SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\GEMDOS.MOD D-13

NonStdHndl : Handles):

BEGIN

IT (StdHandle, NonStdHndl, 78): INLINE (AddSP, 8.6):
Result:i= REG(8);

END Force;

PROCEDURE GetPath (VAR Path ¢ Paths;
Drive i Drives);

BEGIN

IA (Drive, ADR(Path), 71); INLINE (AddSP, 0,8);
Result:= REG(8);
END GetPath;

PROCEBURE MemAlloc (Amount ¢ LONGINT)
i+ LONGINT;

BEGIN
L (Amount, 72); INLINE (AddSP, 8,6):
Result:= REG(B);
RETURN Result;

END MemAlloc;

PROCEDURE MemFree (Block : ADDRESS);

BEGIN
A (Block, 73); INLINE (AddSP, 8,6);
Result:= REG(B);

END MemFree;

PROCEDURE Shrink o Block + ADDRESS;
Size : LONGINT);

BEGIN

LA (Size, Block, 74); INLINE (AddSP, 8,18);
Result:= REG(8);

END Shrink;
PROCEBURE Exec (Mode ¢ LoadModes;
Path ¢ ARRAY OF CHAR;
CmdLine : ARRAY OF CHAR;
Environment: ARRAY OF CHAR)
+ LONGINT;
BEGIN

AAAT (ADR(Environment), ADR(CmdLine), ADR(Path), ORD(Mode), 75):
INLINE (AddSP, 8,16):
Result:= REG(O);
RETURN Result;
END Exec;

PROCEDURE Term (Return : INTEGER);

BEGIN
I (Return, 76): INLINE (AddSP, @,4);
Result:= REG(@);

END Term;

D-14 F:\GEMDOS\SYSLIB\GEMDOS .MOD SPC MODULA-2 V1.4

PROCEDURE SearchFirst (Spec
Attr

BEGIN

¢ ARRAY OF CHAR;
+ SetOfAttributes):

IA (VAL (INTEGER, Attr), ADR(Spec), 78); INLINE (AddSP, 8,8);

Resulti= REG(8);
END SearchFirst;

PROCEDURE SearchNext;

BEGIN
None (79); INLINE (AddSP, 9,2);
Result:= REG(B);

END SearchNext;

PROCEDURE Rename (0ldName
NewName

BEGIN

AAT (ADR(NewName), ADR(OldName), @,

Result:= REG(8);

END Rename;

PROCEDURE Timestamp (VAR DatTim
Handle
Mode

VAR i + INTEGER;
BEGIN

+ ARRAY OF CHAR;
! ARRAY OF CHAR);

86); INLINE (AddSP, 8,12);

¢ FileTimes;

¢ Handles;
: GetModes);

IF Mode = Set THEN i:= 1 ELSE i:= 8 END;

IIA (i, Handle, ADR(DatTim), 87);
INLINE (AddSP, 8,18);
Result:= REG();

END Timestamp;

END GemDos.

SPC MODULA-2 V1.4

F+\GEMDOS\SYSLIB\GEMDOS .MOD

D-15

(%=---- Category : Module Identification --- Bt %)

(¥ Module Type : %) MODULE

(% . Name i %) SetEnv;

(€ Function + Maintain Environment Variable %)
(% . Version/Date : 1.88 27.1.88 *)
(% Product Name i SPC *)
(% Copyright ¢ (c) 1987,1988, MODsoft, 07508 Karlsruhe %)
(¥-=---- Category : Module Abstract -- *%

Set, Modify, Delete and List environment variables. ¥)

(%-——-- Category : Types and Data *)

FROM InOut IMPORT HriteString, WritelLn, Write,
ReadString, Read, ReadInt, ReadlLn;
IMPORT ASCII, Environment, Strings;

CONST Version = 'SetEnv V1.8
VAR VarName ¢ ARRAY [8..30] OF CHAR;
TempStr ¢ ARRAY [0@..881 OF CHAR;
i : INTEGER;
ch ¢ CHAR;
(¥-=--~ Category : Commands *)

PROCEDURE Set;

BEGIN
HUriteString ('set variable : '); ReadString (VarName);
HWriteln;
WriteString ('current value : ');

IF Environment.Get (VarName, TempStr)

THEN WriteString (TempStr);

ELSE WriteString ('<empty, new will be allocated>');
END;

HUriteln;

HriteString (‘new or <ret> : '); ReadLn (TempStr);
IF TempStr[8] # 6C
THEN WriteLn;
Environment.Set (VarName, TempStr);
WriteString ('changed ¢)5 HriteString (TempStr);
ELSE WriteString ('no changes');
END;
Hriteln;
END Set;

PROCEDURE Delete:

VAR TmpName : ARRAY [8..38]1 OF CHAR;

BEGIN
WriteString ('del variable : "); ReadString (VarName);
Writeln;
WriteString ('current value : ');

IF Environment.Get (VarName, TempStr)

D - 16

F+\STANDARD\UTILITY\SETENV.MOD SPC MODULA-2 V1.

THEN WriteString (TempStr);

Writeln;

WriteString ('y to confirm : '); Read (ch);

Writeln;

IF CAP(ch) = 'Y’

THEN Environment.Set (VarName, "');
WriteString ('deleted D
WriteString (VarName);

END;

ELSE WriteString ('not found t)

UriteString (VarName):

END;
Hriteln;
END Delete;

PROCEDURE List;

VAR UarName, String : ARRAY [8..88] OF CHAR;
+ INTEGER;

BEGIN
it= 1
WHILE Environment.GetIndexed (i, VarName, String) DO
WriteString (VarName):
WriteString (" = ");
WriteString (String);
Hriteln:
INC (i)
END;
END List;

(¥-=-=- Category : Main Program —=--=============mmm— oo oo *)

BEGIN
WriteString (Version); WriteLn; Writeln;

LOOP
WriteString ('SetEnv [L] ");
Read (ch); IF ch = ASCII.EOL THEN ch:= "L' END;
Write (7 ")

CASE CAP(ch) OF

| Set;

| ¢ Delete;

| ¢ List;

| ! Writeln; Writeln;
|

EXIT;

| "H" + WriteString ('commands are: ');
Hriteln;
WriteString ("L_ist to list all variables’);
Writeln;
WriteString ('S_et to set a new or to modify an existing variable');
Writeln;
WriteString ('D_elete to delete a variable’):
WritelLn;
WriteString (‘Q_uit to return to Shell');
Writeln;

| ELSE MWriteString (‘unknown command, type H for help');
Hriteln;

END:

DI’_QU\

Hriteln;

SPC MODULA-2 V1.4 F+\STANDARDN\UTILITY\SETENV.MOD D-17

END:
END SetEnv.

D - 18 Ft\STANDARD\UTILITY\SETENV.MOD SPC MODULA-2 V1.4

(¥----- Category : Module Identification

(¥ Module Type i %) MODULE

[C Name ¢ %) Shell;

[CI Function : Standard Command Interface for VERSAdos
(% . Version/Date : 1.25 1.1.88

(% Authors i R.Huetter

(¥ Product Name : SPC

(% Copyright + (c) 1987,1988, MODsoft, D7588 Karlsruhe
(¥===m- Category : Types and Data

FROM SYSTEM IMPORT LONG;
FROM InOut IMPORT Done, Hrite, WriteString, WritelLn,
WriteInt, WriteCard, WriteDct, WriteHex,

Read, ReadCard, ReadInt, ReadString, ReadLn;

IMPORT ASCII, Strings, Loader, CmdlLine;

)
*)
¥)

*)

--%)

CONST Version = 'Shell V1.48°;
VAR ch ¢ CHAR;
ExitShell ¢ BOOLEAN;
(¥==--- Category : Program Call Primitives
PROCEDURE Call (Tool ¢ ARRAY OF CHAR;
Files + BOOLEAN);
VAR s, msg : ARRAY [B..132]1 OF CHAR;
b + BOOLEAN;
BEGIN

Strings.Copy (Tool, 1,99, msg);
WriteString (msg); WriteString (' ");

Strings.Concat (Tdol, o, s)s

IF Files

THEN ReadLn (msg); Strings.Concat (s, msg, s):
END;

Hriteln:

CmdLine.Set (s); CmdLine.ResultIs (TRUE, 'no message’);

IF NOT Loader.Call (Tool, FALSE, msg)
THEN WriteString ('Loader: '); WriteString (msg); WritelLn:
ELSE CmdLine.Result (b, msg);
WriteString (msg): Writeln;
END;
END Call;

PROCEDURE Run;
VAR s, msg : ARRAY [0..132]1 OF CHAR;
b : BOOLEAN;
Tool ¢ ARRAY [0..48] OF CHAR:
BEGIN
WriteString (‘un ");
Readln (s); MWriteln;

CmdLine.Set (s); CmdLine.Resultls (TRUE, 'no message’);

SPC MODULA-2 V1.4 F:\GEMDOS\UTILITY\SHELL .MOD

D - 19

CmdLine.UtilityName (Tool);

IF NOT Loader.Call (Tool, FALSE, msg)
THEN WriteString ('Loader: '); WriteString (msg); Writeln;
ELSE CmdLine.Result (b, msg);
WriteString (msg): Writeln;
END;
END Run;

PROCEDURE Quit () : BOOLEAN;

BEGIN
WriteString ('You are about to QUIT SHELL'); Writeln;
WriteString (° Type 0 again to confirm’');

Read (ch):
RETURN CAP(ch) = '0Q°;
END Quit;

PROCEDURE Help;
BEGIN

Hriteln;
HriteString (Version); Writeln;

WriteString ('Commands are @ °)5 Writeln;

WriteString (" C ... Compile’); Writeln:

WriteString (* L ... Link’)i Hriteln;

WriteString (* R ... Run’); Writeln;

HriteString (" P ... Prelink’); Hriteln;

HriteString (* X ... Run Domain’); Writeln;

WriteString (* Q ... Quit’); Writeln;
END Help:
(%----- Category : Main Loop *)
BEGIN

ExitShell:= FALSE;
WriteLn; HriteString (Version); Hriteln;

REPEAT
WriteString ('spc: '); Read (ch);

CASE CAP(ch) OF
| 'C" : Call (‘compile’, TRUE):
| "H" ¢ Help;
| "P" : Call ('prelink’, TRUE);
| 'L+ Call ('link’, TRUE) ;
| 'X" : Call (‘domain’, FALSE)
| 'R" ¢ Run;
| 'Q" + ExitShell:= QuitQ);
| '?" ¢ Help;
ELSE HriteString ('unknown command, type H for HELP');
Writeln;
END;
UNTIL ExitShell;
Writeln;
END Shell.

D - 20 F+\GEMDOS\UTILITY\SHELL.MOD SPC MODULA-2 V1.4

[C— Category : Module Identification - *)

(¥ Module Type : %) IMPLEMENTATION MODULE

(* . Name ¢ %) Terminal;

[C % Function : Window Based Standard Terminal *)
(% . Version Date : 12:59 22. 1.1989 *)
(¥ Authors ¢ R.Huetter *)
(¥ Product Name ¢ SPC *)
(¥ Copyright + (c) 1987, Ronald Huetter, D7580 Karlsruhe %)
(¥=mmm- Category : Types and Data %)

FROM SYSTEM
IMPORT SHORT;
IMPORT SSWiS, ASCII, Environment, TextFiles, TextWindows, XStr, System;

CONST ModuleName = ‘Terminal’;

VAR Script ¢ TextFiles.File:
HotLine ¢ TextFiles.Text;
HotLinelen + INTEGER;

HotLinePos ¢ INTEGER;
InpLine ¢ ARRAY [8..481 OF CHAR;
InpLineLen : INTEGER;
InpLinePos : INTEGER;
~ Client ¢ SSWiS.ModuleHandles;
Digits ! ARRAY [@..15]1 OF CHAR;
(¥-=mm- Category : Utility Level --=-%)

PROCEDURE Update;
VAR XY, HH : TextHindows.Points;

BEGIN
IF HotLineLen > HotLinePos
THEN XY.X:= HotLinePos;
XY.Y:= TextFiles.TotalLinesOf (Script);
WH.X:= HotLineLen-HotLinePos+1;
WH.Y:= 1;
TextWindows.ExplicitRestore (Client, 8, XY, WH);

0o

END;
END Update;

(¥=mmmm Category : Input and Output --- -- %)
J PROCEDURE Read (VAR ch : CHAR) ;
VAR p ¢ TextWindows.Points:

BEGIN
IF InpLinePos >= InpLinelLen
THEN
Expose; Update;

p.X:= HotLinelLen;

p.Y:= TextFiles.TotalLinesOf (Script);
TextWindows.SetCaret (Client, 8, p);
InpLinePosi= 8;

InpLineLen:= 8;

WHILE InpLineLen = 8 DO

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\TERMINAL .MOD D-21

SSHiS.PollEvents;

p.Xi= -1;
TextWindows.SetCaret (Client, 8, p);
END;
chi= InpLinelInpLinePosl; INC(InpLinePos);
END Read;
PROCEBURE BusyRead (VAR ch ¢ CHAR);

VAR p ¢ TextHindows.Points;

BEGIN
IF InpLinePos >= InpLinelLen
THEN

Update;

p.X:= HotLinelLen;

p.Y:= TextFiles.TotalLinesOf (Script);
TextHindows.SetCaret (Client, B8, p);
InpLinePos:i= 8;

InpLineLen:= 8;

SSWiS.PollEvents;

p.Xi= -1
TextWindows.SetCaret (Client, 8, p);
END;

IF InpLinePos < InpLinelLen
THEN ch:= InpLinelInpLinePosl; INC(InpLinePos);
ELSE ch:= @C;
END;
END BusyRead;

PROCEDURE Write (ch ¢ CHAR);
VAR s : ARRAY [8..8] OF CHAR;
i ¢ INTEGER;

XY, WH i TextWindows.Points;

BEGIN
IF (ch = 18C) & (HotLineLen > 8)
THEN DEC (HotLinelLen);
HriteString ("');

ELSIF ch = ASCII.CR
THEN Writeln;

ELSIF ch = ASCII.FF
THEN i:= TextFiles.TotalLinesOf (Script);
WHILE i > 8 DO
TextFiles.Position (Script, 1);
TextFiles.Delete (Script);
DEC (i);
END;
HotLine[Bl:= BC; HotLineLen:= B; HotLinePos:= 8;

WH.X:= 180; WH.Y:= 188; XY.X:= 8; XY.Y:= 8;
TextWindows.ExplicitRestore (Client, 8, XY,WH);

WH.X:= 188; WH.Y:= 1; XY.X:= 8; XY.Y:= 0;
TextWindows.SizeWorld (Client, 8, WH);
TextWindows.Positionlorld (Client, @, XY);

D - 22

F:\GEMDOS\SYSLIB\TERMINAL .MOD SPC MODULA-2 V1.

ELSIF ch >=
THEN s[81:= ch;
WriteString (s):
END;
END Urite;

PROCEDURE WriteString Text ¢ ARRAY OF CHAR);

VAR i, j + INTEGER;
XY, WH : TextWindows.Points;

BEGIN
ji= 8
WHILE (j <= HIGH(Text)) & (HotLineLen < HIGH(HotLine)) & (Text[jl # B8C) DO
HotLinelHotLinelLenl:= Text[jl;
INC (HotLineLen); INC (j);
END;
HotLine[HotLinelLenl:= 8C;
END WriteString;

PROCEDURE Writeln;

VAR LastLine : TextWindows.Coordinates;
i : INTEGER;
XY, WH ¢ TextHindows.Points;
Done : TextFiles.Results;

BEGIN

HotLineLen:= 999; Update;

LastLine:= TextFiles.TotalLinesOf (Script);
TextFiles.Position (Script, 999);
TextFiles.Insert (Script, HotlLine, Done);

HotLine[B]:= @C;
HotLinelLen:= 8;
HotLinePos:= B;

TextWindows.Wor1d0f (Client, 8, XY,WH);
TextWindows.InteriorOf (Client, 8, WH);

IF LastLine >= XY.Y+WH.Y-3
THEN
IF LastLine > 1408
THEN WHILE LastlLine > 180 DO
TextFiles.Position (Script, 1);
TextFiles.Delete (Script);
DEC (LastLine);
END;
END;

XY.Xi= 85 XY.Y:i= LastLine-WH.Y+3;
TextWindows.Positionkorld (Client, 8, XY);
END;
END WriteLn;

PROCEDURE WritelLong (Arg t LONGINT;
Length ¢ CARDINAL);
CONST Base = 160
BaseChar = 'H';
SPC MODULA-2 V1.4 F :\GEMDOS\SYSLIB\TERMINAL .MOD D -23

VAR b, d ¢ ARRAY [@..38] OF CHAR:
i, j : INTEGER;
a ¢ LONGINT;
BEGIN
dlel:= * °;
IF Arg < 8D
THEN dl1l:= "-";
ai= -Arg;
=
ELSE a:= Arg:;
ji= 1
END;
it=0;
REPEAT
blil:= Digits[SHORT(a MOD Base)l;
a := a DIV Base:
INC (i)
UNTIL a = 8D;

WHILE i > 8 DO
DEC (i); d{jl:= blil; INC (}j)
END;
d[jl:= BaseChar; INC (j);
d[jl:= 8C;
WriteString (d);
END Writelong;

(¥=--==-~ Category : Window Driven Terminals %)

PROCEDURE Expose;

BEGIN
SSWiS.PlacelindowOnTop (Client, 8):

END Expose;

PROCEDURE Hide;

VAR XY, WH : SSWiS.ScreenPoints;

TempStr : ARRAY [B8..68]1 OF CHAR;
j : CARDINAL;

BEGIN
TempStr:= ''; ji= 8;
SSWiS.Position0flindow (Client, 8, XY);
SSWiS.SizeOfWindowContent (Client, 8, WH);
XStr.Integer (XY.X , 5, 18, TempStr, j):
XStr.Integer (XY.Y , 5, 18, TempStr, j):
XStr.Integer (WH.X , 5, 18, TempStr, j):
XStr.Integer (WH.Y , 5, 1@, TempStr, j):
XStr.Char (ec, TempStr, j):
Environment.Set (' TERMINALFLAGS', TempStr);
SSWiS.Iconisedindon (Client, 8);

END Hide;

(¥=---- Category : Operating the Window -------=---===------oo—mmmoooom *)

PROCEDURE AcceptEvent (Owner
Window :
VAR Report

+ SSWiS.ModuleHandles;

SSWiS.WindowHandles;

¢ SSWiS.EventReports);

D-24

F\GEMDOS\SYSLIB\TERMINAL .MOD

SPC MODULA-2 V1.4

/

VAR i, j + INTEGER;

XY, WH i TextWindows.Points;

BEGIN
WITH Report DO
IF Type = SSWiS.Keyboard
THEN
ir= 8
Loop
ji= Strokes.Keys[il;

IF (j < 8) OR (InpLinelLen >= HIGH(InpLine)) THEN EXIT END;

IF j > 256
THEN CASE j OF
| SSWiS.NumLeftBracket

SSWiS.NumRightBracket:

|

| SSWiS.NumSlash
| SSWiS.NumAsterisk
| SSHiS.NumMinus
| SSWiS.NumPlus
| SSWiS.NumEnter
| SSWiS.NumDot

| SSWiS.Num@

| SSHiS.Numi

| SSWiS.Num2

| SSWiS.Num3

| SSHiS.Numd

] SSWiS.NumS

| SSWiS.Num6

| SSWiS.Num?

| SSWiS.Num8

| SSWiS.NumS

| ELSE

END;

END;

IF j < 256

ORD (" ;
ORD(")");
ORD(" ;
ORD (" ;
ORD (" ;
ORD("+");
DRD(AS? I.CR);

VKN =~

ORD ("
ORD('8");
ORD("
ORD ("
ORD("
ORDC("
ORD("
ORD ("
ORD ("
ORD(”
ORD ("

[T I I L T LT T O (T I T T A T T I 1)

WONOUTB WO

THEN InpLinelInpLinelLenl:= CHR(j);

INC (InpLinelLen);
END;
INC (i);
END;

ELSIF Type = SSWiS.Timer
THEN Update;

ELSIF Type = SSWiS.Identification

THEN

SSWiS.Identify ('SSWis", ", 7

END;
END;
END AcceptEvent;

PROCEDURE Restore (Owner
. Window
XY, WH
VAR i, j, k: INTEGER;:
p + TextFiles.TextPtr:
BEGIN
XY.Xi= @;

TextWindows.Position (XY);

¥

: SSWiS.ModuleHandles;
+ SSWiS.WindowHandles;
¢ TextWlindows.Points);

ji= TextFiles.TotalLinesOf (Script);

SPC MODULA-2 V1.4

F:\GEMDOS\SYSLIB\TERMINAL .MOD

bD-25

WHILE WH.Y >= 8 DO
IF XY.Y < j
THEN TextFiles.Position (Script, XY.Y+1);
p:= TextFiles.Pointer0f (Script);
TextWindows .UriteString (pA);

ELSIF XY.Y = j
THEN TextWindows.HriteString (HotLine);
END;

TextWindows.Hriteln;
INC (XY.Y); DEC (WH.Y);
END;
TextWindows.Clear;

HotLinePos:= HotLinelLen;
END Restore;

(¥=~=== Category : Initialisation %)

PROCEDURE Init;

VAR Done ¢ TextFiles.Results;
TempStr : ARRAY [0..68]1 OF CHAR;
j : CARDINAL;
tp + TextHindows.Points;
XY, WH i SSWiS.ScreenPoints;
min ¢ SSWiS.ScreenPoints;
b : BOOLEAN;
BEGIN
TextFiles.Create (Script, Done);
HotLinel[B1:= OC;
HotLineLen:= 0;
InpLinelB]:= OC;
InpLinePos:= 08;
InpLinePos:= 0;
tp. X 1= 108;
tp.Y 1= 150;
SSWiS.Register (Client, ModuleName, AcceptEvent);
TextWindows.Create (Client, 8, Restore);
Textlindows.SizeWorld (Client, B, tp);
SSWiS.SetlindowTitle (Client, 8, 'Terminal’');

SSWiS.SetlindowElements (Client, 8, SSWiS.SetOflindowElements{
SSWiS.Iconiser..SSHiS.YScroller});

XY.X:i= 28; XY.Y:i= 28; WH.X:= 408; WH.Y:= 288; j:= @;
IF Environment.Get (' TERMINALFLAGS', TempStr)

THEN
b= XStr.InvInteger (XY.X, TempStr, j):
bi= XStr.InvInteger (XY.Y, TempStr, j):
bi= XStr.InvInteger (WH.X, TempStr, j);
bi= XStr.InvInteger (WH.Y, TempStr, j):
END;

SSWiS.Positionkindow (Client, B, XY);
min.X:= 180; min.Y:= 188;
SSWiS.SizeWindowContent (Client, @, min, WH, SSWiS.ScreenSize);
SSWiS.PlacedindowOnTop (Client, 8);
SSWiS.Resync;
END Init;

PROCEDURE Term;
BEGIN

D - 26 F1\GEMDOS\SYSLIB\TERMINAL .MOD SPC MODULA-2 VL.

Hide;

TextWindows.Delete (Client, 8);
END Term;
BEGIN

Digits:= '8123456789ABCDEF "

Init; IF System.OnModuleTerminationDo (Term) THEN END;
END Terminal.

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\TERMINAL .MOD D-27

(¥==--- Category : Module Identification %)
(% Module Type : %) IMPLEMENTATION MODULE

(% . Name i %) Terminal;

% . Function i Terminal Based Standard Terminal *)
(€I Version Date : 21:16 16. 1.1989 *)
(¥ Authors i R.Huetter *)
(¥ Product Name 1 SPC *)
(¥ Copyright ¢ (c) 1989, Ronald Huetter, D7588 Karlsruhe *)

(¥==--- Category : Implementation Notes

X
k3

Der folgende Modul stellt eine alternative Implementierung des meist
benocetigten Terminals zur Verfuegung. Die Groesse des fertigen Programms
kann drastisch gesenkt werden, falls nicht aus anderen Gruenden auf
SSWiS zurueckgegriffen werden muss.

Um den Modul zu verwenden, kann er einfach gegen den normalen Modul

TERMINAL .0BM ausgetauscht werden.

¥)
(¥==--- Category : Types and Data ---- === --==%)
FROM SYSTEM
IMPORT SHORT;
IMPORT ASCII, GemDos, System;
VAR Digits i ARRAY [@..151 OF CHAR;
(%= Category : Input and Output ---- %)
PROCEDURE Read (VAR ch : CHAR);
BEGIN
GemDos.ConNegIn (ch);
END Read;
PROCEDURE BusyRead (VAR ch i CHAR);
BEGIN

IF GemDos.ConInStat ()
THEN Read (ch):
ELSE ch:= 8C;
END;
END BusyRead;

PROCEDURE Write (ch
VAR s i ARRAY [8..11 OF CHAR;
BEGIN
s[Bl:= ch; s[1l:= OC;
WriteString (s);
END Write;
PROCEDURE WriteString (Text

BEGIN
GemDos.ConkriteString (Text);

i CHAR);

¢ ARRAY OF CHAR):

D - 28

F+\GEMDOS\SYSLIB\TERMINAX.MOD

SPC MODULA-2 V1.4

END WriteString;

PROCEDURE Writeln;
VAR s ¢ ARRAY [B8..2]1 OF CHAR;

BEGIN
s[@):= ASCII.CR; s[11:= ASCII.LF; s[2]1:= @C;
WriteString (s);

END Hriteln;

PROCEDBURE WritelLong (Arg + LONGINT:
Length ¢ CARDINAL);
CONST Base = 160;
BaseChar = "H';
VAR b, d + ARRAY [8..381 OF CHAR;
i, j : INTEGER:
a ¢ LONGINT;
BEGIN
dlel:= *
IF Arg < 8D
THEN d(11:= "'
a:= -Arg;
ji= 2
ELSE a:= Arg;
ji= 1
END;
it= 0;
REPEAT
bfil:= Digits[SHORT (a MOD Base)l;
a 1= a DIV Base;
INC (i);
UNTIL a = @D;

WHILE i > @ DO
DEC (i); d[jl:= blil; INC (j);

END;
d[jl:= BaseChar; INC (j);
dljl:= 8C;

WriteString (d);
END WritelLong;

(¥=mmmm Category : Hindow Driven Terminals ---=-==---=====---coooooo

PROCEDURE Expose;
BEGIN

END Expose;

PROCEDURE Hide;
BEGIN
END Hide;

[(— Category : Initialisation -

-=%)

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\TERMINAX .MOD

D-29

BEGIN
Digits:= '8123456789ABCDEF";
END Terminal.

D - 38 F+\GEMDOS\SYSLIB\TERMINAX.MOD SPC MODULA-2 V1.4

(¥==mm- Category : Module Identification -=-=---=--=--=----mmoomommomoo *)

(¥ Module Type ¢ %) IMPLEMENTATION MODULE

* . Name ¢ %) Watchs

[CI Function . SPC Desktop Clock %)
(€ Version Date @ 21:35 11. 1.1989 *)
(% Authors t R.Huetter *)
(¥ Product Name : SPC *)
(% Copyright ¢ (c) 1987,1988, MODsoft, D7588 Karlsruhe *)
(¥===mn Category : Types and Data ~-%)
FROM SYSTEM IMPORT LONG, SHORT;

FROM MathLib IMPORT sin, cos;

IMPORT Clock, SSWiS, XStr, System,
AESGraphics, UDIAttributes, UDIControls, UDIOutputs;

CONST HalfSize = 36;
Size = 2%HalfSize;
VAR Client i SSHiS.ModuleHandles:
UDIHandle 1 INTEGER;
Sin, Cos : ARRAY [8..59]1 OF REAL:
Time ¢ Clock.Time;
FacePat ¢ ARRAY [@..11]1 OF VDIOutputs.Coordinate;
Day : CARDINAL:
(%=-==-~ Category : Utility Level %)

PROCEDURE OpenVirtlorkstation ()
: INTEGER;

VAR In : UDIControls.WorkstationInitRec;
Out : UDIControls.WorkstationDescription;

i : INTEGER;
BEGIN
WITH In DO
Deviceld =1
LineStyle 1= UDIAttributes.Solid;
LineColour 1= 1
MarkerType i= UDIAttributes.Dot;
MarkerColour =1
Font 1= UDIAttributes.BigFont;
TextColour =1
FillStyle 1= UDIAttributes.Filled;
FillIndex =1
FillColour =13
CoordinateSystem:= UDIAttributes.RasterCoords;
END;

it= AESGraphics.Handle (i,i,i,i);
UDIControls.OpenVirtuallorkstation (In, i, Out);
RETURN 1i;

END OpenVirtWorkstation;

(¥=mmmm Category : Restore Proc —-==--==--==-====-=--mooooooomeoo oo o oo oo *)
PROCEDURE Restore (Owner ¢ SSWiS.ModuleHandles;
Window + SSWiS.WindowHandles;

HorldArea : SSHiS.Lines;

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\WATCH.MOD

D-31

Offset ¢ SSWiS.Points);

VAR Clip : UDIOutputs.VUDIRectangle;
t : Clock.DecodedTime;

i ¢ INTEGER;
j. £+ CARDINAL;
hs ¢ LONGINT;

Finger : ARRAY [B8.. 2] OF UDIOutputs.Coordinate;
Face ¢ ARRAY [8..111 OF UDIOutputs.Coordinate;
s ¢ ARRAY [B8..20]1 OF CHAR;

BEGIN
Clip.LowerLeft.x := WorldArea.A.X + Offset.X;
Clip.LowerLeft.y := WorldArea.A.Y + Offset.Y:
Clip.UpperRight.x:= WorldArea.A.X + Offset.X + WorldArea.B.X-10;
Clip.UpperRight.y:= WorldArea.A.Y + Offset.Y + WorldArea.B.Y-10;
UDIControls.SetClipping (UDIHandle, TRUE, Clip):

UDIOutputs.FillRectangle (UDIHandle, Clip);

Clock.Decode (Time, t)
hsi= HalfSize;

IF t.Day # Day
THEN j:= 8; Day:= t.Day;

XStr.Cardinal (t. Dag , 1,18, s,j)
XStr.Char . s, j)
XStr.Cardinal (t. Month 1, 18 s,j);
XStr.Char ¢ , S, j)
XStr.Char (BC , S, j)s
SSHiS.SetlindowTitle (Client, B, s);

END;

FOR i:= 8 TO 11 DO

WITH Facelil DO
xi= SHORT (Offset.X) + FacePatCil.x:
SHORT (Offset.Y) + FacePatlil.y;

y:

END;
END;

UDIOutputs.PolyMarker (UDIHandle, 12, Face):

HITH Fxnger[l] Do
0ffset.X + hs;
Offset.Y + hs;

END,
WITH Finger(8] DO
x:= TRUNC(Sin[t.MinutelXFLOAT(HalfSize-8)) + Finger(1].x

1= -TRUNC(Cos[t.Minutel%FLOAT(HalfSize-8)) + Finger[1]. g.
END.
WITH Finger([2] DO

it= ((t.Hour MOD 12) % 60 + t.Minute) DIV 12;
TRUNC(Sin[i1%FLOAT (HalfSize-16)) + Finger[1].x;
-TRUNC(Cos[i1*¥FLOAT (HalfSize-16)) + Finger(il.y;

[[ETRT]

X
y:
END;
UDIOutputs.PolyLine (VUDIHandle, 3, Finger);
END Restore;

PROCEDURE Accept (Owner : SSWiS.ModuleHandles:
Window ¢ SSWiS.WindowHandles:
VAR Report 1 SSWiS.EventReports);

VAR t : Clock.Time;
BEGIN

D-32

F+\GEMDOS\SYSLIB\MATCH.MOD SPC MODULA-2 V1.

Clock.Get (t);
IF t.Millisec >= Time.Millisec+68800D
THEN Time:= t;
SSWiS.ExplicitRestore (Client, 8, SSWiS.NeverClip);
END;
END Accept;

(=== Category : Initialisation *)

PROCEDURE Init:
VAR i, j, k, 1 : INTEGER;

Style : UDIAttributes.FillStyles;
Color ¢ UDIAttributes.ColourRange;
Xy, Wh ¢ SSWiS.ScreenPoints;

X ¢ REAL;

BEGIN
FOR i:=8 T0O 59 DO
= FLOAT(i)%8.1847197; Sinlil:= sin(x); Coslil:= cos (x);
END;
Clock.Get (Time); j:= @;
FOR i:= 8 T0 11 DO
WITH FacePat[il DO
x:= TRUNC(Sin[i*S1%FLOAT (HalfSize-4)) + HalfSize;
1= -TRUNC(CosL[i*S1*FLOAT (HalfSize-4)) + HalfSize;
END,
END;
Day:= 8;

UDIHandle:= OpenVirtWorkstation ();

Style:= UDIAttributes.SetFillInteriorStyle
(UDIHandle, UDIAttributes.Filled);
UDIAttributes.SetFillColour (UDIHandle, 8);
VUDIAttributes.SetLineColour (UDIHandle, 1);

Color:=
Color:=
SSWiS.Register (Client, 'Clock’, Accept):
SSWiS.Createlindow (Client, B, Restore):
SSWiS.SetlindowTitle (Client, 8, 'Clock’);

wh.Xi= Size; wh.Y:= Size;

xy.Xi= SSWiS.ScreenSize.X - Size-8; xy.Y:= 8;

SSWiS.SizeWindowContent (Client, 8, wh,wh,wh);

SSWiS.Positiondindow (Client, 8, xy);

SSWiS.SetlindowElements (Client, 8, SSWiS.SetOfWindowElements
{SSWiS.Iconiser});

SSWiS.PlacelindowOnTop (Client, @);
END Init;

PROCEDURE Term;

BEGIN
UDIControls.CloseVirtualWorkstation (UDIHandle);

SSWiS.Iconisedindow(Client, 8);

SSWiS.Deletedindow (Client, 8);

SSWiS.Deregister (Client);
END Term;

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\WATCH.MOD

D-33

BEGIN
Init; IF System.OnModuleTerminationDo (Term) THEN END;
END Watch.

D - 34 F+\GEMDOS\SYSLIB\WATCH.MOD SPC MODULA-2 V1.4

Der Pseudomodul SYSTEM Anhang E

SPC MODULA-2 V1.4 Pseudomodul SYSTEM E -1

Diese Seite wurde aus
satztechnischen Griinden frei
gelassen

Pseudomodul SYSTEM

SPC MODULA-2 V1.4

(%-=--- Category : Module Identification *)

(% Module Type : %) DEFINITION MODULE

* . Name i %) SYSTEM;

[C Function ¢+ Pseudo modul to import system details *)
% . Version/Date : 1.88 1.1.88 *)
(¥ Product Name i SPC *)
(% Copyright : (c) 1987,1988, MODsoft, D7508 Karlsruhe %)
(¥%===== Category : Module Abstract -%%

The pseudo module system covers some system dependent functions and
datatypes known by the compiler. There is no object form of module
SYSTEM, but its declaration is given below as a normal definition
module. Do not confuse the pseudo module SYSTEM with the runtime
system module System! %)

[— Category : Types and Data =)
TYPE ADDRESS

POINTER TO BYTE; (% compatible with all pointer typesx)
(¥ and with type LONGCARD *)

BYTE H (¥ smallest addressable unit of ... %)
(¥ main memory. SIZE (BYTE) = 1 *)
WORD 3 (¥ to consecutive BYTEs beginning ..%)
(¥ at an even address. *)
(¥==--= Category : Functions -- — %)
PROCEDURE ADR (VAR aVariable : AnyType)
' : ADDRESS;

(¥ Answer the address of aVariable, which may be of any type. %)

PROCEDURE INLINE (WordList ¢ WORD);
(% WordList may be a list of WORDs, separated by commas. The given WORDs
are inserted into the instruction stream as words of code. *)
PROCEDURE REG (Register ¢ INTEGER)
+ LONGINT;
(¥ Answer the content of the indexed processor Register as a LONGINT
value. Index @ corresponds to D8, 1 to D1, 15 to A7. %)
PROCEDURE SETREG (Register : INTEGER;
Value t LONGINT);
(¥ Set the indexed Register to Value. ¥)
PROCEDURE SIZE (AnyType)
i INTEGER;
(¥ Answer the size in Bytes of the argument, which may be any type or

a variable of any type. %)

PROCEDURE LONG (Value + ShortType)
¢ LongType;

SPC MODULA-2 V1.4 F+\STANDARD\SPCLIB\Pseudosy.DEF

(¥ Answer the long form of Value, which may be of tupe CARDINAL,
INTEGER or REAL. ¥)

PROCEDURE SHORT (Value i LongType)
i ShortType;

(¥ Answer the short form of Value, which may be of type LONGCARD,
LONGINT or LONGREAL. ¥)

PROCEBURE SHIFT (Value i AnyType;
Count : INTEGER)
¢ AnyType;

(% Answer the shifted Value. Value is shifted by Count bits, if count
is positive, then Value is shifted to the left. %)

PROCEDURE VAL (AnyType;
Argument i AnyOtherType)
¢ AnyType;

(¥ Transfer Argument, which is of type AnyOtherType to AnyType. No
extra code is generated for type transfers. ¥)

END SYSTEM.

F:\STANDARD\SPCLIB\Pseudosy.DEF SPC MODULA-2 V1.4

Die STDLIB Anhang F

SPC MODULA-2 V1.4 STDLIB F-1

Diese Seite wurde aus
satztechnischen Griinden frei
gelassen

STDLIB

SPC MODULA-2 V1.4

Category : Module

(¥ Module Type

(€.
(* .
(%

Identification

%) DEFINITION MODULE

Name 1 %) ASCII;
Function 1 Declare Non-Printing ASCII Characters
Version/Date : 1.86 27.1.88

(% ﬁroduct Name
(¥ Copyright

Category : Module

Abstract

SPC
(c) 1987,1988, MODsoft, D7588 Karlsruhe

*)
*)
¥)
¥)

Declaration of non-printing ASCII characters as

CONST

Category

NUL
ETX
ACK
HT
FF
S
DC2
NAK
CAN
ESC
RS

EOL

END ASCII.

LU T T I [T T [[[L)

¢ Types and Data

8ec;
23C;
86C;
11C;
14C;
17C;
22C;
25C;
36C;
33C;
36C;

= 36C;

SOH
EOT
BEL
LF
CR
DLE
DC3
SYN
EM
FS
us

L T T T T T T VI T [}

symbolic constants.%)

x
E 3

81C;
B4C;
87¢C;
12C;
15C;
20C;
23C;
26C;
31C;
34C;
37C;

STX
ENQ
BS
]
S0
DCL
DCc4
ETB
SUB
GS
DEL

LTI T T T T T T TR TR (I 1}

02C;
85C;
106C;
13C;
16C;
21C;
24C;
27C;
32C;
35C;
177C;

(¥ MODULA-2 standard End-0f-Line marker %)

SPC MODULA-2 V1.4

F+\STANDARD\STDLIB\ASCII.DEF

(¥-—--- Category : Module Identification *)
(¥ Module Type : %) DEFINITION MODULE
(€ Name ¢ %) ByteStreams;
(% . Function : Standard Input/Output Services *)
(% . Version/Date : 1.1 22.1.88 *)
(¥ Product Name i SPC *)
(¥ Copyright : (c) 1987,1988, MODsoft, D75088 Karlsruhe *)
(¥===== Category : Module Abstract *¥%
A ByteStream is a stream of bytes or words, with no interpretation
put onto the data. Streams can be of several types: terminal, printer
and file (communication in later versions). A stream is unidirectional.
Once open, it can be either only read or written. Several error +
conditions must be observed, when using streams. These can be io
errors or end-of-stream conditions. %)
(¥----- Category : Types and Data %)
FROM SYSTEM IMPORT BYTE;
TYPE Results = (Done , (¥ no problems occurred *)
NotDone , (¥ formatting problems *)
I0Error , (% device, os problems *)
End0fStream , (% no more characters %)
NotSupported): (¥ function not supported *)
Types = (Terminalln (% interactive device *)
TerminalOut (¥ interactive device *)
PrinterOut , (¥ buffered device *)
Fileln , (% buffered device %)
FileOut)i (¥ buffered device *)
Descriptor ;
TYPE Streams = RECORD
Result ¢ Results;
Descr t Descriptor;
END;
(¥===m= Category @ Contrgl =-===-=c=-—=-—c—mm e - %)
PROCEDURE Open (VAR Stream ¢ Streams;
Name { ARRAY OF CHAR;
Type ¢ Types);
(¥ Open the named stream. %)
PROCEDURE Close (VAR Stream ¢ Streams);
(% Close Stream. %)
(¥----- Category : Input --- i %)
PROCEDURE Read (VAR Stream i Streams;
VAR Block ¢ ARRAY OF BYTE;
Bytes : INTEGER;
VAR BytesRead : INTEGER);

Fi\STANDARD\STDLIB\BYTESTRE.DEF SPC MODULA-2 V1.4

(¥ Read Bytes (which must be <= SIZE(Block)) from Stream into Block and
answer the number of BytesRead. %)

PROCEDURE ReadByte (VAR Stream ¢ Streams;
VAR Byte t CHAR);

(¥ Read a Byte from Stream. %)

PROCEDURE ReadWord (VAR Stream ¢ Streams:
VAR Word : CARDINAL);

(% Read a Word from Stream. ¥)

(¥====- Category : Output *)
PROCEDURE Write (VAR Stream \ Streams;
VAR Block i ARRAY OF BYTE;
Bytes : INTEGER;

VAR BytesWritt : INTEGER):
(¥ Write Bytes (which must be <= SIZE(Block)) from Block to the Stream. ¥)
PROCEDURE WriteByte (VAR Stream ¢ Streams;
Byte : CHAR);
(¥ Write a Byte to Stream. %)
PROCEDURE WriteWord (VAR Stream ¢ Streams;
Hord : CARDINAL);

(¥ Write a Word to Stream.)

END ByteStreams.

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\BYTESTRE.DEF

(¥----- Category : Module Identification *)

(¥ Module Type : %) DEFINITION MODULE

[C. Name : %) Clock;

(G Function ¢ Standard Clock Module %)
[C Version/Date : 1.8 19.9.87 *)
(¥ Product Name t SPC *)
(¥ Copyright ¢ (c) 1987, MODsoft, 07588 Karlsruhe %)
(¥=-=== Category : Module Abstract *%

Clock provides a Modula-2 standard for time of day and time interval
measuring. The clocks resolution is implementation dependent and is
given below as the number of milliseconds, that cannot be resolved.
Absolute time is measured relative to 1st January 1980 88:88. The

time delivered is the system time (i.e. MEZ or MEZ summer depending on
the operators input at system startup). Future versions wWill provide
M§Z and the socalled dialog-time, which is either MEZ or MEZ summer.

*

(Y=wmme Category : Types and Data -- ¥)
CONST Resolution = 5; (% [milliseconds] %)
TYPE Time = RECORD
Day t LONGINT;
Millisec : LONGINT;
END;
Weekdays = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
DecodedTime = RECORD
Year + CARDINAL;
Month : [1..123;
Day ¢ [1..3131;
Hour H [8..231;
Minute ! [8..591;
Millisec ¢ CARDINAL;
Weekday ¢ Weekdays;
DayInYear : [1..3661;
END;
(=== Category : Accessing System Timer *)
PROCEDURE Get (VAR Arg ¢ Time)

(¥ Get the time of day in its encoded representation. *)

PROCEDURE Set (Arg ¢ Time)s

(¥ Set the machines time of day clock. %)

(¥==mmm Category ! Conversions -=----=-----=-====-----—o——ommoee oo ¥)
PROCEDURE Decode (Enc ¢ Time:
VAR Dec : DecodedTime);

(% Convert the encoded time value Enc to its decoded pendent Dec. %)

PROCEDURE Encode (Dec ¢ DecodedTime;
VAR Enc t Time);

F:\STANDARD\STDLIB\CLOCK.DEF SPC MODULA-2 V1.4

(¥ Convert the decoded time value Dec to its encoded pendent Enc. %)

¢ —— Category : Calculations

PROCEDURE Sub (VAR Minuend ¢ Time;
Subtrahend : Time);

(% Calulate the expression Minuend:= Minued-Subtrahend. %)

END Clock.

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\CLOCK.DEF

(¥----- Category : Module Identification *)

E* Module Type %) DEFINITION MODULE
¥ .

Name + ¥) Coroutines;
* . Function T %)
(CI Version/Date : 1.88 / 13.11.1987 *)
(¥ Product Name t SPC *)
(¥ Copyright ¢ (c) 1987,1988, MODsoft, D7588 Karlsruhe *¥)
(¥----- Category : Change/Version Remarks *%

1.80 MC68008 ATARI coroutine handler, implemented according to
Wirth, Niklaus: Programmieren in Modula-2, 1985

*)
(¥=emmm Category : Types and Data %)
FROM SYSTEM IMPORT ADDRESS;
PROCEDURE NEWPROCESS (P + PROC;
A ¢ ADDRESS;
n : CARDINAL;
VAR new : ADDRESS);

(% create a new coroutine variable new
consisting of:
- the parameterless procedure P
- the coroutine stack with address A and length n
The system needs a minimum stacklength of 128 bytes,
but it is usefull to give sufficient stack.
ATTENTION: stackoverflow is not detected. ¥)

PROCEDURE TRANSFER (VAR source,
destination: ADDRESS);

(¥ Switch to coroutine destination.
The context of the actual coroutine is saved to source. ¥)

PROCEDURE IOTRANSFER (VAR source,
destination: ADDRESS;
vector : CARDINAL);

(% SWwitch to coroutine <destination>.
The context of the actual coroutine is saved to <source>
and the actual coroutine is intialized as interruptservice-
routine for interruptvector <vector>.

There is no possibility in the concept of N. Wirth to stop

the interrupt by an explicit procedure. Therefore its neccessary
to restore the old ‘interruptservice-routine after an interrupt.
User’'s interruptservice-routine had to install the interrupt
again by a new call to IOTRANSFER! ¥%)

END Coroutines.

F:\STANDARD\STDLIB\COROUTIN.DEF SPC MODULA-2 V1.4

N

(¥~=--- Category : Module Identification *¥)

(¥ Module Type i %) DEFINITION MODULE

(% . Name t ¥) FileSystem;

[Function + Standard File Services *)
[CIN Version/Date @ 1.8 27.8.87 *)
(* Product Name i SPC *)
(¥ Copyright : (c) 1987, MODsoft, D7508 Karlsruhe %)
(=== Category : Module Abstract X

FileSystem provides basic sequential and random file access as defined
in Wirth's "Programming in MODULA-2". Files are streams of bytes or
words. The application programmer is advised to use this module for
file io to make its programs portable between different MODULA-2
implementations. ¥%)

(%----~ Category @ Types and Data -—-----——-=—====—mmmm e *)

FROM SYSTEM IMPORT WORD, BYTE, ADDRESS;
IMPORT Clock:

TYPE Response = (done , (¥ successful completion *)
notdone , (% error, not specified else ¥)
notsupported , (¥ internal use *)
callerror , (% improper filestate *)
unknownmedium, (¥ drive does not exist *)
unknownfile , (% file not found *)
paramerror , (¥ invalid parameter %)
toomanyfiles , (¥ more files than system sup %)
eom (% end of medium reached *)
userdeverror). (% internal use %)

(% File is an implementation dependent file descriptor. The *)

(% only fields, that are generally visible to the application %)
(% level, are eof, which indicates, that the end of the file *)
(% has been reached, and res, which is used to indicate the *)
(% completion status of each operation. . *)

TYPE Descriptor H

TYPE File = RECORD
res ! Response;
eof : BOOLEAN;

(¥ following items are not available %)
(¥ to the application program level. %)

Descr : Descriptor;
END;
(%----- Category : Opening, Closing, Renaming, Deleting ---------------- %)
PROCEDURE Lookup (VAR F ¢ Files
Filename : ARRAY OF CHAR;
New ¢ BOOLEAN);

(¥ Looks for a file with the given name. If the file exists, it is
connected to F (opened). If the requested file is not found or new is
TRUE, a permanent file is created with the given name. After the call
F.res = done, if the file f is connected,

F.res = notdone, if the file does not exist or some error occurred. ¥)

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\FILESYST.DEF

PROCEDURE Close (VAR F ¢ File)s

(¥ Terminate any actual input or output operation on file F and
disconnect F from the actual file. %)

PROCEDURE Delete (VAR F ¢ File);

(* Terminate any actual input or output operation on file F and
disconnect F from the actual file. The file is deleted. %)

PROCEDURE Rename (VAR F ¢ File;
Filename : ARRAY OF CHAR);

(¥ Change the name of file F to Filename. If F.res returnes not done,
then a file with the given name already exists, or some other error
occured. ¥)

(¥--=--- Category : Position and Size - %)
PROCEDURE SetPos (VAR F ¢ File;
Pos : LONGCARD) ;

(¥ Sets the current read/write position of file F to Pos. If Pos is

greater than the actual file length, then the file is positioned to
its end. ¥)

PROCEDURE GetPos (VAR F i File;
VAR Pos ¢ LONGCARD) ;
(X Get the actual read/write position of file F. %)

PROCEDURE Length (VAR F ¢ File;
VAR Len t LONGCARD) ;

(¥ Get the number of bytes in file F. %)

(R=mmmm Category : Reading -—--=-====-===-=----=--o oo m oo *)
PROCEDURE ReadChar (VAR F ¢ File;
VAR Ch ¢ CHAR) ;

(¥ Read the next byte form file F and assign its value to Ch. If the
operation was not successfull, then Ch will return 8C and F.res
indicates the problem. F.eof implies Ch = BC. The opposite, however,
is not true: Ch = 8C does not imply F.eof. After the call

F.eof = FALSE, Ch has been read,

F.eof = TRUE , operation was not successfull.

IF F.eof = TRUE, then

F.res = done, end of file has been reached,

F.res # done, some error occured. %)

PROCEDURE ReadHord (UAR F v Files

VAR W ¢ WORD) ;
(¥ Same as ReadChar, except that a word quantity is read from the
file. %)

(¥===mm Category : Writing ——-—---=---------=mmmmm oo oo *)

F-10

F\STANDARD\STDLIB\FILESYST.DEF SPC MODULA-2 V1.

PROCEDURE WriteChar (VAR F t File;
Ch : CHAR);

(¥ Urite the byte Ch to file F at its current read/write position. %)

PROCEDURE WriteWord (VAR F ¢ Files
W : WORD);

(¥ Same as WRiteChar for word quantities. ¥)

END FileSystem.

SPC MODULA-2 V1.4 F+\STANDARD\STDLIB\FILESYST.DEF F-11

(%---=- Category : Module Identification *)

(¥ Module Type %) DEFINITION MODULE
(% .

Name i %) HFS;
* . Function t Hierarchical File System *)
(% . Version/Date : 1.8 6.11.87 *)
(¥ Product Name ¢ SPC %)
(¥ Copyright ¢ (c) 1987, MODsoft, D7588 Karlsruhe *)
(¥ Category : Module Abstract **%

The module supports the naming conventions of a hierarchical file
system, while freeing the application modules from the syntax of
the filesystem at hand. By carefully using the exports of HFS,
programs may become filesystem independent. Actual access to files
is done via the services of FileSystem. Important terms :

1. Selection - is a full filename given as a string of
arbitrary length in an implementation
dependent syntax.

2. Volume - is the name of the medium containing a file.
3. Folder - is a catalog of files. Folders may be nested.
4. Document - (synonym File) is a collection of data.
5. Type - is a sequence of characters, appended to the
document’'s name to indicate its type.
6. Current Folder - is the folder, which's documents are accessed
when no extra folder name is specified.
*)
(¥-=--~ Category : Type and Data ==¥)
VAR FolderSep ,
VolumeSep ,
TypeSep ¢ ARRAY [@..0]1 OF CHAR;
NameLength : INTEGER:
TypeLength + INTEGER;
TYPE FileProc = PROCEDURE ((%Filename : %) ARRAY OF CHAR):

(¥ Do something with the file named Filename. %)

(%--=--- Category : Primitives *)
PROCEDURE ForAllFilesDo (Selection : ARRAY OF CHAR;

What ¢ FileProc;

rOption . BOOLEAN) ;

(¥ To all files, matching Selection, apply the procedure What. If the
rOption is on, then traverse all subdirectories of the directory
containing Selection. %)
PROCEDURE CurrentFolder (VAR Selection : ARRAY OF CHAR);
(% Answer the name of the current folder in Selection. %)
PROCEDURE AskName (VAR Selection : ARRAY OF CHAR:

VAR Done : BOOLEAN);

(% Ask the user for a filename. Answer the filename in Selection and
set Done TRUE if successfull. The default selction is passed in

F-12 F:\STANDARD\STDLIB\HFS.DEF SPC MODULA-2 V1.4

Selection to AskName. ¥)

PROCEDURE Decode (Selection : ARRAY OF CHAR;
VAR Volume ¢ ARRAY OF CHAR;
VAR Folder ¢ ARRAY OF CHAR;
VAR Document ¢ ARRAY OF CHAR;
VAR Type ¢ ARRAY OF CHAR);

(¥ Decode a full filename given in Selection into its components as
explained above. ¥)

PROCEDURE Encode (Volume ¢ ARRAY OF CHAR;
Folder ¢ ARRAY OF CHAR;
Document ! ARRAY OF CHAR;
Type ! ARRAY OF CHAR:

VAR Selection : ARRAY OF CHAR)

(% Construct a filename from the components given. %)

END HFS.

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\HFS.DEF F-13

(%----- Category : Module Identification %)

(¥ Module Type %) DEFINITION MODULE
(€3

Name ¢ %) InOut;
(G Function ¢ Standard Input/Output Services %)
(C3 Version Date : 23: 5 15.18.1988 %)
(¥ Product Name 1 SPC *)
(¥ Copyright : (c) 1987, MODsoft, D7508 Karlsruhe *)
(¥-==-= Category ! Module Abstract X%

Provides the standard input/output service. Input/output is directed to
the interactive console, unless it is redirected by calling OpenInput
or OpenOutput to a disk file. %)

(K== Category : Types and Data *)
FROM SYSTEM IMPORT ADDRESS;

VAR Done ! BOOLEAN; (% Signal the success of certain functions. %)
TermCh : CHAR;

(%--=-- Category : Control - *)
PROCEDURE OpenInput (Extension : ARRAY OF CHAR);

(¥ Request a file name with the given extension. Done is TRUE if the

file was successfully opened. If open, subsequent input is read from

this file. ¥)

PROCEDURE OpenOutput (Extension : ARRAY OF CHAR)

(% Request a file name with the given extension. Done is TRUE if the

file was successfully opened. If open, subsequent output is written to
this file. ¥)

PROCEDURE RedirectInput (Name ¢ ARRAY OF CHAR):

(¥ Redirect input to the named file. Done is TRUE if the file was
successfully opened. If open, subsequent input is read from this file. %)
PROCEDURE RedirectOutput(Name i ARRAY OF CHAR)

(% Redirect output to the named file. Done is TRUE if the file was
successfully opened. If open, subsequent output is Written to this file. %)

PROCEDURE Closelnput;

(¥ Closes input file, returns input to terminal. %)

PROCEDURE CloseOutput;

(¥ Closes output file, returns output to terminal. %)

(¥==mmm Category ! Input —------—-=---ommm oo oo *)

F-14 F1\STANDARD\STDOLIB\INOUT.DEF SPC MODULA-2 V1.4

PROCEDURE Read (VAR Ch : CHAR):

(¥ Read a character from standard input. Done is TRUE, if input has not
reached eof. ¥%)

PROCEDURE ReadCard (VAR Number : CARDINAL);

(% Read a string, convert it to CARDINAL and assign it to Number.
Syntax: cardinal = digit {digit}.

Leading blanks are ignored. Done is TRUE if Number was read. %)
PROCEDURE ReadInt (VAR Number + INTEGER);

(% Read string and convert to INTEGER.

Syntax: integer = ["+"]"-"1 digit {digit}.

Leading blanks are ignored. Done is TRUE if Number was read. %)

PROCEDURE ReadReal (VAR Number ¢ REAL);

(¥ Read a string, convert it to REAL and assign it to Number. Syntax:

realnumber = fixedpointnumber [exponentl.
fixedpointnumber = [sign] {digit} ['.° {digit}].
exponent = (‘e’" | 'E') [signl digit {digit}.

sign AR

digit =823t atsTet et r9n.

Leading blanks are ignored. Done is TRUE if Number was read. %)

PROCEDURE ReadLongcard (VAR Number : LONGCARD) ;
PROCEDURE ReadlLongint (VAR Number ¢ LONGINT);
PROCEDURE ReadLongreal (VAR Number : LONGREAL)
PROCEDURE ReadString (VAR String : ARRAY OF CHAR)

(¥ Read string, i.e. sequence of characters not containing blanks nor
control characters. Leading blanks are ignored. Input is terminated by
any character <= " . This character is assigned to TermCh. Backspace
is used for backspacing when input from terminal. %)

PROCEDURE ReadLn (VAR String ¢ ARRAY OF CHAR)

(% Read a line, i.e. a sequnce of characters not containing control
characters. Input is terminated by any characters < ° '. This character
is assigned to TermCh. Backspace is used for backspacing when input
from terminal. %)

(¥%-=--= Category ! Output ——---------—= oo e *)
PROCEDURE Write (Ch . CHAR);

(¥ Write character Ch to standard output. BS is interpreted. %)

PROCEDURE WriteString (String ¢ ARRAY OF CHAR);

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\INOUT.DEF

F-15

(% Write the String to standard output. %)

PROCEDURE WriteCard (Number : CARDINAL;
Length : CARDINAL):
PROCEDURE WriteHex (Number : CARDINAL;
Length ¢ CARDINAL);
PROCEDURE HriteOct (Number + CARDINAL;
Length : CARDINAL);
PROCEDURE WritelInt (Number : INTEGER;
Length + CARDINAL);
PROCEDURE WriteReal (Number ¢ REAL;
Length ¢ CARDINAL;
FracLength : INTEGER);
PROCEDURE HWritelLongcard (Number : LONGCARD;
Length ¢ CARDINAL):
PROCEDURE WriteLongint (Number + LONGINT;
Length : CARDINAL);
PROCEDURE WriteLongreal (Number : LONGREAL;
Length ¢ CARDINAL;
FracLength : INTEGER);
PROCEDURE HWriteAddress (Number : ADDRESS;
Length ¢ CARDINAL):

(¥ Write integer/cardinal/real Number with (at least) n characters to
standard output. If n is greater than the number of digits needed,
blanks are added preceding the number. %)

PROCEDURE Writeln;

(¥ terminate line ¥)

END InOut.

F:\STANDARD\STDLIB\INOUT.DEF SPC MODULA-Z V1.4

(¥----- Category :

(¥ Module Type

(€. Name t %) LMathLib;
(% . Function : Standard Math Functions *)
(€ Version/Date : 1.8 24.9.87 *)
(% Product Name : SPC *)
(¥ Copyright : (c) 1987, MODsoft, D7588 Karlsruhe *)
(= Category : Module Abstract ¥¥%
*)
(Y=o Category : Types and Data *)
CONST e = 2.718281830;
pi = 3.14159265D;
VAR Epsilon : LONGREAL:
(¥-==m= Category : Double Precision Arithmetics -%)
PROCEDURE exp (x + LONGREAL) : LONGREAL;
PROCEDURE 1n (x i LONGREAL) : LONGREAL;
PROCEDURE 1g (x : LONGREAL) : LONGREAL;
PROCEDURE sqrt (x + LONGREAL) : LONGREAL;
PROCEDURE sin (x : LONGREAL) : LONGREAL;
PROCEDURE cos (x ¢+ LONGREAL) : LONGREAL;
PROCEDURE tan (x : LONGREAL) : LONGREAL;
PROCEDURE cot (x : LONGREAL) : LONGREAL;
PROCEDURE arcsin (x : LONGREAL) : LONGREAL;
PROCEDURE arccos (x + LONGREAL) : LONGREAL;
PROCEDURE arctan (x :+ LONGREAL) : LONGREAL;
PROCEDURE sinh (x + LONGREAL) : LONGREAL;
PROCEDURE cosh (x : LONGREAL) : LONGREAL;
PROCEDURE ta&h (x + LONGREAL) : LONGREAL;
(¥===== Category : Conuersions —---=-======-==—=————em e oo oo *)
PROCEDURE real (x ¢ LONGINT) : LONGREAL;
PROCEDURE entier (x + LONGREAL) : LONGINT;
(=== Category @ Initialisation ------=-=-==-=----------ooomoooomooome *)
PROCEDURE Init;

: %) DEFINITION MODULE

Module Identification O, %)

SPC MODULA-2 V1.4

F:\STANDARD\STDLIB\LMATHLIB.DEF

F-17

END LMathlLib.

F-18 Fi\STANDARD\STDLIB\LMATHLIB.DEF SPC MODULA-2 V1.4

Category : Module

Identification ---- %)

(% Module Type : %) DEFINITION MODULE
(€N Name i %) MathLib;
(€ Function ¢ Standard Math Functions *)
(x . Version/Date : 1.8 24.9.87 *)
(¥ Product Name ¢ SPC *)
(¥ Copyright i (c) 1987, MODsoft, D7508 Karlsruhe *)
(¥-=-==- Category : Module Abstract *¥
*)
(%----- Category : Types and Data *)
CONST e = 2.71828183;
pi = 3.14159265;
VAR Epsilon ¢ REAL;
(¥===-- Category : Double Precision Arithmetics - -%)
PROCEDURE exp (x ¢ REAL) : REAL:;
PROCEDURE 1In (x @ REAL) : REAL;
PROCEDURE 1g (x ¢+ REAL) : REAL;
PROCEDURE sqrt (x ¢ REAL) : REAL;
PROCEDURE sin (x ¢ REAL) : REAL;
PROCEDURE cos (x ¢ REAL) ' REAL;
PROCEDURE tan (x : REAL) : REAL;
PROCEDURE cot (x ¢ REAL) ! REAL;
PROCEDURE arcsin (x : REAL) : REAL;
PROCEDURE arccos (x : REAL) : REAL;
PROCEDURE arctan (x + REAL) : REAL;
PROCEDURE sinh (x @ REAL) : REAL;
PROCEDURE cosh (x + REAL) : REAL;
PROCEDURE tanh (x & REAL) : REAL;
(¥----- Category : Conversions *)
PROCEDURE real (x : INTEGER) : REAL;
PROCEDURE entier (x : REAL) : INTEGER;

END MathLib.

SPC MODULA-2 V1.4

F:\STANDARD\STDLIB\MATHLIB.DEF

Category : Module Identification

(% Module Type %) DEFINITION MODULE

(% . Name ¢ %) NumberConversions:
% . Function ¢ Standard Number Conversions *)
* . Version/Date : 1.88 15.1.88 *)
(¥ Product Name : SPC *)
(¥ Copyright ¢ (c) 1987,1988, MODsoft, 07580 Karlsruhe *)
(¥==--- Category : Module Abstract **
Contains routines to convert numbers to strings and vice versa.
*)
(¥-mmm= Category : Numbers to Strings %)
PROCEDURE CardToString (Number : CARDINAL;
VAR String ¢ ARRAY OF CHAR;
Width 1 CARDINAL);
(¥ Convert Number into a String of length Width. %)
PROCEDURE IntToString (Number ¢ INTEGER;
VAR String ! ARRAY OF CHAR;
Width : CARDINAL):
(¥ See above. %)
PROCEDURE LongCardToString
Number : LONGCARD;
VAR String : ARRAY OF CHAR;
Width : CARDINAL);
(% See above. %)
PROCEDURE LongIntToString
Number ¢ LONGINT;
VAR String ¢ ARRAY OF CHAR;
Hidth : CARDINAL):
(% See above. ¥)
(K= Category ! Strings To Numbers --=-====-=====-=—-moomoomo oo oo oo *)
PROCEDURE StringToCard (String ¢ ARRAY OF CHAR;
UAR Number : CARDINAL;
VAR Ok ¢ BOOLEAN);

(% Convert String into a Number, andanswer, if Ok. %)

PROCEBURE StringTolnt String
VAR Number

VAR Ok

(% See above. %)

PROCEDURE StringTolLongCard

ARRAY OF CHAR:
INTEGER;

¢ BOOLEAN) ;

- 20

F:\STANDARD\STDLIB\NUMBERCO.DEF

SPC MODULA-2Z V1.4

(String
UAR Number
VAR 0Ok

(% See above. %)

PROCEDURE StringTolongInt
(String
VAR Number
VAR 0Ok

(¥ See above. ¥)

END NumberConversions.

¢ ARRAY OF CHAR:
: LONGCARD;
: BOOLEAN);

¢ ARRAY OF CHAR:
¢ LONGINT;
i BOOLEAN);

SPC MODULA-2 V1.4

F:\STANDARD\STOLIB\NUMBERCO.DEF

F-21

(¥===== Category ' Module Identification --- %)

(¥ Module Type : %) DEFINITION MODULE

[C3 Name i %) Printer;

(% . Function ! Printer Driver Module *)
(* . Version Date : 14:48 12.11.1988 *)
(% Product Name t SPC *¥)
(¥ Copuright ¢ (c) 1987,1988, MODsoft, D7588 Karlsruhe *)
(¥--=--= Category : Module Abstract *%

Printer provides the interface to the system's printer. The printer
may be configured by supplying a configuration file, which gives the
control codes for a particular printer. The configuration file has the
same format as the wordplus printer configuration (PRINTER.CFG).
Printer configuration files can be found in the public domain for
nearly all printers.

Configuration parameters, including the name of the configuration file
are stored within the environment variable PRINTFLAGS. ¥)

(¥----- Category : Types and Data %)
TYPE HeadProc = PROCEDURE ((¥ pageno : %) CARDINAL);
Fonts = (Pica, Elite, Small, Large);
FontSet = SET OF Fonts;
Attributes = (Highlight, Underline, Superscript, Subscript):;
AttributeSet = SET OF Attributes;
(¥mmmmm Category ! Printer state ---- - --= ---¥)
PROCEDURE Online () :BOOLEAN;

(¥ Answer TRUE if printer is ready. ¥)

(¥==mmm Category : Print primitives ettt *)

PROCEDURE HWrite (c ¢ CHAR)

(¥ Print a single character. If a special printcode is found send it
to the printer. If on the last position in line then WritelLn. %)

PROCEDURE WriteString (String ¢ ARRAY OF CHAR)

(¥ Print a specified string using printer code. %)

PROCEDURE Writeln;

(¥ Advance paper to the beginning of the next line, if the actual line
is the last line on the form then Page. %)

PROCEDURE Page;

(¥ Advance paper to the top of a new form. %)

F-22 F+\STANDARD\STDLIB\PRINTER.DEF SPC MOBULA-2 V1.4

(¥==mum Category : Print layout params ¥)

PROCEDURE Reset;

(¥ Set default values for column, line number and page number. %)

PROCEDURE CurrentPosition() : CARDINAL;

(% Answer current print position (1..LastPos) in line. %)

PROCEDURE CurrentLine () : CARDINAL;

(¥ Answer current line (1..LastLine) on page. ¥)

PROCEDURE CurrentPage () : CARDINAL;

(¥ Answer numbers of page since last call of Reset. %)

PROCEDURE CharsPerLine () : CARDINAL;

(¥ Answer maximum number of chars per line. %)

PROCEDURE LinesPerPage () : CARDINAL:

(¥ Answer maximum number of lines per page. %)

PROCEDURE LeftBorderSize() : CARDINAL;

(¥ Answer indent on the left side. %)

PROCEDURE SetCharsPerLine(newvalue : CARDINAL);

(¥ Set maximum number of chars per line. %)

PROCEDURE SetLinesPerPage(newvalue : CARDINAL);
(¥ Set maximum number of lines per page. ¥)
PROCEDURE SetlLeftBorderSize

(newvalue : CARDINAL);

(¥ Set left indentation. %)

PROCEDURE InstallHeader (Header 1 HeadProc);

(% Tell printer, how to print the page header. ¥)

PROCEDURE Head (OnNotOff : BOOLEAN)

(% Activate or deactive the installed header procedure %)

(¥====- Category : Print attribute params ---- B el *)

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\PRINTER.DEF

F-23

PROCEDURE SetAttribute (Attr ¢ Attributes;
OnNotOff : BOOLEAN);

(¥ Set an printing attribute on or off, if possible.¥)

PROCEDURE SetFont (Font ¢ Fonts);

(% Set a print font for subsequent printing, if possible.¥)

PROCEDURE SupportedFonts() : FontSet:

(¥ Returns the fonts supported by the current driver.¥)

PROCEDURE SupportedAttributes
() : AttributeSet;

(% Returns the attributes supported by the current driver.¥)

(¥----- Category : Initialisation - *)

PROCEDURE Init;

PROCEDURE GetName (VAR PrinterName: ARRAY OF CHAR):

(¥ Answer the name of the configured printer. %)

PROCEDURE Load (UAR CFGFileName: ARRAY OF CHAR);

(¥ Load a new configuration file. %)
PROCEDURE Term:

END Printer.

F-24 F:\STANDARD\STDLIB\PRINTER.DEF SPC MODULA-2 V1.4

(¥==--~ Category : Module Identification --%)
(¥ Module Type : %) DEFINITION MODULE
[C Name i %) RealConversions;
[Function ¢ Standard Realnumber Conversions *)
(% . Version Date : ©:39 2. 6.1988 *)
(% Product Name i SPC *)
(% Copyright + (c) 1987,1988, MODsoft, D7588 Karlsruhe *)
(¥-—mmm Category : Module Abstract : -- *¥
Contains routines to convert real numbers to strings and vice versa.
*)
(¥m=mmm Category : Numbers to Strings *)
JROCEDURE RealToString (Number ¢ REAL;

VAR String ¢ ARRAY OF CHAR;:

Width ¢ CARDINAL;

Fraclidth : INTEGER);

(% Convert real Number into a String of length Width with Fraclidth

digits to the right of the decimal point. %)

PROCEDURE LongRealToString

(Number ¢ LONGREAL:
VAR String ! ARRAY OF CHAR;
Width ¢ CARDINAL;

Fraclidth : INTEGER):

(¥ See above. ¥)

(Y~ Category : Strings to. Numbers

PROCEDURE StringToReal (String ¢ ARRAY OF CHAR;
VAR Number * t REAL;
VAR 0Ok : BOOLEAN) ;

(¥ Convert a String into a real Number and answer Ok if successfull. %)

PROCEDURE StringTolLongReal

(String ¢ ARRAY OF CHAR;
VAR Number : LONGREAL;
! VAR Ok : BOOLEAN);
(% See above. %)
END RealConversions.
SPC MODULA-2 V1.4 F:\STANDARD\STOLIB\REALCONV.DEF F-25

Category : Module
(¥ Module Type

* . Name
(C Function :
(% Version Date :

(* ﬁroduct Name :
(% Copyright

Category : Module

Identification %)
¢ %) DEFINITION MODULE
t ¥) Storage;
Standard Memory Management *)
18:51 16.18.1988 %)
SPC %)
(c) 1987, MODsoft, D7588 Karlsruhe %)
Abstract *%

The module provides dynamic memory allocation and deallocation. However,
modules must carefully check, if the memory, they requested has been
successfully allocated. If not, the failed program MUST deallocate all
previously allocated memory and free all resources, before terminating.
If programs terminate, leaving memory allocated, the system has no

chance to garbage-collect
*)

this memory.

(¥==m== Category : Types and Data *)
IMPORT SYSTEM;

TYPE Quantity = LONGCARD;

(¥m=emm Category ! Primitives %)

PROCEDURE ALLOCATE
PROCEDURE Allocate

(VAR Mgmorgﬁddr :

SYSTEM.ADDRESS;

Size ¢ Quantity);
(VAR MemoryAddr : SYSTEM.ADDRESS;
Size ¢ Quantity);

(¥ Allocate an area of Size bytes in length and return its address in
MemoryAddr. If no space is available, an error condition is raised. %)

PROCEDURE DEALLOCATE
PROCEDURE Deallocate

(¥ Deallocate the area of

(VAR MemoryAddr : SYSTEM.ADDRESS)
(VAR MemoryAddr : SYSTEM.ADDRESS)

memory pointed to by MemoryAddr. This area

must have been allocated previously by Allocate. %)

PROCEDURE Available (

Size ¢ Quantity)

: BOOLEAN;

(¥ Answer TRUE, if Size bytes could be allocated. %)

END Storage.

F-26

F:\STANDARD\STDLIB\STORAGE . DEF

SPC MODULA-2 V1.4

(¥==--= Category : Module Identification - - -¥%)

(¥ Module Type : %) DEFINITION MODULE

[C Name t %) Strings;

(€ Function t String Primitives *)
* . Version/Date : 1.081 18.1.88 *)
(% Product Name 1 SPC *)
(¥ Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe *)
(%----- Category : Module Abstract -—- *%

The Strings module realises the Modula-2 standard string processing
facilities. Strings are ARRAYs OF CHAR of arbitrary length. A String
is terminated either by a NUL character (8C) or by the length of the
character array (HIGH(String)+1). Positions within Strings are denoted
by indices ranging from 8 to stringlength-1. If an index greater than
the stringlength is passed to one of the procedures, then stringlength
1 is assumed. If the result of any string primitive is longer than
che destination character array, then the result is truncated.
*)

(%~~=-= Category ! Types and Data -- - %)
CONST End = BC; (¥ Termination of Modula-2 Strings %)

Equal = B; (% String Compare Results *)

Less = -1

Greater =1
(Ymemmm Category : Inquiries *)
PROCEDURE Length (VAR Source ¢ ARRAY OF CHAR)

: CARDINAL;

(¥ Answer the number of characters in Source. %)

(¥==mme Category : String Manipulation --=---------- *)
PROCEDURE Clear (VAR Destin ¢ ARRAY OF CHAR);
(% Make Destin a string of length @. Extension to standard lib. %)
PROCEDURE Assign (VAR Destin 1 ARRAY OF CHAR;

Source i ARRAY OF CHAR);

(% Assign the Source string to the Destin array. %)

PROCEDURE Concat (Sourcel s
Source2 ¢ ARRAY OF CHAR;
VAR Destin : ARRAY OF CHAR);

(¥ Concatenate the Sourcel and Source2 strings and return the result
in the Destin character array. %)

PROCEDURE Insert (Source ¢ ARRAY OF CHAR;
VAR Destin ¢ ARRAY OF CHAR:
At : CARDINAL);

(¥ Insert the Source string immediatly before the character denoted by
At into the Destin string. %)

SPC MODULA-2 V1.4 F+\STANDARD\STDLIB\STRINGS.DEF

F =27

PROCEDURE Delete (VAR Destin ¢ ARRAY OF CHAR;
At, For ¢ CARDINAL);

(% Delete For characters starting with the character at position At

from the Destin string. %)

PROCEBURE Copy (Source ¢ ARRAY OF CHAR;
From, For : CARDINAL;
VAR Destin ¢ ARRAY OF CHAR);

(¥ Copy For characters starting with the character at position From
from the Source string into the Destin character array, starting at 0. %)

PROCEDURE Pad (VAR Destin i ARRAY OF CHAR;
UpTo + CARDINAL;
Hith ¢ ARRAY OF CHAR);

(¥ Pad the Destin character array up to the character position UpTo

by repeating the string With. Extension to standard lib. ¥)

(¥==mm= Category : Comparisons
PROCEDURE Pos (Substr ¢ ARRAY OF CHAR;
String i ARRAY OF CHAR)
: CARDINAL;

(¥ Search the string Substr within the String and return the starting

character index if found, otherwise MAX(CARDINAL). ¥)

PROCEDURE Compare (Stringl { ARRAY OF CHAR;
String2 : ARRAY OF CHAR)
: INTEGER:

(% Compare Stringl with String2 and return @ if they are equal, 1 if
Stringl greater String2 or -1 if Stringl less than String2. Two strings
are equal, if the have the same length and contain the same characters.
A string A is greater than string B, if they contain the same characters
up to a certain index and then either string B has no more characters

or the next character of string A is greater than that of string B. %)

END Strings.

F - 28

F:\STANDARD\STDLIB\STRINGS.DEF

SPC MODULA-2 V1.4

(¥-—--- Category : Module Identification %)

(% Module Type i %) DEFINITION MODULE

(¢ Name i %) Terminal;

* . Function ¢ Window Based Standard Terminal *)
(% . Version/Date : 1.8 19.9.87 *)
(¥ Product Name : SPC *)
(¥ Copyright + (c) 1987, MODsoft, D7508 Karlsruhe *)
(¥m=mm= Category : Module Abstract *%

Standard terminal module used for basic interactive io. ¥)

[T— Category : Input and Output %)

PROCEDURE Read (VAR ch ¢ CHAR);

(% Read a character from interactive input. No interpretation of control
characters is performed (transparent input). ¥)

PROCEDURE BusyRead (VAR ch + CHAR);

(¥ Look for a character in the input buffer. If none is present, then
answer BC. %)

PROCEDURE HUrite (ch CHAR);

(¥ Write a character to interactive output. BS,CR and FF are
interpreted. ¥)

PROCEDURE WriteString (Text ¢ ARRAY OF CHAR);

(¥ Write a string to interactive output. No control characters are
interpreted. ¥)

PROCEDURE Writeln;

(% Terminate the current line and skip to the next line on interactive
output. %)

PROCEDURE HWritelong (Arg i LONGINT;
Length + CARDINAL);

(¥ Write a number to interactive output. Used for test purposes. %)

(%----- Category ! Window Driven Terminals ---==========---—moommooooooo *)

PROCEDURE Expose;

(¥ If Terminal has a window driven implementation, Terminal's window is
placed on top of other windows. Will be activated upon read. %)

PROCEDURE Hide;

(% If Terminal has a window driven implementation, Terminal's window is
iconised. %)

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\TERMINAL .DEF

F-29

END Terminal.

F - 38 F+\STANDARD\STDLIB\TERMINAL . DEF SPC MODULA-2 V1.4

(¥ e Category : Module Identification %)
(¥ Module Type : %) DEFINITION MODULE
(* . Name i %) TextStreams;
[N Function : Standard Textual Input/Output *)
[C Version Date : 9:37 11.12.1988 *)
(¥ Product Name : SPC *)
(% Copyright ¢ (c) 1987,1988, MODsoft, D7588 Karlsruhe *)
(=== Category : Module Abstract *%
A TextStream is a stream of characters, not containing any control
characters with the exception of the end-of-line marker EOL. EOL is
a single character and is mapped to the implementation or hardware
dependent end-of-line action (and vice versa). Streams can be of
several types: terminal, printer and file (communication in later
versions). A stream is unidirectional. Once open, it can be either
only read or written. Several error conditions must be observed,
when using streams. These can be io errors, end-of-stream conditions
and formatting problems. After every input action the TermCh holds
the last character read from the stream, which is usually the item
terminating character. ¥)
(== Category : Types and Data -- --- - *)
FROM SYSTEM IMPORT ADDRESS:
TYPE Results = (Done , (¥ no problems occurred *)
NotDone , (% formatting problems *)
I0Error , (% device, os problems *)
End0fStream , (¥ no more characters *)
NotSupported); (¥ function not supported *)
Types = (TerminalIn , (¥ interactive device *)
TerminalOut , (¥ interactive device *)
PrinterQOut , (% buffered device *)
FileIn , (% buffered device *)
FileOut)i (% buffered device *)
Descriptor ;
TYPE Streams = RECORD
Result t Results; (¥ see above *)
TermCh H CHAR; (¥ terminator on last input %)
Descr : Descriptor; (¥ not visible to caller *)
ND;
CONST EOL = 36C; (¥ MODULA-2 end-of-line marker¥)
(¥mmmmm Category : Control --- *)
PROCEDURE Open (VAR Stream i Streams;
Name ¢ ARRAY OF CHAR;
Type 1 Types);

(¥ Open Stream with Name and Type. If Type is Fileln or FileOut, Name
is the filename, not used otherwise. %)

PROCEDURE Close (VAR Stream i Streams);

(¥ Close Stream. Stream cannot be used after call to Class. ¥)

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\TEXTSTRE.DEF

F-31

(¥----- Category : Input %)

PROCEDURE Read (VAR Stream ¢ Streams;
VAR Ch + CHAR);

(¥ Read the next character, which is either EOL or a non-control
character. Note, that TermCh contains the same character. %)

PROCEDURE ReadCard (VAR Stream ¢ Streams;

VAR Number : CARDINAL);

(¥ Read a cardinal number from Stream and assign it to number if
Done. Leading blanks and control characters are ignored. If
NotDone, then Stream is not advanced, i.e. the same characters,
Wwith the exception of the skipped blanks and control characters

can be read again. The character following the number is assigned
to TermCh. %)

PROCEDURE ReadInt (VAR Stream ¢ Streams;
VAR Number : INTEGER);

(% Same as above for integer number. %)

PROCEDURE ReadReal (VAR Stream ¢ Streams;
VAR Number t REAL);

(% Same as above for real number. %)

PROCEDURE ReadLongcard (VAR Stream ¢ Streams;
VAR Number : LONGCARD) ;

(% Same as above for long cardinal number. %)

PROCEDURE ReadLongint (VAR Stream ¢ Streams;
VAR Number i LONGINT);

(% Same as above for long int number. ¥)

PROCEDURE ReadLongreal (VAR Stream ¢ Streams;
VAR Number LONGREAL) ;

(¥ Same as above for long real number. %)

PROCEBURE ReadString (VAR Stream i Streams:
VAR String i ARRAY OF CHAR);

(% Same as above, but a string is returned not containing blanks
nor control characters. Leading blanks and control characters
are skipped. Terminating character is assigned to TermCh. %)

PROCEDURE ReadlLn (VAR Stream ¢ Streams;
VAR String ¢ ARRAY OF CHAR):

(¥ Skip any leading control characters with the exception of EOL.
Then transfer all characters up to the next control character

F-32

Fi\STANDARD\STDLIB\TEXTSTRE.DEF SPC MODULA-2 V1.

to String. Assign the terminating character to TermCh. Note,
that String may be empty. %)

(¥===== Category : Output *)

PROCEDURE HWrite (VAR Stream ¢ Streams;
Ch ¢ CHAR);

(¥ If Ch is a control character, then it is ignored. Otherwise it is
written to Stream. If Stream is interactive (see declaraction of
StreamTypes) then the buffer is flushed immediatly. %)

PROCEDURE HriteString (VAR Stream ¢ Streams;
String i ARRAY OF CHAR);

(* Write String to Stream, skipping all control characters. If
Stream is interactive, then the buffer is flushed immediatly. %)

PROCEDURE WriteCard (VAR Stream ¢ Streams;
Number . CARDINAL;
Length 1 CARDINAL);

(¥ Urite Number in decimal representation to Stream, using at least
Length digits (more if needed). Flush if interactive. ¥)

PROCEDURE HriteHex (VAR Stream i Streams;
Number : CARDINAL:
Length : CARDINAL);

(¥ Same as above in sedecimal representation. Suffix 'H' is added. %)

PROCEDURE WriteQOct (VAR Stream ¢ Streams;
Number ¢ CARDINAL:
Length : CARDINAL);

(% Same as above in octal representation. Suffix '0° is added. %)

PROCEDURE MWritelnt (VAR Stream i Streams;
Number : INTEGER;
Length : CARDINAL);

(¥ Same as above for integer numbers in decimal representation. %)

PROCEDURE WriteReal (VAR Stream 1 Streams;
Number ¢ REAL;
Length ¢ CARDINAL;

FracLength : INTEGER);

(¥ Same as above for real numbers in decimal representation. %)

PROCEDURE WritelLongcard (VAR Stream i Streams;
Number : LONGCARD;
Length i CARDINAL);

(% Same as above for long cardinal numbers in decimal representation. %)

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\TEXTSTRE.DEF

F - 33

PROCEDURE WriteLongint (VAR Stream i Streams;
Number + LONGINT;
Length : CARDINAL);

(¥ Same as above for long integer numbers in decimal representation. ¥)

PROCEDURE WriteLongreal (VAR Stream ¢ Streams;
Number : LONGREAL;
Length i CARDINAL;
FracLength : INTEGER);

(% Same as above for long real numbers in decimal representation. %)

PROCEDURE WriteAddress (VAR Stream i Streams;
Address 1 ADDRESS;
Length : CARDINAL);

(¥ Same as above for pointer values in sedecimal representation. ¥)

PROCEDURE Hriteln (VAR Stream i Streams);

(¥ Add an EOL to the Stream. ¥)

END TextStreams.

F- 34 F:\STANDARD\STDLIB\TEXTSTRE.DEF SPC MODULA-2 V1.4

Die SPCLIB

Anhang G

SPC MODULA-2 V1.4

SPCLIB

Diese Seite wurde aus
satztechnischen Griinden frei
gelassen

SPCLIB

SPC MODULA-2 V1.4

(¥——--- Category : Module Identification ¥)

(% Module Type %) DEFINITION MODULE

[C I Name t %) Bytes;

(G Function : Fast Copy and Scan Routines *)
[T Version Date : 7:26 108.11.1988 *)
(¥ Authors ¢ R.Huetter *)
(% Product Name + SPC *)
(* Copyright t (c) 1988, MODsoft, D7588 Karlsruhe *)
(¥-—--- Category : Module Abstract *¥%

Bytes provides a set of basic routines to efficiently scan and copy
sequences of bytes. The routines may be used to process B8C terminated
strings, if the terminator is contained in one of the termination
conditions. Compared to the routines in module Strings, these routines
are in general faster, since they are all realised using asembler
loops. Another advantage of Bytes is, that all source and destination
operands are given as UAR parameters, thus preventing the system from
pushing strings onto the stack.

A set of bytes may be used to specify the termination condition for
scans and copies. The set type may be seen as a set of characters,

which is normally not a feature of the SPC-MODULA-2 implementation.
Procedures to manipulate large sets are part of this module as well.

[CALI s Category : Types and Data -------~------- %)
FROM SYSTEM IMPORT BYTE; (¥ compatible to all 8 bit quantities. %)

TYPE Set0fBytes = ARRAY [@..16] OF BITSET;
(¥==mmm Category ! Scanning Sequences of Bytes ----=-=----=-=---omomooo- *)
PROCEDURE ScankhileNot (VAR Src ! ARRAY OF BYTE;
For + INTEGER;
Equal ¢ BYTE)
: INTEGER;

(¥ Scan the Src buffer while its component is not equal the value Equal,
or until For bytes are scanned or until all bytes in the buffer are
scanned whichever occurs first. Return the number of bytes scanned.¥)

PROCEDURE ScanWhileIn (VAR Src ¢ ARRAY OF BYTE:
For : INTEGER;
VAR In ¢ SetOfBytes)
: INTEGER:

(% Scan the Src buffer while its component is in the byteset In,
or until For bytes are scanned or until all bytes in the buffer are
scanned whichever gccurs first. Return the number of bytes scanned.*)

PROCEDURE ScanWhileNotIn(VAR Src ¢ ARRAY OF BYTE:
For i INTEGER;
VAR NotIn i SetOfBytes)
: INTEGER;

(% Scan the Src buffer while its component is not in the byteset In,

SPC MODULA-2 V1.4 F+\STANDARD\SPCLIB\BYTES.DEF

or until For bytes are scanned or until all bytes in the buffer are
scanned whichever occurs first. Return the number of bytes scanned.¥)

(¥=mmm= Category : Copying Sequences of Bytes *)
PROCEDURE CopyFor (VAR Dst, Src : ARRAY OF BYTE;
For : INTEGER)
+ INTEGER;

(¥ Copy the Src buffer into the Dst buffer, until For bytes were copied,
or until the Src buffer is exhausted or until the Dst buffer is full,
whichever occurs first. Return the numer of bytes copied. ¥)

PROCEDURE CopyWhileNot (VAR Dst, Src : ARRAY OF BYTE;

For t INTEGER:
Equal ¢ BYTE)
: INTEGER;

(¥ Copy the Src buffer into the Dst buffer, while the component of the Src
buffer does not equal the byte Equal, or until For bytes were copied,
or until the Src buffer is exhausted or until the Dst buffer is full,
whichever occurs first. Return the numer of bytes copied. %)

PROCEDURE CopyHhileIn (VAR Dst, Src : ARRAY OF BYTE:

For + INTEGER;
VAR In + Set0fBytes)
¢ INTEGER;

(% Copy the Src buffer into the Dst buffer, while the component of the Src
buffer is in the byteset In, or until For bytes were copied,
or until the Src buffer is exhausted or until the Dst buffer is full,
whichever occurs first. Return the numer of bytes copied. ¥)

PROCEDURE CopyWhileNotIn(VAR Dst, Src : ARRAY OF BYTE:

For + INTEGER;
VAR Notln ¢ SetOfBytes)
: INTEGER;

(¥ Copy the Src buffer into the Dst buffer, while the component of the Src
buffer is not in the byteset In, or until For bytes were copied,
or until the Src buffer is exhausted or until the Dst buffer is full,
whichever occurs first. Return the numer of bytes copied. %)

(¥=---= Category : Large Sets (including SetOfBytes above) ------------- *)

PROCEDURE Clear (VAR Dst i ARRAY OF BYTE):

(¥ Clear all bits in Dst, i.e. make Dst the empty set. %)

PROCEDURE Or (VAR Dst, Src : ARRAY OF BYTE);

(% Calculate the logical or between Dst and Src buffer and assign the
result to Dst. If Dst and Src are sets, this is equivalent to the
set operation Dst:= Dst + Src; If the Src buffer is shorter than the
Dst buffer, then Src is reused as long as necessary. %)

PROCEDURE AndNot (VAR Dst, Src : ARRAY OF BYTE);

F:\STANDARD\SPCLIB\BYTES.DEF SPC MODULA-2 V1.

(% Calculate the logical difference between Dst and Src buffer and assign
the result to Dst. If Dst and Src are sets, this is equivalent to the
set operation Dst:= Dst - Src; If the Src buffer is shorter than the
Dst buffer, then Src is reused as long as necessary. %)

PROCEDURE And (VAR Dst, Src : ARRAY OF BYTE);

(% Calculate the logical and between Dst and Src buffer and assign the
result to Dst. If Dst and Src are sets, this is equivalent to the
set operation Dst:= Dst % Src; If the Src buffer is shorter than the
Dst buffer, then Src is reused as long as necessary. %)

PROCEDURE Xor (VAR Dst, Src : ARRAY OF BYTE);

(% Calculate the exclusive or between Dst and Src buffer and assign the
result to Dst. If Dst and Src are sets, this is equivalent to the
set operation Dst:= Dst / Src; which is also called symmetric set
difference. If the Src buffer is shorter than the Dst buffer, then
Src is reused as long as necessary. ¥)

PROCEDURE Tst (VAR Src : ARRAY OF BYTE;
Element + INTEGER)
: BOOLEAN;

(¥ Return TRUE, if the given Element is contained in Src, FALSE if it is
not or if Src does not contain enogh elements at all. %)

PROCEDURE Incl (VAR Dst ¢ ARRAY OF BYTE;
Element + INTEGER);
(¥ Include the given Element into Dst, provided, Dst contains enough
elements. *)
PROCEDURE Excl (VAR Dst i ARRAY OF BYTE;
Element : INTEGER);

(¥ Exclude the given Element from Dst.)

END Bytes.

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\BYTES.DEF

(¥===== Category : Module Identification %)

(¥ Module Type

%) DEFINITION MODULE

% . Name i %) CmdLine:

[CN Function ¢ Standard Commandline Support Functions *)
% . Version Date : 19:39 16.108.1988 *)
(% Authors ¢ R.Huetter *)
(¥ Product Name ¢ SPC %)
(¥ Copyright + (c) 1988, MODsoft, D7508 Karlsruhe *)
(¥=mmm= Category : Module Abstract %

Tools and utilities of the SPC-MODULA-2 language system are called via
a command line, which's format is common to all standard utilities. He
recommend to use this format with further utilities too, to perfectly
fit into the calling convention of the overall system.

The commandline has the following structure, where [1(n..m) denotes a
component, which must occur n to m times. (n..m), if not explicitly
given defaults to (8..1).

<emdline> = <utility> [" <fileargs>] [" <options>]
<fileargs> ::= <filename> [" " <filename>1(8..3)

<options> ["-" <optionchar> [["""] <string> ["""111(8@..16)
<optionchar> U B I IR TR B 2
<utility> 11= <filename>

A utility may return a result string, which details the success or
failure of the utility. The result string is empty by default.

To properly correlate the command line with a utility, a utility must
parse its command line immidiatly after its start and must store its
result just before its termination.

*)

(¥m=mmm Category : Primitives -—-= --= -=¥)
PROCEDURE Set (Command ' ARRAY OF CHAR);

(¥ Redefine the current command line and reset commandline parsing. ¥)

PROCEDURE UtilityName (VAR Name ¢ ARRAY OF CHAR):

(% Reset command line parsing and answer the utility name, which is
always present. %)

PROCEDURE FileArg (VAR Arg ¢ ARRAY OF CHAR)
¢ BOOLEAN;

(% Answer, whether there is at least one more file argument and return
it's name. ¥) .

PROCEDURE Option (VAR OptionChar : CHAR;
VAR OptionStr : ARRAY OF CHAR)
: BOOLEAN;

(% Answer, whether there is at least one more option and return the
option character and the optional option string. %)

Fi\STANDARD\SPCLIB\CMDLINE.DEF SPC MODULA-2 V1.4

PROCEDURE Get (VAR Text : ARRAY OF CHAR):
(% Get the part of the command line not yet parsed. May be used to get
a non-standard command line, or to check, that command line is empty

PROCEDURE Resultls (Done ¢ BOOLEAN;
Result ¢ ARRAY OF CHAR);

(¥ Store the result of a command. ¥)

PROCEDURE Result (UAR Done : BOOLEAN;
VAR Result : ARRAY OF CHAR);

(¥ Get the result of a command. %)

END CmdLine.

L%

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\CMDLINE.DEF

[€ SEEEE Category : Module Identification %)

(% Module Type %) DEFINITION MODULE

[CI Name ¢ ¥) Environment;

(C Function i Managing Environment Variables *)
(% . Version/Date : 1.88 20.1.88 *)
(% Product Name t SPC *)
(% Copyright + (c) 1987,1988, MODsoft, D7588 Karlsruhe *)
(€ Category : Module Abstract *%

Environment maintains a list of socalled enviroment variables. These
are labeled strings, which are read from the profile at system startup
and saved upon termination. Storing attributes in environment variables
is thus a simple way to save information for the next invocation of an
utility.

Another part of environment decouples filenames from the operating
systems conventions by transforming commonly used file types to system
dependent extensions. Language tools search paths are stored within

environment variables and are therefore managed by environment, too.
*)

[— Category : Types and Data *)

TYPE FileTypes = (Mod, Def, Obm, Sbm, Rfm, Cmd, Lst, Cnf, Bak,
Tmp, Lib, Prg, Other, None):

(¥-mmmm Category : Environment Variable --=-==-==-=-==--eom—oooooooooomn ¥)
PROCEDURE Get (VarName ¢ ARRAY OF CHAR;

VAR String ¢ ARRAY OF CHAR)

: BOOLEAN;

(% If environment variable VarName exists, then get its content into
String and asnwer TRUE else answer FALSE. %)

PROCEDURE GetIndexed (Index + INTEGER;
VAR VarName i ARRAY OF CHAR;
VAR String ¢ ARRAY OF CHAR)
: BOOLEAN:

(¥ Environment variables are indexed from 1 to n, where n is the number
of variables. If Index is not greater than n, then return the indexed
variables name in VarName and its content in String and answer TRUE
else answer FALSE. %)

PROCEDURE Set (VarName t ARRAY OF CHAR;
String ! ARRAY OF CHAR);

(¥ Set or modify the environment variable VarName using String. ¥%)

(%o Category : Search Pathnames ------=-======-====--——meoomoooooooee *)
PROCEDURE GetFilename (VAR Name ¢ ARRAY OF CHAR:
Preference : INTEGER:
Type ¢ FileTypes)
: BOOLEAN;

F+\STANDARD\SPCLIB\ENVIRONM. DEF SPC MODULA-2 V1.4

(% Construct a filename, using the given Name and Type. If Preference
is 8, then only change the filename extension, else use the search
path indexed by preference. Search pathes are determined by
environment variables Path<i> and ObjPath<i>, depending on whether
Type is an object or a source type. If Preference is not greater
than the number of paths configured answer TRUE else answer FALSE. ¥)

PROCEDURE GetFileType (Name ¢ ARRAY OF CHAR)
¢ FileTypes;

(¥ Answer the type of the given Name by inspection the filename
extension field. %)

PROCEDURE Save;

(¥ Save the environment variables into the profile. %)

END Environment.

S

SPC MODULA-2 V1.4 F+\STANDARD\SPCLIB\ENVIRONM. DEF

(¥----- Category : Module Identification *)

(% Module Type %) DEFINITION MODULE

(% . Name ¢ %) Frags;

[C Function i Text Fragments Management *)
(€% Version Date : 12:21 6. 9.1988 ¥)
(% Product Name 1 SPC %)
(% Copyright ¢ (c) 1987, MODsoft, D7508 Karlsruhe *)
(¥----- Category : Module Abstract *%

A fragment is a packet containing an arbitrary number of characters,
called the fragment's content, and having a certain type. The type
normally determines the interpretation of the content. Both, type
and content are irrelevant to the module and are maintained by the
calling module. The type is any character between <blank> and 'z
The content may be any sequence of characters not containing 8C

up to a length of 258 characters.

Fragments are stored in a fast and memory efficient way, which in
detail is transparent to the caller, as long, as memory is available.

The caller may, for example assign fragment types like “plain text”

"linefeed”, "font-control”, “graphics”, etc. The content is then
rexnterpreted to detail the fragment type at hand, e.g. to specify
the font to be used from now on.

A cursor is maintained to indicate the hot spot within the sequence
of fragments. The cursor specifies a certain fragment called hot
fragment. The cursor may be moved to the hot fragment's predecessor
or its successor.

*)
(¥----~ Category : Types and Data %)
TYPE File;
TYPE Results = (Done '
NotDone ,
NoMemory .
FileNotFound ,
IoError '
IllFiletype);
VAR Result ¢ Results;
TYPE Types = [2L
CONST ReservedType ="
BeginOfFile = A"
EndOfFile = 'B";
PlainText = 'C"
LineFeed =D
TYPE Text = ARRAY [@..252]1 OF CHAR:
TextPtr = POINTER TO Text;
(k----= Category : Initialisations --------------------m-oomm e *)
PROCEDURE Open (VAR aFile ¢ File;

G- 10 F:\STANDARD\SPCLIB\FRAGS.DEF SPC MODULA-2 V1.4

Name ¢ ARRAY OF CHAR:
TextOnly ¢ BOOLEAN);

(% Open the named diskfile and read its content into the newly created
fragments file F. If TextOnly is specified, then a standard textfile
is read, and fragments are of type PlainText or Linefeed. Otherwise
a true fragments file is expected, and it's data is read
transparently. %)

PROCEDURE Create (VAR aFile ¢ File);

(¥ Create a new fragments file. %)

PROCEDURE SaveAs (aFile i File:
Name ¢ ARRAY OF CHAR;
TextOnly : BOOLEAN) :

* Save the fragments file F to disk under Name. If TextOnly is set,
then only fragments of type PlainText and LineFeed are saved to a
standard text file. %)

PROCEDURE Abandon (aFile ¢ File):

(¥ Delete fragments file F. Do not save its content. %)

(¥=--== Category : Cursor Positioning ------------ %)
PROCEDURE Next (afFile ¢ File)
: Types;

(¥ Make the next fragment the hot fragment and answer its type. If the
hot fragment is of type EndOfFile, then Result is NotDone. ¥)

PROCEDURE Prev (aFile ¢ File)
: Types:
(¥ Make the previous fragment the hot fragment and answer its tupe. If
the hot fragment is of type BeginOfFile, Then Result is NotDone. %)
PROCEDURE Current (aFile i File)
i Types;

(¥ Answer the hot fragment's type. %)

PROCEDURE Occurrences0f (aFile ¢ File;
Type ¢ CHAR)
¢ INTEGER;

(¥ Answer the number of fragments of Type before the hot fragment. %)

(%==mmm Category : Fragments ---=--------=--=c--oomoommoo oo oo *)
PROCEDURE Insert (afile ¢ File;
Type t Types;
VAR Content i ARRAY OF CHAR):

(% After the hot fragment insert a new fragment of Type with an

SPC MODULA-2 V1.4 F+\STANDARD\SPCLIB\FRAGS.DEF

6 - 11

initial Content. If hot fragment is BeginOfFile, the Result i

NotDone. %)

PROCEDURE Delete (aFile ¢ File);

(% Delete the hot fragment. If hot fragment is BeginOfFile or
EndOfFile then Result is NotDone. ¥)

PROCEDURE Retype (aFile : File:
Type ¢ CHAR)

(¥ Change the hot fragment's type to Type, provided it is neither

BeginOfFile nor EndOfFile. ¥)
PROCEDURE ContentOf (aFile + File;
VAR Content i ARRAY OF CHAR);
(% Answer the content of the hot fragment. %)
PROCEDURE LengthOf (aFile : File)
: INTEGER:
(¥ Answer the length of the hot fragment. %)

PROCEBURE PointerOf (aFile i File)
t TextPtr;

(¥ Answer a pointer to the current fragments content. The content is OC
terminated. The pointer may only be used for READ ONLY access to the

fragment's content.)

PROCEDURE Test (aFile ¢ File)s
END Frags.

6 - 12

F:\STANDARD\SPCLIB\FRAGS.DEF

SPC MODULA-2 V1.4

(¥==mmm Category : Module Identification —-====-=---=-------—oommmmmmmeo %)

(% Module Type %) DEFINITION MODULE

[C Name L %) JCL;

(% . Function i Job Control Level Primitives *)
(G Version Date : 8:13 19. 1.1989 *)
(¥ Product Name/Ident 1 SPC *)
(¥ Copyright : (c) 1988, R. Huetter, D7580 Karlsruhe *)
(¥----- Category : Module Abstract *%

Within the SPC MODULA-2 language system MODULA-2 is used as the job
control language. This module provides some of the primitives commonly
use on the job control level. Of course, all the other libraries may be
used, as well. Describing jobs as MODULA-2 programs has thus several
advantages. The most important is, that the full power of MODULA-2 and
its libraries is available on the job control level. %)

(¥==mmm Category : Types and Data -------------- --¥)

IMPORT Clock;

TYPE (¥ The results of JCL primitives are members of a simplified *)
(¥ error type. If an error occurs, the error handler is invoked %)
(¥ to to some error processing. The default error handler just ¥%)
(¥ prints a message to inout. It can be called by an application¥)
(¥ dependent errr handler. *
Results = (0k, Syntax, Hard. Soft):
ErrorHandler = PROCEDURE ((% Result : %) Results,
(¥ Message : %) ARRAY OF CHAR,
(% Detail : %) INTEGER):
(¥==--~ Category ! Errors —~-=-=g-===--mmm oo e e e %)
PROCEDURE OnErrorDo (HWhatToDo : ErrorHandler)

(% Redefine the error handler, that will be invoked if an error occurs. %)

PROCEDURE DefaultHandler(aResult ¢ Results;

aMessage t ARRAY OF CHAR;
aDetail : INTEGER);

(* Print an error message to InOut. %)

(¥----- Category ! Messages and Inquiries ---==---==----------mmoommoo—o *)
PROCEDURE Echo (aText ¢ ARRAY OF CHAR);
(¥ Print a message to InQut. %)
PROCEDURE Query (alext i ARRAY OF CHAR)
: CHAR;

(% Print a message and read a character. Return that character. ¥)

SPC MODULA-2 V1.4 F+\STANDARD\SPCLIB\JCL.DEF

6 - 13

PROCEDURE Inquire (aText ¢ ARRAY OF CHAR:
VAR aResponse : ARRAY OF CHAR):

(¥ Print a message and ask for some textual response. ¥)

(¥----- Category : Run Programs === ¥)

PROCEDURE Call (aCommand : ARRAY OF CHAR):

(¥ Set the command line to aCommand an call a program via the linking
loader. ¥)

(%=----- Category : File Primitives %)

PROCEDURE Cp (Source ¢ ARRAY OF CHAR:

Destin i ARRAY OF CHAR);

(¥ Copy Source files to Destin. If Source contains wWildcards, then
Destin is expected to be a directory name, else Destin may be a file
name, as well. ¥)

PROCEDURE Mv (Source { ARRAY OF CHAR;
Destin i ARRAY OF CHAR);
(¥ Move Source files to Destin. If Source contains wildcards, then

Destin is expected to be a directory name, else Destin may be a file
name, as well. ¥)

PROCEBURE Rm (aFile ' ARRAY OF CHAR):

(¥ Delete aFile, while aFile may contain wildcards. %)

PROCEDURE Timestamp (aFile ¢ ARRAY OF CHAR;
VAR aStamp i Clock.Time);

(¥ Return the timestamp of aFile. %)
PROCEDURE Exists (afFile ¢ ARRAY OF CHAR)
: BOOLEAN;

(¥ Answer, whether aFile exists at all. %)

PROCEDURE Cd (afFolder ¢ ARRAY OF CHAR):

(¥ Change the current directory to aFolder. %)

PROCEDURE Wd (VAR aFolder ¢ ARRAY OF CHAR);

(% Return the current directory (also called working directory. ¥)

PROCEDURE MkDir (afFolder ¢ ARRAY OF CHAR):

(¥ Create a new directory (also called folder). %)

PROCEDURE RmDir (afolder t ARRAY OF CHAR):

G- 14 F:\STANDARD\SPCLIB\JCL .DEF SPC MODULA-2 V1.4

(¥ Remove a directory. %)

PROCEDURE Space (aVolume ¢ ARRAY OF CHAR)
¢ LONGCARD;

(% Return the number of bytes left on aVolume. ¥)

END JCL. .

SPC MODULA-2 V1.4 : F:\STANDARD\SPCLIB\JCL . DEF 6 - 15

(¥--=-- Category : Module Identification %)

%) DEFINITION MODULE

(¥ Module Type
[C I

Name 1 ¥) Loader;
* . Function ¢ SPC Dynamic Loader Utility %)
[CN Version Date : 15: 4 24. 9.1988 *)
(¥ Product Name i SPC *)
(% Copyright ¢ (c) 1987,1988, MODsoft, D7588 Karlsruhe *)
(¥--=mm Category : Module Abstract *¥

Loader is the dynamic linking loader of the SPC-MODULA-2 system. Loader
allows threads (i.e. group of modules) to be brought into memory and
added to the list of resident modules. The main module of a thread is
then be started and runs as a subprogram of the calling thread.

All required linkage is done dynamically by the loader module while the
modules are read from mass storage (so called loadtime linking). %)

(¥----= Category : Load and Start a Thread -- %)
PROCEDURE Call (Name ¢ ARRAY OF CHAR;
’ Hold ¢ BOOLEAN;
VAR ErrorMsg ¢ ARRAY OF CHAR)
: BOOLEAN;

(¥ Load the thread given by Name into memory, do linkage as required and
start the thread as a subprogram or answer FALSE and a error message.
If hold is TRUE, then leave the thread in memory and linked so that
it may be started again within reading it from mass storage. %)/

END Loader.

6 - 16 F:\STANDARD\SPCLIB\LOADER.DEF SPC MODULA-2 V1.4

(¥==--= Category : Module Identification - —=—-=%)

(¥ Module Type ¢ %) DEFINITION MODULE

[C Name ¢ %) Process:

[C Function + Multitasking Kernel %)
[C UVersion Date : 21:58 28. 6.1988 %)
(¥ Product Name/Ident : SPC *)
(¥ Copyright : (c) 1987,1988, MODsoft, D7500 Karlsruhe *)
(¥-~=--- Category : Module Abstract ~-------------m-mmmmmm e *%

Process implements a simple coroutine scheduler to simplify programming
of concurrent programs. A Process is a coroutine as provided by module
Coroutines. Processes can be created, which implicitly enters it into
the list of ready Processes. From that time on, the Process runs,
whenever it is the first Process in the ready list.

A Process runs, until it explicitly Relinguishes (calls the Process
module to perform a dispatch cycle). Another way to enter run a
dispatch cycle is to consume units from a Resource.

A Resource is a pool of units, which are produced by some Process and
are consumed by another Process. Whenever a Process tries to consume
more units, than are available, the Process module enters a dispatch
cycle and resumes another process. The waiting Process is put into the
wWait list for the requested Resource. If a process produces units,
Process checks, if there is a Process waiting for that Resource, and
whether its request for units can be met by the amount of currently
available units. If so, all waiting Processes are put into the ready
list, until there are no longer enough units.

Resources are therefore a means of process synchronisation.

It is essential, that the producing module keeps on running, until it
Relinquishes or calls for more units, than are available. At that time
the first module on the ready list continues processing.

NOTE: This is NOT a true multitasking, since dispatch cycles are
triggered by the processes explicitly (rather than by a timer or
external interrupt). An endless loop without calls to Relinquish
or Consume prevents other processes from running.

A Resource is processes do produce and consume.
Whenever a process wants to consume a Resource, and the Resource is
empty, the process is suspendend, and some other process is activated. %)

(¥=mmmm Category ! Types and Data -——--=-=-===-==-==-mmcmeme oo oo *)
TYPE Resource; (¥ something processes do produce and consume %)
(%----- Category : Initialization ----====--==-------omommmmmm oo *)

PROCEDURE Init;

(% Initialize the scheduler and enter the caller as a process into the
ready list. ¥)

PROCEDURE Term;

(% Terminate the scheduler. Continue processing with the caller of Init.
All processes are stopped. ¥)

SPC MODULA-2 V1.4 F+\STANDARD\SPCLIB\PROCESS.DEF

G- 17

(¥mmmmm Category @ Process Creation *)

PROCEDURE Create (StartAt : PROC;
StackSize : CARDINAL:
VAR Done : BOOLEAN);

(% Create a new process and start its execution at StartAt, giving an
initial StackSize. If the memory request for the stacksegemnt fails,
Done will be FALSE. %)

PROCEDURE Delete;

(% Delete the calling process. ¥)

(¥-=---- Category @ Process Synchronisation ¥)
PROCEDURE Relinquish;

(¥ Allow a dispatch cycle to be performed. %)

PROCEDURE Produce (Arg : Resource);

(¥ Produce one unit of a Resource and ready a waiting process, if any. ¥)

PROCEDURE Consume (Arg 1 Resource):

(% Consume one unit of a Resource, wait if no units available. %)

PROCEDURE Available (Arg : Resource)
: BOOLEAN;

(¥ Answer, if units of a Resource are available. %)
PROCEDURE InitResource (VAR Arg ¢ Resource;
Initial i CARDINAL):

(¥ Initialise a Resource, and give Initial units. ¥)

END Process.

G- 18 F:\STANDARD\SPCLIB\PROCESS.DEF SPC MODULA-2 V1.4

(%--=-= Category : Module Identification -------=----=-----mmcomomo *)

(¥ Module Type : %) DEFINITION MODULE

[C Name 1 %) Rectangle;

(% . Function . Operations on Rectangles *)
(% . Version 1 1.8 *)
(¥ Product Name + SPC *)
(¥ Copyright : (c) 1987, MODsoft, D7588 Karlsruhe *)
(¥--—-- Category : Module Abstract --------===------—--ommmmmmmo *%

Provide operations on rectangles. ¥)

(%----- Category : Types and Data ---------------—-ommmmmom oo *)
TYPE Instance = RECORD
X, Y, U, H : INTEGER;
END;
(¥-==mm Category : Rectangle Primitives --------==-------mmooooooooooon *)
PROCEDURE Preset (VAR Arg ¢ Instance:

X, Yy, W, h i INTEGER);
(% Preset Arg to the value x/y-w/h. %)
PROCEDURE MoveRel (VAR Arg ¢ Instance;
X, y : INTEGER):
(¥ Move Arg by the increment x/y. %)
PROCEDURE MoveAbs (VAR Arg : Instance;
X, y : INTEGER);
(¥ Move Arg to x/y. ¥)
PROCEDURE Resize (VAR Arg ¢ Instance;
W, h i INTEGER);
(% Set Arg’'s new size to w/h. %)
PROCEDURE Combine (VAR Arg ¢ Instance;
With : Instance);

(% Answer the union of Arg and With in Arg. %)

PROCEDURE Intersect (VAR Arg ¢ Instance;
With : Instance)
: BOOLEAN;

(% Intersect Arg with With and return the result as Arg. If the result
is not empty return TRUE else FALSE. ¥)

PROCEDURE Subtract (Arg : Instance:
From + Instance)-
: BITSET;

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\RECTANGL . DEF G- 19

(¥ Subtract ﬁ\nfirom From and return the result as a bitset with the
following implication : If bit 8 is on, then there is a resulting
Rectangle above Arg. If bit 1 is on , then there is are result below
Arg. If bit 2 is on, then we have a result to the left and if bit 3 is
on, then there is a result ro the right of Arg. The resulting Rectangles
can be obtained by calling SubResult with the bit number (8..3).

+=From---===-=--—mmm—o o +
| Bit @ |
| |
| +-Arg------- + |
Bit 2		Bit 3
et +		
Bit 1		
+ +
*)
(¥==mm= Category : Inquiries %)
PROCEDURE SubResult (Arg + Instance;
From 1 Instance;
VAR Result ¢ Instance:
N : INTEGER);
(% Return the Nth (B<=N<=3) resulting Rectangle from the operation
From-Arg. %)
PROCEDURE Empty (Arg 1 Instance)

: BOOLEAN;

(¥ Answer, whether Arg is empty. %)

PROCEDURE Includes (Arg ¢ Instance;
X, Y : INTEGER)
: BOOLEAN;

(¥ Answer, if Arg includes the point x/y. %)

END Rectangle.

G - 20 F:\STANDARD\SPCLIB\RECTANGL .DEF SPC MODULA-2 V1.4

(¥ mmmm Category

: Module Identification - -- ——=%)
(¥ Module Type ¢ %) DEFINITION MODULE
[C. 2 Name : %) SplittedPieces:
(% . Function ¢ Splitted Piece List Management %)
(* . Version Date : 18:54 16.10.1988 *)
(¥ Product Name ¢ SPC *)
(% Copyright t (c) 1987,1988, MODsoft, 075688 Karlsruhe *)
(¥--=--= Category : Module Abstract *¥%
*)
(=== Category : Types and Data %)
FROM SYSTEM IMPORT ADDRESS;
'YPE AllocateProc = PROCEDURE (VAR LONGINT) : ADDRESS:
DeallocateProc = PROCEDURE (VAR ADDRESS):
List ;
(¥==m-= Category : List Primitives - --%)
PROCEDURE Create (VAR Self ¢ List;
Alloc ¢ AllocateProc;
Dealloc : DeallocateProc;
ChunkSize ! LONGINT)
: BOOLEAN;
PROCEDURE Delete (VAR Self ¢ List)
PROCEDURE Get (Self ¢ List;
Amount : LONGINT;
VAR BlockPtr : ADDRESS);
PROCEDURE Put (Self v List;
VAR BlockPtr : ADDRESS);

END SplittedPieces.

SPC MODULA-2 V1.4

F:\STANDARD\SPCLIB\SPLITTED.DEF

6-21

(¥-=--= Category : Module Identification ---- %)

(¥ Module Typa ¢ %) DEFINITION MODULE

* . Name ¢ %) SSHiS:

[C Function : Small Systems Windowing Standard *)
* . Version/Date : 8.81 66.83.88 *)
(% Product Name t SSWiS ¥)
(¥ Copyright ¢ (c) 1987,1988, MODsoft, D7588 Karlsruhe *)
(¥===mm Category : Module Abstract ------------- *%

The Small Systems Windowing Standard is an interface library to an
operating system independent windowing system. The implementation module
of SSWiS will map the interface functions to the resident windowing
system. By only using SSWiS functions for window-, menue-, event-, etc.
processing, applications remain portable between different SSWiS
implementations. Important concepts are described below.

- Client
Modules, that want to use SSHis, register as SSWiS clients. Every
client has its own pool of resources. Many clients may coexist at
the same time. Different clients may belong to the same or to
different programs. Clients are known to SSHiS via ModuleHandles.

Current Module

The Current Module is the module, which receives subsequent
keyboard input. The current module may be selected under program
control as well as interactively.

Window

Windows allow SSWiS to give parts of screen space to different
clients. The window arrangement can be influenced by the clients
and the user, as well. Each client may use several windows.
Windows are known to SSWiS via WindowHandles.

- World
While screen space is shared on the basis of windows, each window
opens a view into a usually larger World (e.g. a textfile, a CAD
drawing, etc.). The world is discribed in world Coordinates, while
points on the screen are referenced via ScreenCoordinates. World
Coordinates in SSWiS are 32 bits wide.

- Menu
Menus are provided to interactivly select functions via menu items.
Items are group to titles. Each client has one set of menu titles,
which can be labelled, mask, etc. Titles and items are known to
SSHiS via TitleHandles and ItemHandles. As the current module
changes, SSWiS presents the titles of the current module.

- Form
A Form is a means of interactive data entry. SSWiS implements a
method to notify the user, to ask the user about something and to
identify the module.

Callback Procedure

Clients register at SSWiS, to share input devices and screen space
Wwith other clients. While controlling the screen and the input
devices, SSWiS calls procedures, that have been presented by the
clients at initialisation time. In particular two types of procedures
are use, one to Accept events and one to Restore the window

content. Since the procedures are called back at a later time, they
are commonly referred to as Callback Procedures.

Cursor

6 - 22 F:\STANDARD\SPCLIB\SSWIS. DEF SPC MODULA-2 VL. 4

The Cursor represents the mouse position with respect to the displ]g
screen. The cursor’s shape can be configured, to meet differegt
echoing requirements.

Caret

The Caret represents another position, which is explicitly controlled
by the application. In text applications the caret may be used to
mark the point of text insertion. Since the caret is controlled by
SSHiS directly, it may be moved very rapidly and does not require

a screen restore operation.

Events

Since many clients share the same screen and the same input devices,
SSHiS must distribute the input device activity to its clients. The
input is communicated as events to the clients. An event is described
in detail by an EventReport. To process an event, the clients Accept
procedure is called back. ’

£)
(¥----- Category : Handles for Various Objects -- %)
TYPE ModuleHandles = [8..31]1: (% limited number of client Modules ¥%)
WindowHandles = [8.. 71; (¥ Windows per Module *)
TitleHandles = [B.. 6]; (% Menu Titels per Module *)
ItemHandles = [@8.. 71; (¥ Items per Menu Title *)
(¥----- Category : World and Screen Coordinate space --------=-====-==--= %)
(¥ The applications drawing are is determined by the world- *)
(¥ space. The application may actually use a smaller part *¥)
(% thereof which will be called the world below. *)
Coordinates = LONGINT; (¥ Wc-space is 32 bit wide. *)
Points = RECORD (¥ an absolute point within *)
X, Y ¢ Coordinates; (¥ the world. *)
END; (% *)
Lines = RECORD (% an absolute line given by %)
A, B : Points; (¥ start and end points wihin %)
END; (¥ the world. %)
(¥ The screen space is the area, where output must be generated.¥)
(¥ Mapping of the applications world to the screen is done by %)
(% adding an offset to the world coordinates and restricting *)
(¥ output to the windows extent. This mapping must be done by ¥)
(¥ the application during restore operations. *)
TYPE ScreenCoordinates = INTEGER: (¥ screen space is 16 bit wide.%)
ScreenPoints = RECORD (¥ a point in screen *)
ScreenCoordinates: (¥ space. *)
ND; (% %)
ScreenLines = RECORD (% same as Lines in *)
ScreenPoints: (¥ screen space. *)
END; (% *)
(% The application is notified about several events occuring %)
(% during window operation. Notification is based on callback %)
SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\SSWIS.DEF G- 23

TYPE

CONST

TYPE

(¥ procedures provided by the application at window creation *)

(¥ time.

RestoreProc

= PROCEDURE ((* Owner

%)

¢ ¥) ModuleHandles,

(¥ Window + %) WindowHandles,

(¥ WorldArea : ¥) Lines,
(% Offset t %) Points);

(¥ The application is requested to restore part of their world %)
(* on the screen. WorldArea specifies position and size of the %)
(¥ area in wWwc-space, while Offset defines the position of the ¥)
(¥ window content in Wc-space. Screen coordinates are obtained ¥)
(¥ by adding Offset to the worldcoordinates at hand. As long as %)

(¥ world-coordinates are within WorldArea, it is guaranteed, %)
(¥ that mapped screen-coordinates are within screen-space. *)
Category : Standard Keyboard -- *)

(¥ Keystrokes are entered via the standard keyboard, which's *)
(% layout is considered to be system independent. It is mapped ¥)
keyboard actually attached.

(% by SW
NILKey

UpArrow

DownArrow
LeftArrow

RightArr
Help
Undo
Insert
Clear
NumLeftB
NumRight
NumSlash
NumAster
NumMinus
NumPlus
NumEnter
NumDot
Num@
Numl
Num2
Num3
Num4
Num5
Numé
Num?
Num8
Num9

F1

F2

F3

F4

FS

F6

F7

F8

F9

Fie

AllKeys
ControlK
AlphaKey

IS to the

OW

racket
Bracket

isk

TR T O O T LU LA LI LT LN L LI VIO L T T O I O O L [L (O (I LI TS (BN [N TR U B TR T TR 1}

eys
s

nwonon

= -1

256;
257;
258;
259;
2608;
261;
262;
263;
264;
265;
266
267;
269;
270
271
272;
273;
274;
275;
276;
277;
278;
279;
280;
281
282;
283;
284;
285;
286;
287
288
289;
290

292

e

L5110
L 31
..1261:

(¥ all keys known by SSHiS. ¥)
(¥ ASCII control keys, exc DEL %)

(% ASCII printable keys

*)

6 - 24

F:\STANDARD\SPCLIB\SSWIS.DEF

SPC MODULA-2 V1.4

NationalKeys = [128..255): (% national keys, system dep. *)
EditKeys = [256..5111; (% editing keys commonly used *)
MetaKeys = (Shift
Control ,
Alternate);
" SetOfMetakeys = SET OF MetaKeys:
(¥==---= Category : Mouse Styles --= %)
(* The mousecursor can be configured to have different styles, %)

(% and within each style (except off) to have different sprites.¥)
TYPE MouseStyles = (Off ,
SpriteOnly
RubberLine
RubberBox
DragBox ,
ApplSpecific);
MouseSprites = (StdArrow
Hourglass
Disk
StdCross
StdText
FlatHand
Finger)3
(%====-= Category : Input Events ------------ -- *)
TYPE KeyEvent = RECORD
MetaKey Set0fMetaKeys;
Position Points;
Keys ARRAY [B..28]1 OF AllKeys:
END;
TYPE ButtonActivities= (Clicked , (¥ pressed and released *)
DoubleClicked, (% two very fast clicks *)
Pressed , (% pressed and held *)
Released , (% released after pressed *)
HindowExit , (% window contents exited *)
Moved)i (% snap area exited *)
TYPE MouseEvent = RECORD
MetaKey : Set0fMetaKeys;
ButtonDown BOOLEAN;
Position Points:
Activity] ButtonActivities:
END;
TYPE MenuEvent = RECORD
Title ¢ TitleHandles;
Item : ItemHandles;
END;
TYPE EventTypes = (Notification, (¥ window parameters changed %)
Keyboard (¥ keystrike occurred *)
Mouse , (% moved or button clicked %)
Menu , (¥ menu item selected %)

SPC MODULA-2 V1.4

F+\STANDARD\SPCLIB\SSWIS.DEF

6 - 25

TYPE

TYPE

TYPE

Message (¥ piping system *)
Timer , (% system grants idle time *)
Identification): (¥ ... requested %)
EventReports = RECORD
CASE Type EventTypes OF
| Keyboard ¢ Strokes @ KeyEvent:
| Mouse ¢ Clicks ¢ MouseEvent;
| Menu : Selection : MenuEvent:
| Message . Pipe : ARRAY [8..48] OF CHAR;
| Timer :
| Identification
END;
END;
(¥ Events are communicated to clients by calling the Accept *)
(¥ callback procedure, below. Accept is given when registering. ¥)

AcceptProc = PROCEDURE ((¥ Owner : %) ModuleHandles,
(¥ Window : %) WindowHandles,

VAR (% Report : %) EventReports):

(¥ Owner is requested to process an event. The event is further %)

(¥ detailed by Report. The event has been received via Window. *)
Category : Window Layout --- - %)
(¥ A windows has WindowElements to allow for interactive *)

(¥ manipulation of window parameters. These elements may or may %)

(¥ not be present in a particular window. *)
WindowElements = (Messageline
Iconiser
Fuller
Sizer
XScroller ,
YScroller)i
SetOfWindowElements = SET OF WindowElements;
Category : Useful Constants ----- -- -—-= -=%)
NullPoint ¢ Points;
Nullline ¢ Lines;
NullScreenPoint : ScreenPoints:
NullScreenLine : ScreenlLines;
NeverClip ¢ Lines:
ScreenSize ¢ ScreenPoints:
ScreenColours ¢ INTEGER:
(¥ Switch to control umlauts on german keyboard. May be set *)

(¥ under program control or toggled by pressing both Shift keys.¥)

Umlauts : BOOLEAN;
Category @ Error Reporting -—-------=--=---=-=---o-moooooomooo oo ¥)
Results = (Done,

NotDone,

NoMemory,

G - 26

Fi\STANDARD\SPCLIB\SSWIS.DEF

SPC MODULA-2 V1.4

TooManyModules,

TooManyWindows.

TooManyTitles);
VAR Result ¢ Results; (% result of the last call. %)
(¥=mmmm Category : Operating SWIS -- *)

PROCEDURE Reinit;

(¥ Cause SSWiS to restore its desktop and window configuration. %)

PROCEDURE PollEvents;

(¥ Cause SSWiS to enter its event processing loop. %)

PROCEDURE Resync;

(% Cause SSHiS to process window related events %)

(¥====- Category : Registering the Application -- *)
PROCEDURE Register (VAR Handle i ModuleHandles;

ModuleName : ARRAY OF CHAR;

Accept : AcceptProc);

(% Register a module as an application known by SSWiS. Events will
be communicated by calling Accept. ¥)

PROCEDURE Deregister (Handle ¢ ModuleHandles):

(% Deregister the application and free all ;ts resources. %)

(%----- Category : Window Creation and Deletion -—=---=---=-=---em—mnmom *)
PROCEDURE CreateWindow (Owner i ModuleHandles:

Window : WindowHandles;

Restore ¢ RestoreProc):

(¥ Owner creates a window with will be refreshed using Restore. ¥)

JPRUCEDURE Deletelindon (Owner : ModuleHandles;
Window ¢ WindowHandles)

(% Delete a window and it's resources. ¥)

PROCEDURE PlacelindowOnTop

(Owner i ModuleHandles;
Hindow + WindowHandles);

(% Place the window on top of all other windows. %)

PROCEDURE Iconiselindon (Owner ¢ ModuleHandles;
Window ¢ WindowHandles);

(% Place a window behind all other windonws. ¥)

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\SSWIS.DEF

G- 27

PROCEDURE SetWindowTitle(Owner
Hindow
Text

(¥ Set the window's title. ¥)

PROCEDURE SetWindowMessage
(Owner

Window

Text

(¥ Set the window' s message. ¥)

PROCEDURE SetWindowElements
(Owner

Window

Elements

(% Configure the window to have Elements.

PROCEDURE ExplicitRestore
(Owner
Hindow
Clip

¢ ModuleHandles;
: HindowHandles; .
1 ARRAY OF CHAR)

: ModuleHandles;
+ WindowHandles;
! ARRAY OF CHAR);

¢ ModuleHandles;
: WindowHandles;
t SetOfWindowElements);

*)

¢ ModuleHandles;
+ WindowHandles;
¢ Lines);

(% Do an explicit restore of a window. Assume, that changes have taken
place only within the Clip area, which may be used to optimize the

restore operation. ¥)

(¥==mmm Category : Window's Position and Size -----=----=======-—mememmn %)

(¥ The window's position and size on screen is partly controlled by the
application and by the user via interactive tools. However, SSWiS is
responsible to maintain certain conditions concerning screen layout,
and it may be impossible to meet the requirements exactly. %)

PROCEDURE Positionlindow(Owner :
Window
Corner

ModuleHandles:

¢ WindowHandles;
: ScreenPoints);

(¥ Position the upper left corner of the window's border. This is only
a hint, and it is not guaranteed, that the window is positioned. ¥)

PROCEDURE SizeWindowContent
(

Owner ¢ ModuleHandles;
Window ¢ WindowHandles:
MinSize

IdealSize

MaxSize ¢ ScreenPoints);

(% Resize the windows content. IdealSize is a hint to SSWiS. The
window must not become smaller than MinSize and it must not become
larger than MaxSize. SSHiS will choose a size between these
limits and as near as possible to IdealSize. ¥)

PROCEDURE PositionOfWindow

G- 28

F+\STANDARD\SPCLIB\SSWIS.DEF SPC MODULA-2 V1.

(Owner
Window
VAR Corner

¢ ModuleHandles;
: WindowHandles:
¢ ScreenPoints);

(¥ Answer the position of the window. %)

PROCEDURE SizeOfWindowContent
Owner
Window
VAR Size

¢ ModuleHandles:
: WindowHandles:
¢ ScreenPoints);

(% Answer the size of the window's content. ¥)

(¥----- Category : MWorld's Position and Size *)

(% The world is the application’s drawing area. The world is partially
visible within the window's content. Moving the world to expose
different parts in the window's content is controlled by either
the application or by the user via interactive tools of the window

itself. %)

PROCEDURE Positionkorld (Owner
Window
Corner

¢ ModuleHandles;
t WindowHandles:
¢ Points);

(% Position the world, so that Corner (a point within the world)
corresponds to the upper left corner of the window's content.
Change of world's position causes a notification event. %)

PROCEDURE SizeWorld (Owner
Window
Size

¢ ModuleHandles;
i WindowHandles;
¢ Points);

(¥ Resize the world. The worlds size is used by SSWiS to prevent
undefined holes within the window's content. Change of world's
size causes a notification event. ¥)

PROCEDURE RasterWorld (Qwner
Window

 ModuleHandles:
¢ WindowHandles;

6ridSpacing: Points):

(¥ Tell SSWiS, the the invisible grid of world is not 1 pixel wide, but
GridSpacing pixels wide (in x and y). Gridspacing will be applied, when
the user scrolls by steps through the world. %)

PROCEDURE PositionOfWorld
(Owner
Window
VAR Corner

(¥ Answer the world’'s position. ¥)
PROCEDURE SizeOfWorld (Owner
Hindow

VAR Size

(%¥ Answer the world's size. %)

: ModuleHandles:
¢ WindowHandles:
¢ Points);

' ModuleHandles:
: WindowHandles;
: Points);

SPC MODULA-2 V1.4

F:\STANDARD\SPCLIB\SSWIS. DEF

6 - 29

(¥-=-=- Category ! Mouse Configuration -----=-==-====--=-==-—-o——--moo—ooo %)

PROCEDURE ConfigureMouse(Owner : ModuleHandles;
Window : WindowHandles;
Style 1 MouseStyles;
Sprite ! MouseSprites;
CoolSpot ¢ Points);

(% Owner configures the mouse to have Style and optionally show Sprite
as long, as it is in Window. ¥)

PROCEDURE SetCaret (Owner i ModuleHandles;
Window : WindowHandles;
HotSpot ¢ Points);

(¥ Set the caret to the given position. ¥)

(%----- Category : Menu Primitives ---------------—-------m—mm——ommmmee %)

(¥ A Menu is a means of command selection. A Menu consists of several
titles, where each title contains several items. Every window can
have it's own menu. A menu item is selected under control of SSWiS.
The Selection is communicated as an event to the owning module.

The syntax of menu elements is :

<MenuElement> = <Attributes><String>
<Attributes> = ('MTett
<String> = {CHAR}O. .n

where

the M attribute masks the entry, and no data can be entered,
the C attribute checks the entry
*)

PROCEDURE SetMenuTitle (Owner ModuleHandles;
Title i TitleHandles;
Definition : ARRAY OF CHAR):

(¥ Owner gives the Definition for the menu Title of Window using the
above syntax. ¥)

PROCEDURE SetMenuItem (Owner i ModuleHandles;
Title ¢ TitleHandles;
Item ¢ ItemHandles;

Definition : ARRAY OF CHAR);

(% Owner gives the Definition for the menu Item of Title of Window
using the above syntax. ¥)

[€ S Category ! Forms Primitives ------ et alnlat %)

(* A Form is a means of interactive data entry. SSHiS has three standard
forms, which may be used to notify the user, to ask the user about
some parameters and last not least, to identify the current modules
by product name, version author and copyrights.

Forms may use buttons to label upto four push buttons, which can

6 - 38 F:\STANDARD\SPCLIB\SSWIS.DEF SPC MODULA-2 V1.4

be interactively selected. Buttons are given in the syntax:

<Button> ::= [<Label>{"|"<Label>}@..3]
*)
PROCEDURE NotifyForm (Message ¢ ARRAY OF CHAR;
Buttons ¢ ARRAY OF CHAR:
VAR Result ¢ INTEGER);

(¥ Display a notification using Message and prompting Buttons. Result
is the default Button on entry and the selected button upon return. ¥)

PROCEDURE AskForm (Message : ARRAY OF CHAR;
Buttons ' ARRAY OF CHAR;
Options i ARRAY OF CHAR:
VAR Answer © ARRAY OF CHAR;
UAR OptionsRes : BITSET;
VAR Result ¢ INTEGER):

(¥ Display an editable form. Message is some constant text, while Answer
is preset by the caller and is edited by the user. Options are
provided by up to 4 buttons. TMe selected buttons are given by
OptionsRes and are returned via OptionsRes. Buttons are provided to
exit the form, while Result specifies the default button and holds
the selected button upon return. ¥)

PROCEDURE Identify (Program ! ARRAY OF CHAR;
Version ! ARRAY OF CHAR:
Author ¢ ARRAY OF CHAR;

Copyright : ARRAY OF CHAR);

(¥ Use a standard method to identify the calling module by the given
string arguments. %)

END SSWiS.

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\SSWIS.DEF

6 - 31

(%-==-- Category : Module Identification ---- *)

(¥ Module Type : %) DEFINITION MOOULE

(% . Name ¢ %) System;

(% . Function ¢ Modula-2 Runtime System for MC6808B/ATARI ST ¥)
% . Version Date : 0:22 16.10.1988 *)
(¥ Product Name ¢ SPC *)
(% Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe *)
(¥----- Category : Module Abstract *%

System's functionality is devided into the following categories !
1. Processor dependent instruction supplement

Module System provides the instructions, that the processor does not
support. Since the code generator uses fixed indices to access these
instructions, most of the operators must be declared in the order
given below.

2. Dynamic linkable module chain

SPC-MODULA-2 contains a dynamic load feature, which allows modules to
be brought into memory and integrated into the running system at
runtime. This is normally done by a module called Loader. Necessary
fixup and linkage must however be done by that module. System declares
the structures used to maintain the modules in memory. Furthermore,
funcions are provided to add groups of new modules and to start a

main module within such a group as a socalled thread. After the

thread has run, modules, which are no longer needed, are released

from memory. Calls are available, to abort a thread due to some error
conditions. HALT is another means to abort a thread.

The module chain can be inquired, to get some information about the
loaded modules. Furthermore can a module be made resident, which causes
it to remain in memory, even if it is not imported by any active
module.

3. Module Termination

Each module may declare a procedure, whch is called prior to releasing
the module. This may be used to do some cleanup and to orderly release
resources on module termination. All imported modules remain intact,
provided, that there are no import loops (module A imports B and B
imports A).

4. Active Procedure Chain

A procedure invocation is described by a so called procedure frame. The
chain of nested procedure calls may be traversed to get the procedure
frame of the caller.

5. Exceptions

Exceptions are abnormal conditions that occur during program execution
and normally indicate an error within the program. Exceptions may be
detected by hardware or by software, In any case an exception handler
is called to take some corrective action or to kill the running thread.

A thread (see above) may announce its own exception handler to do some
application dependent processing. Otherwise it uses the default
handler. The default handler again may be overriden (e.g. by the Loader
to load the debugger, etc.).

6 - 32 F:\STANDARD\SPCLIB\SYSTEM.DEF SPC MODULA-2 V1.4

(¥mmmmm Category :

Types and Data

FROM SYSTEM IMPORT ADDRESS:

VAR BasePagePtr

(¥ Category :

PROCEBURE HALTX
PROCEDURE MULU32

PROCEDURE DIVU32
PROCEDURE MULS32

PROCEDURE DIVS32

PROCEDURE FADDs
PROCEDURE FSUBs
PROCEDURE FMULs
PROCEDURE FDIVs
PROCEDURE FREMs
PROCEDURE FCMPs

PROCEDURE FNEGs
PROCEDURE FABSs
PROCEDURE FLOATs
PROCEDURE TRUNCs

PROCEDURE FADDd
PROCEDURE FSUBd
PROCEDURE FMULd

PROCEDURE FDIVd

Fixed Order of Operators ----

(%

(%

(
(

¢ ADDRESS:

Error

Opl
Op2

Opl
0p2

Opl
0p2

Opl
Op2
adder

addend

minuend)
subtrahend

multiplicand,
multiplier :

dividend
divisor

dividend
divisor

first)
second

toNeg
toAbs
toFloat
toTrunc
adder
addend

minuend
subtrahend :

multiplicand,
multiplier :

dividend
divisor

S

¢ RegisterD8)

i RegisterD@;
¢ RegisterDl) :

¢ RegisterDd8;
 RegisterDl) :

¢ RegisterD8:
1 RegisterDl)

: RegisterD8;
i RegisterDl) :

i REAL)

REAL)

REAL)

+ REAL)
¢ REAL)

¢ REAL) (% :
i REAL)
+ REAL)
¢ LONGINT)
¢ REAL)

i LONGREAL)

LONGREAL)

LONGREAL)

{ LONGREAL)

RegistersDBandDl %)

RegistersDBandDl %)

i RegistersDBandDL X);

RegistersDBandDl ¥);

: REAL:

+ REAL:

© REAL:

+ REAL:

© REAL;

CCR %)

: REAL;

¢ REAL;

: REAL;

¢ LONGINT:

: LONGREAL ;

i LONGREAL;

: LONGREAL;

+ LONGREAL ;

SPC MODULA-2 V1.4

Fi\STANDARD\SPCLIB\SYSTEM. DEF

6 - 33

PROCEDURE FREMd (dividend

divisor : LONGREAL) ¢ LONGREAL;
PROCEDURE FCMPd (first .

second LONGREAL) (%: CCR %)
PROCEDURE FNEGd (toNeg : LONGREAL) : LONGREAL:
PROCEBURE FABSd (toAbs : LONGREAL) ¢ LONGREAL;
PROCEDURE FLOATd (toFloat + LONGINT) + LONGREAL;
PROCEDURE TRUNCd (toTrunc ¢ LONGREAL) ¢ LONGINT;
PROCEDURE FLONG (toConvert : REAL) ¢ LONGREAL;
PROCEDURE FSHORT (toConvert : LONGREAL) ¢ REAL;
(¥-=---= Category : Installing the Floatingpoint Emulator ----------=---- *)

PROCEDURE InstFPEmulator(Emulator ¢ ADDRESS)

(¥ Install the system and hardware dependent floating point emulator %)

(¥===-- Category : Dynamic Linkable Module Chain ------------==-==------ *)
TYPE (¥ A module name is recorded in the object file with 16 *)
(% significant characters. The module key is 6 bytes in length. %)
ModuleNames = ARRAY [8..151 OF CHAR:
ModuleKeys = ARRAY [B.. 21 OF INTEGER:

TYPE ThreadIds
Set0fThreadIds

[8..151;
SET OF Threadlds:

"on

(¥ A module, which is linked to the module chain, is descriped *)
(¥ by the module descriptor and by the auxiliary descriptor. No ¥)
(¥ program may change those parts during runtime. All pointers ¥)

(¥ to those structures are read only. %)

ModuleDescrPtr = POINTER T0 ModuleDescr;

AuxDescrPtr = POINTER TO AuxDescr;

ModuleDescr = RECORD
Next ¢ ModuleDescrPtr; (¥ next descr in chain *)
Frame : ADDRESS: (¥ start of code segment %)
StaticBase t ADDRESS: (¥ module’'s global data %)
ImportedMods INTEGER; (X length of imports list %)
ExportedProcs INTEGER: (¥ length of exports list %)
CodeLength ! INTEGER: (¥ length of code area %)
DatalLength : INTEGER; (¥ length of variable area %)
ConstLength INTEGER; (¥ length of constant area %)
Thread ' Threadlds; (¥ owning thread *)
References i SetOfThreadIds; (% *)
Reserved i ADDRESS (% %)

END;
.

AuxDescr = RECORD
Descr ¢ ModuleDescrPtr; (¥ back link to ModuleDescr¥)
Name ¢ ModuleNames; (% *)

6 - 34 Fi\STANDARD\SPCLIB\SYSTEM. DEF SPC MODULA-2 V1.4

Key i ModuleKeys: (% *)

Flags : INTEGER: (¥ initialisation status %)
END;
TYPE SearchResults = (Done , (% module was found *)
NotFound , (¥ module was not found *)
IllegalKey , (% found, but key mismatch %)
NotDone)i (¥ not found, none of abovex)
(==~ Category : Dynamic Linkable Module Chain (Primitives) ---------- *)
PROCEDURE SearchModuleByName
(aName 1 ModuleNames:
aKey ¢ ModuleKeys:
VAR aDescr ¢+ ModuleDescrPtr;
VAR aAuxDescr : AuxDescrPtr)
¢ SearchResults;

(¥ Search the module chain for a module given by aName and aKey. Return
a pointer to its ModuleDescr and to its AuxDescr if found. In that
case answer Done, else answer the reason of failure, e.g. NotFound,
IllegalKey or NotDone. %)

PROCEDURE SearchModuleByStaticBase
(aStaticBase: ADDRESS:

VAR aDescr ! ModuleDescrPtr;
VAR aAuxDescr : AuxDescrPtr)
i SearchResults;

(% Same as above, but the StaticBase, which is unique to each module is
given. %)

PROCEDURE NextDescriptor

(VAR aDescr + ModuleDescrPtr;
VAR aAuxDescr : AuxDescrPtr);

(¥ Answer the descriptor behind aDescr within the module chain and its
corresponding AuxDescr. If abDescr is NIL on entry, then the first
module descriptor is answered. If aDescr is NIL upon return, the end
of the modulelist has been reached. %)

(¥=-mmm Category ! Threads -----=--===-========--- *)

(¥ A thread is a list of modules with the main module beeing *)
(¥ the first module of the list. Within the list, all references¥)
(¥ to imported modules must be resolved and all necessary fixup %)
(¥ must have been done. This is normally the job of the Loader %)
(¥ module. *)
(% A thread is first linked to the currently known modules. It %)
(¥ may then be started to run until it completes or until it is %)

(% killed due to some exceptional condition. It remains in %)
(¥ memory, until a module calls unlink and obtains the original %)
(% module list. *)
PROCEBURE LinkThread (aDescr : ModuleDescrPtr)
: BOOLEAN;

(¥ Link a thread, given by aDescr to the list of threads. All imports
of the modules must have been resolved and all necessary fixup must
have been done. The module given by aDescr is the main module of the
Thread. %)

SPC MODULA-2 V1.4 F+\STANDARD\SPCLIB\SYSTEM. DEF

6 - 35

PROCEDURE RunThread (aDescr ¢ ModuleDescrPtr);

(% Run the thread, to which the module, given by aDescr, belongs. %)

PROCEDURE KillThread (abescr ! ModuleDescrPtr);

(¥ Kill the thread, to which the module, given by aBescr, belongs.
Furthermore, all threads that import modules of the terminating
thread are killed as well. %)

PROCEDURE UnlinkThread (VAR aDescr ¢ ModuleDescrPtr)
: BOOLEAN;

(¥ Unlink the thread, to which the module, given by aDescr, belongs,
provided, the thread is not running and no other thread imports
modules of that thread. %)

(¥----- Category : Module Termination (Primitives) --------------=------ *)

PROCEBURE OnModuleTerminationDo

(aHandler : PROC)
: BOOLEAN;

(¥ Request, that aHandler is called upon termination of the owning
Thread. The termination handler announced last is called first upon
thread termination. It is good practice, to install termination
handlers during module initialisation. Only 16 termination handlers
can be installed for one single thread. Answer TRUE if successfull. ¥)

(¥===== Category ¢ Dynamic Procedure Chain -------=-==-=------mceomon——n %)
TYPE (¥ A procedure invocation is described by a procedure frame, *)
(¥ which contains the current PC within the module, the module’s¥)
(% static base value (see above) and a link to the calling *)
(¥ procedure’s frame. *)
ProcedurefFrames = RECORD
StaticBase ¢ ADDRESS:
DynamicBase : ADDRESS;
RelativePC ¢ LONGINT:
END;
(¥----- Category : Dynamic Procedure Chain (Primitives) ------=-=---=--- %)
PROCEDURE CallerOf (VAR aFrame : Procedureframes)

(¥ Using aFrame search the calling procedure frame and return it in
aFrame. If aFrame is the main program upon entry, then return NIL in
aFrame’'s StaticBase. ¥)

(¥-m=—- Category : Exceptions —--=-------==-—m---om-mmm oo X)

TYPE ExcTypes = (ProgramHalt
InvalidCaselndex

6 - 36 F:\STANDARD\SPCLIB\SYSTEM. DEF SPC MODULA-2 V1.4

MissingResult
CorruptedPointer
DivideByZero
RangeViolation
ArithmOverflow
StackOverflow
Breakpoint
ControlC
ProcessorDependent
FPUnderflow
FPOverflow
FPDivideByZero
FPNotANumber
FPNotComparable
FPInvalidDomain
FPSingularity ,
FPTotalLossOfSignificance ,
FPPartLoss0fSignificance
FPUnimplementedFunction)i

VAR CurrExcType : ExcTypes;
CurrExcFrame i Procedureframes;
CurrExcRoot ¢ Procedureframes;
(¥===-=- Category : Exceptions (Primitives) mmrmmmmeme——e—co——a— *)
PROCEDURE TextOfExc (anExc i ExcTypes;
VAR aString * ARRAY OF CHAR):

(¥ Answer a textual representation of anExc in aString (ca. 46 chars
are required). %)

PROCEDURE OnExceptionDo (aHandler : PROC)

(¥ Request, that subsequent exceptions of the calling thread be handled
by aHandler. %)

PROCEDURE SetDefaultExcHandler
(aHandler @ PROC);

(¥ Request, that subsequently loadad threads use aHandler as their
exception handler, provided, they do not announce their own handler. %)

PROCEDURE DefaultExcHandler:

(¥ Use some implementation dependent technique to display information
about the current exception and the active procedure chain. %)

END System.

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\SYSTEM. DEF

6 - 37

(¥-=--- Category : Module Identification ———- %)

(¥ Module Type + %) DEFINITION MODULE

(% . Name i %) TextFiles;

[C Function ¢ Virtual Text File Management *)
(% . Uersion Date : 19:48 5. 65.1988 *)
(¥ Product Name ¢ SPC *)
(¥ Copyright ¢ (c) 1987, MODsoft, D7588 Karlsruhe *)
(¥==mm= Category : Module Abstract *%

A Textfile is a sequence of lines. The implementation of Textfile is
hidden from the calling modules. Lines are referenced via line numbers

or labels. The advantage of labels is, that they reference the same

line, even if lines are inserted before the labeled line (line numbers
change implicitly). A Textfile maintains a pointer to the current line.
the pointer can be moved to line numbers or labels. The content of the
current line can be read. referenced via a pointer and changed. New lines
are inserted behind the current line. %)

(¥--=-- Category : Types and Data ------ %)
TYPE Results = (Done, NotDone,
NoMemory, FileNotFound, IoError):

TYPE rgText [8..2551;

Text = ARRAY rgText OF CHAR;

TextPtr = POINTER TO Text:

Labels = [1..20];

File:
(¥=mmmm Category @ Initialisations --===-------===-=---mmmmmomm oo *)
PROCEDURE Init; (¥ no comment. ¥)
PROCEDURE Open (VAR F ¢ File:

Name i ARRAY OF CHAR:
UAR Result : Results);

(¥ Open the named diskfile and read its content into the newly created
Textfile F. Answer Done=TRUE if successfull. %)

PROCEDURE Create (VAR F ¢ File;
UAR Result ¢ Results):

(¥ Create a new Textfile. Return Done=TRUE if successfull. %)

PROCEDURE Savefs (F i Files
Name : ARRAY OF CHAR:
VAR Result : Results):

(¥ Save the Textfile F to disk under Name. Return Done=TRUE if
successfull. %)

PROCEDURE Abandon (F ¢ File):

(% Delete Textfile F. Do not save its content. %)

6 - 38 F+\STANDARD\SPCLIB\TEXTFILE.DEF SPC MODULA-2 V1.4

(¥----- Category : Text Primitives —----==----=--mmmommom oo *)

PROCEDURE Position (F : File:
Line : CARDINAL)

(¥ Position the current line pointer of Textfile F to linenumber Line.
IF Line is < 1 then the first line becomes the current line, if Line
ist > total number of line, the last line becomes the current line. %)

PROCEDURE Replace (F ¢ File:
VAR NewLine © ARRAY OF CHAR:
VAR Result : Results);

(¥ Replace the content of the current line by NewLine. %)

PROCEDURE Insert (F ¢ File:
VAR NewLine : ARRAY OF CHAR:
VAR Result ! Results):

(¥ Insert NewLine behind the current line. Please note, that linenumbers
of all subsequent lines are incremented. ¥)

PROCEDURE Delete (F ¢ File)s

(¥ Delete the current line. Note, that linenumbers of all subsequent

lines are decremented. %)

(¥m=mmm Category ! Labels —=-=-==-==r--mmmmmm oo e *)

PROCEDURE Label (F ¢ Files
Lbl i Labels);

(¥ Set the label Lbl to the current position of file F. %)

PROCEDURE LineNumberOf (F ¢ File;
Lbl ¢ Labels)
: CARDINAL;

(% Position file F TO label Lbl. %)

(¥===mm Category ! Inguiries —===-=======—m=m—=—meeem oo oo *)

PROCEDURE ContentOf (F v Files
VAR Content © ARRAY OF CHAR);

(% Transfer the content of the current line into the buffer Content. %)
PROCEDURE LengthOf (F ¢ File)

: CARDINAL:
(¥ Answer the length of the current line. ¥)

PROCEDURE PositionOf (

F ¢ File)
+ CARDINAL:

SPC MODULA-2 V1.4 F+\STANDARD\SPCLIB\TEXTFILE.DEF

6 -39

(¥ Answer the linenumber of the current line. ¥)

PROCEDURE TotallinesOf (

F ¢ File)
+ CARDINAL;

(% Answer the total number of lines of file F. ¥)

PROCEDURE PointerOf (F ¢ File)
¢ TextPtr;

(¥ Answer a TextPtr to the content of the current line. The TextPtr must

be used with extreme care. In particular is it not allowed to use the
term HIGH(tp). ¥)

END TextFiles.

6 - 48 Fi\STANDARD\SPCLIB\TEXTFILE.DEF SPC MODULA-2 V1.4

(%===-== Category ! Module Identification —==--=-=-==---------oooo—mmme *)

(¥ Module Type 1 %) DEFINITION MODULE

(G Name 1 %) TextWindows;

(% . Function : Modula-2 Standard Window System *)
(% Version/Date : 1.1 1.8.87 *)
(¥ Product Name ¢ SSWiS . *)
(¥ Copyright + (c) 1987,1988 MODsoft, 07568 Karlsruhe %)
(¥=m=mm Category ! Module Abstract ------=--===-------o-oomomo oo *%

TextWindows provides the windowing environment of SSWiS, but
redefines the term "World Coordinates”. In the sense of a text window
the world consists of "Lines” and "Columns”, where lines and columns
are numbered 8..N. Linenumbers grow from top to bottom (of the world),
columns grow from left to right. The position of the window, etc. can
be specified using lines and columns, as long as the window at hand
has been opened via TextWindows.Open (instead of SSWiS.CreateWindow) .

The size of the world in terms of pixels depends on the character

font used. It is good programming practice, to isolate the application
modules from the details of character fonts by strictly relying on

the functionality provided by module TextWindows.

However it is possible, to manipulate the windows parameters by calling
the module SSWiS directly (passing the same handles). This is the
normal case for all screen coordinate-related functions, as well as

for the input event interface. Since the EventReport contains

world coordinates of module SSWiS, these coordinates must be
transformed to TextWindows.WorldCoordinates using the procedure
Identify.

Each text window maintains a socalled "Caret” at some position within
the world of lines and columns. The caret is used to specify the
position of textual output generated via the WriteXXXX procedures.
Whenever -output has been done, the caret position moves to the end

of the current write operation. It is essential, that the WriteXXXX
procedures be only used by the restore callback procedures. The

caret position can be inquired and explicitly set.

The output procedures below are to be used by the restore procedure,
which, in turn, is triggered by textwindows. Thus, these procedures do

not need a3 window handle, etc.
%)

(%===== Category : Types and Data ——--=---===-----=-o=mm—mmm oo %)
IMPORT SSHWiS;

(¥ The world of a textwindows consists of lines and columns. %)
(¥ The supported range is currently determined by 16bit value. X)
TYPE Coordinates = INTEGER;
FontSizes = (Small, Normal, Large):
Points = RECORD
X, Y : Coordinates;
RestoreProc = PROCEDURE ((%* Owner %) SSWiS.ModuleHandles,
(% Window %) SSWiS.WindowHandles,
(% XY %) Points,
SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\TEXTWIND.DEF G- 41

(¥ WH *¥) Points);

(¥ Callback procedure to restore the content of Window. The %)

(% affected area of the world is given in WorldCoords. *)
(¥==---- Category : Opening. Closing, Setup --—--------=---=------mmmmmn *)
PROCEDURE Create (Owner ¢ SSWiS.ModuleHandles;
Window ¢ SSHiS.HindowHandles;
Restore ¢ RestoreProc):

(¥ Open a new text window Window. Note, that you MUST use this procedure
to open a TextWindow (you cannot use SSWiS.CreateWindow). %)

PROCEDURE Delete (Owner : SSWiS.ModuleHandles:
Window i+ SSHiS.WindowHandles);

(¥ Close the TextWindow. %)

PROCEDURE ExplicitRestore
(

Owner ¢ SSWiS.ModuleHandles:
Window 1 SSWiS.HindowHandles:
XY, WH ¢ Points);

(¥ Issue an explicit repaint operation of window u., but restrict
repaint to the given rectangle within the world coordinate space. %)

PROCEDURE AssignFont (Owner ¢ SSWiS.ModuleHandles:
Window ¢ SSWiS.WindowHandles:
FontSize + FontSizes);

(¥ Assign non-proportional font for all output in window. %)

(%-==-~ Category : Control scrolling (World Coordinates) --------------- *)
PROCEDURE PositionWorld (Owner ¢ SSWiS.ModuleHandles;

Window ¢ SSWiS.WindowHandles:

XY ¢ Points):

(% Set the positon of the windows upper left corner in terms of
columns and lines. %)

PROCEDURE SizeWorld (Owner i SSWiS.ModuleHandles:
Window : SSWiS.WindowHandles;
WH ¢ Points):

(¥ Set the size of the application workspace in terms of
columns and lines. %)

PROCEDURE World0f (Owner i SSWiS.ModuleHandles:
Window i SSWiS.WindowHandles:
VAR XY. WH ¢ Points):

(¥ Answer the position and outline of the "world” in terms of columns
and lines. %)

G - 42

F\STANDARD\SPCLIB\TEXTWIND.DEF SPC MODULA-2 V1.

PROCEDURE InteriorQf { Owner i SSH1S . Moduletlandles:
Window ¢ SSWiS.WindowHandles:
VAR WH i Points):

(¥ Answer the actual size of the window measured in lines and columns. %)

PROCEDURE Identify - (Owner ¢ SSWiS.ModuleHandles:
HWindow ¢ SSWiS.WindowHandles:
RawXY : SSWi1S.Points:
VAR XY ¢ Points)

(¥ Answer the position in terms of column/line behind absolute paosition
x/y. %)

PROCEDURE SetCaret (Owner © SSWiS.ModuleHandles:
Window ¢ SSWiS.HindowHandles:
XY ¢ Points):

(¥ Turn the caret OnNotOff and set it to position Col/Line. %)

(¥=-=-- Category : Streamlike Output (used by restore) -=--=----==-=----u *)
PROCEDURE Position (XY ¢ Points):

(% Set caret to Col/Line. ¥)

PROCEDURE PositionOf (VAR XY ¢ Points);

(¥ Answer caret position. %)

PROCEDURE Invert (OnNotOff : BOOLEAN);

(¥ Turn inverse writing mode OnNotOff.)

PROCEDURE Write (ch ¢ CHAR):

(% Write character ch to window u at current position. %)

PROCEDURE WriteString (s i ARRAY OF CHAR):

(¥ Write a string at caret position to window u. %)

PROCEDURE Hriteln;

(¥ End current line (line containing the caret) and skip to next
line on window u. %)

PROCEDURE Clear:

(% Clear until end of window. %)

PROCEDURE HWriteLine (VAR s i ARRAY OF CHAR);

(¥ Write a string at caret position to window u. Same as WriteString
but improved speed due to VAR parameter. %)

SPC MODULA-2 V1.4 F+\STANDARD\SPCLIB\TEXTWIND.DEF

6 - 43

END TextWindows.

G - 44 F+\STANDARD\SPCLIB\TEXTWIND.DEF SPC MODULA-2 V1.4

(¥===-- Category : Module Identificatign ===-=-=====-m--omemmomm oo *)

(¥ Module Type 1 %) DEFINITION MODULE

[CN Name ¢ %) XStr:

(€ Function : Extended String Primitives %)
[C Uersion/Date @ 1.8 29.5.1987 %)
(¥ Product Name 1 SPC *)
(¥ Copyright ¢ (c) 1987, MODsoft. D7588 Karlsruhe %)
(%==mmm Category : Module Abstract --------=--------—mm o m oo *%

XStr provides operations on strings beyound those of the standard module
Strings. In particular are conversions between non-string datatypes and
strings in either direction supported. XStr interfaces reference the
portion of interest by an index. The index is normally proceeded by the
XStr function itself. %)

(¥===-= Category : Types and Data ------------=-----------ommmmmeo oo %)
TYPE TermProc = PROCEDURE (CHAR) : BOOLEAN:
(¥ Answer FALSE, if the character meets some *)
(¥ termination condition. *)
VAR NumberBase : CARDINAL:
(¥---—- Category : Copying and Scanning Strings --------------=-----—wuo *)
PROCEDURE CopyForkhile (While i TermProc;
VAR For : CARDINAL:
VAR From 1 ARRAY OF CHAR:
VAR FromInd : CARDINAL;
VAR To © ARRAY OF CHAR:
VAR ToInd ¢ CARDINAL):

(¥ Copy the String From starting at character FromInd to the string To
starting at character Tolnd until For characters are copied or the
termination procedure While answers FALSE to the current character. %)

PROCEDURE ScanForWhile (While ¢ TermPraoc;
VAR For ¢ CARDINAL:
VAR From ¢ ARRAY OF CHAR:
VAR FromInd : CARDINAL):

(% Scan the String From starting at character FromInd until For
characters are copied or the termination procedure While answers
FALSE to the current character. %)

(¥===-= Category : Default Termination Procs -------=--==-----mommmommmme *)

PROCEDURE Forever (c : CHAR) : BOOLEAN;

PROCEDURE WhileInDigits (c : CHAR) : BOOLEAN:

PROCEDURE WhileInHexDigits (c ¢ CHAR) : BOOLEAN;

PROCEDURE WhileEqualBlank (c ¢ CHAR) : BOOLEAN:

PROCEDURE WhileInAlphas (c ¢ CHAR) : BOOLEAN:

PROCEDURE WhileInAlphaNums (c ¢ CHAR) : BOOLEAN:

PROCEDURE WhileInPathChars (c ¢+ CHAR) : BOOLEAN;

(¥=mmm Category ! Texts —=-----=—mmmmmm oo *)

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\XSTR.DEF G - 45

PROCEDURE Char (Ch ¢ CHAR;
VAR String ¢ ARRAY OF CHAR;
VAR Pos ¢ CARDINAL);

(¥ Put the character Ch into String at position Pos. Advance Pos. ¥)

(¥ Category : Numbers To Strings —-------=-=-----=---ommmmmommooo oo %)
PROCEDURE Cardinal (Number : CARDINAL:
Length : CARDINAL;
Base ¢ CARDINAL;
VAR String ' ARRAY OF CHAR;
VAR Pos CARDINAL);

(% Convert Number to a textual representation of Length characters
(leading blanks are inserted if required) using Base as the number base
and put it into String at Pos. Advance Pos is sucessfull. %)

PROCEDURE Longcard (Number : LONGCARD;
Length : CARDINAL;
Base ¢ CARDINAL:
VAR String ¢ ARRAY OF CHAR:
VAR Pos : CARDINAL):

(¥ See above. %)

PROCEDURE Integer (Number ¢ INTEGER;
Length : CARDINAL;
Base : CARDINAL;
VAR String : ARRAY OF CHAR;
VAR Pos : CARDINAL):

(% See above. %)

PROCEDURE Longint (Number : LONGINT:
Length ¢ CARDINAL:
Base 1 CARDINAL:
VAR String : ARRAY OF CHAR;
VAR Pos : CARDINAL):

(¥ See above. ¥)

PROCEBURE Real (Number ¢ REAL;
Length i INTEGER:
FracLength : INTEGER;
VAR String i ARRAY OF CHAR:
VAR Pos + CARDINAL):

(%¥ Convert Number to a textual representation of Length characters
(leading blanks are inserted if required) in total and FraclLength
characters behind the decimal point. Put it into String at Pos and
advance Pos is sucessfull. If FraclLength is less than 8, then
scientific notation is used. If Number is not a valid real number,
then the string NAN is inserted into String, if the number does not
fit into Length, then Length asterisks are inserted. ¥)

PROCEDURE Longreal (Number : LONGREAL ;
Length : INTEGER;

G - 46

F:\STANDARD\SPCLIB\XSTR.DEF SPC MODULA-2 V1.

FracLength : INTEGER;

VAR String ' ARRAY OF CHAR:
VAR Pos : CARDINAL)

(¥ see above. %)

PROCEBURE InuCardinal (VAR Number + CARDINAL;
VAR String ¢ ARRAY OF CHAR:
VAR Pos : CARDINAL)
: BOOLEAN;

(¥ Parse String, starting for a position Pos, for a CARDINAL number. If
successfull then answer TRUE and advance Pos.

The number syntax is : digit{digit}. *)

PROCEDURE InvLongcard (VAR Number ¢ LONGCARD
VAR String 1 ARRAY OF CHAR;
UAR Pos + CARDINAL)
: BOOLEAN;

(% See above. %)

PROCEDURE InvInteger (VAR Number : INTEGER;
VAR String ¢ ARRAY OF CHAR;
VAR Pos : CARDINAL)
: BOOLEAN;

(% Parse String, starting for a position Pos, for an INTEGER number. If
successfull then answer TRUE and advance Pos.

The number syntax is : [+|-1digit{digit}. %)
PROCEDURE InvLongint (VAR Number ¢ LONGINT:
VAR String : ARRAY OF CHAR:
VAR Pos : CARDINAL)

: BOOLEAN;

(¥ See above. %)

PROCEDURE InuReal (VAR Number : REAL:
VAR String ¢ ARRAY OF CHAR:
VAR Pos : CARDINAL)
¢ BOOLEAN;

(% Parse String, starting for a position Pos, for a REAL number. If
successfull then answer TRUE and advance Pos. Real syntax is :

realnumber = fixedpointnumber [exponentl.
fixedpointnumber = [signl {digit} ['."' {digit}]

exponent = (e’ | 'E") [sign] digit {digit}.

sign = et

digit =g e 3tlestle 718t g”

The following numbers are legal representations of one
hundred: 108, 1@0El, 180E0, 1880BE-1, E2, +E2, 1E2, +1E2,
+1E+2, 1E+2 . %)

PROCEDURE InvLongreal (VAR Number i LONGREAL;
VAR String i ARRAY OF CHAR;
SPC MODULA-2 V1.4 F+\STANDARD\SPCLIB\XSTR.DEF G - 47

VAR Pos : CARDINAL)
: BOOLEAN;

(¥ See above. ¥)

END XStr.

G - 48 F+\STANDARD\SPCLIB\XSTR.DEF SPC MODULA-2 V1.4

Die SYSLIB

Anhang H

SPC MODULA-2 V1.4

SYSLIB

Diese Seite wurde aus
satztechnischen Grinden frei
gelassen

SYSLIB

SPC MODULA-2 V1.4

(%==--- Category : Module Identification ----==----------mommmmmoomooe oo *)

(¥ Module Type 1 ¥) DEFINITION MODULE

* . Name : %) AESApplications:

% . Function i Interface to GEM AES *)
[C Version/Date @ 1.8 1.7.1987 %)
(% Product Name + SPC *)
(¥ Copyright ¢ (c) 1987, MODsoft, D75088 Karlsruhe %)
[Category : Module Abstract mmmmmmmmm oo oo *%

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”,

SYBEX, ISBN 3-88745-501-8, 1.Auflage 1987 %)

(H===== Category : Types and Data ~—-- R e *)

FROM SYSTEM IMPORT ADDRESS:

(¥=mmmm Category : Primitives --=-====--==---m-mcmomm oo oo oo *)
PROCEDURE Initialise () + INTEGER;

(¥ Initialise application. Returns ApId %)

PROCEDURE Read (Id, Length : INTEGER;
PBuff ! ADDRESS);

(¥ Read from a message pipe. ‘Returns coded return message, 8 = error ¥)

PROCEDURE Write (Id, Length : INTEGER:
PBuff ¢ ADDRESS)
(¥ Write to a message pipe. Returns coded return message, @ = error ¥)
PROCEDURE Find (VAR FPname ¢ ARRAY OF CHAR)
1 INTEGER;

(¥ Find the Id of another application in the system. %)

PROCEDURE TPlayback (TpMem : ADDRESS;
TpNum ,
TpScale : INTEGER):

(% Play back a piece of GEM AES recording of user’s actions. %)

PROCEDURE TRecord (TrMem : ADDRESS;
TrNum 1 INTEGER)

(¥ Record the next ApTrNum user actions. Returns number recorded. %)

PROCEDURE Exit;

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\AESAPPLI.DEF

(% Exit application. %)

END AESApplications.

F:\GEMDOS\SYSLIB\AESAPPLI.DEF

SPC MODULA-2 V1.4

(==~~~ Category : Module Identification -—-=------=-==---ommmomemmm *)
(% Module Type ¢ %) DEFINITION MODULE

* . Name ! ¥) AESBase;

[C Function LX)

* Version/Date : 1.8 / 082.07.1987 *)
(¥ Product Name i SPC %)
(¥ Copyright : (c) 1987, MODsoft, 07508 Karlsruhe *)
(¥----- Category : Module Abstract ----------- *¥%

This module implements the MODULA-2 interface to GEM AES. All functions

are explained in various documents about GEM on the ATARI ST computer.

However, some datatypes are declared as MODULA-2 records or enumeration

types to simplify access to them. They will be explained as necessary.

Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”,
SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987

(=== Category : Types and Data ——---===--=--==-----ooommmeo oo *)

FROM SYSTEM IMPORT ADDRESS:

CONST MWhite = 8
Black = 1
Red = 2
Green = 3
Blue = 4
Cyan = 5
Yellow = b
Magenta = 7
LightHhite = 8;
LightBlack = 9;
LightRed = 18;
LightGreen = 11
LightBlue =12
LightCyan = 13
LightYellow = 14
LightMagenta = 15;
TYPE AESGlobalType = RECORD
apVersion : CARDINAL;
apCount H CARDINAL;
apID + CARDINAL;
apPrivate 1 LONGCARD
apPTree : ADDRESS:
apiResv ! LONGCARD;
apZResv ! LONGCARD:
ap3Resv : LONGCARD;
ap4Resv H LONGCARD;
END;
AESControlType = RECORD
opcode H CARDINAL;
sizeIntIn ¢ CARDINAL:
sizelntOut + CARDINAL;
sizeAddrIn H CARDINAL;
sizeAddrOut : CARDINAL;
END;
AESIntInType = ARRAY [@..16]1 OF INTEGER;
AESINntOutType = ARRAY ([B..7) OF INTEGER:
AESAddrInType = ARRAY [@..2]1 OF ADDRESS;
AESAddrOutType = ARRAY [@..11 OF ADDRESS:
SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\AESBASE . DEF H -

AESParameterType=
control H
global
intIn
intOut :
addrln :
addrOut :

VAR AESParameters
AESGlobal
AESControl
AESIntIn
AESIntOut
AESAddrIn
AESAddrout

CallResult

PROCEDURE GEMCall (

END AESBase.

RECORD
POINTER TO AESControlType;
POINTER TO AESGlobalType;
POINTER TO AESIntInType:
POINTER TO AESIntOutType;
POINTER TO AESAddrInType;
POINTER TO AESAddrOutType:

END ;

: AESParameterType ;
! AESGlobalType ;

¢ AESControlType ;

¢ AESIntInType

¢ AESIntOutType

: AESAddrInType ;

1 AESAddrOutType

¢ INTEGER;

Opcode + INTEGER;:
Cntrll s

Cntrl2 s

Cntrl3 ,

Cntrld 1 INTEGER);

F:\GEMDOS\SYSLIB\AESBASE . DEF

SPC MODULA-2 V1.4

(% Module Type

[C N
[C
(%

(% ﬁroduct Name
(¥ Copyright

Category : Module

Name
Function
Version/Date

Category : Module

Identification —===========—coocmome e

%) DEFINITION MODULE
¢ %) AESEvents:
+ Interface to GEM AES
1 1.8 1.7.1987
i SPC

(c) 1987, MODsoft, D7588 Karlsruhe

Abstract ~------------m-mo- ittt

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankawski, Reschke, Rabich "ATARI ST Profibuch”

CONST

PROCEDURE Keyboard

SYBEX,

*)
*)
*)
*)

*%

SYSTEM IMPORT WORD;

Events =

SetOfEvents =

KbdStates =

Set0fKbdStates

(¥ Message value
MenuSelected
HindowRedraw
HWindowTopped
HWindowClosed
WindowFulled
HindowArrowed
WindowHorizS1ided
WindowVertSlided
HindowSized
HindowMoved
HindowNewTop
AccessoryOpen
AccessoryClose

[T TR TR TR T T}

Wouownou

ISBN 3-88745-581-8, 1.Auflage 1987 *)
Category : Types and Data --=------=---------- -- *)

(KeyboardEvent,

ButtonEvent,

MouselEvent,

Mouse2Event,

MessageEvent,

TimerEvent);

SET ‘OF Events;

(RightShift,

LeftShift,

CTRL,

ALT);

= SET OF KbdStates;

*)

10; (¥ Menu item was selected ¥)

20; (¥ Window needs redrawing %)

21 (% A window was moved to the top %)

22; (¥ Hindow was closed %)

23; (¥ Wndow was fulled %)

24; (¥ Window was arrowed %)

= 25; (% Horizontal slider was moved %)

= 265 (¥ Vertical slider was moved %)

27 (¥ Window was sized %)

28; (¥ Window was moved ¥)

29; (¥ Hindow was moved to top (activated) *)
48; (¥ Accessory requested to open ¥)

41; (¥ Accessory requested to close %)

Category : Primitives ——---------mm—mmommm e e *)

() + INTEGER;

(¥ Wait for keyboard input. %)

PROCEDURE Button (

Clicks : INTEGER;
RequMask

SPC MODULA-2 V1.4

F:\GEMDOS\SYSLIB\AESEVENT . DEF

RequState
VAR x, y
VAR ButState
VAR KbdState
: INTEGER;

(% Wait for a mouse action. ¥)

PROCEBURE Mouse (RetOnExit
X, Y, W, h

VAR mX, mY

VAR ButState

VAR KbdState

+ BITSET;

INTEGER;
BITSET;

¢ Set0fKbdStates)

: BOOLEAN;

i

i

INTEGER;
INTEGER:

BITSET:
Set0fKbdStates);

(¥ Wait for mouse to enter or leave a specified rectangle. %)

PROCEDURE Message (VAR MsgBuffer

i

ARRAY OF WORD);

(% Wait for 16 bit message from the message pipe. %)

PROCEDURE Timer (Millisecs

(% Wait for time to pass ¥)

PROCEDURE Multiple (EventMask

RequState

x1l, yi
Wi, hi
RetOnExit2

VAR MsgBuffer
Millisecs
VAR mX, mY
VAR ButState
VAR KbdState
VAR KeyCode
VAR Clicks
¢ SetOfEvents;

(¥ Wait for multiple events. ¥)

PROCEDURE DoubleClick (NewSpeed

SetNotGet
+ INTEGER

(% Set or Get double click speed. %)

END AESEvents.

¢ LONGCARD) ;

¢ SetOfEvents;
RequClicks :
RequButtons:
¢ BITSET: |
RetOnExitl :

INTEGER;
BITSET:

BOOLEAN:

: INTEGER;
: BOOLEAN;

i INTEGER;

: ARRAY OF

INTEGER;

: LONGCARD:
+ INTEGER;

BITSET;

1 SetOfKbdStates:
: INTEGER:
: INTEGER)

© INTEGER;
: BOOLEAN)

F1\GEMDOS\SYSLIB\AESEVENT . DEF

SPC MODULA-2 V1.

(¥====- Category : Module Identification —--------=----==uc-u- *)

(¥ Module Type ¢ %) DEFINITION MODULE

(¢ Name : %) AESForms;

[C Function : *)

(% Version/Date : 1.8 / 82.87.1987 *)
(% Product Name ¢ SPC %)
(¥ Copyright + (c) 1987, MODsoft, D7588 Karlsruhe %)
(= Category : Module Abstract --—---=--------=sommmo s oo **

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 %)

(¥-==-- Category : Types and Data --------------=-------o-oomo -—¥)

FROM SYSTEM IMPORT = ADDRESS:
IMPORT AESObjects:

TYPE Phases = (Start, Grow, Shrink, Finish);
(%----- Category : Primitives —=---==-=-----mmmmm oo *)
PROCEDURE Do (Tree ¢ AESObjects.TreePtr;

StartObj : INTEGER)

¢ INTEGER

(% Causes the form library to monitor a users interaction with a form %)

PROCEDURE Dialogue (Flag : Phases!
LitX, LitY ,
Lith, LitH ,
BigX, BigY .,
Bigl, BigH : INTEGER);

(* Multi forms action according to flag %)

PRUCEDUﬁE Alert (DefButton : INTEGER;
VAR String : ARRAY OF CHAR)
: INTEGER

(% Displays an alert %)

PROCEBURE Error (ErrorNum : INTEGER)
: INTEGER

(% Displays an error %)

PROCEDURE Center (Tree ¢ AESObjects.TreePtr;
VAR X, Y, W, H : INTEGER);

(% Centers a dialog box on the screen ¥)

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\AESFORMS . DEF

PROCEDURE FileSelectorInput
(VAR Path ,
Selection : ARRAY OF CHAR;
VAR OkNotCancel: BOOLEAN);

END AESForms.

H-18 Fi\GEMDOS\SYSLIB\AESFORMS . DEF SPC MODULA-2 V1.4

(¥===== Category : Module Identification ------------==---cmmmmmomomoooo *)

(¥ Module Type 1 %) DEFINITION MODULE

% . Name : *) AESGraphics:

* . Function *)

(% Version/Date : 1.8 / 82.07.1987 *)
(% Product Name ¢ SPC *)
(¥ Copyright ¢ (c) 1987, MODsoft, D75088 Karlsruhe *)
(¥=---- Category : Module Abstract ---- -=- %

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch™,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 %)

(=---- Category : Types and Data ittt --- ¥)

IMPORT AESEvents, AESODbjects:

CONST Arrow = 8;
TextCursor =13
HourGlass =23
PointHand =3
FlatHand = 4
ThinCross =5
ThickCross ElCH
OutlineCross =7
UserDef = 255;
MouseOff = 256;
MouseOn = 257
TYPE Cursors = [Arrow. .MouseOnl;
(¥----- Category ! Primitives bbbt Lt bl %)
PROCEDURE RubberBox (X, Y, W, H : INTEGER:
VAR LastH)
LastH : INTEGER);
(¥ Draws a "rubber box" %)
PROCEDURE DragBox (X, Y, W, H : INTEGER:
BoundX
BoundY
BoundW
BoundH ¢ INTEGER:
UAR LastX ,
LastY i+ INTEGER)

(% Allow user to drag a box %)

PROCEDURE MoveBox (X, Y, W, H : INTEGER;:
DestX)
DestY : INTEGER);

(¥ Draws a moving box ¥)

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\AESGRAPH . DEF

H-11

PROCEDURE GrowBox (StX, StY
StW, StH : INTEGER;
FinX, FinY .
Find, FinH : INTEGER):

(* Draws an expanding box outline ¥)

PROCEDURE ShrinkBox (FinX, FinY ,
Finl, FinH : INTEGER;
StX, StY
StH, StH : INTEGER);

(¥ Draws an shrinking box outline %)

PROCEDURE WatchBox (Tree ! AESObjects.TreePtr:
Object : INTEGER:
InState
OQutState : AESObjects.SetOfStates)
: BOOLEAN;

(¥ Tracks mouse in and out of box %)

PROCEDURE S1ideBox (Tree ¢ AESObjects.TreePtr:
Parent)
Obj + INTEGER;
VertNotHor : BOOLEAN)
: INTEGER ;

(% Tracks sliding box in a parent box %)

PROCEDURE Handle (VAR WChr, HChr ,
WBox, HBox : INTEGER)
: INTEGER ;

(¥ Gets the GEM UDI handle %)

PROCEDURE Mouse (Form + Cursors:
UserDef { AESOb jects.AnyBitmapPtr);

PROCEDURE MouseKeyboardState
(VAR X, Y : INTEGER;
VAR ButtonState: BITSET:
UAR KbdState 1 AESEvents.SetOfKbdStates)

(% Return mouse loc and state *%)

END AESGraphics.

H- 12 Ft\GEMDOS\SYSLIB\AESGRAPH.DEF SPC MODULA-2 V1.

(¥===--- Category ! Module Identification --------=--====----- -- %)
(¥ Module Type : %) DEFINITION MODULE

(% . Name i ¥) AESMenus:

[C 2 Function Po¥)

[C Version/Date : 1.0 / 82.87.1987 %)
(¥ Product Name 1 SPC *)
(% Copyright : (c) 1987, MODsoft, D75868 Karlsruhe *)
(¥===-= Category : Module Abstract -—-------=-=-—==——mmmm e *%

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.

Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch”
SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987

(¥----- Category : Types and Data ----=-=-===---==--—---ommoomoomo oo

IMPORT AESObjects;

(¥===mm Category : Primitives -===-===-=-=--mmommm oo

PROCEDURE Bar (Tree ¢ AESObjects.TreePtr;
ShowNotHide: BOOLEAN):

(¥ Display or erase current menu bar %)

PROCEDURE ItemCheck (Tree ¢ AESObjects.TreePtr;
Item ¢ INTEGER;
SetNotRemv : BOOLEAN);

(% Display or erase a check mark next to a menu item %)

PROCEDURE ItemEnable (Tree ¢ AESObjects.TreePtr:
Item : INTEGER:
Enable : BOOLEAN);

’

(¥ Enables or disables a meru item %)

PROCEDURE TitleNormal (Tree ¢ AESObjects.TreePtr;
Title + INTEGER;
Normal : BOOLEAN);

(% Displays a menu title in normal or reverse video %)

PROCEDURE Text (Tree ¢ AESOb jects.TreePtr;

Item : INTEGER:
String : ARRAY OF CHAR):

(¥ Changes the text of a menu item %)

PROCEDURE Register (Apid + INTEGER:
String 1 ARRAY OF CHAR)
: INTEGER;
SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\AESMENUS . DEF H- 13

(% Place desk accessorie’'s text in a menu %)

END AESMenus.

H- 14 F+\GEMDOS\SYSLIB\AESMENUS . DEF SPC MODULA-2 V1.4

Category :

(¥ Module Type
(%

G .
(%

Name
Function
Version/Date

(% éroduct Name
(¥ Copyright

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”

FROM
TYPE

Category : Module Abstract ------------------

Module Identification

¢ %) DEFINITION MODULE
1 %) AESObjects:

To¥)

i 1.8 / 82.87.1987

¢ SPC

(c) 1987, MODsoft, D7588 Karlsruhe

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987

Category :

Types and Data ---

SYSTEM IMPORT ADDRESS;

Types

Flags

Set0fFlags

States

Set0fStates

Edits
Justifications
AnyText
AnyBitmap

(t8, t1, t2, t3, t4, t5, t6, t7, t8, t9,
ugd, ul, uzZ, u3, ud, uS, ub, u?, u8, ug,
Box,

Text,

BoxText,

Image,

ProgDef,

InvisibleBox,

Button,

BoxChar,

String,

FormattedText,

FormattedBoxText,

Icon,

Title);

(Selectable,
Default,
Exit,
Editable,
RadioButton,
LastObject,
TouchExit,
HideTree,
Indirect);

SET OF Flags;

(Selected,
Crossed,
Checked,
Disabled,
Outlined,
Shadowed) ;

= SET OF States:;

(InitText, AcceptChar, Terminate):
(Left, Right, Centered);

ARRAY [@..9991 OF CHAR:

ARRAY [@..999] OF BITSET;

SPC MODULA-2 V1.4

F:\GEMDOS\SYSLIB\AESOBJEC. DEF

H - 15

AnyTextPtr = POINTER TO AnyText;
AnyBitmapPtr = POINTER T0 AnyBitmap;
TedInfoPtr = POINTER TO TedInfo;
IconBlkPtr = POINTER TO IconBlk;
BitBlkPtr = POINTER TO BitBlk;
ApplBlkPtr = POINTER TO ApplBlk;
ParamBlkPtr = POINTER TO ParamBlk;
Object = RECORD

Next : INTEGER;

Head, Tail + INTEGER;

Reserved i CHAR:

Type : Types;

Flag i SetOfFlags;

State ¢ SetOfStates;

CASE : Types OF

Box, BoxChar,
InvisibleBox ¢ Colour @ INTEGER;
(% Border : [-127..1271; %)
Char ¢ CHAR;

| Text, BoxText

String, Title : TxtP 1 AnyTextPtr:
| Image ¢ BitBlkP : BitBlkPtr;
| ProgDef : ApplBIkP : ApplBlkPtr:
| FormattedText,

FormattedBoxText,

Button i TedInfoP : TedInfoPtr;
| Icon ¢ IconBlkP : IconBlkPtr;
END;

X, 4. W, h INTEGER:
ObjectTree = ARRAY [B..999] OF Object;
TreePtr = POINTER TO ObjectTree;
TedInfo = RECORD

Text .

Template

Valid AnyTextPtr;

Font INTEGER;

Reservedl INTEGER:

Justif Justifications;

Colour INTEGER;

Reserved? INTEGER;

Thickness INTEGER;

Textlen INTEGER;

Templatelen INTEGER;

END;
IconBlk = RECORD

Mask ,

Data AnyBitmapPtr;

Text AnyTextPtr;

Reserved CHAR;

Char CHAR:

xChar, yChar INTEGER;

X, Yy, W, h INTEGER;

xText, yText

wWiext, hText INTEGER:

END;
BitBlk = RECORD
Data AnyBitmapPtr;
W, h, x, y INTEGER;

H- 16

F+\GEMDOS\SYSLIB\AESOBJEC . DEF

SPC MODULA-2 V1.

Colour : INTEGER;

END;
ParamBlk = RECORD
Tree : TreePtr:
0Obj : INTEGER;
PreviousState : Set0fStates:
CurrentState Set0fStates:
X, Yy, W, h i INTEGER:
xc, yc, we, he INTEGER:
END;
DrawProc = PROCEDURE (VAR ParamBlk)
ApplBlk = RECORD
Code i DrawProc;
Param i ParamBlkPtr;
END;
(¥-=--- Category : Primitives =—=--=----mmmmmm o ¥)
PROCEDURE Add (Tree ¢ TreePtr;
Parent .
Child + INTEGER):

(¥ Adds and object to the object tree ¥)
PROCEDURE Delete (Tree ¢ TreePtr:
0bj ¢ INTEGER);
(% Delete an object from an object tree %)
PROCEDURE Draw (Tree ¢ TreePtr;
StartObj
Depth ,
X, Yy, W, h : INTEGER);

(% Draws any object(s) in the object tree ¥)

PROCEDURE Find (Tree i TreePtr:
StartObj
Depth © INTEGER;
X, y : INTEGER)
+ INTEGER

(¥ Finds an object under the mouse form %)

PROCEDURE 0Offset (Tree ¢ TreePtr;
Obj : INTEGER;
UAR x, y . INTEGER):

(¥ Computes an objects X and Y coords relative to the screen %)

PROCEDURE Order (Tree i TreePtr;
Obj ,
NewPas : INTEGER);

(¥ Moves an object within its parents list ¥)

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\AESOBJEC.DEF

H-17

PROCEDURE Edit (Tree i TreePtr;

Obj + INTEGER;

Char : CHAR:

IdX i INTEGER;

Kind ¢ Edits;
VAR NewIdX : INTEGER):

(¥ Allow user to edit text in an object ¥)

PROCEDURE Change (Tree ¢ TreePtr;
Obj ,
X, 4, W, h i INTEGER;
NewState i SetOfStates;
Redranw 1 BOOLEAN);

(¥ Changes an objects State value ¥)

END AESObjects.

H - 18 F+\GEMDOS\SYSLIB\AESOBJEC.DEF SPC MODULA-2 UL.4

(¥===m= Category ! Module Identification ---==-=======---—ommmooooomoo *)

(¥ Module Type : %) DEFINITION MODULE

[Name i %) AESResources;

[C Function LX)

(% . Version/Date : 1.8 / 82.87.1987 %)
(¥ Product Name : SPC *)
(% Copyright : (c) 1987, MODsoft, D7588 Karlsruhe *)
(¥===== Category : Module Abstract ----- - ——== ———%¥

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”

SYBEX, ISBN 3-88745-501-8, 1.Auflage 1987 *)

(%=-=-- Category : Types and Data —-----=-===--=r-mo-mmmmm oo *)

FROM SYSTEM IMPORT ADDRESS;
IMPORT AESObjects;

TYPE ItemTypes = (Tree, Object, TedInfo, IconBlock,
BitBlock, String, ImageData, ObSpec,
Text, Template, Valid, IconBlkMask,
IconBlkData, IconBlkText, BitBlkData,
FreeString, Freelmage):

(¥=m=== Category : Primitives *)
PROCEDURE Load (FName : ARRAY OF CHAR);

(¥ Load a resource file ¥)

PROCEDURE Free;

(¥ Free loaded space ¥)

PROCEDURE GetAddr (Type ¢ ItemTypes;
Index : INTEGER;
VAR Addr : ADDRESS)

/(* Get address of resource ¥)

PROCEDURE SetAddr (Type ¢ ItemTypes;
Index ¢ INTEGER:
Addr ¢ ADDRESS);

(% Set address of resource ¥)
PROCEDURE ObjectFix (Tree ¢ AESObjects.TreePtr:
0bj : INTEGER):

(% Convert object’s character x,y to pixel x,y %)

END AESResources.

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\AESRESOU. DEF

H-19

H- 28 F1\GEMDOS\SYSLIB\AESRESOU. DEF SPC MODULA-2 V1.4

(%----- Category : Module Identification --=----=--------------mommmooe *)

(¥ Module Type ¢ %) DEFINITION MODULE

[CI Name ¢ %) AESScraps;

(% . Function P %)

[C Version/Date : 1.8 / 82.87.1987 *)
(¥ Product Name 1 SPC *)
(¥ Copyright : (c) 1987, MODsoft, D7588 Karlsruhe *)
(¥-mm=m Category : Module Abstract ----- ---- --- - %%

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
tupes to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 *)

(%----- Category : Types and Data -------------- : -%)
FROM SYSTEM IMPORT ADDRESS:

(¥==--= Category : Primitives ———======---o-——eo oo *)
PROCEDURE Read ¢ Scrap i ADDRESS)

(¥ Reads the current scrap directory %)

PROCEDURE Hrite (Scrap : ADDRESS):

(¥ Writes the current scrap directory *)

END AESScraps.

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\AESSCRAP . DEF

H-21

(¥==m-- Category : Module Identification -- - ==

(¥ Module Type + %) DEFINITION MOOULE
(% . Name ¢ ¥) AESShells;
(% . Function to¥)
(% . Version/Date : 1.8 / 82.87.1987 *)
(¥ Product Name ¢ SPC *)
(¥ Copyright + (c) 1987, MODsoft, D75088 Karlsruhe %)
(%----- Category : Module Abstract *%
This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”,
SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 *)

(%----- Category : Types and Data —----—=------——==-==-—---c-mmm—om %)
FROM SYSTEM IMPORT ADDRESS;
(%----- Category : Primitives ------- -- -=-%)
PROCEDURE Read (VAR Command ,

Tail ! ARRAY OF CHAR);
PROCEDURE Write ' (ChainNotXit: BOOLEAN;

GrafAppl : BOOLEAN;

GEMApp1 : BOOLEAN;

Command

Tail ¢ ARRAY OF CHAR);
PROCEDURE Find (VAR Buffer : ARRAY OF CHAR):
PROCEDURE Envrn (VAR Value

Param © ARRAY OF CHAR):

END AESShells.

H - 22

F:\GEMDOS\SYSLIB\AESSHELL . DEF

SPC MODULA-2 V1.4

(¥==mm- Category : Module Identification --==--=-=--=--=-mooooooooooe o *)

(% Module Type : %) DEFINITION MODULE

(* . Name %) AESHindows:

(% . Function ¢ Interface to GEM AES *)
(% . Version/Date : 1.8 1.7.1987 *)
(% Product Name 1 SPC *)
(¥ Copyright ¢ (c) 1987, MODsoft, D7560 Karlsruhe %)
(¥--=-= Category ' Module Abstract --------------- ---== --—%%

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”

SYBEX, ISBN 3-88745-561-8, 1.Auflage 1987 %)

(¥==--= Category : Types and Data —--=---====--=-==m-ommmo oo *)
FROM SYSTEM IMPORT ADDRESS:

TYPE Elements = (NameLine , Closer , Fuller
Mover , InfolLine , Sizer
UpArrow , DownArrow , VertSlider

LeftArrow ., RightArrow , HorizSlider)
SetOfElements = SET OF Elements:

TYPE Items = (Illegal,
Kind,
Name, . Info,
WorkXYWH, CurrXYWH,
PreuvXYWH, Ful IXYWH,
HorizSliderPos, VertSliderPos,
Top,
FirstXYKWH, NextXYWH,
Reserved, NewDesk ,
HorizSliderSize, VertSliderSize,
WindowScreen) :
ItemStruc = RECORD
CASE Field ¢ Items OF
Kind: Elems : SetOfElements:
| Name, Info: Str : ADDRESS;
| NewDesk: Tree : ADDRESS:

0bj + INTEGER;

WorkXYWH , CurrXYWH,

PrevXYWH , FullXYWH,

FirstXYWNH, NextXYWH: X,4,W, hi INTEGER:
HorizSliderPos,

VertSliderPos: Pos : INTEGER;
| HorizSliderSize,

VertSliderSize: Size ¢ INTEGER:
| Top: Wind : INTEGER;
| ELSE Nothing: CARDINAL;
END:

END;

TYPE WindowAreas (HindowOutline, WindowInterior);

UpdateFlags = (EndUpdate,
BeginUpdate,

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\AESWINDO. DEF

H-23

EndMouseControl,
BeginMouseControl);

(¥-—--- Category : Primitives - ¥)
PROCEDURE Create (Kind i SetOfElements;
X, Y, W, H : INTEGER)
: INTEGER :

(¥ Create a new window with specified elements and maximum size of
X/Y+H/H. Return the AES window handle if successfull. ¥)

PROCEDURE Open (Handle ¢ INTEGER;
X, Y, W, H : INTEGER);

(% Open the window with an outline of X/Y+W/H. %)

PROCEDURE Close (Handle ¢ INTEGER);

(¥ Close the window. %)

PROCEDURE Delete (Handle + INTEGER):
(% Delete the window and free space. %)
PROCEDURE Get (Handle : INTEGER;

VAR Item ¢ ItemStruc);
(¥ Answers info of a window further specified by Item.Field in Item. %)
PROCEDURE Set (Handle + INTEGER;

Item ¢ ItemStruc):

(% Sets info of a window further specified by Item¥)
PROCEDURE Find (mX, mY : INTEGER)

: INTEGER :

(¥ Find window under position mX/mY. %)

PROCEDURE Update (BegEnd ¢ UpdateFlags);

(¥ Update window %)

PROCEDURE Calc (Type . : WindowAreas;
Kind ¢ SetOfElements;
InX, InY

Ind, InH : INTEGER ;
UAR OutX, OutY |
Outd, OutH : INTEGER):

(% Calc window outline (Type = WindowOutline) from interior or
interior (Type = WindowInterior) from outline. %)

H - 24

F:\GEMDOS\SYSLIB\AESWINDO. DEF SPC MODULA-2 VL.

END AESWindows.

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\AESWINDO.DEF H - 25

(¥=---- Category : Module Identification --—--=----------=----------ome *)

(% Module Type ¢ %) DEFINITION MODULE

[C Name ¢ %) AltResource:

(% . Function : Load and Fixup AES Resource Files *)
(€ Version/Date @ 1.8 / 82.87.1987 *)
(¥ Product Name i SPC %)
(¥ Copyright ¢ (c) 1987, MODsoft, D7588 Karlsruhe %)
(¥-=--= Category : Module Abstract - - *%

Since MODULA-2 applications are highly modular, it is necessary to load
several RSC-Files, depending on the modules loaded. AltResource loads
RSC-Files into dynamic memory and does the necessary fixup. ¥)

(¥=mmmm Category : Types and Data —---------------—-----—-mommomm oo ¥)
FROM SYSTEM IMPORT ADDRESS:

IMPORT AESResources;
TYPE DataPtr:

(¥====-= Category : Loading and Deleting Resource *)
PROCEDURE Load (VAR Data ¢ DataPtr:
Name © ARRAY OF CHAR;
VAR Done : BOOLEAN);

(¥ Load a named RSC-File into a piece of dynamic memory and return its
pointer if successfull. This corresponds to AESResources.load with
the exception, that AltResource may load more than one file. ¥)

PROCEDURE Free (VAR Data 1 DataPtr):

(¥ Free a previously loaded RSC-File. ¥)

(¥==mmm Category : Obtaining Addresses ------=---=----=-------oommoomoo- *)
PROCEDURE GetAddr (Data . DataPtr;
Type i AESResources.ItemTypes:
Index : CARDINAL:
VAR Addr : ADDRESS) ;

(¥ Get the address of an indexed tree within the RSC-File. ¥%)

END AltResource.

H - 26 F+\GEMDOS\SYSLIB\ALTRESOU.DEF SPC MODULA-2 V1.4

(%----- Category : Module Identification ---------=------oooomomom %)

(% Module Type ¢ %) DEFINITION MODULE
[C N

Name i %) Bios:
[C Function ¢ BIOS Interface to Modula-2 *)
(% . Version/Date : 1.8 / 8.9.88 *)
(¥ Product Name + SPC *)
(% Copyright ¢ (c) 1988, MODsoft, D7588 Karlsruhe %)
(¥----- Category ! Module Abstract ----=--------- ———%¥%

This module implements the MODULA-2 interface to BIOS. All functions
are explained in various documents about GEM on the ATARI ST computer. %)

(%----- Category : Types and DATA ----------------- - *)
FROM SYSTEM IMPORT ADDRESS:
TYPE ScanCodes = [8..255];

(Printer,
Aux,
Console,
Midi,
Keyboard);

Devices

BlockModes

n
—_

Read,

Hrite,
ReadNoMediaChange,
WriteNoMediaChange)

BiosParmBlock = RECORD

BytesPerSec : INTEGER;
SecPerClust INTEGER;
BytesPerClust: INTEGER;
DirLength : INTEGER;
FATLength H INTEGER;
FAT2Start : INTEGER:
FirstFreeSec : INTEGER;
NumOfClust : INTEGER;
Flags H ARRAY [1..8] OF INTEGER:
END;
BiosParmPtr = POINTER TO BiosParmBlock;
Drives = [0..15]1;
Set0fDrives = SET OF Drives:
MemDefPtr = POINTER TO MemDefBlock:
MemParmBlock = RECORD
FreelList t MemDefPtr;
Alloclist ' MemDefPtr;
RovingPtr MemDefPtr;
END;
MemDefBlock = RECORD
Next : MemDefPtr;
Start ADDRESS:;
Length LONGINT;
OwnerProc : MemDefPtr;
END:
MediaStat = (MediaChanged,

MediaMightChanged,
MediaNotChanged);

SPC MODULA-2 V1.4

F+\GEMDOS\SYSLIB\BIOS.DEF

H - 27

VAR Result

(%----- Category :

PROCEDURE
PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE
PROCEDURE

END Bios.

Getmpb

Bconstat

Bconin

Bconout

Rwabs

SetException

TickCal

Getbpb

Bcostat

MediaChange

DriveMap

KeyShifts

Bios

¢ LONGINT;

Functions -=--=---==-------momoomomo oo *)

(VAR mpb ¢ MemParmBlock):

(Dev ¢ Devices)

: BOOLEAN;

(Dev ¢ Devices;

VAR Ch ¢ CHAR;
VAR ScanCode : ScanCodes);

(Dev 1 Devices;
C . CHAR)3

(Flag i BlockModes;
Buffer : ADDRESS:
Count : CARDINAL:
Sector : CARDINAL:
Dev : Drives);

(Nr . INTEGER;
Vec : ADDRESS)

i ADDRESS;

() ¢ LONGINT:

(Dev + INTEGER)

: BiosParmPtr;

(Dev . Devices)

i BOOLEAN;

(Dev : INTEGER)

! MediaStat;

() + SetO0fDrives;

(Mode : INTEGER)

: LONGINT;

H - 28

F+\GEMDOS\SYSLIB\BIOS.DEF

SPC MODULA-2 VL. 4

(¥----- Category : Module Identification ------------=----=-o--momooooo *)

(¥ Module Type : %) DEFINITION MODULE

(% . Name i %) Files:

[C Function ¢ Basic File Services *)
[C N Version/Date : 1.1 21.1.88 %)
(¥ Product Name ¢ SPC *)
(% Copyright + (c) 1987,1988, MODsoft, D7508 Karlsruhe *)
(¥=-mmn Category : Module Abstract -------------- --—¥¥

Files pprovides the basic interface to the operating system dependent
file system (not to confuse with module FileSystem). The interface to
Files is slightly system dependent. So applications should use disk
files via FileSystem, ByteStreams or TextStreams. %)

(%----= Category : Types and Data --—=-===--=--=----=----omoom oo *)

FROM SYSTEM IMPORT WORD, BYTE, ADDRESS:
IMPORT Clock;

TYPE Results (Done, NotDone)

non

Types (Text, Data, Code, DontCare):
TYPE File = RECORD
Type ; Tupes;
Handle ! INTEGER;
END;
(¥=---- Category : Opening, Closing, Renaming, Deleting -------------~-~ %)
PROCEDURE Lookup (VAR F ¢ File:
FileName ¢ ARRAY OF CHAR;
FileType ¢ Types;
UAR Result ¢ Results);

(¥ Lookup the named file and open it if successfull. Type is set to
the apprpriate value, if type is of signifcance for the caller. ¥)

PROCEDURE Create (VAR F ¢ File;
: FileName : ARRAY OF CHAR;
FileType + Types;
VAR Result ! Results);

(% Create a named file of a given type. If the file already exists,
the delete the old one first. ¥)
PROCEDURE Close (VAR F ¢ File:
VAR Result ! Results):
(% Close the file and disconnect the file variable from it. %)
PROCEDURE Delete (FileName i ARRAY OF CHAR:
VAR Result i Results);

(% Delete the named file. %)

PROCEDURE Rename (FileName i ARRAY OF CHAR:
NewName : ARRAY OF CHAR:;
SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\FILES.DEF H - 29

VAR Result i Results);
(¥ Rename the named file to NewName. ¥)
(¥===-= Category : Position and Size ----=-==--=--=-=----mommmmm oo *)
PROCEDURE SetPos (VAR F ¢ Files
Pos i LONGINT;
VAR Result ¢ Results);
(¥ Set the position of the filepointer to Pos. The units of Pos are
system dependent. %)
PROCEDURE GetPos (VAR F ¢ File;
VAR Pos ¢ LONGINT;
UAR Result Results):
(¥ Get the poition of the filepointer. The units of Pos are system
dependent. %)
PROCEDURE Length (VAR F ¢ File:
VAR Len + LONGINT:
VAR Result ¢ Results):
(¥ Get the Length of the file. The units are system dependent. %)
PROCEDURE Timestamp (VAR F ¢ Files
VAR Stamp : Clock.Time);
(¥ Answer the creation/modification timestamp of file F. *)V
(¥--=-- Category : Basic Input/Output =------=-=--~-=-------oomomommmom *)
PROCEDURE ReadBlock (VAR F ¢ Files
BlockPtr : ADDRESS;
Bytes ¢ LONGINT:
VAR BytesRead : LONGINT:
VAR Result ¢ Results):

(¥ Read a block of Bytes into BlockPtr. Answer the number of BytesRead. ¥)

PRﬁCEDURE WriteBlock (VAR F
BlockPtr

Bytes
VAR Result

¢ Files

: ADDRESS:
¢ LONGINT:
VAR BytesWritt

LONGINT;

i Results):

(¥ Write the block given via BlockPtr of Bytes length into file F and

answer the Number of BytesWritten. ¥)

END Files.

F1\GEMDOS\SYSLIB\FILES.DEF

SPC MODULA-2 V1.

(¥==mmm Category : Module Identification ---=-=--==--------mommmmmooooeo *)

(¥ Module Type ¢ %) DEFINITION MODULE

* . Name : %) GemDos:

[C Function + GEMDOS Interface to Modula-2 *)
[C Version Date : 8:18 16.11.1988 *)
(¥ Product Name 1 SPC *)
(¥ Copyright ¢ (c) 1987, MODsoft, D75088 Karlsruhe *)
(%----- Category ! Module Abstract -------==-==--—mmmmomm oo *%

This module implements the MODULA-2 interface to GEM DOS. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 *)
(¥----- Category : Types and Data --------------- -=%)
IMPORT SYSTEM;
CONST FolderSep = "\
VolumeSep = "ty
TypeSep =Y
NameLength = 8
TypelLength = 3;
CONST StdIn = 8
Stdout = 1
Serial = 23
Parallel = 3
TYPE ScanCodes = [@..255);
Drives = [0..15];
Set0fDrives = SET OF Orives;
Attributes = (WriteProtect.
Hidden,
SystemFile,
Label,
Directory,
Saved) ;
SetOfAttributes = SET OF Attributes;
DosTime = CARDINAL;
DosDate = CARDINAL;
DTAPtr = POINTER TO DTA;
DTA = RECORD
Reserved i ARRAY [B8..191 OF CHAR:
Attributes H SetOfAttributes:
Time : DosTime:
Date : DosDate;
Length : LONGINT;
Name ! ARRAY [8..131 OF CHAR:
END;
BasePagePtr = POINTER TO BasePage;
BasePage = RECORD
SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\GEMDOS.DEF H- 31

LowTPA

SYSTEM. ADDRESS:

HighTPA SYSTEM. ADDRESS;
TextBase SYSTEM. ADDRESS:
TextLength LONGINT;
DataBase © SYSTEM.ADDRESS;
Datalength ¢ LONGINT;
BssBase ¢ SYSTEM.ADDRESS;
BssLength LONGINT
DefDTA ¢ DTAPtr:
ParentBasePage: BasePagePtr:
ra i SYSTEM.ADDRESS;
Environment SYSTEM. ADDRESS;
rb ¢ ARRAY [B36H..@7FH] OF CHAR;
CommandLine : ARRAY [@..1FH] OF CHAR:
END;
OpenModes = (ReadOnly, WriteOnly, ReadWrite);
SeekModes = (Abs, Rel, AbsReverse):
LoadModes = (LoadStart, Resl, Res2,
LoadOnly, StartOnly, CrBasePage);
GetModes = (Set, Get):
FileTimes = RECORD
Time : DosTime;
Date : DosDate;
END;
DiskInfo = RECORD
FreeClusters LONGINT;
TotalClusters : LONGINT;
SectorSize LONGINT;
ClusterSize LONGINT;
END:
Handles = INTEGER;
Paths = ARRAY [@..641 OF CHAR;
VAR Result t LONGINT:
(¥=---- Category : GemDos Functions ==--=--=-—=—--cmmmmmmmm oo *)
PROCEDURE Term8:;
PROCEDURE ConIn (VAR Ch i CHAR:
VAR ScanCode i ScanCodes) ;
PROCEDURE ConQut (Ch ! GHAR)
PROCEDURE AuxIn (VAR Ch : CHAR);
PROCEDURE AuxOut (Ch ¢ CHAR);
PROCEDURE PrnQut (Ch ¢ CHAR);
PROCEDURE ConRawIO (VAR Ch ¢ CHAR):
PROCEDURE ConRawIn (VAR Ch ¢ CHAR):
PROCEBURE ConNegIn (VAR Ch ¢ CHAR):

H- 32

F+\GEMDOS\SYSLIB\GEMDOS . DEF

SPC MODULA-2

Vl.4

PROCEDURE ConWriteString(Line

PROCEDURE ConReadString (VAR Line

PROCEDURE ConInStat

PROCEDURE SetDrv

PROCEDURE ConQutStat
PROCEDURE PrnOutStat
PROCEDURE AuxInStat
PROCEDURE AuxOutStat
PROCEDURE GetDrive

PROCEDURE SetDTA
PROCEDURE Super

PROCEDURE GetDate
PROCEDURE SetDate
PROCEDURE GetTime
PROCEDURE SetTime
PROCEDURE GetDTA
PROCEDURE Version

PROCEDURE TermResident

PROCEDURE DiskFree

PROCEDURE DirCreate
PROCEDURE DirDelete

PROCEDURE SetPath
PROCEDURE Create

PROCEDURE Open

PROCEDURE Close
PROCEDURE Read

PROCEDURE Hrite

() : BOOLEAN;
(Drive

¢ Set0fDrives;
() : BOOLEAN;
() : BOOLEAN;
() : BOOLEAN;
() : BOOLEAN;
() ¢ Drives;
(VAR Dta

(VAR Stck
(VAR Today

(Today
(VAR Now

(Now

() + DTAPtr;

() : CARDINAL;

(Memory
Return

(VAR Info
Drive

(Name
(Name
(Name

(Name
Attribute
' Handles:

(Name
Mode
: Handles:

(Handle

(Handle
Buffer
Size

: LONGINT:

(Handle
Buffer
Size

¢ ARRAY OF CHAR):
© ARRAY OF CHAR):

¢ Drives)

1 DTA)

: LONGINT)
¢ DosDate):
¢ DosDate);
¢ DosTime);

: DosTime);

: LONGCARD;
: INTEGER):

¢ DiskInfo;
¢ Drives):

¢ ARRAY OF CHAR);
¢ ARRAY OF CHAR):
ARRAY OF CHAR)

' ARRAY OF CHAR;
: SetOfAttributes)

© ARRAY OF CHAR:
1 OpenModes)

: Handles):

i Handles;
+ SYSTEM.ADDRESS;
¢ LONGINT)

¢ Handles;
+ SYSTEM. ADDRESS;
i+ LONGINT)

SPC MODULA-2 V1.4

F+\GEMDOS\SYSLIB\GEMDOS . DEF

H- 33

PROCEDURE Delete

PROCEDURE Seek

PROCEDURE Attribute

PROCEDURE Dup

PROCEDURE Force

PROCEDURE GetPath

PROCEDURE MemAlloc

PROCEDURE MemFree

PROCEBURE Shrink

PROCEDURE Exec

PROCEDURE Term

PROCEDURE SearchFirst

PROCEDURE SearchNext;

PROCEDURE Rename

PROCEDURE Timestamp

END GemDos.

: LONGINT;

(
(

(
VAR
(

Name :

Handle
Mode
Position

Name
Mode
Attrib

StdHandle

: Handles;

(

(VAR

(

StdHandle
NonStdHndl :

Path
Drive

Amount

¢ LONGINT:

Block

Block
Size

Mode
Path
CmdLine
Eavironment:

¢ LONGINT:

(VAR

Return

Spec
Attr

0l1dName
NewName

DatTim
Handle
Mode

ARRAY OF CHAR);

: Handles;
i SeekModes;
1 LONGINT):

ARRAY OF CHAR;
GetModes:

: SetOfAttributes):

Handles)

¢ Handles;

Handles):

1 Paths;
¢ Drives)

¢ LONGINT)

¢ SYSTEM.ADDRESS) ;

: SYSTEM.ADDRESS;
: LONGINT);

: LoadModes;
i ARRAY OF CHAR:
¢ ARRAY OF CHAR;

ARRAY OF CHAR)

¢ INTEGER);

¢ ARRAY OF CHAR;
¢ SetOfAttributes);

¢ ARRAY OF CHAR;
 ARRAY OF CHAR);

i FileTimes;
¢ Handles;
: GetModes):

H- 34

F+\GEMDOS\SYSLIB\GEMDOS. DEF

SPC MODULA-2 VL.

(%--- Module LineA VU 1.1 ---%)

(®--- mmemmmeeeeme—eeeeoeo -—=%)

(%--- -—%)

(¥--- Die graphischen Grundroutinen des Atari ST --—¥)

(==~ ---%)

(%¥--- Programmiersprache : SPC-Modula-2 V1.3 -=-%)

(%¥--- Computersystem ¢ ATARI 1840 ST ---%)

(¥--- Autor ¢ Uwe A. Ruttkamp ---%)

(%¥--- Datum 1 21.18.1988 -—=%)

(%=~ --=%)

(R mmm oo e *

DEFINITION MODULE LineA:

FROM SYSTEM IMPORT ADDRESS;

TYPE

FontPointer = POINTER TO FontTyp:

FontTyp = RECORD
FacelD : CARDINAL: (¥ Fontnummer *)
FontSize + CARDINAL: (¥ FontgroBe in Satzpunkten *)
FaceName ¢ ARRAY [B..31) OF CHAR:

(% Namen des Zeichensatzes *)

LowADE : CARDINAL: (% kleinster ASCII-Wert *)
HighADE ~+ CARDINAL: (¥ groBter ASCII-Wert *)
TopLine 1 CARDINAL: (¥ Abstand Top-Baseline *)
AscentlLine : CARDINAL: (¥ Abstand Ascent-Baseline *)
HalflLine : CARDINAL: (¥ Abstand Half-Baseline *)
DescentLine + CARDINAL: (¥ Abstand Descent-Baseline *)
BottomLine + CARDINAL: (¥ Abstand Bottom-Baseline *)
MaxFontWidth : CARDINAL; (¥ maximale Zeichenbreite *)
MaxFacelidth : CARDINAL: (¥ maximale Zeichenzellenbreite ¥)
LeftOffset : CARDINAL: (¥ Offset links %)
RightOffset : CARDINAL: (¥ Offset rechts *)
Thickening i CARDINAL: (¥ Verbreiterungsfaktor *¥)
UnderlineSize : CARDINAL: (¥ Unterstreichungsdicke *)
LightMask : CARDINAL: (¥ Maske fiir helle Schrift *)
SkewMask : CARDINAL: (¥ Maske fur Kursivschrift *)
Flags ¢ BITSET: (% Bits: 8 Sytstemfont

1 Horizontal Offset Tabelle

2 Formatflag
3 aus: proportional

ein: mono-spaced *)
Horiz0ffsetTab: POINTER TO ARRAY [BC..377C] OF CARDINAL:
(¥ Horizontal Offset Tabelle *)
CharOffsetTab: POINTER TO ARRAY [BC..377C1 OF CARDINAL;
(¥ Zeichen Offset Tabelle *)
FontData ¢ ADDRESS; (% Zeiger auf Zeichensatzdaten %)
Formlidth + CARDINAL: (¥ Breite des Zeichensatzimage %)
FormHeight : CARDINAL: (¥ Hohe des Zeichensatzes *)
NextFont ¢ POINTER TO FontTyp:
(¥ Zeiger auf nachsten Font *)
END;
FontArray = ARRAY [B..2]1 OF FontPointer:
LineAVarPointer = POINTER 10 LineAVarRecord:
LineAVarRecord = RECORD
VideoPlanes ¢ CARDINAL: (% Anzahl der Bildschirmebenen *)
UBytesLine t CARDINAL: (% Bytes pro Bildschirmzeile *)
(¥ Die Control Arrays %)
Contrl ¢ POINTER TO ARRAY [@..11 1 OF INTEGER;
Intln ¢ POINTER TO ARRAY [8..1271 OF INTEGER:
PtsIn ¢ POINTER TO ARRAY [B8..1271 OF INTEGER:
SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\LINEA.DEF H - 35

IntOut
PtsOut
Bpl
Bp2
Bp3
Bp4d
LstLin
LineStyle
WriteMode
X1,Y1,X2,Y2
PatPointer
PatMask
MultiFill
Clip
XMinClip
YMinClip
XMaxClip
YMaxClip
XAccData
DDAInc
ScaleDir
MonoStatus
SourceX
SourceY
DestX
DestY
DeltaX
DeltaY
FontBase
Fontlidth
Style
LightMask
SkenMask
Weight
ROff
LOff
Scale
CharUp
TextFG
Scrtchp
Scrpt2
TextBG6
CopyTran
END;

LineAUDIPointer

LineAVDIRecord =
InquireTab
DeviceTab
Reserved
CelHeight
CelMaxX
CelMaxY
CellLineMidt
BGColor
F6Color
CursorAdr
Cursor0ffse
CursorX
CursorY
CurBlinkCnt
CurBlinkTim
FontAdr
LastFontCha
FirstFontCh

: POINTER TO ARRAY [@..127]1 OF INTEGER;

CARDINAL;
CARDINAL;
: CARBINAL:
¢ CARDINAL;
+ INTEGER;

: CARDINAL;
CARDINAL;
CARDINAL;
¢ ADDRESS;

+ CARDINAL:
: CARDINAL:
¢ CARDINAL:
CARDINAL;
CARDINAL;
¢ CARDINAL;
: CARDINAL;
: CARDINAL;
i CARDINAL:
+ CARDINAL;
: CARDINAL:
¢ CARDINAL;
¢ CARDINAL;
: CARDINAL;
: CARDINAL:
+ CARDINAL;
: CARDINAL;

(x
(%

(%

POINTER TO ARRAY [8..127] OF INTEGER;

Farbwert fir Plane 8
Farbwert fir Plane 1
Farbwert fir Plane 2
Farbwert fir Plane 3

auf -1 setzen

Linienmuster
UDI-Schreibmodus
Koordinaten

Zeiger auf Fillmuster
Fillmuster Maske

Fiillmuster mono / farbig
Clipping aus/an

linke obere Ecke des Clip
Rechtecks

rechte untere Ecke des Clip
Rechtecks

vor Textausgabe auf 8868H
VergroBerungsfaktor

Vergr. Richtung (l=vergrifern)
Proportionalschrift ja/nein
X Koordinate im Zeichensatz
Y Koordinate im Zeichensatz

X Koordinate auf dem Bildschirm %)
Y Koordinate auf dem Bildschirm %)

Breite des Zeichens
Hohe des Zeichens

i FontPointer; (¥ Zeiger auf Zeichensatzimage

¢ CARDINAL: (%
¢ CARDINAL; (%
¢ CARDINAL; (%
¢ CARDINAL; (%
: CARDINAL; (%
¢ CARDINAL; (%
: CARDINAL; (%
: CARDINAL; (%
¢ CARDINAL: (%
¢ CARDINAL; (%
: ADDRESS: (%
¢ CARDINAL: (%
+ CARDINAL; (%
© CARDINAL; (%

Breite des Zeichensatzimage
Schreibstil

Maske fur Schattierung
Maske fur Italics
zusatzliche Breite bei Bold
Kursiv-0ffset rechts
Kursiv-0ffset links
VergroBerung ja/nein
Rotationswinkel ¥ 18
Textfarbe

Zeiger auf Texteffektbuffer
Offset fur Texteffektbuffer
Text Hintergrundfarbe

Copy Raster Form Flag

= POINTER TO LineAVDIRecord:

RECORD

! ARRAY [0..44]
! ARRAY [6..56]

: CARDINAL;
+ CARDINAL;
CARDINAL:
h+ CARDINAL:
¢ CARDINAL:
¢ CARDINAL;
: ADDRESS:
t + INTEGER;

+ CARDINAL;
: CARDINAL:
i CHAR:
i CHAR;

r -+ CARDINAL:

OF INTEGER; (% WDI Inquire Werte *)
OF INTEGER; (% UDI Workst. Werte ¥)
¢ ARRAY [8..265] OF INTEGER: (¥ Platzhalter

*)

(¥ Zeichenhohe *)
(¥ Maximale Cursor X-Position %)
(¥ Miximale Cursor Y-Position %)
(¥ Breite einer Characterzeile in Bytes %)
(¥ Hintergrundfarbe *)
(% Vordergrundfarbe *)
(¥ Adresse der aktuellen Cursorposition %)
(¥ Vert. Offset zum phys. Bildsch.anfang %)
(¥ X-Position des Cursors *)
(¥ Y-Position der Cursors *)
(¥ Cursor Blinkgeschwindigkeit %)
(¥ Zghler fir Cursorblinken *)
. FontPointer: (¥ Zeiger auf Systemzeichensatzdaten *)
(% Letztes Zeichen im Zeichensatz *)
(¥ Erstes Zeichen im Zeichensatz *)

ar + CARDINAL;

H-36

F:\GEMDOS\SYSLIB\LINEA.DEF

SPC MODULA-2 V1.4

Fontlidth

¢ CARDINAL: (% Breite des Fontdaten in Bytes *)

PixelWidth : CARDINAL; (¥ Bildschirmbreite in Pixeln *)
FontOffsetAdr : ADDRESS: (¥ Zeiger auf Zeichensatz-Offset-Tabelle %)
Cursorflag + BITSET; (¥ Bestimmt des Verhalten des Cursor *x)
PixelHeight : CARDINAL; (% Bildschirmhohe in Pixeln X)
PixLineldidth : CARDINAL; (% Bytes pro Pixelzeile *)

END;

BitBltPointer = POINTER TO BitBltRecord:

BitBltRecord = RECORD
Blocklidth : CARDINAL: (¥ Breite des Blocks in Pixeln %)
BlockHeight : CARDINAL; (¥ Hohe des Blocks in Pixeln *)
PlaneCount : CARDINAL; (¥ Anzahl der Farbplanes *)
FGColor + CARDINAL; (¥ Vordergrundfarbe *)
BGColor ¢ CARDINAL; (¥ Hintergrundfarbe *)
OpTable ¢ ARRAY [B..31 OF CHAR; (% Logische Verknipfungstabelle %)
SourceX + CARDINAL; (¥ X-Koord. des Quellrasters *)
SourceY : CARDINAL; (¥ Y-Koord. des Quellrasters %)
SourcePtr : ADDRESS: (¥ Anfangsadresse des Q-Rasters %)
SNextlord 1 CARDINAL; (¥ Highres 2,Midres 4,Lowres 8 %)
SNextLine © CARDINAL; (¥ Breite des Q-Rasters in Bytes¥)
SNextPlane : CARDINAL; (¥ gleich 2 %)
DestX : CARDINAL; (¥ X-Koord. des Zielrasters *)
DestY + CARDINAL: (¥ Y-Koord. des Zielrasters *)
DestPtr + ADDRESS: (¥ Anfangsadresse des Z-Rasters %)
DNextWord ¢ CARDINAL: (¥ Highres 2,Midres 4,Lonres 8 %)
DNextLine : CARDINAL; (¥ Breite des Z-Rasters in Bytesk)
DNextPlane : CARDINAL: (¥ gleich 2 *)
PatternPtr : ADDRESS; (¥ Undierung mit dieser Maske %)
PNextLine ¢ CARDINAL; (¥ Breite der Maske in Bytes *)
PNextPlane : CARDINAL; (¥ Offset zur folgenden Plane %)
PMaskHeight : CARDINAL; (¥ Hohe der Maske in Zeilen *)
reserved : ARRAY [8..231 OF CHAR:

END;

MFormPointer = POINTER TO MFormRecord:
MFormRecord = RECORD

XHot, YHot
NoPlanes

+ CARDINAL;
¢ CARDINAL;

MaskCol, CursCol : CARDINAL:
: ARRAY [8..15] OF CARDINAL:
OF CARDINAL;

Mask
Cursor
END;

¢ ARRAY [8..15]

SDBPointer = POINTER TO SDBRecord:

SOBRecord = RECORD
XHot, YHot
Form

¢ CARDINAL;
i+ INTEGER;

BgColor, FgColor : CARDINAL;
¢ ARRAY [6..31]1 OF CARDINAL:

Image
END;

WriteModes = (Replace, Transparent, Invert, InverseTransparent);

PROCEDURE Initialize () : LineAVarPointer;

(¥--- Mit dieser Prozedur werden die LineA-Funktionen fir jede An- ---%)
(¥--- wendung zuganglich. Initialiesiert wird mit Initialize() --=%)
(¥--- nichts, aber man kann mit der Kenntnis des LineAVarRecord's ---%)
(¥--- weitere Operationen implementieren. Siehe Profibuch. Fir die ---%)

(%¥--- Benutzung der weiteren LineA-Funktionen ist Initialize() ohne ---%)

(¥--- Bedeutung.

---¥)

SPC MODULA-2 V1.4

F:\GEMDOS\SYSLIB\LINEA.DEF

H - 37

PROCEDURE VUDIDescription () ! LineAVUDIPointer;

(¥--- Liefert einen Pointer auf eine Strukur, die sehr wichtige --—%)
(¥--- Informationen bezliglich BildschirmauflOsung und Zeichensatz ---%)
(¥--- enthalt. Man spart sich den Weg ibers VDI, das ist alles. -—-¥%)

PROCEDURE GetFont(VAR Fonts : FontArray):
(¥--- Liefert eine Tabelle mit den Zeigern auf die drei Systemfonts ---%)
PROCEDURE PutPixel (X, Y, Color : CARDINAL)

(%¥--- Setzt einen Pixel absolut mit den gegebenen X-Y-Pixelkoordi- ---%)
(¥--- naten auf dem Bildschirm. Den Farbwert nachlesen im Profibuch.---%)

PROCEDURE GetPixel (X, Y : CARDINAL) : CARDINAL:

(¥--- Mit GetPixel kann man abfragen welchen Farbwert ein Pixelpunkt---%)

(¥--- auf dem Bildschirm hat. ---¥%)
PROCEDURE Line (X1, Y1, X2, Y2 : CARDINAL;

Bpl, Bp2, Bp3, Bpd : CARDINAL;

LineStyle ¢ CARDINAL:

WrtMode : WriteModes)
(%--- Zeichnet eine, die beiden Punkte verbindende, Linie unter Be- ---¥%)
(¥--- ricksichtigung der Bitplans Bpl bis Bp4, einem Liniemuster --=%)
(¥--- LineStyle und dem Verkniipfungsmodi WrtMode. —-=%)

PROCEDURE Pline(X1, Y1, X2, Y2 : CARDINAL:

WrtMode i WriteModes)
(%¥--- Entspricht exakt der Line Funktion mit dem Wert 1 fur Bpl bis ---%)
(¥--- Bp4 und 65535 fir LineStyle. So wird man meistens Linien --=%)
(¥--- ziehen. ---%)
PROCEDURE HorizLine (X1, YIi, X2 ¢ CARDINAL:
Bpl, Bp2, Bp3, Bp4 : CARDINAL;
HrtMode ¢ WriteModes:
PatPointer + ADDRESS;
PatMask : CARDINAL:
MultiFill : BOOLEAN) :
(%¥--- HorizLine ist angeblich schneller als Line, aber auch kompli- ---%)
(%¥--- zierter. PatPointer zeigt auf eine Sammlung von Musterlinien, ---%)
(%--- PatMask ist die Anzahl der Linienmuster und MultiFill bestimmt---%)
(¥--- ob sich die Linie auf alle Planes durchschlagen soll. -==%)
PROCEDURE FillRectangle(X1, Y1, X2, Y2 : CARDINAL:
Bpl, Bp2. Bp3. Bpd : CARDINAL:
HrtMode ¢ WriteModes:
PatPointer : ADDRESS;
PatMask + CARDINAL;
MultiFill : BOOLEAN:
Clip : BOOLEAN:

XMinClip, YMinClip,
XMaxClip, YMaxClip : CARDINAL):

(¥--- Fillt ein Rechteck mit den entsprechenden Farben in BpX -==%)
(¥--- und beachtet das Cliprechteck um nicht dariberhinaus zu -==%)

H - 38 F+\GEMDOS\SYSLIB\LINEA.DEF SPC MODULA-2 V1.4

(¥--- malen ---%)

PROCEDURE FillPolygon(Coords ¢ ARRAY OF INTEGER;

CoordNo, Y : CARDINAL:
Bpl, Bp2, Bp3, Bp4 : CARDINAL:
HrtMode ¢ WriteModes;
PatPointer : ADDRESS:
PatMask : CARDINAL;
MultiFill : BOOLEAN;
Clip : BOOLEAN;

XMinClip, YMinClip,
XMaxClip.® YMaxClip : CARDINAL):

(¥--- Die in Coords eingetragenen Koordinaten (X@,Y@,XL,YL1...) -—=%)
(%--- bestimmen eine Flache, die bei jedem Aufruf ein wenig mehr ---%)
(¥--- geflillt wird. Y gibt dabei an welche Linie gerade an der --=%)
(¥--- Reihe sein soll. Naheres : Profibuch. -==%)

PROCEDURE BitBlt(Ptr : BitBltPointer)

(¥--- Siehe BitBltRecord fir die Parameter. Aufgabe von BitBlt ist ---%)

(¥--- es Bildschirmausschnitte zu kopieren. Die Anwendungen sind ---%)
(¥--- vielzahlig. -—=%)
PROCEDURE TextBlt(WrtMode ¢ WriteModes;
Clip ¢ BOOLEAN;
XMinClip, YMinClip,
XMaxClip, YMaxClip : CARDINAL:
TextFG, TextBG ¢ CARDINAL;
FontBase ¢ FontPointer:
FontWidth ¢ CARDINAL;
SourceX, SourceY : CARDINAL;
DeltaX, DeltaY : CARDINAL;
Style : CARDINAL:
LightMask ¢ CARDINAL;
SkewMask ¢ CARDINAL:
Weight + CARDINAL;
ROff, LOFf ¢ CARDINAL:
Scale : BOOLEAN;
DDAInc, ScaleDir ¢ CARDINAL:
CharUp : CARDINAL;
MonoStatus : CARDINAL;
Scrtchp ‘1 ADDRESS;
Scrpt2 ¢ CARDINAL)}
(%¥--- Ausgabe von einzelnen Zeichen auf dem Bildschirm. Die -==%)
(¥--- Parameternamen stimmen mit denen im LineAVarRecord iber- ---%)
(¥--- und ihre Funktion ist dort nachzulesen. --=%)

PROCEDURE ShowMouse(Absolute : BOOLEAN)

|

(¥--- Wenn Absolute = TRUE ist, wird die Maus auf jeden Fall -==%)

(¥--- wieder eingeschaltet, sonst nur, wenn zuvor nur einmal -———%)

(¥--- HideMouse aufgerufen worden ist. -—-%)

PROCEDURE HideMouse:

(¥--- Schaltet die Maus aus und vergriBert die Verschachtelungs- ---%)
(¥--- tiefe im Wechselspiel von Maus AN-AUS. -==%)

PROCEDURE TransformMouse(Ptr : MFormPoin

ter);

SPC MODULA-2 V1.4

F:\GEMDOS\SYSLIB\LINEA.DEF

H -39

(¥--- Hiermit kann man sich seine eigene Maus kreieren. -=-%)
PROCEDURE UndrawSprite(Save : ADDRESS)i

(¥--- Loscht ein mit DrawSprite gemaltet Sprite. Save mup natirlich ---%)

(¥--- ein Speicherbereich sein, denn man sich zuvor mit DrawSprite ---%)
(¥--- hat geben lassen. Dadurch wird der Hintergrund wieder herge- ---%)
(¥--- stellt. —--%)

PROCEDURE DrawSprite(XHot, YHot : CARDINAL:

SDB ¢ SDBPointer;

Save : ADDRESS):
(¥--- Malt ein Sprite, wie in SDB beschrieben. Save mup auf einen ---%)
(¥--- Speicherbereich zeigen, der mindstens 18+64¥Anzahl der Farb- ---¥)
(¥--- ebenen Bytes grop ist. -~=%)

END LineA.

H - 48 Fi\GEMDOS\SYSLIB\LINEA.DEF SPC MODULA-2 V1.4

(¥mmmmm Category : Module Identification ----=---==-==------moooooooone *)

(¥ Module Type i %) DEFINITION MODULE

[C N Name 1 %) UDIAttributes;

(% . Function LX)

[C Version/Date : 1.82 / 19.87.1987 *)
(% Product Name + SPC *)
(¥ Copyright ¢ (c) 1987,1988, MODsoft, D7508 Karlsruhe *)
(=== Category @ Module Abstract --=-=---=-=-=-=-===-----—o—oooo oo oo *%

This module implements the MODULA-2 interface to GEM VUDI. All functions
are fexplained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch™,

SYBEX, ISBN 3-88745-561-8, 1.Auflage 1987 %)
(¥-~=~= Category : Types and Data -------==-—=-=-=-—=--——--ooommmem oo %)
TYPE
WritingModes = (IllegallriteMode,
Replace, Transparent,
Xor, ReverseTransparent):
ColourRange = INTEGER;
ColourIntensity =[8 .. 1088 1;
ColourComposition = RECORD
Red, Green, Blue ¢ Colourlntensity;
END;
TenthDegree. = [8 .. 3600 1;
LineStyles = (IllegalLineStyle,
Solid , LongDash , Dots,
DashDot , Dash ., BashDotDot,
UserDefinedLine)
LineEndStyles = (Normal, Arrow. Rounded)
MarkerTypes = (IllegalMarker,
Dot , Plus , Asterisk,
Square DiagonalCross Diamond)
‘) TextEffect = (Bold , Light , Italic,
Underlined , Outlined . Shadowed):
TextEffects = SET OF TextEffect:
FillStyles = (Hollow , Filled , Pattern,
Hatch , UserDefinedInterior)
FillRange =[1.. 241
FontTypes = (IllegalFont,
BigFont, SmallFont);
HorAlignment = (LeftJustified, Centered, RightJustified)
VertAlignment = (Baseline , HalflLine , Ascentline,
BottomLine , DescentLine , TopLine);
SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\UDIATTRI.DEF H- 41

CoordinateTypes = (NormalCoords,

ReservedCoords,
RasterCoords) :
(¥ attribute functions %)
PROCEDURE SetHWritingMode (Handle : INTEGER;
Mode ¢ HritingModes)
¢ WritingModes;

(¥ set mode used for subsequent drawing operations ¥)

PROCEDURE SetColour (Handle : INTEGER;
ColourIndex: ColourRange;
RGBIn ¢ ColourComposition);

(¥ set colour representation %)

PROCEDURE SetlLineType (Handle ¢ INTEGER;
Style ¢ LineStyles)
i LineStyles:

(¥ set polyline line type ¥)
PROCEDURE DefinelLineStyle (Handle : INTEGER:
Pattern : INTEGER)
(¥ Set user-defined line style using the bits of pattern-parameter ¥)
PROCEDURE SetlLineWidth (Handle,
Width ¢ INTEGER)
¢ INTEGER:

(¥ Set polyline line width %)

PROCEDURE SetLineColour (Handle + INTEGER;
ColourIndex: ColourRange)
: ColourRange:

(% sets colour index for subsequent polyline operations ¥)

PROCEDURE SetEndLineStyle (Handle ¢ INTEGER;
BeginStyle,
EndStyle ¢ LineEndStyles);

(% set polyline end styles %)

PROCEDURE SetMarkerType (Handle i INTEGER;
Symbol . MarkerTypes)
¢ MarkerTypes;

(¥ set polymarker type %)

PROCEBURE SetMarkerHeight (Handle,
Height ¢ INTEGER)

H - 42

F1\GEMDOS\SYSLIB\UDIATTRI.DEF SPC MODULA-2 V1.

¢ INTEGER:

(¥ Set polymarker height %)

PROCEDURE SetMarkerColour (Handle

: ColourRange;

(¥ set polymarker colour index ¥)

PROCEDURE SetAbsCharHeight (Handle,

¢ INTEGER;
ColourIndex:

ColourRange)

AbsoluteHeight: INTEGER;

VAR CharKlidth,
CharHeight,
CellWidth,

CellHeight

(¥ Set character height, absolute mode ¥)

PROCEDURE SetPointCharHeight (Handle,

INTEGER)

HeightInPoints: INTEGER:

VAR CharWlidth,
CharHeight,
Celllidth,

CellHeight :

¢ INTEGER;

(¥ set character cell height, points mode %)

PROCEDURE SetRotation (Handle
Angle
: TenthDegree;

(% set character baseline vector %)

PROCEDURE SetFont (Handle
Font
¢ FontTypes:

(¥ Set text face %)

PROCEDURE SetGraphicTextColour (Handle
¢ ColourRange:

(¥ set graphic text colour index ¥)

PROCEDURE SetGraphicTextEffects (Handle
Effect
i TextEffects:

(% set graphic text special effects ¥)

PROCEDURE SetGraphicTextAlignment (Handle
HorIn

Vertln

VAR HorQOut

INTEGER)

i INTEGER:
¢ TenthDegree)

i INTEGER:
¢ FontTypes)

: INTEGER:
ColourIndex:

ColourRange)

i INTEGER:
. TextEffects)

i INTEGER:

¢ HorAlignment;
¢ VertAlignment:
i HorAlignment:

SPC MODULA-2 V1.4

F+\GEMDOS\SYSLIB\UDIATTRI.DEF

H - 43

VAR VertQut
(¥ Set graphic text alignment %)
PROCEDURE SetFillInteriorStyle (Handle

Style
i FillStyles;

(% set fill interior style %)

PROCEDURE SetFillStyleIndex (Handle
Stylelndex
¢ FillRange;
(% Set fill style index %)
PROCEDURE SetFillColour (Handle
ColourIndex:
¢ ColourRange;

(% set fill colour index ¥)

PROCEDURE SetFillPerimeterVisibility (Handle
PerVisible:
: BOOLEAN:

(¥ set fill perimeter visibility %)

PROCEDURE DefineFillPattern (Handle
VAR PFillPatt
Planes
(% Set user-defined fill pattern %)

END UDIAttributes.

¢ VertAlignment)

INTEGER:
FillStyles)

 INTEGER;

FillRange)

¢ INTEGER;

ColourRange)

¢ INTEGER;

BOOLEAN)

i INTEGER;
¢ ARRAY OF INTEGER:
¢ INTEGER)

H - 44

F+\GEMDOS\SYSLIB\UDIATTRI.DEF

SPC MODULA-2 V1.4

(== Category : Module Identification ===-=---=s=-----o-omoomomaomnoe *)

(¥ Module Type : %) DEFINITION MODULE

(% . Name ¢ ¥) UDIBase:

(% . Function L¥)

(% . Version/Date : 1.82 / 19.87.1987 *)
(¥ Product Name i SPC *)
(¥ Copyright ¢ (c) 1987,1988, MODsoft. 07568 Karlsruhe *)
(¥---=- Category : Module Abstract ------=-=--=-----moooommmmmm oo *%

This module implements the MODULA-2 interface to GEM UDI. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”

SYBEX, ISBN 3-88745-501-8, 1.Auflage 1987 *)

(¥----- Category : Types and Data —--—-=--=--=---—m-mommm e *)
FROM SYSTEM IMPORT ADDRESS:
TYPE

CtrlArrayType = ARRAY [@..127]1 OF INTEGER:
VAR

contrl : ARRAY [@..111 OF INTEGER:

intin,

ptsin,

intout,

ptsout ¢ CtrlArrayType:

ADRintin,

ADRptsin,

ADRintout,

ADRptsout,

ADRParams : ADDRESS;

parameterBlock : ARRAY [B..4]1 OF ADDRESS;
(=== Category : interface procedures -—-----=--------===-m-oomomoooooo %)

PROCEDURE CallVuDI:

PROCEDURE SetContrl (@, cl,
3, 5,
4 6 : INTEGER)

END UDIBase.

SPC MODULA-2 V1.4 F 1 \GEMDOS\SYSLIB\VDIBASE . DEF

H - 45

(%==-=- Category : Module Identification -----=-====-==-===-----omooooooo ¥)

(¥ Module Type : %) DEFINITION MODULE

€ Name i %) VUDIControls;

[Function L%)

(% . Version/Date : 1.82 / 18.87.1987 *)
(¥ Product Name : SPC *)
(¥ Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe *)
(¥====- Category ! Module Abstract -----=--==-=-=-—=-=—eoooemmmeo oo X%

This module implements the MODULA-2 interface to GEM UDBI. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 ¥)

(¥==--- Category : Types and Data -------- ---= Bt *)
FROM UDIOutputs IMPORT UDIRectangle;

FROM UDIAttributes IMPORT LineStyles,
MarkerTypes,
ColourRange,
FontTypes.
FillStyles,
FillRange,
CoordinateTypes;

TYPE
DeviceTypes = INTEGER:

[l

WorkstationType = (QutputDevice,
InputDevice,
InQutDevice,
ReservedDevice,
MetafileDevice);

HWorkstationInitRec = RECORD
Deviceld : DeviceTypes:
LineStyle : LineStyles:
LineColour ¢ ColourRange:
MarkerType ¢ MarkerTypes;
MarkerColour + ColourRange;
Font : FontTypes:
TextColour : ColourRange:
FillStyle ¢ FillStyles:
FillIndex ¢ FillRange:
FillColour ¢ ColourRange:
CoordinateSystem : CoordinateTypes;

END:

WorkstationDescription = RECORD
RasterlidthOfScreen,
RasterHeightOfScreen : CARDINAL;
reservedd : CARDINAL:
HorRasterIncrement,
VertRasterIncrement : CARDINAL; (% mm/1660 %)
MaxTextSizes,

MaxLineStyles,
MaxLineWidths,
MaxMarkers,

H - 46

F+\GEMDOS\SYSLIB\UDICONTR.DEF SPC MODULA-2 V1.4

MaxMarkerSizes,

MaxFonts,

MaxPatterns,

MaxHatchings,

MaxColours,

MaxBasicGraphFuntions : CARDINAL:

SupportedGraphFuncs : ARRAY [B . 9 1 OF INTEGER;

SupportedAttributes ¢ ARRAY [8 .. 9 1 OF CARDINAL; (¥ 72?7 %)

ColoursPossible,

TextRotationPossible,

FillInteriorPossible,

FuncCellArrayPossible : BOOLEAN;

MaxPossibleColours : CARDINAL:

LocatorControl : CARDINAL:

ValuatorControl : CARDINAL;

ChoiceControl CARDINAL;

StringControl : CARDINAL;

TypeOfHorkstation + WorkstationType:

MinCharWidth,

MinCharHeight,

MaxCharlidth,

MaxCharHeight,

MinLinelidth,

ReservedBa,

MaxLineWidth,

Reserved@b,

MinMarkerWidth,

MinMarkerHeight,

MaxMarkerHidth,

MaxMarkerHeight : CARDINAL;
E .

i

(¥ Control functions %)

PROCEDURE OpenMlorkstation (VAR HWorkIn ¢ WorkstationInitRec;
VAR Handle : INTEGER;
VAR WorkOut ¢ WorkstationDescription);

(% loads a device driver, and initialises device with parameters passed %)

PROCEDURE Closelorkstation (Handle + INTEGER)

(% closes graphics device properly, and returns to alpha mode ¥)

PROCEDURE OpenVirtuallorkstation(VAR HorkIn ¢ WorkstationInitRec:
VAR Handle INTEGER;
» VAR WorkOut ¢ WorkstationDescription);

(¥ open virtual screen workstation ¥)

PROCEDURE CloseVirtuallorkstation(Handle + INTEGER)

(¥ close virtual device, preventing further output to it ¥)

PROCEDURE ClearWorkstation (Handle + INTEGER)

(¥ clear workstation. Erases the screen ¥)

J

PROCEDURE Updatelorkstation (Handle ¢ INTEGER)

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\UDICONTR.DEF

H - 47

(% execute immediately all pending graphics commands %)

PROCEDURE LoadFonts (Handle,
Select + INTEGER)
+ INTEGER:

(¥ loads fonts and makes them available %)

PROCEDURE UnloadFonts (Handle, Select ¢ INTEGER)
(¥ dissociates fonts and removes them from memory %)
PROCEDURE SetClipping (Handle ¢ INTEGER;
Clipping0On : BOOLEAN;
VAR ClipArea : UDIRectangle);
(¥ enable/disable clipping of all ouput by GEM UDI %)

END UDIControls.

H - 48 F+\GEMDOS\SYSLIB\UDICONTR.DEF SPC MODULA-2 V1.4

7

(¥==m-- Category : Module Identification -----------==-------oommmmmoe *)

(¥ Module Type ¢ %) DEFINITION MODULE

(% . Name : %) UDIEscapes:

[C Function T %)

[C Version/Date : 1.82 / 19.87.1987 *)
(¥ Product Name 1 SPC %)
(¥ Copyright ¢ (c) 1987,1988, MODsoft, 07588 Karlsruhe %)
(%-=--- Category : Module Abstract —--—-=====-=--—-scmmm oo oo *K

This module implements the MODULA-2 interface to GEM UDBI. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 *)

(¥==--- Category : Types and Data ---=-=-==-==---=--mmmoommmoo oo *)
FROM SYSTEM IMPORT ADDRESS:
FROM UDIOutputs IMPORT UDIRectangle,

Coordinate;
TYPE
FilmNameType = ARRAY [B8 .. 124 1 OF INTEGER;
FilmIndexType = ARRAY [@ .. 7 1,08 .. 1 1 OF INTEGER;

(¥ escapes %)

PROCEDURE InquireCharCells (Handle : INTEGER:
VAR rows,
colums + INTEGER)

(¥ inquire addressable character cells %)

PROCEDURE ExitAlphaMode (Handle : INTEGER)

(% Exit alpha mode %)

PROCEDURE EnterAlphaMode (Handle ¢ INTEGER)
(¥ enter alpha mode %)
PROCEBURE CursorUp (Handle ¢ INTEGER)

(¥ alpha cursor up ¥)

PROCEDURE CursorDown (Handle : INTEGER)

(% alpha cursor down %)

PROCEDURE CursorRight (Handle : INTEGER):

(% alpha cursor right %)

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\VUDIESCAP.DEF

H - 493

PROCEDURE CursorLeft (Handle ¢ INTEGER

(% alpha cursor left %)

PROCEDURE CursorHome (Handle : INTEGER

(¥ home alpha cursor %)

PROCEDURE EraseToE0S (Handle : INTEGER

(¥ erase to end of alpha screen ¥)

PROCEBURE EraseToEOL (Handle ¢ INTEGER

(% erase to end of alpha text line ¥)

)i

)i

)

)i

PROCEBURE CursorAddress (Handle. row. column : INTEGER);
(¥ direct alpha cursor address %)
PROCEDURE OutputText (Handle . INTEGER:
VAR string : ARRAY OF CHAR):
(¥ output cursor addressable alpha text %)
PROCEBURE ReverseVideoOn (Handle ¢ INTEGER)
(¥ reverse video on %)
PROCEBURE ReverseVideoOff (Handle ¢ INTEGER)
(% reverse video off ¥)
PROCEDURE InquireCursorAddress (Handle ¢ INTEGER;
VAR row,
column : INTEGER):
(¥ inquire current alpha cursor address %)
PROCEDURE InguireTabletStatus (Handle : INTEGER)
¢ INTEGER:
(% inquire tablet status %)
PROCEBURE HardCopy (Handle : INTEGER);
(% hard copy %)
PROCEDURE DisplayCursor (Handle ¢ INTEGER:
Location + Coordinate)i

(% place graphic cursor at location %)

H - 58

F+\GEMDOS\SYSLIB\UDIESCAP.DEF

SPC MODULA-2 V1.

PROCEDURE RemoveCursor (Handle : INTEGER)

(¥ remove last graphic cursor %)

PROCEDURE FormAdvance (Handle : INTEGER)
(% form advance ¥)

PROCEDURE OutputWindow (Handle : INTEGER;
Area . UDIRectangle);

(¥ output window *)

PROCEDURE ClearDisplaylist (Handle + INTEGER)

(¥ clear display list %)

PROCEDURE OutputBitImageFile (Handle © INTEGER:
FileName : ARRAY OF CHAR:
aspect,
scaling,
numPts : INTEGER:

Area ¢ UDIRectangle);

(% output bit image file %)

PROCEDURE SelectPalette (Handle,

palette : INTEGER)
t INTEGER:

(% select palette %)

PROCEDURE InquirePaletteFilms (Handle : INTEGER:
VAR FilmNames : FilmNameType)

(¥ inquire palette film types ¥)
(% only for Polaroid recorder %)

PROCEDURE InquirePaletteState (Handle ¢ INTEGER:
VAR port,
filmName,
lightness,
interlace,
planes ¢ INTEGER:
VAR indexes ¢ FilmIndexType):

(¥ inquire palette driver state ¥)
(¥ only for Polaroid recorder ¥)

PROCEDURE SetPaletteState (Handle,
port,
filmName,
lightness,
interlace,
planes i INTEGER;
indexes i FilmIndexType)

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\UDIESCAP.DEF H-51

(¥ set palette driver state ¥)

(% only for Polaroid recorder ¥)

PROCEDURE SavePaletteState (Handle : INTEGER)

(¥ save palette driver state %)

(% only for Polaroid recorder ¥)

PROCEDURE SuppressPaletteMessages (Handle : INTEGER)

(¥ suppress palette messages ¥)

(¥ only for Polarcid recorder ¥)

PROCEDURE PaletteErrorlInquire (Handle : INTEGER)
: INTEGER;

(¥ palette error inguire ¥)

(¥ only for Polaroid recorder %)

PROCEDURE UpdateMetafileExtents (Handle,
minX, minY,
maxX, maxY : INTEGER):

(¥ update metafile extents %)

PROCEDURE WriteMetafile (Handle,
numIntin i INTEGER;
VAR intIn : ARRAY OF INTEGER;
numPtsin + INTEGER:
VAR ptsln ARRAY OF INTEGER);

(¥ write metafile item %)

PROCEDURE ChangefileName (Handle INTEGER:
FileName : ARRAY OF CHAR);

(¥ change gem vdi filename ¥%)

PROCEDURE SetLineOffset (Handle © INTEGER:
offset : INTEGER):

(% set raster offset to start of logical screen (normally 8) %)

PROCEBURE InitSystemFont (Handle © INTEGER;
FontHeader : ADDRESS):

(% install a font as system-font %)
(¥ width of chars always 8 bit for ATARI | %)

END UDIEscapes.

H - 52 F+\GEMDOS\SYSLIB\UDIESCAP.DEF SPC MODULA-2 V1.4

(¥-mmm- Category @ Module Identification -==-=-=--=-----moommoomoo o *)

(% Module Type 1 %) DEFINITION MODULE

(G Name ¢ %) UDIInputs;

(G Function L ¥)

(¢ Version/Date : 1.82 / 19.87.1987 *)
(¥ Product Name ¢ SPC *)
(% Copyright ¢ (c) 1987,1988, MODsoft, D7588 Karlsruhe *)
(¥--==- Category : Module Abstract -------------—---—-oooomo -—%¥

This module implements the MODULA-2 interface to GEM VUDI. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 *)
(¥-=--= Category : Types and Data —----=-=-=-=-=—=~--scommomm e %)
FROM SYSTEM IMPORT ADDRESS:
FROM UDIOutputs IMPORT Coordinate;
FROM UDIAttributes IMPORT ColourRange:
TYPE
MouseFormType = RECORD
HotSpot : Coordinate;
ReservedEql i INTEGER; (¥ set to 1 %
MaskColour,
CursorColour : ColourRange;
MaskForm,
CursorForm : ARRAY [@ .. 15 1 OF INTEGER;
END;
DeviceTypes (IllegalDT, Locator, Valuator, Choice, String):
InputModes (IllegalIM, Request, Sample);
ValuatorStatus (NoAction, ValuatorChanged, KeypressCharacter):

KeyboardSpecials= (SHIFTRight, SHIFTLeft, CTRL, ALT)
MouseCodes = (LeftButton, RightButton):
EchoType = (NoEcho, Echo):

KeyboardState = SET OF KeyboardSpecials;
MouseState = SET OF MouseCodes;

(¥ input functions %)

PROCEDURE SetInputMode (Handle ¢ INTEGER;
DevType . DeviceTypes:
Mode ¢ InputModes)i

(¥ Set input mode %)

PROCEDURE InputLocatorRQ (Handle : INTEGER;
Location : Coordinate:
VAR RetLocation: Coordinate:
VAR Term © INTEGER);

(¥ input locator, request mode ¥)

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\UDIINPUT.DEF

H - 53

PROCEBURE InputlLocatorSM (Handle

Location

VAR Term
¢ INTEGER;

(% input locator, sample mode %)
(¥ TRUE - changed, FALSE - not changed %)

PROCEDURE InputValuatorRQ (Handle,
ValuatorIn :
VAR ValuatorOut,
Terminator
(¥ input valuator, request mode %)
PROCEDURE InputValuatorSM (Handle,
Valln
VAR ValOut,
Term
VAR Status
(¥ input valuator, sample mode %)
PROCEBURE InputChoiceRQ (Handle,
ChIn
VAR ChOut
(¥ input choice, request mode %)
PROCEDURE InputChoiceSM (Handle
VAR Choice
: BOOLEAN:

(¥ input choice, sample mode ¥)
(% TRUE - changed. FALSE - not changed %)

PROCEDURE InputStringRQ (Handle,
MaxLength
EchoMode

VAR EchoXY

VAR String

(¥ input string, request mode %)

: INTEGER;
: Coordinate;
VAR RetlLocation:

Coordinate;

: INTEGER)

INTEGER;
INTEGER)3

: INTEGER:

¢ INTEGER;
: ValuatorStatus);

: INTEGER;
¢ INTEGER)

¢+ INTEGER;
 INTEGER)

; INTEGER:

¢ EchoType;

: Coordinate:

' ARRAY OF CHAR):

(¥ read from keyboard until <CR> or MaxLength encountered %)

PROCEDURE InputStringSM (Handle,
' MaxLength
EchoMode
VAR EchoXY
VAR String
: INTEGER:
(% input string, sample mode %)
(¥ returns length of String %)
PROCEDURE SetMouseForm (Handle
MouseForm

+ INTEGER:

¢ EchoType:

: Coordinate:

: ARRAY OF CHAR)

: INTEGER:
¢ MouseFormType)

H - 54

F+\GEMDOS\SYSLIB\UDIINPUT.DEF

SPC MODULA-2 V1.

(% Set mouse form %)

PROCEDURE ExchangeTimerV (Handle
TimAddr
VAR 0TimAddR
UAR TimConv
(¥ Exchange timer interrupt vector ¥)
PROCEDURE ShowCursor (Handle
Reset

(¥ show cursor %)

PROCEDURE HideCursor (Handle
(¥ Hide cursor %)
PROCEDURE SampleMouseButton (Handle
VAR PStatus
VAR Location
(¥ Sample mouse button state %)
PROCEDURE ExchangeButtonV (Handle
PUsrCode
VAR PSavCode
(% Exchange button change vector ¥)
PROCEDURE ExchangeMovementV (Handle
PUsrCode
VAR PSavCode
(¥ Exchange mouse movement vector %)
PROCEDURE ExchangeCursorV (Handle
PUsrCode
VAR PSavCode
(¥ exchange cursor change vector %)
PROCEDURE SampleKeyboard (Handle
VAR PStatus
(¥ sample keyboard state information %)

END UDIInputs.

: INTEGER:
: ADDRESS:
: ADDRESS;
¢ INTEGER)

+ INTEGER;
: INTEGER);

¢ INTEGER)i

: INTEGER:
i MouseState;
. Coordinate)

+ INTEGER:
: ADDRESS:
¢ ADDRESS)

i INTEGER:
i ADDRESS:
: ADDRESS);

: INTEGER:
: ADDRESS:
: ADDRESS)

: INTEGER:
: KeyboardState)

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\UDIINPUT.DEF

H - 5§

(¥--=-- Category : Module Identification --=---==--===--=------—-——o—-—o *)
(¥ Module Type ¢ %) DEFINITION MODULE
(% . Name ¢ %) UDIInquires:
[N Function LX)
[C Version/Date : 1.82 / 19.87.1987 *)
(¥ Product Name ¢ SPC %)
(% Copyright ¢ (c) 1987,1988. MODsoft. D7588 Karlsruhe *)
(¥-=--- Category : Module Abstract -------- === B %%
This module implements the MOBULA-2 interface to GEM UDI. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”
SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 %)

(¥--=-~ Category : Types and Data ------------—--=---mmmmmm oo %)
FROM UDIAttributes IMPORT ColourRange,

ColourComposition,

TenthDegree,

LineStyles,

LineEndStyles,

HorAlignment,

VertAlignment,

HritingModes,

MarkerTypes,

FillStyles,

FillRange:
FROM UDIInputs IMPORT InputModes:
FROM UDIControls IMPORT MWorkstationInitRec,

HWorkstationDescription;
FROM UDIOutputs IMPORT Coordinate,

UDIRectangle;
TYPE

DeviceTypes = (NoScreen,

SeparatScreensAndControllers,

SeparatScreensOneController,

OneControllerSeparatGraphicMemory,
- OneControllerOneMemory) :

ValidTextRotations = (NoRotations,
NintyDegreeRotations,
ContinuousRotations):
ExtendWSDescription = RECORD
Device : DeviceTypes;
MaxBackgroundColours : CARDINAL;
MaxTextEffects : CARDINAL;
ZoomPossible : BOOLEAN;
MaxColourPlanes : CARDINAL:
LookUpTablePossible . BOOLEAN;
RasterOpsPerSecond : CARDINAL;
ContourFillPossible : BOOLEAN:
SupportedTextRotations: ValidTextRotations:
MaxHritingModes : CARDINAL;
MaxInputMode © InputModes:

H - 56

F+\GEMDOS\SYSLIB\UDIINQUI.DEF

SPC MODULA-2 V1.4

TextAlignmentPossible : BOOLEAN;

ChangePenPossible : BOOLEAN:
ChangeRibbonPossible : BOOLEAN:
MaxPointsForQutput + INTEGER;
MaxLengthOfintin . INTEGER:
MaxMouseButtons . CARDINAL:

TypesForHidedLinesPoss: BOOLEAN;
MxWRModesForWidedLines: CARDINAL;

Reserved " ARRAY [8 .. 37 1 OF INTEGER:
END:
CombinedWSDescr = RECORD

CASE : BOOLEAN OF
TRUE : NormalDescr : WorkstationDescription:
| FALSE : ExtendDescr : ExtendWSDescription:

END:

END:

LineAttrType = RECORD
LineStyle : LineStyles:
LineColour : ColourRange;
WriteMode i WritingModes:
BeginStyle,

EndStyle i LineEndStyles:
Linelidth : CARDINAL:

END:

MarkerAttrType = RECORD
MarkerType : MarkerTypes:
MarkerColour : ColourRange;
WriteMode i WritingModes:
MarkerWidth,

MarkerHeight : CARDINAL;

END;

FillAttrType = RECORD
FillStyle i FillStyles;
FillColour : ColourRange;
FillType i FillRange:
HriteMode i WritingModes:
FrameVisible : BOOLEAN:

END: .

TextAttrType = RECORD

. Font + INTEGER:
ColourIndex : ColourRange:
Rotation ¢ TenthDegree;
HorOrient ¢ HorAlignment;
VertOrient i VertAlignment;
WriteMode ¢ WritingModes;
Charlidth,

CharHeight,
Celllidth,

CellHeight : INTEGER;
E '

ExtendCoords = ARRAY [@8 .. 3 1 OF Coordinate:

(¥ Inquire functions %)

PROCEDURE ExtendedInquire (Handle ¢ INTEGER;
Extended 1 BOOLEAN;
VAR WorkOut : CombinedWSDescr) ;

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\UDIINQUI.DEF H - 57

% Extended Inquire function ¥)

PROCEDURE IngquireColour (Handle

SetfFlag
VAR RGB

(¥ inguire colour representation %)

PROCEDURE InquirelLineAttributes (Handle

VAR Attrib

(¥ inquire polyline attributes %)

Handle
VAR Attrib

PROCEDURE InquireMarkerAttributes(
(¥ inguire polgmarker attributes %)

PROCEDURE InquireFillAttributes (Handle

VAR Attrib

(% inquire fill area attributes ¥)

PROCEDURE IngquireTextAttributes (Handle

VAR Attrib

(¥ Inquire graphic text attributes ¥)

PROCEDURE IngquireTextExtent (Handle
String

VAR Extent

(% Inquire text extent ¥)

i INTEGER;
VAR ColourIndex:

ColourRange;

+ INTEGER:
: ColourComposition)i

i INTEGER:
¢ LineAttrType)

: INTEGER;
¢ MarkerAttrType):

 INTEGER;
FillAttrType)i

i INTEGER;
i TextAttrType)i

¢ INTEGER;
: ARRAY OF CHAR:
+ ExtendCoords)

(% Extent: 4 corner-coordinates of the extent-rectangle %)

PROCEDURE InquireCharWidth (Handle
Character
VAR CelllWidth,
LeftDelta,
RightDelta :
i INTEGER:
(¥ inquire character cell width %)
(% RETURN -1 - character not allowed
n - ORD(character) %)
PROCEDURE InquireFaceName (Handle,
ElementNum :
VAR Name
: INTEGER:

(¥ inquire face name and index %)

© INTEGER;
: CHAR;

INTEGER)

INTEGER:

' ARRAY OF INTEGER)

(% Name requires a minimum length of 32 elements %)

PROCEDURE InguireCellArray (Handle

PxyArray

i INTEGER:
: UDIRectangle:

H - 58

F+\GEMDOS\SYSLIB\VDIINQUI .DEF

SPC MODULA-2 V1.

RowlLength.

NumRows : INTEGER:
VAR ElUsed,

RowsUsed,

Status : INTEGER:

VAR ColArray @ ARRAY OF INTEGER):

(¥ inquire cell array %)
(¥ ColArray requires a minimum length of ?? elements %)

PROCEDURE InquirelnputMode (Handle,
DevType : INTEGER;
VAR InputMode : INTEGER)

(¥ inquire input mode %)

PROCEDURE InquireFaceInfo (Handle . INTEGER;
VAR MinADE,
MaxADE ¢ INTEGER:

VAR Distances : ARRAY OF INTEGER;
UAR MaxWidth : INTEGER;
VAR Effects : ARRAY OF INTEGER):

(¥ inquire current face information %)

(% Distances requires a minimum length of 5 elements ¥)
(% Effects requires a minimum length of 3 elements %)

END UDIInquires.

SPC MODULA-2 V1.4 Fi\GEMDOS\SYSLIB\UDIINQUI.DEF H - 59

(k==mmm Category @ Module Identification ------------------------oo-—muu *)

(¥ Module Type + %) DEFINITION MODULE

(% . Name i %) UDIOutputs;

(% . Function i X)

(%, Version/Date : 1.82 / 19.87.1987 *)
(¥ Product Name + SPC *)
(¥ Copyright : (c) 1987,1988, MODsoft, 07580 Karlsruhe *)
(¥-===- Category @ Module Abstract —----=---===--==—mmmmms oo oo oo oo *%

This module implements the MODULA-2 interface to GEM UBI. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch™,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 ¥)
(¥-==m- Category : Types and Data —---—========-—--=----—mmomom oo *)
FROM UDIAttributes IMPORT ColourRange,
TenthDegree:
TYPE
Coordinate = RECORD
X, y : INTEGER:
END;
UDIRectangle R = RECORD
LowerLeft,
UpperRight ¢ Coordinate:
END;

(¥ Output functions ¥)

PROCEDURE PolyLine (Handle,
Count © INTEGER:
VAR PxyArray © ARRAY OF Coordinate)

(% display a polyline on graphics display %)
PROCEDURE PolyMarker (Handle.
Count . INTEGER:
UAR PxyArray : ARRAY OF Coordinate)

(% draw markers at points specified %)

PROCEDURE GraphicText (Handle : INTEGER:
Location : Coordinate:
VAR String © ARRAY OF CHAR):

(X write text to display surface ¥)

PROCEDURE FillArea (Handle,
Count : INTEGER:
VAR PxyArray : ARRAY OF Coordinate):

(¥ fill a complex polygon %)

H - 60 F+\GEMDOS\SYSLIB\VDIOUTPU.DEF SPC MODULA-2 V1.4

PROCEDURE CellArray (Handle © INTEGER:
PxyArray . UDIRectangle:

RowlLength,

ElUsed.

NumRows,

HrtMode : INTEGER:

ColArray : ARRAY OF INTEGER);
(% bit tricky to explain ... see documentation %)
PROCEDURE ContourFill (Handle : INTEGER:

StartlLocat : Coordinate:

Index ¢ ColourRange):

(¥ fill an area ¥)
PROCEDURE FillRectangle (Handle : INTEGER:
PxyArray 1 UDIRectangle)

(¥ fill rectangle %)

(% generalised drawing primitives %)

PROCEDURE DrawBar (Handle ¢ INTEGER:
PxyArray : UDIRectangle)
PROCEDURE DrawArc (Handle : INTEGER:
Center ¢ Coordinate:
Radius : INTEGER:
BegAng,
EndAng : TenthDegree);
PROCEDURE DrawPieSlice (Handle : INTEGER:
Center : Coordinate:
Radius : INTEGER:
BegAng,
EndAng 1 TenthDegree):
PROCEDURE DrawCircle (Handle ¢ INTEGER:
Center ¢ Coordinate;
Radius : INTEGER);
PROCEDURE DrawEllipticalArc (Handle : INTEGER;
Center . Coordinate;
xRadius,
yRadius : INTEGER:
BegAng,
EndAng i TenthDegree);
PROCEDURE DrawEllipticalPie (Handle ¢ INTEGER;
Center : Coordinate;
xRadius,
yRadius + INTEGER:
BegAng.
EndAng ¢ TenthDegree):
PROCEDURE DrawEllipse (Handle © INTEGER;
Center ¢ Coordinate;
xRadius,
yRadius i INTEGER);

SPC MODULA-2 V1.4 F+\GEMDOS\SYSLIB\VUDIOUTPU.DEF H- 61

PROCEDURE DrawRoundedBox (Handle : INTEGER:
PxyArray : UDIRectangle);

PROCEDURE DrawRoundedFilledBox (Handle : INTEGER;
PxyArray ¢ UDIRectangle)i

(¥ justified graphics text ¥)

PROCEDURE JustifiedText (Handle 1 INTEGER;
StartlLocat: Coordinate:
VAR String : ARRAY OF CHAR:
Length,
WordSpace.

CharSpace : INTEGER):
(¥ output text both left and right justified %)
END VUDIOutputs.

H - 62 7+ \GEMDOS\SYSLIB\VUDIOUTPU.DEF SPC MODULA-2 V1.4

(¥=mmmm Category : Module Identification --=--=--=-==-----mmooomoooomo *)

(¥ Module Type : %) DEFINITION MODULE

[C Name ¢ %) UDIRasters:

(% . Function Lo¥)

[C Version/Date : 1.82 / 19.87.1987 *)
(¥ Product Name ¢ SPC *)
(% Copyright ¢ (c) 1987,1988, MODsoft, D7588 Karlsruhe X)
(¥-—--- Category ! Module Abstract -—-—-=-------m—mmmoo oo oo *¥%

This module implements the MODULA-2 interface to GEM UDI. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”,

SYBEX, ISBN 3-88745-581-8. 1.Auflage 1987 %)
(%----- Category ¢ Types and Data -—-—===-======-=---=--=—--——o-oommomm *)
FROM UDIAttributes IMPORT ColgurRange,
WritingModes:
FROM UDIOutputs IMPORT VUDIRectangle,
Coordinate:

FROM SYSTEM IMPORT ADDRESS:

TYPE
MemoryFormDefBlack = RECORD
UpperLeftRasterAddr : ADDRESS:
Width : CARDINAL: (¥ in points %)
Height ¢ CARDINAL: (¥ in points ¥)
WordWidth : CARDINAL: (¥ in words %)
FormatFlag + CARDINAL; (¥ 8 = device specific
1 = standard *)
Planes »+ CARDINAL:
Reservedl,
Reserved?,
Reserved3 ¢ CARDINAL; (% for future use %)
END:
MFDBAddress = POINTER TO MemoryFormDefBlock;
LogicModes = (ClearD , SAndD , SAndNotD, S,
NotSAndD . D , SXorD , SOrD,
Nor , NXor ., NotD , SOrNotD,
NotS NotSOrD, Nand , SetD):

(¥ S - soure, D - destination ¥)

(¥ raster operations %)

PROCEDURE CopyRasterOpaque (Handle ¢ INTEGER;
WrMode : LogicModes;
FromArea,
ToArea : UDIRectangle:
SourceMFDB.

DestMFDB 1 MFDBAddress)

(% copy raster, opaque %)

PROCEDURE CopyRasterTransparent (Handle © INTEGER;

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\UDIRASTE . DEF

H - 63

HrMode : WritingModes;

FromArea,

ToArea 1 UDIRectangle:
SourceMFDB,

DestMFDB . MFDBAddress:
OnColour,

0ffColour : ColourRange);

(% copy raster, transparent ¥)

PROCEDURE TransformForm (Handle : INTEGER;
SourceMFDB,
DestMFDB : MFDBAddress)

(¥ transform form %)

PROCEDURE GetPixel (Handle ¢ INTEGER;
PixellLocat : Coordinate:
VAR PixelValue : INTEGER;
VAR ColourIndex: ColourRange);

(¥ get pixel %)

END UDIRasters.

H - 64 F1\GEMDOS\SYSLIB\UDIRASTE . DEF SPC MODULA-2 V1.4

(¥=-=-- Category @ Module Identification ------------=--m-mommmmoooooo

(¥ Module Type : %) DEFINITION MODULE

[C 2N Name t %) Watch;

[C Function + SPC Desktop Clock

(G Version Date : 24:33 19. 8.1988

(¥ Product Name : SPC

(¥ Copyright ¢ (c) 1987,1988. MODsoft, D7588 Karlsruhe
(f==mm- Category : Initialisation -======-----m-mmmmommmmm oo

PROCEDURE Init:

(¥ Initialise Watch and register at SWiS. %)

PROCEDURE Term:

(¥ Terminate Watch and deregister from SSWiS. %)

END MWatch.

*)

3
®

*)

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\WATCH. DEF

H - 65

(¥====-- Category : Module Identification -- -—=%)
(¥ Module Type %) DEFINITION MODULE
(* . Name 1 %) XBios:
(% . Function ¢ XBIOS Interface TO Modula-2 *)
(% Version/Date : 1.8 / 13.9.88 *)
(% Product Name i SPC *)
(% Copyright + (c) 1988, MODsoft, D7588 Karlsruhe *)
(%----- Category : Module Abstract - -- ittt ittt *%
This module implements the MODULA-2 interface to XBIOS. All functions
are explained in various documents about GEM on the ATARI ST computer. %)
(¥-==mm Category : Types and Data --- Sttt *)
FROM SYSTEM IMPORT ADDRESS:
TYPE MouseTypes = (DisableMouse,
RelativeMode,
AbsoluteMode,
Unused,
KeycodeMode) ;
MouseParams = POINTER TGO RECORD
TopMode : [@..11:
Buttons | CHAR:
XParam ! CHAR:
YParam H CHAR;
XMax ! INTEGER;
YMax : INTEGER:
XInitial H INTEGER:
YInitial : INTEGER;
END:
ScreenRes = (Low, Medium, High):
Palette = ARRAY [8..15]1 OF INTEGER;
IoRec = RECORD
Buffer ! ADDRESS:
BufSize ! INTEGER:
Head ! INTEGER:
Tail : INTEGER;
Low : INTEGER;
High : INTEGER;
END:
IoRecPtr = POINTER TO IoRec;
KeyTab = RECORD
UnShift H ADDRESS:
Shift ! ADDRESS:
CapsLock H ADDRESS:
END:
KeyTabPtr = POINTER TO KeyTab:
KeyVecs = RECORD
Midiln : ADDRESS;
KbdErr ' ADDRESS:
MidiErr ' ADDRESS:
StatPack : ADDRESS:
MousePack : ADDRESS;
ClockPack ! ADDRESS
JoyPack ; ADDRESS:
MidiSys ' ADDRESS:
H - 66 F:\GEMDOS\SYSLIB\XBIOS.DEF SPC MODULA-2 V1.4

KbdSys : ADDRESS:

END:
KeyVecsPtr = POINTER TO KeyVecs:
PrintParmBlock = RECORD
ScreenAdd : ADDRESS;
Screen0ffset INTEGER;
Screenlidth INTEGER:
ScreenHeigth : INTEGER;
Left d INTEGER:
Right : INTEGER:
Resolution ScreenRes;
PrinterRes INTEGER;
ColorTab : POINTER TO Palette:
PrinterType LONGINT:
PrinterPort INTEGER:
PrintMask : INTEGER:
END;
PrintParmPtr = POINTER TO PrintParmBlock:
VAR Result ¢ LONGINT;
(¥-=-=- Category @ XBios Functions -—===--=-m=-—mmmmmmm e %)
PROCEDURE InitMouse (MouseType ¢ MouseTypes:
Parms : MouseParams;
Vector : ADDRESS)
PROCEDURE PhysBase () : ADDRESS:
PROCEDURE LogBase () + ADDRESS:

PROCEDURE GetResolution () : ScreenRes;

PROCEDURE SetScreen (Log : ADDRESS:
Phys ! ADDRESS:
Res 1 ScreenRes)3

PROCEDURE SetPalette (VAR P ¢ Palette)

PROCEDURE SetColor (Nummer i INTEGER:
Color : INTEGER

: INTEGER;

PROCEDURE FlopRead (Buffer : ADDRESS:
Device i INTEGER;
Sector i INTEGER;
Track : INTEGER:
Side : INTEGER:
Count : INTEGER):

PROCEDURE FlopWrite (Buffer : ADDRESS;
Device : INTEGER:
Sector : INTEGER;
Track : INTEGER:
Side + INTEGER:
Count : INTEGER)

PROCEDURE FlopFormat (Buffer : ADDRESS:
Device : INTEGER;
SecPerTrack: INTEGER:
Track : INTEGER:
Side : INTEGER:

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\XBIDS.DEF H - 67

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

Midilrite

MFPInt

GetIoRec

RSConfig

KeyTable

Random

Protaobt

FlopVerify

ScreenDump;

CursorConfig

SetTime
GetTime
BiosKeys:

KeyboardWrite

Disablelnt
Enablelnt

Giaccess

0ffgibit

Ongibit

Interleave : INTEGER;
MagicHord : LONGINT:
Virgin 1 CARDINAL)3

(Count INTEGER:

Str : ARRAY OF CHAR)i

(IntNr ¢ INTEGER:

Int : ADDRESS)

(Device + INTEGER)

+ IoRecPtr;

(Speed : INTEGER:
Control : INTEGER:
ucr : INTEGER:
rsr : INTEGER:
tsr 1 INTEGER:
scr : INTEGER):

(UnShift i ARRAY OF CHAR;
Shift ¢ ARRAY OF CHAR:
CapsLock ¢ ARRAY OF CHAR)

1 KeyTabPtr:

() : LONGINT:

(Buffer + ADDRESS:
SerialNr : LONGINT;
DiskType : INTEGER:
ExecFlag ¢ INTEGER)

(Buffer : ADDRESS:;

Device ¢ INTEGER:
Sector : INTEGER;
Track ¢ INTEGER;
Side + INTEGER:
Count : INTEGER);

(Func ¢ INTEGER:
Rate ¢ INTEGER)

¢ INTEGER;

(Time : LONGINT);

() + LONGINT:

(Count ¢ INTEGER:

Str i ARRAY OF CHAR):

(NP ¢ INTEGER)

(NP ¢ INTEGER):

(Data . CHAR:

Register ¢ INTEGER)

© CHAR:

(Nr ¢ INTEGER)

(Nr ¢ INTEGER)

H - 68

F+\GEMDOS\SYSLIB\XBIOS. DEF

SPC MODULA-2 V1.

PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

Xbtimer (Timer
Control
Data
Vector
DoSound (Str
SetPrinter (Config
i+ INTEGER;
KeyBase () KeyVecsPtr:
KbdRate (Init
Repeat
+ INTEGER:
PrintBlock (Parms
USync;
Supexec (Vector
PuntAES;
BlitterMode (Flag

¢ INTEGER;

+ INTEGER:

© INTEGER:

© INTEGER:

¢ ADDRESS);

i ARRAY OF CHAR)

¢ INTEGER)

: CHAR;

¢ CHAR)

¢ PrintParmPtr):

: ADDRESS)

: INTEGER)

(% BlitterMode function only in Blitter-TOS %)

END XBios.

SPC MODULA-2 V1.4

F:\GEMDOS\SYSLIB\XBIOS.DEF

H - 69

Index

5-1,
A 8-21
Binding.......ccoooviiiiii 2-13
ABS .. 5-15 BITSET ... 5.9
Accept-Prozedur 8-11 9-2
ADDRESS ..o 5-12 Block-Operationen............. 4-5
ADR ... 5-12 BOOLEAN ..o 5-10,
Alignment............... 9 9-2
Anmelden als Applikation Buffer-Flag.........ccoeeveeenin. 7-15
in GEM ..o 1=8 BYTE oo, 5-12
in SSWIS ...t 8-11 ByteSUEaMS ...oooooeoo. o_g -
Arbeits-Directory................. 1-10
Argumente
in xShell ..o 3-3
N LinKer -ooooooccovvvvreee. -3
in Compilercccoeveenne 5-3
in Prelinker....................... 7-27 Caret.......iiiiiinn 8-23
N MaKE ..o 7=30 CARDINAL.....c.ccovrvvorrmrrriernn. 5-9,
9-2
CAP .o 5-15
B CHAR ..o 5-9,
9-2
Backup-Flag.............cceoen 7-16 Check-Flag...........c...c.oeee. 7-16
Betriebssystem—Aufrufe.....5-14 CHR......... 5-15
Binden, dynamsich............. 2-7, Clipboardcccccooveennn. 4-6
SPC MODULA-2 V1.4 Index -1

Clip—-Gebiet in SSWiS........ 8-13,

8-16
ClOCK ..o 2-9 .
CMD .. 5_4 Edatgr 4-1
CmdLine Environment........ e 2-11
Kurzbeschreibung............ 2-12 Environment-Variablen
iN XShell oo, 3-6 in xShell 3-17
Code-Segment................... 9-6 Enumerationstypen 5-10,
CODE Prozeduren.............. 5-14 9-2
COMPArecc.covvevrereean. 719 ERRLST.on 55
Copy in Filer o 718 Ersetzen............. 4-7
Coroutines ... 210 Events ... 8-11
CUrSOrpOSItion ... 4-2 EXCL .o, 5-15
Cursorzeile......cccccoovveeenenene 4-3
D Fehler
) Datei......ccccovveiiiiiieiee, 5-2
Dateien _ ANZEIGE ..., 4-1
selektioren in xShell3-4 ko ol e 8-3
Daten-Segment 9-6 AKHVES ... 8-4
Datentypen Randelemente................... 8-5
in MODULA-2.................. 5-9 Inhalt ... 8-5
iNn SSWiS....ccccvviiiiien 8-15 Titel o 8-3
DEC ..ot 5-15 Filer.ococoiiiiiiiiic, 7-3
DEF .. 5-4 FileSystem ... 2-9
Defaul-Kommando............. 3-9 Flags in Filer..................... 7-15
Delete in Filer.................... 7-17 FLOAT ..ot 5-15
Desktop—Accessories 1-7 FLOATD ..o 5-15
Desktop......coovvevierieie 8-3 Formulare........c.occccviiininn. 8-8,
DESKTOP.INFoovvvriirnnns 1-7 8-24
FORWARDcccooveniinnnn. 5-14
Frame-Pointer.................... 9-11
Funktionstasten
-2 Index SPC MODULA-2 V1.4

in Editor.......ccooo 4-10 9-2
N SSWIS v 8=7 INSTALLPRG...................... 1-3
Gerate—Koordinaten........... 8-15 oL
Kurzbeschreibung............ 3-14
JOb o 3-14
H Job-Control-Language3-14
HALT o 5-15
HFS o 2-9
HIGH ..o 5-15 K
Hilfsdeskriptor...........ccoc...... 9-6 Keyboard-Events................ 8-18
Hotline.......coooeii, 1-2 Kommandodatei
fur Compile.......cccoeeeees 5-1
far Prelink...........cocoee . 7-27
Kommandozeile
I in xShell ..o 3-4
textuelle Eingabe............. 3-16
|dent|f|kat|on 8-7 fur Complle 5-3
Identification-Events........... 8-20 fur Link ..o 7-23
INC oo 5-16 N Prelinker................. 7-27
INCL oo 5-16 Kf‘" Ms';e_' """""""""""""" /=30
R T SR 5-19 Kompat'tb'le'tl"(’.t. """""""""""" 2"?0
Jinsert-Modus..................... 4-3, OMPALDIEAL..----vvvvvrsrrvere -
4-9 - Koordinatensysteme 8-15
Implementierung.................. 2-2
Initialisierungsreihenfolge ...7-26
INLINE ..o 5-13 L
INOUt ... 2-8
. _ Ladepfade
::ﬁ:;?g;" """"""""""""""" ; g R 3-9
"""""""""""""""" T Lader e 2=T
SPC MODULA-2 V1.4 Index -3

Ladevorgang..........ccccceeuene. 9-9
Laufzeitfehler

in Debugger.................... 6-1
Laufzeitsystem..........cccoeee. 9-1
Lieferumfang...........ccce....... 1-1
Linker.....ccooieii, 2-7,

7-23
Lizenzvertragc.cccooveevueenee. 1-1
LONGcoooiiiiiiieiee 5-12
LONGBITSETc.ccccccvviee 5-9,
9-4
LONGCARDccceovvverane 5-9,
9-2
LONGINT.....ccooiiiiiinircnnns 5-9,
9-3
LONGREAL...cccocoiviiiinn. 5-9,
9-4
LMathLib ..o, 2-10

Meta-Tasten...........ccccco....... 8-18
MIN . 5-16
MOD ..o 5-4
Moduldeskriptor.........c....c... 9-5
Modulkonzept..................... 2-2
Modulorganisation............... 9-5
Modulschlussel
in xShell ..., 3-9
in Compilercccooe. 5-7
Modultabelle 9-7,
9-9
Modulvariablen 9-7
Motion-Events..................... 8-19
Mouse-Events..................... 8-19
Move in Filercc.o.e.. 7-18
Multitasking..........c.ccceoeeinee 3-1

N

Normung........coooiinnnnn, 2-1
MaKE.......oovoeeeee e 7-29 ;Otati)onz"e Kor‘_"e"t'one“'g ‘0
Makro in Make 7-31 UMDber-onversions -
Marke ..o, 4-8
Maschinenabhéngigkeit9-2
MathLib ..o, 2-10 O
MAX oo -1 .
. 5-16 Objekte
Menu Shal - N XSl ..o 3-2
in xShell ..o, - .
in EAItON. ..o 4-g OBPAN 56
N SSWIS ..o 8-6, OBM. 5-4
8-24 ODDoocoeoiiii 5-16
EventS 8—19 Optlonen
Message-Events............... 8-20 in xShell ..., 3-5
-4 Index SPC MODULA-2 V1.4

REAL .o 5-9
PAN ... -5, ~ Hedraw-Prozedur........ 8-13
7-36 REG.........l 5-12
PASCAL, Unterschiede o_1q Registrierkarte...................... 1-1
Pfade......ccoooiiiiieiiee, 5-5 Registrierung..........c.c.oo..... 1-2
POINTER TO .o 5-10, Rename in Filer.......... 7-18
9-3 Replace-Flag........ccccovvunn. 7-15
PollEvents Loop.................. 8-10, Replace-Modus.................. 4-3,
8-20 4-9
Prelinker ..o 7-27 Restiktionen............cc.cco.. 5-17
Print......cooooni e, 7-33 Resultate
PrNEr..coeeveveeeeeeeeee, 2-9 N xShell ..o 3-5
PROCEDURE 5‘10 RFM 5_‘4
Prozedurprolog.........cc.c...... 9-12 RSC-File
Prozedurrahmen 9-10 in xShell ..o 3-7
Prozedurtabelle 9-7
Processcccoooveeiiviiccnnn. 2-11
Profile S
in xShellcccccoeee 3-7
Programmkomplexitat......... o o SBM. .o 5-4
PIOZEAUMYD oo o g Schnittstelle ... 2-2
Pseudo-Multitasking.......... 3.1, Search in Filer........c.......... 7-19
8-2 Serialisierung 1-2
SETREGcooovvieiiiiiiea 5-12
. SET OF i, 5-10,
! 9-3
Q SHIFT e 5-13
Query-Flag.......c.ccccovvvinnn. 7-15 SHORT o, 5-12
Single-Pass-Compiler........ 5-1
SIZE. ..o 5-16
R Softwarebausteine............... 2-3
Spaltennummern................. 4-4
SPC MODULA-2 V1.4 Index -5

SPCLIB......ooveieieee 2-11 ThreadS......ccccovvevevnrciennn, 9-5

Speicherbedarf Timer—-Events...........cccooe.... 8-20
systemweit....................... -1 Transformationen 8-15
I XSAGMH o ST Tree in Filer .. 7-19

StackSize....ccoooovvvvvvvveee, 7-23, TRUNG oo >-16

g8-21 TRUNCD.......ccccoomiviiiinnnrens 5-16

Stackorganisation................ 9-10

Standardbibliothek 2-3

STDLIB .o 2-8 U

Storage.......ocevveeveeeees 2-10

SHINGS ..o 2-10 Jmgebung in xShell.......... 3-2

SSWIS oo g—1 UPAALES...s 1-2
Kurzbeschreibung............ 2-12 Utilities
mit xShell oo 3-2 in xShelloooveeeennn. 3-12

Suchen in Editor................ 4-7

syntaktische Straffungen....2-5

SYSLIB ..o, 2-13 V

Systemcoeeeivieiiee 2-12

SYSTEM, Pseudomodul.....5-12 VALcooo, 5-11

systemabhangige Moduln..2—2 Verbose-Flagc.cce..... 7-14

systemnahe Elemente........ o_4 Verify=Flag.......cccccoeeineenn. 7-16

T W

Tastatur Weltbild 8-6 :
Bedienung in xShell....... 3-8 Welt-Koordinaten................ 8-15
in Filer ... 7-13 Werkzeuge
in SSWiS.......cocoviie. 8-18 im Hauptspeicher halten3-5

Terminal Wirth ..o 7
Kurzbeschreibung............ 2-8 WORD - 5-13
in xShell 3-6

TextFileS......ccccooviiviiic, 2-11

TextStreams........ccccevveeinen. 2-9

-6 Index SPC MODULA-2 V1.4

X

xShell
Design-ideec..ccc........ 3-1
Ubersicht ..o 3-1
als Applikation 1-8
XS it 2-11

Z

ZehnerblocK...........cccoeee 4-11
Zeilennummern.................... 4-4,

4-9
Zielgruppe von M2............. 2-6
Zuweisungskompatibilitat....5-10
Zyklen bei Importen........... 7-26
SPC MODULA-2 V1.4 Index

Index

SPC MODULA-2 V1.4

Name Modul Typ Lib Seite
Abandon Fraas PROCEDURE SPCLIB G-11
Abandon TextFiles PROCEDURE SPCLIB G-38
AcceptProc SSWis TYPE SPCLIB G-26
AccessoryClose AESEvents CONST SYSLIB H-07
AccessoryOpen AESEvents CONST SYSLIB H-07
ACK ASCII CONST STDLIB F-03
Add AESObjects PROCEDURE SYSLIB H-17
ADDRESS SYSTEM TYPE SYSTEM E-03
ADR SYSTENM PROCEDURE SYSTEM E-03
ADRintin VDIBase VAR SYSLIB H-45
ADRintout VDIBase VAR SYSLIB H-45
ADRParams VDIBase VAR SYSLIB H-45
ADRptsin VDIBase VAR SYSLIB H-45
ADRptsout VDIBase VAR SYSLIB H-45
AESAddrIn AESBase VAR SYSLIB H-06
AESAddrInType AESBase TYPE SYSLIB H-05
AESAddrout AESBase VAR SYSLIB H-06
AESAddrOutType AESBase TYPE SYSLIB H-05
AESControl AESBase VAR SYSLIB H-06
AESControlType AESBase TYPE SYSLIB H-05
AESGlobal AESBase VAR SYSLIB H-06
AESGlobalType AESBase TYPE SYSLIB H-05
AESIntIn AESBase VAR SYSLIB H-06
AESIntInType AESBase TYPE SYSLIB H-05
AESIntOut AESBase VAR SYSLIB H-06
AESIntOutType AESBase TYPE SYSLIB H-05
AESParameters AESBase VAR SYSLIB H-06
AESParameterType AESBase TYPE SYSLIB H-06
Alert AESForms PROCEDURE SYSLIB H-09
AllKeys SSWis TYPE SPCLIB G-24
Allocate Storage PROCEDURE STDLIB F-26
ALLOCATE Storage PROCEDURE STDLIB F-26
AllocateProc SplittedPieces TYPE SPCLIB G-21
AlphaKeys SSWis TYPE SPCLIB G-24
And Bytes PROCEDURE SPCLIB G-05
AndNot Bytes PROCEDURE SPCLIB G-04
AnyBitmap AESObjects TYPE SYSLIB H-15
AnyBitmapPtr AESObjects TYPE SYSLIB H-16
AnyText AESObjects TYPE SYSLIB H-15
AnyTextPtr AESObjects TYPE SYSLIB H-16
ApplBlk AESObjects TYPE SYSLIB H-17
ApplBlkPtr AESObijects TYPE SYSLIB H-16
arccos LMathLib PROCEDURE STDLIB F-17
arccos MathLib PROCEDURE STDLIB F-19
arcsin LMathLib PRCCEDURE STDLIB F-17
arcsin MathLib PROCEDURE STDLIB F-19
arctan LMathLib PROCEDURE STDLIB F-17
arctan MathLib PROCEDURE STDLIB F-19
Arrow AESGraphics CONST SYSLIB H-11
AskForm SSWis PROCEDURE SPCLIB G-31
AskName HFS PROCEDURE STDLIB F-12
SPC MODULA-2 V1.4 LIB-INDEX J-01

Name Modul Typ Lib Seite
Assign Strings PROCEDURE STDLIB F-27
AssignFont TextWindows TYPE SPCLIB G-42
Attribute GemDos PROCEDURE SYSLIB H-34
Attributes GemDos TYPE SYSLIB H-31
Attributes Printer TYPE STDLIB F-22
AttributeSet Printer TYPE STDLIB F-22
AuxDescr System TYPE SPCLIB G-34
AuxDescrPtrt System TYPE SPCLIB G-34
AuxIn GemDos PROCEDURE SYSLIB H-32
AuxInStat GemDos PROCEDURE SYSLIB H-33
AuxOut GemDos PROCEDURE SYSLIB H-32
AuxOutStat GemDos PROCEDURE SYSLIB H-33
Available Process PROCEDURE SPCLIB G-18
Available Storage PROCEDURE STDLIB F-26
Bar AESMenus PROCEDURE SYSLIB H-13
BasePage Gemdos TYPE SYSLIB H-31
BasePagePtr GemDos TYPE SYSLIB H-31
BasePagePtr System VAR SPCLIB G-33
Bconin Bios PROCEDURE SYSLIB H-28
Bconout Bios PROCEDURE SYSLIB H-28
Bconstat Bios PROCEDURE SYSLIB H-28
Bcostat Bios PROCEDURE SYSLIB H-28
BeginOfFile Frags CONST SPCLIB 6-10
BEL ASCII CONST STDLIB F-03
BiosKeys XBios PROCEDURE SYSLIB H-68
BiosParmBlock Bios TYPE SYSLIB H-27
BiosParmPtr Bios TYPE SYSLIB H-27
BitBlk AESObjects TYPE SYSLIB H-16
BitBlkPtr AESObjects TYPE SYSLIB H-16
BitBlt LineA PROCEDURE SYSLIB H-39
BitBltPointer LineA TYPE SYSLIB H-37
BitBltRecord LineA TYPE SYSLIB H-37
Black AESBase CONST SYSLIB H-05
BlitterMode XBios PROCEDURE SYSLIB H-69
BlockModes Bios TYPE SYSLIB H-27
Blue AESBase CONST SYSLIB H-05
BS ASCII CONST STDLIB F-03
BusyRead Terminal PROCEDURE SPCLIB Resu
Button AESEvents PROCEDURE SYSLIB H-07
ButtonActivities SSWis TYPE SPCLIB G-25
BYTE SYSTEM TYPE SYSTEM E-03
Calc AESWindows TYPE SYSLIB H-24
Call JCL PROCEDURE SPCLIB 6-14
Call Loader PROCEDURE SPCLIB G-16
Callerof System PROCEDURE SPCLIB G-36
CallResult AESBase VAR SYSLIB H-06
Callvdl VDIBase PROCEDURE SYSLIB H-45
CAN ASCII CONST STDLIB F-03
Cardinal XStr PROCEDURE SPCLIB G-46
J-02 LIB-INDEX SPC MODULA-2 V1.4

Name

Modul Typ Lib Seite
CardToString NumberConversions PROCEDURE STDLIB F-20
cd JCL PROCEDURE SPCLIB 6-14
CellArray VDIOutputs PROCEDURE SYSLIB H-61
Center AESFornms PROCEDURE SYSLIB H-09
Change AESObjects PROCEDURE SYSLIB H-18
ChangeFileName VDIEscapes PROCEDURE SYSLIB H-52
Char XStr PROCEDURE SPCLIB G-46
CharsPerLine Printer PROCEDURE STDLIB F-23
Clear Bytes PROCEDURE SPCLIB G-04
Clear SSWis CONST SPCLIB G-24
Clear Strings PROCEDURE STDLIB F-27
Clear TextWindows TYPE SPCLIB G-43
ClearDisplayList VDIEscapes PROCEDURE SYSLIB H-51
ClearWorkstation VDIControls PROCEDURE SYSLIB H-47
Close AESWindows TYPE SYSLIB H-24
Close ByteStreams PROCEDURE STDLIB F-04
Close Files PROCEDURE SYSLIB H-29
Close FileSystem PROCEDURE STDLIB F-10
Close GemDos PROCEDURE SYSLIB H-33
Close TextStreams PROCEDURE STDLIB F-31
CloseInput InOut PROCEDURE STDLIB F-14
CloseQutput InOut PROCEDURE STDLIB F-14
CloseVirtualWorkstation VDIControls PROCEDURE SYSLIB H-47
CloseWorkstation VDIControls PROCEDURE SYSLIB H-47
ColourComposition VDIAttributes TYPE SYSLIB H-41
ColourIntensity VDIAttributes TYPE SYSLIB H-41
ColourRange VDIAttributes TYPE SYSLIB H-41
Combine Rectangle PROCEDURE SPCLIB G-19
CombinedWSDescr VDIInquires TYPE SYSLIB H-57
Compare Strings PROCEDURE STDLIB F-28
Concat Strings PROCEDURE STDLIB F-27
ConfigureMouse SSWis PROCEDURE SPCLIB G-30
Conln GemDos PROCEDURE SYSLIB H-32
ConInStat GemDos PROCEDURE SYSLIB H-33
ConNeglIn GemDos PROCEDURE SYSLIB H-32
ConOut GemDos PROCEDURE SYSLIB H-32
ConOutsStat GemDos PROCEDURE SYSLIB H-33
ConRawIn GemDos PROCEDURE SYSLIB H-32
ConRawIO GemDos PROCEDURE SYSLIB H-32
ConReadString GemDos PROCEDURE SYSLIB H-33
Consume Process PROCEDURE SPCLIB 6-18
ContentOf Fraas PROCEDURE SPCLIB G-12
ContentOf TextFiles PROCEDURE SPCLIB G-39
ContourFill VDIOutputs PROCEDURE SYSLIB H-61
contrl VDIBase VAR SYSLIB H-45
ControlKeys SSWis TYPE SPCLIB 6-24
ConWriteString GemDos PROCEDURE SYSLIB H-33
Coordinate VDIOutputs TYPE SYSLIB H-60
Coordinates SSWis TYPE SPCLIB G-23
Coordinates TextWindows TYPE SPCLIB G-41
CoordinateTypes VDIAttributes TYPE SYSLIB H-42
SPC MODULA-2 V1.4 LIB-INDEX J-03

Name Modul Typ Lib Seite
Copy Strings PROCEDURE STDLIB F-28
CopyFor Bytes PROCEDURE SPCLIB G-04
CopyForWhile XStr PROCEDURE SPCLIB G-45
CopyRasterOpaque VDIRasters PROCEDURE SYSLIB H-63
CopyRasterTransparent VDIRasters PROCEDURE SYSLIB H-63
CopyWhileln Bytes PROCEDURE SPCLIB G-04
CopyWhileNot Bytes PROCEDURE SPCLIB G-04
CopyWhileNotIn Bytes PROCEDURE SPCLIB G-94
cos LMathLib PROCEDURE STDLIB F-17
cos MathLib PROCEDURE STDLIB F-19
cosh LMathLib PROCEDURE STDLIB F-17
cosh MathLib PROCEDURE STDLIB F-19
cot LMathLib PROCEDURE STDLIB F-17
cot MathLib PROCEDURE STDLIB F-19
Cp JCL PROCEDURE SPCLIB G-14
CR ASCII CONST STDLIB F-03
Create AESWindows PROCEDURE SYSLIB H-24
Create Files PROCEDURE SYSLIB H-29
Create Frags PROCEDURE SPCLIB G-11
Create GemDos PROCEDURE SYSLIB H-33
Create Process PROCEDURE SPCLIB G-18
Create SplittedPieces PROCEDURE SPCLIB G-21
Create TextFiles PROCEDURE SPCLIB G-38
Create TextWindows TYPE SPCLIB G-42
CreateWindow SSWis PROCEDURE SPCLIB 6-27
CtrlArrayType VDIBase TYPE SYSLIB H-45
Current Frags PROCEDURE SPCLIB G-11
CurrentFolder HFS PROCEDURE STDLIB F-12
CurrentLine Printer PROCEDURE STDLIB F-23
CurrentPage Printer PROCEDURE STDLIB F-23
CurrentPosition Printer PROCEDURE STDLIB F-23
CurrExcFrame System VAR SPCLIB G-37
CurrExcRoot System VAR SPCLIB G-37
CurrExcType System VAR SPCLIB G-37
CursorAddress VDIEscapes PROCEDURE SYSLIB H-50
CursorConfig XBios PROCEDURE SYSLIB H-68
CursorDown VDIEscapes PROCEDURE SYSLIB H-49
CursorHome VDIEscapes PROCEDURE SYSLIB H-50
CursorLeft VDIEscapes PROCEDURE SYSLIB H-50
CursorRight VDIEscapes PROCEDURE SYSLIB H-49
Cursors AESGraphics TYPE SYSLIB H-11
CursorUp VDIEscapes PROCEDURE SYSLIB H-49
Cyan AESBase CONST SYSLIB H-05
DataPtr AltResource TYPE SYSLIB H-26
DC1 ASCII CONST TDLIB F-93
DC2 ASCII CONST STDLIB F-03
DC3 ASCII CONST STDLIB F-03
DC4 ASCII CONST STDLIB F-03
Deallocate Storage PROCEDURE STDLIB F-26
DEALLOCATE Storage PROCEDURE STDLIB F-26
J-04 LIB-INDEX SPC MODULA-2 V1.4

Name Modul Typ Lib Seite
DeallocateProc SplittedPieces TYPE SPCLIB 6-21
Decode Clock PROCEDURE STDLIB F-06
Decode HFS PROCEDURE STDLIB F-13
DecodedTime Clock TYPE STDLIB F-06
DefaultExcHandler System PROCEDURE SPCLIB 6-37
DefaultHandler JCL PROCEDURE SPCLIB G-13
DefineFillPattern VDIAttributes PROCEDURE SYSLIB H-44
DefineLineStyle VDIAttributes PROCEDURE SYSLIB H-42
DEL ASCII CONST STDLIB F-03
Delete AESObjects PROCEDURE SYSLIB H-17
Delete AESWindows TYPE SYSLIB H-24
Delete Files PROCEDURE SYSLIB H-29
Delete FileSystem PROCEDURE STDLIB F-10
Delete Frags PROCEDURE SPCLIB G-12
Delete GenDos PROCEDURE SYSLIB H-34
Delete Process PROCEDURE SPCLIB G-18
Delete SplittedPieces PROCEDURE SPCLIB G-21
Delete String PROCEDURE STDLIB F-28
Delete TextFiles PROCEDURE SPCLIB G-39
Delete TextWindows TYPE SPCLIB G-42
DeleteWindow SSWis PROCEDURE SPCLIB G6-27
Deregister SSWis PROCEDURE SPCLIB G6-27
Descriptor ByteStreams TYPE STDLIB F-04
Descriptor FileSystem TYPE STDLIB F-09
Descriptor TextStreams TYPE STDLIB F-31
Devices Bios TYPE SYSLIB H-27
DeviceTypes VDIControls TYPE SYSLIB H-46
DeviceTypes VDIInputs TYPE SYSLIB H-53
DeviceTypes VDIInquires TYPE SYSLIB H-56
Dialogue AESForms PROCEDURE SYSLIB H-09
DirCreate GemDos PROCEDURE SYSLIB H-33
DirDelete GemDos PROCEDURE SYSLIB H-33
DisablelInt XBios PROCEDURE SYSLIB H-68
DiskFree GemDos PROCEDURE SYSLIB H-33
DiskInfo GemDos TYPE SYSLIB H-32
DisplayCursor VDIEscapes PROCEDURE SYSLIB H-59
DIVS32 Systenm PROCEDURE SPCLIB G-33
DIVU32 System PROCEDURE SPCLIB G-33
DLE ASCII CONST STDLIB F-03
Do AESFornms PROCEDURE SYSLIB H-09
Done InOut VAR STDLIB F-14
DosDate GemDos TYPE SYSLIB H-31
DoSound XBios PROCEDURE SYSLIB H-69
DosTime GemDos TYPE SYSLIB H-31
DoubleClick AESEvents PROCEDURE SYSLIB H-08.
DownArrow SSWis CONST SPCLIB G-24
DragBox AESGraphics PROCEDURE SYSLIB H-11
Draw AESObjects PROCEDURE SYSLIB H-17
DrawArc VDIOutputs PROCEDURE SYSLIB H-61
DrawBar VYDIOutputs PROCEDURE SYSLIB H-61
DrawCircle VDIOutputs PROCEDURE SYSLIB H-61
SPC MODULA-2 V1.4 LIB-INDEX J-05

Name Modul Typ Lib Seite
DrawEllipse VDIOutputs PROCEDURE SYSLIB H-61
DrawEllipticalArc VDIOutputs PROCEDURE SYSLIB H-61
DrawEllipticalPie VDIOutputs PROCEDURE SYSLIB H-61
DrawPieSlice VDIOutputs PROCEDURE SYSLIB H-61
DrawProc AESObjects TYPE SYSLIB H-17
DrawRoundedBox VDIOutputs PROCEDURE SYSLIB H-62
DrawRoundedFilledBox VDIOutputs PROCEDURE SYSLIB H-62
DrawSprite LineA PROCEDURE SYSLIB H-39
DriveMap Bios PROCEDURE SYSLIB H-28
Drives Bios TYPE SYSLIB H-27
Drives GemDos TYPE SYSLIB H-31
DTA GemDos TYPE SYSLIB H-31
DTAPtr GemDos TYPE SYSLIB H-31
Dup GemDos PROCEDURE SYSLIB H-34
e LMathLib CONST STDLIB F-17
e MathLib CONST STDLIB F-19
Echo JCL PROCEDURE SPCLIB G-13
EchoType VDIInputs TYPE SYSLIB H-53
Edit AESObjects PROCEDURE SYSLIB H-18
EditKeys SSWis TYPE SPCLIB G-25
Edits AESObjects TYPE SYSLIB H-15
Elements AESWindows TYPE SYSLIB H-23
EM ASCII CONST STDLIB F-03
Empty Rectangle PROCEDURE SPCLIB G-20
EnablelInt XBios PROCEDURE SYSLIB H-68
Encode Clock PROCEDURE STDLIB F-06
Encode HFS PROCEDURE STDLIB F-13
End Strings TYPE STDLIB F-27
EndOfFile Frags CONST SPCLIB G-10
ENQ ASCII CONST STDLIB F-03
EnterAlphaMode VDIEscapes PROCEDURE SYSLIB H-49
entier LMathLib PROCEDURE STDLIB F-17
entier MathLib PROCEDURE STDLIB F-19
Envrn AESShells PROCEDURE SYSLIB H-22
EOL ASCII CONST STDLIB F-03
EOL TextStreams CONST STDLIB F-31
EOT ASCII CONST STDLIB F-93
Epsilon LMathLib VAR STDLIB F-17
Epsilon MathLib VAR STDLIB F-19
Equal Strings TYPE STDLIB F-27
EraseToEOL VDIEscapes PROCEDURE SYSLIB H-50
EraseToEOS VDIEscapes PROCEDURE SYSLIB H-50
Error AESForms PROCEDURE SYSLIB H-09
ErrorHandler JCL TYPE SPCLIB G-13
ESC ASCII CONST STDLIB F-03
ETB AscIi CONST STDLIB F-03
ETX ASCII CONST STDLIB F-03
EventReports SSWis TYPE SPCLIB G-26
Events AESEvents TYPE SYSLIB H-07
EventTypes SSWis TYPE SPCLIB G-25
J-06 LIB-INDEX SPC MODULA-2 V1.4

Name

Modul Typ Lib Seite
ExchangeButtonV VDIInputs PROCEDURE SYSLIB H-55
ExchangeCursorV VDIInputs PROCEDURE SYSLIB H-55
ExchangeMovementV VDIInputs PROCEDURE SYSLIB H-55
ExchangeTimerV VDIInputs PROCEDURE SYSLIB H-55
Excl Bytes PROCEDURE SPCLIB G-05
ExcTypes System TYPE SPCLIB G-36
Exec GemDos PROCEDURE SYSLIB H-34
Exists JCL PROCEDURE SPCLIB G-14
Exit AESApplications PROCEDURE SYSLIB H-03
ExitAlphaMode VDIEscapes PROCEDURE SYSLIB H-49
exp LMathLib PROCEDURE STDLIB F-17
exp MathLib PROCEDURE STDLIB F-19
ExplicitRestore SSWis PROCEDURE SPCLIB G-28
ExplicitRestore TextWindows TYPE SPCLIB G-42
Expose Terminal PROCEDURE STDLIB F-29
ExtendCoords VDIInquires TYPE SYSLIB H-57
ExtendedInquire VDIInquires PROCEDURE SYSLIB H-57
ExtendWSDescription VDIInquires TYPE SYSLIB H-56
F1 SSWis CONST SPCLIB G-24
F10 SSWis CONST SPCLIB G-24
F2 SSWis CONST SPCLIB G-24
F3 SSWis CONST SPCLIB G-24
F4 SSWis CONST SPCLIB 6-24
F5 SSWis CONST SPCLIB G-24
F6 SSWis CONST SPCLIB 6-24
F7 SSWis CONST SPCLIB G-24
F8 SSWis CONST SPCLIB G-24
F9 SSWis CONST SPCLIB G-24
FABSd System PROCEDURE SPCLIB G-34
FABSs System PROCEDURE SPCLIB G-33
FADDd Systenm PROCEDURE SPCLIB G-33
FADDs System PROCEDURE SPCLIB G-33
FCMPd System PROCEDURE SPCLIB G-34
FCMPs System PROCEDURE SPCLIB G-33
FDIVd Systen PROCEDURE SPCLIB 6-33
FDIVs Systen PROCEDURE SPCLIB G-33
FF ASCII CONST STDLIB F-03
File Files TYPE SYSLIB H-29
File FileSystem TYPE STDLIB F-09
File Frags TYPE SPCLIB G-10
File TextFiles TYPE SPCLIB G-38
FileArg CmdLine PROCEDURE SPCLIB G-06
FileProc HFS . TYPE STDLIB F-12
FileSelectorInput AESForms PROCEDURE SYSLIB H-10
FileTimes GemDos TYPE SYSLIB H-32
FileTypes Environment TYPE SPCLIB G-08
FillArea VDIOutputs PROCEDURE SYSLIB H-60
FillAttrType VDIInquires TYPE SYSLIB H-57
FillPolygon LineA PROCEDURE SYSLIB H-39
FillRange VDIAttributes TYPE SYSLIB H-41
SPC MODULA-2 V1.4 LIB-INDEX J-07

Name Modul Typ Lib Seite
FillRectangle LineA PROCEDURE SYSLIB H-38
FillRectangle VDIOutputs PROCEDURE SYSLIB H-61
Fillstyles VDIAttributes TYPE SYSLIB H-41
FilmIndexType VDIEscapes TYPE SYSLIB H-49
FilmNameType VDIEscapes TYPE SYSLIB H-49
Find AESApplications PROCEDURE SYSLIB H-03
Find AESObjects PROCEDURE SYSLIB H-17
Find AESShells PROCEDURE SYSLIB H-22
Find AESWindows TYPE SYSLIB H-24
Flags AESObjects TYPE SYSLIB H-15
FlatHand AESGraphics CONST SYSLIB H-11
FLOATd System PROCEDURE SPCLIB G-34
FLOATs System PROCEDURE SPCLIB G-33
FLONG System PROCEDURE SPCLIB G-34
FlopFormat XBios PROCEDURE SYSLIB H-67
FlopRead XBios PROCEDURE SYSLIB H-67
FlopVerify XBios PROCEDURE SYSLIB H-68
FlopWrite XBios PROCEDURE SYSLIB H-67
FMULA System PROCEDURE SPCLIB G-33
FMULs System PROCEDURE SPCLIB G-33
FNEGd System PROCEDURE SPCLIB G-34
FNEGs System PROCEDURE SPCLIB G-33
FolderSep GemDos CONST SYSLIB H-31
FolderSep HFS VAR STDLIB F-12
FontArray LineA TYPE SYSLIB H-35
FontPointer LineA TYPE SYSLIB H-35
Fonts Printer TYPE STDLIB F-22
FontSet Printer TYPE STDLIB F-22
FontsSizes TextWindows TYPE SPCLIB G-41
FontTyp LineA TYPE SYSLIB H-35
FontTypes VDIAttributes TYPE SYSLIB H-41
ForAllFilesDo HFS PROCEDURE STDLIB F-12
Force GemDos PROCEDURE SYSLIB H-34
Forever XStr PROCEDURE SPCLIB G-45
FormAdvance VDIEscapes PROCEDURE SYSLIB H-51
Free AESResources PROCEDURE SYSLIB H-19
Free AltResource PROCEDURE SYSLIB H-26
FREMd System PROCEDURE SPCLIB G-34
FREMs Systen PROCEDURE SPCLIB G-33
FS ASCII CONST STDLIB F-03
FSHORT System PROCEDURE SPCLIB G-34
FSUBd System PROCEDURE SPCLIB G-33
FSUBs System PROCEDURE SPCLIB G-33
GEMCall AESBase PROCEDURE SYSLIB H-96
Get AESWindows TYPE SYSLIB H-24
Get Clock PROCEDURE STDLIB F-06
Get CmdLine PROCEDURE SPCLIB G-07
Get Environment PROCEDURE SPCLIB G-08
Get SplittedPieces PROCEDURE SPCLIB G-21
GetAddr AESResources PROCEDURE SYSLIB H-19
J-08 LIB-INDEX SPC MODULA-2 V1.4

Name Modul Typ Lib Seite
GetAddr AltResource PROCEDURE SYSLIB H-26
Getbpb Bios PROCEDURE SYSLIB H-28
GetDate GemDos PROCEDURE SYSLIB H-33
GetDrive GemDos PROCEDURE SYSLIB H-33
GetDTA GemDos PROCEDURE SYSLIB H-33
GetFilename Environment PROCEDURE SPCLIB G-08
GetFileType Environment PROCEDURE SPCLIB G-09
GetFont LineA PROCEDURE SYSLIB H-38
GetIndexed Environment PROCEDURE SPCLIB G-08
GetIoRec XBios PROCEDURE SYSLIB H-68
GetModes GemDos TYPE SYSLIB H-32
Getmpb Bios PROCEDURE SYSLIB H-28
GetName Printer PROCEDURE STDLIB F-24
GetPath GemDos PROCEDURE SYSLIB H-34
GetPixel LineA PROCEDURE SYSLIB H-38
GetPixel VDIRasters PROCEDURE SYSLIB H-64
GetPos Files PROCEDURE SYSLIB H-30
GetPos FileSystem PROCEDURE STDLIB F-10
GetResolution XBios PROCEDURE SYSLIB H-67
GetTime GemDos PROCEDURE SYSLIB H-33
GetTime XBios PROCEDURE SYSLIB H-68
Giaccess XBios PROCEDURE SYSLIB H-68
GraphicText VDIOutputs PROCEDURE SYSLIB H-60
Greater Strings TYPE STDLIB F-27
Green AESBase CONST SYSLIB H-05
GrowBox AESGraphics PROCEDURE SYSLIB H-12
GS ASCII CONST STDLIB F-03
HALTX System PROCEDURE SPCLIB G-33
Handle AESGraphics PROCEDURE SYSLIB H-12
Handles GemDos TYPE SYSLIB H-32
HardCopy VDIEscapes PROCEDURE SYSLIB H-50
Head Printer PROCEDURE STDLIB F-23
HeadProc Printer TYPE STDLIB F-22
Help SSWis CONST SPCLIB 6-24
Hide Terminal PROCEDURE STDLIB F-29
HideCursor VDIInputs PROCEDURE SYSLIB H-55
HideMouse LineA PROCEDURE SYSLIB H-39
HorAlignment VDIAttributes TYPE SYSLIB H-41
HorizLine LineA PROCEDURE SYSLIB H-38
HourGlass AESGraphics CONST SYSLIB H-11
HT ASCII CONST STDLIB F-93
IconBlk AESObjects TYPE SYSLIB H-16
IconBlkPtr AESObjects TYPE SYSLIB H-16
IconiseWindow SSWis PROCEDURE SPCLIB G-27
Identify SSWis PROCEDURE SPCLIB G-31
- Identify TextWindows TYPE SPCLIB G-43
Incl Bytes PROCEDURE SPCLIB G-05
Includes Rectangle PROCEDURE SPCLIB G-20
Init LMathLib PROCEDURE STDLIB F-17
SPC MODULA-2 V1.4 LIB-INDEX J-09

Name

Modul Typ Lib Seite
Init Printer PROCEDURE STDLIB F-24
Init Process PROCEDURE SPCLIB G6-17
Init TextFiles PROCEDURE SPCLIB G-38
Init Watch PROCEDURE SYSLIB H-65
Initialise AESApplications PROCEDURE SYSLIB H-03
Initialize LineA PROCEDURE SYSLIB H-37
InitMouse XBios PROCEDURE SYSLIB H-67
InitResource Process PROCEDURE SPCLIB G-18
InitSystemFont VDIEscapes PROCEDURE SYSLIB H-52
INLINE SYSTEM PROCEDURE SYSTEM E-03
InputChoiceRQ VDIInputs PROCEDURE SYSLIB H-54
InputChoiceSM VDIInputs PROCEDURE SYSLIB H-54
InputLocatorRQ VDIInputs PROCEDURE SYSLIB H-53
InputLocatorSH VDIInputs PROCEDURE SYSLIB H-54
InputModes VDIInputs TYPE SYSLIB H-53
InputStringRQ VDIInputs PROCEDURE SYSLIB H-54
InputStringsSM VDIInputs PROCEDURE SYSLIB H-54
InputValuatorRQ VDIInputs PROCEDURE SYSLIB H-54
InputValuatorsM VDIInputs PROCEDURE SYSLIB H-54
Inquire JCL PROCEDURE SPCLIB G-14
InquireCellArray VDIInquires PROCEDURE SYSLIB H-58
InquireCharCells VDIEscapes PROCEDURE SYSLIB H-49
InquireCharwWidth VDIInquires PROCEDURE SYSLIB H-58
InquireColour VDIInquires PROCEDURE SYSLIB H-58
InquireCursorAddress VDIEscapes PROCEDURE SYSLIB R-50
InquireFacelnfo VDIInquires PROCEDURE SYSLIB H-59
InquireFaceName VDIInquires PROCEDURE SYSLIB H-58
InquireFillAttributes VDIInquires PROCEDURE SYSLIB H-58
InquireInputMode VDIInquires PROCEDURE SYSLIB H-59
InquireLineAttributes VDIInquires PROCEDURE SYSLIB H-58
InquireMarkerAttributes VDIInquires PROCEDURE SYSLIB H-58
InquirePaletteFilms VDIEscapes PROCEDURE SYSLIB H-51
InquirePaletteState VDIEscapes PROCEDURE SYSLIB H-51
InquireTabletStatus VDIEscapes PROCEDURE SYSLIB H-50
InquireTextAttributes VDIInquires PROCEDURE SYSLIB H-58
InquireTextExtent VDIInquires PROCEDURE SYSLIB H-58
Insert Frags PROCEDURE SPCLIB 6-11
Insert SSWis CONST SPCLIB G-24
Insert Strings PROCEDURE STDLIB F-27
Insert TextFiles PROCEDURE SPCLIB 6-39
InstallHeader Printer PROCEDURE STDLIB F-23
Instance Rectangle TYPE SPCLIB 6-19
Integer XStr PROCEDURE SPCLIB G-46
InteriorOf TextWindows TYPE SPCLIB G-43
Intersect Rectangle PROCEDURE SPCLIB 6-19
intin VDIBase VAR SYSLIB H-45
intout VDIBase VAR SYSLIB H-45
IntToString NumberConversions PROCEDURE STDLIB F-20
InvCardinal Xstr PROCEDURE SPCLIB 6-47
Invert TextWindows TYPE SPCLIB 6-43
InvIinteger XSty PROCEDURE SPCLIB 6-47
J-10 LIB-INDEX SPC MODULA-2 V1.4

Name Modul Typ Lib Seite
InvLongcard XStr PROCEDURE SPCLIB G-47
InvLongint XStr PROCEDURE SPCLIB G-47
InvLongreal XStr PROCEDURE SPCLIB G-47
InvReal XStr PROCEDURE SPCLIB G-47
IoRec XBios TYPE SYSLIB H-66
IoRecPtr XBios TYPE SYSLIB H-66
JIOTRANSFER Coroutines PROCEDURE STDLIB F-08
ItemCheck AESMenus PROCEDURE SYSLIB H-13
ItemEnable AESMenus PROCEDURE SYSLIB H-13
ItemHandles SSWis TYPE SPCLIB G-23
Items AESWindows TYPE SYSLIB H-23
ItemStruc AESWindows TYPE SYSLIB H-23
ItenTypes AESResources TYPE SYSLIB H-19
Justifications AESObjects TYPE SYSLIB H-15
JustifiedText VDIOutputs PROCEDURE SYSLIB H-62
KbdRate XBios PROCEDURE SYSLIB H-69
KbdStates AESEvents TYPE SYSLIB H-07
KeyBase XBios PROCEDURE SYSLIB H-69
Keyboard AESEvents PROCEDURE SYSLIB H-07
KeyboardSpecials VDIInputs TYPE SYSLIB H-53
KeyboardsState VDIInputs TYPE SYSLIB H-53
KeyboardWrite XBios PROCEDURE SYSLIB H-68
KeyEvent SSWis TYPE SPCLIB G-25
KeyShifts Bios PROCEDURE SYSLIB H-28
KeyTab XBios TYPE SYSLIB H-66
KeyTable XBios PROCEDURE SYSLIB H-68
KeyTabPtr XBios TYPE SYSLIB H-66
KeyVecs XBios TYPE SYSLIB H-66
KeyVecsPtr XBios TYPE SYSLIB H-67
KillThread System PROCEDURE SPCLIB G-36
Label TextFiles PROCEDURE SPCLIB G-139
Labels TextFiles TYPE SPCLIB G-38
LeftArrow SSWis CONST SPCLIB G-24
LeftBorderSize Printer PROCEDURE STDLIB F-23
Length Files PROCEDURE SYSLIB H-30
Length FileSysten PROCEDURE STDLIB F-10
Length Strings PROCEDURE STDLIB F-27
LengthOf Frags ’ PROCEDURE SPCLIB G-12
Lengthof TextFiles PROCEDURE SPCLIB G-39
Less Strings TYPE STDLIB F-27
LF ASCII CONST STDLIB F-03
1g LMathLib PROCEDURE STDLIB F-17
lg MathLib PROCEDURE STDLIB F-i9
LightBlack AESBase CONST SYSLIB H-05
LightBlue AESBase CONST SYSLIB H-05
LightCyan AESBase CONST SYSLIB H-05
LightGreen AESBase CONST SYSLIB H-05
LightMagenta AESBase CONST SYSLIB H-05
SPC MODULA-2 V1.4 LIB-INDEX J-11

Name

Modul Typ Lib Seite
LightRed AESBase CONST SYSLIB H-05
LightWhite AESBase CONST SYSLIB H-05
LightYellow AESBase CONST SYSLIB H-05
Line LineA PROCEDURE SYSLIB H-38
LineAttrType VDIInquires TYPE SYSLIB H-57
LineAVarPointer LineA TYPE SYSLIB H-35
LineAVarRecord LineA TYPE SYSLIB H-35
LineAVDIPointer LineA TYPE SYSLIB H-36
LineAVDIRecord LineA TYPE SYSLIB H-36
LineEndStyles VDIAttributes TYPE SYSLIB H-41
LineFeed Frags CONST SPCLIB G-10
LineNumberof TextFiles PROCEDURE SPCLIB G-39
Lines SSWis TYPE SPCLIB G-23
LinesPerPage Printer PROCEDURE STDLIB F-23
LineStyles VDIAttributes TYPE SYSLIB H-41
LinkThread System PROCEDURE SPCLIB G-35
List SplittedPieces TYPE SPCLIB G-21
1n . LMathLib PROCEDURE STDLIB F-17
1n MathLib PROCEDURE STDLIB F-19
Load AESResources PROCEDURE SYSLIB H-19
Load AltResource PROCEDURE SYSLIB H-26
Load Printer PROCEDURE STDLIB F-24
LoadFonts VDIControls PROCEDURE SYSLIB H-48
LoadModes GemDos TYPE SYSLIB H-32
LogBase XBios PROCEDURE SYSLIB H-67
LogicModes VDIRasters TYPE SYSLIB H-63
LONG SYSTEM PROCEDURE SYSTEM E-03
Longcard XStr PROCEDURE SPCLIB G-46
LongCardToString NumberConversions PROCEDURE STDLIB F-20
Longint XStr PROCEDURE SPCLIB G-46
LongIntToString NumberConversions PROCEDURE STDLIB F-20
Longreal XStr PROCEDURE SPCLIB G-46
LongRealToString RealConversions PROCEDURE STDLIB F-25
Lookup Files PROCEDURE SYSLIB H-29
Lookup FileSystem PROCEDURE STDLIB F-99
Magenta AESBase CONST SYSLIB H-05
MarkerAttrType VDIInquires TYPE SYSLIB H-57
MarkerTypes VDIAttributes TYPE SYSLIB H-41
MediaChange Bios PROCEDURE SYSLIB H-28
MediaStat Bios TYPE SYSLIB H-27
MemAlloc GemDos PROCEDURE SYSLIB H-34
MemDefBlock Bios TYPE SYSLIB H-27
HemDefPtr Bios TYPE SYSLIB H-27
MemFree GemDos PROCEDURE SYSLIB H-34
HemoryFormDefBlock VYDIRasters TYPE SYSLIB H-63
MemParmBlock Bios TYPE SYSLIB H-27
MenuEvent SSWis TYPE SPCLIB G-25
MenuSelected AESEvents CONST SYSLIB H-07
Message AESEvents PROCEDURE SYSLIB H-08
MetaKeys SSWis TYPE SPCLIB G-25
J-12 LIB-INDEX SPC MODULA-2 V1.4

Name Modul Typ Lib Seite
MFDBAddress VDIRasters TYPE SYSLIB H-63
MFormPointer LineA TYPE SYSLIB H-37
MFormRecord LineA TYPE SYSLIB H-37
MFPInt XBios PROCEDURE SYSLIB H-68
MidiWrite XBios PROCEDURE SYSLIB H-68
MkDir JCL PROCEDURE SPCLIB 6-14
ModuleDescr System TYPE SPCLIB G-34
ModuleDescrPtr System TYPE SPCLIB G-34
ModuleHandles SSWis TYPE SPCLIB 6-23
ModuleKeys System TYPE SPCLIB G-34
ModuleNames System TYPE SPCLIB G-34
Mouse AESEvents PROCEDURE SYSLIB H-08
Mouse AESGraphics PROCEDURE SYSLIB H-12
MouseCodes VDIInputs TYPE SYSLIB H-53
MouseEvent SSWis TYPE SPCLIB G6-25
MouseFormType VDIInputs TYPE SYSLIB H-53
MouseKeyboardState AESGraphics PROCEDURE SYSLIB H-12
MouseOff AESGraphics CONST SYSLIB H-11
MouseOn AESGraphics CONST SYSLIB H-11
MouseParams XBios TYPE SYSLIB H-66
MouseSprites SSWis TYPE SPCLIB G6-25
MouseState VDIInputs TYPE SYSLIB H-53
MouseStyles SSWis TYPE SPCLIB G-25
MouseTypes XBios TYPE SYSLIB H-66
MovelAbs Rectangle PROCEDURE SPCLIB G-19
MoveBox AESGraphics PROCEDURE SYSLIB H-11
MoveRel Rectangle PROCEDURE SPCLIB G-19-
MULS32 System PROCEDURE SPCLIB G-33
Multiple AESEvents PROCEDURE SYSLIB H-08
MULU32 Systen PROCEDURE SPCLIB G-33
Mv JCL PROCEDURE SPCLIB G-14
NAK ASCII CONST STDLIB F-03
NameLength GemDos CONST SYSLIB H-31
NameLength HFS VAR STDLIB F-12
NationalKeys SSWis TYPE SPCLIB G-25
NeverClip SSWis VAR SPCLIB G-26
NEWPROCESS Coroutines PROCEDURE STDLIB F-08
Next Frags PROCEDURE SPCLIB G-11
NextDescriptor System PROCEDURE SPCLIB G-35
NilKey SSWis CONST SPCLIB G-24
NotifyForm SSWis PROCEDURE SPCLIB G-31
NUL ASCII CONST STDLIB F-03
Nullline, SSWis VAR SPCLIB G-26
NullPoint SSWis VAR SPCLIB G-26
NullScreenLine SSWis VAR SPCLIB G-26
NullScreenPoint SSWis VAR SPCLIB G-26
Num@ SSWis CONST SPCLIB G-24
Numl SSWis CONST SPCLIB G-24
Num2 SSWis CONST SPCLIB G-24
Num3 SSWis CONST SPCLIB G-24
SPC MODULA-2 V1.4 LIB-INDEX J-13

Name Modul Typ Lib Seite
Num4 SSWis CONST SPCLIB G-24
Num5 SSWis CONST SPCLIB G-24
Numé T SSWis CONST SPCLIB G-24
Num7 SSWis CONST SPCLIB G-24
Num8 SSWis CONST SPCLIB G-24
Nunm9 SSWis CONST SPCLIB G-24
NumAsterisk SSWis CONST SPCLIB G-24
NumberBase XStr VAR SPCLIB G-45
NumDot SSWis CONST SPCLIB G-24
NumEnter SSWis CONST SPCLIB G-24
NumLeftBracket SSWis CONST SPCLIB G-24
NumMinus SSWis CONST SPCLIB G-24
NumPlus SSWis CONST SPCLIB G-24
NumRightBracket' SSWis CONST SPCLIB G-24
NumSlash SSWis CONST SPCLIB G-24
Object AESObjects TYPE SYSLIB H-16
ObjectFix AESResources PROCEDURE SYSLIB H-19
ObjectTree AESObjects TYPE SYSLIB H-16
OccurencesOf Frags PROCEDURE SPCLIB G-11
Ooffgibit XBios PROCEDURE SYSLIB H-68
Offset AESObjects PROCEDURE SYSLIB H-17
OnErrorDo JCL PROCEDURE SPCLIB G-13
OnExeptionDo System PROCEDURE SPCLIB G-37
Ongibit XBios PROCEDURE SYSLIB H-68
Online Printer PROCEDURE STDLIB F-22
OnModuleTerminationDo System PROCEDURE SPCLIB G-36
Open AESWindows TYPE SYSLIB H-24
Open ByteStreams PROCEDURE STDLIB F-04
Open Frags PROCEDURE SPCLIB G-10
Open GemDos PROCEDURE SYSLIB H-33
Open TextFiles PROCEDURE SPCLIB G-38
Open TextStreams PROCEDURE STDLIB F-31
OpenInput InOut PROCEDURE STDLIB F-14
OpenModes GemDos TYPE SYSLIB H-32
OpenOutput InOut PROCEDURE STDLIB F-14
OpenVirtualWorkstation VDIControls PROCEDURE SYSLIB H-47
OpenWorkstation VDIControls PROCEDURE SYSLIB H-47
Option CmdLine PROCEDURE SPCLIB G-06
or Bytes PROCEDURE SPCLIB G-04
Order AESObjects PROCEDURE SYSLIB H-17
OutlineCross AESGraphics CONST SYSLIB H-11
OutputBitImageFile “ VDIEscapes PROCEDURE SYSLIB H-51
OutputText VDIEscapes PROCEDURE SYSLIB H-50
OutputWindow VDIEscapes PROCEDURE SYSLIB H-51
Pad Strings PROCEDURE STDLIB F-28
Page Printer PROCEDURE STDLIB F-22
Palette XBios TYPE SYSLIB H-66
PaletteErrorInquire VDIEscapes PROCEDURE SYSLIB H-52
Parallel GenDcs CONST SYSLIB H-31
J-14 LIB-INDEX SPC MODULA-2 V1.4

Name

Modul Typ Lib Seite
ParamBlk AESObjects TYPE SYSLIB H-17
ParamBlkPtr AESObjects TYPE SYSLIB H-16
parameterBlock VDIBase VAR SYSLIB H-45
Paths GemDos TYPE SYSLIB H-32
Phases AESForms TYPE SYSLIB H-09
PhysBase XBios PROCEDURE SYSLIB H-67
pi LMathLib CONST STDLIB F-17
pi MathLib CONST STDLIB F-19
PlaceWindowOnTop SSWis PROCEDURE SPCLIB G-27
PlainText Frags CONST SPCLIB 6-10
Pline LineA PROCEDURE SYSLIB H-38
PointerOf Frags PROCEDURE SPCLIB G-12
PointeroOf TextFiles PROCEDURE SPCLIB G-40
PointHand AESGraphics CONST SYSLIB H-11
Points SSWis TYPE SPCLIB G-23
Points TextWindows TYPE SPCLIB G-41
PollEvents SSWis PROCEDURE SPCLIB G-27
PolyLine VDIOutputs PROCEDURE SYSLIB H-60
PolyMarker VDIOutputs PROCEDURE SYSLIB H-60
Pos Strings PROCEDURE STDLIB F-28
Position TextFiles PROCEDURE SPCLIB G-39
Position TextWindows TYPE SPCLIB G-43
PositionOf TextFiles PROCEDURE SPCLIB G-39
PositionOf TextWindows TYPE SPCLIB G-43
PositionOfWindow SSWis PROCEDURE SPCLIB G-28
PositionOfWorld SSWis PROCEDURE SPCLIB G-29
PositionWindow SSWis PROCEDURE SPCLIB G-28
PositionWorld SSWis PROCEDURE SPCLIB G-29
PositionWorld TextWindows TYPE SPCLIB G-42
Preset Rectangle PROCEDURE SPCLIB G-19
Prev Frags PROCEDURE SPCLIB G-11
PrintBlock XBios PROCEDURE SYSLIB H-69
PrintParmBlock XBios TYPE SYSLIB H-67
PrintParmPtr XBios TYPE SYSLIB H-67
PrnOut GemDos PROCEDURE SYSLIB H-32
PrnOutStat GemDos PROCEDURE SYSLIB H-33
ProcedureFrames System TYPE SPCLIB G-36
Produce Process PROCEDURE SPCLIB G-18
Protobt XBios PROCEDURE SYSLIB H-68
ptsin VDIBase VAR SYSLIB H-45
ptsout VYDIBase VAR SYSLIB H-45
PuntAES XBios . PROCEDURE SYSLIB H-69
Put SplittedPieces PROCEDURE SPCLIB G-21
PutPixel LineA PROCEDURE SYSLIB H-38
Quantity Storage TYPE STDLIB F-26
Query JcLu PROCEDURE SPCLIB 6-13
Random XBios PROCEDURE SYSLIB H-68
RasterWorld SSWis PROCEDURE SPCLIB G-29
Read AESApplications PROCEDURE SYSLIB -03
SPC MODULA-2 V1.4 LIB-INDEX J-15

Name Modul Typ Lib Seite
Read AESScraps PROCEDURE SYSLIB H-21
Read AESShells PROCEDURE SYSLIB H-22
Read ByteStreams PROCEDURE STDLIB F-04
Read GemDos PROCEDURE SYSLIB H-33
Read InOut PROCEDURE STDLIB F-15
Read Terminal PROCEDURE STDLIB F-29
Read TextStreams PROCEDURE STDLIB F-32
ReadBlock Files PROCEDURE SYSLIB H-30
ReadByte ByteStreams PROCEDURE STDLIB F-05
ReadCard InOut PROCEDURE STDLIB F-15
ReadCard TextStreams PROCEDURE STDLIB F-32
ReadChar FileSystenm PROCEDURE STDLIB F-10
ReadInt InOut PROCEDURE STDLIB F-15
ReadInt TextStreams PROCEDURE STDLIB F-32
ReadLn InOut PROCEDURE STDLIB F-15
ReadLn TextStreams PROCEDURE STDLIB F-32
ReadLongcard InOut PROCEDURE STDLIB F-15
ReadLongcard TextStreams PROCEDURE STDLIB F-32
ReadLongint InOut PROCEDURE STDLIB F-15
ReadLongint TextStreams PROCEDURE STDLIB F-32
ReadLongreal InOut PROCEDURE STDLIB F-15
ReadLongreal TextStreams PROCEDURE STDLIB F-32
ReadReal InOut PROCEDURE STDLIB F-15
ReadReal TextStreams PROCEDURE STDLIB F-32
ReadString InOut PROCEDURE STDLIB F-15
ReadString TextStreams PROCEDURE STDLIB F-32
ReadWord ByteStreams PROCEDURE STDLIB F-05
ReadWord FileSystem PROCEDURE STDLIB F-10
real LMathLib PROCEDURE STDLIB F-17
real MathLib PROCEDURE STDLIB F-19
Real Xstr PROCEDURE SPCLIB G-46
RealToString RealConversions PROCEDURE STDLIB F-25
Red AESBase CONST SYSLIB H-05
RedirectInput InOut PROCEDURE STDLIB F-14
RedirectOutput InOut PROCEDURE STDLIB F-14
REG SYSTEM PROCEDURE SYSTEM E-03
Register AESMenus PROCEDURE SYSLIB H-13
Register SSWis PROCEDURE SPCLIB G-27
Reinit SSWis PROCEDURE SPCLIB 6-27
Relinquish Process PROCEDURE SPCLIB G-18
RemoveCursor VDIEscapes PROCEDURE SYSLIB H-51
Rename Files PROCEDURE SYSLIB H-29
Rename FileSystem PROCEDURE STDLIB F-10
Rename GemDos) PROCEDURE SYSLIB H-34
Replace TextFiles PROCEDURE SPCLIB G-39
ReservedType Frags CONST SPCLIB G-10
Reset Printer PROCEDURE STDLIB F-23
Resize Rectangle PROCEDURE SPCLIB G-19
Resolution Clock CONST STDLIB F-06
Resource Process TYPE SPCLIB G-17
Response FileSysten TYPE STDLIB F-09
J-16 LIB-INDEX SPC MODULA-2 V1.4

Name

Modul Typ Lib Seite
RestoreProc SSWis TYPE SPCLIB G-24
RestoreProc TextWindows TYPE SPCLIB G-41
Result CmdLine PROCEDURE SPCLIB G-07
Result Frags VAR SPCLIB G-10
Result GemDos VAR SYSLIB H-32
Result SSWis VAR SPCLIB G-27
Result XBios VAR SYSLIB H-67
Resultls CmdLine PROCEDURE SPCLIB G-07
Results ByteStreans TYPE STDLIB F-04
Results Files TYPE SYSLIB H-29
Results Frags TYPE SPCLIB G-10
Results JCL TYPE SPCLIB 6G-13
Results SSWis TYPE SPCLIB G-26
Results TextFiles VAR SPCLIB G-38
Resync SSWis PROCEDURE SPCLIB 6-27
Retype Frags PROCEDURE SPCLIB 6-12
ReverseVideoOff VDIEscapes PROCEDURE SYSLIB H-50
ReverseVideoOn VDIEscapes PROCEDURE SYSLIB H-50
rgText TextFiles TYPE SPCLIB G-38
RightArrow SSWis CONST SPCLIB G-24
Rm . JCL PROCEDURE SPCLIB 6-14
RmDir JCL PROCEDURE SPCLIB G-14
RS ASCII CONST STDLIB F-03
RSConfig XBios PROCEDURE SYSLIB H-68
RubberBox AESGraphics PROCEDURE SYSLIB H-I1
RunThread System PROCEDURE SPCLIB G-36
Rwabs Bios PROCEDURE SYSLIB H-28
SampleKeyboard VDIInputs PROCEDURE SYSLIB H-55
SampleMouseButton VDIInputs PROCEDURE SYSLIB H-55
Save Environment PROCEDURE SPCLIB 6-09
SaveAs Frags PROCEDURE SPCLIB 6-11
SaveAs TextFiles PROCEDURE SPCLIB G-38
SavePaletteState VDIEscapes PROCEDURE SYSLIB H-52
ScanCodes Bios TYPE SYSLIB H-27
ScanCodes GemDos TYPE SYSLIB H-31
ScanForWhile XStr PROCEDURE SPCLIB G-45
ScanWhileln Bytes PROCEDURE SPCLIB G-03
ScanWhileNot Bytes PROCEDURE SPCLIB G-03
ScanWhileNotIn Bytes PROCEDURE SPCLIB G-03
ScreenColours SSWis VAR SPCLIB G-26
ScreenCoordinates SSWis TYPE SPCLIB G-23
ScreenDunmp XBios PROCEDURE SYSLIB H-68
ScreenLines SSWis TYPE SPCLIB 6-23
ScreenPoints SSWis TYPE SPCLIB G-23
ScreenRes XBios TYPE SYSLIB H-56
ScreenSize SSWis VAR SPCLIB G-26
SDBPointer Lined TYPE SYSLIB H-37
SDBRecord LineA TYPE SYSLIB H-37
SearchFirst GemDos PROCEDURE SYSLIB H-34
SearchModuleByName System PROCEDURE SPCLIB G-35
SPC MODULA-2 V1.4 LIB-INDEX J-17

Name Modul Typ Lib Seite
SearchModuleByStaticBase System PROCEDURE SPCLIB G-35
SearchNext GemDos PROCEDURE SYSLIB H-34
SearchResults Systenm TYPE SPCLIB G-35
Seek GemDos PROCEDURE SYSLIB H-34
SeekModes GemDos TYPE SYSLIB H-32
SelectPalette VDIEscapes PROCEDURE SYSLIB H-51
Serial GemDos CONST SYSLIB H-31
Set AESWindows TYPE SYSLIB H-24
Set Clock PROCEDURE STDLIB F-06
Set CmdLine PROCEDURE SPCLIB G-06
Set Environment PROCEDURE SPCLIB G-08
SetAbsCharHeight VDIAttributes PROCEDURE SYSLIB H-43
SetAddr AESResources PROCEDURE SYSLIB H-19
SetAttribute Printer PROCEDURE STDLIB F-24
SetCaret SSWis PROCEDURE SPCLIB 6-30
SetCaret TextWindows TYPE SPCLIB G-43
SetCharsPerLine Printer PROCEDURE STDLIB F-23
SetClipping VDIControls PROCEDURE SYSLIB H-48
SetColour VDIAttributes PROCEDURE SYSLIB H-42
SetColour XBios PROCEDURE SYSLIB H-67
SetContrl VDIBase PROCEDURE SYSLIB H-45
SetDate GemDos PROCEDURE SYSLIB H-33
SetDefaultExcHandler System PROCEDURE SPCLIB G-37
SetDrv GemDos PROCEDURE SYSLIB H-33
SetDTA GemDos PROCEDURE SYSLIB H-33
SetEndLineStyle VDIAttributes PROCEDURE SYSLIB H-42
SetException Bios PROCEDURE SYSLIB H-28
SetFillColour VDIAttributes PROCEDURE SYSLIB H-44
SetFillInteriorStyle VDIAttributes PROCEDURE SYSLIB H-44
SetFillPerimeterVisibility VDIAttributes PROCEDURE SYSLIB H-44
SetFillStylelndex VDIAttributes PROCEDURE SYSLIB H-44
SetFont Printer PROCEDURE STDLIB F-24
SetFont } VDIAttributes PROCEDURE SYSLIB H-43
SetGraphicTextAlignment VDIAttributes PROCEDURE SYSLIB H-43
SetGraphicTextColour VDIAttributes PROCEDURE SYSLIB H-43
SetGraphicTextEffects VDIAttributes PROCEDURE SYSLIB H-43
SetInputMode VDIInputs PROCEDURE SYSLIB H-53
SetLeftBorderSize Printer PROCEDURE STDLIB F-23
SetLineColour VDIAttributes PROCEDURE SYSLIB H-42
SetLineOffset VDIEscapes PROCEDURE SYSLIB H-52
SetLinesPerPage Printer PROCEDURE STDLIB F-23
SetLineType VDIAttributes PROCEDURE SYSLIB H-42
SetLineWidth VDIAttributes PROCEDURE SYSLIB H-42
SetMarkerColour VDIAttributes PROCEDURE SYSLIB H-43
SetMarkerHeight VDIAttributes PROCEDURE SYSLIB H-42
SetMarkerType VDIAttributes PROCEDURE SYSLIB H-42
SetMenultem SSWis PROCEDURE SPCLIB G-30
SetMenuTitle SSWis PROCEDURE SPCLIB G-30
SetMouseForm VDIInputs PROCEDURE SYSLIB H-54
SetOfAttributes GemDos TYPE SYSLIB H-31
SetOfBytes Bytes TYPE SPCLIB G-03
J-18 LIB-INDEX SPC MODULA-2 V1.4

Name Modul Typ Lib Seite
SetOfDrives Bios TYPE SYSLIB H-27
SetOofDrives GemDos TYPE SYSLIB H-31
SetOfElements AESWindows TYPE SYSLIB H-23
SetOfEvents AESEvents TYPE SYSLIB H-07
SetOfFlags - AESObjects TYPE SYSLIB H-15
SetOfKbdStates AESEvents TYPE SYSLIB H-07
SetOfMetaKeys SSWis TYPE SPCLIB 6-25
SetOfStates AESObjects TYPE SYSLIB H-15
SetOfThreadlIds System TYPE SPCLIB G-34
SetOfWindowElements SSWis TYPE SPCLIB G-26
SetPalette XBios PROCEDURE SYSLIB H-67
SetPaletteState VDIEscapes PROCEDURE SYSLIB H-51
SetPath GemDos PROCEDURE SYSLIB H-33
SetPointCharHeight VDIAttributes PROCEDURE SYSLIB H-43
SetPos Files PROCEDURE SYSLIB H-30
SetPos FileSystem PROCEDURE STDLIB F-10
SetPrinter XBios PROCEDURE SYSLIB H-69
SETREG SYSTEM PROCEDURE SYSTEM E-03
SetRotation VDIkttributes PROCEDURE SYSLIB H-43
SetScreen XBios PROCEDURE SYSLIB H-67
SetTime GemDos PROCEDURE SYSLIB H-33
SetTime XBios PROCEDURE SYSLIB H-68
SetWindowElements SSwis PROCEDURE SPCLIB G-28
SetWindowMessage SSWis PROCEDURE SPCLIB G-28
SetWindowTitle SSWis PROCEDURE SPCLIB 6-28
SetWritingMode VDIAttributes PROCEDURE SYSLIB H-42
SHIFT SYSTEM PROCEDURE SYSTEM E-04
SHORT SYSTEM PROCEDURE SYSTEM E-904
ShowCursor VDIInputs PROCEDURE SYSLIB H-55
ShowMouse LineA PROCEDURE SYSLIB H-39
Shrink GemDos PROCEDURE SYSLIB H-34
ShrinkBox AESGraphics PROCEDURE SYSLIB H-12
SI ASCII CONST STDLIB F-03
sin LMathLib PROCEDURE STDLIB F-17
sin MathLib PROCEDURE STDLIB F-19
sinh LMathLib PROCEDURE STDLIB F-17
sinh MathLib PROCEDURE STDLIB F-19
SIZE SYSTEM PROCEDURE SYSTEM E-03
SizeOfWindowContent SSWis PROGEDURE SPCLIB G-29
SizeOfWorld SSWis PROCEDURE SPCLIB G-29
SizeWindowContent SSWis PROCEDURE SPCLIB G-28
SizeWorld SSWis: PROCEDURE SPCLIB G-29
SizeWorld TextWindows TYPE SPCLIB 6-42
SlideBox AESGraphics PROCEDURE SYSLIB H-12
SO ASCII CONST STDLIB F-03
SOH ASCII CONST STDLIB F-03
Space JCL PROCEDURE SPCLIB G-15
sqrt LMathLib PROCEDURE STDLIB F-17
sqrt MathLib PROCEDURE STDLIB F-19
States AESObjects TYPE SYSLIB H-15
StdIn GemDos CONST SYSLIB H-31
SPC MODULA-2 V1.4 LIB-INDEX J-19

Name

Modul Typ Lib Seite
Stdout GemDos CONST SYSLIB H-31
Streanms ByteStreams TYPE STDLIB F-04
Streams TextStreams TYPE STDLIB F-31
StringToCard NumberConversions PROCEDURE STDLIB F-20
StringToInt NumberConversions PROCEDURE STDLIB F-20
StringToLongCard NumberConversions PROCEDURE STDLIB F-20
StringToLongInt NumberConversions PROCEDURE STDLIB F-21
StringToLongReal RealConversions PROCEDURE STDLIB F-25
StringToReal RealConversions ~ PROCEDURE STDLIB F-25
STX ASCII CONST STDLIB F-03
SUB ASCII CONST STDLIB F-03
Sub Clock PROCEDURE STDLIB F-06
SubResult Rectangle PROCEDURE SPCLIB G-20
Subtract Rectangle PROCEDURE SPCLIB G-19
Super GemDos PROCEDURE SYSLIB H-33
Supexec XBios PROCEDURE SYSLIB H-69
SupportedAttributes Printer PROCEDURE STDLIB F-24
SupportedFonts Printer PROCEDURE STDLIB F-24
SuppressPaletteMessages VDIEscapes PROCEDURE SYSLIB H-52
SYN ASCII CONST STDLIB F-03
tan LMathLib PROCEDURE STDLIB F-17
tan MathLib PROCEDURE STDLIB F-19
tanh LMathLib PROCEDURE STDLIB F-17
tanh MathLib PROCEDURE STDLIB F-19
TedInfo AESObjects TYPE SYSLIB H-16
TedInfoPtr AESObjects TYPE SYSLIB H-16
TenthDegree VDIAttributes TYPE SYSLIB H-41
Term GemDos PROCEDURE SYSLIB H-34
Term Printer PROCEDURE STDLIB F-24
Term Process PROCEDURE SPCLIB G-17
Term Watch PROCEDURE SYSLIB H-65
TermCh InOut VAR STDLIB F-14
Term0O GemDos PROCEDURE SYSLIB H-32
TermProc Xstr TYPE SPCLIB G-45
TermResident GemDos PROCEDURE SYSLIB H-3
Test Frags PROCEDURE SPCLIB G-1
Text AESMenus PROCEDURE SYSLIB H-13
Text Frags TYPE SPCLIB G-10
Text TextFiles TYPE SPCLIB G-38
TextAttrType VDIInquires TYPE SYSLIB H-57
TextBlt LineA PROCEDURE SYSLIB H-39
TextCursor AESGraphics CONST SYSLIB H-11
TextEffect VDIAttributes TYPE SYSLIB H-41
TextEffects VDIAttributes TYPE SYSLIB H-41
TextOfExc System PROCEDURE SPCLI G-317
TextPtr Frags TYPE SPCLIB G-10
TextPtr TextFiles TYPE SPCLIB G-38
ThickCross AESGraphics CONST SYSLIB H-11
ThinCross AESGraphics CONST SYSLIB H-11
ThreadIds System TYPE SPCLIB G-34
J-20 LIB-INDEX SPC MODULA-2 V1.4

Name Modul Typ Lib Seite
TickCal Bios PROCEDURE SYSLIB H-28
Time Clock TYPE STDLIB F-06
Timer AESEvents PROCEDURE SYSLIB H-08
TimeStamp Files PROCEDURE SYSLIB H-30
Timestamp GemDos PROCEDURE SYSLIB H-34
Timestamp JCL PROCEDURE SPCLIB G-14
TitleHandles SSWis TYPE SPCLIB G-23
TitleNormal AESMenus PROCEDURE SYSLIB H-13
TotallLinesOf TextFiles PROCEDURE SPCLIB G-40
TPlayback AESApplications PROCEDURE SYSLIB H-03
TRANSFER Coroutines PROCEDURE STDLIB F-08
TransformForm VDIRasters PROCEDURE SYSLIB H-64
TransformMouse LineA PROCEDURE SYSLIB H-39
TRecord AESApplications - PROCEDURE SYSLIB H-03
TreePtr AESObjects TYPE SYSLIB H-16
TRUNCd Systenm PROCEDURE SPCLIB G-34
TRUNCs System PROCEDURE SPCLIB G-33
ts TextStreams TYPE STDLIB F-31
Tst Bytes PROCEDURE SPCLIB G-05
TypeLength GemDos CONST SYSLIB H-31
TypeLength HFS VAR STDLIB F-12
Types AESObjects TYPE SYSLIB H-15
Types ByteStreams TYPE STDLIB F-04
Types Files TYPE SYSLIB H-29
Types Frags TYPE SPCLIB G-10
Types TextStreams TYPE STDLIB F-31
TypeSep GemDos CONST SYSLIB H-31
TypeSep HFS VAR STDLIB F-12
Umlauts SSWis VAR SPCLIB G-26
Undo SSWis CONST SPCLIB G-24
UndrawSprite LineA PROCEDURE SYSLIB H-39
UnlinkThread System PROCEDURE SPCLIB G-36
UnloadFonts VDIControls PROCEDURE SYSLIB H-48
UpArrow SSWis CONST SPCLIB G-24
Update AESWindows TYPE SYSLIB H-24
UpdateFlags AESWindows TYPE SYSLIB H-23
UpdateMetafileExtents VDIEscapes PROCEDURE SYSLIB H-52
UpdateWorkstation VDIControls PROCEDURE SYSLIB H-47
us ASCII CONST STDLIB F-03
UserDef AESGraphics CONST SYSLIB H-11
UtilityName CmdLine PROCEDURE SPCLIB G-06
VAL SYSTEM PROCEDURE SYSTEM E-04
ValidTextRotations VDIInquires TYPE SYSLIB H-56
ValuatorStatus VDIInputs TYPE SYSLIB H-53
VDIDescription LineA PROCEDURE SYSLIB H-38
VDIRectangle VDIOutputs TYPE SYSLIB H-60
Version GemDos PROCEDURE SYSLIB H-33
VertAlignment VDIAttributes TYPE SYSLIB H-41
VolumeSep GemDos CONST SYSLIB H-31
SPC MODULA-2 V1.4 LIB-INDEX J-21

Name Modul Typ Lib Seite
VolumeSep HFS VAR STDLIB F-12
VSync XBios PROCEDURE SYSLIB H-69
vT ASCII CONST STDLIB F-03
WatchBox AESGraphics PROCEDURE SYSLIB H-12
wd JCL PROCEDURE SPCLIB G-14
Veekdays Clock TYPE STDLIB F-06
WhileEqualBlank XStr PROCEDURE SPCLIB G-45
WhileInAlphaNunms XStr PROCEDURE SPCLIB G-45
WhileInAlphas XStr PROCEDURE SPCLIB G-45
WhileInDigits Xstr PROCEDURE SPCLIB G-45
¥WhileInHexDigits Xstr PROCEDURE SPCLIB G-45
WhileInPathChars XSstr PROCEDURE SPCLIB G-45
White AESBase CONST SYSLIB H-05
VindowAreas AESWindows TYPE SYSLIB H-23
VindowArrowed AESEvents CONST SYSLIB H-07
VindowClosed AESEvents CONST SYSLIB H-07
V¥indowElements SSWis TYPE SPCLIB G-26
VindowFulled AESEvents CONST SYSLIB H-07
¥WindowHandles SSWis TYPE SPCLIB G-23
VindowHorizSlided AESEvents CONST SYSLIB H-07
VindowMoved AESEvents CONST SYSLIB H-07
¥indowNewTop AESEvents CONST SYSLIB H-07
VindowRedraw AESEvents CONST SYSLIB H-07
VindowSized AESEvents CONST SYSLIB H-@7
VindowTopped AESEvents CONST SYSLIB H-07
VindowVertsSlided AESEvents CONST SYSLIB H-07
WORD SYSTEM TYPE SYSTEM E-03
WorkstationDescription VDIControls TYPE SYSLIB H-46
WorkstationInitRec VDIControls TYPE SYSLIB H-46
VorkstationType VDIControls TYPE SYSLIB H-46
Worldof TextWindows TYPE SPCLIB G-42
Vrite AESApplications PROCEDURE SYSLIB H-93
Vrite AESScraps PROCEDURE SYSLIB H-21
Write AESShells PROCEDURE SYSLIB H-22
Write ByteStreams PROCEDURE STDLIB F-05
Write GemDos PROCEDURE SYSLIB H-33
Write InCut PROCEDURE STDLIB F-15
Vrite Printer PROCEDURE STDLIB F-22
Vrite Terminal PROCEDURE STDLIB F-29
Vrite TextStreams PROCEDURE STDLIB F-33
Write TextWindows TYPE SPCLIB G-43
WriteAddress InOut PROCEDURE STDLIB F-16
WriteAddress TextStreams PROCEDURE STDLIB F-34
WriteBlock Files PROCEDURE SYSLIB H-30'
WriteByte ByteStreams PROCEDURE STDLIB F-05
VriteCard InOut PROCEDURE STDLIB F-16
WriteCard TextStreams PROCEDURE STDLIB F-33
WriteChar FileSystenm PROCEDURE STDLIB F-11
WriteHex InOut PROCEDURE STDLIB F-16
VriteHex TextStreams PROCEDURE STDLIB F-33
J-22 LIB-INDEX SPC MODULA-2 V1.4

Name Modul Typ Lib Seite
Writelnt InOut PROCEDURE STDLIB F-16
WriteInt TextStreams PROCEDURE STDLIB F-33
WriteLine TextWindows TYPE SPCLIB G-43
WriteLn InOut PROCEDURE STDLIB F-16
WriteLn Printer PROCEDURE STDLIB F-22
WriteLn Terminal PROCEDURE STDLIB F-29
WriteLn TextStreans PROCEDURE STDLIB F-34
WriteLn TextWindows TYPE SPCLIB G-43
Writelong Terminal PROCEDURE STDLIB F-29
WriteLongcard InOut PROCEDURE STDLIB F-16
WriteLongcard TextStreams PROCEDURE STDLIB F-33
¥riteLongint InOut PROCEDURE STDLIB F-16
WriteLongint TextStreams PROCEDURE STDLIB F-34
WriteLongreal InOut PROCEDURE STDLIB F-16
WriteLongreal TextStreams PROCEDURE STDLIB F-34
WriteMetafile VDIEscapes PROCEDURE SYSLIB H-52
WriteModes LineA TYPE SYSLIB H-37
WriteOct “InOut PROCEDURE STDLIB F-16
WriteOct TextStreams PROCEDURE STDLIB F-33
WriteReal InOut . PROCEDURE STDLIB F-16
WriteReal TextStreams PROCEDURE STDLIB F-33
WriteString InOut PROCEDURE STDLIB F-15
WriteString Printer PROCEDURE STDLIB F-22
WriteString Terminal PROCEDURE STDLIB F-29
WriteString TextStreams PROCEDURE STDLIB F-33
WriteString TextWindows TYPE SPCLIB G-43
WriteWord ByteStreams PROCEDURE STDLIB F-05
WriteWord FileSystem PROCEDURE STDLIB F-11
WritingModes VDIAttributes TYPE SYSLIB H-41
Xbtimer XBios PROCEDURE SYSLIB H-69
Xor Bytes PROCEDURE SPCLIB G-05
Yellow AESBase CONST SYSLIB H-05
SPC MODULA-2 V1.4 LIB-INDEX J-23

)

