
SPC Modula-2

Für ATARI ST und MEGA ST

Editor L SSWiS Shell

SYSLIB Compiler Utilities

:

fa 1 STDLIB Debugger

songz teem |

SPC
MODULA-2

für den ATARI ST

Benutzerhandbuch

Version 1.4

Advanced Applications Viczena GmbH

Copynght

© 1987, 1988, 1989 Advanced Applications Viczena GmbH

Haftungsausschluß

Es wurden alle erdenkhichen Maßnahmen getroffen, um die Kor-

rektheit dieser Dokumentation und ger dazugehongen Software ZU
gewährleisten. Da wir jedoch stanaig Verbesserungen und Nach-

arbeiten an unseren Produkten vomehmen, können wir keine Ge-

wahr für deren Vollständigkeit und Korrektheit übernehmen und

schließen deshalb alle Gewälnleistungsansprüche aufgrund von
Fehler der Software oder der Dokumentation aus.

Hande/ismarken

GEM, GEMDOS sind Warenzeichen bzw. eingetragene Warenzei-
chen der Digital Mesearch Inc.

MOTOROLA, MC68000 sind Warenzeichen bzw. eingetragene
Warenzeichen det MOTOROLA Inc.

ATAAI, 26OST, 52057, 520ST+, TOS, MEGA ST sind eingetragene

Warenzeichen der ATAH/ Corp.

/eiie dieses Sprachsystems wurden am Institut Tür Informatik der

Eiogenössischen Technischen Hochschule (ETH) Zurich vor Nik-
laus Wirth und seinem Team emtwickelt

SPC MODULA-2 V1.4

Inhaltsverzeichnis

Vorwort
Das Produkt0.222usessseenensesnenennsenennnneenenenenn 5

Das Handbuch cc ccccccccccesssseeeeeeeseeeeeeescesueaeenes 6

1 Installation
LIQ@FEFUIMPANG cece cec cece cesseecee eee ecceeuaeeceeeeaeecensasaeeees 1-1

Vorbereitungenussnsmnensnnnensnneneennennnnnenenennenenenen 1-1

Installation ooo. ccc cccceescesecsecceseveresssevstesenneneeenty 1-3
Prüfen der Installation.........................cn een 1-3

SPC MODULA-2 benutzen02000eeneeenennnennennn 1-8

Weitere Schritteu.222nuuueeeeseeeeeeeeennennnneneennnn 1-9

2 Einführung in SPC MODULA-2
Übersicht0000200000nnseeeeesseeennnnennnnnnenneneeneneennenenn 2-1

Modul-Konzeßpt............................... ceteeeeeesaseseeceeeeeeeeeeess 2-2

Systemnahe Elementeeennnnnenn 2-4
ProzedurtyP...........22222222222neeneneneenennenenenennnennnnnnnnnn nen 2-5
Syntaktische Straffungen.eeeeen 2-5
Zielgruppe VON MODULA 2 00. ccc cee cececeeeeeeees 2-6
Features von SPC MODULA-2...... cece 2-7
Die STDLIBuesanseeeeeeeeeenennnnnnnnnneneneeneenennnn 2-8

Die SPCLIB.................ueseennnseseneeeennennnnnnnnnnennne nennen 2-11

Die SYSLIB....................nneneenennennnnneseeenennennnnnneen 2-13

3 Die xShell
Übersichteesneeeesseeenanseeenneesnnnenennnenennnennnenenenen 3-1

Pseudo-Multitaskingce 3-1

Einführung0cssssseseseenennensessennnennenenee seen 3-2

Bedienung4mmemsssesssseneennnenennnennenenen een nn 3-6

Werkzeuge starten....................- kenssrsersensentrennnn 3-8

Dateien selektieren.eeneneennenn 3-11

Utilitieseeeaneeeeeeeeeeeeeseesnsesensseenennnnnnnnneneneennnennnenennennnen 3-12

JODS....ueaesneeeueeeseennnnnnenseeenenennenennnnennennnennnnnnnnnneneneennnennnn 3-14

Textuelle Kommandos...........................emsseeneneeeeeen 3-16

SPC MODULA-2 V1.4

A Der Editor
Übersicht.............neeeneeseensneneeeeneennneenn nennen 4-1

StArten 2... cece ccc cccccceeeeecececeueaeeesececessarseassetsseeserssaanes, 4-2

Einfache Editierungenasesseeneneeeeenneenenenn 4-3

NK) 0s 4-5

Block Operationen........ cece cceceesseeeeeerereeseeeeeeeees 4-5
Olipboard.............ueeeeeeeenessesssssnnnnnnnnnnnneennennennneennennen 4-6

Suchen und Ersetzen2. nennen 4-7

Im Text Springeneneeeeeenenenennnennennnnnnnnnn nn 4-8

Modi einstellen... ce cecccaeeceececcuecenevecteeeannens 4-9

Dateien........... cect eee eceeaeuceeeeacceeeseceuseeaeseeuseeseeeecusueeeneaes 4-10

Funktionstasten.............eeeeesesseeeeeeenneenenennneneeennnennnn 4-10

SONStIQES..........ueeennnneeeenennessesnennnnnnnennnnnnnnnnnennnnnenannnnnnenn 4-11

5 Der Compiler
Übersicht................0.00nneseennneeeenasnnennensesnennenenennenenn 5-1

Starten........cuuensannnssssneeeunennnnonsnennennnnnennnennenennenneeenn 5-2

Ein- und Ausgabedateien.................eeeeneneneeen 5-4

Suchpfade.............ssssssssssssssssssssnnennnnnnnnnnnnnnnnnnnnnennnnen 5-4

MOdulSchlussel 0.0.0.0... cece ceecccavecccecccauesccuesecanecenaes 5-7

Die SPC Implementierung... nen 5-9
Pseudomodul SYSTEMceeeennnnnnn anne 5-12

CODE-Prozeduren..........eesanseensnsseeseennnnsneenennenneneenn 5-14

FORWARD-Anweisunguessssssnsneneesessessenesennnennenn 5-14

Standard—ProZeduren 00.0... cece cceeeeecccceeeececcceeeeceeaeees 5-15

REStrikKtiONne@n oo... ce eee cceecceeccnececeeccueeeuecceatccaeeeaeeees 5-17

6 Der Debugger
UDOISICKH 0... eee ccccccccccsecsccueccecceeseeeesesesensnseesanseesanes 6-1

Laufzeitfehler......................u0220unneenneeneseensenneenennennanennenn 6-1

Procedures-Fenster.............occenneeeeaneeenneeeennenenneenenennenn 6-2

Source-Fensterauneeeeneansessenennnneneennnenennnneen nenne 6-3 °

Data-Fenstercesssennseenssnnnnennnnnnnnnennnennennnnnenen 6-4

Modules-Fenster...............uunseenneeenseenesennennnnennnnennenenenen 6-5

7 Die Utilities
1 | (> oo ec eceeeccceceeceececeecceeceereseecaucevaeeusanceseneay 7-3

Linkcceeaneeeseeneenennsennnnenunsenneennennennennnnnennnenennnen nenn snnann nenn 7-23

Prelink..............ecnseeensnennseenneennseennesennnennennnenen nennen 7-27

Make o.oo cee eeccceccescaeceeceescuseneseesaueeuesaesaneaeeuneeeees 7-29

SPC MODULA-~2 V1.4

PAtNS...0.. cc eececccccccececaseeeececeeesaseneceseccesesusaassaeeeeseeeeeseees T-

SOTENW 00... eee cccccccceesesseeceeeeeeaeeeeeceseceeeeeeseeeesenesepeeueeneaneas 7-
DUMP nn nnnnnnnneneenneesennnnnnnnnenann 7-

8 SSWIS
UDCISICHE oo cc ccc cece casa eeeeeeeeeeeeseceeeseeeeeseeeeeeneeeeneeas 8-1

Bedienungseeessssnnnnnnenensnssssnsnonnnnnnnnnnnnnnnnennnnenn 8-3

Formulareeeeeeeeeneseeeessennennnnnnsnsnnnssnnnnnennnennennnnnenennenn 8-8

Programmierschnittstelle..............................ene 8-10

9 Das Laufzeitsystem |
UDECISICIE oo cece teneececeeeceeecceeceeeeeeeeseseeeseeeeeeenees 9-1

Datentypen...........ucceeseseenssesenennnnnnnnnnnnenesseenneennnnnnnnennnen 9-2

Modulorganisationnnnen 9-3

Ladevorgangummessssnnnessnennneenneseeen een 9-9

Stackorganisationue.ceneeneessneeessenneneneenennnennen 9-10

A Compiler Fehlermeldungen

B MODULA-2 Syntax

C Literaturhinweise

D Beispielprogramme

E Pseudomodul SYSTEM

F Die STDLIB

G Die SPCLIB

H Die SYSLIB

| Index

SPC MODULA-2 V1.4

Edit File Block Clipb Strings Goto Nodes

a VTESTSUHELLO.N — x Farina ih
a. no errors logged

| lee Hello; 105. Filer Version 1.40 z {
2 A

(% Codesize is limited about ik Bytes within the demo version. ®) mia
FROM Indut IMPORT HriteString, Hritelat, Hriteln;

- FROM SYSTEM IMPORT VAL, ADDRESS;

VAR x + ARRAY (1..40) OF CHAR;
e CHAR;
p * POINTER TO CHAR; 999 ce

PROCEDURE Wait; nn xShell

- PAR i, J: INTEGER; A

BEGIN 7 u in (4 5
ron jir ieee 10 MAXCINTEGER) DO SELL .NOD CERNE re ommud.Len 008€ mon .g Hon

Hi ; . © 6

“| END: aE am m
END Wait; Compa ie tare Prune Decus

. —— —— =—_—
ya, ont > pe,

PROCEDURE Count (Number + INTEGER); varus m rest rer

em WAR At INTEGER; LOBE SE

BEGIN
Mritelnt Klunber, 2); Writeln;
gie x [Kun er]; ‘ FILER SELECTION
Hatt; F:\W.% Fol: 9 File: 4
If Kuner = 8 TNEN RETURN ELSE Count (Nunber-1) END; ".. siaaeeee. teavoutt

ERD Cou % 2004 16/12/88 22:41:58
s CUSTOMSH 13712788 21:22:32
“ GENDOS 3/04/88 «7:26:20
@ SERVICE 11/12/88 13:32:84

EGIN , . or 15/10/88 23:00:14
Mriteln; WriteString (‘Hello Morld'); WriteLn; : “1 & STANDARD 3/04/88 7:30:56 | rn ee

“er 8 ST 22/12/88 22:06:54 | fore
(# To demo the Gebugger compile this program giving options : *) Lowe A sere 41/12/88 13:39” FILER DESTINATION |
(# con onpile hello.nod % x v005 3/84/88 T:4T Drives
D:= VALCRDDRESS, 39) ; ERR LST 25 12/81/89 6:59 5 Driver AN
HriteString ‘ Count Down‘); Mriteln; u LINK LST 34977 12/01/89 6:54 9 drive: BEN .

I OR 1 a greg 2 Brive: Ci "mn 14 : Tr \GERDOS\EEKO Hello. ae ı a Orive: Di\

m ©] | loln ce en — — a Driver Fs\ .

SPC MODULA-2 V1.4

Vorwort

SPC MODULA-2 ist ein komplettes Sprachsystem für
die Entwicklung von MODULA-2 Programmen auf dem
ATARI ST oder dem MEGA ST. Der Compiler des

Sprachsystems wurde von N. Wirth selbst und seinem

Team an der Eidgenössischen Technischen Hoch-

schule (ETH) Zürich entwickelt.

Das Sprachsystem beeinhaltet u.a.:

eine grafische Shell

einen schnellen Compiler

einen sprachsensitiven Editor

einen source-level Debugger

einen dynamischen linkenden Lader

einen Linker

eine File-Utility

ein deutsches Handbuch

die MODULA-2 Standardbibliotheken

alle GEM-Bibliotheken 0
0
0
0

0
.
0

0

0

0D

OQ

Die Entwicklung von SPC MODULA-2 war und ist von

dem Ziel getragen, dem Entwickler ein effizientes und

schnelles Werkzeug bereitzustellen, so daß dieser

seine wertvolle Zeit weitestgehend auf die kreativen

Phasen des Programmierens verwenden kann.

Dies wurde vor allem dadurch erreicht, daß auf das
meist zeitaufwendige Binden der Programme verzichtet
werden kann. Einen weiteren Beitrag leistet der Com-

piler mit einer Übersetzungsgeschwindigkeit von bis zu

5000 Zeilen in der Minute. Der Editor zeigt die vom

Compiler entdeckten Fehler direkt im Programmtext an.

Falls während des Programmtests ein Laufzeitfehler

Das Produkt

Lieferumfang

Entwicklungsziele

Entwicklungskomfort

SPC MODULA-2 V1.4

Das Handbuch

Umfang des

Handbuchs

Organisation des
Handbuchs

entdeckt wird, wird automatisch der Debugger nach-

gestartet. Dieser zeigt dann die fehlerhafte Stelle -
ebenfalls im Quelltext- sowie die Inhalte von Variablen
zur Zeit des Absturzes. Ein übriges tut die xShell zum

Komfort beim Programmieren. Sie zeigt in grafischer

Weise die momentane "Umgebung". Darunter wird die

Menge von Dateien und Werkzeugen verstanden, die

der Entwickler gerade am häufigsten benötigt. Die

meisten Kommandos können mit einem oder zwei

Maus-Klicks gegeben werden oder indem einfach nur

die =, "-Taste gedrückt wird.

Um das Sprachsystem abzurunden wurde ein Hand-
buch erstellt, bei dem Übersichtlichkeit eines der wich-

tigsten Kriterien war. Gleichzeitig wurde versucht, alle
für den Entwickler wichtigen Informationen kompakt

darzustellen, um die Menge des zu bewältigenden

Materials gering zu halten.

Das Handbuch beschreibt die Komponenten des SPC

MODULA-2 Sprachsystems auf dem ATARI ST unter

GEM. Hierzu gehören neben den Sprachwerkzeugen

inbesondere die mitgelieferten Bibliotheken. Sie werden

im Detail durch ihre Definitionsmoduln beschrieben.
Neben dem SPC MODULA-2 Handbuch sollten Sie
über weitere Literatur verfügen, die die Bedienung

Ihres Computers beschreibt. Die Beschreibung der
Programmiersprache MODULA-2 ist ebenfalls nicht Teil

des Handbuchs. Jeder MODULA-2 Programmierer be-

nötigt als Nachschlagewerk das Buch von N. Wirth

"Programming in MODULA-2", das auch in der deut-

schen Übersetzung vorliegt.

Das Handbuch ist in Kapitel und Anhänge aufgeteilt.

Die Gliederung orientiert sich an den Komponenten

des Sprachsystems. Die Beschreibung einer Kom-
ponente erfolgt so, daß zuerst beschrieben wird, was

die Komponente leistet. Ein zweiter Teil befaßt sich

damit, wie man die Leistung in Anspruch nimmt. Ein

SPC MODULA-2 V1.4

dritter, optionaler Teil beschreibt schließlich, wie eine

Komponente intern funktioniert, um z.B. Restriktionen

oder Querbezüge aufzuzeigen.

Auf jeder Handbuchseite finden sich am äußeren Rand

Stichwörter, die auch im Index aufgelistet sind. Namen

von Tasten der Tastatur werden V«ü.nixi gesetzt. Be-

tonungen werden fett gedruckt. Dateinamen werden

GROSS geschrieben.

a In dieser Weise werden wichtige Hinweise hervorge-

hoben. Lesen Sie diese unbedingt, bevor sie Be-

dienungen vornehmen.

Bevor Sie sich nun an die Arbeit machen und Ihre

eigenen MODULA-2 Programme entwickeln, sollten Sie

sich die Zeit nehmen, das Handbuch zu lesen. Auch

wenn Sie bereits ein erfahrener MODULA-2 Program-

mierer sind, ist es wichtig, daß Sie sich einen Über-

blick über die Punkte verschaffen, die durch die Doku-
mentation abgedeckt werden. Außerdem werden an

vielen Stellen Hinweise über die richtige und sinnvolle

Benutzung des Sprachsystems gegeben.

notationelle

Konventionen

bevor Sie anfangen

SPC MODULA-2 V1.4

Diese Seite wurde aus

satztechnischen Gründen

gelassen

frei

10 SPC MODULA-2 V1.4

Installation und

Inbetriebnahme

Bevor Sie mit der Installation beginnen, überprüfen Sie

bitte die Vollständigkeit Ihrer Lieferung und ob die ge-

rätemäßigen Voraussetzungen für eine Installation ge-

geben sind. Die Lieferung besteht aus folgenden Tei-

len:

QO 1 Handbuch im DIN A5 Ordner

QO 3 doppelseitig beschriebene 3.5” Disketten

Q 1 Bogen Aufkleber für Funktionstasten

O 1 Software—Registrierkarte

O 1 Software-Lizenzvertrag

Für die Installation benötigen Sie als Mindestausstat-
tung:

O 512 kByte freien Hauptspeichers

O 720 kByte Massenspeicher

O monochromen Monitor

Sie können SPC-MODULA-2 auch auf einem MEGA
ST mit Blitter-TOS betreiben. Eine Festplatte ist für ein
produktives Arbeiten sinnvoll. Bitte stellen Sie aber in

jedem Fall sicher, daß 512 kByte im Arbeitsspeicher
frei sind.

Die Diskette ist versiegelt. Bitte beachten Sie, daß Sie

mit dem Öffnen der Diskette den Lizenzvertrag akzep-

tieren. Sie verpflichten sich darin ausdrücklich, dieses

Exemplar von SPC-MODULA-2 zu einer Zeit nur auf
einer CPU einzusetzen. Weiter stellen Sie sicher, daß
ihr Exemplar nicht außerhalb der Lizenzbestimmungen

Kapitel 1

Lieferumfang

Vorberei-

tungen

Lizenzvereinbarung

SPC-MODULA-2 V1.4 Installation

Registrierung

Service Hotline

Serialisierung

Updates

eingesetzt wird, und benachrichtigen den Vertreiber,

falls Sie dennoch davon Kenntnis erhalten sollten.

Füllen Sie die Registrierkarte aus und schicken Sie sie

an den Vertreiber zurück. Sie werden damit in die Liste

der registrierten Anwender aufgenommen und werden

automatisch über neue Versionen informiert. Während

der Garantiezeit von 6 Monaten erhalten Sie Updates
gegen einen Unkostenbeitrag für Porto und Verpack-

ung. Sollte Ihre Version schon zum Kaufdatum nicht

mehr aktuell sein, dann erhalten Sie nach Eingang der

Registrierkarte eine aktuelle Version.

Der Hersteller unterhält eine Mailbox, über die der Ser-

vice von SPC MODULA-2 abgewickelt wird. Die Mail-
box kann mit einem 300 oder 1200 Baud Modem

(Akustikkoppler) erreicht werden. Die Modem-Parame-

ter sind:

0 0721 / 700963, 300/1200bd, 8 Datenbits, keine Paritat

Ihr Exemplar von SPC MODULA-2 ist serialisiert, d.h.
daß die Software mit einer Seriennummer versehen ist.
Die Seriennummer ist in einer sogenannten Environ-
ment-Variablen gespeichert. Um zu verhindern, daß
die Seriennummer entfernt wird, wurde sie um einen
Seriencode ergänzt. Seriennummer und SerienCode
stehen in einem bestimmten Zusammenhang und wer-

den von Zeit zu Zeit durch SPC MODULA-2 abgefragt.
Sie sollten deshalb nicht versuchen, die Nummer zu
verändern oder zu entfernen. Ihre eigenen Programme

sind von Seriennummer und Seriencode selbst-
verständlich unabhängig. Seriennummer und Serien-
code sind auf Ihrer Originaldiskette und auf dem Soft-
ware-Lizenzvertrag vermerkt. Bei jeder Korrespondenz

mit dem Vertreiber sollten Sie Seriennummer und
Seriencode angeben.

O° Updates werden immer ohne Seriennummer aus-

geliefert. Sie müssen deshalb selbst dafür Sorge

Installation SPC-MODULA-2 V1.4

tragen, daß nach dem Einspielen eines Updates das

Profile wieder die Seriennummer enthält.

Die folgende Installationsprozedur wird von einem SPC

MODULA-2 Programm gesteuert, das sich auf der
Release-Diskette befindet. Das Programm will wissen,

auf welchem Laufwerk Sie SPC MODULA-2 installieren
wollen. Falls Sie SPC MODULA-2 ohne Harddisk be-

treiben wollen, dann müssen Sie jetzt zunächst drei

Disketten doppelseitig formatieren. Falls Sie SPC

MODULA-2 auf einer Harddisk installieren möchten,
dann müssen Sie eine Partition auswählen, auf der

noch ca. 1MByte Speicher frei ist.

Gehen Sie nun wie folgt vor:

O Legen Sie die Diskette mit der Beschriftung "Disk 1 of
3" in Laufwerk A:

Öffnen Sie den Ordner \SPC\USER

Starten Sie das Programm XSHELL.PRG

Kilcken Sie auf das Icon mit der Beschriftung "Install"

folgen Sie den Anweisungen des Programms bis zu
der Meldung, daß die Installation beendet ist.

D
D

D
O

0 Verstauen Sie die Original-Disketten an einem
sicheren Ort.

Lesen Sie nun zunächst die Datei \SPC\README.IST.

Sie enthält letzte Informationen, die nicht im Handbuch

enthalten sind.

SPC MODULA-2 ist nun installiert. Die folgenden
Schritte sollen sicherstellen, daß die Installation erfolg-

reich war. Dazu werden Sie die wesentlichen Kom-

ponenten des Systems kurz kennen lernen. Öffnen Sie
nun das Laufwerk oder die Partition, auf der SPC
MODULA-2 installiert wurde. Der Ordner \SPC enthält
den ganzen Release. Um neue Versionen ohne Pro-

Installation

INSTALL.OBM

README.1ST

Prufen der

Installation

SPC MODULA-2
starten

„shell

bleme einspielen zu können, sollten Sie keine eigenen

Dateien in dem Ordner \SPC anlegen. Im Ordner \SPC
befinden sich mehrere weitere Ordner, von denen im

Moment der Ordner \SPC\USER von Interesse ist. Off-

nen Sie diesen Ordner.

Sie finden in dem Ordner das Programm XSHELL.PRG.

Starten Sie dieses Programm. Der Ladevorgang dauert,
wenn Sie mit Diskettenlaufwerken arbeiten, etwas über

eine halbe Minute. Danach wird der Desktop initialisiert

und zwei Fenster mit de Titeln "Terminal" und "xShell"

geöffnet. Wenn Sie schon etwas vertrauter mit

MODULA-2 sind, werden Sie wissen, daß Terminal
(bzw. InOut) die Standardein-/-ausgabe auf den
Bildschirm, bzw. von der Tastatur abwickelt. Die xShell

ist ein Programm, von dem aus Sie alle Werkzeuge

und Utilities des Systems komfortabel starten können.

Die Bedienung der Shell ist sehr einfach und in Kapitel
3 dieses Handbuchs ausführlich erläutert. Für den

Command Files Tools Utils Jobs

EINEN

|

 + Fi\gemdos\ETE\Hello.RFM

+ Fi\gemdos\ETC\Hello.0OBM 388

E:\gemdos\STDLIB. ob j\InOut. SBM

Installation SPC-MODULA-2 V1.4

Moment verfahren Sie einfach so wie unten beschrie-

ben. Wir werden versuchen, das Programm

HELLO.MOD zu übersetzen und zu starten. Dabei ler-

nen Sie neben der xShell den Compiler, den Editor
und den Debugger kennen.

Sie sehen im Fenster der xShell ein Icon mit der Be-

schriftung "HELLO.MOD". Klicken Sie das Icon mit der
linken Maus-Taste. Es wird daraufhin invertiert dar-

gestellt. In der zweiten Icon-Reihe sehen Sie als zwei-

tes von links das Compiler-Icon. Klicken Sie auch die-
ses mit der linken Maus-Taste.

Es wird jetzt der Compiler geladen. Der Fortgang

Übersetzung wird im Terminal-Fenster protokolliert. Die

Übersetzung wird nicht erfolgreich sein. Das ist normal,

denn die Datei enthält, so wie sie geliefert wird, einen

Fehler, den Sie als nächstes beheben sollen.

Inzwischen ist das Editor-Icon (äußerst linkes Icon der

zweiten Reihe) invers dargestellt. Dadurch zeigt die

xShell an, welches Kommando als nächstes vor-

geschlagen wird. Gleichzeitig ist immer noch das Icon

der Datei HELOO.MOD selektiert. Wenn Sie nun die
Lerrtaste (SÄTZE) drücken, akzeptieren Sie das
Default-Kommando und der Editor wird gestartet.

Der Editor öffnet sofort die Datei HELLO.MOD und

stellt den Cursor auf die Stelle, an der der Fehler vom

Compiler erkannt wurde. Die Zahl 999 hinter dem
Semikolon ist offensichtlich fehlerhaft. Entfernen Sie

diese indem sie 3 mal TAX” drücken. Verlas-

sen Sie nun den Editor indem Sie die Taste °°

drücken. Die Datei wird zurückgeschrieben.

Starten Sie erneut den Compiler, indem Sie die Taste
SPAGT drücken, und damit das Default-Kommando
akzeptieren. So einfach ist das! Die Übersetzung wird
diesmal erfolgreich sein, was daran zu erkennen ist,

HELLO.MOD

übersetzen

editieren

SPC-MODULA-2 V1.4 Installation

daß der Compiler nicht mehr die Meldung ‘Errors
Detected’ ausgibt, sondern eine Zahl.

HELLO.MOD starten
Nun wollen wir das Programm testen. Das Programm

wurde der Einfachheit halber schon als sogenannte

Utility installiert. Es ist deshalb auch als Icon in der

dritten Icon-Reihe vertreten. Zum Starten brauchen Sie

nur dieses Icon anzuklicken. Leider enthält das Pro-
gramm auch einen Laufzeitfehler, so daß es abstürzen

wird. Die xShell wird dann automatisch den Debugger

starten.

debuggen

Das Programm wird einen Count-Down von 10 bis 1

ausgeben, und dann einen Laufzeitfehler melden. In

der Dialog-Box klicken Sie nun bitte Debug an. Es

dauert einen kleinen Moment, bis der Debugger ge-

laden ist. Dieser öffnet 3 Fenster auf dem Desktop. Im

oberen Fenster sehen Sie den Quelltext von

EEE SSR ESSENER RSREESESEITEES EEE EEE LERNTE

Fi\GEMDOS\ETC\Hel1l0.MOD
WriteInt (EvenNumber, 2); WriteLn;
c:ı= x[EvenHunber] ;
Wait;
IF EvenNumber = 6 THEN RETURN ELSE CountOdd (EvenNumber-i) END;

EXD CountEven:

PROCEDURE CountOdd (OddNumber : INTEGER);

re rere en are a er ear ee i cee EEE SEES EEE SSS SE SEES ESSE SSE SSE

subrange violatio |
KT in Hellofiy CountEven

Hello a: le a
iEvenNumber 68 INTEGER

“Hi Even -32768 INTEGER

Installation SPC-MODULA-2 V1.4

HELLO.MOD und eine invers dargestellte Zeile. Sie
enthalt das fehlerverursachende Statement. Im linken
Fenster sehen sie die Prozedur—Aufrufkette und die

Fehlerursache, nämlich Index-/Range-Check in diesem

Falle. Wenn Sie nochmals den Quelltext betrachten,

dann sehen Sie, daß der Fehler bei einem Zugriff auf

ein Array x aufgetreten ist. Der Index dabei war i. Die

Variablen und ihre Werte sehen Sie im rechten Fenster.

Der Inhalt von i ist 0. Der Grund fur einen Fehler liegt

darin, daß das Array x mit einem Indexbereich von 1

bis 10 erklärt wurde und O deshalb unzulässig ist.

Wenn Sie nun -wie allgmein üblich- das File-Menü
anwählen und darin den Eintrag Quit selektieren, dann
wird der Debugger verlassen.

Die xShell wird wieder die Dialog-Box zeigen, um zu
erfahren, was sie nun weiter mit dem fehlerhaften Pro-

gramm tun soll. Klicken Sie auf Abort um das Pro-

gramm abzubrechen.

Verlassen Sie anschließend die xShell, indem Sie die

Taste @ drücken. Die xShell bietet noch ein letztes

Formular an, in dem Sie Quit wählen. Daraufhin wird

die xShell endgültig verlassen.

I= Sollten Sie nicht wie beschrieben bis hierher gekom-
men sein, dann ist ihre Installation nicht gelungen.

Eventuell sind beim Einspielen der Dateien Fehler auf-

getreten. Möglicherweise haben Sie nicht genügend

freien Speicher. Booten Sie ihren’ Rechner noch einmal

ohne Desktop-Accessories und versuchen Sie es noch

einmal. Es kann natürlich auch sein, daß ihre Disketten
defekt sind. In diesem Fall müssen Sie sich an den

Händler oder direkt an die Firma Advanced Applica-

tions Viczena GmbH wenden.

xShell verlassen

fehlerhafte

Installation

SPC-MODULA-2 V1.4 Installation

SPC

MODULA-2

benutzen

eigene Projekte

weitere Ordner

anlegen

XSHELL.PRG als

Anwendung

anmelden

DESKTOP.INF

hacken

Sie haben die ganze Zeit in dem Ordner \SPC\USER
gearbeitet. Das war eine Ausnahme.

n“® Normalerweise sollten Sie keine eigenen Dateien

unter \SPC anlegen, sondern sich neue Ordner
neben \SPC schaffen, in denen Sie Ihre Projekte
organisieren.

Diesen Ordnern können Sie beliebige Namen geben

(nicht unbedingt USER). Für den Anfang kopieren Sie

bitte den Ordner \SPC\USER auf das gleiche Laufwerk,
auf dem \SPC liegt, sodaß Sie dort mindestens die ©

beiden Ordner \SPC und \USER vorfinden. Öffnen Sie
den Ordner \USER und starten Sie noch einmal
XSHELL.PRG. Es sollte sich wieder die xShell melden.

Verlassen Sie die xShell wieder wie oben erläutert.

Wenn Sie schon erfahren im Umgang mit GEM sind,

können Sie nun XSHELL.PRG als Anwendung für Da-

teien mit der Endung .CNF anmelden.

0°” Falls Sie noch nicht genügend mit GEM vertraut

sind, dann überspringen Sie diesen Abschnitt. Sie
können diesen Teil jederzeit auch später durchfüh-

ren.

Sichern Sie die Arbeit. Starten Sie XSHELL.PRG,

drücken Sie die Taste - zum Editieren und wählen Sie

in der Dateiauswahl-Box die Datei DESKTOP.INF auf
ihrem Boot-Laufwerk aus. Bewegen Sie den Cursor
nach unten bis zu der Zeile, in der XSHELL.PRG steht.

Bewegen Sie den Cursor nach rechts bis auf das Xvon

XSHELL und fügen Sie \SPC\USER\ ein. Bitte beachten
Sie, daß der Editor das Zeichen \ ohne Shift auf die
> -Taste auflegt. Tragen Sie vor
\SPC\USER\XSHELL.PRG den Namen des Laufwerks

ein, auf dem der Ordner \SPC abliegt, also z.B.: A:, B:

oder eine der Harddisk-Partitions.

Installation SPC-MODULA-2 V1.4

Wenn Sie absolut sicher sind, daß Sie alles richtig ge-
macht haben, dann verlassen Sie den Editor mit "9.

i> Falls Sie Zweifel haben, verlassen Sie den Editor mit

Sars #15 ohne die Datei zurückzuschreiben. In

diesem Fall kommen Sie bitte zu einem späteren
Zeitpunkt auf diesen Abschnitt zurück. Überspringen

Sie den Rest des Abschnittes.

Falls Sie DESKTOP.INF erfolgreich gehackt haben,
booten Sie Ihr System und Öffnen Sie wieder den Ord-
ner \USER. Löschen Sie die Datei XSHELL.PRG und

öffnen Sie (durch Doppelclick) PROFILE.CNF. In der

obersten Zeile ihres Bildschirmes sollte nun der Name

\SPC\USER\XSHELL.PRG erscheinen. Nach einiger Zeit

muß sich die xShell melden. Sie haben nun
XSHELL.PRG so montiert, daß sie die Datei nur noch
einmal auf ihrer Diskette halten müssen. In allen wei-

teren Ordnern, in denen Sie eigenständige Projekte

abwickeln wollen, brauchen Sie nur noch die Datei

PROFILE.CNF. Die Bedeutung dieser Datei lernen Sie

in einem späteren Kapitel.

Don’t Panic!

Anmeldung war

erfolgreich

SPC-MODULA-2 V1.4 Installation

weitere

Schritte

ein Arbeits-Directory

einrichten

SPC MODULA-2
starten

Richten Sie nun einen Ordner außerhalb des Ordners
\SPC ein, auf dem Sie ihre ersten Programme entwick-

ein. Nennen Sie den Ordner vorläufig einfach \WORK.
Sie können später weitere Ordner nach dem gleichen
Muster anlegen, um ihre Arbeiten zu strukturieren.

Kopieren Sie aus dem Ordner \SPC\USER die Datei

PROFILE.CNF. Falls Sie XSHELL.PRG wie oben be-

schrieben als Anwendung montiert haben, sind Sie nun

fertig. Andernfalls müssen Sie noch XSHELL.PRG auf
den Ordner \WORK kopieren.

Falls XSHELL.PRG angemeldet ist, können Sie SPC-
MODULA-2 nun durch Doppel-Klicken von PRO-
FILE.CNF starten. Wenn Sie XSHELL.PRG nicht an-

gemeldet haben, dann starten Sie SPC MODULA-2

vorerst durch Klicken von .PRG. Sie können dann spä-

ter die Anmeldung durchführen, um nicht in jedem
Ihrer Ordner immer SHELL.PRG halten zu müssen.

1-10 Installation SPC-MODULA-2 V1.4

Einführung in SPC
MODULA-2

Das folgende Kapitel erläutert die besonderen Merk-

male von MODULA-2 als Programmiersprache sowie

die von SPC MODULA-2 als Sprachsystem.

Die Programmiersprache MODULA-2 ist der Nachfolger

von PASCAL. Beide Sprachen wurden von N.Wirth an
der ETH Zürich entwickelt. Gegenüber PASCAL zeich-

net sich MODULA-2 durch Verbesserungen aus, die 4

Kategorien zugeordnet werden können:

QO Modulkonzept

oa maschinen- bzw. systemnahe Elemente

O Prozedurtyp

O syntaktische Uberarbeitungen

Die Sprachdefinition von MODULA-2 wird derzeit durch
Wirth’s Buch "Programming in MODULA-2" gegeben.

Allerdings bleiben einige nicht unwesentliche Details

ungeklärt, so daß sich verschiedene Implemen-

tierungen der Sprache durchaus unterscheiden können.

Da größten Unterschiede ergeben sich jedoch durch

den Umfang und die Schnittstellen der zum Sprach- .
system gehörenden Standard-Bibliotheken.

Die international Standardisierungs-Organisation ISO

befaßt sich zur Zeit mit der Normung von MODULA-2.

Es wird damit gerechnet, daß die Norm Ende 1989

vorliegt. SPC MODULA-2 wird dann natürlich der ge-
normten Sprachdefinition entsprechen.

Kapitel 2

Übersicht

Unterschiede

gegenüber PASCAL

Unterschiede von

MODULA-2

Implementierungen

Normung von

MODULA-2

SPC MODULA-2 V1.4 Einführung

Modul-
Konzept

Schnittstelle und
Implementierung

Reduktion der
Programm-

komplexität

Das Modulkonzept ist die wichtigste Verbesserung von

MODULA-2 gegenüber seinem Vorgänger PASCAL.
Erst durch ein Modulkonzept wird eine Sprache für
große Softwareprojekte brauchbar. Das Modulkonzept

ermöglicht es nämlich, Schnittstellen zwischen ver-
schiedenen Systemteilen festzuschreiben, und ihre

Einhaltung durch den Compiler bzw. den Lader prüfen

zu lassen. Dadurch: können mehrere Entwickler an

einem großen System arbeiten. Jeder Entwickler er-

stellt und testet einen, durch klare Schnittstellen be-

schriebenen Modul (oder mehrere). Die Herstellung

eines Moduls bezeichnet man als seine Implemen-

tierung - im Gegensatz zu seiner Schnittstelle, seiner
Definition. |

Wie ein Modul implementiert ist, d.h. wie er die von

der Schnittstelle geforderte Leistung erbringt, interes-
siert i.a. außerhalb des Moduls nicht, da der Modul
durch seine Schnittstelle ausreichend beschrieben ist.

Es liegt also nahe, die Beschreibung der Schnittstelle

von der Implementierung zu trennen. Die Schnittstelle

bezeichnet man in MODULA-2 als einen DEFINITION

MODULE. Die Implementierung heißt IMPLEMENTA-
TION MODULE. Beide Teile werden getrennt übersetzt.
Der DEFINITION MODULE kann insbesondere schon
übersetzt werden, ohne daß die Implementierung steht.
Mehrere Entwickler können also mit ihrer Arbeit begin-

nen, sobald die Schnittstellen der zu realisierenden
Moduln definiert sind. In großen Projekten ist dies ein
wichtiger Faktor.

Aber auch, wenn man alleine an einem Softwaresystem

arbeitet, ist die Modularisierung wichtig. Die

Schnittstelle eines Moduls ist nämlich wesentlich weni-

ger komplex als seine Implementierung. Andererseits

beinhaltet sie alles wesentliche eines Moduls, nämlich

seine Leistungsbeschreibung. Ein größeres System

wird deshalb leichter durchschaubar und besser wart-

bar. Da alle Teile einzeln übersetzt werden können,

Einführung SPC MODULA-2 V1.4

sind alle Ladezeiten kurzer, der Editierzyklus also

kurzer.

Last not least ist natürlich anzumerken, daß bei geeig-

neter Modularisierung Softwarebausteine (oder auch

Software-Chips) entstehen, die in anderen Projekten
wieder verwendet werden können. Der Festlegung von

Modulschnittstellen kommt deshalb besondere Bedeu-

tung zu, und Sie sollten sich niemals scheuen, eine für

ungünstig befundene Schnittstelle zu überarbeiten,
auch wenn dies mit Arbeit verbunden ist, die sich für

den Moment nicht auszuzahlen scheint.

Beispiele für wiederverwendbare Softwarebausteine fin-

den sich in der MODULA-2 Standardbibliothek. Diese

Moduln werden von den Werkzeugen des Sprach-

systems verwendet, stehen aber auch den Anwen-

dungsprogrammen zur Verfügung. Die Standard-

bibliothek hat ihren Namen daher, daß sie Dienste be-
reitstellt, die standardmäßig in allen MODULA-2 Imple-
mentierungen angeboten werden sollen. Programme,

die nur solche Dienste verwenden, sind dann offen-
sichtlich portabel, d.h. sie können leicht von einer

MODULA-2 Implementierung auf eine andere übertra-
gen werden. Für fast jeden professionellen Soft-

wareentwickler ist dies eine wichtige Eigenschaft, denn

ein Programm, das auf vielen Systemen angeboten

werden kann, ist bestimmt mehr wert, als eines, das

nur für eine einzige Maschine zu haben ist.

Programme, die nicht portabel sind, nennt man

systemabhängig, denn sie verwenden Dienste, die nur

auf dem betreffenden System zur Verfügung stehen.
Solche Dienste werden von den Moduln der System-

bibliothek zur Verfügung gestellt. Auf dem ATARI ST
z.B. enthält sie die Moduln zur direkten Ansprache des

GEMDOS, des AES und des VDI. Programme, die
diese Moduln verwenden, also auf ihre Schnittstellen

Bezug nehmen, sind nicht ohne weiteres auf andere
Rechner übertragbar. Da ein Programm i.a. in mehrere

Moduln zerfällt, muß man "derartige Betrachtungen

wiederverwendbare

Softwarebausteine

Standardbibliothek

systemabhängige

Moduln

SPC MODULA-2 V1.4 Einführung

Systemabhängig-

keiten isolieren

leider kein

Bibliotheksstandard

systemnahe
Elemente

eigentlich auf die einzelnen -Moduln anwenden. Man

muß deshalb auch nicht gleich das Kind mit dem Bade

ausschütten, wenn man einen systemabhängigen

Modul verwenden will. Vielmehr wird man versuchen,

die Systemabhängigkeiten in einen oder wenige

Moduln zu konzentrieren, sodaß im Falle eines Falles

nur diese wenigen Moduln anzupassen sind.

Wenn Sie nun die Dienste der Standardbibliothek be-

trachten, dann werden Sie feststellen, daß diese bei

verschiedenen MODULA-2 Implementierungen gering-
fügige Unterschiede aufweisen. Das liegt daran, dal

MODULA-2 momentan noch nicht standardisiert ist.

Erst wenn der MODULA-2 Standard zumindest als
endgültiger Normvorschlag vorliegt, kann man davon

ausgehen, daß alle MODULA-2 Implementierungen die

gleichen Standard-Bibliotheken bereitstellen.

Systemabhängige Programme sind nun nicht Zwangs-

laufig zweitklassige Programme. Vielmehr muß es auch

systemabhängige Programme geben, man denke nur.

an Betriebssysteme, grafische Subsysteme, etc. Sie
sollten nur immer darauf achten, nicht ein ganzes

großes Programm durchweg systemabhängig zu

machen. Wenn Sie nun aber systemabhängige Moduln
schreiben, dann werden Sie Elemente zur maschinen-

nahen Programmierung benötigen. Dazu gehört z.B.

der Zugriff auf Registerinhalte, der direkte Zugriff auf

bestimmte Speicherstellen und überhaupt das Vorhan-

densein von Datentypen wie Adressen, Worten, Bytes.

Diese Elemente haben ebenso wie das Modulkonzept

in PASCAL vollkommen gefehlt, denn PASCAL war ur-

sprünglich für die Ausbildung von Studenten der Infor-

matik entwickelt worden. Für Ausbildungsaufgaben

hatte man solche maschinennahen Elemente nicht für
nötig befunden. MODULA-2 trägt auch hierin moder-

nen Anforderungen Rechnung und rundet die

Einführung SPC MODULA-2 V1.4

Leistungsfähigkeit der Sprache nach unten ab (Anm.:
unten ist bei einem Softwaresystem immer da, wo die

Maschine ist, oben ist da wo die Anwendung ist).

Die Einführung eines Prozedurtyps erlaubt es, Pro-

zedurvariablen zu vereinbaren und Prozeduren an sie

zuzuweisen. Die Prozedurvariablen können über Para-

meterschnittstellen transportiert und auch sonst wir alle

anderen Variablen behandelt werden. Mit Prozedur-

variablen sind Konstruktionen realisierbar, die in PAS-

CAL oder anderen Sprachen sehr viel umständlicher zu

programmieren wären. |

Abgesehen von dem Modulkonzept, dem Prozedurtyp

und den maschinennahen Elementen unterscheidet

sich MODULA-2 von PASCAL noch durch einige syn-
taktische Änderungen, die hauptsächlich auf Straf-

fungen der PASCAL-Syntax hinauslaufen. Die Kom-
paktheit von PASCAL ist dabei erhalten geblieben.
Kompaktheit einer Programmiersprache heißt, daß sie

ihre ganze Leistungsfähigkeit über einige wenige Kon-

zepte bereitstellt. Das hat den Vorteil, daß Compiler für
die Sprache leichter zu implementieren sind, und sich
die Sprache deshalb schnell verbreiten kann. Ein wei-
terer Aspekt der Kompaktheit ist, daß die Sprache
leichter zu erlernen ist. Wie schon PASCAL hat N.Wirth

auch die Sprache MODULA-2 in einem kleinen Buch

beschrieben (“Programming in MODULA-2, Springer).

Die formale Sprachbeschreibung umfaßt darin nur 60

‘ Seiten, weitere 140 Seiten sind einer weniger formalen

Einführung und Beispielen gewidmet.

Prozedurtyp

syntaktische

Straffungen

Kompaktheit

SPC MODULA-2 V1.4 Einführung

Zielgruppe
von
MODULA-2

wie Sie anfangen

Zusammenfassend läßt sich über die Sprache

MODULA-2 sagen:

O jeder PASCAL-Programmierer kann an einem langen
Wochenende MODULA-2 erlernen.

o jeder Programmierneuling findet in MODULA-2 eine

Sprache, die wegen ihrer Kompaktheit und strukturel-
len Klarheit gut als Lernsprache geeignet ist. SPC
MODULA-2 enthält zudem einen vollständigen Pro-
grammierkurs

Q gerade für große Programmsysteme ist MODULA-2

gut geeignet, da das Modulkonzept zu besser

strukturierten Programmen führt. |

Q MODULA-2 wird keine Dialekte wie PASCAL nötig

haben, da alle Erweiterungen als Modulschnittstellen

formuliert werden können.

O Nach der Normung von MODULA-2 wird die Erstel-

lung portabler Programme optimal unterstützt.

O Selbst für systemnahe Programme ist MODULA-2

geeignet, da es uber maschinennahe Elemente

verfügt.

Wenn Sie noch keine Programmiererfahrung besitzen,
dann werden Sie zunächst kleine Programme schrei-

ben, und keine maschinennahen Sprachelemente ver-

wenden. Sie kommen dann meist mit den Diensten der
Standard-Bibliothek aus. In einem späteren Kapitel

werden Sie Gelegenheit haben, ein kleines Programm

unter Anleitung zu erstellen. Zunächst sollten Sie sich

mit den Werkzeugen des Sprachsystems vertraut

machen. Dazu sind einige Bemerkungen zum Aufbau

des SPC MODULA-2 Systems erforderlich.

Einführung SPC MODULA-2 V1.4

Die folgenden Abschnitte beschreiben den Aufbau und

die Besonderheiten des SPC MODULA-2 Sprach-

systems gegenüber anderen Implementierungen von

MODULA-2.

Normalerweise müssen Programmteile, die einzeln

übersetzt wurden, vor der Ausführung zu einem Ge-

samtprogramm gebunden werden. Dazu wird ein

Binder (engl. Linker) benützt, der als Ausgabe eine

vom Betriebssystem ladbare Datei enthält. Der Binde-

vorgang fügt also Ihre Programmteile mit verschie-

denen Bibliotheks-Moduln zusammen. Je nach Größe

des Programms kann das Binden durchaus 5-10

Minuten in Anspruch nehmen.

Bei SPC MODULA-2 können Sie das Binden verges-

sen. SPC MODULA-2 führt ein sogenanntes dynami-
sches Binden während des Ladens von Moduln aus.

Dazu hat es einen speziellen Lader. Dieser stellt die

Verbindungen zwischen den Moduln dynamisch (d.h.

beim Laden) her, und zwar viel schneller, als das ein

normaler Binder kann. Der Lader ist ein normaler

Modul, der von jedem anderen Modul benutzt werden

kann. Sie können sich also auch leicht selbst eine

Shell schreiben, oder in ihren Programmen den Lader

benutzen, um nicht immer das ganze Programm im

Hauptspeicher halten zu müssen.

Natürlich enthält SPC MODULA-2 auch einen konven-

tionellen Binder, der aus Ihren Programmen eigenstän-

dige, unter GEM ausführbare Programme macht. Die-

sen benutzen Sie aber erst am Ende Ihrer Entwicklung,

und zwar ohne daß dadurch Änderungen in Ihrem Pro-
gramm nötig werden.

Da ein Programm normalerweise aus vielen Moduln

besteht, muß der Lader bzw. der Linker i.a. mehrere

Dateien laden. Die Dateien, werden in verschiedenen

Ordnern gesucht. Die Aufteilung aller vorhandenen
Moduln in Ordner schafft eine Struktur innerhalb der

Moduln. Im Lieferumfang sind die Moduln auf fünf

Features von

SPC

MODULA-2

Aufgaben eines

Linkers

dynamisches Binden

der dynamisch

bindende Lader

der Linker

den Modulvorrat

strukturieren

SPC MODULA-2 V1.4 Einführung

die STDLIB

InOut

Terminal

Ordner verteilt:

O USER in diesem Ordner liegen zwei kleine Testpro-

gramme, die Sie schon zur Installation benützt haben.

o SYSLIB enthält alle die Moduln, deren Schnittstellen

systemabhangig sind.

D SPCLIB enthält Moduln, die sie nur bei SPC
MODULA-2 finden werden, deren Schnittstellen
jedoch nicht systemabhängig sind.

oa STDLIB enthält die Moduln der MODULA-2

Standardbibliotheken.

ao UTILITY enthält die Hilfsprogramme des Sprach-

systems wie Editor, Compiler, Debugger.

Für Ihre ersten Programme sind die Moduln der

Standardbibliothek STDLIB von Bedeutung. Sie enthal-

ten alles, was man braucht, um “konventionelle” Pro-

gramme zu schreiben. Die Leistungen der Moduln der
STDLIB sollen kurz umrissen werden. Eine ausführliche
Beschreibung erfolgt an anderer Stelle.

InOut unterstützt die formattierte Ein- und Ausgabe auf

dem Standardein- bzw. -ausgabegerät des Sprach-

systems. Dieses ist normalerweise das Terminal.

Jedoch können Eingabe und Ausgabe auf andere Ge-

rate (Dateien) umgelegt werden. InOut ersetzt die aus

PASCAL bekannten Standarddateien INPUT und OUT-

PUT.

Die elementare Ansprache des interaktiven Terminals

wird vom Modul Terminal geleistet. InOut verwendet
normalerweise diesen Modul, um Zeichen auf das Ter-

minal auszugeben, oder von diesem (bzw. seiner

Tastatur) einzulesen. Im Gegensatz zu InOut bietet
Terminal nur rohe Funktionalität und keine Forma-

tierungsfunktionen.

Einführung SPC MODULA-2 V1.4

Ein ByteStream ist ein Strom von Bytes, der vom Pro-
gramm zu einem Gerät (oder Datei) fließt, oder um-

gekehrt. Die innere Struktur eines Byte Stream ist nur

dem Anwendungsprogramm bekannt. Der Modul der

STDLIB stellt -neben Öffnen und Schließen- nur
Funktionen zum Lesen und Schreiben von Bytes und

Worten bereit. Ein ByteStream kann von und zum Ter-

minal, zum Drucker und von und zu Dateien gehen.

Das Pendant zu ByteStream ist TextStream. Ein Text-
Stream hat eine innere Struktur. Er enthält druckbare
Zeichen, die als Strings, Zahlen oder nur Zeichen for-

matiert sein können. Darüberhinaus enthält ein Text-

Stream Zeilenende-Zeichen, die von TextStreams auf

das jeweilige Gerät abgebildet werden. InOut ist über

zwei TextStreams (INPUT und OUTPUT) realisiert.

Einen direkteren Durchgriff auf das Dateiensystem er-

laubt der Modul FileSystem. Eine Datei von FileSystem
ist im Prinzip ein ByteStream. Filesystem enthält aus

den Funktionen eines ByteStream solche, um Dateien

umzubennen oder zu löschen.

Die Schnittstelle von Filesystem ist von der Directory-
Struktur des Betriebs unabhängig, indem der Da-

teiname ohne weitere Interpretation an das Betriebs-

system durchgereicht wird. Viele Programme benötigen

jedoch Operationen auf Directories (Ordnern). Sie wer-

den vom Modul Directories bereitgestellt.

Wie für das Terminal gibt es auch für den Drucker eine

elementare Schnittstelle. Die in SPC MODULA-2 an-

gebotene Schnittstelle geht allerdings über das Ele-
 mentare weit hinaus. Sie können die Druckeranpassung

von !stWord benutzen, um Ihren Drucker optimal an-

zusteuern.

Die Darstellung von Uhrzeit und Datum ist auf ver-
schiedenen Rechnern unterschiedlich. Clock verdeckt

diese Unterschiede und konvertiert die system-

abhängige Darstellung in eine systemunabhängige. Der

ByteStreams

TextStreams

FileSystem

HFS

(Hierarchical File
System)

Printer

Clock

SPC MODULA-2 V1.4 Einführung

MathLib und

LMathLib

Strings

NumberConversions

RealConversions

Storage

Coroutines

Modul enthalt Funktionen zum Abfragen und Setzen
der Systemzeit.

MODULA-2 enthält keine eingebauten (intrinsic) Funk-
tionen für die höheren mathematischen Funktionen.

Diese werdem vom Modul MathLib bereitgestellt. Die

Floating-Point-Arithmetik in SPC MODULA-2 folgt dem

IEEE Floatingpoint-Standard. Alle Operatoren werden

in Single und als Double Precision bereitgestellt.

Die Verarbeitung von Zeichenketten ist in MODULA-2

ebenfalls auf einen Modul der Standardbibliothek ver-

lagert worden. Strings in MODULA-2 sind beliebige
ARRAY OF CHAR. Das Ende eines Strings wird immer
durch ein NUL-Zeichen (0C) angegeben.

Das formatierten von Zahlen zu Strings und das Deko-

dieren von Strings zu Zahlen werden durch den Modul
NumberConversions bereitgestellt.

Die Formattierung von Gleitkomma-Zahlen wird

üblicherweise getrennt von NumberConversions bereit-

gestellt um nicht jedes Programm mit den Moduln der

Floarting-Point-Arithmetik zu belasten..

Ähnlich wie in PASCAL ist es auch in MODULA-2

möglich, dynamische Datenstrukturen auf einem

sogenannten Heap anzulegen. Die Funktionen zum Er-
zeugen und Löschen solcher Datenstrukturen ist in

MODULA-2 auf den Standardmodul Storage ausgela-

gert worden.

MODULA-2 enthält ein Konzept, welches in einge-
schränktem Maße nebenläufige Prozesse zu program-

mieren erlaubt. Diese Prozesse werden Koroutinen ge-

nannt. Gegenüber konkurrierenden Prozessen von

Multitask-Betriebssystemen können Koroutinen nicht

vom System unterbrochen werden, um eine andere

Koroutine fortzuführen (z.B. nach Ablauf einer Zeit-

scheibe). Koroutinen geben immer von sich aus die

Kontrolle an eine andere Koroutine weiter. Das Korou-

tinenkonzept war zunächst integraler Bestandteil der

2-10 Einführung SPC MODULA-2 V1.4

Sprache. Es wurde jedoch an der ETH Zürich erkannt,

daß Koroutinen auch über eine Modulschnittstelle rea-

lisierbar sind, was den Vorteil hat, daß der Compiler

weiter entlastet wird. SPC MODULA-2 folgt diesem
Trend und stellt die Funktionalität von Koroutinen über

den Modul Coroutines bereit.

Zwischen den durch den (de facto) MODULA-2

Standard definierten Moduln und den systemabhängi-

gen Moduln gibt es eine weitere Schicht von Moduln,

die allerdings in anderen MODULA-2 Implemen-

tierungen üblicherweise nicht bereitgestellt werden. Sie

sind deshalb SPC-spezifisch und folgerichtig in der
SPCLIB untergebracht.

Wer mit Koroutinen nebenläufige Prozesse realisieren

will, wird eine Funktionalität benötigen, die über den

elementaren Umfang von Coroutines hinausgeht. Dazu
gehören z.B. Warteschlangen und Semaphore.

SPC MODULA-2 stellt sogenannte Environment-Varia-

blen zur Verfügung. Über sie werden z.B. Optionen

gesetzt oder Grundeinstellungen festgelegt. Alle

Environment-Variablen werden bei Verlassen des

Systems auf eine Datei PROFILE.CNF gerettet und
beim nächsten Start wieder geladen.

Die Speicherung und Verwaltung von Textdateien wird
oft gebraucht und verursacht gewöhnlich viel Program-

mier- und Testaufwand. SPC MODULA-2 stellt
standardmäßig den Modul TextFiles bereit, der solche

Aufgaben übernimmt. _

Die Leistungen der Standardmoduln zur Stringverarbei-

tung sind mitunter nicht ausreichend. SPC MODULA.2
stellt eine erweiterte String bibliothek (eXtendend

Strings) bereit, deren Funktionen flexibler und mächt-

iger sind als die der Standardmoduin.

die SPCLIB

Process

Envionment

TextFiles

XStr

SPC MODULA-2 V1.4 Einfuhrung 2-11

SSWIS

CmdlLine

System

Moderne, interaktive Systeme benützen fensterorien—

tierte Bedieneroberflächen, die normalerweise grafisch

orientiert sind, und mit der Maus bedient werden. GEM

ist nur ein Beispiel. X-Windows ist ein System, das in
Zukunft auf UNIX-Systemen anzutreffen sein wird.

Programme, die solche Fenstersysteme verwenden,

sind i.a. von dem jeweiligen System abhängig und

schlecht portierbar. Für aufwendige Utilities ist dies ein

schwerer Nachteil. SSWIS steht für Small Systems

Windowing Standard und soll eine systemunabhängige

Schnittstelle zu einem Fenstersystem bereitstellen, die

in Zukunft auch auf anderen Systemen verfügbar sein

wird. Den Konzepten und der Programmierung von

SSWIS ist ein eigenes Kapitel gewidmet.

Alle Utilities innerhalb des SPC MODULA-2 Sprach-

systems benutzen eine einheitlich aufgebaute Kom-

mandozeile zur Parameterübergabe. Die Übergabe und

das Interpretieren der Kommandozeile wird vom Modul

CmdlLine einheitlich unterstützt.

Die Implementierung von SPC MODULA-2, insbeson-

dere die Organisation von Moduln im Hauptspeicher,

aber auch viele andere Details, sind im Modul System
implementiert. Bitte verwechseln Sie nicht System mit
dem Pseudo-Modul SYSTEM. Der Zugriff auf diese

Strukturen wird teilweise für andere Modul bereit-
gestellt. Z.B. der Lader oder der Debugger benützen

diese Funktionen.

2-12 Einführung SPC MODULA-2 V1.4

Die genannten obengenannten Moduln basieren natür-

lich auf systemabhängigen Moduln. Z.B. wird Terminal
auf ein GEM-Window abgebildet. Alle Ein-Ausgabe-

Funktionen werden auf GEMDOS-Funktionen zurück-

geführt, etc. Diese systemabhängigen Moduln sind in

dem Ordner SYSLIB zusammengefaßt. Sie sollten von

diesem Moduln sparsamen Gebrauch machen, da Ihre

Programme damit systemabhängig werden. Die Moduln

werden hier nicht alle im Einzelnen aufgeführt. Es han-

delt sich um

Q Die Schnittstellen zum GEM-AES

Die Schnittstellen zum GEM-VDI

Die Schnittstelle zu den LineA-Funktionen

Die Schnittstelle zum GEMDOS

Die Schnittstelle zum BIOS

Die SChnittstelle zum XBIOS O
O

O
D
D

Es soll darauf hingewiesen werden, daß SPC

MODULA-2 eine elegante Möglichkeit enthält, Be-

triebssystemfunktionen über Traps anzusteuern

(sogenannte CODE-Prozeduren). Es ist deshalb über-

haupt kein Problem, eigene Bindings -so heißen die

Schnittstellen zu den Systemfunktionen- zu erstellen.

die SYSLIB

alle Bindings

verfügbar

eigene Bindings

erstellen

SPC MODULA-2 V1.4 Einführung 2-13

Diese Seite wurde aus

satztechnischen Gründen frei

gelassen.

2 — 14 Einführung SPC MODULA-2 V1.4

Die xShell

Die Bedienung des SPC MODULA-2 Sprachsystems
erfolgt ab Version 1.4 über die xShell. Die xShell ist eine
grafische, auf SSWIiS basierende Shell. Sie wurde
entwickelt, um die Softwareentwicklung mit SPC
MODULA-2 optimal zu unterstützen.

Während der Entwicklung von Software benutzt der
Entwickler i.a. mehrere Werkzeuge und Hilfsprogramme,
um Dateien verschiedenen Typs in bestimmter Weise zu

bearbeiten. Es gibt folglich zwei Kategorien von Objek-
ten, die während der Entwicklung von Interesse sind:
Dateien und Werkzeuge.

Bei genauerer Betrachtung lassen sich die Werkzeuge

noch untergliedern in die primären Sprachwerkzeuge,
Hilfsprogramme und Jobs. Alle zusammen werden im
folgenden Werkzeuge genannt und es wird nicht weiter
unterschieden, um welchen Typ es sich im einzelnen

handelt. Dies ist auf der Ebene der Benutzung von

Werkzeugen über weite Strecken auch uninteressant.

Die Shell ist ein SPC MODULA-2 Programm, welches
direkt unter GEM ablauffähig ist. Alle Werkzeuge sind
SPC MODULA-2 Programme, die vom dynamischen
Lader hinzugeladen werden. Die Shell verwendet die
grafische Oberfläche von SSWiS und bietet damit die
Möglichkeit, mehrere Werkzeuge quasiparallel zu betrei—

ben, indem einfach zwischen den zu den Werkzeugen

gehörenden Fenstern hin und her gewechselt wird. Für

den Benutzer entsteht dadurch. der Eindruck eines
Multitasking-Systems, was natürlich auf GEMDOS nicht

realisierbar ist. Für die Softwareentwicklung bedeutet es

jedoch einen großen Fortschritt, wenn mehrere Werk-

zeuge nebeneinander benutzbar sind, ohne daß man

Kapitel 3

Übersicht

Design-Idee

Dateien, Werkzeuge,

Utilities und Jobs

Pseudo-
Multitasking

SPC MODULA-2 V1.4 Die xShell

eigene Utilities
einbinden

Eigenschaften von

SSWis

Einführung

Objekte

unmittelbare

Umgebung

mittelbare Um-

gebung

jeweils immmer erst eine Utility verlassen muß, bevor
man die nächste starten kann.

Es ist ohne weiteres möglich, weitere Utilities zu
entwickeln, die an diesem Pseudo-Multitasking teilneh-
men. Die einzige Bedingung ist, daß die Utilities in SPC
MODULA-2 geschrieben sind und SSWIiS benützen.
SSWIS ist nicht auf die Fensteranzahl von GEM limitiert,
sondern verwaltet bis zu 32 Fenster. Da aber SSWiS auf
GEM aufsetzt, können maximal 6 Fenster wirklich
geöffnet sein, die restlichen werden als Icons auf dem

Desktop dargestellt und können jederzeit geöffnet wer-

den. Weitere Einzelheiten über die Bedienung von

SSWIiS Applikationen werden im Kapitel uber SSWiS
behandelt.

Die Objekte der xShell werden in einem Fenster
dargestellt. Potentiell hat der Entwickler eine (fast)
beliebige Menge von Objekten im Zugriff. Insbesondere
die Anzahl der Dateien ist mitunter sehr groß. In der

praktischen Arbeit kommt man jedoch mit einer wesent-
lich geringerern Zahl aus; dafür möchte man auf diese

wenigen Dateien und Werkzeuge ohne große Umstände

zugreifen können. Es gibt also eine kleine, überschau-

bare Menge von Objekten, die in der augenblicklichen

Entwicklungsphase von besonderer Bedeutung sind.

Diese sammeln sich im Laufe der Arbeit im Fenster der
xShell an und verbleiben dort, bis sie durch wichtigere
Objekte wieder verdrängt werden. Die Objekte, die sich
im xShell Fenster befinden werden im weiteren Verlauf

die (Objekte der) unmittelbaren Umgebung genannt. Alle

anderen Objekte, die natürlich auch zugreifbar sind,
gehören zur mittelbaren Umgebung.

Objekte der mittelbaren Umgebung wechseln in die

unmittelbare Umgebung über, sobald sie erstmals ver-

Die xShell SPC MODULA-2 V1.4

wendet werden. Sie verbleiben in der unmittelbaren
Umgebung, bis sie entweder zugunsten anderer Objekte

verdrängt werden müssen, oder bis sie vom Benutzer
explizit entfernt werden. Selbst wenn die xShell verlas-
sen wird, um zum GEM Desktop zurückzukehren,
werden die (Namen der) Objekte der unmittelbaren

Umgebung gespeichert. Bei einem neuerlichen Start
wird die unmittelbare Umgebung wieder hergestellt.

Wie werden nun die Objekte der unmittelbaren Um-
gebung benutzt? Die Werkzeuge, Utilities und Jobs
werden gestartet, indem man sie mit der Maus anklickt.

die unmittelbare

Umgebung aufbauen

Objekte benutzen

a terninal

Ein gestartetes Werkzeug wird maskiert, da es nicht
noch einmal gestartet werden kann.

Werkzeuge benötigen i.a. Argumente, um sinnvolle
Arbeit zu verrichten. Normalerweise sind Dateien Ge-
genstand der Arbeit eines Werkzeuges. Ob ein Werk-
zeug Dateien als Argumente akzeptiert bzw. benötigt,

kann eingestellt werden. Es soll vorerst davon aus-
gegangen werden, daß Argumente verlangt werden.

Argumente von

Werkzeugen

SPC MODULA-2 V1.4 Die xShell

Dateien selektieren

mehrere Argumente

wenn keine Datei

selektiert ist

standardisierte

Kommandozeile

Wenn eine Datei der unmittelbaren Umgebung selektiert

ist, dann wird der Name der Datei als Argument an das

aufgerufene Werkzeug übergeben. Selektierte Dateien

werden invers dargestellt. Eine Datei kann selektiert
werden, indem sie mit der Maus angeklickt wird. Es
können auch mehrere Dateien selektiert werden, dann

werden sie alle in der Reihenfolge ihrer Selektion an das

Werkzeug übergeben. Mehrere Dateien werden selek-
tiert, indem während der Selektion die SHIFT Taste
gedrückt wird. Auf diese Weise wird eine sogenannte

erweiterte Selektion aufgebaut. Wird eine bereits selek-

tierte Datei mit gedrückter SFIFT Taste angeklickt, dann
wird sie aus der Selektion wieder entfernt. Natürlich
hängt es von dem aufgerufenen Werkzeug ab, ob es

Argumente akzeptiert. Auch der Typ und die Zahl der
zulässigen Argumente hängt von dem jeweiligen Werk—
zeug ab.

Wenn keine Datei der unmittelbaren Umgebung selek-

tiert ist, dann bietet die xShell (vorausgesetzt es werden
Argumente verlangt) eine Datei-Auswahl-Box an. Der

Benutzer kann dann eine beliebige Datei aus der
mittelbaren Umgebung auswählen. Die ausgewählte

Datei wird alsdann in die unmittelbare Umgebung geholt
und bis auf weiteres im Fenster der xShell dargestellt.
Gleichzeitig wird die Datei selektiert und bleibt vorerst
selektiert. Die letzte Dateiauswahl wird gespeichert und

bei einer erneuten Dateiauswahl wieder als Vorschlags-

wert verwendet. .

Die Werkzeuge werden mit einer standardisierten Kom-

mandozeile aufgerufen. Sie enthält immer den Namen

des Werkzeuges. Darüberhinaus können mehrerere Da-

teinamen als Argumente vertreten sein. Zuletzt können

noch Optionen angegeben werden. Das Format einer

Kommandozeile sieht damit so aus:

<Kommandozeile>::= <Werkzeugname> {<Argument>} {<Option>}
<Argunent> r= ' ' <Dateiname>
<Option> i= ' ' t-' <Ontionsbuchstabe> [<Zeichenkette>]

Die xShell SPC MODULA-2 V1.4

Natürlich bestimmt das Werkzeug selbst, ob und wieviele
Argumente und Optionen es akzeptiert, und welche

Bedeutung diesen jeweils zukommt. Das Format der

jeweiligen Kommandozeile ist deshalb bei den Werkzeu-
gen und Utilities selbst dokumentiert.

Die Dateinamen, welche als Argumente übergeben

werden, werden von der xShell aus der evtl. erweiterten

Selektion bestimmt. Die Optionen werden vom Bediener

eingestellt und bleiben i.a. während der Arbeit fest. Dazu

wird das Icon, welches ein Werkzeug repräsentiert, bei

gedrückter ALTERNATE-Taste durch Doppelklick ge-

öffnet. Es erscheint ein Formular, in dem zunächst eine
Zeichenkette angegeben werden kann. Diese Zeichen-

kette bildet später des Ende der Kommandozeile, d.h.

sie enthält normalerweise die letzten Argumente und die

Optionen, oder sie ist leer.

Redefine tool/utility options
“Vv “Tr “ol

tm itt

Weiterhin kann in dem Formular eingestellt werden, ob

das Werkzeug Dateinamen als Argumente akzeptiert.
Falls die Option gewählt wird, übergibt die xShell auf
jeden Fall mindestens einen Dateinamen als Argument.

Eine weitere Option des Formulars erlaubt einzustellen,
ob das Werkzeug im Speicher gehalten werden soll. Für
häufig benötigte Werkzeuge bietet sich das an, um den
Startvorgang zu beschleunigen.

Die komplette, von xShell gebildete Komamndozeile wird
beim Start eines Werkzeuges in der Meldezeile des
Fensters eingeblendet. Nach Beendigung des Werkzeu-

ges wird in der Meldezeile ein Ergebnis angezeigt. Falls

das Programm nicht gestartet werden konnte, wird eine

Fehlermeldung des Laders ausgegeben.

Optionen

Dateiargumente

konfigurieren

Werkzeug im

Hauptspeicher

halten

Resultate anzeigen

SPC MODULA-2 V1.4 Die xShell

der Modul CmdLine

Bedienung

Starten

Terminal Fenster

Der Aufruf von Programmen durch eine Kommandozeile

ist unter SPC MODULA-2 Standard. Entsprechend gibt

es einen Modul, der die Behandlung der Standard-
Kommandozeile unterstützt (CmdLine). Obwohl die

Kommandozeile in der xShell praktisch durch Selektieren

von Objekten interaktiv aufgebaut wird, handelt es sich
um eine Kommandozeile, wie man sie schon von den

klassischen, zeilenorientierten Shells her kennt. Für ein

Werkzeug ist es vollkommen unerheblich, wie seine

Kommandozeile entstanden ist. Sie hätte genauso gut

als Text eingelesen werden können. Von dieser

Möglichkeit wird Gebrauch gemacht, wenn mit der Batch
Funkion, die in die xShell integriert ist, automatisierte
Arbeitssequenzen erzeugt werden. -

Nach dieser Einführung in die Ideen und Konzepte der

xShell wird in den folgenden Abschnitten die Bedienung

im Detail erklärt.

Die xShell ist ein SPC MODULA-2 Programm, das mit
dem Linker zu einem unter GEM ablauffähigen Pro-
gramm gemacht wurde (Namesendung .PRG). Das
Programm wird wie üblich vom Desktop aus durch
Anklicken oder Öffnen gestartet. Falls keine Fehler
auftreten, erscheint nach dem Start ein neuer Desktop
mit einer Uhr in der rechten oberen Ecke. Gleichzeitig
wird ein Fenster mit dem Titel Terminal eröffnet. Über
dieses Fenster wird später die Standard-Ein und Aus-
gabe von Programmen abgewickelt (Moduln Terminal

und InOut). Als nächstes Öffnet die xShell ihr eigenes

Fenster mit dem Titel xShell. Für jedes geöffnete Fenster

wurde am linken unteren Bildschirmrand beginnend ein
mit dem Fenstertitel beschrifteter Balken angelegt. Die

Funktion dieser Balken wird in der Beschreibung von

SSWIS erklärt.

Die xShell SPC MODULA-2 V1.4

Wenn soweit alles fehlerfrei abgelaufen ist, dann zeigt

die xShell in ihrem Fenster die unmittelbare Umgebung
an, so wie sie zuletzt verlassen wurde. Falls Sie die
xShell zum ersten Male starten ist eine Voreinstellung

gewählt.

Wenn sich die xShell nicht wie beschrieben starten läßt,

kann dies, insbesondere beim erstmaligen Starten,
mehrere Ursachen haben:

Es ist nicht genügend Hauptspeicher vorhanden Die
xShell wird mit einem 30 Kilobytes großen Stack

geliefert, der der eigentlichen Programmgröße noch

zugeschlagen werden muß. Außerdem wird sofort ein

sogenannter Heap angelegt, der auch nicht kleiner als

20 kBytes sein darf. Falls Sie also vermuten, daß zu
wenig Speicher zur Verfügung steht, entfernen sie

testhalber geladene RAM-Disks und speicherintensive
Accessories. Bedenken Sie auch, was die Programme
benötigen, die im AUTO Ordner gestartet werden. Mit
200 kBytes freien Speichers sollten Sie jedoch keine
Probleme haben, die xShell zu laden.

Die Einstellung der unmittelbaren Umgebung sowie viele

andere Parameter werden unter SPC MODULA-2 als

sogenannte Environment-Variablen gehalten. Sie wer-

den bei Beendigung der Shell auf ein sogenanntes
Profile gerettet und bei einem neuerlichen Start wieder
geladen. Dadurch entfällt das lästige Neueinrichten,

wenn man zwischenzeitig aus irgendwelchen Gründen

zum GEM Desktop zurückkehren mußte. Das Profile mit
dem Namen PROFILE.CNF wird im aktuellen Ordner
gesucht. Falls es da nicht gefunden wurde, wird es im
Wurzelverzeichnis des aktuellen Laufwerks gesucht. Falls

das Profile nicht gefunden wurde, können verschiedene

Einstellungen nicht vorgenommen werden, und es wird

eine Warnmeldung ausgegeben.

Die xShell benützt ein sogenanntes Resource File mit

Namen XSHELL.RSC, das die Grafiken enthält. Diese
Datei wird in dem Ordner \SPC\MISC auf dem Laufwerk

xShell Fenster

wenn Fehler

auftreten

zu wenig freier
Speicher

das Profile wird nicht

gefunden

das RSC File wird
nicht gefunden

SPC MODULA-2 V1.4 Die xShell

erwartet, von dem die xShell geladen wurde. Falls die

Datei dort nicht gefunden wurde, wird ebenfalls eine

Warnmeldung ausgegeben und das Programm terminiert

sofort wieder.

 Werkzeuge werden in der xShell durch Anklicken des

Werkzeuge entsprechenden Icons gestartet. Falls das Werkzeug
starten Datei-Argumente verlangt werden die selektierten Da-

teinamen übergeben, oder es wird durch eine Datei-
Auswahl-Box ein neuer Dateiname erfragt. Dieser wird

dann in die unmittelbare Umgebung übernommen. Die
Bedienung der Datei-Auswahl-Box ist in der zu Ihrem

Computer gehörenden Dokumentation beschrieben. Das

- F a m «9 ‘(aaa = Fr AR
Pa ye _

Compile Link Filer Print Debus

Icon eines gestarteten Werkzeuges wird maskiert, um
wenn keine Datei

° anzudeuten, daß das Werkzeug nicht noch einmal

selektiert ist - gestartet werden kann. Zusammen mit den Argumenten
werden beim Start eines Werkzeuges seine konfigurier—

Optionen ten Optionen übergeben. Die übergebene Kommando-
zeile wird in der Meldezeile des xShell Fensters an-
gezeigt.

Bedienung über Werkzeuge, Utilities und Jobs der unmittelbaren Um-
Menüs gebung können auch über die Pull-Down-Menüs (Tools,

Utilities, Jobs) gestartet werden. Dazu wird einfach das

entsprechende Menü heruntergeklappt und das ge-

wünschte Programm ausgewählt.

Bedienung über Eine letzte Methode gibt es für die Standardwerkzeuge
Tastatur von SPC MODULA-2. Neben dem jeweiligen Icon ist der

Anfangsbuchstabe des Programmnamens angegeben.

Wenn der Buchstabe über die Tastatur eingegeben wird,

wird das dazugehörende Programm gestartet. Dies ist

sicher eine sehr effiziente Methode, die besonders beim

3-8 Die xShell SPC MODULA-2 V1.4

Wechsel zwischen Editor, Compiler und Linker zum
tragen kommt.

Damit nicht genug. Die Vereinfachung für den normalen

Entwicklungszyklus geht noch weiter. Die xShell schlägt
nämlich immer ein Werkzeug zum Aufruf vor. Das Icon
des Default-Werkzeuges ist invers dargestellt. Das

Default-Werkzeug kann durch Eingeben des Leer-

zeichens gestartet werden.

Beim Starten eines Werkzeuges können mehrere Pro-
bleme auftreten, die durch eine entsprechende Meldung

im xShell Fenster angezeigt werden:

Das Programm oder einer der dazu gehörenden Moduln

wurde nicht gefunden. Der Lader, den die xShell zum

Nachladen von Programmen verwendet, sucht zu

ladende Moduln in verschiedenen Ordnern. Der Name
der Datei ergibt sich jeweils aus den ersten 8 Buchsta-

ben des Modulnamens. Die Namensendung ist .OBM.

Die Namen der Ordner, die der Lader durchsucht, sind in

Environment-Variablen gespeichert. Sie werden Lade-

pfade genannt. Weitere Einzelheiten sind im Abschnitt

über den Lader beschrieben. In der Grundeinstellung
sucht der Lader in den Ordnern

on .\ aktueller Ordner \SPC\UTILITY\ Ordner mit SPC
MODULA-2 Werkzeugen

DD \SPC\SYSLIB\ Ordner mit systemabhängigen Moduln

O \SPC\SPCLIB\ Ordner mit systemunabhängigen,

SPC-spezifischen Moduln

a \SPC\STDLIB\ Ordner mit Standard-Moduln

Modulschlüssel sind inkonsistent. MODULA-2 Moduln
beeinhalten einen sogenannten Modulschlüssel, durch

den sichergestellt wird, daß nur solche Moduln mit-

einander geladen werden, deren Schnittstellen vom
Compiler auf Konsistenz überprüft wurden. Stellt der
Lader eine Inkonsistenz fest, dann bricht er den Lade-

vorgang ab und entfernt die bis dahin geladenen Moduln

wieder aus dem Speicher. Mit den gelieferten Moduln

Default-Kommando

Fehler beim Starten
von Werkzeugen

ein Modul kann nicht

gefunden werden

sind die Ladepfade

richtig eingestellt

inkonsistente

Modulschlüssel

SPC MODULA-2 V1.4 Die xShell

Lesefehler und

defekte Dateien

zu wenig freier

Speicher

zu viele Programme

gestartet

Fehler im gestarteten

Programm

sollten solche Fehler nicht auftreten. Bedenken Sie

jedoch, daß sie Ihre eigenen Moduln neu übersetzen

müssen, wenn sie eine neue Version von SPC

MODULA-2 eingespielt haben.

Während des Ladens eines Programmes können natür-

lich Lesefehler durch defekte Disketten oder Dateien

auftreten. In einem solchen Fall sollten Sie der Ursache

zunächst auf den Grund gehen, bevor Sie weiterarbeiten.
Meist deutet sich dadurch ein bevorstehender Datenver-

lust an. Lassen Sie es nicht soweit kommen, sondern
stellen Sie genau fest, was das Problem ist.

Es ist nicht mehr genügend Speicher vorhanden um das
Werkzeug zu laden. Dafür kann es viele Gründe geben.
Zunächst kann es Sein, daß sich schon zu viele
Werkzeuge im Speicher befinden, sei es deshalb, weil
sie alle aktiv sind, oder aber weil die Hold-Option
gewählt wurde. Wenn Sie die Shell kurz verlassen und

wieder neu starten, können Sie feststellen, ob das das

Problem war. Möglicherweise steht aber auch aus

anderen Gründen nicht mehr genügend Speicher für
SPC-MODULA-2 zur Verfügung. Gründe könnten z.B.
eine RAM-Disk, Accessories oder Programme im Auto-
Ordner sein. Die meisten SPC MODULA-2 Werkzeuge
belegen neben ihrem eigenen Code weiteren Speicher-
platz (z.B. der Editor für die geladenen Dateien). Auch
dies könnte Ursache für zu knappen Speicher sein.

Derzeit können bis zu 15 Programme nebeneinander

aktiv sein. Der Lader lehnt es ab, das 16. Programm zu

laden.

Über die genannten Fehler hinaus können natürlich

weitere Fehler innerhalb des gestarteten Programms

selbst auftreten, z.B. falsche Argumente oder Optionen,

etc. Die möglichen Fehler sind bei den Werkzeugen
selbst dokumentiert.

3-10 Die xShell SPC MODULA-2 V1.4

Wenn sich in der unmittebaren Umgebung die momen-
tan benötigten Dateien angesammelt haben, brauchen
l.a. nur noch die Icons der Dateien selektiert zu werden,
um die Werkzeuge mit Argumenten zu versorgen. Genau
wie beim Start von Werkzeugen gibt es auch bei der
Selektion von Dateien mehrere Möglichkeiten. Zunächst

|
HELLO „MOD a

können Dateien selektiert werden, indem das zugehörige

Icon angeklickt wird. Das momentan selektierte Icon wird

dabei deselektiert, so daß im Normalfall immer nur ein
Icon selektiert ist. Es besteht jedoch auch die Möglich-

keit, mehrere Dateien zu selektieren, wenn beim An-

klicken gleichzeitig die SHIFT-Taste gedrückt wird. Ist
das mit gedrückter SHIIFT-Taste selektierte Icon jedoch
gerade selektiert, dann wird es wieder deselektiert.

Alle Datei-Icons sind von 1 bis 8 durchnumeriert. Durch

Eingabe einer Zahl von i bis 8 wird die entsprechende

Datei selektiert.

"Auch über ein Pull-Down-Menü (Files) können die

Dateien selektiert werden. Dazu wird das Menü herun-

tergeklappt und die gewünschte Datei ausgewählt.

Dateien werden deselektiert, indem einfach in den leeren

Bereich des xShell Fensters geklickt wird. Dateien

werden aus der unmittelbaren Umgebung entfernt,
indem das Icon bei gedrückter SHIFT-Taste doppelt
angeklickt wird.

Falls sich schon acht Dateien in der unmittelbaren

Umgebung befinden, dann muß eine Datei wieder
entfernt werden. Die xShell bevorzugt in diesem Fall die
am längsten nicht mehr selektierte Datei. Es kann
deshalb sinnvoll sein, ab und zu aufzuräumen und

gezielt Dateien aus der unmittelbaren Umgebung zu

entfernen.

Dateien

selektieren

erweiterte Selektion

mit der Tastatur

selektieren

über Menüs

selektieren

deselektieren und

abmelden

SPC MODULA-2 V1.4 Die xShell 3-11

Utilities Die wichtigsten Sprachwerkzeuge sind in der zweiten

Iconreihe im xShell-Fenster immer präsent, da davon

ausgegangen wird, daß sie ständig zugreif-und benutz-

bar sein müssen. In der dritten Iconreihe werden

Hilfsprogramme dargestellt, die im weitesten Sinne auch
zu den Werkzeugen gehören, jedoch sind nie alle

vorhandenen Hilfsprogramme in der unmittelbaren Um-

gebung, sondern nur die, die vom Bediener dort

installiert wurden. Einmal installiert können sie mit den

gleichen Methoden aufgerufen und parameteriert wer-
den, wie die primären Sprachwerkzeuge.

u u ee —_-—eae —-
ml, FOO Ol =O ee

PATHS

an- und abmelden

starten und

konfigurieren

HELLO DECOEH DUMF FRELINK

Um eine Utility aus der mittelbaren in die unmittelbare
Umgebung zu holen muß sie installiert werden. Dazu
wird. im Commands-Menü der Eintrag Inst Utility ge-
wählt, oder einfach die Taste U gedrückt. Die xShell
erfragt dann über eine Datei-Auswahl-Box den Namen
der Utility. Die Bedienung der Datei-Auswahl-Box ist in

der Dokumentation ihres Rechners beschrieben.

Nachdem ein Dateiname gewählt wurde, wird die Utility
installiert und als Icon mit einem großen U im xShell-
Fenster dargestellt.

Falls schon acht Utilities installiert sind, wird die am

längsten nicht mehr benutzte Utility wieder entfernt. Alle
Einstellungen sind damit ebenfalls nicht mehr vorhan-
den. Es empfiehlt sich deshalb auch hier, ab und zu
aufzuräumen.

Utilities werden, wenn sie einmal installiert sind, wie
Werkzeuge behandelt und bedient. Es ist für den
Bediener dann auch nicht mehr wichtig, den Unterschied
zwischen Werkzeug und Utility zu kennen. Auch Utilities

werden mit einer Standard-Kommandozeile parametriert

3-12 Die xShell SPC MODULA-2 V1.4

und die Kommandozeile ergibt sich nach den gleichen

Mechanismen wie die von Werkzeugen.

Man beachte, daß nach der Installation einer Utility noch

keine Optionen eingestellt sind. Optionen von Utilities
können genauso wie die von Werkzeugen eingestellt
werden (s.o.), indem das Icon doppelt geklickt wird und

das daraufhin erscheinende Formular ausgefüllt wird.

Beim Start von Utilities können natürlich die gleichen
Fehler auftreten, die schon oben für Werkzeuge be-
schrieben wurden. Der weitere Ablauf nach dem Start
einer Utility hängt natürlich von der Utility selbst ab. Es
ist gute Praxis, bei eigenen Utilities nach den all-
gemeinen Konventionen die Standard-Kommandozeile
auszuwerten. |

Optionen einstellen

Fehler beim Starten

von Utilities

SPC MODULA-2 V1.4 Die xShell 3-13

Jobs

Job Control

Language

MODULA-2 als JCL

Operatoren der

JCL-Ebene

der Modul JCL

Neben den primaren Sprachwerkzeugen und diversen

Utilities benutzt der Softwareentwickler i.a. sogenannte
Jobs. Jobs automatisieren kleinere Abläufe. Meist wird

durch sie der Aufruf verschiedener Utilities gesteuert. Die
Abläufe werden in einer Sprache, der Job Control
Language (JCL) beschrieben. Unter UNIX ist die JCL der
Programmiersprache C ähnlich, zumindest, was die
Kontrollfluß-Konstrukte angeht.

Innerhalb des SPC MODULA-2 Sprachsystems wird
einfach MODULA-2 als JCL verwendet. Dadurch er-

geben sich einige bemerkenswerte Vorteile gegenüber

anderen Lösungen: |

o der Software-Entwickler braucht nur eine Sprache zu
lernen. |

QO es stehen alle Konstrukte von MODULA-2 zur

Verfügung.

Q es stehen alle Bibliotheksfunktionen zur Formulierung

von Jobs zur Verfügung.

Auf der JCL-Ebene benötigt der Entwickler natürlich im
wesentlichen andere Operatoren, als sie von einer

Programmiersprache bereitgestellt werden. Auf der JCL-

Ebene werden z.B. Dateien kopiert und nicht Bytes

gelesen und geschrieben; oder es werden Programme
gestartet, weniger Prozeduren aufgerufen.

SPC MODULA-2 stellt diese Operatoren durch den
Modul JCL zur Verfügung. Das Starten von Programmen
ist durch den Lader ideal gelöst und der Compiler sorgt
mit seiner Übersetzungsgeschwindigkeit dafür, daß ein
Job genauso schnell entwickelt werden kann, als wenn

er interpretiert würde. Einige weitere Vorteile dieses

Verfahrens sind so wichtig, daß sie extra genannt

werden sollen:

OQ jeder Job wird durch den Compiler auf seine
syntaktische Korrektheit geprüft, bevor er ausgeführt

wird.

o ein Job unterscheidet sich von außen nicht von

anderen Utilities und kann deshalb auch als Utility

3-14 Die xShell SPC MODULA-2 V1.4

installiert werden.

O die JCL-Operatoren stehen auch "normalen"

Programmen zur Verfügung.

Die Grenzen zwischen Job und Utility bzw. Programm
verschwimmen. Dies ist kein Nachteil, sondern be-

absichtigt. Lediglich die unterschiedliche Behandlung
durch die xShell macht den Unterschied zwischen Job
und Utility aus.

Wenn ein Job durch Anklicken gestartet wird, prüft die
xShell zunächst anhand des Dateidatums, ob der Job
neu compiliert werden muß. Erst wenn die Übersetzung
erfolgreich war, wird der Job selbst ausgeführt. Ein Job

kann auch über das betreffende Menü gestartet werden.

Außerdem sind sind die installierten Jobs auf die

Funktionstasten Fi bis F® aufgelegt.

Fi Fe
SINGLE HELLO

Ein Job wird installiert, indem entweder der Eintrag
Install Job im Commands-Menü selektiert wird, oder

indem die Taste J gedrückt wird.

Jobs können wie alle anderen Werkzeuge parametriert

werden, indem das Icon bei gedrückter ALTSERNATE-

Taste doppelt geklickt wird. Danach kann das übliche

Formular ausgefüllt werden.

Ein Job wird editiert, indem das Icon durch Doppelklick

geöffnet wird. Es wird (wie beim Doppelklicken von
Dateien) implizit der Editor gestartet.

Man beachte, daß beim Starten von Jobs die gleichen

Fehlerbedingungen auftreten können, wie beim Starten

aller anderen Programme auch.

einen Job starten

einen Job installieren

einen Job para-

metrieren

einen Job editieren

Fehlerbedingungen

SPC MODULA-2 V1.4 Die xShell 3-15

weitere Möglich-

keiten

Textuelle

Kommandos

Kommandozeile

eingeben

zurückliegende

Ein Job, der zufriedenstellend funktioniert und nicht

mehr geändert werden muß, kann natürlich als Utility
installiert werden. Umgekehrt bietet es sich an, Pro-

gramme, die in Arbeit sind, einfach als Job anzumelden.

Die xShell bietet eine grafische Oberfläche und Methodik

für die Kommandoeingabe. Dabei werden jedoch die
vom Benutzer gegebenen grafischen Kommandos auf
textuelle Kommandozeilen zurückgeführt. Alle Utilities

interpretieren eine standardisierte Kommandozeile wie

sie vom Modul CmdLine unterstützt wird.

Die xShell bietet nun neben der grafischen Methodik
auch die Gelegenheit, die Kommandozeile über die

Tastatur einzugeben. Dazu wird einfach die Taste ESC
gedrückt. Es erscheint ein Formular, in das die Kom-

mandozeile eingeben werden kann. Dabei wird die letzte

Kommandozeile vorgeschlagen.

Über die Prev- und Next-Buttons können weiter zu-
rückliegende Kommandos aufgeblättert werden.

Kommandos

Redefine tool/utility options
-y-r -0|

| _ Hold |

3-16 Die xShell SPC MODULA-2 V1.4

Die Shell wird verlassen, indem im Commands-Menü

der Eintrag Quit gewählt wird, oder indem über die
Tastatur einfach ein Q eingegeben wird. Zur Sicherheit

wird über ein Formular noch einmal nachgefragt, ob die
xShell wirklich verlassen werden soll.

Durch Anklicken von Quit wird die xShell dann endgültig
verlassen. Alle Environment-Variablen werden dabei auf

das Profile zurückgeschrieben. Dies kann verhindert

werden, wenn statt Quit das Abandon-Feld geklickt wird.
Immer dann, wenn sie das Profile mit dem Editor

verändert haben, sollten sie die xShell mit Abandon

verlassen.

xShell

verlassen

You are about to QUIT SHELL

| Aband | [Cancel |

Die xShell speichert die Inhalte der unmittelbaren

Umgebung in Environment-Variablen ab. Dazu wird eine
Environment-Variable XSH sowie bis zu 32 weitere
Variablen XSHi bis XSH32 für jedes belegte Icon

benutzt.

Optionen

Environment—

Variablen

SPC MODULA-2 V1.4 Die xShell 3-17

Diese Seite wurde aus

satztechnischen Grunden frei

gelassen

3-18 Die xShell SPC MODULA-2 V1.4

Der Editor

SPC MODULA-2 enthält einen fensterorientierten Edi-

tor, der neben allgemeinen Editierfunktionen weitere

Funktionen enthält, die Ihnen das Programmieren in

MODULA-2 etwas angenehmer gestalten sollen. Hierzu
zählen insbesondere Maßnahmen, die das Editieren

selbst sowie die Fehlersuche beschleunigen. Es wurde

besonderer Wert darauf gelegt, daß häufige kleine

Korrekturen besonders gut von der Hand gehen.

Der Editor erlaubt, mehrere Dateien gleichzeitig in ver-

schiedenen Fenstern zu editieren. Das ist bei der
MODULA-2 Programmierung besonders nützlich, da
verschiedene Moduln in verschiedenen Dateien ablie-
gen. Bei der Programmierung hat man nun Öfter Not-

wendigkeit, Schnittstellen zu anderen Moduln zu sich-
ten, oder Änderungen in verschiedenen Moduln einzu-

bringen.

Vom Compiler erzeugte Fehlermeldungen werden vom

Editor direkt im Quelltext mit einer Klartext-Fehlermel-
dung angezeigt. Kommandos erlauben von einer Feh-

lerstelle zur nächsten zu springen.

Der Editor ist als SSWiS-Applikation realisiert. Seine
Bedienung ist deshalb zu wesentlichen Teilen auch im

Kapitel über SSWIS beschrieben.

Kapitel 4

Übersicht

mehrere Dateien

editieren

direkte Fehleran-

zeige

SPC MODULA-2 V1.4 Editor

den Editor.

starten

existierende Datei

editieren

neue Datei anlegen

Cursorposition nach
dem Start

Der Editor wird von der xShell aus gestartet. Dazu wird
(s. Kapitel 3) einfach das Editor-Icon geklickt oder
über die Tastatur ein 2 eingegeben. Der Editor ist in
der xShell so konfiguriert, daß er Dateiargumente
akzeptiert. Falls also eine Datei selektiert war, dann

wird sofort diese Datei zum Editieren geöffnet. Andern-

falls bietet die xShell eine Dateiauswahl-Box an, über
die eine neue Datei ausgewählt werden kann. Diese

Datei wird anschließend editiert und gleichzeitig in die
unmittelbare Umgebung der xShell aufgenommen.

Falls die gewählte Datei nicht existiert, wird ein leeres
Fenster geöffnet. Wenn Sie keine neue Datei editieren
wollen, dann können Sie das Fenster mit SHIFT F10
wieder schließen.

Die Fenster des Editors können wie gewohnt bedient

werden. Der Editor kann mehrere Dateien in verschie-

denen Fenstern öffnen. Wie Sie weitere Dateien Öffnen

können, erfahren Sie weiter unten.

Falls die gerade geöffnete Datei dieselbe ist, die zu-
letzt editiert wurde, dann positioniert der Editor den
Cursor gleich an die zuletzt editierte Stelle und blättert
die entsprechende Seite auf. Das erspart Ihnen in den
meisten Fällen, die Stelle, an der Sie gerade arbeiten
immer wieder von neuem suchen zu müssen. Die Zeile
bzw. Spalte, in der der Cursor steht, nennen wir im
folgenden die Cursorzeile bzw. die Cursorspalte. Der
Cursor bezeichnet die Stelle, an der Text in die Datei
eingegeben werden kann. Der Cursor ist als kleines
Dreieck repräsentiert.

Editor SPC MODULA-2 V1.4

Der Cursor kann mit den Pfeiltasten in alle vier Rich-
tungen bewegt werden. Wenn er an einem Fensterrand
angekommen ist, dann scrollt der Editor das Fenster

wenn möglich entsprechend weiter, so daß der Cursor
immer sichtbar bleibt. Die Pfeiltasten sind doppelt be-

legt. Werden die horizontalen Pfeiltasten zusammen mit
 SHIFT gedrückt, dann springt der Cursor an den An-
fang bzw. an das Ende der Zeile. Werden die vertika-

len Pfeiltasten zusammen mit SHIFT gedrückt, dann
springt der Cursor 10 Zeilen in die gewählte Richtung.

Wenn das Fenster mit den Scrollbalken weitergescrollt

wird, dann bleibt der Cursor an seiner Position stehen.

Er ist dann i.a. nicht mehr sichtbar. Will man an einer

neuen Stelle weiterarbeiten, dann muß man zuerst den

Cursor dorthin positionieren, indem man die Stelle mit

der Maus anklickt. Will man dagegen wieder an der

Stelle weiterarbeiten, an der der Cursor noch steht,

dann kann man durch Drücken der 2SG-Taste die

entsprechende Seite wieder aufblättern. Diese Technik
ist besonders nützlich, wenn man nur schnell eine an-

dere Stelle in der gleichen Datei sichten will.

Alle Eingaben der Tastatur erfolgen an der Cursorposi-

tion. Der Editor befindet sich normalerweise im Insert-

Modus, d.h. neue Zeichen werden eingegeben, indem

sie in den Text eingefügt werden. Im Replace-Modus

dagegen wird das Zeichen rechts des Cursors mit dem
neu eingegebenen überschrieben. Der Wechsel zwi-

schen Insert- und Replace-Modus erfolgt durch

Drücken der INSERT-Taste. Eine Ausgabe in der Mel-
dezeile zeigt stets den eingeschalteten Zustand.

Die Tasten DELETE und BAGKSIPPAGE löschen das
Zeichen rechts bzw. links des Cursors. Besondere Ver-

hältnisse treten ein, wenn der Cursor am Anfang bzw.
Ende einer Zeile steht. DIELETIE am Ende einer Zeile
löscht den Zeilenumbruch, d.h. die der Cursorzeile fol-
gende Zeile wird an die Cursorzeile angehängt.
BACKSPAGE am Anfang einer Zeile hängt die Cursor-
zeile an die vorangehende Zeile an.

Einfache
Editierungen

den Cursor bewegen

Fenster scrollen

die Cursorzeile

aufblättern

Insert— und

Replace-Modus

Zeichen löschen

SPC MODULA-2 V1.4 Editor

Zeilenanfang und

-ende löschen

Zeilen löschen

Löschen rückgängig
machen

Zeilenumbruch

einfügen

Leerzeilen einfügen

Spaltennummern
anzeigen

Zeilennummern

anzeigen

Die Taste GLARONM. löscht alle Zeichen vom Cursor

GLAHÖMIE löscht alle Zeichen links des Cursors bis

zum Anfang der Zeile.

Die Taste SAIFT DELETE löscht die Cursorzeile und

positioniert den Cursor in die der gelöschten Zeile fol-

genden Zeile.

Alle Iöschenden Funktionen können durch Drücken von

UNDO wieder rückgängig gemacht werden. Wenn Sie
z.B. irrtümlich GLRHIOMIEE gedrückt haben, dann brau-
chen Sie nur UNDO zu drucken und die gelöschten
Zeichen werden sofort wieder eingefügt. Auch mehrere

Fehlbedienungen können durch mehrmaliges Drücken
von UNDO wieder rückgängig gemacht werden. Dies
funktioniert über 20 Ebenen.

Die Taste RETURN fügt im Insert-Modus einen Zei-
lenumbruch ein, d.h. der Cursor wird an den Anfang
einer neuen Zeile bewegt. Im Replace-Modus, da-

gegen, wird der Cursor einfach nur auf den Anfang der
nächsten Zeile gesetzt.

Die INSERT-Taste ist doppelt belegt. SHIFT INSERT
erzeugt eine Leerzeile unter der Cursorzeile und posi-
tioniert den Cursor an den Anfang der neu eingefügten

Zeile.

Die Taste SHIFT ESC veranlaßt, daß in der Meldezeile
die Nummer der Cursorspalte angezeigt wird. Die
Spaltenzählung beginnt wie die Zeilenzählung bei 1.

Die Taste SHIFT HELP veranlaßt, daß die Zeilennu-
merierung ein- bzw. ausgeschaltet wird. Die Bedeu-

tung der Taste HELP wird später erläutert.

Editor SPC MODULA-2 V1.4

Weitere Editorfunktionen sind über Menüs zugäng-
lich.Der Editor verwendet die von GEM gewohnten
Pull-Down Menüs.

Die Menüs werden, wie alle Funktionen des Fenster-

systems, über SSWIS (s. Kapitel 8) angesprochen. Die
Menüleiste des Editors ist deshalb nur zu sehen, wenn

das aktive Fenster auch vom Editor kontrolliert wird.

Andernfalls ist die Menüleiste einer anderen Anwen-

dung sichtbar.

Die Bedienung der Pull-Down-Menüs erfolgt wie
üblich, indem zuerst ein Menütitel selektiert wird. An-
schließend wird im geöffneten Menü ein Eintrag aus-
gewählt.

Die folgenden Abschnitte orientieren sich an den

Menütiteln und erläutern die über Menüs wählbaren

Funktionen.

Das Block-Menü ermöglicht die Festlegung von Text-

blöcken und elementaren Operationen auf ihnen. Mit

der Funktion MarkBeg wird ein neuer Block markiert. Er

beginnt an der Cursorposition und endet (vorerst) an

der Cursorposition. Nachdem der Cursor weiter in
Richtung Dateiende verschoben wurde, kann der Block

mit MarkEnd bis zur Cursorposition ausgedehnt wer-
den. Der Block wird durch eine Hinterlegung der be-

troffenen Zeichen sichtbar gemacht. Eine Kurzform der

Blockselektion ist über die Maus realisiert. Drücken
(und Halten) der linken Maustaste selektiert einen
neuen Block an der Stelle des Mauszeigers. Nun kann

die Maus bewegt werden. Das Blockende wird durch

Loslassen der Maustaste festgelegt. Weiterhin kann das

Ende des Blockes noch korrigiert werden, wenn die

SHIFT-Taste mit der linken Maustaste gedrückt wird.
Verläßt man bei gedrückter Maus-Taste das Editor-

Fenster, dann scrollt der Editor das Fenster in die ent-

sprechende Richtung weiter.

Menüs

Block
Operationen

Duplic Fi
Move sFi
Begin
End

SPC MODULA-2 V1.4 Editor

Clipboard

 BE

Paste
Copy
Append
Cut

F2
sF2
FS

sF3

Die Funktion Duplicate kopiert den ausgwählten Block

in einen internen Zwischenpuffer und fügt ihn gleich-

zeitig an der Cursorposition wieder ein. Die Cursorpo-
sition wird dabei nicht verändert. Die Selektion ist da-
nach wieder aufgehoben.

Die Funktion Move kopiert den Block ebenfalls in den

Zwischenpuffer, löscht ihn aus der Datei und fügt ihn
an der Cursorposition wieder ein.

Eine beim Programmieren in MODULA-2 nützliche

Funktion besteht darin, ganze Blöcke spaltenweise

nach links oder nach rechts zu bewegen. Dazu wird
der entsprechende Textblock wie oben. beschrieben

selektiert und dann bei gedrückter CONTROL-Taste
mit den Cursor-Tasten nach links oder rechts gescho-

ben.

Das Clipboard-Menü stellt weitere Operationen auf

dem Zwischenpuffer bereit. Das Übernehmen eines
ausgewählten Blockes in den Zwischenpuffer erfolgt

mit Copy. |

Cut kopiert den Block in den Zwischenpuffer und

löscht ihn dann aus der Datei.

Paste fügt den Inhalt des Puffers an der Cursorposition
wieder ein. Die Folge Copy/Paste entspricht also dem
Kommando Copy des Block Menüs. Die Folge Cut-
Paste entspricht dem Move Kommando. |

Append erlaubt es, einen Block an das Ende des Puf-

fers anzufügen. Alle anderen oben erwähnten Kom-
mandos löschen den alten Inhalt des Zwischenpuffers.

Editor SPC MODULA-2 V1.4

Das String-Menü macht Funktionen zum Suchen und
Ersetzen von Zeichenketten zugänglich. Mit Find kann suchen und

eine Zeichenkette angegeben werden, nach der ge- Ersetzen
sucht werden soll. Gleichzeitig kann die Suchrichtung
spezifiziert werden. Darauf wird die angegebene
Zeichenkette in der Datei gesucht. Der Fortschritt beim
Suchen sowie der Ausgang der Operation werden in Strings

Next
der Meldezeile angezeigt. Falls die Zeichenkette ge- Find
funden wurde, wird der Cursor an deren Anfang posi- Replace sF5
ws Ch Case F?

tioniert. Up Case sF7

Next erlaubt, die Suche ab der Cursorposition mit den
gleichen Parametern fortzusetzen.

Über Replace kann eine Zeichenketten-Ersetzung

durchgeführt werden. Hierzu wird die Zeichenkette an-

gegeben, durch die die zu suchende Zeichenkette er-
setzt werden soll. Weiter kann angegeben werden, ob
vor einer Ersetzung zunächst eine explizite Bestätigung
verlangt werden soll und ob alle Stellen ersetzt werden

sollen. Falls während der Ersetzung eine Bestätigung
verlangt wird, besteht die Möglichkeit, die Zeichenkette

zu ersetzen, eine Ersetzung abzulehnen oder den gan-

zen Vorgang abzubrechen.

ChCase macht das Zeichen unter dem Cursor zu

einem Großbuchstaben, wenn es ein Kleinbuchstabe

war und umgekehrt. UpCase macht das Zeichen unter
dem Cursor zu einem Großbuchstaben.

SPC MODULA-2 V1.4 Editor 4-7

im Text
springen

zeilennummer

Marke

Fehlerposition

 Line FS
Label sF6
Prev Err sF8
Next Err F8
Set Label F6

Das Goto—Menu erlaubt das Positionieren des Cursors

durch Angabe von Zeilennummern oder auf die Marke

(Label).

Mit Line kann eine Zeilennummer (und eine Spalten-

nummer) angegeben werden, auf die der Cursor posi-
tioniert werden soll.

Label veranlaßt, daß der Cursor zu einer vorher ge-
setzten Marke springt. Das ist nützlich, wenn man

kurzzeitig eine andere Stelle eines Dokumentes be-
arbeiten will, und anschließend an die markierte Stelle

zurückkehren will. | :

Next Error positioniert den Cursor auf den nachsten
Fehler nach der momentanen Cursor—Position. Fehler

werden beim Öffnen eines Fensters aus der Fehlerda-

tei des Compilers (ERR.LST) übernommen und in die

geöffnete Datei eingetragen.

Von besonderem Vorteil ist, daß auch nach dem Ein-

fügen und Löschen von Zeilen und Zeichen die Fehler
an der richtigen Position angezeigt werden.

Prev Error positioniert den Cursor auf die der Cursor-
Position vorangegangene, Fehlerstelle. Falls Sie den

Fehler schon behoben haben, ist diese Funktion natür-

lich sinnlos.

Editor SPC MODULA-2 V1.4

Das Mode-Menü unterstützt diverse Modi des Editors,
die jeweils ein- oder ausgeschaltet werden können.
Die jeweils eingestellten Modi sind am linken Rand der
Meldezeile kenntlich gemacht.

Numbers schaltet die Zeilennumerierung ein oder aus,

was durch entsprechende Meldungen angezeigt wird.

Es entspricht damit der Taste SHIFT HELP.

Insert schaltet wie die gleichnamige Taste zwischen
dem Insert- und dem Replace-Modus hin und her.

Autolndent schaltet die automatische Einrückung an
oder aus. Im eingeschalteten Zustand wird eine neue

Zeile (nach RETURN) automatisch genauso weit ein-
gerückt wie die vorangehende Zeile. Im Replace-
Modus wird der Cursor nach RETURN automatisch auf
das erste von Blank verschiedene Zeichen der Zeile

positioniert.

Tab 8 schaltet auf eine 8er Tabulation um. Beim Pro-

grammieren ist es dagegen meist sinnvoll mit der Taste

~AS auf die Spalte zu positionieren, in der in der vor-
angehenden Zeile Text beginnt (Insert-Modus), bzw.
auf die (Replace-Modus), in der Cursorzeile Text be-

ginnt. Dadurch wird spaltengenaues Formatieren beim

Editieren unterstützt.

LangSupp schaltet die Sprachunterstützung ein bzw.
aus. Bei eingeschalteter Unterstützung interpretiert der

Editor klein geschriebene Wörter als MODULA-2
Schlüsselwörter. Sobald Eindeutigkeit besteht (meist
nach dem zweiten oder dritten Zeichen) ersetzt der

Editor die kleinen Buchstaben durch das ganze (groß
geschriebene) Schlüsselwort. So genügt für die Ein-

gabe des Schlüsselwortes PROCEDURE die Eingabe
der Buchstaben pr. Bei der Editierung von Kommen- |

taren kann diese Funktion mitunter hinderlich sein,
weshalb sie abschaltbar ist. Zur Vereinfachung ist die

gleiche Funktion auch auf der Taste FIIELIP aufgelegt.

Modi

einstellen

Zeilennumerierung

Insert und Replace

automatisches

Einrücken

Tabulierung

Sprachunterstützung

Insert
Tab 8
Autolndent

Numbers sHelp

SPC MODULA-2 V1.4 Editor

Dateien

Offnen und

Schließen

 Open FS

Close Fi6é
Backup sF9
Saves

Abandon sFi®é

ohne zu sichern

verlassen

Funktions-

tasten

Zehnerblock

Das File-Menü enthält mit die wichtigsten Funktionen

des Editors, nämlich die zum Öffnen und Schließen

von Dateien.

Open Öffnet weitere Dateien in weiteren Fenstern. Dazu

bietet der Editor eine Dateiauswahl-Box an. |

Close schreibt eine Datei auf Massenspeicher zurück

und schließt das Fenster.

Backup schreibt die Datei zurück, ohne das Fenster zu

schließen. Während längerer Editierungen sollte in

jedem Fall zwischendurch Backup aufgerufen werden,
um bei irgendwelchen Problemen keinen allzu großen

Verlust an Daten zu erleiden.

Abandon schließt die Datei ohne auf Massenspeicher

zurückzuschreiben! Falls die Datei geändert wurde,
wird zuerst noch einmal über ein Formular nachgefragt.

Die Originaldatei bekommt beim Zurückschreiben die

Endung .BAK und steht somit weiterhin zur Verfügung.

Einige der über Menüs bereitgestellten Funktionen sind

auch über die Funktionstasten Fi bis Fi@ und SHIFT
Fi bis SHIFT F10 zugänglich. Dies dient wiederum
der Beschleunigung des Editiervorgangs. Zur Un-
terstützung des Bedieners liegen dem Handbuch Auf-
kleber bei, die über die entsprechenden Funk-
tionstasten geklebt werden können. Außerdem wird in
den Menüs durch eine Beschriftung am Ende des
Menü-Eintrages jeweils angezeigt, ob eine Funktion
auch auf einer Funktionstaste aufliegt.

Auf die Tasten des numerischen Tastenblocks können
Textmakros aufgelegt werden. Die Textmakros können

dann an der Cursorposition eingefügt werden. Zur

Definition eines Textmakros wird die entsprechende

4-10 Editor SPC MODULA-2 V1.4

Taste zusammen mit SHIFT gedrückt. In das daraufhin

erscheinende Formular kann ein beliebiger Text einge-
tragen werden.

Fehlermeldungen des Compilers werden in die Datei

ERR.LST geschrieben. Diese Datei wird sofort beim
Starten des Editors geöffnet. Beim Öffnen weiterer
Fenster schaut der Editor sofort in der Fehlerdatei
nach, ob für den neuerlich geöffneten Modul vom

Compiler Fehler eingetragen sind. In der Fehlerdatei

stehen alle mit der letzten Compilierung übersetzten

Moduln, und jeweils darunter die Fehler (falls Fehler

entdeckt wurden). Die Fehlermeldungen bestehen
jeweils aus drei Zahlen in der Form

<Zeile> <Spalte> <Fehlernummer>.

Sonstiges

SPC MODULA-2 V1.4 Editor 4-11

diese Seite wurde aus

satztechnischen Grunden frei

gelassen

4-12 Editor SPC MODULA-2 V1.4

Der Compiler

Der Compiler hat die Aufgabe, MODULA-2 Programme

von ihrer Quelltextform in ihre Objektform zu überfüh-
ren.

Wie jeder MODULA-2 Compiler verarbeitet der SPC
MODULA-2 Compiler zwei Arten von Eingabedateien,

nämlich Modulschnittstellen (DEFINITION MODULEs)

und Implementierungen (IMPLEMENTATION MODU-

LEs). Je nachdem, von welchem Typ die Eingabeda-
teien sind, werden unterschiedliche Ausgabedateien

erzeugt. |

Weiterhin akzeptiert der SPC MODULA-2 Compiler
sogenannte Command-Files. Diese enthalten Namen

von Moduln, die übersetzt werden müssen. Command-
Files sind wichtig, da mitunter ein ganzes, aus vielen

Moduln bestehendes System übersetzt werden muß.
Die Dateien mit der Dateiauswahl-Box anzugeben wäre
dann nicht angemessen.

Dank des speziellen Formates der übersetzten Moduln

müssen SPC MODULA-2 Moduln nicht mehr explizit
gebunden werden, sondern können sofort gestartet

werden. Der dabei dennoch notwendige Bindevorgang
wird von einem Lader dynamisch, d.h. während des
Ladevorgangs ausgeführt.

Der SPC MODULA-2 ist ein sogenannter Single-Pass-
Compiler (SPC). Als solcher liest er die Eingabedatei
nur einmal und erzeugt keine Zwischendateien, son-

dern baut im Speicher die notwendigen Strukturen auf.
Dadurch wird der Übersetzungsvorgang enorm be-

schleunigt. Der Mehrbedarf an Speicher ist auf den
moderen Mikrorechnern normalerweise kein Problem

mehr, sodaß der Vorteil der hohen Geschwindigkeit

Kapitel 5

Übersicht

Kommando-Dateien

dynamisches Binden

Single-Pass-
Compiler

SPC MODULA-2 V1.4 Compiler

Fehlerdatei

Sprachstandard

überwiegt. Auf einem ATARI ST können bei günstigen

Verhältnissen Geschwindigkeiten bis zu 5000 Zeilen pro

Minute erreicht werden.

Die Namen aller mit der letzten Übersetzung übersetz-

ten Moduln (evtl. nur einer) und dabei evtl. aufgetre-

tene Fehler sind in einer Fehlerdatei vermerkt. Die

Datei kann vom Editor wieder interpretiert werden, um

die Fehler eines Moduls direkt im Quelltext anzuzeigen.

Die vom Compiler implementierte Sprache entspricht
dem neuesten Stand der MODULA-2 Entwicklung an

der ETH-Zürich. Die Details der Sprachimplemen-
tierung werden im Rahmen dieses Kapitels beschrie-

ben. Wenn MODULA-2 vom ISO standardisiert ist, wird
SPC MODULA-2 auf den dann gültigen Sprachstan-

dard umgestellt werden.

Compiler SPC MODULA-2 V1.4

Der Compiler wird über eine Standard-Kommandozeile
aufgerufen und parametriert. Die Kommandozeile hat

die Form:

compile <Dateiname> [-r] [-o] [-v]

Die zulassigen Dateinamen werden unten erklart. Der

Compiler akzeptiert nur einen Dateinamen.

Die Option -r schaltet die Bereichsprüfung ein. Da-
durch werden alle Zuweisungen an Unterbereichs- und

enumerierte Variablen auf Zulässigkeit geprüft. Neben

Zuweisungen werden die aktuellen Parameter in Pro-

zeduraufrufen, sowie die Indizes bei Array-Zugriffen
geprüft. Die Zulässigkeit von CASE-Ausdrücken wird,
falls keine ELSE-Klausel exisitiert, ebenfalls geprüft.

Die Option -o aktiviert die Prüfungen auf arithmetische

Über- bzw. Unterläufe. Diese sind bei allen arithmeti-

schen Ausdrücken wirksam.

Sowohl die -r als auch die -o Option bewirken, daß
zusätzlicher Code erzeugt wird. Die Option -v (ver-
bose) veranlaßt den Compiler, den Übersetzungsverlauf
am Terminal zu protokollieren.

Der Compiler wird normalerweise über die xShell auf-
gerufen. Der Dateiname wird dann ebenfalls von der

xShell beigesteuert (s. Kapitel 3). Die Optionen können
durch Parametrieren des Compiler-Icons der xShell
eingestellt werden.

Starten

-r Option

-o Option

-v Option

über die xShell

starten

SPC MODULA-2 V1.4 Compiler

Ein- und

Ausgabe-
dateien

‚DEF

‚MOD

SBM

~.OBM

‚RFM

.CMD

Die vom Compiler benutzten Dateien werden durch die
Namenserweiterung (Extension) typisiert. Der Namens-
stamm ergibt sich aus den ersten Buchstaben des

Modulnamens. Die Anzahl der signifikanten Zeichen ist

vom Betriebssystem abhängig. Unter GEM werden 8

Zeichen ausgewertet. Für die Namenserweiterung ge-

Iten die folgenden, Konventionen:

‚DEF - bezeichnet einen Definitions-Quellmodul. Der
Modul beginnt mit der Konstruktion DEFINITION
MODULE. Für jeden Definitions-Modul wird auch ein
Implementierungs-modul benötigt.

.MOD - bezeichnet einen Implementierungs-Quellmo-
dul. Handelt es sich um einen sogenannten Pro-
gramm-Modul, dann beginnt der Modul mit der Kon-

struktion MODULE, und der Compiler erwartet keinen
Definitions-Modul. Andernfalls handelt es sich um
einen IMPLEMENTATION MODULE und der Compiler
sucht nach dem entsprechenden Definitions-Modul.

‚SBM - ein DEFINITION MODULE wird vom Compiler
in seine Objektform übersetzt. Beim Importieren des
Moduls in andere Moduln wird später nur die Objekt-
form des DEFINITION MODULEs gelesen. Der
Namensstamm ist der gleiche wie der des Quellmo-
duls.

.OBM - kennzeichnet die Objektform eines Implemen-
tierungs—Moduls. Der Namensstamm ist der gleiche

wie der der zugehörigen .MOD Datei. Die Objektmo-
duln werden später vom Lader oder vom Linker ver-

arbeitet.

‚RFM - bezeichnet eine weitere aus der Übersetzung

hervorgehende Datei, die Informationen für den

Debugger enthält. Der Namensstamm ist gleich dem

des Implementierungs-Moduls.

.CMD - ist eine Eingabedatei, die eine Liste von Kom-

mandozeilen für den Compiler enthält. Der Compiler
erkennt eine solche Datei an ihrer Endung und inter-

Compiler SPC MODULA-2 V1.4

pretiert alle darin enthaltenen Compiler-Kommandozei-

len.

ERR.LST - ist die Fehler- und Protokolldatei. Sie ent-
hält die Namen aller mit der letzten Compilation über-
setzten Moduln und evtl. aufgetretene Fehler. Die Feh-

ler werden durch die Zeilennummer, die Spaltennum-

mer und die Fehlernummer beschrieben. Obwohl man
die Fehlerdatei mitunter inspizieren will, wird man nor-

malerweise die Funktionen des Editors benützten, um

sich den Fehler direkt im Programmtext anzeigen zu
lassen.

Da der Compiler während der Übersetzung mehrere
Moduln importiert, also verschiedene Dateien eröffnet,

erhebt sich die Frage, wo diese Dateien abliegen müs-
sen, damit sie der Compiler findet. Meist ist es nämlich

Fehlerdatei ERR.LST

Suchpfade

sinnvoll, Moduln in unterschiedlichen Ordnern unterzu-

bringen, um eine Struktur in der Menge aller Moduln

zu erhalten. Z.B. sind die Moduln der STDLIB in einem
anderen Ordner zusammengefaßt, als die der SYSLIB.
Die Namen der Ordner werden Suchpfade genannt, da

sie vom Compiler durchsucht werden müssen, um

einen Modul zu finden. Suchpfade werden immer in
einer bestimmten Reihenfolge durchsucht. Die Suche

bricht ab, wenn der Modul bzw. die Datei gefunden
wurde.

Der Compiler erfährt die Suchpfade aus Environment-
Variablen mit den Namen Pathi1 bis Path<N>, wobei
<N> im Prinzip beliebig ist. Im Interesse einer schnel-
len Übersetzung sollte <N> jedoch nicht zu groß sein,

bzw. die meisten Dateien sollten auf Pfaden mit einer

niedrigen Nummer liegen. Der Compiler konstruiert aus

dem Pfadnamen, dem Namensstamm des zu überset-
zenden oder importierenden Moduls und des benötig-

ten Typs einen Dateinamen und versucht die Datei zu

öffnen. Gelingt dies, dann schreitet die Übersetzung

fort. Anderfalls wird der nächste Pfad (mit der nächst

Modulvorrat

strukturieren

Path1 bis PathN

SPC MODULA-2 V1.4 Compiler

ObjPath1 bis
ObjPathN

Pfade einstellen

höheren Nummer) herangezogen. Das Verfahren bricht

ab, wenn es keine Environment-Variable mit dem
Namen Path<N+1> gibt.

Mitunter möchte man die Quellmoduln in anderen Ord-
nern halten, als die übersetzten Moduln. Immerhin soll-

ten Sie ihre Quellmoduln regelmäßig sichern, während
Sie die Objektformen der Moduln jederzeit wieder neu
erzeugen können. Der Compiler unterstützt eine solche

Organisation, indem er bei allen Objektformen (.SBM,
.OBM, .RFM) zunächst nach einer Environment-Varia-
blen ObjPath<N> sucht. Falls eine solche Variable exi-

stiert, werden Objektformen von Moduln die auf
Path<N> gefunden wurden auf ObjPath<N> abgelegt
und von dort importiert. Falls keine entsprechende
Variable existiert, benützt der Compiler Path<N> auch

für die Objektformen der Moduln.

Die angegebenen Regeln zum Suchen von Moduln

werden vom Modul Envifonment implementiert und

stehen auch anderen Prorammen zur Verfügung. Ins-

besondere alle anderen Werkzeuge des Sprachsystems
machen davon Gebrauch.

Suchpfade können mit der Utility Paths inspiziert, ge-
setzt und gelöscht werden. Eine andere Methode ist,

das Profile direkt mit dem Editor zu bearbeiten.

I Beachten Sie bitte in diesem Fall, daß sie die xShell

über Abandon verlassen, da sonst das editierte

Profile wieder überschrieben wird.

Compiler SPC MODULA-2 V1.4

Ein MODULA-2 Programm besteht normalerweise aus
vielen Moduln. Hierzu gehören auch die aus den mit-

gelieferten Bibliotheken benützten Moduln. Die

Schnittstellen zwischen Moduln sind in den DEFINI-
TION MODULEs beschrieben und werden vom Com-
piler in eine Objektform (.SBM) übersetzt. Alle Moduln,
die auf diese Schnittstellen Bezug nehmen, werden

vom Compiler auf Konsistenz mit den benützten
Schnittstellen geprüft. Dabei werden z.B. falsche Para-
meterbestückungen von Prozeduraufrufen, etc. ent-

deckt. Durch die automatische Prüfung der Schnittstel-
len durch den Compiler werden viele Fehlermöglich-
keiten ausgeschlossen, die in anderen Programmier-

sprachen immer wieder zu hohen Testaufwänden füh-

ren.

Da auch DEFINITION MODULES sich auf andere

Moduilschhnittstellen beziehen können, muß eine Rei-

henfolge der Übersetzung von Moduln eingehalten

werden. Für alle Moduln eines Systems gilt die fol-
gende einfache Regel:

[> Jeder DEFINITION MODULE muß vor seinem ersten

Import übersetzt werden.

Dieser Zusammenhang soll an einem Beispiel ver-

anschaulicht werden. Ein Modul A nehme auf die
Schnittstellen zweier Moduln B1 und B2 Bezug. Die
Schnittstelle von B1 (DEFINITION MODULE) muß auf
jeden Fall vor der Implementierung von B1 (IMPLE-

MENTATION MODULE) übersetzt werden, da sich

natürlich jede Implementierung auf ihre eigene
Schnittstelle bezieht. Das gleiche gilt für die
Schnittstelle und die Implementierung von B2. Der
Modul A (Implementierung) kann erst übersetzt werden,

wenn seine eigene Schnittstelle und die von B1 und
B2 übersetzt sind. Die Moduln A, B1 und B2 passen

nun mit Sicherheit zusammen, da sie sich auf die

gleiche Objektform der Schnittstellen B1 und B2 be-
zogen haben. Die Implementierungen aller Moduln

Modul-

schlüssel

automatische

Schnittstellenprüfung

Übersetzungs-

reihenfolge

Beispiel

SPC MODULA-2 V1.4 Compiler

Inkonsistenzen

Modulschlussel

.CMD Datei

verwenden

können beliebig oft übersetzt werden, ohne daß sich

daran etwas ändert.

Wenn nun aber einer der Schnittstellenmoduln neu

übersetzt wird, besteht die Möglichkeit, daß Moduln,

die sich darauf beziehen nicht mehr von der gleichen

Schnittstelle ausgehen, es sei denn, sie werden nach

den Schnittstellen noch einmal übersetzt. Unterbleibt

dies, dann muß der Linker bzw. der Lader feststellen,
daß die Moduln nicht zusammenpassen.

Dazu gibt der Compiler jeder Objektform eines Moduls

(.SBM und .OBM) einen sogenannten Modulschlüssel
mit, an dem Compiler, Linker und Lader das Zusam-
menpassen von Moduln überprüfen können. Falls dabei

eine Inkonsistenz entdeckt wird, wird gemeldet, daß

die Moduleschlüssel (Module Keys) nicht zusammen-

passen.

Bei einem größeren System ist es mitunter recht müh-

sam, die richtige Übersetzungsreihenfolge einzuhalten.

Es ist deshalb ratsam, von Anfang an eine Komman-

dodatei (.CMD) zu erstellen, in der die Moduln in der
richtigen Reihenfolge aufgeführt sind. Falls später im

System Schnittstellen geändert werden müssen, ist es
dann meist am einfachsten, das ganze System neu zu

übersetzen.

Compiler SPC MODULA-2 V1.4

Die vom Compiler implementierte Sprache ist durch

N.Wirth’s “Programming in MODULA-2” beschrieben.
Die folgenden Abschnitte beschreiben Details von SPC

. MODULA-2 auf dem ATARI ST.

Die vom Compiler unterstützten Datentypen umfassen

die Standarddatentypen, sowie als Erweiterung 32 Bit
lange Varianten von 16-Bit-Typen, sowie einen 64 Bit

langen REAL Typ. Die unterstützten Typen sind im Ein-

zelnen:

DO INTEGER - der Typ belegt 2 Bytes und umfaßt einen
Wertebereich von -32768..32767.

LONGINT - der Typ (Erweiterung) belegt 4 Bytes und
umfaßt einen Wertebereich von -2147483648

2147483647.

CARDINAL - der Typ belegt 2 Bytes und umfaßt
einen Wertebereich von 0..65535.

LONGCARD - der Typ (Erweiterung) belegt 4 Bytes
und umfaßt einen Wertebereich von 0..4294967295.
Der Typ LONGCARD kann auf dem ATARI ST in eine
Adresse konvertiert werden. Programme, die davon

Gebrauch machen, sind natürlich maschinenab-
hängig.

REAL - der Typ belegt 4 Bytes und ist als IEEE

Single-Precision Real implementiert. Die Mantisse
belegt dabei 23 Bits, der Exponent 8 Bits. Der

Wertebereich reicht von ca. -3.3E38 bis +3.3E38.

LONGREAL - der Typ (Erweiterung) belegt 8 Bytes

und ist als IEEE Double-Precision Real implementiert.

Die Mantisse hat 52 Bits, der Exponent 11 Bits. Der

_ Wertebereich reicht von -1.79E308 bis +1.79E308.

BITSET - der Typ ist als SET OF [0..15] definiert. Er

belegt 2 Bytes.

LONGBITSET - der Typ (Erweiterung) ist als SET OF

[0..15] definiert. Er belegt 2 Bytes.

CHAR - der Typ belegt ein Byte.

die SPC
Implemen-

tierung

Datentypen

INTEGER

LONGINT

CARDINAL

LONGCARD

REAL

LONGREAL

BITSET

LONGBITSET

CHAR

SPC MODULA-2 V1.4 Compiler

BOOLEAN

Enumerationen

SET OF

PROCEDURE

POINTER TO

zusammengesetzte

Typen

Kompatibilitat

Zuweisungs-

Kompatibilität

O BOOLEAN - der Typ umfaßt die Werte TRUE und
FALSE und belegt 1 Byte.

Q Enumerationstypen - belegen 1 Byte, d.h. die Anzahl
der Elemente ist auf 256 beschränkt.

OQ SET OF - Typen belegen 2 oder 4 Bytes, d.h. die
Anzahl der Elemente ist auf 32 beschränkt.

0 PROCEDURE - Typen belegen 4 Bytes, da sie auf
Pointers zurückgeführt werden.

O POINTER - Typen belegen 4 Bytes.

Der Compiler legt alle Datenelemente, die mehr als ein
Byte belegen, auf geraden Adressen ab. Alle 1 Byte

Typen können auch auf ungeraden Adressen zu liegen

kommen.

MODULA-2 verlangt bei allen Ausdrücken, daß die be-

teiligten Operanden vom gleichen (kompatiblen) Typ

sind. Dadurch verbietet es sich, INTEGER Operanden

mit CARDINAL Operanden zu vergleichen, usw. Nöti-
genfalls müssen die Operanden durch eine typkonver-

tierende Funktion auf den richtigen Typ gebracht wer-

den. Die Konvertierungsfunktionen werden später

dokumentiert.

Bei der Zuweisung von Werten an Variablen und bei

der Übergabe von Parametern (nicht VAR-Parameter)

wird bei MODULA-2 eine großzügigere Regelung an-

gewandt, indem bestimmte Typen zuweisungskompati-

bel sind. INTEGER und CARDINAL sind zuweisungs-
kompatibel, d.h. ein INTEGER-Wert darf einer CAR-

DINAL-Variable ohne weitere Konvertierung zugewie-

sen werden, und umgekehrt. Weiterhin sind bei SPC
MODULA-2 die Typen LONGCARD, LONGINT, CAR-
DINAL und INTEGER untereinander sowie die Typen
REAL und LONGREAL untereinander zuweisungskom-

patibel. INTEGER und REAL dagegen sind nicht zuwei-
sungskompatibel und müssen explizit mit entsprechen-

den Konvertierungs-Funktionen umgewandelt werden.

5 - 10 Compiler SPC MODULA-2 V1.4

i= Man beachte, daß bei Typverengungen u.U. Über-
laufe auftreten können.

Eine andere Möglichkeit, den Typ einer Variablen oder

Konstanten zu ändern ist durch den sogenannten Typ- [YPtransfers - VAL
transfer gegeben. Ein Typtransfer schaltet einfach vor-

übergehend die Typprüfung des Compilers ab. Es wird
kein Code zur Konversion des Typs erzeugt. Das Er-

gebnis eines Typtransfers ist von der Bit-Repräsenta-

tion des Eingangs- und des Ausgangstyps abhängig.

Ein Typtransfer ist deshalb hochgradig system-

abhängig. Die Typtransfer-Funktion VAL wird deshalb

bei SPC MODULA-2 von dem Pseudo-Modul SYSTEM
exportiert, wodurch sich Moduln, die Typtransfers ver-

wenden, explizit als systemabhängig erklären müssen.

~ SPC MODULA-2 V1.4 Compiler 5-11

Pseudomodul

SYSTEM

ADDRESS und ADR

BYTE und
ARRAY OF BYTE

WORD

SETREG und REG

LONG und SHORT

Weitere systemabhängige Typen und Funktionen wer-

den von dem Pseudo-Modul SYSTEM exportiert.
SYSTEM wird deshalb als Pseudo-Modul bezeichnet,
da es keinen DEFINITION MODULE dafür gibt. Viel-
mehr sind die von SYSTEM exportierten Elemente dem
Compiler selbst bekannt. Zum Zwecke der Dokumen-
tation ist die Schnittstelle von SYSTEM jedoch in An-
hang B als DEFINITION MODULE aufgeschrieben.

Zu den Elementen von SYSTEM gehört insbesondere
der Datentyp ADDRESS und der ADR-Operator, der
die Adresse einer Datenstruktur liefert. Der Datentyp

ADDRESS ist kompatibel mit jedem POINTER-Typ,
sowie mit dem Typ LONGCARD, wodurch Adress-
Arithmetik möglich wird. Die Adresse einer Datenstruk-

tur erhält man durch die Konstruktion ADR(<Variable>).

Der Datentyp BYTE repräsentiert die kleinste auf der

Maschine adressierbare Speichereinheit. BYTE wird
nicht interpretiert. ARRAY OF BYTE ist mit jedem Typ

kompatibel.

Der Datentyp WORD repräsentiert ein Maschinenwort.
Beim ATARI ST belegt WORD 2 Bytes und liegt immer
auf geraden Adressen. WORD wird nicht interpretiert.

Der Zugriff auf Register des MC68000 ist über die

Funktionen SETREG und REG möglich. Die Register
werden mit Indizes von O bis 15 bezeichnet. DO hat

den Index 0, AO 8 und A7 hat den Index 15. Das Er-

gebnis von REG ist vom Typ LONGINT. Das Argument
von SETREG ist vom Typ LONGINT oder von einem
Adress-Typ.

Die Funktion LONG akzeptiert INTEGER- oder CAR-
DINAL-Argumente und liefert ein LONGINT-Ergebnis
zurück. Die Funktion SHORT dagegen wandelt
LONGINT- oder LONGCARD-Argumente in INTEGER-
Ergebnisse um. Die Funktione zählen damit zu den
Typkonvertierungs-Funktionen.

5-12 Compiler SPC MODULA-2 V1.4

Die Funktion SHIFT akzeptiert einen skalaren Typ als

Argument und schiebt das Bitmuster um N Bits nach

links oder rechts, je nachdem ob N größer oder kleiner

QO ist.

Die Funktion VAL realisiert den Typtransfer. Da sie

einen Modul systemabhangig macht, wird sie bei SPC
MODULA-2 von SYSTEM exportiert. Dadurch ist der
Programmierer gezwungen, explizit aus SYSTEM zu
importieren und seinen Modul so deutlich als system-

abhängig zu markieren. Für den Typtransfer mit VAL

wird kein zusätzlicher Code erzeugt (unsafe Transfer).

Die Prozedur INLINE erlaubt es, in einem Modul
Maschinscode-Sequenzen abzusetzen. INLINE akzep-
tiert beliebig viele (bis zu einer Obergrenze) CAR-
DINAL-Argumente. Die Argumente werden ohne wei-

tere Interpretation in den Code eingefügt. Man be-
achte, daß durch die Funktionen REG, SETREG, ADR
und das unten erläuterte Konzept der Code-Pro-
zeduren normalerweise keine Notwendigkeit für IN-

LINE-Code entsteht.

SHIFT

VAL

INLINE

SPC MODULA-2 V1.4 Compiler 5-13

CODE- |

Prozeduren

das Betriebssystem

aufrufen

Beispiel

FORWARD

SPC MODULA-2 stellt sogenannte CODE-Prozeduren
zur Verfügung. Dadurch ist es elegant möglich, Be-

triebssystemaufrufe über Traps abzusetzen, ohne auf
INLINE-Statements angewiesen zu sein. Eine CODE-
Prozedur hat einen Prozedurkopf (Name und Parame-

terliste) wie jede andere Prozedur auch. Der Prozedur-
rumpf wird jedoch duch die Konstrktion CODE <N>
ersetzt. Der Compiler wird beim Aufruf der Prozedur
zunächst die Parameter auf den Stack bringen, und

dann die Prozedur aufrufen, indem er <N> als Code
absetzt. Die Deklaration

ConOut (Ch : CHAR; Func02 : INTEGER); CODE
4E41H;

beschreibt die Schnittstelle zur GemDos-Funktion

Nummer 2.

0” Man beachte, daß die Systemaufrufe auf dem ATARI
ST erwarten, daß der rufende Modul den Stack

abräumt. Dazu ist in SPC-MODULA-2 noch ein

kurzes INLINE-Codestück erforderlich.

Die Anbindung an Systemaufrufe mit Codeprozeduren

ist am Beispiel des Moduls GemDos in Anhang H er-

läutert.

In SPC MODULA-2 müssen alle Prozeduren vor ihrem

erstmaligen Aufruf deklariert werden. Eine Prozedur, die

im DEFINITION MODULE deklariert ist, ist offensichtlich

immer vor ihrem ersten Aufruf deklariert. Bei lokalen

Prozeduren ist die Reihenfolge meist durch die Hin-

schreibung der Prozeduren einhaltbar. In Ausnahmefäl-

len muß eine Prozedur FORWARD deklariert werden.

Dazu wird der ganze Prozedurkopf z.B. am Anfang des
Moduls wiederholt, und der Prozedurrumpf durch das
Statement FORWARD ersetzt. Die FORWARD Deklara-
tion muß die volle Parameterliste enthalten und auf der

selben Schachtelungstiefe erfolgen, wie die Prozedur-

deklaration selbst.

5-14 Compiler SPC MODULA-2 V1.4

Standard-Prozeduren sind vordefinierte Prozeduren
oder Funktionen, die dem Compiler selbst bekannt
sind, und die nicht explizit importiert werden müssen.

Die Standard-Prozeduren in SPC MODULA-2 sind in
alphabetischer Reihenfolge:

ABS(x) x ist vom Typ INTEGER, LONGINT, REAL oder
LONGREAL (oder dazu zuweisungskompatibel). Das
Ergebnis ist der Absolutbetrag des Arguments und ist

vom gleichen Typ wie das Argument.

CAP(ch) ch ist vom Typ CHAR. Falls ch ein Klein-
buchstabe ist, dann liefert CAP den entsprechenden
Großbuchstaben, sonst ch. Das Ergebnis von CAP ist

mithin vom Typ CHAR.

CHR (x) x ist vom Typ INTEGER (oder dazu zuwei-
sungskompatibel). Das Ergebnis ist vom Typ CHAR

und enthält das Zeichen mit der Ordnungsnummer
(Ordinalität) x.

DEC (x,n) x ist ein skalarer Typ. DEC erniedrigt die
Ordinalität von x um n. n ist folglich vom Typ IN-
TEGER. Die Form DEC (x) erniedrigt x um 1.

EXCL (s,i) s ist ein SET-Typ, i ist vom Basistyp von s.
Es wird die Operation s:= s - i ausgeführt.

FLOAT (x) x ist vom Typ INTEGER oder LONGINT. x
wird in einen REAL-Wert konvertiert und als Ergebnis

zurückgeliefert.

FLOATD (x) konvertiert x in die LONGREAL Darstel-
lung. |

HALT beendet die Programmausfuhrung.

HIGH (a) a ist ein Array oder ein Array-Typ. Das Er-
gebnis ist vom yp INTEGER und enthalt den höchsten
Index des Arrays a. Man beachte, daß bei sogenann-

ten Conformant Arrays der niedrigste Index zu 0 an-
genommen wird. Die Länge ergibt sich dann zu

HIGH(a)+1.

Standard-

Prozeduren

ABS

CAP

CHR

DEC

EXCL

FLOAT

FLOATD

HALT

HIGH

SPC MODULA-2 V1.4 Compiler 5-15

INC

INCL

MAX

MIN

ODD

ORD

SIZE

TRUNC

TRUNCD

INC (x,n) x ist ein skalarer Typ. INC erhöht die Ordina-
lität von x um n.n ist folglich vom Typ INTEGER. Die

Form INC (x) erhöht x um 1.

INCL (s,i) s ist ein SET—Typ, i ist vom Basistyp von s.
Es wird die Operation s:= s + i ausgeführt.

MAX (t) t ist ein skalarer Typ (einschlieBlich REAL und
LONGREAL). Das Ergebnis ist ebenfalls vom Typ t und
enthält den höchsten durch den Typ t darstellbaren

Wert.

MIN (t) t ist ein skalarer Typ (einschließlich REAL und
LONGREAL). Das Ergebnis ist ebenfalls vom Typ t und
enthält den niedrigsten durch den Typ t darstellbaren
Wert.

ODD(x) x ist vom Typ INTEGER, LONGINT, CARDINAL
oder LONGCARD. Das Ergebnis von ODD ist vom Typ
BOOLEAN und zeigt an, ob x ungerade ist.

ORD (x) x ist vom Typ INTEGER, CARDINAL, CHAR
oder ein Enumerationstyp. Das Ergebnis ist vom Typ

INTEGER und gibt die Ordnungsnummer des Argu-

ments innerhalb des Argumenttyps an.

SIZE (x) x ist entweder eine Variable oder ein Typ. Das
Ergebnis ist vom Typ INTEGER und enthalt die Anzahl
von Bytes, die die Reprasentierung von x belegt.

i= Man beachte, daß SIZE nicht von SYSTEM importiert

wird und TSIZE ersetzt.

TRUNC (x) x ist vom Typ REAL. Das Ergebnis vom Typ

INTEGER enthält den ganzzahligen Anteil von x.

TRUNCD (x) x ist vom Typ LONGRAL. Das Ergebnis
vom Typ LONGINT enthält den ganzzahligen Anteil von
X.

5 - 16 Compiler SPC MODULA-2 V1.4

Die Codegröße eines Moduls ist bei SPC MODULA-2

auf 32k Bytes beschränkt. Die gesamte Codegröße

eines Programms ist nicht beschränkt.

Die Größe des globalen Datenbereichs eines Moduls

ist auf 32k Bytes beschränkt. Die gesamte Größe aller
Datenbereiche ist nicht beschränkt. Außerdem ist die

Göße der dynamisch allokierten Datenbereiche nicht

begrenzt.

Der Ergebnistyp von Funktionsprozeduren kann nur 1,
2, 4 oder 8 Bytes lang sein. Darin sind alle elemen-

taren Datentypen enthalten.

Die Obergrenze eines Unterbereichstyps muß kleiner

als 215 sein. Der Wertebereich eines Unterbereichstyps

darf ebenfalls nicht mehr als 215Elemente umfassen.

Opake Typen sind auf POINTER-Typen beschränkt.

Enumerationstypen können maximal 256 Elemente

haben.

SET Typen können maximal 32 Elemente haben.

Restriktionen

SPC MODULA-2 V1.4 Compiler 5-17

Diese Seite wurde aus

satztechnischen Grunden frei

gelassen

5-18 Compiler SPC MODULA-2 V1.4

Der Debugger

Das SPC-MODULA-2 Sprachsystem verfügt über einen

symbolischen Debugger. Der Debugger erlaubt, die

Datenbestände der geladenen Moduln und der zum

Zeitpunkt des Debugger-Aufrufes aktiven Prozeduren

zu untersuchen. Alle Informationen werden auf Source-

Ebene, also mit den MODULA-2 Variablen- und Pro-

zedurnamen angezeigt. Dadurch ist es sehr schnell

möglich zur Fehlerursache vorzustoßen. Die Anzahl der
Testläufe kann durch den Debugger verringert werden.

Der Debugger ist vollständig in SSWiS integriert. Bei

seiner Aktivierung Öffnet er 5 Fenster, die in gewohnter |

Weise mit der Maus bedient werden können. Die ver-

schiedenen Fenster zeigen verschiedene Daten-

bestände, Programmtext. die Prozeduraufrufkette, etc.

SPC-MODULA-2 erkennt bestimmte Laufzeitfehler, die

den weiteren Ablauf des Programms gefährden. Hierzu

zählen

oa Zuweisungen von Werten, die außerhalb des zulässi-

gen Wertebereichs liegen,

arithmetische Über- oder Unterläufe,

Division durch O, Verletzung von ARRAY-Indexberei-

chen,

a Zugriffe über korrumpierte POINTER, etc.

Die Erkennung von arithmetischen Über- und Unter-

läufen, sowie die Überwachung von ARRAY-Indizes

erfordert zusätzlichen Code und -kann über Optionen
des Compilers ein oder ausgeschaltet werden. Das

Laufzeitsystem gibt nach einem erkannten Fehler die

Möglichkeit, das Programm abzubrechen, es fortzufüh-

ren oder den Debugger zu aktivieren.

Kapitel 6

Übersicht

gm

Laufzeitfehler

SPC MODULA-2 V1.4 Debugger

Procedures-

Fenster

Source-

Fenster

Eine weitere Möglichkeit ist, den Debugger an einer

bestimmten Stelle aus einem Programm heraus explizit

zu aktivieren, indem z.B. einer der oben beschriebenen

Fehler absichtlich erzeugt wird.

Nach dem Start des Debuggers sind 3 neue Fenster

geöffnet worden. Sie zeigen die Prozeduraufrufkette

zum Zeitpunkt des Fehlers, die Fehlerursache, den

Quelltext des fehlerhaften Moduls (falls vorhanden) und
die lokalen Variablen der fehlerhaften Prozedur.

Das Procs Fenster zeigt die zum Zeitpunkt der Akti-

vierung des Debuggers aktiven Prozeduren und die

Moduln, zu denen die Prozeduren gehören. Die un-

terste Zeile nennt die zuerst aufgerufene Prozedur. Die

zweitunterste die von der ersten aufgerufenen, usw. In

der ersten Zeile ist die Fehlerursache angegeben (z.B.

Index/Range Error).

 oo fe A

Das Source Fenster zeigt den Quelltext eines aus-
gewählten Moduls. Zu Beginn wird der Quelltext des
fehlerhaften Moduls gezeigt. Dabei ist die Zeile mit

dem fehlerverursachenden Statement fett gedruckt. Der

Debugger sucht die Quelltexte von Moduln nach dem

gleichen Verfahren wie der Compiler. also unter Ver-

wendung der Environment-Variablen PATH<N>. Falls

Debugger SPC MODULA-2 V1.4

der Quelltext nicht gefunden wurde, gibt der Debugger

die Meldung -no sourcefile- aus.

5 HIERHER "Sgurce u ae hota EST EEE Digs esha didn’ Dass: | 8

Fi \GEMDOS\ETC\Hel lo. HOD”
hritelnt (EvenNumber, 2); Writeln; o
~ct=. x (EvenNunmber] 5~ zu
"Wait:

IF EvenHumber = 6 THEN RETURW ELSE CountOdd (EvenNumber-1) END; pret
END CountEven; pnd

PROCEDURE CountOdd (OddNumber : INTEGER); =
&

of M >| 7

Das Data-1 Fenster enthält die Variablen der im Procs

Fenster ausgewählten Prozedur. Zu Beginn ist dies die

fehlerhafte Prozedur. Die Variablen werden mit ihrem

Namen, ihrem Typ und ihrem Wert ausgegeben. Falls

es sich dabei um einen strukturierten Datentyp (ARRAY

oder RECORD) oder um einen POINTER handelt, dann

ist durch einen Stern (*) angedeutet, daß weitere

Details ausgewählt werden können. Dieses erfolgt

durch Anklicken der entsprechenden Zeile des Data-1

Fensters. Die derzeit angezeigte Variable wird in der

Überschrift des Fensters bezeichnet. Es können auch

die lokalen Variablen aller anderen aktivierten Pro-

zeduren gesichtet werden. Dazu muß

im Procs Fenster angeklickt werden.

Data_l

Eyenhunber
iEven

| 6 INTEGER
-32768 INTEGER

nur die Prozedur

aX i.

Data-Fenster

SPC MODULA-2 V1.4 Debugger

Modules- Im Modules Fenster werden alle geladenen Moduln

| angezeigt. Durch Anklicken eines Modulnamens wer-

Fenster den dessen globale Variablen im Data-2 Fenster an-
gezeigt. Wird beim Auswählen gleichzeitig die Alter-

nate-Taste gedrückt, dann wird der Quelltext des

Moduls im Source Fenster angezeigt.

Das Data-2 Fenster zeigt die globalen Variablen eines

ausgewählten Moduls. Bedienung und Anzeigeformat

sind beim Data-1 Fenster beschrieben.

mY «Modules __ 18

8 xShell a5BßFß |o
1 InQut 467CC
2 AESForms 46B42
3 AESObjects 46F18
4 AESResources A712E
5 AltResource A771E
6 YVOIAttributes 48028
? VDIControls 485D8
8 VDIQutputs 4BEFB |
9 ASCII 48FBO

18 MathLib 49648
11 Clock 49D4A
12 CmdLine 4A3C2 |;
13 Environment 4AFD2 |. :
14 HFS 4BönG |.
15 JEL 4CB2C |:
16 NumberConversion 4CFE6

ne ID

Client & ModuleHandles
Kit FALSE BOOLEAN
LastSelection * 68 ARRAY
Defaultlall 3 INTEGER
MsgTimeout * 8 Time
SaveEnv FALSE BOOLEAH
Desk * 96EBE TreePtr
RscData (opaque) DataPtr
CmdStack * 2048 ARRAY
CmdTos 1 INTEGER
Objects * 5440 ARRAY

%

J | “Pre

6-4 Debugger _ SPC MODULA-2 V1.4

Der Debugger wird über das File-Menü durch Selek-

tieren des Eintrages Quit verlassen. Danach erscheint
wieder die Meldung des Laufzeitsystems mit der Frage,

ob das Programm fortgesetzt oder abgebrochen wer-

den soll.

0” Man beachte, daß ein Programmmabbruch u.U. dazu

führt, daß globale Resourcen nicht wieder freigege-

ben werden, und es deshalb in der Folge zu Fehlern

kommen kann.

Debugger
verlassen

SPC MODULA-2 V1.4 Debugger

Diese Seite wurde aus

satztechnischen Gründen frei

gelassen

Debugger SPC MODULA-2 V1.4

Die Utilities

Das SPC MODULA-2 Sprachsystem enthält eine Reihe

von Utilities, die die Leistungen des Systems abrunden.

Hierzu gehören insbesondere

O Filer, er unterstützt die Arbeit mit Dateien und Ord-

nern.

Prelink, damit können einzelne Moduln in eine einzige
Datei zusammengefaßt werden. Das Laden von

Moduln wird dadurch beschleunigt.

Link, die Utility gestattet es, aus einzelnen .OBM

Dateien ein unter GEM ladbares Programm zu

erstellen.

Print, zum Ausdrucken von Textdateien.

Paths, zum Setzen der Compiler Suchpfade.

SetEnv, zum Setzen und Abfragen von Environment-

Variablen,

DecObm, zum Dekodieren von .OBM Dateien in

Assembler Source-Form.

Make, zur Automatisierung des Compilationsprozes-
ses.

Die Liste der Utilities wird standig erweitert. Soweit die

Utilities zum Sprachsystem im engeren Sinne gehören

(Standard-Utilities), werden registrierte Benutzer im
Rahmen des Update-Verfahrens damit versorgt.

Darüberhinaus erhalten unabhängige Anbieter über die

SPC MODULA-2 Vertriebswege die Möglichkeit, zu-
sätzliche Utilities anzubieten.

Kapitel 7

SPC MODULA-2 V1.4 Utilities

Diese Seite wurde aus

satztechnischen Gründen frei

gelassen

Utilities SPC MODULA-2 V1.4

Bei der Softwareentwicklung entstehen viele Dateien.

Einige davon werden nur vorübergehend benötigt, an-

dere wiederum sind so wichtig, daß sie innerhalb des

Systems mehrmals vorhanden sein sollten, um Daten-

verlusten vorzubeugen. Ein sinnvolles Arbeiten mit Da-

teien ist aber nur bei einer klaren Strukturierung der
gesamten Dateimenge möglich. So ist es ein Muß

jeder Softwareentwicklungsumgebung, Werkzeuge
sowohl zum Bearbeiten von Dateien als auch zum
Modifizieren des Dateisystems zur Verfügung zu stel-

len. Wichtig ist dabei, daß diese Arbeiten schnell,

effektiv und ohne großen Aufwand seitens des Pro-

grammierers vonstatten gehen können.

Die File-Utility wurde unter diesen Gesichtspunkten

geschrieben. Dabei wurde besonders darauf geachtet,

daß alltägliche Arbeiten elegant und ohne großen Auf-
wand erledigt werden können.

Der Filer wurde so konzipiert, daß einerseits dem Be-
nutzer eine homogene und leicht zu steuernde Kom-
mandomenge zur Verfügung steht und andererseits alle

in der Entwicklungsumgebung notwendigen Datei-

operatoren auch komplexerer Natur vorhanden sind.

Um dies zu realisieren wurde das Grundprinzip

"Erst Auswallen, dann Bearbeiten

eingeführt, dessen Vorteile Sie im folgenden und beim

Arbeiten mit dem Filer sehen werden. Im Gegensatz

zur kommandozeilenorientierten Eingabe (zuerst Kom-

mando dann Auswahl) ist das Auswählen unabhängig

vom Kommando selbst. Dadurch kann eine nahezu

beliebige Menge von verschiedenen zu bearbeitenden

Elementen (Dateien, Ordner, Laufwerke) für eine

Operation zusammengestellt werden. Ein weiterer Vor-

teil liegt darin, daß die Operation unabhängig vom Typ

der Operanden wird, da Sie diesen selbstständig er-

kennt. Der Benutzer kann somit seine Anweisungen auf

Der Filer

Erfordernisse der

Softwareentwicklung

Konzeption

Grundprinzip

SPC MODULA-2 V1.4 Utilities

Feineinstellung von

Kommandos

Beispiel: Backup mit

dem Filer

einer hohen Abstraktionsebene eingeben. Er braucht

sich beispielsweise keine Gedanken mehr darüber zu

machen, wie sich ein Datei-Löschen-Kommando von

einem Ordner-Löschen-Kommando .unterscheidet. Er

wählt einfach das zu löschende Element - sei es Datei

oder Ordner — aus, und die Sache ist erledigt.

Ein ebenfalls beachtenswerter Aspekt ist die

Feineinstellung von Kommandos. Wenn der Benutzer
beispielsweise einen Kopierbefehl gibt, werden norma-
lerweise die Dateien entsprechend kopiert und even-

. tuelle Fehlermeldungen bzw. Erfolgsmeldungen aus-

gegeben. Der Filer wurde nun so erweitert, daß der

Benutzer nicht nur das Was sondern auch das Warum

seines Kommandos angeben kann. Ein einfaches Bei-

spiel soll dies aufzeigen:

Stellen Sie sich vor, Sie möchten eine Datei aus

Sicherheitsgründen auf ein anderes Laufwerk kopieren.

Sie bearbeiten diese Datei des Öfteren und kon-

sequenterweise ist auch jedesmal ein Sichern auf ihr

Backup-Laufwerk notwendig. Das Problem stellt sich

Ihnen nun bei mehreren Dateien, sagen wir ca. 20. Da

Sie bei dieser Anzahl nicht mehr den Überblick haben
können, welche Dateien alt und welche neu sind, bleibt

Ihnen nichts anderes übrig als ständig alle alten Back-
ups zu löschen und die Dateien neu auf Ihr Backup-

Laufwerk zu kopieren. Dabei können Sie z.B. ver-
sehentlich auch Dateien löschen, die sich nur noch auf

Ihren Backup-Laufwerk befinden. Fazit: Sie brauchen

ein Backup-Programm oder den FILER. Wenn Sie dem
Filer sagen: ‘‘Kopieren (=was) wegen Backup.
(=warum)” sind Sie Ihre Sorgen los. Durch Setzen des
BackupFlags der Kopieranweisung wird dem Filer klar,

warum Sie kopieren wollen und er reagiert ent-
sprechend: Dateien, die noch nicht auf dem Backup-

Laufwerk vorhanden sind, werden ganz normal kopiert.
Bei Dateien, die bereits vorhanden sind, wird in Ab-

hängigkeit des Schreibdatums der Dateien kopiert: Ist

das Original neuer, wird kopiert, ansonsten nicht. Ist

Utilities SPC MODULA-2 V1.4

Ihnen das noch nicht genug, dann können Sie zusätz-

lich zum Backup noch ein Verify verlangen: Jetzt wer-

den Original und Kopie noch byteweise verglichen.

Mit den Kommandoflags kann somit ein hoher Dif-

ferenzierungsgrad ein und derselben Operation erreicht

werden. Dabei wird für den Benutzer die Aktions-

eingabe nicht schwieriger sondern eher verständlicher

und dies trotz höherer Ablaufkomplexität. Ferner ist der

Gesamtablauf der Kommandos über Flags beeinfluß-

bar. So wird der Filer den individuellen Wünschen ge-
recht (Was für den einen die Sicherheit ist, ist für den

anderen die Geschwindigkeit, die Information, etc.).

Es ist unbestreitbar, daß die Verwaltung einer elegan-

ten Benutzeroberfläche mit “mitdenkenden” Operatoren

ihren Preis - nämlich Performance-Einbußen - hat.

D.h., es gibt sicher ein Super-Hyper-Kopierprogramm,

das vielleicht 20-50% schneller kopiert. Aber kann die-

ses Programm z.B. auch alle Dateien von Laufwerk C:,
D: und E: als Backup auf Laufwerk F: kopieren? Selbst

wenn es dies kann, wird es beim zweiten Backup die

Segel streichen müssen, da der Filer nur noch viel-
leicht 10% der Dateien real kopieren muss. Weiterhin

sollte man bei Vergleichen, die Zeit, die man selbst

braucht um komplexere Aktionen zu starten, mit-

berücksichtigen. Im Übrigen entscheiden Sie selbst

über Kommandoflags, ob Sie den Filer zeit-, arbeits-

oder sicherheits-optimierend einsetzen wollen.

Um den individuellen Arbeitsweisen gerecht zu werden,

werden — soweit möglich und sinnvoll — beide Ein-

gabearten, d.h., maus- (menue-) und tastaturorientiert,

unterstützt. Die Funktionalität der einzelnen Komman-

dos wird zumeist anhand der mausorientierten Eingabe
beschrieben. Die zugeordneten Tastaturkommandos

folgen im Anschluß.

Performance

Eingabearten

SPC MODULA-2 V1.4 Utilities

Beenden

Auswählen -

Prinzipielles

Kommandotypen

Selection und

Destination

Fensteranwahl

Wenn Sie den Filer beenden wollen, so wählen Sie

den Menuepunkt ‘Quit’ im ‘Command’—Menue an, oder

drucken Sie einfach die Taste ©. Der Filer wird damit

beendet. Bitte beachten Sie, daß die SSWIS-Um-

gebung es Ihnen erlaubt, durch Aktivieren des Fensters

eines anderen SSWiS-—Programms sofort zu diesem
wechseln können, ohne den Filer zu verlassen.

Getreu dem Motto “Zuerst Auswählen dann Bearbei-

ten” wird auch das Erstellen der Auswahl zuerst be-

schrieben. Wenn Sie den Filer aktiviert haben (siehe
dazu xShell) meldet er sich, indem zwei Fenster geöff-
net werden. Zusätzlich erscheint im Terminal-Fenster

die Versionsnummer des Filers. Es gibt Kommandos

mit einem und mit zwei Parametern:

OQ Kommandos mit einem Parameter: z.B. Information

über “irgendwas” oder Löschen von “irgendwas”

D Kommandos mit zwei Parametern: z.B. Kopieren von

“irgendwas” nach “irgendwohin” oder Bewegen von

“irgendwas” nach “irgendwohin”

Der erste Parameter, das “irgendwas”, wird als Selec-
tion und der zweite, das “irgendwohin”, als Destination

bezeichnet. Um Mißverständnissen bei der Auswahl

vorzubeugen, erhält jeder Parameter sein eigenes Aus-

wahlfenster (Filer-Selection, Filer-Destination).

Sie sind vermutlich mit Ihren System soweit vertraut,

daß Sie wissen, daß Eingaben nur im obersten, d.h.
aktiven Fenster möglich sind. Sie können durch An-
klicken mit der Maus ein nicht-aktives Fenster nach

oben holen und aktivieren. Zwischen den Filer-

Fenstern können Sie zusätzlich auch durch Drücken

der Leertaste oder Anwählen des Menuepunktes

‘Switch’ im ‘'Command’-Menue umschalten. Die
Fenster-Infozeile beinhaltet den aktuellen Pfad mit dem

Auswahlkriterium -soweit längenmäßig darstellbar-, die

Anzahl der Ordner (Fol:) und die Anzahl der Dateien

(Fil:) des eingestellten Pfades. Ist kein Laufwerk geöff-

Utilities SPC MODULA-2 V1.4

net, enthält sie nur ‘Drives’ (Laufwerke). Im Innern der

Fenster werden die Namen der Dateien angezeigt, die

auf dem aktuellen Pfad dem Auswahlkriterium unterlie-

gen. Die Anzeige beginnt immer mit dem Schließsym-
bol ”..” und nachfolgend den Ordnern des Pfades. Die

dargestellten Dateien sind nach Namen, Größe oder

Erstellungsdatum sortierbar. Dies geschieht durch An-

wählen des entsprechenden Menuepunktes im Menue

Param oder durch Drucken der Tasten . (Namen), +

(Datum) oder & (Größe) der Tastatur.

Das Maus-Handling des Filers ist dem der GemDos-

Oberfläche angepaßt. Sie können Laufwerke und Ord-

ner durch Doppelklick Öffnen, wie auf dem Desktop. Im

Unterschied zum Desktop befinden sich jedoch keine

Laufwerkssymbole auf der Arbeitsoberfläche, sondern

diese sind als Urpfad in den Auswahlfenstern zu errei-

chen. Ist ein Laufwerk oder ein Ordner geöffnet wor-
den, erscheint in der ersten Zeile ein Ordnersymbol mit

dem Namen ”..”. Dies repräsentiert das Laufwerks/
OrdnerschlieBsymbol. Ein Anklicken oder Doppelklicken

dieser Zeile schließt den entsprechenden Pfad wieder.

Wenn Sie beispielweise das Laufwerk D: und darauf
einige Ordner geöffnet haben, können Sie das aktuelle
Laufwerk durch Anklicken aller erscheinenden Ord-
nerschließsymbole bis zum Urpfad wieder verlassen,

um anschließend ein anderes Laufwerk zu Öffnen. Dies
ist jedoch im allgemeinen der umständlichere Weg.

Einfacher geht es, wenn Sie im Menue Drives, den

MenuePunkt “Drives” oder sogar gleich das ge-

wunschte Laufwerk anklicken. Noch schneller geht es

mit Hilfe der Tastatur: Wenn Sie auf Laufwerk E: um-
schalten möchten, geben Sie einfach ein 5 ein! Analog

können Sie auf jedes Laufwerk Ihres Systems ge-
langen. Durch Drücken der © auf der Tastatur (nicht

auf dem numerischen Block!) erreichen Sie den Ur-
pfad. Die nächste Frage, die sich stellt ist, wie gelange

ich schnell zum Ausgangspfad auf D: zurück ? Auch

hier ist es mit einem Klick oder einem Tastendruck ge-

Ordner und

Laufwerke

Umschalten

zwischen Lauf—

werken

SPC MODULA-2 V1.4 Utilities

sichtbare Dateien

einstellen

Standardtypen
festlegen

schehen. Der Filer speichert für jedes Laufwerk den

zuletzt angewählten Pfad und setzt diesen als Lauf-

werks-Standardpfad ein. Da dies auch lästig sein kann,
wird durch wiederholtes Anwählen der gleichen Lauf-

werkskennung die oberste Ebene des angewählten

Laufwerks erreicht. Im Beispiel: Einmal D und Sie sind
wieder in Ihren auf D: geöffneten Ordnern, nochmal D

und Sie sind wieder auf der Laufwerksebene von D:.

Da der Umfang der Dateien auf einem Laufwerk oder
in einem Ordner sehr groß sein kann, ist es oft günstig

der Übersichtlichkeit willen nur eine spezielle Auswahl
anzusehen. Der Filer bietet hierzu mehrere Möglich-

keiten:

i Diese Möglichkeiten bestehen nur für das Selection-
Fenster.

Grundsätzlich bietet der Filer die Typen “*.*” (alle Da-
teien und Ordner) und “{*.*}” (nur Ordner) an. Der
Benutzer kann bis zu 6 (0..5) weitere eigene Auswahl-

typen definieren. Dies geschieht über einen Dialog, der

durch Drucken der Taste J oder durch Anklicken des
Menuepunktes ‘Set Types’ im Menue ‘Special’ aktiviert
wird. Ist ein Type definiert worden, so kann er ebenso
wie die Standardtypen im Menue ‘Types’ angewahlt
werden. Auch hier ist eine tastenorientierte Anwahl
möglich: Alle Möglichkeiten liegen auf dem numeri-

schen Tastenblock. Die benutzerdefinierten Typen be-
legen die Tasten 0.5, die “*.*”-Anwahl erfolgt mit *
und die “nur Ordner”’-Anwahl mit /. Die definierten
Typen werden in einer Environment-Variablen ge-

speichert und sind beim nächsten Aktivieren des Filers

wieder vorhanden.

Die erste Möglichkeit ist für das Festlegen von

Standardtypen wie z.B. “*.MOD”, “*.DOC”, “PRO-
JEKT.*” geeignet, die nachfolgende zweite Möglichkeit

hingegen unterstützt das interaktive Umschalten im

Utilities SPC MODULA-2 V1.4

Fenster. Wenn Sie beim Anklicken eines Dateinamens
die SONTROL-Taste halten, können Sie die Typan-
wahl auf zwei Arten ändern: Entweder Klicken Sie auf

die Extension (z.B. ‘MOD’ in ‘HELLO.MOD’), dann wer-
den alle Dateien mit dieser Extension angezeigt (ent-

spricht ‘*.MOD’), oder Sie Klicken auf den Dateinamen
selbst (z.B. ‘'HELLO’), dann werden alle Dateien mit
diesem Namen und beliebiger Extension angezeigt

(entspricht ‘'HELLO.*’). Diese Typanwahl können Sie in
beiden Fällen durch Halten der GONTIROL-Taste und
Klicken auf das Schließsymbol wieder rückgängig
machen.

Im Destination-Fenster erfolgt das Öffnen, Schließen
und Memorieren von eingestellten Pfaden wie im
Selection-Fenster. Im Unterschied zu diesem werden

jedoch im Destination-Fenster nur Laufwerke und Ord-

ner dargestellt, da eine Datei als Zielumgebungsaus-

wahl nicht sinnvoll ist.

Das Selektieren von Dateien ist einfach. Sie müssen

nur im Selection-Fenster in die Zeile klicken, in der
der Name der aus- zuwählenden Datei steht. Als
Kennzeichnug der Auswahl erscheint dann am rechten
Rand des Fenstereintrags ein Pfeil. Sie können die

. Selektion wieder rückgängig machen, indem Sie diesen
Vorgang wiederholen, der Pfeil am rechten Rand ver-

schwindet dann wieder. Möchten Sie weitere Dateien

auswählen, tun Sie dies auf dieselbe Weise. Im Ge-
gensatz zum Desktop wird im Filer die vorange-

gangene Auswahl nicht zurückgesetzt. Somit können

Sie auch Dateien aus verschiedenen Ordnern oder

sogar von verschiedenen Laufwerken gleichzeitig aus-

wählen.

Wenn Sie mehrere der dargestellten Dateien in Ihre

Auswahl aufnehmen wollen, geschieht dies analog zum

Desktop: Drücken Sie die Maustaste über der obersten

(oder untersten) auszuwählenden Datei und ziehen

(draggen) Sie die Maus - bei gehaltener Taste - bis
zur untersten (bzw. obersten) auszuwählenden Datei.

Unterschiede:

Selection und

Destination

Dateien auswählen

erweiterte Auswahl

SPC MODULA-2 V1.4 Utilities

XOR Logik

Dateien eines Typs

auswählen

Ordner, Laufwerke

auswählen

Ordner-Auswahl-

Kriterium (OAK)

Sie waren erfolgreich, wenn danach alle auszuwählen-
den Dateien mit einem Pfeil gekennzeichnet sind.

Dabei ist zu beachten, daß die Auswahl eine XOR-
Logik beinhaltet, d.h., wie bei der einfachen Selektion

wird eine Datei, die bereits ausgewählt worden war

durch obige Drag-Aktion wieder aus der Auswahl ent-

fernt.

Möchten Sie alle Dateien (nicht die Ordner!) oder alle

Dateien eines Typs des gerade dargestellten Pfades in

Ihre Auswahl aufnehmen, erreichen Sie dies am
schnellsten durch Drücken der .-Taste. Ein Dialog
fragt Sie nach dem Auswahltyp und modifiziert Ihre

Auswahl entsprechend. Auch hier gilt, wie bereits oben

erwähnt, daß bereits ausgewählte Dateien dadurch

wieder aus der Auswahl entfernt werden (XOR-Logik).

Die umfangreichste Auswahlmöglichkeit des Filers be-

steht in der Selektion von Ordnern und Laufwerken.

Wir wollen uns in der Beschreibung auf Ordner kon-
zentrieren und logische Laufwerke einfach auch als

(sehr große) Ordner betrachten; das nachfolgend Ge-
sagte gilt für diese ebenso. Die Selektion eines Ord-

ners erfolgt genauso wie bereits für Dateien beschrie-

ben, also durch Anklicken mit der Maus, oder durch

Draggen über mehrere auszuwählende Elemente im

Fenster. Wichtig ist jedoch die unterschiedliche
Semantik der Auswahl:

D Wenn Sie eine Datei auswählen, ist diese und nur
diese gemeint. Wenn Sie einen Ordner auswählen, so
ist der Ordner und der gesamte Inhalt mit allen
Dateien und Unterordnern gemeint, falls diese dem

Ordnerauswahlkriterium (Foldertype) genügen!

Das Ordnerauswahikriterium ist standardmäßig auf ‘*.*’
(alles) eingestellt. Wählen Sie nun einen Ordner an,
sind damit #46 Dateien und Ordner, die sich darin ver-
bergen gemeint. In der Auflistung der Auswahl erken-

nen Sie dies am ‘*.* hinter dem Ördnernamen. Sie

7-10 Utilities SPC MODULA-2 V1.4

können das Ordnerauswahlkriterium (OAK) genauso wie

die Datei-Anzeigetypen mit ‘Set Types’ im ‘Special’-
Menue ändern. Das aktuelle OAK erkennen Sie im
Menue ‘Type’ zwischen den geschweiften Klammern

(z.B. {*.*}). Wenn Sie das OAK beispielsweise auf

* MOD’ ändern, bedeutet dies: Es ist mit Ihrer Selek-
tion der gesamte Dateibaum mit allen Ordnern ge-

meint. Aber Dateien sind nur dann betroffen, wenn Sie
das OAK, d.h., im Beispiel ‘*.MOD’ erfüllen. Sie können
also mit dieser Auswahl alle ‘*.MOD’-Dateien und Ihre

angelegte Ordnerstruktur bearbeiten.

Ein konkretes Beispiel: Laufwerk D: enthält die Ordner
D:\SPC und D:\SOURCE. D:\Source enthalte 4 ver-
schiedene Projektordner PROJ1,.., PROJ4. Mit OAK =
* MOD’ und Selektion von D:\SOURCE haben Sie alle
MOD-Dateien, die in SOURCE oder einem beliebigem
Unterordner von SOURCE stehen ausgewählt. Wenn
Sie nun F:\Backup als Kopierziel angeben, werden alle

MOD-Dateien und die gesamte Ordnerstruktur von

SOURCE in F!\BACKUP kopiert. Genauso können Sie
mit allen 'DEF’-Dateien verfahren. Sie können auch als

OAK '*.BAK’ angeben und alle BAK-Dateien auf einmal

löschen. Vergewissern Sie sich aber vor dem Löschen,

daß Sie tatsächlich nur die BAK-Dateien selektiert

haben, indem Sie sich die Selektion auflisten lassen!

Es sollte dort dann D:\SOURCE*.BAK stehen.

Zwei wichtige Bemerkungen:

B.> Ordnerstrukturen werden nur dann geändert, wenn

es sinnvoll erscheint. Wird beispielsweise ein Ordner

durch ein Löschkommando komplett geleert, so wird
auch der Ordner gelöscht. Beim Kopieren von

Ordnern wird die Ordnerstruktur auf dem Kopierziel
neu eingerichtet, vorausgesetzt sie ist nicht bereits

vorhanden. |

i> Das Andern des OAK hat keinen Einfluß auf vor-

herige Selektionen! D.h., Wenn Sie einen Ordner mit
x" ausgewählt haben und anschließend das OAK

Beispiel

Behandlung von

Ordnerstrukturen

Andern des OAK

SPC MODULA-2 V1.4 Utilities 7-11

Auswahl anzeigen

und rucksetzen

Automatische

Auswahllogik

ändern, ist für diesen Ordner immer noch ‘*.* gültig!
Dies hat den Vorteil, daß Sie diverse Ordner mit

jeweils verschiedenen OAKs selektieren können.

Allerdings ist es nicht möglich, einen Ordner gleich-

zeitig mehrfach mit verschiedenen OAK’en aus-
zuwählen. Dies wurde der Übersichtlichkeit halber

unterbunden.

Da die ausgewählten Dateien über mehrere Ordner
oder Laufwerke verteilt sein können ist es wichtig, sich

die gesamte Auswahl auflisten lassen zu können. Dies

geschieht mit dem Menuepunkt ‘Show Sel’ im Com-

mand-Menue. Genauso können Sie ihre gesamte Aus-

wahl wieder rückgängig machen, indem Sie ‘Clear Sel’

im Command-Menue anwählen. Wenn Sie tasta-

turorientiert arbeiten möchten, finden Sie diese Funk-
tionen auf der =~) wo s- (Show Sel) bzw. der 2=.-
Taste (Clear Sel). Es ist sicher sinnvoll, sich vor größ-

eren Aktionen (z.B. Löschen einer Harddisk-Partition

0.4.) die gesamte Auswahl auflisten zu lassen, insbe-

sonders dann, wenn Sicherheitsabfragen ausgeschaltet

werden!

Durch die Vielzahl der Möglichkeiten kann es pas-

sieren, daß eine Datei mehrmals ausgewählt wurde

(z.B. Ordner und Datei im Ordner). Der Filer besitzt
eine zuschaltbare Logik, die die Auswahlliste auf
solche Mehrfachauswahlen überprüft und entsprechend

verändert. Dabei wird davon ausgegangen, daß bei

Mehrdeutigkeiten die spätere Auswahl die maßgebliche

ist: Wenn Sie eine Datei in einem Ordner auswählen
und anschließend den Ordner selbst, wird die Auswahl
der Datei ignoriert. Bei umgekehrter Auswahlreihenfolge

wird der Ordner ignoriert. Diese Möglichkeit ist optional

über den Menuepunkt ‘Set Flags’ im ‘Special’-Menue
an- bzw. abschaltbar.

7-12 Utilities SPC MODULA-2 V1.4

Für Aktionen wie Kopieren und Verschieben benötigen

Sie als zweite Angabe das Ziel (Destination). Um das
Ziel für diese Aktionen auszuwählen, müssen Sie zu-

nächst zur Zielauswahl umschalten. Dies geschieht,

indem Sie das Destination-Fenster aktivieren. Die Aus-

wahl erfolgt wie im Selection-Fenster, jedoch ist nur

genau ein Laufwerk oder ein Ordner als Zielangabe

möglich. Daher wird auch durch Auswahl eines Ziel

eine eventuelle vorherige Auswahl aufgehoben. Der

ausgewählte Ordner oder das ausgewählte Laufwerk
wird durch einen Pfeil nach unten gekennzeichnet.

Auch die Auswahl kann tastaturorientiert erfolgen. Die

gesamte Funktionalität ist auf dem Cursor-Tastenblock

untergebracht. Mit der Taste Glrmoms können Sie die
tastenorientierte Auswahl an- bzw. abschalten. Wenn

Sie die Taste gedrückt haben, erscheint in jedem der

beiden Filer-Fenster ein Eintrag invertiert. Der inver-

tierte Eintrag ist die aktuelle Position Ihres Selektions-
zeigers. Sie können mit Hilfe der Cursortasten den
Selektionszeiger auf jede Datei positionieren: Mit der

Cursor-Up- und der Cursor-Down-Taste können Sie
durch das aktuell dargestellte Inhaltsverzeichnis scrol-

len. Dabei wird das Fenster automatisch so mit-
gescrollt, daß der Selektionszeiger immer sichtbar

bleibt. Mit der Cursor-Right- oder der Cursor-Left-

Taste können Sie Ordner Öffnen, bzw durch Anwahl

von ”..” schließen. Wenn Sie eine Datei oder einen

Ordner in Ihre Auswahl aufnehmen wollen, drücken Sie
wenn der Selektionszeiger auf dem gewünschten Ele-

ment steht die Inseri-Taste.

Ziel auswählen

Ziel mit der Tastatur

auswählen

SPC MODULA-2 V1.4 Utilities 7-13

Kommandos

Kommando-Flags

Verbose-Flag

Der Filer bietet folgende Grundkommandos:

Copy a Kopieren

O Move “2 Verschieben

QO Delete r® Löschen

O Rename 4 Umbenennen

Q Info 75 Informationen

Q Tree IFS Datei-Inhaltsverzeichnis

o Compare 7 Vergleichen von Dateien

QO Search EB _ Suchen von Dateien

Zur Funktionalität der einzelnen Kommandos lesen Sie

bitte den entsprechenden Abschnitt. Die Kommandos

werden durch Anwählen des Kommandonamens im

‘Command’—Menue bzw. durch Drücken der angege-

benen Funktionstasten aktiviert. Zunächst wollen wir

uns mit den Steuerungsmöglichkeiten beschäftigen.

Um die einzelnen Kommandos an individuelle Ge-
gebenheiten anzupassen, können für jedes Kommando

separat Kommando-Flags angegeben werden. Einige

der nachfolgenden Flags sind bei jedem Kommando

einzustellen, andere sind nur für ein spezielles Kom-

mando vorhanden. Die Flags lassen sich mit dem

Menuepunkt ‘Set Flags’ im ‘Special’-Menue setzen.

Die Kommando-Flags haben folgende Bedeutung:

Verbos (Geschwätzig), d.h., der Filer gibt bei den ent-
sprechenden Aktionen des Kommandos Nachricht dar-

über, was gerade getan wird. Beim ‘Info’ hat dieses

Flag eine gesonderte Bedeutung bei der Ordneran-
wahl: Es werden dann nicht nur globale Informationen

über den Ordner bzw. das Laufwerk ausgegeben, son-

dern auch über die im Ordner enthaltenen Dateien. Die

Ausgabe der Informationen erfolgt entweder ins Ter-

minal-Fenster oder auf eine angegebene Datei. Der

Ablauf der Aktion wird dadurch verlangsamt.

7-14 Utilities SPC MODULA-2 V1.4

Query (Frag mich). Ist diese Flag gesetzt, wird vom
Benutzer vor dem Ausführen einer Aktion nochmals
eine Bestätigung verlangt. Wichtig ist hierbei, daß der

Benutzer im Bestätigungs-Dialog die meisten Flags für

die laufende Aktion modifizieren kann. Diese Flag-Än-
derungen betreffen aber nur die gerade laufende

Aktion und nicht die globale Einstellung der Flags!

Darum sollte z.B. bei Lösch-Aktionen das Query-Flag
nie global abgeschaltet werden. Wenn Sie sicher sind,

daß die laufende Löschaktion korrekt ist, schalten Sie
einfach im Bestätigungs-Dialog das Query-Flag aus.

Sie werden dann für diese Auswahl nicht mehr be-

lästigt. Bei der nächsten Auswahl ist das Query-Flag
wieder vorhanden und schützt Sie so vor ungewollten
Aktionen. Der Ablauf der gesamten Aktion wird durch

die Bestätigungsanforderungen langsamer aber auch

wesentlich sicherer.

Replace (Ersetzen). Dieses Flag ist nur beim Kopieren,

Verschieben und Umbenennen vorhanden. Ist es ge-

setzt, werden Namenskonflikte mit existierenden Da-

teien auf dem Zielpfad ignoriert, d.h., eventuell vorhan-

dene Dateien gleichen Namens werden überschrieben.

Ist das Flag nicht gesetzt, gibt der Filer eine Warnmel-

dung aus und Sie können über einen Dialog entschei-

den, wie auf den Namenskonflikt reagiert werden soll.

Buffer (Puffern). Dieses Flag ist nur für Kopiervorgänge

relevant. Ist es gesetzt, so wird versucht, zuerst soviel

einzulesen wie Speicherplatz vorhanden ist und erst
anschließend wird geschrieben. Dieses Flag optimiert

damit die Ein/Ausgabeoperationen. Insbesondere wenn

Sie von A: nach B: kopieren möchten und das Lauf-
werk B: nur von Ihrem Rechner emuliert wird, können

Sie damit das Disketten-Jonglieren wesentlich redu-
zieren. Der Ablauf der Gesamtaktion wird schneller,

insbesondere dann, wenn Diskettenlaufwerke an-

gesprochen werden. Der allokierte Speicher wird im

Anschluß freigegeben, ist innerhalb des SPC-Systems

Query-Flag

Replace-Flag

Buffer-Flag

SPC MODULA-2 V1.4 Utilities 7-15

Backup-Flag

Verify-Flag

Check-Flag

wieder verfügbar (aber nicht für Accessories!).

Die nachfolgenden Flags sind nur für das Kopieren zu-

ständig und können auch nur global eingestellt werden.

Backup (Sicherungskopie). Ist dieses Flag gesetzt, wird

der Kopiervorgang als Sicherungsvorgang bewertet,

d.h., daß Namenskonflikte durchaus auftreten dürfen.

Tritt er auf, so wird angenommen, daß beide Dateien

verschiedene Versionen der gleichen Datei repräsen-

tieren. Ist nun die zu kopierende Datei neueren Da-

tums, wird die vorhandene Zieldatei überschrieben. Ist

dies nicht der Fall, ist die Sicherungskopie noch aktuell‘
und der Kopiervorgang wird unterbunden.

D“= Dieses Flag kann nur dann korrekt arbeiten, wenn

Sie Ihre Systemuhr immer setzen.

Ist dies der Fall, können Sie damit Sicherungskopien

automatisch und zeitoptimiert erstellen.

Verify (Vergewissern). Das Verify-Flag testet erstellte
Kopien auf Konsistenz mit dem Original, d.h., Original

und Kopie werden byteweise verglichen und eventuelle

Unterschiede gemeldet. Dieses Flag ist sinnvoll, wenn

Ihnen Ihre Datenkonsistenz sehr wichtig ist. Durch das

Einlesen und Vergleichen von Original und Kopie wird

die gesamte Aktion natürlich erheblich langsamer die

Datensicherheit dafür wesentlich größer.

Check (Prüfen). Das Check-Flag prüft bevor die
eigentliche Aktion anläuft, ob genügend Platz auf dem
Speichermedium vorhanden ist, um alle ausgewählten

Dateien und Ordner darauf unterzubringen. Dabei wird
der Verwaltungsverschnitt mitberücksichtigt. Die Prüfak-

tion kostet natürlich Zeit. Wird sie abgeschaltet, wird

versucht, alles zu kopieren. Eventuell riskieren Sie

damit Fehler beim Kopiervorgang. Faustregel: Bei

platzkritischen Speichermedien wie Disketten und rela-

tiv vollen Harddiskpartitions das Flag Setzen, sonst ab-
schalten.

7-16 Utilities SPC MODULA-2 V1.4

Wenn Sie das Query-Flag nicht gesetzt haben, arbeitet

der Filer das eingegebene Kommando für Ihre gesamte

Auswahl ab. Nun kann Ihen aber ein Mißgeschick pas-

siert sein und Sie müssen das Kommando abbrechen.

Hierfür können Sie die Undo-Taste benutzten. Der
Filer meldet sich mit einem Dialog, in dem Sie die
aktuelle Aktion anhalten oder abbrechen können. Der

Filer erkennt den Interrupt an vordefinierten Aufsetz-

punkten und hält entweder die Aktion an oder bricht

sie ab. Dabei werden begonnene Dateioperationen

vorher zu Ende geführt (wurde z.B. bereits begonnen

eine Kopie zu schreiben, wird diese auch ganz ge-

schrieben). Die Interrupt-Möglichkeit kann auch mit
dem Menuepunkt ‘Set Flags’ an- bzw. abgeschaltet
werden.

Wurde eine Aktion angehalten, kann Sie durch noch-

maliges Drücken der Undo-Taste wieder fortgesetzt
oder abgebrochen werden. Das Anhalten kann dazu

dienen andere xShell-Programme zu aktivieren, ohne

durch Filer-Aktivitäten Konflikte (z.B Dateizugriffskon-

flikte) zu provozieren.

Das Delete-Kommando dient zum Löschen von Da-
teien und Ordnern. Es werden nur die Directory-Ein-

träge der Dateien, bzw. Ordner gelöscht und der zu-

geordnete Platz auf dem Speichermedium freigegeben.
Um Ihre Datei physikalisch zu löschen, müssen Sie Ihr

Speichermedium formatieren. Ordner werden nur dann

gelöscht, wenn diese vollständig geleert sind. Zum

Beispiel löscht ein Ordner-Delete-Kommando mit Kri-

terium '*.BAK’ diesen nur, wenn in ihm nur ‘'BAK’-Da-

teien enthalten sind.

Flags: Verbos [an], Query [an]

Abbrechen von

Kommandos

Delete

SPC MODULA-2 V1.4 Utilities 7-17

Copy

Move

Rename

Das Copy-Kommando kopiert Ihre gesamte Auswahl

auf den eingestellten Zielpfad (Destination-Auswahl).

Es läßt sich durch die Kommandoflags vielseitig ein—

setzen.

Flags: Verbos [an], Query [an], Replace [aus],
Backup [aus], Verify [aus], Check [aus]

Das Move-Kommando verschiebt Dateien und Ordner

innerhalb eines logischen Laufwerks. Da nur die Direc-

tory-Einträge modifiziert werden und die Dateien phy-

sikalisch nicht verschoben werden, ist es im Vergleich

zu einem Kopiervorgang mit anschließendem Löschen

der Originale wesentlich effizienter. Ein weiterer Vorteil

ist, daß - abgesehen von Verwaltungsverschnitt für

verschobene Ordnerstrukturen — kein Platz auf dem

Speichermedium benötigt wird. So lassen sich auch
relativ ausgelastete Speichermedien noch leicht struk-
turieren. |

Flags: Verbos [an], Query [an], Replace [aus]

Mit dem Rename-Kommando können Sie Dateien und

Ordner umbennen. Der neue Name wird uber einen

Bestätigungsdialog abgefragt. Da das Atari-Betrieb-

system (TOS) in der derzeit vorliegenden Version ein

reguläres Ordnerumbenennen nicht erlaubt, wird diese
Aktion durch Anlegen eines neuen Ordners, Verschie—

ben der Dateien in den neuen Ordner und Löschen

des alten Ordners simuliert. Sobald die neue TOS-Ver-

sion allgemein freigegeben ist, wird auch der Filer das

direkte Ordnerumbennen unterstützen.

Flags: Verbos [an], Query [an], Replace [aus]

7-18

Utilities SPC MODULA-2 V1.4

Mit dem Info-Kommando können Sie sich detaillierte

Informationen über Dateien, Ordner oder Laufwerke

ausgeben lassen. Die Informationen werden ins Ter-

minal-Fenster bzw. auf Datei ausgegeben und umfas-

sen: Name, Größe, Zugriffsmodus, Erstellungsdatum,
Anzahl Unterordner und Dateien (für Ordner u. Lauf-

werke) sowie freier Speicherplatz (Laufwerke). Bei Ord-

nern und Laufwerken werden nur die globalen Informa-

tionen ausgegeben. Sollen hier auch Einzelheiten über

die im Ordner/Laufwerk enthaltenen Elemente aus-
gegeben werden, ist das Verbos-Flag zu setzen.

Flags: Verbos [aus], Query [an]

Das Tree-Kommando listet Ihnen das Datei-Inhaltsver-

zeichnis Ihrer ausgewählten Elemente. Auch hier kön-

nen Sie durch das Ordnerauswahlkriterium (OAK) das
Inhaltsverzeichnis einschränken. Es werden die kom-

pletten Pfadnamen der Dateien auf das Terminal-
Fenster bzw. Datei ausgegeben.

Flags: Verbos [an], Query [an]

Das Compare-Kommando untersucht zwei Dateien auf

Identität. Die zu vergleichenden Dateien müssen im

Selection-Fenster ausgewählt werden.

Flags: Verbos [an], Query [aus]

Mit dem Search-Kommando können Sie Dateien auf

Ihren Laufwerken suchen lassen. Dies ist insbesondere

bei verschachtelten Ordnerstrukturen sehr nützlich. Die

zu suchende Datei(en) wird durch einen Dialog abge-

Info

Tree

Compare

search

SPC MODULA-2 V1.4 Utilities 7-12

fragt. Der eingegebene Name muß folgender Syntax

genügen:

<EinzugebenderName> := <Laufwerke> °° <Dateiname>

wobei

<Laufwerke> := *|<LwKennung>|<LwListe>

<LwKennung> := ‘Al ... [P
<LwListe> = <LwKennung> '- <LwKennung>

<Dateiname> ‘= GEMDOS-Dateiname

Zu beachten ist, daß

OQ nur existierende Laufwerke angegeben werden soll-

ten.

Q durch Angabe der LwListe mehrere nacheinanderfol-

gende Laufwerke durchsucht werden können.

Q durch Laufwerksangabe '*' alle in Ihrem System vor-
handenen Laufwerke durchsucht werden.

a der Dateiname der GEMDOS-Konvention entspricht
und die ent- sprechenden Wildcards erlaubt sind.

Q kein Ordnerpfad angegeben werden darf.

Beispiele *HELLO.MOD : Suche alle HELLOD.MOD Dateien im

System. .

C-F*MOD : Suche alle Dateien mit Extension ‘MOD’

auf den Laufwerken C:, D:, E: und F:

AHP.* : Suche alle Dateien auf Laufwerk A:, deren
Namen mit ‘Hl’ beginnen.

Sie erhalten als Ergebnis eine Auflistung der komplet-

ten Pfadnamen der gefundenen Dateien sowie deren

Gesamtanzahl. Die Ausgabe erfolgt ins Terminal-
Fenster oder auf Datei.

Utilities SPC MODULA-2 V1.4

Die Ausgabe der verschiedenen Kommandos kann statt

in das Terminal-Fensters auch auf eine Datei erfolgen.

Dazu wählen Sie im ‘Parameter-Menue den Menue-

punkt ‘File’ an und geben den Namen der gewünsch-

ten Ausgabedatei an. Die nachfolgenden Ausgabe der

Kommandos werden nun in diese Datei geschrieben.

Wenn Sie im gleichen Menue den Punkt ‘Terminal’ an-

wählen, wird die Ausgabe wieder ins Terminal-Fenster

erfolgen. Die Ausgabedatei ist dann geschlossen und

kann beispielsweise mit dem Editor angesehen oder

mit dem Print-Utility ausgedruckt werden.

Die nachfolgenden Möglichkeiten können im Menue

‘Special’ angewählt werden.

Mit ‘FormatDrive’ können Disketten im Standardformat
formatiert werden. Es erscheint eine Dialogbox zur
Auswahl des Laufwerks (A oder B). Anschließend kann
zwischen einseitigem und doppelseitigem Formatieren

gewählt werden. Mit dem Cancel-Button kann das
Kommando in der jeweiligen Dialogbox abgebrochen

werden.

1 Vor dem Formatieren vergewissern Sie sich bitte

immer, welche Diskette im Laufwerk ist!

Mit ‘New Folder’ können Sie neue Ordner erzeugen. Im

Dialog erscheint der aktuelle Pfad im Editierfeld, so

daß Sie nur den Namen Ihres neuen Ordners eingeben
müssen. Möchten Sie den neuen Ordner nicht in der
aktuellen Umgebung anlegen, so löschen Sie den

Pfadnamen und geben Ihren gewünschten Pfad an.

Der Ordner wird erzeugt, wenn Name und Pfadname

korrekt angegeben wurden. |

Ausgabe umlenken

Disketten forma-

tieren

neuen Ordner

anlegen

SPC MODULA-2 V1.4 Utilities

Pfad explizit ändern Mit 'ChangePath’ kann die Umgebung des aktuellen
Laufwerks explizit neu eingestellt werden. Dies ist dann

sinnvoll, wenn auf einem Laufwerk von einer tiefen

Ordnerschachtelung in eine andere tiefe Ord-

nerschachtelung gewechselt werden soll.

Beispiel: Von D:\ORDA1\ORDB1\ORDC\ORDD nach
D:\ORDA2\ORDB2\ORDX. Ansonsten ist es schneller,
die Ordner zu schließen und den neuen Pfad zu Öff-
nen.

Utilities SPC MODULA-2 V1.4

Der Linker hat die Aufgabe, aus den einzelnen über-

setzten Moduln ein unter GEM ablauffähiges Programm
mit der Endung .PRG zu erstellen. Dazu geht er vom
Hauptmodul aus und sucht alle unmittelbar und mittel-

bar benutzten Moduln zusammen, verbindet sie nach
bestimmten Regeln untereinander und legt sie in einer

Ausgabedatei ab. Letztere hat den gleichen Namens-

stamm wie der Hauptmodul, jedoch die Endung .PRG.

Daneben wird ein Listing erzeugt, das über die einge-
bundenen Moduln Aufschluß gibt. Falls der Vorgang
nicht erfolgreich war, muß das Listing inspiziert wer-

den, um die Fehlerursache festzustellen. Das Listing

hat den Namen LINK.LST und liegt auf dem momen-

tanen Arbeits-Directory.

Der Linker wird über eine Standard-Kommandozeile

aufgerufen und parametriert. Sie hat die Form:

link <Modulname> [-v] [-s<Stack>]

Der <Modulname> ist der Name des Hauptmoduls. Er

darf eine Dateiendung (z.B. .MOD oder .OBM) enthal-

ten. Es wird in jedem Fall .OBM impliziert und der

Modul wird, wie alle weiteren auch, auf den Compiler-
Suchpfaden gesucht.

Die Option -v (verbose) veranlaßt den Linker, den
Fortgang des Linkens durch Angabe der Modul- bzw.

Dateinamen auf dem Terminal zu protokollieren.

Der Linker bestimmt die Stackgröße des fertigen Pro-
gramms. Diese ist normalerweise 20000 Bytes. Falls ein

anderer Wert gewünscht wird, kann er als Zahl direkt

hinter der -s Option angegeben werden.

Der Linker wird interaktiv über die xShell aufgerufen.

Der Dateiname wird dann nach dem gewohnten Ver-

fahren von der xShell beigesteuert. Die Optionen kön-
nen durch Parametrieren des Link-Icons der xShell

eingestellt werden.

Der Linker

Starten

Argumente

Stacksize

Parametrieren

SPC MODULA-2 V1.4 Utilities

Pass 1

Pass 2

Ausgabedatei

bad syntax

io errors occurred

module not found

illegal module ke

Das Linken läuft in zwei Durchgängen (Pässen) ab. Im

ersten Durchgang werden die Moduln auf den Com-

piler-Suchpfaden gesucht und registriert. Dabei wird

geprüft, ob die Modulschlüssel zueinander passen. Da

jeder Modul weitere Moduln importieren kann, läuft der

Vorgang solange, bis alle benötigten Moduln registriert

sind.

Falls keine Fehler aufgetreten sind, wird der zweite

Durchgang gestartet. Durch ihn werden alle registrier—

ten Moduln in eine einzige Ausgabedatei kopiert. Dabei

werden gleichzeitig Änderungen an den Moduln durch-

geführt, um sie untereinander geeignet zu verbinden.
Schließlich wird der Ausgabedatei ein Prolog vor-
angestellt, der die notwendigsten Initialisierungen

durchführt.

Falls auch hier keine Fehler aufgetreten sind, liegt das

fertige Programm im gleichen Ordner, in dem auch der
Hauptmodul gefunden wurde, allerdings mit der

Endung .PRG.

Fehler können mehrere Ursachen haben:

IO-Fehler können durch defekte Eingabedateien ver-

ursacht werden. In diesem Fall meldet der Linker ‘bad
syntax’ oder ‘io errors Occurred’.

Beim Erzeugen der Ausgabedatei können Probleme

dadurch auftreten, dass nicht genügend Platz auf der

Diskette vorhanden ist. Dies wird ebenfalls durch die
Meldung ‘io errors occurred’ angezeigt.

Falls die Compiler-Suchpfade nicht richtig eingestellt
sind, können Moduln u.U. nicht gefunden werden. Der

Linker meldet dann ‘module not found’.

Der haufigste Fehler wird durch inkonsistente

Modulschlussel verursacht. Der Linker meldet dann

‘illegal module key’. Die genaue Ursache ist nur aus

dem Listing zu ersehen. Dort kann mit dem Editor
nach dem Wort ‘illegal’ gesucht werden. Da der Fehler

Utilities SPC MODULA-2 V1.4

immer einen Konflikt zwischen dem von einem impor-

tierenden Modul erwarteten und dem in einem Modul

enthaltenen Schlüssel darstellt, kann der Linker nicht

bestimmen, welcher Modul fehlerhaft ist. Wenn man

aber nach weiteren Fehlerstellen sucht, wird man sehr

schnell erkennen, welcher Modul fehlerhaft ist. Dieser

muß dan noch einmal übersetzt werden.

Der Aufbau des Listings wird unten ausschnittsweise

gezeigt. Für jeden eingebundenen Modul wird ein Ein-

trag erzeugt, der Aufschluß gibt über

QO)

C)

oO

die Datei, die den Modul enthält

den Modulschlüssel

die Längen des Code-, Daten- und Konstanten-

bereichs

die Zahl der exportierten Prozeduren (inklusive der

Modulinitialisierung)

die relative Adresse des Modul-Deskriptors (siehe
SYSTEM.DEF)

die relative Address des Code-Bereichs

die relative Address des Datenbereichs (StaticBase)

die importierten Moduln und deren erwartete
Modulschlüssel

import System 000000000000

include module CmdLine

file E:\gemdos\SYSLIB.obj\CmdLine.OBM

key 0CC302DDC4D1

code length 1132

data length 426

const length 2

* exported procedures 8

descriptor start DED4

frame start DEF2

StaticBase E508

import Environment 0CC302DDCFFD

import Strings 0CC302DD1478

Listing

SPC MODULA-2 V1.4 Utilities

Initialisierungs-

reihenfolge

Zyklen

Übergang von
dynamic linking zu
static linking

import System 000000000000

import GemDos 0CC302E01B8A

import System 000000000000

include module Environment
.....

Das Listing wird im Erfolgsfalle abgeschlossen durch

eine Liste der Moduln in der Reihenfolge ihrer Initiali-

sierung. Normalerweise wird jeder importierte Modul

vor allen ihn importierenden Moduln initialisiert. Da-

durch wird gewährleistet, daß auch in der Modulinitiali-

sierung ein importierter Modul schon operabel (d.h.

selbst initialisiert) ist.

Wenn aber ein Modul A einen Modul B importiert, und
B importiert seinerseits A, dann ist ein sogenannter

Zyklus aufgetreten und die Initialisierungsreihenfolge ist

undefiniert. Sie hängt dann einzig und allein davon ab,
welcher Modul zuerst in einer Importliste genannt

wurde. Durch die Hinschreibung der Import-Liste (z.B.

des Hauptprogramms) kann also in solchen Fällen die

Initialisierungsreihenfolge beeinflußt werden.

Da die Anwendung schon unter der xShell getestet

wurde, macht der Übergang zu einem eigenständigen

Programm normalerweise keine Probleme. Allerdings

muß der Hauptprogramm-Modul nun das ganze Lauf-
zeitsystem initialisieren, eine Aufgabe, die bis dahin die

xShell übernommen hatte. Durch das o.g. Initiali-
sierungsschema erfolgt dies implizit ohne daß beson-

dere Maßnahmen getroffen werden.

Utilities SPC MODULA-2 V1.4

Der Prelinker hat die Aufgabe, mehrere .OBM Dateien

zu einer einzigen Datei, einer Art Bibliothek zusam-

menzufassen. Dazu wird von einem Modul, dem Leit-
modul, ausgegangen und alle importierten Moduln in

die Ausgabedatei kopiert, die davon nicht explizit aus-

geschlossen wurden. Alle notwendigen Angaben wer-

den durch eine Steuerdatei gegeben.

Dadurch, daß eine Menge von Moduln in einer ein-

zigen Datei zusammengefaßt (vorgebunden) sind, wird

der Ladevorgang beschleunigt. Alle Werkzeuge des

Sprachsystems sind in dieser Weise vorgebunden. Bei

größeren Projekten bietet es sich für alle Moduln an,

die gerade nicht bearbeitet werden.

Der Prelinker wird über eine Standard-Kommandozeile

aufgerufen und parametriert. Sie hat die Form:
prelink <Dateiname> [-v]

Der <Dateiname> ist der Name der Steuerdatei. Er hat

normalerweise die Endung .LCM) enthalten.

Die Option -v (verbose) veranlaßt den Prelinker, den
Fortgang des Linkens durch Angabe der eingeschlos-

senen Dateinamen auf dem Terminal zu protokollieren.

Die Steuerdatei muß folgenden Aufbau haben :

in der ersten Zeile steht der Name des Leitmoduls

(z.B. Main)

in der zweiten Zeile steht der Pfadname der Ausgabe-

datei (z.B. \USER\LNK\MAIN.OBM)

in allen weiteren Zeilen stehen die Namen der Moduln,

die vom Binden auszuschließen sind (z.B. InOut).

Edit

e:\gemdos\misc\editobm

inout

filesystem

environment

Der Prelinker

Starten

Argumente

Aufbau der

Steuerdatei

SPC MODULA-2 V1.4 Utilities

Protokoll

Starten eines

vorgebundenen

Moduls

Während des Bindens zeigt der Prelinker den Namen

des Hauptmoduls mit einem vorangestellten * an. Die

Ausgabedatei wird mit + markiert. Alle auszuschließen-

den Moduln werden mit einem % kenntlich gemacht

und die importierten Moduln zeigt der Prelinker durch

ein vorangestelltes — an.

Ein gebundener Modul wird wie jeder andere Pro-

gramm-Modul gestartet. Man beachte, daß die Aus-

gabedatei den gleichen Namen wie der zu startende
Modul haben muß und auf einem der Compiler-

Suchpfade liegen muß.

Utilities SPC MODULA-2 V1.4

Make ist eine von UNIX bekannte Utility, die bei der

Entwicklung größerer Systeme unterstützt. Make ist fur

den fortgeschrittenen Anwender und für große Projekte

bestimmt. Die Aufgabe von Make ist es, festzustellen,

welche abhängigen Dateien eines Softwareprojektes

aufgrund von Modifikationen anderer Dateien nicht

mehr aktuell sind, und diese dann (meist durch Com-

pilation) neu zu erzeugen. Dazu benötigt Make eine

Beschreibung (das Makefile) der gegenseitigen Ab-

hängigkeiten von Dateien, und der Kommandos, mit

denen eine abhängige Datei neu erzeugt werden kann.

Darüberhinaus ist Make natürlich darauf angewiesen,

daß die Uhr des Rechners immer richtig gestellt ist.

Zum Verständnis von Make müssen zunächst einige

Begriffe erklärt werden. Eine abhängige Datei (Ziel,

Target) ist eine Datei, die immer dann nicht mehr

aktuell ist, wenn sie älter als eine von mehreren Be-

zugsdateien (Prerequisiten) ist. Dabei werden die Zeit-

markierungen des Filesystems ausgewertet. Tritt dieser

Fall ein, dann wird eine Kommandosequenz ausgeführt,

welche i.a. die abhängige Datei neu erstellt. Die Kom-

mandosequenz kann sich implizit aus dem Typ der ab-

hängigen Datei ergeben, oder sie kann explizit an-

gegeben sein.

Dieser Mechanismus ist sehr allgemein, und kann mit

etwas Übung auch für andere Zwecke eingesetzt wer-

den. Im folgenden wird jedoch beschrieben, wie Make

zur Steuerung des Übersetzungsvorgangs eingesetzt

wird.

Es sei für die weiteren Erklärungen vorausgesetzt, daß

ein Makefile bestehe, welches die Abhängigkeiten in

einem Softwaresystem korrekt beschreibt. Es seien

verschiedene Dateien editiert worden, und es soll nun

Make dazu verwendet werden, die betroffenen Moduln

neu zu übersetzen. Wegen der Importe von

Schnittstellen in andere Moduln kann die Änderung
eines Definitions-Moduls bekanntermaßen weitere

Übersetzungen nach sich ziehen.

Make

Begriffe

Ziel, Target

Prerequisiten

Kommandos

SPC MODULA-2 V1.4 Utilities

Starten

Arumente

Optionen

Ablauf

Make wird über eine Standard-Kommandozeile gestar-

tet und parametriert. Die Kommandozeile hat die Syn-

tax:

make <Makefile> [-v] [-i] [-n] [-t <Target>]

<Makefile> ist der Name des Makefiles, das die Be-

schreibung des zu bearbeitenden Programmsystems

beinhaltet

Die -v Option hat wie ublich die Bedeutung ‘Verbose’

und veranlaßt Make, Meldungen über den Fortgang der

Arbeit auf dem Terminal auszugeben.

Die -i Option bestimmt, daß Fehler, die bei der Aus-
führung von Kommandos auftreten, ignoriert werden

sollen.

Die Option -n kann zum Testen eines Makefiles be-
nutzt werden. Make wird dann nur die Kommandozei-

len auf dem Terminal ausgeben, ohne die Kommandos

tatsächlich zu starten.

Das Ziel des Make-Prozesses kann gleich als Option
hinter -t angegeben werden. Falls dies nicht der Fall

ist, wird ein Formular ausgegeben, in dem angegeben

werden kann, daß nur ein bestimmtes Ziel neu erzeugt

werden soll (Default ist: alle Ziele neu erzeugen).

Make wird dann ausgehend von dem oder den Zielen

prüfen, ob alle Prerequisiten älter sind. Falls die Prere-

quisiten selbst wieder als Ziele auftreten, werden auch

deren Prerequisiten überprüft, usw. Falls ein Ziel älter

ist, als eines seiner Prerequisiten, wird es neu erzeugt.

Auf diese Weise wird von einem Softwaresystem nur
der Teil übersetzt, der von einer Änderung (z.B. Edi-

tierung) wirklich betroffen war.

Wird ein Fehler bei der Ausführung von Kommandos

festgestellt, dann wird der gesamte Vorgang abgebro-

chen, es sei denn, die Option -i war gesetzt.

Das Makefile beschreibt die Abhängigkeiten zwischen

Utilities SPC MODULA-2 V1.4

den Dateien des Softwaresystems und die Komman-

dos, die ausgefuhrt werden mussen, wenn eine Datei

neu erzeugt werden soll.

Ein Makefile wird aus zwei Typen von Einträgen auf-

gebaut:

a Regeln, die die Abhängigkeiten zwischen Zielen und

Prerequisiten und die eventuell auszuführenden

Kommandos beschreiben. 7

QO Makros, die zur Verkürzung der Hinschreibung einge-

setzt werden können.

Jede Zeile des Makefile darf hinter einem # Kommen-

tare enthalten.

Regeln bestehen aus einer oder mehreren Zielen ge-

folgt von einem Doppelpunkt (:) hinter dem dann die

Prerequisiten folgen. In den folgenden Zeilen können,

sofern die Zeilen mit einem Leerzeichen beginnen,

Kommandos stehen, die ausgeführt werden sollen, falls
das Ziel neu generiert werden soll. Die Liste der

Prerequisiten kann auch leer sein. In diesem Fall wird

die Anweisungsfolge immer ausgeführt.

Häufig wiederkehrende Sequenzen können als Makro

definiert werden. Eine Makrodefinition beginnt mit dem

Namen des Makros gefolgt von einem Gleichzeichen

(=) hinter dem eine Zeichenkette steht. Der Makroname

darf aus einem oder mehreren alphanumerischen Zei-

chen (einschließlich des _) bestehen.

Ein Makro wird verwendet, indem anstelle der definier-

ten Zeichenkette ein Dollar-Zeichen ($)' gefolgt vom

Makronamen geschrieben wird. Makronamen, die aus

mehreren Zeichen bestehen, müssen in runde Klam-

mern eingeschlossen werden.

Aufbau des

Makefiles

Regeln

Makrodefinition

Makroaufruf

SPC MODULA-2 V1.4 Utilities

spezielle Makros

Beispiel

implizite Regeln

In den Kommandozeilen können einige spezielle Mak-

ros verwendet werden:

D (@ enthält Pfad und Namen (ohne Typ) des Ziels.

Q < enthält den kompletten Namen des gerade be-

arbeiteten Ziels.

@D enthält den Pfad des Ziels

<D wie @D

@F enthält den Namen (ohne Typ) des Ziels

<F enthält den Namen (mit Typ) des Ziels O
O

D
D

Die Datei \SPC\USER\SSWISEXA.MAK enthält ein Bei-
spiel, mit dem die Beispielprogramme erzeugt werden

können.

Da Make im SPC MODULA-2 Sprachsystem haupt-

sächlich zur Steuerung des Übersetzungsvorgangs ein-

gesetzt wird, sind der Utility zwei Regeln implizit be-

kannt:

Q eine .SBM Datei wird durch den Compiler aus seinen

Prerequisiten erzeugt.

QO eine .OBM Datei wird durch den Compiler aus seinen
Prerequisiten erzeugt.

Utilities SPC MODULA-2 V1.4

Das Ausdrucken von Textdateien wird uber die xShell

durch die Print-Utility unterstützt. Print erlaubt be-

stimmte Formatierungen des auszugebenden Textes.

Es ist z.B. möglich, die MODULA-2 Schlüsselwörter
hervorzuheben, die Breite des Heftrandes einzustellen,

etc.

Print wird durch das Kommando gestartet:

print [<Filename>]

ist der Name einer Datei die ausgedruckt werden soll.

Falls keine Datei angegeben ist, läuft Print im interakti-

ven Modus als SSWiS-Applikation. Die Utility hat ihr
eigenes Fenster, in dem der Status ausgegeben wird,

sowie einen eigenen Menübalken. Über die Menüs

können verschiedene Einstellungen vorgenommen

werden, die weiter unten erläutert werden.

Print verwendet zur Ausgabe den Standard—Modul

Printer. Dieser wird an den jeweils vorhandenen

Drucker durch eine Wordplus—Konfigurationsdatei

(*.CFG) angepaßt. Der Name der Printer-Konfigura-
tionsdatei wird als Environment—Variable “PRINTER-

CONF” gespeichert. Gleichfalls wird die Anzahl der
Spalten pro Zeile und die Anzahl der Zeilen pro Seite
in dieser Variablen festgehalten. Printer—Konfigurations—

dateien sind fur alle gangigen Druckermodelle in der

Public-Domain erhältlich.

Über die Menüs kann Print in verschiedenen Parame-

tern eingestellt werden. Das Option-Menü bietet die
Möglichkeit, Die Zeilennumerierung ein- oder aus-

zuschalten, den Schlüsselwort-Spezialdruck zu akti-
vieren und die Konfigurationsdatei einzustellen. Alle

Parameter werden als Environment-Variable für den

nächsten Aufruf gespeichert.

Das Font-Menü bietet die Möglichkeit, die Schriftart zu
wählen, sowie die Druckerparameter Zeichen/Zeile,

Zeilen/Seite und Breite des Heftrandes einzustellen. Die
Druckerparameter werden vom Modul Printer als

Print

Starten

Anpassung an den

Drucker

Option-Menü

Font-Menü

SPC MODULA-2 V1.4 Utilities

File—Menu

Konfigurations—Datei

Aufbau der

Konfigurations—Datei

Environment-Variable gespeichert, und werden auch

für nachfolgende Aufrufe des Moduls Printer verwen-

det.

Das File-Menü dient schließlich zur Steuerung des

Druckvorgangs. Dazu kann auch noch die Drucker-

Konfigurationsdatei gewählt werden. Alsdann wird über

Print die auszugebende Datei gewählt. Der Druckvor-

gang kann zwischenzeitig unter- oder abgebrochen

werden.

Print kann über eine Konfigurations-Datei weitergehend

eingestellt werden. Der Name der Konfigurationsdatei

wird als Environment-Variable “PRINTFLAGS” zusam-
men mit anderen Einstellungen gespeichert. Eine Bei-

_ spieldatei wird unter dem Namen \SPC\MISC\PRINT.INF
mitgeliefert.

Der Aufbau der Konfigurations-Datei ist zeilenorientiert.

Das Format ist unten beschrieben. Jede Zeile wird
durch einen * abgeschlossen. Danach kann ein belie-

biger Kommentar folgen. Eine einzelne Zeile darf nicht

länger als 80 Zeichen sein.

In der Konfigurationsdatei können beliebige Schlüssel-

wörter angegeben werden. Sofern keine Konfigura-

tionsdatei zur Verfügung steht, werden die MODULA-2
Schlüsselwörter verwendet. Alle Schlüsselwörter werden
durch Leerzeilen getrennt. Es können maximal 200
Schlüsselwörter mit nicht mehr als 1000 Zeichen ins-

gesamt angegeben werden. Ein einzelnes Schlüssel-
wort darf maximal 80 Zeichen lang sein.

i> Man beachte, daß die Indizierung keine syntaktische

Analyse beinhaltet und deshalb i.a. nur korrekt ist,

sofern auch der auszugebende Text und die Schlüs-
selwort-Liste korrekt strukturiert sind.

Utilities SPC MODULA-2 V1.4

Für die Indizierung kann jedes Schlüsselwort mit einem
optionalen Suffix versehen werden. Dazu kommen in
Frage: |

D (Klammer auf, beginnt eine neue Ebene und erhöht

den Index.

QO) Klammer zu, beendet eine Ebene und erniedrigt den
Index.

O = Gleichzeichen, belaRt die Ebene und den Index.

1. Zeile: <Kennung> *

2. Zeile: <Schrift> <Zeilen> <Zeichen>

<Heftrand> *

3. Zeile: <Kopf> <Nummern> <Spezial>

<Index> <Anzahl SW>

4. Zeile ff. enthalten Schlüsselwörter

<Kennung> 2434

<Schrift> 0..3 (Pica, Elite, Schmal, Breit)

<Zeilen> Anzahl Zeilen pro Seite

<Spalten> Anzahl Spalten pro Zeile

<Heftrand> Breite des Heftrandes in Spalten

<Kopfzeile> 0: Kopfzeile aus, 1: Kopfzeile an

<Nummern> Breite der Zeilennummern, negative

Werte: keine Zeilennummern

<Spezial> Art der Hervorhebung von

Schlüsselwörtern. 1: fett, 2:
unterstrichen, negative Werte: keine

Hervorhebung

<Index> Art der Indizierung von,

Schlüsselwörtern: 1: Hochstellung, 2:
Tiefstellung, negative Werte: keine

Indizierung

<Anzahl SW> Anzahl der Schlüsselwörter, die ab

Zeile 4 folgen

Indizierung

Syntax

SPC MODULA-2 V1.4 Utilities

Paths

Quellen und

ableitbare Dateien

trennen

Bedienung

Die vom Compiler und anderen Werkzeugen des

Sprachsystems verwendeten Suchpfade werden als

Environment—Variablen gespeichert. Die Pfade fur die

Quellformen der Moduln haben die Namen PATH<N>,

wobei <N> die Praferenz angibt. Pfade mit niedrigerer

Praferenz werden zuerst durchsucht. Die Suche hört

auf, wenn eine Variable mit der nächst höheren Prä-

ferenz nicht existiert.

Sollen Objektformen auf anderen Directories gehalten
werden, als die Quellformen, dann kann zu jedem

PATH<N> ein OBJPATH<N> angegeben werden. An-

dernfalls werden die Objektformen ebenfalls auf
PATH<N> abgelegt und dort gesucht.

Paths unterstützt die Pflege der entsprechenden

Environment-Variablen. Dabei sorgt Paths dafür, daß

nach dem Löschen eines Pfades die Kette wieder ge-

schlossen wird und erlaubt das Einfügen an einer be-

stimmten Position (Präferenz) in die Kette.

Paths kennt die Kommandos :

L - Anzeigen aller Pfade mit aufsteigender Präferenz.

M - Modifizieren einer Pfadkombination (PATH und

OBJPATH). Es muß die Präferenz angegeben werden.
Die neuen Pfadnamen werden über eine GEM-Filese-

lektor-Box erfragt. |

D - Löschen einer Pfadkombination.

| - Einfügen einer Pfadkombination. Es wird die Prä-

ferenz der einzugebenden Pfade erwartet. Die Pfade

selbst werden wieder über eine Fileselektor-Box er-

fragt.

Q - Quit, verläßt Paths.

Die Pfade, auf denen die Dateien gesucht werden,

dürfen natürlich auch auf verschiedenen Laufwerken

liegen. Dies ist wichtig, wenn Sie mit zwei Disketten-

laufwerken oder einer RAM-Disk arbeiten wollen. In

Utilities SPC MODULA-2 V1.4

diesem Fall müssen Sie den entsprechenden Lauf-
werksbuchstaben mit angeben.

Wenn Sie Probleme haben, eine Datei zu übersetzen,
oder der Compiler eine zu importierende Datei nicht
findet, sind i.d.R. die Suchpfade nicht richtig einge-
stellt.

SPC MODULA-2 V1.4 Utilities

Diese Seite wurde aus

satztechnischen Gründen frei

gelassen

Utilities SPC MODULA-2 V1.4

SSWIS

SSWiS steht fur Small Systems Windowing Standard
und bedeutet, daß es sich hierbei um eine Gruppe von

Funktionen handelt, die üblicherweise und gerade von

Fenstersystemen auf kleinen Rechnern bereitgestellt

werden. Die Funktionen von SSWIS werden also ı.a.
auf die Funktionen eines unterliegenden Fenster-

systems abgebildet.

Da keine Besonderheiten eines bestimmten Fenster-

systems voraussgesetzt werden, können SSWIS An-

wendungen leichter portiert werden, als Anwendungen,

die das jeweils vorhandene Fenstersystem direkt an-

sprechen. Damit erbringt SSWIS vor allem zwei wich-
tige Leistungen: |

OD die Programmierung von fensterorientierten Applika-
tionen wird einfacher, da SSWIiS höhere Funktionen
bereitstellt.

QO SSWiS Applikationen können leichter portiert werden,
da zumindest die Ansprache des Fenstersystems

vereinheitlicht ist.

Da alles seinen Preis hat, soll dieser auch hier nicht

verschwiegen werden:

a SSWiS stellt spezielle Funktionen eines Fenster-
‚systems nicht zur Verfügung, um die Portabilität nicht

zu gefährden und das ganze System kompakt und

einfach zu halten.

QO Vereinfachungen der Fensterverwaltung, die mitunter

innerhalb einer bestimmten Applikation zulässig sind,

können von SSWiS nicht angewendet werden, da

unter SSWiS mehrere Applikationen quasiparallel
ablaufen können.

Kapitel 8

Übersicht

Vorzüge

Einschränkungen

SPC MODULA-2 V1.4 Sswis

Pseudo-Multitasking
Die inzwischen vorhandenen und mit der Version 1.4

ausgelieferten SSWIiS Applikationen (z.B. Editor, Filer,

xShell) beweisen jedoch, daß die Vorteile von SSWIS

die Nachteile bei weitem aufwiegen. Vor allem wegen

der Möglichkeit, mehrere Anwendungen gleichzeitig zu

betreiben, ohne ein Multitasking Betriebssystem vor-

aussetzen zu müssen, ist die Verwendung von SSWIS

für interaktive Anwendungen in SPC-MODULA-2
hochinteressant.

Es ist die Philosophie von SSWiS, die Oberfläche des
jeweils vorhandenen Systems nicht zu verfremden,

sondern sie aus Gründen der Ergonomie so zu über-

nehmen, wie sie der Benutzer auch aus anderen An-

wendungen kennt.

Wie die meisten Fenstersysteme, so bietet auch SSWIS
neben der Verwaltung von Fenstern Zusatzdienste, wie

Menüs und Formulare an.

In den folgenden Abschnitten wird zum einen die Be-

dienung von SSWiS unter GEM auf dem ATARI ST be-
schrieben. Zum zweiten wird die Programmierung von
SSWIS Applikationen erläutert.

SSWIS SPC MODULA-2 V1.4

Die Bedienung einer SSWiS-Applikation (z.B. der Edi-
tor von SPC-MODULA-2) ist im Detail natürlich von

der Applikation selbst und ihrer Funktionalität abhängig.

Soweit es jedoch darum geht, Fenster, Menüs und
Formulare zu bedienen, sind alle SSWIiS Applikationen
gleich. Dies ist Gegenstand der folgenden Abschnitte.

Ein Fenster (engl. Window) ist ein Bereich des
Bildschirmes, in dem eine Applikation einen Teil seiner
Ausgabe abwickelt. Ob diese grafisch oder textuell ist,
ist für das Fenster zunächst unerheblich. Die Größe
und die Position des Ausgabebereiches ist sowohl von

der Applikation, als auch vom Benutzer in bestimmten
Grenzen einstellbar. Es können mehrere Fenster ein-

gerichtet werden, die sich i.a. auch gegenseitig über-
lappen dürfen. |

Jedes Fenster hat einen Titel, durch den die Bedeu-

tung des Fensterinhaltes umschrieben wird. Normaler-

weise kann aus dem Titel auch auf die für das Fenster

zuständige Applikation geschlossen werden. Unter

SSWIS können zur gleichen Zeit mehrere Applikationen

aktiv sein. Der Titel wird als Textzeile am oberen Rand

des Fensters dargestellt.

Das Fenster kann bewegt werden, indem man es mit

der Maus an der Titelzeile anfaßt (linken Mausknopf

drücken und und gedrückt halten) und den daraufhin

erscheinenden Rahmen an eine andere Stelle des

Bildschirms bewegt. Sobald der Rahmen losgelassen

wird (linken Mausknopf loslassen), wird das Fenster an
die neue Stelle gebracht.

Der Hintergrund, auf dem ein Fenster abliegt, wird

Desktop (Tischfläche) oder Desk genannt, da durch die

ganze Benutzeroberfläche ein normaler Schreibtisch
nachempfunden werden soll, auf dem beschriftete

Blätter (Fenster) übereinanderliegen und hin- und her
bewegt werden. Der Desktop wird durch eine graue

Fläche dargestellt, die fast den ganzen Bildschirm

überspannt.

Bedienung

Fenster

Fenstertitel

Fenster bewegen

Desktop

SPC MODULA-2 V1.4 SSWIS

Fenster-Icons

das aktive Fenster

Fenster wieder

schließen

Der Desktop steht den Applikationen nicht für Aus-

gaben zur Verfügung, sondern wird von SSWIS für die
Verwaltung von Fenstern benötigt. Für jedes vorhan-

dene Fenster wird in der linken unteren Ecke des

Desktop beginnend ein beschrifteter Balken angelegt.

Die Beschriftung ergibt sich aus den ersten Buchsta-

ben des Fenstertitels. Wozu werden diese Balken ge-

baucht? SSWIS kann. bis zu 20 Fenster verwalten. GEM
jedoch beschränkt die Anzahl von Fenstern auf 4 bzw.
6. Wenn nun mehr als 6 Fenster über SSWIS angelegt
werden, dann schließt SSWIS jeweils das hinterste

Fenster (mehr als 6 geöffnete Fenster sind auf dem

14” Monitor des ATARI ST auch nicht sinnvoll). Das
geschlossene Fenster wird von SSWiS jedoch weiter
verwaltet und kann jederzeit wieder gedffnet werden.
Dies geschieht, indem man den Balken des Fensters

mit der Maus anklickt. Falls schon 6 Fenster geöffnet

sind, muß natürlich das hinterste wieder geschlossen

werden, usw.

Das oberste Fenster hat bei GEM eine Sonderstellung,

die unter SSWiS so beibehalten wird. Das oberste
Fenster wird das aktuelle Fenster genannt. Alle Tasta-

tureingaben fließen immer der Applikation zu, der das
oberste Fenster gehört. Um das aktuelle Fenster

kenntlich zu machen, wird die Titelzeile des aktuellen
Fensters grau dargestellt, während die Titelzeilen aller
anderen Fenster einen weißen Hintergrund haben. Ein
Fenster kann zum aktuellen (obersten) Fenster ge-

macht werden, indem entweder, wie oben beschrieben,

der zu dem Fenster gehörende Balken angeklickt wird,

oder, falls das Fenster schon geöffnet ist, einfach in.

das Fenster geklickt wird.

Ein geöffnetes Fenster kann vom Benutzer geschlos-

sen werden, indem die sogenannte Schließ-Box links
neben der Titelzeile angeklickt wird. Fenster zuschlies—

sen kann sinnvoll sein, um z.B. mehr Übersicht auf

dem Desktop zu bekommen. Man beachte, daß mit
dem Schließen eines Fensters unter SSWIS keines-

SSWIS SPC MODULA-2 V1.4

wegs die dazugehörige Applikation beendet wird, son-
dern lediglich das sichtbare Fenster vom Desktop ver-
schwindet. Wie oben beschrieben, kann das Fenster

jederzeit wieder geöffnet werden. Die zum Fenster ge-

hörende Applikation merkt davon nichts.

Weitere Bedienungsmöglichkeiten hängen davon ab,

welche Randelemente für die einzelnen Fenster kon-

figuriert sind. Neben der Titelzeile und der Schließ-Box
können noch weiterhin konfiguriert werden:

o eine Meldungszeile zur Ausgabe von einzeiligen Mel-

dungen durch die Applikation.

Q ein vertikaler und/oder ein horizontaler Scroll-Balken,

um den Fensterinhalt zu verschieben, falls das

Fenster zu klein ist, diesen vollständig darzustellen.

Ihre Funktion wird unten weiter erklärt.

o eine Größen-Box, um die Größe des Fensters inner-
halb konfigurierter Grenzen zu verändern. Dazu wird

das Fenster an der Größen-Box (in der rechten

unteren Ecke) angefaßt (linke Maustaste drücken und

gedrückt halten) und das daraufhin erscheinende
Rechteck auf die gewünschte Größe gebracht. Nach
dem Loslassen, wird das Fenster entsprechend

‚vergrößert oder verkleinert, jedoch nur innerhalb der

durch die Applikation zugelassenen Grenzen.

o eine Maximalgrößen-Box, um das Fenster auf die

maximal zulässige Größe und wieder zurück zu
bringen. Die maximale Fenstergröße wird von der

Applikation bestimmt.

Innerhalb des Fensters wird von der Applikation ein

Bild ausgegeben, welches i.a. sehr viel größer ist, als

das Fenster selbst. Jede, in einem Fenstersystem lau-

fende Applikation muß deshalb dafür sorgen, daß sie

keinesfalls Ausgabe außerhalb der Bildschirmbereiche
erzeugt, die ihr durch das Fenstersystem (in diesem
Fall SSWIS) zugeteilt werden. Das Bild, das innerhalb
des Fensters ausgegeben wird, wird die Welt genannt.
Die Applikation beschreibt die Ausgabe in Weltkoor-
dinaten und empfängt alle Eingaben in Weltkoordina-

Randelemente von

Fenstern

Scroll-Balken

Größen-Box

Maximalgrößen-Box

Fensterinhalt

Weltkoordinaten

SPC MODULA-2 V1.4 SSWIS

Größe des

Weltbildes

das Fenster scrollen

Menüs

Titel und Einträge

Menüeinträge
selektieren

Menübalken

ten. Diese sind von der Position des Fensters und

damit von den Bildschirmkoordinaten unabhängig.

Die Scroll-Balken signalisieren unter GEM die Größe
des Bildes, indem die Schieber im Verhältnis zum

Fenster genauso groß sind, wie das Fenster im Ver-

hältnis zur Welt. Mit anderen Worten: wenn der Schie-

ber halb so groß ist wie das Fenster, dann ist das

Fenster halb so groß wie die Welt. Indem der Schieber
mit der Maus bewegt wird, kann das Fenster quasi

über die Welt bewegt werden. Anklicken des grauen
Scroll-Balkens selbst blättert in die entsprechende

Richtung. Die Pfeile können dazu benutzt werden, das

Fenster schrittweise in die gewünschte Richtung über

die Welt zu bewegen. Die Schrittweite wird von der
jeweiligen Applikation bestimmt.

Um Eingaben an eine Applikation zu machen, können

neben der Tastatur in einem fensterorientierten System

auch Menüs verwendet werden. Menüs sind zu Menü-
titeln strukturiert. Ein Menütitel enthält mehrere, thema-
tisch zusammengehörige Menüeinträge. Wählt man
einen Menüeintrag aus, dann gibt man einer Applika-

tion ein Kommando, ähnlich als wenn man eine Funk-

tionstaste drückt. Da Menüs konfiguriert werden kön-

nen, sind sie wesentlich flexibler, als Funktionstasten,

jedoch werden die am häufigsten benötigten Menü-

funktion meist auch über Funktionstasten zugänglich
gemacht.

Unter GEM sind alle Menütitel zu einer Menüzeile am *
oberen Bildschirmrand zusammengefaßt. Fährt man mit

der Maus in einen der Menütitel, dann klappt das

eigentliche Menü mit seinen Menüeinträgen herunter.

Ein Menüeintrag wird durch Anklicken ausgewählt. Das

Menü verschwindet danach wieder. Der Menübalken

kann nur die Menütitel einer Applikation enthalten. Da

unter SSWIS mehrere Applikationen nebeneinander
laufen, müssen mehrere Menübalken verwaltet werden.

SSWIS SPC MODULA-2 V1.4

Es ist immer der Menübalken der Applikation sichtbar,

der das aktuelle Fenster gehört. Wenn also das
aktuelle Fenster wechselt, ändert sich i.a. auch der

Menübalken, es sei denn, das neue aktuelle Fenster

gehört der gleichen Applikation. Der Name der

Applikation, deren Menübalken gerade sichtbar ist, ist

unter SSWiS gleichzeitig der Titel des ersten (links
außen) Menüs. Dieses Menü steht den Applikationen
nicht zur Verfügung, sondern ist unter GEM für
sogenannte Accessories reserviert.

Menüeinträge können dauernd oder vorübergehend

ausgeschaltet (disabled) werden. Ausgeschaltete

Menüeinträge werden grau dargestellt. Ein anderes
Attribut (abgehakt) wird durch einen kleinen Haken am
linken Rand des Menüeintrages dargestellt. Aus-

geschaltete Menüeinträge können nicht gewählt wer-
den. Die Bedeutung des Hakens hängt von der jeweili-

gen Applikation ab und ist dort dokumentiert.

Unter GEM wird der erste Eintrag des ersten Menüs

dafür verwendet, die Applikation zu identifizieren.

SSWIS Applikationen tun dies über ein vereinheitlichtes
Formular, in dem Programmversion, Autor und ein

Copyright-Vermerk zusammengefaßt sind.

i Es ist gute Praxis, häufig verwendete Menüfunk-

tionen auch über die Tastatur zugänglich zu machen.

Dafür bieten sich Funktionstasten und alternativ

belegte Tasten (Taste in Verbindung mit Alternate
oder Control betätigen) an. Die zu einem Menüein-
trag gehörenden Tastaturkommandos sollten der

leichteren Erlernbarkeit wegen im Menüeintrag selbst

angedeutet sein (z.B. ALT A, F1, etc.)

Steuerung des
Menübalkens

Attribute von

Menueintragen

Identifikation von
Applikationen

Funktionstasten

SPC MODULA-2 V1.4 SSWIS

Formulare

Meldungsformular

Abfrageformular

Identifikationsformu-

lar

Formulare sind ein weiterer Service von Fenstersyste-

men, um den Dialog zwischen Applikation und Benut-

zer zu verbessern. Der Aufbau und die Verwaltung von

Formularen sind in den verschiedenen Fenstersyste-

men sehr unterschiedlich. Allerdings benötigt eine typi-
sche Anwendung nur wenige Grundtypen von Formu-

laren. Diese werden von SSWiS zur Verfügung gestellt.

Der erste Formulartyp dient dazu, eine Meldung oder

Mitteilung auszugeben, und sich vom Benutzer eine

Quittung geben zu lassen. Der Meldungstext darf eine
Zeile lang sein. Die Quittung besteht darin, daß einer
von maximal vier konfigurierbaren Knöpfen zum Ver-

lassen des Formulars gewählt wird. Solange ein For-

mular aufgeschaltet ist, kann unter GEM keine andere
Eingabe gemacht werden, außer der Formularbe-

dienung.

Ein weiterer Formulartyp ermöglicht es, eine Meldung

auszugeben, und eine Quittung anzufordern. Der
Mechanismus ist der gleiche wie beim Meldungsfor-

mular. Zusätzlich kann aber ein Text eingegeben wer-
den und bis zu vier konfigurierbare Optionen gewählt
werden. Um den Text einzugeben, muß zuerst die

Textzeile selektiert werden. Sie enthält i.a. schon einen

Vorschlagswert, der mit den üblichen Editierfunktionen

geändert werden kann. Die Optionen können durch
Anklicken mit der Maus ein- und ausgeschaltet wer-
den. Der Formulardialog wird durch Anklicken einer der

Quittungstasten wie oben beschrieben beendet.

Dieses Formular wird verwendet, um auf einfache
Weise eine Identifikation der Applikation zu ermög-

lichen. Die einzige Bedienung ist das Anklicken des

OK-Knopfes.

Mit den genannten Formulartypen wurden inzwischen

eine Reihe von Applikationen erstellt und es hat sich

gezeigt, daß die Formulare für portable Applikationen

ausreichend sind. Zudem werden die von den ver-

schiedenen Applikationen geführten Dialoge etwas ver-

SSWIS SPC MODULA-2 V1.4

einheitlicht, was letztlich wieder der Einfachheit des

Gesamtsystems zugute kommt. Die Bedienung von
SSWiS—Applikationen ist, soweit dies ohne Bezug auf
die Applikation selbst möglich ist, hiermit beschrieben.

SPC MODULA-2 V1.4 SSWIS

Programmier-

Schnittstelle

Struktur von SSWIS

Applikationen

PollEvents Loop

Die folgenden Abschnitte befassen sich mit der Pro-

grammierung von SSWIS Applikationen. Da die
Möglichkeit, mehrere Applikationen unter SSWIS
nebeneinander laufen zu lassen, inzwischen von vielen
Programmierern gerne genutzt wird, liegt es nahe,

neue interaktive Applikationen ebenfalls als SSWIS
Applikation zu realisieren. Allerdings sollte am Anfang

der Realisierung eine gründliche Analyse stehen, um

festzustellen, ob die Möglichkeiten von SSWIS für das
Vorhaben ausreichend sind.

SSWiS Applikationen (im folgenden nur noch Applika-

tionen genannt) haben einen bestimmten, durch die

Funktionsweise von SSWIS vorgegebenen Aufbau.

Nachdem sich eine Applikation initialisiert hat, läuft sie

in einer Schleife, innerhalb derer sie ständig die Kon-

trolle an SSWIS abgibt, um Ereignisse (Events) zu be-
arbeiten. Die Schleife wird durchlaufen, bis das Pro-
gramm beendet werden soll. Danach folgt i.a. eine ge-

ordnete Terminierung, in der alle Resourcen freigege-

ben werden. Die Grundstruktur ist durch das folgende

Programmstück wiedergegeben:

MODULE Application;

PROCEDURE Initialise;

BEGIN
SSWiS.Register (.., ‘Application’, ...);

END Initialise;

BEGIN
Initialise;
REPEAT |

SSWiS.PollEvents;
UNTIL Xit,;
Terminate;

END Application;

8 - 10 SSWIS SPC MODULA-2 V1.4

Man beachte, daß sich Applikationen bei SSWiS an-

melden müssen (Register), den SSWiS verwaltet meh-
rere Applikationen nebeneinander, wobei jede ihre

eigenen Fenster und Menüs haben kann. Während der

Terminierung erfolgt natürlich eine entsprechende Ab-

meldung, die hier nicht gezeigt wurde.

Bei der Anmeldung vergibt SSWIiS eine Kennung
(Handle) für jede Applikation. Unter dieser Kennung ist
die Applikation als Klient (Client) von SSWIS registriert.
Bei fast allen Aufrufen ist die Kennung als Parameter
wieder zu übergeben, so daß SSWIS den richtigen
Satz von Resourcen (z.B. Fenster) zuordnen kann.

Nun ergibt sich natürlich die Frage, woher die Ein-

gaben des Benutzers für die Applikation kommen, und

wo sie verarbeitet werden. Eingaben haben zunächst

die Form von Ereignissen (Events). Das sind Signale,
die anzeigen, daß etwas passiert ist. Was nun genau

passiert ist, wird durch eine Datenstruktur beschrieben,
die EventReport genannt wird. Alle Ereignisse gelangen

zunächst an SSWiS. Dort sind sie noch in einer sehr
rohen Form und für Applikationen noch nicht leicht zu

verarbeiten. Außerdem steht noch nicht fest, welche
Applikation das Ereignis empfangen soll. Die Zuord-

nung und eine weitgehende Vorverarbeitung übernimmt
SSWiS. Alsdann wird der Event an die richtige Applika-

tion ausgeliefert, die dann ihrerseits das Ereignis
weiterverarbeitet. Die Prozedur der Applikation, welche

die Events aufnehmen und verarbeiten soll wird die

Accept-Prozedur genannt.

Zur Verarbeitung von Ereignissen wird sie zunächst

feststellen, um welchen Typ von Ereignis es sich han-

delt, denn es gibt nur eine Accept-Prozedur, über den

alle Ereignisse mitgeteilt werden. Typen von Ereignis-

sen sind z.B. Mausklicks oder Tastatureingaben. Je

nach Event-Typ stehen die benötigten Zusatzinforma-

tionen (Koordinaten, etc.) im Event-Report, anhand

dessen die Applikation die auszuführenden Funktionen

geeignet parametrieren kann.

Applikation

anmelden

Application Handle

Eventverarbeitung

Events

EventReport

Accept-Prozedur

Event-Typen

SPC MODULA-2 V1.4 SSWIS 8-11

Accept anmelden

Die Accept-Prozedur wird als sogenannte Callback

Procedure realisiert. Eine solche Prozedur wird

typischerweise von einem Modul, in diesem Fall

SSWIS, zu einem späteren Zeitpunkt zurückgerufen,
eben dann, wenn ein Ereignis eingetreten ist. Dazu

muß sie natürlich bei SSWIS bekannt gmacht werden.

Dies geschieht während der Anmeldung bei SSWiS.

Das folgende Programmstück soll den wichtigen

Mechanismus verdeutlichen. Alle momentan nicht

wichtigen Parameter wurden weggelassen.

MODULE Application;

PROCEDURE Accept (..., Report):

BEGIN
CASE Report.Type OF

END:
END Accept;

PROCEDURE Initialise;

BEGIN
SSWiS.Register (..., Accept):

END Initialise;

BEGIN
Initialise;
REPEAT
SSWiS.PollEvents;

UNTIL Xit,
Terminate;

END Application;

Die Accept-Prozedur wird während der Anmeldung der

Applikation bekanntgegeben. Hieraus folgt unmittelbar,

daß jede Applikation eine Accept-Prozedur haben

muß, also in irgendeiner Weise auf die Events von

8 —- 12 SSWIS SPC MODULA-2 V1.4

SSWIS reagiert. Wie die Ereignisse im Detail zu verste-
hen und zu behandeln sind, wird in einem späteren
Abschnitt erklärt.

Um den prinzipiellen Aufbau einer SSWiS-Applikation
zu vervollständigen, ist es noch notwendig, die Ver-
wendung von Fenstern zu erklären. Fenster sind die

Basis für die Verteilung der vorhandenen Bildschirm-
fläche an die registrierten Applikationen. Eine Applika-
tion darf deshalb nur innerhalb ihrer eigenen Fenster

Ausgabe erzeugen.

Der Anstoß zur Erzeugung von Ausgabe kann auf ver-

schiedene Ursachen zurückgehen. Zunächst ist klar,

daß Ausgabe erzeugt werden muß, wenn sich das im

Fenster dargestellte Bild geändert hat. Weiterhin kann

eine neuerliche Ausgabe eines Fensters dadurch not-

wendig werden, daß das Fenster vergrößert wurde,

oder aber, weil sich die gegenseitige Überlappung von

Fenstern geändert hat. In einem solchen Fall kommt

der Anstoß nicht von der Applikation selbst, sondern

wird durch äußere Ereignisse hervorgerufen.

In beiden Fällen kann das Gebiet, das den Fensterin-
halt beschreibt, komplex sein, da das Fenster durch

andere Fenster teilweise verdeckt sein kann. In jedem
Fall besteht dieses Gebiet aber aus einer Reihe von
Rechtecken, deren Kanten parallel zu den Achsen des

Koordinatensystems sind. Da die Lage aller Fenster

und damit das Gebiet, das zu einem bestimmten

Fenster gehört, ist nur SSWiS als koordinierende Stelle
bekannt. Die Applikation stellt lediglich eine Redraw-

Prozedur bereit, die einen Ausschnitt der Ausgabe er-
zeugt. Die Restore-Prozedur wird ebenfalls als Call-

back-Prozedur ausgeführt. Sie wird beim Erzeugen des
Fensters angegeben und von SSWIS bei Bedarf auf-
gerufen. Daraus folgt, daß zu jedem Fenster eine

eigene Restore-Prozedur gehört (die u.U. gleich sein

können) und daß eine Applikation mehrere Restore-
Prozeduren haben kann.

Fenster

Anstöße für

Ausgaben

Clip-Gebiete

Redraw-Prozedur

SPC MODULA-2 V1.4 SSWIS 8 — 13

Aufgabe der

Restore-Prozedur

Es ist wichtig, da die Restore-Prozedur nichts anderes

tut, als den von SSWiS angeforderten
Fensterausschnitt zu erneuern. Da die gegenseitige

Verdeckung von Fenstern kompliziert sein kann, ist es
u.U. nötig, daß SSWiS sehr oft hintereinander die
Restore-Prozedur aufrufen muß. Wann und wie oft
dies der Fall ist, kann die Applikation nicht kontrol—

lieren. |

Das obige Beispiel wird im folgenden um ein erstes

Fenster erweitert. Der Einfachheit halber wird das
Fenster während der Initialisierung angelegt. Natürlich

können auch zu jedem anderen Zeitpunkt zwischen der

Initialisierung und der Terminierung weitere Fenster er-

zeugt werden.

MODULE Application;

PROCEDURE Accept (..., Report):
BEGIN
CASE Report.Type OF

END:
END Accept;

PROCEDURE Restore (...):

BEGIN
END Restore:

PROCEDURE Initialise:
BEGIN
SSWiS.Register (..., Accept);

_ SSWiS.CreateWindow (.. Restore);
END Initialise;

BEGIN
Initialise;
REPEAT
SSWiS.PollEvents;
UNTIL Xit;
Terminate;

END Application;

8-14 SSWIS SPC MODULA-2 V1.4

Die Parameter der Restore-Prozedur werden in einem

späteren Abschnitt erklärt. Der prinzipielle Aufbau einer

SSWIS-Applikation ist damit vollständig. Zusätzliche
Funktionen wie Menüs und Formulare haben auf die

Struktur des Programms keinen Einfluß mehr.

Eine Applikation erzeugt grafische Ausgabe um am

Bildschirm ein Bild auszugeben. Die Koordinaten, in
denen dieses Bild beschrieben wird, werden allgemein
als Welt-Koordinaten bezeichnet. Das Bild wird des-

halb auch oft als Welt-Bild oder kurz als Welt be-

zeichnet.

Auf dem Bildschirm, den sich mehrere Applikationen

teilen müssen, kann i.a. nur ein Ausschnitt des Welt-

Bildes dargestellt werden. Dazu muß eine Grafik in
Bildschirm-Koordinaten (Gerätekoordinaten) beschrie-
ben werden. Das Gerätekoordinatensystem ist durch
die Größe des Bildschirms meist sehr eingeschränkt,
z.B. auf 640x400 diskrete Koordinatenwerte.

Durch die unterschiedliche Lage der Welt-Bilder im
Verhältnis zum Bildschirm müssen die Welt-Koordina-

ten zum Zwecke der Ausgabe von der Anwendung in
Bildschirmkoordinaten transformiert werden. SSWIS

sieht dabei lediglich vor, daß das Welt-Koordinaten-

system gegenüber dem Bildschirm-Koordinatensystem

verschoben ist, so daß die Transformation durch Addi-

tionen beschrieben werden kann. Eine Skalierung oder

Rotation ist damit nicht möglich.

SSWIS exportiert die Datentypen sowohl für Welt-

Koordinaten, als auch für Bildschirm-Koordinaten. Man

beachte, daß die Welt-Koordinaten durch 32-Bit Werte

beschrieben sind. Dadurch ist auf dem MC68000 ein
gewisser Mehraufwand bei Divisionen und Multiplikatio-
nen nötig. Die Koordinaten-Datentypen werden durch

Datentypen für Punkte und Strecken ergänzt. Da ein

Rechteck durch seine Diagonale eindeutig beschrieben

ist, wird der Datentyp Lines auch für Rechtecke ver-

wendet.

Parameter der

Restore-Prozedur

Koordinatensysteme

Welt-Koordinaten

Geräte-Koordinaten

Transformationen

Datentypen

SPC MODULA-2 V1.4 SSWIS 8-15

Restore-Prozedur

Clipping

erzeugen grafischer

Ausgabe

Die Restore-Prozedur eines Fensters ist dafür zustän-

dig, in einem angeforderten Bildschirmbereich einen

bestimmten Teil des Weltbildes auszugeben. Da keine

Skalierung und keine Rotation des Weltkoordinaten-

systems gegenüber dem Bildschirm-Koordinaten-
system vorgesehen ist, reicht es aus, nur die Verschie-

bung der beiden Koordinatensysteme als Vektor an-

zugeben. Der Parameter heißt Offset und bezeichnet
den Punkt des Weltkoordinatensystems, der auf die
linke obere Fensterecke abgebildet wird. Der Parameter

Area beschreibt die Position und die Größe eines

Rechtecks im Weltkoordinatensystem, das durch den
aktuellen Aufruf auszugeben ist. Auf jede durch die

Restore-Prozedur auszugebende Koordinate muß also

der Vektor Offset hinzuaddiert werden, um Bildschirm-
Koordinaten zu erhalten.

Weiterhin ist es die Aufgabe der Restore-Prozedur,

dafür zu sorgen, daß keinesfalls außerhalb des an-

geforderten Rechtecks Ausgabe erzeugt wird, denn das

Gebiet außerhalb gehört ı.a. zu einem anderen Fenster,

oder zu Teilen, die nicht von der Applikation verwaltet

werden (z.B. Fenstertitel). Normalerweise wird man

dafür ein Clip-Rechteck verwenden, jedoch sind auch
alle anderen, gleichwertigen Methoden zulässig.

Nun bleibt noch die Frage, wie die grafische Ausgabe

selbst erzeugt wird. SSWiS macht darüber keine An-
nahmen oder Vorschriften, jedoch werden als Ergän-

zung zu SSWIS Moduln angeboten, die Ausgabefunk-

tionen und systemunabhängiger Weise bereitstellen

(TextWindows, ...).. Dadurch wird die mit SSWiS ge-
wonnene Portabilität auch auf die Restore-Prozedur

ausgedehnt. Allerdings ist es auch akzeptabel, die

Ausgabe in geräte- oder systemabhängiger Weise zu

beschreiben, da die ganze Ausgabe auf die Restore-

Prozedur konzentriert ist. Unter GEM sind VDI, AES
und die Line-A Routinen Beispiele solcher system-

abhängiger Grundfunktionen. Das folgende Programm-
fragment demonstriert eine einfache Restore-Prozedur,

8 — 16 SSWiS SPC MODULA-2 V1.4

die auf einem hypothetischen Grafiksystem mit den

Aufrufen SetClipping und Circle aufsetzt. Natürlich ist
der Kreis nur sichtbar, wenn tatsächlich Teile davon in

das Clip-Rechteck fallen.

PROCEDURE Restore (Owner : ModuleHandles;
Window : WindowHandles;
WorldArea : Lines;

Offset : Points);

VAR Clip : ScreenLines;

BEGIN
Clip. AX:- WorldArea.A.X + Offset.X;
Clip.A.Y:= WorldArea.A.Y + Offset.Y;
Clip.B.X:= WorldArea.B.X;
Clip.B.Y:= WorldArea.B.Y;
SetClipping (Clip);
Circle (100000D+Offset.X,100000D+Offset.y,100);

END Restore;

Falls sich die grafische Ausgabe jedoch aufwendiger

gestaltet, dann ist es sinnvoll, die systemabhangigen
Teile mindestens durch einen Modul zu isolieren. Text-

Windows ist ein Beispiel für einen solchen Modul. Er

verbirgt die aktuelle Implementierung von Textausgabe
und macht die rufende Restore-Prozedur damit porta-

bel.

Nachdem nun der prinzipielle Aufbau einer SSWIS-
Applikation beschrieben ist, müssen noch die Ereig-

nisse erklärt werden, die eine Applikation zu verarbei-

ten hat. Ereignisse werden von SSWIS vorverarbeitet,
klassifiziert, mit Detailinformation versehen und einer

bestimmten Applikation zugeordnet. Das Ereignis wird

alsdann der Applikation zur Verarbeitung übergeben,

indem ihre Accept-Prozedur aufgerufen wird. Als Para-

meter werden von SSWIS ein sogenannter Event-
Report übergeben, der die benötigte Detail- und Be-
gleitinformation enthält.

Da die meisten Events danach zugeordnet werden, in

welchem Fenster gerade die Maus steht, wird das

Ereignisse

Zuordnung von

' Ereignissen

SPC MODULA-2 V1.4 SSWIS 8-17

Ereignisbehandlung

Keyboard—Events

Meta-Tasten

Mausposition

Tasten-Codes

Handle des entsprechenden Fensters ebenfalls als

Parameter der Accept-Prozedur übergeben. Unter

GEM werden Ereignisse immer dem obersten (aktiven)
Fenster zugeordnet. Entsteht ein Ereignis außerhalb

des aktiven Fensters, dann erzwingt GEM zunächst,

daß dieses Fenster aktiv wird.

Die Accept-Prozedur führt daraufhin, als Teil der
Applikation, eine Ereignisbehandlung durch. Dafür ist

zunächst der Ereignistyp maßgebend. Abhängig vom

Ereignistyp enthält der EventReport unterschiedliche

Detailinformationen, deren Bedeutung im folgenden er-

klärt wird. |

Alle Tasteneingaben werden als Tastenereignis klassifi-

ziert. Der EventReport enthalt die gedruckten Tasten.

Dabei werden bis zu 20 Tastenereignisse zu einem

EventReport zusammengefaßt. Von der Applikation wird

erwartet, daß sie darauf entsprechend reagiert. Die

Blockung mehrerer Ereignisse ist immer dann interes-

sant, wenn dadurch die nachfolgende Verarbeitung

effizienter gestaltet werden kann. Je mehr eine

Applikation bei der Verarbeitung von Tastenereignissen

in Rückstand kommt, desto mehr kann sie dann durch

die größere Blockung sparen und so wieder aufholen.

Gleichzeitig wird mit den Tastencodes der Status der
Meta-Tasten (Shift, Alternate und Control) übergeben.
Dabei soll angenommen werden, daß die Meta-Tasten

bei allen übergebenen Tastencodes gedrückt waren.

Schließlich wird noch die momentane Mausposition

übergeben. Die Mausposition wird in Welt-Koordinaten
des Fensters übergeben, über das das Ereignis zu-

geordnet wurde.

Alle Funtions- und Editier-Tasten, die von SSWIS ver-

arbeitet werden, sind als Konstanten deklariert, um ihre

Auswertung zu vereinfachen. Die Codes unterhalb 128
sind durch den ASCIlI-Zeichensatz festgelegt; die
Codes zwischen 128 und 255 sind den nationalen

8 —- 18 SSWIS . SPC MODULA-2 V1.4

Sonderzeichen vorbehalten und müssen applikationss-

pezifisch verarbeitet werden.

Die Maus verursacht verschiedene Ereignisse, die von
Betätigungen der Maustaste (SSWiS geht von einer
Maus mit nur einer Taste aus) herrühren. In jedem Fall

wird der Status der Meta-Tasten, die Position der

Maus (wie oben) und der Status der Maus-Taste über-
geben.

Die ereignisverursachende Aktivität ist die wichtigste

Information des Maus-Ereignisses. Einfaches und

doppeltes Klicken der Maustaste liefern je eine Ereig-

nis. Wenn die Maustaste gedrückt wird, wird ein Ereig-
nis bearbeitet, genauso, wenn sie wieder losgelassen
wird.

Das Maus-Echo (s.u.) kann so eingestellt sein, daß die
Applikation selbst für dessen Generierung zuständig ist.

In diesem Falle wird ein Mausereignis immer dann er-

zeugt, wenn die Maus ein vorgebbares Raster (s.u.)

verläßt. Ein Beispiel dafür ist die Markierung der Selek-
tion im SPC Editor.

Wenn bei gedrückter Maustaste das Fenster verlassen

wird, dem das Drücken der Maustaste gemeldet wurde,

dann entstehen mit einer bestimmten Frequenz ständig

weitere Ereignisse, die anzeigen, daß sich die Maus

aus dem Fenster entfernt hat. Die Applikation kann in

diesem Fall das Fenster weiterscrollen, um anschlie-

Bende Bereiche sichtbar zu machen.

Über das aktive Fenster bestimmt SSWIS, welcher

Menübalken sichtbar sein soll. Beim Wechseln des
aktiven Fensters wechselt i.a. deshalb auch der Menü-

balken. Menüs enthalten bis zu sieben Titel und jeder

Titel bis zu 8 Einträge. Ein Menü-Ereignis ist durch die

Angabe des Titels und des Eintrages vollständig spezi-

fiziert.

Mouse-Events

Mausaktivitat

Motion-Event

Window-Violation

Menü-Events

SPC MODULA-2 V1.4 SSWIS 8 — 19

Message-Events

Timer-Events

Identification-Events

PollEvents Loop

(noch nicht implementiert)

Nachrichten können zwischen Applikationen aus-

getauscht werden, um sich gegenseitg Anstöße für
bestimmte Aktivitäten zu geben. Es wird ein standar-
disiertes Nachrichtenformat vorgegeben.

Wenn SSWisS auf Ereignisse wartet und keine Ereig-

nisse anfallen, geht SSWIS davon aus, daß der Benut-
zer vorübergehend untätig ist. Die dadurch frei verfüg-

bare Prozessorleistung wird dann in Form eines Timer-

Events an die bei SSWiS registrierten Applikationen

reihum vergeben. Ein Timer-Event kann nicht dazu

verwendet werden, zeitkritische Aktivitäten zu steuern,

sondern nur, um in einfacher Weise die Komponente

Zeit in eine Applikation zu bringen. ES dürfen keine

langwierigen Aktivitäten innerhalb des Timer-Events

durchgeführt werden, da dadurch die Reaktionsfähigkeit

des Systems leiden würde.

Die Aufforderung an die Applikation ist deshalb ein

spezielles Feature von SSWIS, da unter SSWIS ver-

schiedene Applikationenen koexistent sein können. Es

ist deshalb nicht mehr damit getan, eine Startup-Mel-
dung auszugeben, etc. Vielmehr ist die ganze Benut-

zeroberflache unter SSWiS sehr stark standardisiert,
und die Herkunft eines Programms ist nicht ohne wei-—

teres ersichtlich. Als Folge des Ereignisses sollte eine

Applikation die SSWIiS Funktion Identify aufrufen und

Programmnamen, Autor, Copyright, etc. zur Verfügung
stellen.

Unter GEM wird dieses Ereignis natürlich durch selek-

tieren des About-Eintrages im Menü erzeugt.

Aus den angegebenen Programmfragmenten ist er-

sichtlich, daß eine Applikation, sobald sie ihre Initiali-
sierung durchgeführt hat, in eine Schleife eintritt, in der
nur noch SSWiS.PollEvents aufgerufen wird. Innerhalb

von SSWiS werden dann, als Folge von Ereignissen
und Programmaktivität die angeschlossenen Applika-

SSWIS SPC MODULA-2 V1.4

tionen aktiviert, indem deren Accept- bzw. Restore-

Prozeduren aufgerufen werden.

Diese Programmstruktur ist typisch für Applikationen

eines Fenstersystems und unterscheidet sich vollstän-

dig vom klassischen, sequentiellen Programmaufbau.

Bei letzterem sind die dialogführenden Programmstel-

len in einem sonst sequentiellen Programmablauf ein-

gebettet.

Unter SSWiS wird die ganze Arbeit aller aktiven
Applikationen in den Accept-Prozeduren geleistet. Die

Funktion SSWiS.PollEvents wird i.a. nur in der Schleife
des Hauptprogramms aufgerufen, um Rekursionen zu

vermeiden. |

SPC-MODULA-2 bietet die Möglichkeit, Programme

zuzuladen. Dieses als Dynamic Linking bezeichnete

Feature ist an anderer Stelle erklärt. Unter SSWiS ist
jedoch wichtig zu wissen, daß das Zuladen mittelbar

oder unmittelbar von einer Accept-Prozedur ausgeht

und dadurch natürlich ein neues Hauptprogramm zum
Ablauf kommt. Dieses läuft, nachdem es die neue
Applikation initialisiert hat, ebenfalls in eine PoolEvents
Schleife. SSWiS wird ab dann von deren PollEvents-
Aufruf angetrieben (und nicht mehr von der startenden

Applikation).

Einfacher ausgedrückt: Die PollEvents Schleife der zu-

letzt zugeladenen Applikation ist die SSWiS treibende

Kraft. Damit wird auch klar, warum die Applikationen

nur in der umgekehrten Startreihenfolge terminiert wer-
den. (z.B. beendet sich die xShell erst, wenn alle

Applikationen, die von ihr gestartet wurden, ebenfalls

terminiert wurden).

Eine weitere, sich hieraus ergebende Tatsache ist, daß

alle Applikationen auf dem gleichen Stack laufen.

Durch das Nachladen von Applikationen innerhalb einer

Accept-Prozedur erhöht sich natürlich der Stack-Be-

darf, und zwar um den der zugeladenen Applikation

Dynamic Linking

Starten und

Terminieren von

Applikationen

Benutzung des Stack

SPC MODULA-2 V1.4 SSWIS

Operatoren

Steuerung von
SSWIS

Anmelden der

Applikation

Fenster Anlegen und

kontrollieren

und den der nachladenden Accept-Prozedur.

Die Operatoren von SSWiS werden in den folgenden

Abschnitten mit der thematischen Ordnung diskutiert,

die auch im DEFINITION MODULE SSWiS angegeben
ist. Wenn die zuvor genannten Konzepte klar geworden

sind, dann sollte es keine Schwierigkeiten bereiten, die

knappen Kommentare des Definitionsmoduls zu lesen.

SSWIS initialisiert sich innerhalb des Modulrumpfes. Die
ordnungsgemäße Terminierung erfolgt über den vom-

System bereitgestellten Terminierungsmechanismus.

Applikationsprogramme brauchen sich deshalb nicht

darum zu kümmern.

Die SSWIS treibende Funktion ist PollEvents. Damit

kehrt der Programmablauf immer wieder zu SSWIS zu-

rück. Mitunter ist es wünschenswert, SSWIS nur die

Möglichkeit zu geben, die Fenster zu restaurieren (z.B.

nachdem eine Dateiauswahl-Box wieder vom

Bildschirm verschwunden ist). Dafür gibt es die Funk-
tion Resync. Reinit veranlaßt SSWIS, den Desktop, den
Menübalken, etc. zu reinstallieren, nachdem aus einer

fremden Applikation zurückgekehrt wurde (z.B. Tem-

pus).

Applikationen mussen sich bei SSWiS an- und abmel-

den, da SSWiS fur jede Applikation einen Satz an
Resourcen vorhalt

Fenster müssen von der Applikation angelegt und wie-

der gelöscht werden. Die Applikation (nicht SSWiS)
gibt jedem Fenster eine Nummer, über die später auf

das Fenster wieder Bezug genommen werden kann.

Fenster können ganz nach vorn oder ganz nach hinten

gebracht werden. Ein Fenster, welches nach hinten

gebracht wird, wird von SSWIS automatisch geschlos-

sen.

Die Randelemente eines Fensters können in einem

weiten Bereich konfiguriert werden. Weiter können der

SSWIS SPC MODULA-2 V1.4

Fenstertitel und die Meldezeile (falls konfiguriert) ge-

setzt werden.

SSWIS steuert die Restore-Prozeduren so, daß immer
dann, wenn sich das Fenster-Arrangement verändert

hat, alle Fenster wieder geeignet restauriert werden.

Änderungen, die sich innerhalb des Fensterinhaltes er-

geben (z.B. durch Eingeben von Zeichen in einem

Texteditor) müssen SSWIiS explizit mitgeteilt werden
(ExplicitRestore), damit SSWiIS die notwendigen
Restore-Aufrufe absetzt.

SSWiS erlaubt der Applikation, die Position und die
Größe ihrer Fenster zu beeinflussen. Jedoch müssen
unter Umständen weitere Randbedingungen eingehal-

ten werden, so daß SSWiS den Wünschen der
Applikation nur teilweise nachkommen kann. Sowohl
die Fensterposition, als auch die Fenstergröße (die

Größe des Fensterinhaltes) können von der Applikation
abfragt werden.

Die Größe des (Welt-) Bildes muß SSWIiS bekannt

sein, da sich daraus die Parameter der Scrollelemente

ergeben. Alle Angaben über das Bild erfolgen in Welt-
Koordinaten. Ein Raster kan angegeben werden, um

das Inkrement beim Feinscrolling zu steuern.

Die Position der Maus wird durch ein Echo auf dem

Bildschirm signalisiert. Das Echo kann verschiedene

Formen (z.B. RubberLine) annehmen. Zudem ist i.a.

noch ein sogenanntes Sprite sichtbar, also eine kleine

Figur, die den augenblicklichen Standort der Maus an-

zeigt. Das Sprite und die Form des Echos sind von der

Applikation einstellbar. Insbesondere kann eine

applikationsabhängige Form gewählt werden. In diesem

Fall ist die Applikation selbst dafür verantwortlich, das

Echo zu erzeugen. Die Bewegungen der Maus werden

dann über die Accept-Prozedur gemeldet. Echoform

und Sprite können für jedes Fenster einer Applikation

separat konfiguriert werden. Sie werden jeweils dann

aktiviert, wenn das Fenster aktiv wird.

Fensterposition und

-größe

Parameter des

Bildes

Maus und Caret

SPC MODULA-2 V1.4 SSWIS

Menüs

Formulare

Das Caret ist eine zweite Markierung einer Position,

ähnlich dem Mausecho, jedoch wird die Position des

Caret ausschließlich durch die Applikation kontrolliert.

Das Caret wird z.B. von TextWindws verwendet, um die
aktuelle Cursorposition anzuzeigen.

Jede Applikation kann bei SSWiS ein eigenes Menü
bestehend aus bis zu 7 Titeln anmelden. Jeder Titel
wird mit einer Beschriftung versehen. Jeder Titel kann

bis zu 8 Einträge haben, die wieder jeweils mit einer

Beschriftung versehen werden. Bei Menüeintragen

können über die Beschriftung gleichzeitig Attribute des

Eintrages konfiguriert werden. So kann ein Eintrag
durch ein der Beschriftung vorangestelltes M maskiert

werden. Es ist dann nicht möglich, den Eintrag zu

selektieren. Ein C markiert den Eintrag bei GEM durch

einen vorangestellten Haken. Menueintrage und -titel
können zu jeder Zeit von der Applikation wieder um-

konfiguriert werden.

Die Funktionalität von Formularsystemen ist so unein-

heitlich, daß fur SSWiS nur einige einfache Mechanis-

men vorgesehen werden, die aber doch recht univer-

sell verwendet werden können.

Ein Formulartyp dient dazu, eine Meldung auszugeben

und eine von maximal 4 Antworten zu erhalten. Die für

die Antwort zu konfigurierenden Buttons (virtuelle

Tasten) werden als String angegeben. Die genaue
Syntax ist im Definitionsmodul angegeben. Der

Defaultbutton ergibt sich aus dem Eingangswert des

Ergebnisses.

Ein weiteres Formular erlaubt, einen editierbaren Text

und 4 zusätzliche, wählbare Optionen anzugeben. Die
Optionen werden in der gleichen Syntax wie die But-
tons konfiguriert. Jedoch liefern die Optionen ein BIT-
SET als Ergebnis, da auch mehrere Optionen gleich-
zeitig gewählt werden können.

Das dritte Formular wird dazu benützt, die Applikation

SSWIS SPC MODULA-2 V1.4

zu identifizieren. Neben dem Program, der Version und

dem Autor kann ein Copyright-Vermerk angegeben

werden.

SPC MODULA-2 V1.4 SSWIS

Diese Seite wurde aus satztech-

nischen Gründen freigelassen

SSWIS SPC MODULA-2 V1.4

Das Laufzeitsystem

Unter dem Begriff Laufzeitsystem werden die Funk-

tionalitäten einer Sprachimplementierung zusammenge-

faßt, die den Ablauf von Programmen auf einer Hard-
ware und einem Betriebssystem unterstützen, ohne

daß sie für den Programmierer direkt sichtbar sind.

Hierzu gehören u.a. die Repräsentierung von Datenty-

pen als Bitmuster im Speicher der Maschine, die Ver-
waltung der diversen Speicherbereiche (Stack, Code,

Daten, Konstanten) und Mechanismen zur Verwaltung

des Speichers selbst.

Das Laufzeitsystem ist damit hochgradig maschinenab-
hängig. Weiterhin sind die Funktionalitäten des Lauf-

zeitsystems nicht als Modulschnittstelle (der SYSLIB)

exportiert. Die im folgenden gegebenen Informationen
haben deshalb hauptsächlich den Zweck, die interne
Organisation von SPC MODULA-2 zu dokumentieren.

a Die an dieser Stelle gegegbenen Informationen sol-

len nicht in Programmen ausgenutzt werden.

Falls sich die Organisation einmal andern wurde, waren

solche Programme nicht mehr lauffahig. Weiterhin sind

solche Programme fast nie portabel.

Es versteht sich von selbst, daß Programme niemals

die Funktionalitäten des Laufzeitsystems stören dürfen.

Kapitel 9

Übersicht

Maschinen-

abhängigkeit

SPC MODULA-2 V1.4 Laufzeitsystem

Datentypen

INTEGER

CARDINAL

CHAR

BOOLEAN

BITSET

Enumerationen

Die Repräsentierung von MODULA-2 Datentypen in

Bits, Bytes und Worten des Hauptspeichers ist durch

den CPU-Typ bestimmt. Unterschiedliche Prozessoren

bedingen i.a. unterschiedliche Repräsentierungen. Die
hier gegebenen Informationen beziehen sich auf den

CPU-Typ MOTOROLA MC68000 sowie auf seine kom-

patiblen Familienmitglieder. Programme, die sich auf

die bitweise Repräsentierung der Datentypen beziehen,

sind i.a. zwischen Implementierungen auf dem gleichen

Prozessortyp portabel.

Der INTEGER Datentyp ist 16 Bit breit. Negative Werte
werden im Zweierkomplement dargestellt. Der Zahlen-

berich reicht mithin von -32768 bis +32767. Die Da-

tenbreite orientiert sich an der Breite des Maschinen-

wortes, also der Speichereinheit, die von arithmeti-
schen und logischen Operationen standardmäßig un-

terstützt wird.

Der CARDINAL Datentyp ist ebenfalls 16 Bit breit,

jedoch umfaßt sein Wertebereich nur die positiven
Zahlen von O bis 65535. Die Datenbreite orientiert sich

am Maschinenwort.

Der CHAR Datentyp ist 8 Bit breit und umfaßt die
Werte von CHR(0) bis CHR(255), wobei die Bedeutung
der Werte von CHR(O) bis CHR(127) durch den ASCII-
Zeichensatz bestimmt ist.

Der BOOLEAN Datentyp ist ebenfalls 8 Bit breit.
ORD(FALSE) ist 0, ORD(TRUE) ist 1. Bei der Auswer-
tung von Ausdrücken werden jedoch alle von FALSE
verschiedenen Werte als TRUE ausgewertet.

Der BITSET Datentyp belegt ein Maschinenwort, hier 16
Bit, und ist als SET OF [0..15] definiert. Das Bitset O
entspricht dem INTEGER Wert 1.

Enumerationstypen (Aufzählungstypen) sind 8 Bit breit,
d.h. ihr Wertebereich kann 256 Elemente umfassen.

Laufzeitsystem SPC MODULA-2 V1.4

Set-Typen sind 16 oder 32 Bit breit, d.h. ihr Basistyp
kann maximal 32 Elemente umfassen. Dabei entspricht
der niederste Wert des Basistyps dem Bit 0 des Sets.

Pointer-Typen sind 32 Bit breit. Der Wert NIL ent-
spricht der Adresse 0, die i.a. zum Systembereich ge-
hört und geschützt ist.

Alle 8 Bit breiten Datentypen werden im Speicher auf

Byte-Grenzen gelegt. Alle 16 und 32 Bit breiten Da-
tentypen werden auf Wortgrenzen gelegt. Bei RECORD

Datentypen können deshalb unbelegte “Löcher” ent-

stehen. ARRAY Elemente mit höheren Indices sowie
später deklarierte RECORD Elemente stehen im
Speicher an höheren Adressen. Strukturierte Datenty-
pen werden immer auf Wortgrenzen gelegt.

Der REAL Datentyp ist 32 Bit breit. Das Format ent-

spricht dem IEEE Standard (single precision). Die
kleinste darstellbare, echt positive Zahl ist 3.3E-38, die
größte darstellbare Zahl ist 3.3E38 (Dynamikbereich).

Da die Mantisse nur 23 Bit breit ist, ist die Darstel-
lungsgenauigkeit auf 4 bis 5 Dezimalziffern beschränkt.

Die größte darstellbare, echt negative Zahl ist -3.3E-

38, die kleinste darstellbare Zahl ist -3.36E38. Der Ex-

ponent hat einen sogenannten Versatz (engl. Bias) von

127, d.h. ein Wert von 128 entspricht einem Exponen-

ten von 0. Negative Zahlen werden durch das gesetzte

Vorzeichenbit gekennzeichnet. Da der REAL Datentyp

vom MC68000 nicht direkt unterstützt wird, emuliert

SYSTEM die notwendigen Instruktionen.

Der LONGINT Datentyp ist 32 Bit breit, negative Werte

werden im Zweierkomplement dargestellt. Die Multipli—

kation und die Division stehen nicht als Maschinenin-

struktion zur Verfügung und werden deshalb von

SYSTEM emuliert.

Der LONGCARD Datentyp ist 32 Bit breit und umfaßt

die positiven Zahlen von O bis 4294967295.

SET OF

POINTER TO

Alignment

strukturierte

Datentypen

REAL

LONGINT

LONGCARD

SPC MODULA-2 V1.4 Laufzeitsystem

LONGBITSET |

LONGREAL

Der LONGBITSET Datentyp ist 32 Bit breit, und ist als
SET OF [0..31] definiert. Das Set LONGBITSET 0 ent-

spricht dem LONGINT-Wert 1.

Der LONGREAL Datentyp ist 64 Bit breit. Sein Format
entspricht dem IEEE Standard (double precision). Die
Mantisse ist 52 Bit breit, der Exponent ist 11 Bit breit.
Der Exponent hat einen Versatz von 1023. Die kleinste

darstellbare, echt positive Zahl ist 1.79E-307, die
größte darstellbare Zahl ist 1.79E308. Die größte dar-

stellbare, echt negative Zahl ist -1.79E-307, die

kleinste darstellbare Zahl ist -1.79E308.

Laufzeitsystem SPC MODULA-2 V1.4

In diesem Abschnitt wird die Organisation von Moduln

im Hauptspeicher erklärt. Weitere Informationen finden

sich im Definitionsmodul System, der für die Organisa-
tion zuständig ist, und die unten genannten Strukturen

teilweise exportiert,

Jedes SPC MODULA-2 Programm besteht aus einem

Hauptprogramm (-modul) und mehreren importierten-
Moduln. Alle zu einem Programm gehörenden Modul

werden ein Thread genannt. Selbst ein Standalone-

Programm (gelinktes Programm, keine Shell) besteht

aus mindestens einem Thread, kann aber, falls es den

Loader importiert, auch mehrere haben. Threads sind

numeriert. Die Nummer dient gleichzeitig als Kennung.

Jeder SPC-MODULA-2 Modul besteht im Haupt-
speicher aus mehreren Teilen. Die Einzelteile sind un-

tereinander verzeigert. Für gebundene Programme

(.PRG) wird die Verzeigerung vom Linker vorbereitet
und vom Lader des Betriebssystems zur Ladezeit auf

die aktuelle Ladeadresse bezogen (Loadtime Reloca-

tion). Der dynamische Linker (Loader) von SPC
MODULA-2 kann die jeweils schon im Speicher vor-
handene Struktur um weitere, nachzuladende Moduln
erweitern.

Jeder im Hauptspeicher vorhandene Modul ist durch

einen Moduldeskriptor beschrieben. Die Struktur des-

Moduldeskriptors wird vom Modul System exporiiert.
Der Moduldeskriptor enthält die folgenden Komponen-
ten :

Q Next, Zeiger auf den nachsten Deskriptor, letzter Zei-
ger ist NIL

Frame, Zeiger auf das Code-Segment

StaticBase, Zeiger auf das Daten-Segment

ImportedMods, Anzahl der importierten Moduln

ExportedProcs, Anzahl der exportierten Prozeduren

CodeLength, Länge des Code-Segmentes

DataLength, Lange des Datenbereichs O
o
O

O

0

OQ

Modul-

organisation

Threads

Modulin

Moduldescriptor

SPC MODULA-2 V1.4 Laufzeitsystem

Hilfsdeskriptor

Code-Segment

Daten-Segment

ConstLength, Länge des Konstantenbereichs

Thread, Nummer des Programms, zu dem der Modul

gehört (0..15).

O References, Menge der geladenenen Programme, die

den Modul importieren.

O reservierte Adresse

Desweiteren gibt es einen Hilfsdeskriptor (AuxDescr),

der im Datenbereich des Moduls liegt und folgende
Komponenten hat:

a Descr, Rückverweise auf den Deskriptor

OQ Name, Modulname

O Key, Modulschlüssel

Oo Flags, O falls Modul noch nicht initialisiert

Das Code-Segment beginnt mit einem Zeiger auf das
Daten-Segment (StaticBase), über den PC-relativ aus

dem Code-Segment heraus das Datensegment er-
reicht werden kann. Danach folgt im Code-Segment
der Code aller Prozeduren des Moduls, einschließlich
der Initialisierungsprozedur.

Das Datensegment eines Moduls wird über einen Zei-
ger erreicht, der immer im Register A4 gehalten wird
(StaticBase), solange eine Prozedur des Moduls aus-
geführt wird. Jede exportierte Prozedur lädt beim Ein-

tritt den Zeiger vom Anfang des Code-Segmentes
(s.0.). Von A4 aus können dann mit positiven Offsets
erreicht werden :

O Prozedurtabelle

O Modultabelle

QO Modulkonstanten

sowie mit negativen Offsets :

Q Hilfs—Deskriptor

Q globale Modulvariablen

Laufzeitsystem SPC MODULA-2 V1.4

Die Prozedurtabelle enthalt die Anfangsadressen aller

exportierten Prozeduren, inklusive der Initialisierungs—
prozedur, die sich aus dem Hauptprogrammteil des

Moduls ergibt. Die Prozedurtabelle wird vom Compiler
aus dem Definitionsmodul abgeleitet. Prozeduren eines

Moduls werden von außen über den Index in die Pro-
zedurtabelle erreicht. Jedem importierenden Modul sind

die Indizes aus dem importierten Definitionsmodul be-
kannt. Die absoluten Anfangsadressen werden vom

Lader erst zur Ladezeit in die Tabelle eingetragen. Die-
sen Vorgang nennt man Fixup.

Die Modultabelle eines geladenen Moduls enthält die

StaticBases der importierten Moduln. Uber den Index

des importierten Moduls gelangt man an die Daten-

segmente aller importierten Moduln und dabei insbe-

sondere an deren Prozedurtabellen. Die StaticBases-

werden vom Lader zur Ladezeit eingetragen (Fixup).

Die Konstanten eines Moduls sind von der ent-

sprechenden StaticBase mit positiven Offsets erreich-

bar. Sie liegen im Speicher über der Modultabelle.

Der Hilfsdeskriptor wurde schon oben erwähnt. Die

Modulflags enthalten den Wert 0, falls der Modul noch

nicht initialisiert wurde, sonst einen von O verschie-

denen Wert. Hiermit wird verhindert, daß ein Modul

mehrmals seine Initialisierungsprozedur durchläuft. Der

Modulschlüssel ist für den Lader interessant. Aus ihm
wird ermittelt, ob der zu ladende Modul zu allen ge-
ladenen Moduln paßt. Andernfalls wird der Fehler ‘ille—

gal module key’ zurückgegeben. Der Modulname ist

wichtig, um beim Nachladen von Moduln die importier-

ten Moduln zu finden.

Die globalen Modulvariablen sind teils exportiert, teills

sind sie nicht von außen sichtbar. Sie liegen deshalb
am tiefsten unter der StaticBase.

Zusammenfassend läßt sich bemerken, daß die Teile,

deren Ausdehnung von außen nicht bestimmbar ist

Prozedurtabelle

Moduiltablle

Konstanten

Hilfsdeskriptor

Modulvariablen

SPC MODULA-2 V1.4 Laufzeitsystem

(namentlich die Konstanten und die Variablen), am

oberen und unteren Ende des Datensegmentes an-

gesiedelt sind. Die folgende Grafik veranschaulicht die

genannten Verzeigerungen.

Laufzeitsystem SPC MODULA-2 V1.4

Das dynamische Binden im SPC MODULA-2 Sprach-

system wird dadurch ermöglicht, daß nachzuladende

Moduln mit den bereits geladenen Moduln verzeigert
werden. Dieser Vorgang ist recht komplex und wird

vom Lader bereitgestellt.

Der Lader baut zunächst im Hauptspeicher eine Liste

von Deskriptoren auf, an denen die dazugehörigen

Daten- und Code-Segmente hängen. Dazu müssen
die .OBM Dateien gelesen und interpretiert werden. Es
ist zulässig, daß in einer Datei mehrere Moduln zu-

sammengefaßt sind. Moduln, die aktuell nicht benötigt

werden, werden vom Lader im Eingabestrom über-

sprungen. Verbindungen zu bereits geladenen Moduln

stellt der Lader her, indem er sich von System einen

Zeiger auf einen geladenen Modul geben läßt.

Wenn die neue Modulliste (Thread) komplett ist, wird

sie System übergeben, um in die Liste der Threads
eingehängt zu werden. Danach kann das Hauptpro-

gramm gestartet werden.

Nach Beendigung des Programms werden die Moduln

und Deskriptoren wieder aus dem Speicher entfernt, es
sei denn, es ist die Hold-Option gesetzt. In diesem

Fall bleiben die Moduln im Speicher. Es wird jedoch

vermerkt. daß sie erneut initialisiert werden müssen,

wenn später geladene Moduln darauf wieder Bezug

nehmen.

In diesem Konzept ist es möglich, daß verschiedene

Programme die gleichen Moduln (insbesondere die

gleichen Datenbestände) verwenden. Der Modul InOut

wird z.B. von allen Moduln verwendet. Dadurch ist es

auch möglich, eine Kommunikation zwischen verschie-

denen Programmen herzustellen.

der Lade-

vorgang

Modulliste aufbauen

Thread starten

Modulliste abbauen

gemeinsam benützte

Datenbereiche

SPC MODULA-2 V1.4 Laufzeitsystem

Sstack-
organisation

Prozedurrahmen

Parameter

Rücksprung-

Adresse

globale vs. lokale

Prozeduren

Datenbestände, die zur Abarbeitung von Prozeduren

benötigt werden, werden wie üblich auf dem Stack an-

gelegt. Der Stack wächst von höheren zu niedrigeren

Addressen. Das Ende des Stacks (Top Of Stack) wird

durch das Register A7 des MC68000 bezeichnet.

Für jede aufgerufene Prozedur wird auf dem Stack ein

Datenbereich angelegt, der einem festen Aufbau folgt.

Die darin enthaltenen Daten sind:

O die Parameter

QO interne Verzeigerungen

Q lokale Variablen der Prozedur

O Zwischenergebnisse

Der Aufruf von Prozeduren folgt Konventionen, die in

bestimmten Fallen der systemnahen Programmierung

von Interesse sein könnten. Sie werden deshalb im
folgenden offen gelegt.

Die Prozedurparameter werden beim Aufruf in der Rei-

henfolge ihrer Hinschreibung (von links nach rechts)
auf den Stack gelegt. Der am weitesten links stehende
Parameter kommt deshalb an der höchsten Adresse zu
liegen. Die Größe von Datenstrukturen ist in vorange-

gangenen Abschnitten dokumentiert worden. Parame-

ter, die nur ein Byte belegen, müssen auf dem Stack

dennoch als Wortgröße abgelegt werden.

Beim Aufruf von Prozeduren wird im Anschluß an die

Parameter die Rücksprungadresse auf den Stack ge-

legt und die Programmausführung mit dem ersten Be-

fehl der Prozedur fortgesetzt. Die ersten Befehle einer

jeden Prozedur gehören zum sogenannten Prozedur-

Prolog und werden vom Compiler automatisch ge-

neriert. |

Dabei wird unterschieden, ob eine Prozedur auf der

Modulebene, also der äußersten Sichtbarkeitsebene

eines Moduls deklariert ist, oder ob sie innerhalb einer

'. anderen Prozedur erklärt wurde.

9-10 Laufzeitsystem SPC MODULA-2 V1.4

Im ersten Fall wird durch den Prolog zunächst der alte

Wert von A4 (Zeiger auf das Datensegment, Static-

Base) auf den Stack gerettet und der Zeiger auf das |
Datensegment des die Prozedur enthaltenden Moduls

gesetzt. Dieser wird vom Anfang des Code-Segmentes

des Moduls beschafft.

In beiden Fällen (globale und lokale Prozedur) wird
anschließend einheitlich weiter verfahren. Als nächstes
wird der alte Wert des Registers A6 auf den Stack ge-
rettet, der Inhalt des Stackpointers in das Register A6
übernommen und der Stackpointer um soviele Worte

weitergesetzt (zu tieferen Adressen), wie die lokalen

Variablen der Prozedur in Anspruch nehmen. Das
Register A6 zeigt nun in den sogenannten Stack-

Frame der Prozedur und wird deshalb auch Frame-

Pointer genannt. Der oben beschriebene Aufbau wird

durch die Instruktion LINK des Prozessors unterstützt.

Von A6 aus sind jetzt mit positiven Offsets zugänglich:

Q die Parameter

Q die Rucksprungadresse (ReturnAddress)

OQ der alte Wert von A4 (OldStaticBase)

Q der alte Wert von A6 (OldFramePointer)

sowie mit negativen Offsets:

Q die lokalen Variablen

Der Stackpointer zeigt unter die lokalen Variablen,

sodaß der weitere Aufbau des Stacks den Stack-
Frame nicht zerstort.

Beim Verlassen der Prozedur wird zunächst der alte

Wert von A6 wieder in das Register übernommen und

der Stackpointer auf die Adresse oberhalb des alten

A6-Wertes gesetzt (UNLINK). Falls es sich um eine
globale Prozedur handelt, wird danach der alte Wert

von A4 wieder in das Register übernommen. In beiden

Fälle wird die Rücksprungadresse in das Register AO

übernommen und der Stackpointer über die Parameter

gesetzt. Die Prozedur korrigiert also selbst den Stack

FramePointer

Prozedur verlassen

SPC MODULA-2 V1.4 Laufzeitsystem 9-11

Prolog und Epilog

um die Größe der Parameter (im Gegensatz zu C). Der

Rücksprung erfolgt über das Register AO.

Der erzeugte Code geht davon aus, daß über den
Prozeduraufruf die Register A4, A5 und A6 erhalten

bleiben. Weiter wird davon ausgegangen, daß die ge-

rufene Prozedur die Parameter vom Stack nimmt.

Zur Konkretisierung werden im folgenden die Codese-

quenzen für den Prozedurein- und -austritt angege-
ben:

global: lokal:
MOVEL A4,-(SP) ‚ entfällt, da A4
MOVEL -A(PC),A4 ; schon geladen ist
LINK A6,#1s LINK A6,#1s

‚ Prozedurrumpf ‚ Prozedurrumpf

UNLK A6 UNLK A6
MOVEL (SP)+,A4 ‚ entfällt
MOVEL (SP)+,A0 MOVEL (SP)+,A0
ADDOL *ps,SP ADDQ.L #ps,SP
JMP (a0) JMP (a0)

Hierbei bedeuten d der Abstand zum Anfang des

Code-Segmentes, Is die Größe der lokalen Variablen
und ps die Größe der Parameter.

Ein Funktionsergebnis wird als O-ter Parameter behan-

delt. Es ist also ein enstprechend großer Bereich über
der Parametern der Prozedur vorhanden (2 oder 4

Bytes).

9-12 Laufzeitsystem SPC MODULA-2 V1.4

Compiler Fehlermeldungen

. 24

Anhang A

10 Identifier erwartet Syntax

11 Komma (,) erwartet

12 _ Semikolon (;) erwartet

13 Doppelpunkt (:) erwartet

14 Punkt (.) erwartet

15 _ schließende Klammer ()) erwartet

16 schließende eckige Klammer (]) erwartet

17 schließende geschweifte Klammer () erwartet

18 _ Gileichheitszeichen (=) erwartet

19 Zuweisung (:=) erwartet

20 END erwartet

21 Ellipse (..) erwartet

22 öffnende Klammer (() erwartet

23 OF erwartet |

TO erwartet

25 DO erwartet

26 UNTIL erwartet

27 ~~ THEN erwartet

28 MODULE erwartet

29 unzulässige Ziffer oder Zahl zu groß

SPC MODULA-2 V1.4 Fehlermeldungen A-1

nicht definiert

Klasse und Typ

30

31

32

33

34

35

36

37

38

39

40

41

42

44

45

51

52

IMPORT erwartet

Faktor beginnt mit unzulässigem Symbol

Identifier, (oder [erwartet

Identifier, ARRAY, RECORD, SET, POINTER,
PROCEDURE, (oder [erwartet

Type wird von unzulässigem Symbol gefolgt

Statement beginnt mit unzulässigem Symbol

Deklaration wird von unzulässigem Symbol

gefolgt

Statement Teil ist in DEFINITION MODULE nicht
erlaubt

Exportliste ist in IMPLEMENTATION MODULE

nicht erlaubt

EXIT ist nur innerhalb von LOOP Statements

erlaubt

unzulassiges Zeichen in einer Zahl

Zahl ist zu groß

Schließende Kommentarklammer *) fehlt

Ausdruck darf nur konstante Operanden

enthalten

Steuerzeichen innerhalb eines Strings

Identifier ist nicht erklärt oder nicht sichtbar

Objekt sollte eine Konstante sein

Objekt sollte ein Typ sein

Fehlermeldungen SPC MODULA-2 V1.4

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

Objekt sollte eine Variable sein

Objekt sollte eine Prozedur sein

Objekt sollte ein Modul sein

Objekt sollte ein Unterbereich sein

Objekt sollte ein RECORD sein

Objekt sollte ein ARRAY sein

Objekt sollte ein SET sein

unzulässiger Basistyp eines SETs

unzulassiger Typ einer Marke oder Unter-

bereichsgrenze

mehr definierte CASE Marke

untere Grenze ist größer als obere Grenze

mehr aktuelle als formale Parameter

weniger aktuelle als formale Parameter

mehr Parameter im IMPLEMENTATION MODULE

als im DEFINITION MODULE

Parameter mit gleichen Typen im IMPLEMENTA-

TION MODULE haben unterschiedliche Typen im

DEFINITION MODULE

Diskrepanz zwischen VAR Spezifikationen

Diskrepanz zwischen Typ Spezifikationen

mehr Parameter in DEFINITION MODULE als in

IMPLEMENTATION MODULE

Diskrepanz zwischen Ergebnistyp—Spezifikationen

Funktion im DEFINITION MODULE, normale

Prozedur im IMPLEMENTATION MODULE

SPC MODULA-2 V1.4 Fehlermeldungen A-3

13

74

15

76

77

18

79

80

81

82

83

84

85

86

88

89

Prozedur hat im DEFINITION MODULE

Parameter, jedoch nicht im IMPLEMENTATION

MODULE

CODE Prozeduren durfen nicht im DEFINITION

MODULE deklariert werden

unzulassiger Typ der Kontrollvariable eines FOR

Statements

Prozeduraufruf einer Function

Identifier in Kopf und nach END passen nicht

zusammen

neuerliche Definition eines Typs, der im

DEFINITION MODULE deklariert wurde

importierter Modul konnte nicht gefunden werden

offener EXPORT Listeneintrag

unzulässiger Typ des Prozedurergebnisses

unzulässiger Basistyp eines Unterbereichs

unzulässiger Typ eines CASE Ausdruckes

Ausgabe der Symboldatei (.SBM) war nicht

erfolgreich

Schlüssel der importierten Moduln sind nicht

konsistent

fehlerhaftes Format der Symboldatei (.SBM)

Symboldatei konnte nicht geöffnet werden

Prozedur ist im DEFINITION MODULE erklärt,

aber nicht im IMPLEMENTATION MODULE

Fehlermeldungen SPC MODULA-2 V1.4

90

91

92

93

94

95

96

97

98

100

101

102

103

. 104

105

106

107

108

in der Konstruktion a..b muß, falls a eine Implementierung

Konstante ist, b ebenfalls eine Konstante sein

Überlauf des Identifier Puffers

zu viele CASEs

zu viele EXIT Statements

Indextyp eines ARRAYs muß ein Unterbereich

sein |

Unterbereichsgrenzen müssen kleiner 32535sein

zu viele globale Moduln

zu viele Prozeduren im DEFINITION MODULE

zu viele strukturierten Elemente im DEFINITION .

MODULE

mehrfache Definition innerhalb des gleichen mehrfache Definition

Sichtbarkeitsbereichs

unzulässige Verwendung eines Typs Inkompatibilitat

unzulassige Verwendung einer Prozedur

unzulassige Verwendung einer Konstanten

unzulassige Verwendung eines Typs

unzulassige Verwendung einer Prozedur

unzulassige Verwendung eines Ausdrucks

unzulässige Verwendung eines Moduls

konstanter Index außerhalb des zulässigen

Bereichs

SPC MODULA-2 V1.4 Fehlermeldungen A-5

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

indizierte Variable ist kein ARRAY oder der Index

hat den falschen Typ

RECORD Selektor ist kein Feld Identifier

dereferenzierte Variable ist kein Pointer

der Typ des Operanden ist inkompatibel mit dem

Operator Vorzeichenumkehr (—)

der Typ des Operanden ist inkompatibel mit dem

Operator NOT

in dem Ausdruck x IN y ist der Typ von x

verschieden vom Basistyp von y

in dem Ausdruck x IN y ist der Typ von x kein
Basistyp eines SETs oder y ist kein SET

in dem Ausdruck a..b ist a oder b verschieden

vom Basistyp des SETs

inkompatible Operandentypen

der Typ des Operanden ist nicht kompatibel mit

dem Operator *

der Typ des Operanden ist nicht kompatibel mit

dem Operator / |

der Typ des Operanden ist nicht kompatibel mit

dem Operator DIV

der Typ des Operanden ist nicht kompatibel mit
dem Operator MOD

der Typ des Operanden ist nicht kompatibel mit

dem Operator AND

der Typ des Operanden ist nicht kompatibel mit

dem Operator +

der Typ des Operanden ist nicht kompatibel mit

dem Operator -

Fehlermeldungen SPC MODULA-2 V1.4

125

126

127

128

129

130

131

132

133

134

135

136

137

139

140

141

der Typ des Operanden ist nicht kompatibel mit

dem Operator OR

der Typ des Operanden ist nicht kompatibel mit

einem Vergleichsoperator

die Prozedur muß auf Ebene 0(Modulebene)

deklariert werden

der Ergebnistyp einer Prozedur paßt nicht zum

Ergebnistyp eines Prozedurtyps

ein Parameter einer Prozedur paßt nicht zur

formalen Typenliste eines Pozedurtyps

eine Prozedur hat weniger Parameter als der

Prozedurtyp

eine Prozedur hat mehr Parameter als der

Prozedurtyp

Zuweisung einer negativen Zahl an eine

CARDINAL Variable

inkompatible Zuweisung

Zuweisung an ein Objekt, das keine Variable ist

Typ des Ausdrucks in IF, WHILE oder UNTIL

muß BOOLEAN sein

Aufruf eines Objektes, das keine Prozedur ist

der Typ des VAR Parameters ist nicht kompatibel

mit dem des aktuellen Parameters

der Typ des Ausdrucks nach RETURN ist

verschieden vom Ergebnistyp der Prozedur

unzulässiger Typ eines CASE Ausdrucks
\

die Schrittweite eines FOR Statements darf nicht

O sein

SPC MODULA-2 V1.4 Fehlermeldungen A-7

142 unzulässiger Typ einer Kontrollvariablen

143 Zuweisung an ein dynamisches Array ist

unzulässig

144 unzulassiger Typ eines Parameters einer

Standardprozedur

145 dieser Parameter sollte ein Typ Identifier sein

146 = der String ist zu lang

147 unzulässige Spezifikation einer Priorität

Namenskollision 150 ein exportierter Identifier kollidiert mit einem

bereits deklarierten Identifier

System 201 Integer ist zu negativ für Vorzeichenumkehr

202 ein SET Element ist außerhalb der Wortlänge

203 üÜberlauf in einer Multiplikation

204 Uberlauf in einer Division

205 Division durch Ooder Modulo mit negativem Wert

206 Uberlauf in einer Addition |

207 Uberlauf in einer Subtraktion

208 der CARDINAL Wert, der einer INTEGER
Variablen zugewiesen wird, ist zu groB

209 die Größe eines SETS ist zu groß

210 die Größe eines ARRAYSs ist zu groß

212 eine Komponente eines Character ARRAYs kann

kein VAR Parameter werden

214 Elemente eines SETs mussen Konstanten sein

A-8 Fehlermeldungen SPC MODULA-2 V1.4

215

222

223

224

225

226

230

231

232

233

234

235

236

237

238

3239

240

241

244

der Ausdruck ist zu komplex

eine Ausgabedatei konnte nicht gedffnet werden
(Directory voll?)

eine Ausgabedatei konnte nicht vollständig

geschrieben werden (Diskette voll?)

zu viele externe Referenzen

zu viele Strings

das Programm ist zu lang

der Ausdruck ist nicht ladbar Maschine

der Ausdruck ist nicht addressierbar

der Ausdruck ist nicht zulässig

der Ausdruck ist nicht zulässig

Fehler bei der Registerzuteilung

unzulässiger Selektor

zu viele geschachtelte WITH Statements (mehr

als 4)

unzulässiger Operand

unzulässige Operandengröße

Typ sollte LONGREAL sein

der Parameter sollte ein dynamisches Array sein

unzulässiger Typ einer Gleitkomma-Operation

unzulässiger Gleitkomma-Vergleich

SPC MODULA-2 V1.4 Fehlermeldungen A-9

Diese Seite wurde aus

satztechnischen Gründen frei

gelassen

A-10 Fehlermeldungen SPC MODULA-2 V1.4

MODULA-2 Syntax

ident

number

integer

real

ScaleFactor

hexDigit

digit

octalDigit

string

qualident

ConstDeclaration

ConstExpression

TypeDeclaration

type

SimpleType

enumeration

letter {letter | digit}.

integer | real.

digit {digit} ["D"] | octalDigit
{octalDigit} ("B"|"C") | digit {hexDigit}
"H". .

digit {digit} "." {digit} [ScaleFactor].

"E" ["+"|"—"] digit {digit}.

digit |"A"|"B"|"C"|"D"|"E"|"F".

octalDigit | "8"|"9".

"Oo" onan a eee.

"" Icharacter} "" | "" {character} "".

ident {"." ident}.

ident "=" ConstExpression.

expression.

ident "=" type.

SimpleType | ArrayType | RecordType

| SetType | PointerType |
ProcedureType.

qualident | enumeration |

SubrangeType.

"(" IdentList ")".

Anhang B

SPC MODULA-2 V1.4 MODULA-2 Syntax

IdentList il ident {"," ident}.

SubrangeType = = [qualident] "[" ConstExpression ".."

ConstExpression "]".

ArrayType = ARRAY SimpleType {"," SimpleType}
OF type.

RecordType = RECORD FieldListSequence END.

FieldListSequence = FieldList [";" FieldList}.

FieldList = _[IdentList ":" type | CASE [ident] ":"
qualident OF variant {"|" variant}
[ELSE FieldListSequence] END].

variant = [CaseLabelList ":" FieldListSequence].

CaseLabelList = CaseLabels {"," CaseLabels}.

CaseLabels = ConstExpression [".."

ConstExpression].

SetType = SET OF SimpleType.

PointerType = POINTER TO type.

ProcedureType = PROCEDURE [FormalTypeLcist].

FormalTypeList = "(" [[VAR] FormalType {"," [VAR]

FormalType}] ")" [":" qualident].

VariableDeclaration = IdentList ":" type.

designator = qualident {"." ident | "[" ExpList "]" |
nah

ExpList = Expression {"," expression}.

expression = SimpleExpression [relation
SimpleExpression].

relation — Hoo | "AN | Wen | Hes" | Wot | "S=" | IN

B-2 MODULA-2 Syntax SPC MODULA-2 V1.4

SimpleExpression ["+"|"~"] term {AddOperator term}.

AddOperator = "+" | "-" | OR.

term = factor {MulOperator factor}.

MulOperator = "*" | "/" | DIV | REM | MOD | AND |
"a" .

factor = number | string | set | designator

[ActualParameters] | "(" expression ")"

| NOT factor | "~" factor.

set = [qualident] "{" [element {"," element}]
“ye

element = ConstExpression [".."

ConstExpression].

ActualParameters "© TExpList] ")".

statement il assignment | ProcedureCall |
lfStatement | CaseStatement |

WhileStatement | RepeatStatement |
LoopStatement | ForStatement |

WithStatement | EXIT | RETURN

[expression]].

assignment = designator ":=" expression.

ProcedureCall = designator [ActualParameters].

StatementSequence = statement {";" statement}.

IfStatement = IF expression THEN

StatementSequence {ELSIF
expression THEN

StatementSequence} [ELSE
StatementSequence] END.

CaseStatement = CASE expression OF case ff" case}
[ELSE StatementSequence] END.

SPC MODULA-2 V1.4 MODULA-2 Syntax B-3

case =

WhileStatement =

RepeatStatement =

ForStatement =

LoopStatement =

WithStatement =

ProcedureDeclaration

ProcedureHeading

block

declaration

FormalParameters

FPSection

FormalType

ModuleDeclaration

priority

[CaseLabelList ":"

StatementSequence].

WHILE expression DO

StatementSequence END.

REPEAT StatementSequence UNTIL

expression.

FOR ident ":=" expression TO

expression [BY ConstExpression] DO

StatementSequence END.

LOOP StatementSequence END.

WITH designator DO
StatementSequence END .

ProcedureHeading ";" (block ident |
FORWARD).

PROCEDURE ident

[FormalParameters].

{declaration} [BEGIN
StatementSequence] END.

CONST {ConstantDeclaration ";"} |
TYPE {TypeDeclaration ";"} | VAR

{VariableDeclaration ";"} |
ProcedureDeclaration ";" |

ModuleDeclaration ";".

"(" [FPSection {";" FPSection}] ")" [":"

qualident].

[VAR] IdentList ":" FormalType.

[ARRAY OF] qualident.

MODULE ident [priority] ";" {import}
[export] block ident.

"[" ConstExpression "]".

MODULA-2 Syntax SPC MODULA-2 V1.4

export =

Import =

DefinitionModule

definition

ProgramModule

CompilationUnit =

EXPORT [QUALIFIED] IdentList ";".

[FROM ident] IMPORT IdentList ";".

DEFINITION MODULE ident ";"

{import} {definition} END ident ".".

CONST {ConstantDeclaration ";"} |
TYPE {ident ["=" type] ":"} | VAR
{VariableDeclaration ";"} |
ProcedureHeading ';" .

MODULE ident [priority] ";" {import}

block ident '." .

DefinitionModule | [IMPLEMENTATION]

ProgramModule.

SPC MODULA-2 V1.4 MODULA-2 Syntax

Diese Seite wurde aus

satztechnischen Grunden frei

gelassen

MODULA-2 Syntax SPC MODULA-2 V1.4

Literaturhinweise Anhang C

Niklaus Wirth

Programming tt? MODULA-2", Third Corrected Editon

Springer, 1985, ISBN 0-387-15078-1

Dieses Werk, vom Erfinder der Sprache selbst verfaßt, dient als

Standardwerk und als Referenz über MODULA-2. Es erklärt in
kurzer und prägnanter Form die Syntax und die Semantik von
MODULA-2. Bis zur Erreichung einer Normung durch das BSI

werden sich Diskussionen über die Sprache an diesem Werk

orientieren. Die deutsche Übersetzung ist ebenfalls erhältlich. Nicht

zuletzt wegen des relativ geringen Preises gehört es in das

Bücherregal jedes ernsthaften MODULA-2 Programmierers. Aller-

dings muß eingeschränkt werden, daß es zum Erlernen des Pro-

grammierens an sich nicht geeignet ist.

Herbert Schildt

MODULA-2 Made Easy

McGraw-Hill, 1986, ISBN 0-07-881241-0

Was N.Wirth in seinem Standardwerk vermissen läßt, nämlich eine

leicht verständliche Einführung für Programmierneulinge ist Herbert

Schildt in hervorragender Weise gelungen. Das Werk ist etwas

umfänglicher, ohne die Übersicht zu erschweren. Besonders der

Anfänger wird zu schätzen wissen, daß inzwischen auch eine

deutsche Fassung im Handel ist. Das Buch ist reichlich mit Bei-

spielen versehen und enthält einige Übungsaufgaben, die langsam

SPC MODULA-2 V1.4 Literaturhinweise C-1

aber sicher an des Besondere von MODULA-2 heranführen. Eine

ideale Ergänzung zum SPC Sprachsystem.

ATARI Corp.

ATARI ST Becienungshbandbuch

ATARI Corp., 1985

Jankowski, Reschke, Rabich

ATARI 57T Protibuch

SYBEX, 1987, ISBN 3-88745-501-0

Wer auf dem ATARI ST Computer programmieren will, kommt ohne
zusätzliche Literartur nicht aus. Unter den Büchern über den ATARI

ST und sein Betriebssystem, die inzwischen im Handel sind, ist

diese Werk eines der umfassendsten. Die Darstellung der Be-

triebssystemschnittstellen sind präzise und sowohl in C- als auch

in Assembler-Notation angegeben. Das Buch kann durchaus zwei

oder mehrere andere Bücher zum gleichen Thema ersetzen.

Hilf, Nausch

M68000 Familie, Teil 1, Grundlagen und Architektur

Te-Wi, 1984

Der Verfasser ist als Mitarbeiter der Firma MOTOROLA ein intimer

Kenner der Architektur des 68000 und der dazugehörigen

Literaturhinweise SPC MODULA-2 V1.4

Bausteine. Wer in die Assemblerprogrammierung einsteigen will,

oder sich an die elementaren Fähigkeiten des Chip herantrauen

will, wird an diesem Buch nicht vorbeikommen. Für den Einstieg in

MODULA-2 sind die Details der Hardware jedoch weniger interes-

sant, sodaß man im ersten Moment auf die Anschaffung verzich-

ten kann.

Jürgen Geiß, Dieter Geiß

Software-Entwicklung auf dem ATARI ST

Hüthig, 1986. ISBN 3-7785-1339-7

Im Gegensatz zum Profibuch geht es in diesem als Taschenbuch

ausgeführten Werk ausschließlich um die Entwicklung von Soft-
ware für den ST. Dazu wird auf einige Aspekte der Program-

mierung der GEM-Oberfläche genauer eingegangen und einigen

Beispielen die anzuwendenden Techniken vorgeführt. Daß die
Autoren auf diesem Gebiet fachkundig sind, haben sie schon ein-

drucksvoll vorgeführt.

SPC MODULA-2 V1.4 Literaturhinweise

Diese Seite wurde aus

satztechnischen Grunden frei

gelassen

Literaturhinweise SPC MODULA-2 V1.4

Beispielprogramme Anhang D

SPC MODULA-2 V1.4 Beispielprogramme D-1

Diese Seite wurde aus

satztechnischen Gründen frei

gelassen

Beispielprogramme SPC MODULA-2 V1.4

MODULE Hello;

(* Codesize is limited about 1k Bytes within the demo version. %)

FROM InOut IMPORT WriteString, WriteInt, WriteLn;

FROM SYSTEM IMPORT VAL, ADDRESS;

VAR x : ARRAY [1..181 OF CHAR;
Cc : CHAR;
p : POINTER TO CHAR; 999

PROCEDURE Wait:

VAR i, j : INTEGER; |

BEGIN

FOR j:=-188088 TO MAX(INTEGER) DO
i:=1;

END;

END Wait:

PROCEDURE Count (Number

VAR i : INTEGER;

BEGIN

WriteInt (Number, 2); Writeln;
c:= x[Number];

Wait;

IF Number = @ THEN RETURN ELSE Count

END Count;

BEGIN

t INTEGER) ;

(Number-1) END;

WriteLn; WriteString (‘Hello World’); Writeln;

(¥ To demo the debugger compile this program giving options : %)

(¥ compile hello.mod r o
p:= VALCADDRESS, 99);
WriteString Ü’Count Down’); Writeln;
Count (18);

END Hello.

%)

SPC MODULA-2 V1.4 F:\TESTS\HELLO.MOD

 (%----- Category : Module Identification x)

(* Module Type : *%) MODULE
(x. Name : %*%) Empty;
X. Function : Empty Test Programm (minimal PRG size) *)
8. Version Date : 21: 4 16. 1.1989 *)
(X Authors : R.Huetter *)
(* Product Name : SPC %)
(* Copyright : (c) 1989, Ronald Huetter, D7588 Karlsruhe *)

(%----- Category : Types and Data *)

IMPORT Terminal;

VAR ch : CHAR;

BEGIN
REPEAT

Terminal WriteString (' Hello World’);
Terminal .WriteLn:

Terminal.BusyRead (ch);
UNTIL ch # @C;

Terminal WriteString (got °);
Terminal .Write (ch);

Terminal .WriteLn:

Terminal .Read (ch);
Terminal .WriteString (‘got ');
Terminal .Write (ch);

END Empty.

F:\TESTS\EMPTY .MOD SPC MODULA-2 V1.4

FR
FR

IM

CO

VA

BE

 ----- Category : Module Identification

Module Type : %) MODULE
Name : ¥) Dump;
Function : File Dump Utility x)
Version/Date : 1.8 28.12.87 *)

Authors : R.Huetter %)
Product Name : SPC *)
Copyright : (c) 1987, Ronald Huetter, 07588 Karlsruhe *)

----- Category : Types and Data %)

OM SYSTEM IMPORT LONG, SHIFT, VAL, ADDRESS;
OM InOdut IMPORT WriteString, WriteLln, Writelnt;

PORT ByteStreams, CmdLine, Environment, HFS, Strings, TextStreams, XStr;

NST Version = "Dump V1.@';

R i, j, k, kBytes : INTEGER;
ch : CHAR;
Name, s : ARRAY [8..88] OF CHAR;
bs : ByteStreams. Streams;
ts : TextStreams.Streams;
a : ADDRESS;
v, f, dA ı ARRAY [8..68] OF CHAR;
asc : ARRAY [8..15] OF CHAR;

 =. Category : Main Program

GIN
CmdLine.UtilityName (s);

IF NOT CmdLine.FileArg (Name)
THEN CmdLine.ResultIs (FALSE, ‘usage : Dump <filename>');

RETURN;
END;

ByteStreams.Open (bs, Name, ByteStreams.Fileln);
IF bs.Result = ByteStreams.Done
THEN HFS.Decode (Name, v,f,d,t);

HFS.Encode (v,f,d,'.LST', s);
TextStreams.Open (ts, s, TextStreams.FileQut) ;
IF ts.Result # TextStreams.Done
THEN CmdLine.ResultIs (FALSE, "cannot open list file’);

RETURN;
END;

ELSE CmdLine.ResultIs (FALSE, "file not found ;
RETURN;

END;

i:= @; j:= 8; a:= B; kBytes:= 1888;

LOOP

IF j = 256

THEN TextStreams.Writeln (ts);

ji= @;
DEC (kBytes); IF kBytes <= @ THEN EXIT END;

END;

SPC MODULA-2 V1.4 F:\STANDARD\UTILITY\DUMP.MOD D-

IF j = @
THEN TextStreams.WriteLn (ts);

TextStreams.WriteString (ts, ' 5
FOR i:= 8 TO 15 DO

IF (i MOD 8) = 8 THEN TextStreams.Write (ts,
TextStreams.WriteHex (ts, i, 3);

END;
TextStreams.Writeln (ts);

END;

IF (j MOD 16) = 8
THEN TextStreams.WriteLn (ts);

TextStreams.WriteAddress (ts, a, 8);
TextStreams.WriteString (ts, © ');

ELSIF (j MOD 8) = @
THEN TextStreams.Write (ts, ' ');
END;

ByteStreams.ReadByte (bs, ch);
IF bs.Result # ByteStreams.Done
THEN TextStreams.Writeln (ts);

EXIT;
END;

TextStreams.WriteHex (ts, ORD(ch),3);

IF (ch >= ' ') & (ch <= ‘z')
THEN asc[lj MOD 16]:= ch;
ELSE ascCj MOD 16):= °.°
E ’

I

'
J

INC (j); INC (a);

IF (j MOD 16) = @
THEN TextStreams.WriteString (ts, ' ")3

TextStreams.WriteString (ts, asc);
END;

END;

TextStreams.Close (ts);
ByteStreams.Close (bs);

CmdLine.ResultIs (FALSE, ‘done');
END Dump.

") END;

Fi: \STANDARD\UTILITY\OUMP .MOD SPC MODULA-2 V1.4

(R----- Ca

(x Module

(% Authors
(* Product
(* Copyrig

(#----- Ca

FROM = SY

CONST Tr
Ad

(X----- Ca

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

tegory :

Type

Name

Function

Version Date

Name

ht

tegory :

STEM IMPORT

ap
dSP

tegory :

None

I

ALT

TIL

ITA

AAAI

Module Identification

: %) IMPLEMENTATION MODULE

: %) GemDos;

: SPC
: (c) 1987, Ronald Huetter, 07508 Karlsruhe

Types and Data

8:38

R.Huetter

: GEMDOS Interface to Modula-2

2. 6.1988
x)
%)
%)

*)

ADDRESS, INLINE, ADR, VAL, REG, SHIFT,

(

(

B4E41N;
BDFFCH;

GemDos Interface

Code

pi

Code

(% HighCount, LowCount *)

, ps

: INTEGER);

: INTEGER;
: INTEGER);

: INTEGER;
: INTEGER);

: ADDRESS;
: INTEGER) ;

: LONGINT;
| INTEGER) ;

+ INTEGER;
: LONGINT;
: INTEGER);

: INTEGER:
> ADDRESS;
: INTEGER);

: ADDRESS;
: LONGINT;
: INTEGER;
: INTEGER) ;

: INTEGER:
: LONGINT;
: INTEGER);

: INTEGER;
ı ADDRESS;
: INTEGER);

: INTEGER;
: INTEGER):

: LONGINT;
: ADDRESS;
: INTEGER);

: ADDRESS;
: INTEGER;

CODE

CODE

CODE

CODE

CODE

CODE

CODE

CODE

CODE

CODE

CODE

CODE

Trap;

Trap;

Trap;

Trap;

Trap;

Trap;

Trap;

Trap;

Trap;

Trap;

Trap;

Trap;

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\GEMDOS.MOD

PROCEDURE AA (

PROCEDURE AAI (

PROCEDURE ALI (pl

PROCEDURE IAI (pi

: INTEGER); CODE Trap;

: ADDRESS;
: INTEGER); CODE Trap;

: ADDRESS;
: INTEGER;
: INTEGER); CODE Trap;

: ADDRESS;
: LONGINT;
: INTEGER;
: INTEGER); CODE Trap;

: INTEGER;
: ADDRESS;
: INTEGER;
: INTEGER); CODE Trap;

 (¥----- Category : GemDos Functions

PROCEDURE Term®@;

BEGIN
None (8); INLINE (AddSP, 8,2);
Result:= REG(Q);

END Term@;

PROCEDURE ConIn (VAR Ch
VAR ScanCode

BEGIN
None (1); INLINE (AddSP, 98,2);
Result:= REG(@);
Ch := CHR(Result MOD 256D);
ScanCode:= SHIFT(Result,-16) MOD 2560;

END ConIn;

PROCEDURE ConOut (Ch

BEGIN
C (ORD(Ch), 2); INLINE (AddSP, 8,4);
Result:= REG(8);

END ConOut;

PROCEDURE AuxIn (VAR Ch

BEGIN
None (3); INLINE (AddSP, 6,2);
Result:= REG(B);
Ch:= CHR(Result MOD 2560);

END AuxIn;

PROCEDURE AuxOut (Ch

BEGIN
C (CORD(Ch), 4); INLINE (AddSP, 26,4);
Result:= REG(@);

END AuxDut;

: CHAR;

ı ScanCodes);

: CHAR);

: CHAR);

: CHAR);

F:\GEMDOS\SYSLIB\GEMDOS.MOD SPC MODULA-2 V1.4

PROCEDURE PrnOut (Ch

BEGIN
C (ORD(Ch), 5); INLINE (AddSP, 8,4);
Result:= REG(@);

END PrnOut;

PROCEDURE ConRaw10 (VAR Ch

BEGIN
C (ORD(Ch), 6); INLINE (AddSP, 8,4);
Result:= REG(B);
IF ORD(Ch) = BFFH
THEN

Ch:= CHR(Result MOD 256D);
END;

END ConRawIl0;

PROCEDURE ConRawin (VAR Ch

BEGIN
None (7); INLINE (AddSP, 8,2);
Result:= REG(Q);
Ch:= CHR(Result MOD 256D);

END ConRanln;

PROCEDURE ConNegIn (VAR Ch

BEGIN
None (8); INLINE (AddSP, 8,2);
Result:= REG(Q);
Ch:= CHR(Result MOD 256D);

END ConNegIn;

PROCEDURE ConWriteString(Line

BEGIN

A (ADR(Line), 9); INLINE (AddSP, 9,6);

Result:= REG(B);

END ConWriteString;

PROCEDURE ConReadString (VAR Line

BEGIN
A (ADR(Line), 18); INLINE (AddSP, 8,6);
Result:= REG(@);

END ConReadString;

PROCEDURE ConInStat Q : BOOLEAN;

BEGIN

None (11); INLINE (AddSP, 9,2);
Result:= REG(@);
RETURN Result # 6D;

END ConInStat;

PROCEDURE SetDrv (Drive

: CHAR) ;

: CHAR);

: CHAR);

: CHAR) ;

: ARRAY OF CHAR);

: ARRAY OF CHAR);

ı Drives)

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\GEMDOS .MOD

: SetOfDrives;

BEGIN
I (Drive, 14); INLINE (AddSP, 6,4);
Result:= REG(B);
RETURN VAL (SetOfDrives, Result);

END SetDrv;

PROCEDURE CondutStat U) : BOOLEAN;

BEGIN
None (16); INLINE (AddSP, @,2);
Result:= REG(B);

RETURN TRUE;
END ConOutStat;

PROCEDURE PrnOutStat () : BOOLEAN;

BEGIN
None (17); INLINE (AddSP, 6,2);
Result:= REG(@);
RETURN Result = -iD;

END PrnOutStat;

PROCEDURE AuxInStat () : BOOLEAN:

BEGIN

None (18); INLINE (AddSP, 8,2);

Result:= REG(B);
RETURN Result = -1D;

END AuxInStat;

PROCEDURE AuxOutStat () : BOOLEAN;

BEGIN
None (19); INLINE (AddSP, 6,2);

Result:= REG(B);
RETURN Result = -1D;

END AuxQutStat;

PROCEDURE GetDrive QO : Drives;

BEGIN
None (25); INLINE (AddSP, 8,2);
Result:= REG(@);
RETURN VAL(Drives, Result);

END GetDrive;

PROCEDURE SetDTA (VAR Dta

BEGIN
A (ADR(Dta), 26); INLINE (AddSP, 8,6);
Result:= REG(B);

END SetDTA;

PROCEDURE Super (VAR Stck

BEGIN

: DIA);

: LONGINT);

D- 18 F: \GEMDOS\SYSLIB\GEMDOS . MOD SPC MODULA~2 V1.

A (ADR(Stck), 32); INLINE (AddSP, 6,6);
Result:= REG(B);

END Super;

PROCEDURE GetDate (VAR Today : DosDate);

BEGIN
None (42); INLINE (AddSP, 8,2);
Result:= REG(B);
Today := Result;

END GetDate;

PROCEDURE SetDate (Today : DosDate);

BEGIN
I (Today, 43); INLINE (AddSP, 6,4);
Result:= REG(@);

END SetDate;

PROCEDURE GetTime (VAR Now : DosTime);

BEGIN
None (44); INLINE (AddSP, 8,2);
Result:= REG(@);
Now: = Result;

END GetTime;

PROCEDURE SetTime (Now : DosTime);

BEGIN
I (Now, 45); INLINE (AddSP, 8,4);
Result:= REG(B);

END SetTime;

PROCEDURE GetDTA 0: DTAPtr;

BEGIN
None (47); INLINE (AddSP, 6,2);
Result:= REG(B);
RETURN VAL (ADDRESS, Result);

END GetDTA;

PROCEDURE Version () : CARDINAL;

BEGIN
None (48); INLINE (AddSP, 8,2);
Result:= REG(B);
RETURN VAL (CARDINAL, Result);

END Version;

PROCEDURE TermResident (Memory : LONGCARD;
Return : INTEGER);

BEGIN
IL (Return, Memory, 49); INLINE (AddSP, 8,8;
Result:= REG(@);

END TermResident;

SPC MODULA-2 V1.4 Fi \GEMDOS\SYSLIB\GEMDOS .MOD D- 11

PROCEDURE DiskFree (VAR Info ı DiskInfo;

Drive : Drives);

BEGIN
IA (Drive, ADR (Info), 54); INLINE (AddSP, 6,8);
Result:= REG(B);

END DiskFree;

PROCEDURE DirCreate (Name : ARRAY OF CHAR):

BEGIN
A (ADR(Name), 57); INLINE (AddSP, @,6);
Result:= REG(Q);

END DirCreate;

PROCEDURE DirDelete (Name : ARRAY OF CHAR);

BEGIN
A (ADR(Name), 58); INLINE (AddSP, 8,6);
Result:= REG(8);

END DirDelete;

PROCEDURE SetPath (Name : ARRAY OF CHAR);

BEGIN
A (ADR(Name), 59); INLINE (AddSP, 8,6);
Result:= REG(B);

END SetPath;

PROCEDURE Create (Name : ARRAY OF CHAR;
Attribute : SetOfAttributes)

: Handles;

BEGIN
TA (VALCINTEGER, Attribute), ADR(Name), 68);
INLINE (AddSP, 6,8);
Result:= REG(@);
RETURN SHORT (Result);

END Create;

PROCEDURE Open (Name : ARRAY OF CHAR;
Mode : OpenModes)

: Handles;

BEGIN
TA CORD(Mode), ADR(Name), 61); INLINE (AddSP, 8,8);
Result:= REG(B);
RETURN SHORT (Result);

END Open;

PROCEDURE Close (Handle ! Handles);

BEGIN
I (Handle, 62); INLINE (AddSP, 8,4);
Result:= REG(B);

END Close:

D-12 F: \GEMDOS\SYSLIB\GEMDOS .MOD SPC MODULA-2 V1.4

PROCEDURE Read (Handle : Handles;
Buffer : ADDRESS;
Size : LONGINT)

: LONGINT;

BEGIN
ALI (ADR(Buffer), Size, Handle, 63); INLINE (AddSP, 6,12);
Result:= REG(B);

RETURN Result;
END Read;

PROCEDURE Write (Handle : Handles;
Buffer : ADDRESS;

Size : LONGINT)
: LONGINT;

BEGIN
ALI (ADR(Buffer), Size, Handle, 64); INLINE (AddSP, 8,12);
Result:= REG(@);
RETURN Result;

END Write;

PROCEDURE Delete (Name : ARRAY OF CHAR);

BEGIN
A (ADR(Name), 65); INLINE (AddSP, 8,6);
Result:= REG(B);

END Delete;

PROCEDURE Seek (Handle : Handles;

Mode ı SeekModes;

Position : LONGINT);

BEGIN
IIL (ORD(Mode), Handle, Position, 66); INLINE (AddSP, 8,18);
Result:= REG(B);

END Seek;

PROCEDURE Attribute (Name : ARRAY OF CHAR;
Mode : GetModes;

VAR Attrib : SetOfAttributes) ;

BEGIN
TIA (VALCINTEGER, Attrib), ORD(Mode), ADR(Name), 67);
INLINE (AddSP, 8,18);
Result:= REG(B);
Attrib:= VAL (SetOfAttributes, Result);

END Attribute;

PROCEDURE Dup (StdHandle : Handles)
: Handles;

BEGIN
I (StdHandle, 69); INLINE (AddSP, 8,4);

Result:= REG(@);
RETURN SHORT (Result);

END Dup;

PROCEDURE Force (StdHandle : Handles;

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\GEMDOS .MOD D- 13

NonStdHndl : Handles);

BEGIN
II (StdHandle, NonStdHnd!, 78): INLINE (AddSP, 8,6);

Result:= REG(@);

END Force;

PROCEDURE GetPath (VAR Path : Paths;

Drive : Drives);

BEGIN

IA (Drive, ADR(Path), 71); INLINE (AddSP, 8,8);
Result:= REG(B);

END GetPath;

PROCEDURE MemAlloc (Amount : LONGINT)
: LONGINT;

BEGIN .
L (Amount, 72); INLINE (AddSP, 8,6);
Result:= REG(Q);
RETURN Result;

END MemAlloc;

PROCEDURE MemFree (Block ı ADDRESS);

BEGIN
A (Block, 73); INLINE (AddSP, 8,6);
Result:= REG(B);

END MemFree;

PROCEDURE Shrink . C Block : ADDRESS;
Size : LONGINT);

BEGIN
LA (Size, Block, 74); INLINE (AddSP, 8,18);

Result:= REG(B);

END Shrink;

PROCEDURE Exec (Mode : LoadModes;

Path : ARRAY OF CHAR;

CmdLine : ARRAY OF CHAR;

Environment: ARRAY OF CHAR)
: LONGINT;

BEGIN

AAAI (ADR(Environment), ADR(CmdLine), ADR(Path), ORD(Mode), 75);
INLINE (AddSP, 6,16);
Result:= REG(B);

RETURN Result;
END Exec;

PROCEDURE Term (Return : INTEGER);

BEGIN
I (Return, 76); INLINE (AddSP, 8,4);
Result:= REG(@);

END Term;

D- 14 F: \GEMDOS\SYSLIB\GEMDOS .MOD SPC MODULA-2 V1.4

PROCEDURE SearchFirst (Spec : ARRAY OF CHAR;
Attr ı SetOfAttributes);

BEGIN
IA (VALCINTEGER, Attr), ADR(Spec), 78); INLINE (AddSP, 8,8);

Result:= REG(B);

END SearchFirst;

PROCEDURE SearchNext;

BEGIN

None (79); INLINE (AddSP, 8,2);

Result:= REG(@);
END SearchNext;

PROCEDURE Rename (OldName ı ARRAY OF CHAR;
NewName : ARRAY OF CHAR);

BEGIN
AAI (ADR(NenName), ADR(OldName), 8, 86); INLINE (AddSP, 6,12);
Result:= REG(B);

END Rename;

PROCEDURE Timestamp (VAR DatTim : FileTimes;
Handle : Handles;
Mode : GetModes);

VAR i: INTEGER;

BEGIN
IF Mode = Set THEN i:= 1 ELSE i:= 8 END;
IIA (i, Handle, ADR(DatTim), 87);
INLINE (AddSP, 8,18);
Result:= REG(B);

END Timestamp:

END GemDos.

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\GEMDOS .MOD D- 15

(¥----- Category : Module Identification ----%)

(X Module Type : *%) MODULE
(xX, Name ı ¥) SetEnv;
x. Function : Maintain Environment Variable *)
(x, Version/Date : 1.88 27.1.88 ¥)
(X Product Name : SPC ¥)
(* Copyright : (c) 1987,1988, MODsoft, 07568 Karlsruhe %)

(8----- Category : Module Abstract x%

Set, Modify, Delete and List environment variables. *)

 (#----- Category : Types and Data %)

FROM InOut IMPORT WriteString, WriteLn, Write,

ReadString, Read, ReadInt, ReadLn;
IMPORT ASCII, Environment, Strings;

CONST Version = ‘SetEnv V1.0';

VAR VarName : ARRAY [8..381 OF CHAR;
TempStr : ARRAY [8..80] OF CHAR;
i : INTEGER;
ch : CHAR;

(%----- Category : Commands *)

PROCEDURE Set;

BEGIN
WriteString (set variable : °); ReadString (VarName) ;
WriteLn;
WriteString (‘current value : °);

IF Environment.Get (VarName, TempStr)
THEN WriteString (TempStr);
ELSE WriteString ('<empty, new will be allocated>');
END;
Writeln;

WriteString U'nen or <ret> : °); Readin (TempStr);
IF TempStr[8] # BC
THEN WriteLn;

Environment.Set (VarName, TempStr);
WriteString (changed : '); WriteString (TempStr);

ELSE WriteString ('no changes’);
END;
WriteLn;

END Set;

PROCEDURE Delete:

VAR TmpName : ARRAY [8..381 OF CHAR;

_ BEGIN
WriteString ('del variable : '); ReadString (VarName) ;
Writeln;
WriteString ('current value: |);

IF Environment.Get (VarName, TempStr)

D - 16 Fi: \STANDARD\UTILITY\SETENYV .MOD SPC MODULA-2 V1.4

THEN WriteString (TempStr);
Writeln;
WriteString ('y to confirm : '); Read (ch);
Writeln;
IF CAP(ch) = 'Y'
THEN Environment.Set (VarName, |‘);

WriteString (‘deleted 9)
WriteString (VarName) ;

END;
ELSE WriteString (‘not found 95

WriteString (VarName) ;
END;
WriteLn;

END Delete;

PROCEDURE List;

VAR VarName, String : ARRAY [8..88)J OF CHAR;
i : INTEGER;

BEGIN
i:= 1;
WHILE Environment.GetIndexed (i, VarName, String) DO

WriteString (VarName);
WriteString (= ‘);
WriteString (String);
Writeln;
INC (i);

END;
END List;

 (X----- Category : Main Program ----%)

BEGIN
WriteString (Version); Writeln; Writeln;

LOOP

WriteString ('SetEnv [L] ‘);
Read (ch); IF ch = ASCII.EOL THEN ch:= ‘L’ END;
Write (°°);

TOE ope OF
5 Set;

| 'D' : Delete;
| 'L' : List;
| ‘Q' : WriteLn; WriteLn:

EXIT;
| a

| ‘H' : WriteString ('commands are: ');
Writeln;

WriteString ('L_ist to list all variables’);
Writeln;
WriteString (’S_et to set a nen or to modify an existing variable‘);
Writeln;
WriteString (’D_elete to delete a variable);
Writeln;
WriteString (‘Q_uit to return to Shell’);
Writeln;

| ELSE WriteString Ü’unknonn command, type H for help’);
Writeln;

END;

Writeln;

SPC MODULA-2 V1.4 F:\STANDARD\UTILITY\SETENV.MOD D-17

END;

END SetEnv.

D- 18 F:\STANDARD\UTILITY\SETENV.MOD SPC MODULA-2 V1.4

(#----- Category : Module Identification *)

(% Module Type ı %) MODULE
(x. Name : ¥) Shell;
(x. Function : Standard Command Interface for VERSAdos %)
x. Version/Date : 1.25 1.1.88 | %)
(* Authors : R,Huetter *)
(* Product Name : SPC x)
(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe *)

(¥----- Category : Types and Data *)

FROM SYSTEM IMPORT LONG;
FROM InOut IMPORT Done, Write, WriteString, WriteLn,

WriteInt, WriteCard, WriteOct, WriteHex,
Read, ReadCard, ReadInt, ReadString, ReadLn;

IMPORT ASCII, Strings, Loader, CmdLine;

CONST Version = "Shell V1.48';

VAR ch : CHAR;
ExitShel 1 : BOOLEAN;

(¥----- Category : Program Call Primitives . *)

PROCEDURE Call (Tool : ARRAY OF CHAR;
Files : BOOLEAN);

VAR s, msg : ARRAY [8..132] OF CHAR;
b : BOOLEAN;

BEGIN
Strings.Copy (Tool, 1,99, msg);
WriteString (msg); WriteString (' °);

Strings.Concat (Tool, 7,8)
IF Files
THEN ReadLn (msg); Strings.Concat (s, msg, Ss);
END;

Writeln;
CmdLine.Set (s); CmdLine.ResultIs (TRUE, ‘no message’);

IF NOT Loader.Call (Tool, FALSE, msg)
THEN WriteString (Loader: '); WriteString (msg); WriteLn:
ELSE CmdLine.Result (b, msg);

WriteString (msg); Writeln;
END; |

END Call;

PROCEDURE Run;

VAR s, msg : ARRAY [@..132] OF CHAR;
b : BOOLEAN:
Tool : ARRAY (@..48] OF CHAR:

BEGIN
WriteString ('un |);
ReadLn (5s); WriteLn;

CmdLine.Set (5s); CmdLine.ResultIs (TRUE, ‘no message);

SPC MODULA-2 V1.4 F:\GEMDOS\UTILITY\SHELL.MOD D - 19

CmdLine.UtilityName (Tool);

IF NOT Loader.Call (Tool, FALSE, msg)
THEN WriteString ('Loader: °); WriteString (msg); WriteLn;
ELSE CmdLine.Result (b, msg);

WriteString (msg); WriteLn:;
END;

END Run;

PROCEDURE Quit © : BOOLEAN;

BEGIN
WriteString (‘You are about to QUIT SHELL’); WriteLn;
WriteString (Type Q again to confirm’);
Read (ch);
RETURN CAP(ch) = ‘Q';

END Quit;

PROCEDURE Help:

BEGIN
WriteLn;
WriteString (Version); Writeln;

WriteString (’Commands are :); Writeln;
WriteString (° C ... Compile’); Writeln;
WriteString (° L Link’); Writeln;
WriteString (° R ... Run’); Writeln;
WriteString (° P ... Prelink’); WriteLn;
WriteString (' X ... Run Domain’); Writeln;
WriteString (° Q... Quit’); WriteLn;

END Help;

(%----- Category : Main Loop %)

BEGIN
ExitShell:= FALSE;

WriteLn; WriteString (Version); WriteLn;

REPEAT
WriteString ('spc: '); Read (ch);

CASE CAP(ch) OF
| ‘C’ : Call ('compile', TRUE);

: Help;
Pp Call (‘prelink’, TRUE);
L’ : Call Clink’, TRUE) ;
X’ : Call C’domain’, FALSE);
"R’ +: Run} ‘Q:

2

E

Z
N

|
|
|
|

| : ExitShell:= QuitQ;
| '?' : Help:
ELS WriteString (unknown command, type H for HELP’);

Writeln;

END;
UNTIL ExitShell;

WriteLn;
END Shell.

D - 28 Fi: \GEMDOS\UTILITY\SHELL .MOD SPC MODULA-2 V1.4

 (¥----- Category : Module Identification - *)

(X Module Type : %) IMPLEMENTATION MODULE
(X. Name : %) Terminal;
(x. Function : Window Based Standard Terminal *)

(x . Version Date : 12:59 22. 1.1989 *)

(* Authors : R.Huetter x)
(% Product Name : SPC x)
(x Copyright ~ + (c) 1987, Ronald Huetter, D7588 Karlsruhe %)

(x----- Category : Types and Data *)

FROM SYSTEM
IMPORT SHORT;
IMPORT SSWiS, ASCII, Environment, TextFiles, TextWindows, XStr, System;

CONST ModuleName = ‘Terminal’;

VAR Script : TextFiles.File:
HotLine : TextFiles.Text;
HotLineLen : INTEGER;
HotLinePos : INTEGER:
InpLine : ARRAY [8..481 OF CHAR;
InpLineLen : INTEGER;

InpLinePos : INTEGER;
~ Client ı SSWiS.ModuleHandles;

Digits : ARRAY (@..15] OF CHAR;

(¥----- Category : Utility Level *)

PROCEDURE Update;

VAR XY, WH : TextWindons.Points;

BEGIN
IF HotLineLen > HotLinePos
THEN XY.X:= HotLinePos;

XY.Y:= TextFiles.TotalLinesOf (Script);
WH.X:= HotLineLen-HotLinePos+1;
WH.Y:= 1;
TextWindows.ExplicitRestore (Client, 6, XY, WH);

END;
END Update;

(¥----- Category : Input and Output *)

J PROCEDURE Read (VAR ch : CHAR);

VAR p : TextWindons.Points;

BEGIN
IF InpLinePos >= InpLineLen
THEN

Expose; Update;

p.X:= HotLineLen:

p.Y:= TextFiles.TotalLinesOf (Script);
TextWindonws.SetCaret (Client, 8, p);
InpLinePos:= B;
InpLineLen:= @;

WHILE InpLineLen = @ DO

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\ TERMINAL . MOD 0 - 21

SSWiS.PollEvents;

5

p.X:= -L;
TextWindons.SetCaret (Client, 8, p);

END;
ch:= InpLinelInpLinePos]; INC(InpLinePos) ;

END Read;

PROCEDURE BusyRead (VAR ch : CHAR);

VAR p : TextWindows.Points;

BEGIN
IF InpLinePos >= InpLineLen
THEN

Update;

p.X:= HotLineLen;

p.Y¥:= TextFiles.TotalLinesOf (Script);
TextWindons.SetCaret (Client, 8, p);
InpLinePos:= 8;
InpLineLen:= B;

SSWiS.PollEvents;

p.X:= -1L}
TextWindows.SetCaret (Client, 8, p);

END;
IF InpLinePos < InpLineLen
THEN ch:= InpLinelInpLinePos]; INC (InpLinePos) ;
ELSE ch:= @C;
END;

END BusyRead;

PROCEDURE Write (ch : CHAR);

VAR Ss : ARRAY [8..81 OF CHAR;
i : INTEGER;
XY, WH : TextWindows. Points;

BEGIN
IF (ch = 100) & (HotLineLen > 8)
THEN DEC (HotLineLen);

WriteString ('');

ELSIF ch = ASCII.CR

THEN Writetn;

ELSIF ch = ASCII.FF
THEN i:= TextFiles.TotalLinesOf (Script);

WHILE i > 6 DO
TextFiles.Position (Script, 1);
TextFiles.Delete (Script);
DEC (i);

END;
HotLine[8]:= 80; HotLinelen:= 8; HotLinePos:= 8;

WH.X:= 100; WH.Y:= 100; XY.X:= @; XY.Y:= 8
TextWindons.ExplicitRestore (Client, @, XY,WH):

WH.X:= 100; WH.Y:= 1; XY.X:= 63 XY.Y:= 8;

TextWindows.SizeWorld (Client, 8, WH);
TextWindowns.PositionWorld (Client, 8, XY);

D - 22 F:\GEMDOS\SYSLIB\TERMINAL .MOD SPC MODULA-2 V1.4

ELSIF ch >=
THEN s(@]:= ch;

WriteString (s);
END;

END Write;

PROCEDURE WriteString (Text : ARRAY OF CHAR);

VAR i, j : INTEGER;

XY, WH : TextWindows.Points;

BEGIN
ji= 8

WHILE (j <= HIGH(Text)) & (HotLineLen < HIGH(HotLine)) & (Text{j] # @C)
HotLinelHotLineLen]:= TextL[j];
INC (HotLineLen); INC (j);

END;
HotLinefHotLineLen]:= 86;

END WriteString;

PROCEDURE Hriteln;

VAR LastLine : TextWindons.Coordinates;

i : INTEGER;

XY, WH ı TextWindons.Points;

Done : TextFiles.Results;

BEGIN

HotLineLen:= 999; Update;

LastLine:= TextFiles.TotalLinesOf (Script);
TextFiles.Position (Script, 999);
TextFiles.Insert (Script, HotLine, Done);
HotLine[8]:= 86;
HotLineLen:= 8;

HotLinePos:= 8; yo

TextWindons..WorldOf (Client, 6, XY,WH);
TextWindows ._InteriorOf (Client, 6, WH);

IF LastLine >= XY.Y+WH.Y-3
THEN

IF LastLine > 148
THEN WHILE LastLine > 108 DO

TextFiles.Position (Script, 1);
TextFiles.Delete (Script);
DEC (LastLine);

END;
END;

XY.Xi= 8; XY.Yı= LastLine-WH.Y+r3;

TextWindons.Positionlorld (Client, 8, XY);
END;

END WriteLn;

DO

PROCEDURE WriteLong (Arg : LONGINT;
Length : CARDINAL) ;

CONST Base = 160;
BaseChar = 'H';

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\TERMINAL ..MOD D - 23

VAR b, d : ARRAY [8..38] OF CHAR;
i, j : INTEGER;
a : LONGINT;

BEGIN
d[ld]:= " ';
IF Arg < @D
THEN d([l]:= '-';

ai= -Arg;
ji= 23

ELSE a:= Arg;

jet
END;
i:= 68;
REPEAT

blilJ:= Digits[SHORT(a MOD Base)];
a ı= a DIV Base;
INC (i);

UNTIL a = 6D;
WHILE i > 8 DO

DEC (i); d£jl:= bLil; INC (j);
END;
d[jl:= BaseChar; INC (j);
d[j}:= 86;
WriteString (d);

END Writelong;

x ----- Category : Window Driven Terminals

PROCEDURE Expose;

BEGIN
SSWiS.PlaceWindowOnTop (Client, @);

END Expose;

PROCEDURE Hide;

VAR XY, WH : SSWiS.ScreenPoints;

TempStr : ARRAY ([8..60] OF CHAR;

j : CARDINAL;

BEGIN
TempStr:= °°; ji= 8;

SSWiS.PositionOfWindow (Client, 8, XY);

SSWiS.SizeOfWindowContent (Client, 8, WH);

XStr.Integer (XY.X , 5, 18, TempStr, j);
XStr Integer (XY.Y , 5, 18, TempStr, j);
XStr.Integer (WH.X , 5, 18, TempStr, j);
XStr.Integer (WH.Y , 5, 18, TempStr, j);
XStr.Char (eC, TempStr, j);

Environment .Set L('TERMINALFLAGS’, TempStr);

SSWiS.IconiseWindon (Client, 2);

END Hide;

 (¥----- Category : Operating the Window

PROCEDURE AcceptEvent (Owner
Window

VAR Report

ı SSWiS.Modulehandles;

: SSWiS .WindowHandles;

: SSWiS.EventReports) ;

D- 24 Fi \GEMDOS\SYSLIB\TERMINAL . MOD SPC MODULA-2 V1.4

I

VAR i, j + INTEGER;
XY, WH: TexthWindons. Points;

BEGIN
WITH Report DO

IF Type = SSWiS.Keyboard
THEN

i:= 8;
LOOP

j:= Strokes.Keysli];
IF (j < 8 OR (InpLinelen >=
IF j > 256
THEN CASE j OF

| SSWiS.NumLeftBracket :
SSWiS.NumRightBracket: |

| SSWiS.NumSlash
| SSWiS.NumAsterisk
| SSWiS.NumMinus
| SSWiS.NumPlus
| SSWiS.NumEnter
| SSWiS.NumDot
| SSWiS.Num@
| SSWiS.Numi
| SSWiS.Num2
| SSWiS.Num3

| SSWiS.Num4

| SSWiS.Num5
| SSWiS.Numb

| SSWiS.Num?
| SSWiS.Num8

| SSWiS.Num9
| ELSE

END;
END;
IF j < 256

V
a
n

L
e

b
a

a
n

u
n

u

u

a

a

a

a

a

S
n

u

h
m

m

a
n

HIGH (InpLine)) THEN EXIT END;

ORDC
ORD
ORD'
ORDE'
ORDC
ORD ("
ORD(A
ORDC
ORDE'
ORDE
ORDC
ORDC'
ORDE
ORDC'
ORDC
ORDC
ORD
ORDE'

C .CR);
o
o

-
n
u
n

oe

oe

H
o
u

of
@

ot
ff

oN
ot

om
H
o

Wo
ow

om
W
o
W

on

w
e
e

e
e

e
e

e
e

e
e

f
f

w
e

e
w

m
e
r
n

W
O
O
N

M
U
O
N

B
W
N
E
H
E
@
®
-

N
+

1
K
N

Y
e

w
e

S
S

S
S

S
S

S
S

S
S
S

S
S

S
S

THEN InpLineflInpLineLen}:= CHR(j);
INC (InpLineLen);

END;
INC (i);

END;

ELSIF Type = SSWiS.Timer
THEN Update;

ELSIF Type = SSWiS.Identification
THEN

SSWiS.Identify ('SSWiS', ,
END;

END;
END AcceptEvent;

PROCEDURE Restore (Onner
Window
XY, WH

VAR i, j, k: INTEGER:
p : TextFiles.TextPtr:

BEGIN
XY.Xı= 8;
TextWindons.Position (XY);

: SSWiS.ModuleHandles;

: SSWiS.WindowHandles;
: TextWindows. Points);

ji= TextFiles.TotalLinesOf (Script);

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\TERMINAL .MOD 0 - 25

WHILE WH.Y >= @ DO
IF XY.Y < j
THEN TextFiles.Position (Script, XY.Y+1);

pi:= TextFiles.PointerOf (Script):
TextWindows.WriteString (p4);

ELSIF XY.Y = j
THEN TextWindows.WriteString (HotLine) ;
END;
TextWindons.Writeln;
INC (XY.Y); DEC (WH.Y);

END;
TextWindows.Clear;

HotLinePos:= HotLineLen;

END Restore;

 (¥----- Category : Initialisation | *)

PROCEDURE Init:

VAR Done ı TextFiles.Results;

TempStr : ARRAY [8..681 OF CHAR;
j : CARDINAL;

tp : TextWindows.Points;
XY, WH ı SSWiS.ScreenPoints;

min ı SSWiS.ScreenPoints;

b : BOOLEAN;

BEGIN
TextFiles.Create (Script, Done);
HotLine[8]:= 86;
HotLineLen:= 8;
InpLinel@]:= @C;
InpLinePos:= 8;
InpLinePos:= 8;
tp.X = 108;
tp.Y ‚= 158;

SSWiS.Register (Client, ModuleName, AcceptEvent);
TextWindons. Create (Client, 8, Restore);
TextWindows.SizeWorld (Client, 8, tp);
SSWiS.SetWindonTitle (Client, 8, Terminal’);
SSWiS.SetWindomElements (Client, 8, SSWiS.SetOfWindonElements{

SSWiS.Iconiser. .SSWiS.YScroller});

XY.X:= 28; XY.Y:= 20; WH.X:= 408; WH.Y:= 288; j:= 8;
IF Environment.Get ('TERMINALFLAGS', TempStr)
THEN

b:= XStr.InvInteger (XY.X, TempStr, j);
bi= XStr.InvInteger (XY.Y, TempStr, j);
b:= XStr.InvInteger (WH.X, TempStr, j);

b:= XStr.InvInteger (WH.Y, TempStr, j);
END;
SSWiS.PositionWindon (Client, 8, XY);
min.X:= 188; min.Y:= 188;
SSWiS.SizelindomContent (Client, 8, min, WH, SSWiS.ScreenSize);
SSWiS.PlaceWindowOnTop (Client, @);
SSWiS.Resync;

END Init;

PROCEDURE Term:

BEGIN

D - 26 Fs \GEMDOS\SYSLIB\TERMINAL .MOD SPC MODULA-2 V1.4

Hide;

TextWindows.Delete (Client, 8);

END Term;

BEGIN
Digits:= '8123456789ABCDEF ;

Init; IF System.QnModuleTerminationDo (Term) THEN END;
END Terminal.

SPC MODULA-2 V1.4 —-FE\GEMDOS\SYSLIB\TERMINAL .MOD D- 27

(8----- Category : Module Identification %)

(* Module Type : %) IMPLEMENTATION MODULE
x. Name ı *%) Terminal;
(¥ . Function : Terminal Based Standard Terminal *)
(x. Version Date : 21:16 16. 1.1989 *)
(* Authors : R.Huetter x)
(* Product Name : SPC *)
(* Copyright : (c) 1989, Ronald Huetter, 07588 Karlsruhe %)

(¥----- Category : Implementation Notes x

Der folgende Modul stellt eine alternative Implementierung des meist
benoetigten Terminals zur Verfuegung. Die Groesse des fertigen Programms
kann drastisch gesenkt werden, falls nicht aus anderen Gruenden auf
SSWiS zurueckgegriffen werden muss.

Um den Modul zu verwenden, kann er einfach gegen den normalen Modul
TERMINAL.OBM ausgetauscht werden.

 (&----- Category : Types and Data *)

FROM SYSTEM
IMPORT SHORT;
IMPORT ASCII, GemDos, System;

VAR Digits : ARRAY [8..151 OF CHAR;

(%----- Category : Input and Output *)

PROCEDURE Read (VAR ch : CHAR);

BEGIN
GemDos.ConNegIn (ch);

END Read;

PROCEDURE BusyRead (VAR ch : CHAR);

BEGIN
IF GemDos.ConInStat ()

THEN Read (ch);
ELSE ch:= @C;
END;

END BusyRead;

PROCEDURE Write (ch : CHAR) ;

VAR s : ARRAY [8..1] OF CHAR;

BEGIN
s[8J:= ch; s[l1]l:= 86;
WriteString (s);

END Write;

PROCEDURE WriteString (Text : ARRAY OF CHAR):

BEGIN
GemDas.ConWriteString (Text);

D-~ 28 F:\GEMDOS\SYSLIB\TERMINAX.MOD SPC MODULA-2 V1.4

END WriteString;

PROCEDURE Writeln;

VAR s i ARRAY (@..2] OF CHAR;

BEGIN
s(@]:= ASCII.CR; sfCil:= ASCII.LF; sf2]:= QC;
WriteString (s);

END WriteLn;

PROCEDURE WriteLong (Arg : LONGINT;
Length : CARDINAL);

CONST Base = 16D;
BaseChar = ‘H';

VAR b, d : ARRAY [8..38] OF CHAR;
i, j : INTEGER;
a : LONGINT;

BEGIN
d{@]:= °°;
IF Arg < 8D
THEN d(i]:= "-';

a:= -Arg;

jis 23
ELSE a:= Arg;

jez ot: -

END;
i:=B;
REPEAT

blil:= Digits[SHORT(a MOD Base)];
a := a DIV Base;

INC (i);
UNTIL a = @D;
WHILE i > 8 DO

DEC (id; dLjl:= bLil; INC (j);
END;
d[j]:= BaseChar; INC (j);
d({jl:= 6C;
WriteString (d);

END Writelong;

(X----- Category : Window Driven Terminals ~~-%)

PROCEDURE Expose;

BEGIN

END Expose;

PROCEDURE Hide;

BEGIN

END Hide;

 (¥----- Category : Initialisation --%)

SPC MODULA-2 V1.4 F : \GEMDOS\SYSLIB\TERMINAX .MOD D - 29

BEGIN
Digits:= '8123456789ABCDEF' ;

END Terminal.

D - 38 Fs \GEMDOS\SYSLIB\TERMINAX .MOD SPC MODULA-2 V1.4

WorldArea : SSWiS.Lines:

(#----- Category : Module Identification ------- ~-%)

(* Module Type : *%) IMPLEMENTATION MODULE
(x. Name ı %*%) Watch;
(8x. Function : SPC Desktop Clock x)
(x , Version Date : 21:35 11. 1.1989 *)
(* Authors : R.Huetter *)
(% Product Name : SPC x)
(* Copyright : (c) 1987,1988, MODsoft, 07588 Karisruhe *)

(¥----- Category : Types and Data -*)

FROM SYSTEM IMPORT LONG, SHORT;
FROM MathLib IMPORT sin, cos;
IMPORT Clock, SSWiS, XStr, System,

AESGraphics, VDIAttributes, VDIControls, VDIOutputs;

CONST HalfSize = 36;
Size = 2%HalfSize;

VAR Client : SSWiS.ModuleHandles:
VDIHandle : INTEGER;
Sin, Cos : ARRAY [8..59] OF REAL;
Time ı Clock.Time;
FacePat : ARRAY [8..11] OF VDIQutputs.Coordinate;
Day : CARDINAL;

(¥----- Category : Utility Level ¥)

PROCEDURE OpenVirtWorkstation (
: INTEGER;

VAR In : VDIControls.WorkstationlnitRec;
Out : VDIControls.WorkstationDescription;
i : INTEGER;

BEGIN
WITH In DO

Deviceld = 4;
LineStyle ‚= VDIAttributes.Solid;
LineColour ı= 1;
MarkerType (= VDIAttributes.Dot;
MarkerColour = 1;
Font = VDIAttributes.BigFont;
TextColour = 1;
FillStyle := VDIAttributes.Filled;
FillIndex = 1;
FillColour = 1;
CoordinateSystem:= VDIAttributes.RasterCoords;

END;

i:= AESGraphics.Handle (i,i,i,i);

VDIControls.OpenVirtualWorkstation (In, i, Out);
RETURN i;

END OpenVirtWorkstation:

(X----- Category : Restore Proc -- --%)

PROCEDURE Restore (Owner | SSWiS.ModuleHandles;
Window : SSWiS.WindowHandles;

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\WATCH.MOD D- 31

Offset ı SSWiS.Points);

VAR Clip : VDIOutputs.VDIRectangle;
t : Clock.DecodedTime;

i : INTEGER;
j. # + CARDINAL;
hs : LONGINT;
Finger : ARRAY [8.. 2] OF VDIOutputs.Coordinate;

Face ‘ ARRAY [8..111 OF VDIOutputs.Coordinate;
Ss : ARRAY ([@..28] OF CHAR;

BEGIN
Clip.LowerLeft.x := WorldArea.A.X
Clip.LowerLeft.y := WorldArea.A.Y
Clip.UpperRight.x:= WorldArea.A.X
Clip.UpperRight.y:= WorldArea.A.Y
VDIControls.SetClipping (VOIHandle,

VDIOutputs.FillRectangle (VDIHandle,

Clock.Decode (Time, t);

hs:= HalfSize;

IF t.Day # Day
THEN j:= 8; Day:= t.Day;

XStr.Cardinal (t. Day , 1,18,
XStr.Char C
XStr.Cardinal (t. Month, 1,18,
XStr.Char C.
XStr.Char (ec
SSWiS.SetWindonTitle (Client,

END;

FOR i:= 8 TO i1 DO
WITH Faceli] DO

x!

Ys
END;

END;
VDIOutputs.PolyMarker (VDIHandle,

an Finger[i] DO

Offset.X + hs;

Offset.Y + hs; if
END;
WITH Finger (@] DO

5,

‚s,)5
Ss,

‚ 5;

5,

B,

12,

Offset.X;
Offset .Y;

Offset.X + WorldArea.B.X-1D;
Offset.Y + WorldArea.B.Y-1D;

TRUE, Clip);

Clip);

»;

»;
»;
»;
Ss);

SHORT (DOffset.X) + FacePatlil.x;
SHORT (Offset.Y) + FacePatli]l.y;

Face);

ie TRUNC (Sin(t .Minute]¥FLOAT (HalfSize-8)) + Finger[1].x;
:= -TRUNC (Cos(t Minute] XFLOAT (HalfSize-8)) + Finger[1].y;

END:
WITH Finger[2] DO

i
X

y
END;

VDIQOutputs.PolyLine (VDIHandle, 3,
END Restore;

PROCEDURE Accept (Owner
Window

VAR Report

VAR t : Clock.Time:;

BEGIN

((t.Hour MOD 12) * 66 + t.Minute) DIV 12;
TRUNC (Sin lilXFLOAT (Hal fSize-16)) + Finger(ij.x;

~TRUNC (Cos CilXFLOAT (HalfSize-16)) + Finger(il.y;

Finger);

: SSWiS.ModuleHandles;
ı SSWiS.Windonhandles;

: SSWiS.EventReports);

D- 32 F:\GEMDOS\SYSLIB\WATCH.MOD SPC MODULA-2 V1.4

Clock.Get (t);
IF t.Millisec >= Time.Millisec+68888D
THEN Time:= t;

SSWiS.ExplicitRestore (Client, 8, SSWiS.NeverClip);
END;

END Accept;

G----- Category : Initialisation *)

PROCEDURE Init;

VAR i, j, k, 1 + INTEGER;
Style : VDIAttributes.FillStyles;
Color : VDIAttributes.ColourRange;
xy, wh : SSWiS.ScreenPoints;
x : REAL;

BEGIN

FOR i:=8 TO 59 DO

x:= FLOAT(i)*8.1847197; Sinlil:= sin{x); Coslil:= cos (x);

END;

Clock.Get (Time); j:= 8;
FOR i:= 8 TO 11 D0

WITH FacePatli] DO

x:= TRUNC(SinLiXSIXFLOAT(HalfSize-4)) + HalfSize;
yi= -TRUNC(CosCix5]*FLOAT (HalfSize-4)) + HalfSize;

END;
END;
Day:= 8;

VDIHandle:= OpenVirtWorkstation 0;

Style:= VDIAttributes.SetfillInteriorStyle
(VDIHandle, VDIAttributes.Filled);

Color:= VDIAttributes.SetfillColour (VDIHandle, 8);
Color:= VDIAttributes.SetLineColour (VDIHandle, 1);

SSWiS.Register (Client, ‘Clock’, Accept);
SSWiS. CreateWindow (Client, 8, Restore);
SSWiS.SetWindonTitle (Client, 8, Clock’);

wh.X:= Size; wh.Y:= Size;
xy.X:= SSWiS.ScreenSize.X - Size-8; xy.Yi= 8;
SSWiS.SizeNindonContent (Client, 8, wh,wh,wh);
SSWiS.PositionWindow (Client, @, xy);
SSHiS.SetWindowElements (Client, 8, SSWiS.SetOfWindowEl ements

{SSWiS.Iconiser});

SSWiS.PlaceWindonOnTop (Client, @);

END Init;

PROCEDURE Term;

BEGIN

VDIControls.CloseVirtualWorkstation (VDIHandle);

SSWiS.IconiseWindon(Client, 8);
SSWiS.DeleteWNindow (Client, 6);
SSWiS.Deregister (Client);

END Term;

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\WATCH.MOD D - 33

BEGIN
Init; IF System.OnModuleTerminationDo (Term) THEN END;

END Watch.

0 - 34 F:\GEMDOS\SYSLIB\WATCH.MOD SPC MODULA-2 V1.4

Der Pseudomodul SYSTEM Anhang E

SPC MODULA-2 V1.4 Pseudomodul SYSTEM E-1

Diese Seite wurde aus

satztechnischen Gründen frei

gelassen

Pseudomodul SYSTEM SPC MODULA-2 V1.4

(¥----- Category : Module Identification *)

(* Module Type : %) DEFINITION MODULE
(x. Name : %) SYSTEM;
(8. Function : Pseudo modul to import system details *)
(x. Version/Date : 1.88 1.1.88 *)
(* Product Name ı SPC *)
(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe *)

(%----- Category : Module Abstract ~%%

The pseudo module system covers some system dependent functions and
datatypes known by the compiler. There is no object form of module
SYSTEM, but its declaration is given below as a normal definition
module. Do not confuse the pseudo module SYSTEM with the runtime
system module System! x)

 (¥---~- Category : Types and Data *)

TYPE ADDRESS = POINTER TO BYTE; (% compatible with all pointer types*)
(* and nith type LONGCARD *)

BYTE ; (* smallest addressable unit of ... %)
(¥ main memory. SIZE (BYTE) = 1 ¥)

WORD ; (% to consecutive BYTEs beginning ..*)
(¥ at an even address. *)

(%----- Category : Functions x)

PROCEDURE ADR (VAR aVariable : AnyType)
: ADDRESS;

(* Answer the address of aVariable, which may be of any type. %)

PROCEDURE INLINE (WordList : WORD);

(* WordList may be a list of WORDs, separated by commas. The given WORDs
are inserted into the instruction stream as words of code. x)

PROCEDURE REG (Register : INTEGER)
: LONGINT;

(* Answer the content of the indexed processor Register as a LONGINT

value. Index 8 corresponds to DB, 1 to Dl, 15 to A?. %)

PROCEDURE SETREG (Register : INTEGER;
Value : LONGINT);

(¥ Set the indexed Register to Value. %)

PROCEDURE SIZE (AnyType)
: INTEGER;

(% Answer the size in Bytes of the argument, which may be any type or
a variable of any type. %)

PROCEDURE LONG (Value : ShortType)
: LongType;

SPC MODULA-2 V1.4 F: \STANDARD\SPCLIB\Pseudosy. DEF

(* Answer the long form of Value, which may be of type CARDINAL,
INTEGER or REAL. %)

PROCEDURE SHORT (Value : LongType)
: ShortType;

(* Answer the short form of Value, which may be of type LONGCARD,
LONGINT or LONGREAL. %)

PROCEDURE SHIFT (Value : AnyType;
Count : INTEGER)

ı AnyType;

(X Answer the shifted Value. Value is shifted by Count bits, if count
is positive, then Value is shifted to the left. *)

PROCEDURE VAL (AnyType;
Argument : AnyOtherType)

ı AnyType;

(* Transfer Argument, which is of type AnyOtherType to AnyType. No
extra code is generated for type transfers. %)

END SYSTEM.

F: \STANDARO\SPCLIB\Pseudosy. DEF SPC MODULA-2 V1.4

Die STDLIB Anhang F

SPC MODULA-2 V1.4 STDLIB F-1

Diese Seite wurde aus

satztechnischen Gründen frei

gelassen

STDLIB SPC MODULA-2 V1.4

(X----- Category

(* Module Type

: Module Identification

: %) DEFINITION MODULE

: Declare Non-Printing ASCII Characters
(X. Name ı %) ASCII;
(Xx. Function
8. Version/Date : 1.88 27.1.88
(* Product Name : SPC
(% Copyright

(#----- Category : Module Abstract

: (c) 1987,1988, MODsoft, D7588 Karlsruhe

Declaration of non-printing ASCII characters as

(%----- Category :

CONST NUL
ETX
ACK
HT

CONST EOL

END ASCIT.

88C;

830;
B6C;
116;
146;
176;
226;
256;

380;
336;
36C;

= 36C;

SOH
EOT
BEL
LF

Types and Data

u
u
n
h
H
h

#
o
W

H
&

H
o
u

on
ow

symbolic constants.)

BIC;

BAC;
87C;
126;
150;

28C;
250;

26C;
31C;
34C;
37C;

STX
ENQ
BS
VT
50
DC1
Dc4
ETB
SUB
65
DEL

82C;
85C;

18C;
136;
16C;
21C;
24C;
27C;
32C;
35C;
1776;

(% MODULA-2 standard End-Of-Line marker *)

SPC MODULA-2 V1.4 F:\STANDARD\STOLIB\ASCIT. DEF

(¥----- Category : Module Identification *)

(* Module Type : %) DEFINITION MODULE
(8. Name : *%) ByteStreams;
(x. Function : Standard Input/Output Services *)
(8. Version/Date : 1.1 22.1.88 %)
(* Product Name : SPC x)
(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe *)

(&----- Category : Module Abstract KX

A ByteStream is a stream of bytes or words, with no interpretation

put onto the data. Streams can be of several types: terminal, printer
and file (communication in later versions). A stream is unidirectional.
Once open, it can be either only read or written. Several error +
conditions must be observed, when using streams. These can be io
errors or end-of-stream conditions. *)

(X----- Category : Types and Data *)

FROM SYSTEM IMPORT BYTE;

TYPE Results = (Done , (% no problems occurred *)
NotDone ‚ (* formatting problems %)
I0Error , (% device, os problems *)
EndOfStream (* no more characters x)
NotSupported) ; (* function not supported *)

Types = (Terminalin (¥ interactive device ¥)
TerminalOut (X interactive device *)
PrinterÜut (X buffered device %)
FileIn , (% buffered device %)
FileOut);(% buffered device *)

Descriptor ;

TYPE Streams = RECORD
Result : Results;
Descr ‘ Descriptor;

END;

(X----- Category : Control *)

PROCEDURE Open (VAR Stream : Streams;
Name : ARRAY OF CHAR;
Type : Types);

(* Open the named stream. xX)

PROCEDURE Close (VAR Stream : Streams) ;

(* Close Stream. %)

(*----- Category : Input *)

PROCEDURE Read (VAR Stream : Streams;
VAR Block : ARRAY OF BYTE;

Bytes + INTEGER;
VAR BytesRead : INTEGER);

F: \STANDARD\STOLIB\BYTESTRE. DEF SPC MODULA-2 V1.4

(X Read Bytes (which must be <= SIZE(Block)) from Stream into Block and
answer the number of BytesRead. *)

PROCEDURE ReadByte (VAR Stream : Streams;
VAR Byte : CHAR);

(x Read a Byte from Stream. *)

PROCEDURE ReadWord (VAR Stream ı Streams;

VAR Word : CARDINAL) ;

(% Read a Word from Stream. *)

 (¥----- Category : Output *)

PROCEDURE Write (VAR Stream : Streams;
VAR Block : ARRAY OF BYTE;

Bytes ı INTEGER;
VAR BytesWritt : INTEGER);

(* Write Bytes (which must be <= SIZE(Block)) from Block to the Stream. %)

PROCEDURE WriteByte (VAR Stream : Streams;
Byte : CHAR);

(X Write a Byte to Stream. x)

PROCEDURE WriteWord (VAR Stream : Streams;
Word ; CARDINAL) ;

(* Write a Word to Stream. *)

END ByteStreams.

SPC MODULA-2 V1.4 F: \STANDARD\STOLIB\BYTESTRE. DEF

 (¥----- Category : Module Identification *)

(% Module Type : %) DEFINITION MODULE
(X. Name :%) Clock;

(x. Function : Standard Clock Module x)
(8x. Version/Date : 1.8 19.9.87 %)
(% Product Name : SPC x)
(* Copyright : (c) 1987, M0Dsoft, 07588 Karlsruhe *)

(X¥----- Category : Module Abstract HX

Clock provides a Modula-2 standard for time of day and time interval

measuring. The clocks resolution is implementation dependent and is
given below as the number of milliseconds, that cannot be resolved.
Absolute time is measured relative to Ist January 1988 06:08. The
time delivered is the system time (i.e. MEZ or MEZ summer depending on
the operators input at system startup). Future versions wil! provide

MEZ and the socalled dialog-time, which is either MEZ or MEZ summer.
*)

(%----- Category : Types and Data %)

CONST Resolution = 5; (% [milliseconds] %)

TYPE Time = RECORD
Day LONGINT;
Millisec LONGINT;

END;

Weekdays = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

DecodedT ime = RECORD
Year | CARDINAL;
Month : (1..12];
Day [1..31];
Hour : [8..23];
Minute : (8. .59];

Millisec ! CARDINAL ;
Weekday : Weekdays;
DayInYear ! [1..366];

END;

(X----- Category : Accessing System Timer %)

PROCEDURE Get (VAR Arg : Time);

—
 (% Get the time of day in its encoded representation. *

PROCEDURE Set (Arg : Time);

(* Set the machines time of day clock. *)

 (¥----- Category : Conversions *)

PROCEDURE Decode (Enc : Time;
VAR Dec : DecodedTime) ;

(* Convert the encoded time value Enc to its decoded pendent Dec. *)

PROCEDURE Encode (Dec : DecodedTime;
VAR Enc : Time);

F:\STANDARD\STOLIB\CLOCK . DEF SPC MODULA-2 V1.4

(* Convert the decoded time value Dec to its encoded pendent Enc. *)

 (%----- Category : Calculations

PROCEDURE Sub (VAR Minuend ı Time;
Subtrahend : Time);

(* Calulate the expression Minuend:= Minued-Subtrahend. %)

END Clock.

SPC MODULA-2 V1.4 F:\STANDARD\STOLIB\CLOCK . DEF

(X----- Category : Module Identification *)

(X Module Type : %) DEFINITION MODULE
(x. Name ı %) Coroutines;
(x, Function : ¥)
(x, Version/Date : 1.88 / 13.11.1987 *)
(* Product Name : SPC %)
(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe *)

(X----- Category : Change/Version Remarks ¥%

1.88 MC68888 ATARI coroutine handler, implemented according to
Wirth, Niklaus: Programmieren in Modula-2, 1985

*)

(%----- Category : Types and Data %)

FROM SYSTEM IMPORT ADDRESS;
PROCEDURE NEWPROCESS (p : PROC;

A : ADDRESS;
n : CARDINAL;

VAR nen : ADDRESS);

(X create a new coroutine variable new
consisting of:

- the parameterless procedure P
- the coroutine stack with address A and length n

The system needs a minimum stacklength of 128 bytes,
but it is usefull to give sufficient stack.
ATTENTION: stackoverflow is not detected. %)

PROCEDURE TRANSFER (VAR source,
destination: ADDRESS);

(% Switch to coroutine destination.

The context of the actual coroutine is saved to source. *)

PROCEDURE IOTRANSFER (VAR source,
destination: ADDRESS;

vector : CARDINAL) ;

(* Switch to coroutine <destination>.
The context of the actual coroutine is saved to <source>

and the actual coroutine is intialized as interruptservice-
routine for interruptvector <vector>.

There is no possibility in the concept of N. Wirth to stop
the interrupt by an explicit procedure. Therefore its neccessary
to restore the old interruptservice-routine after an interrupt

User's interruptservice-routine had to install the interrupt

again by a new call to IOTRANSFER! %)

END Coroutines.

Fs \STANDARD\STOLIB\COROUTIN. DEF SPC MODULA-2 V1.4

 (X----- Category : Module Identification *)

(*X Module Type : %) DEFINITION MODULE
(x. Name : *%) FileSystem;
8. Function ı Standard File Services *)
(x. Version/Date : 1.8 27.8.87 *)
(* Product Name : SPC %)

(* Copyright : (c) 1987, MODsoft, 07588 Karlsruhe *)

(¥----- Category : Module Abstract xx

FileSystem provides basic sequential and random file access as defined

in Wirth’s "Programming in MODULA-2”. Files are streams of bytes or
words. The application programmer is advised to use this module for
file io to make its programs portable between different MODULA-2
implementations. %)

(X----- Category : Types and Data *)

FROM SYSTEM IMPORT WORD, BYTE, ADDRESS;
IMPORT Clock;

TYPE Response = (done , (% successful completion %)
notdone , (* error, not specified else %)
notsupported , (% internal use *)
callerror , (% improper filestate *)
unknownmedium, (% drive does not exist *)
unknonnfile , (% file not found %)
paramerror ,„ (% invalid parameter x)
toomanyfiles , (* more files than system sup *)
eom , (& end of medium reached %)
userdeverror); (% internal use %)

(* File is an implementation dependent file descriptor. The *)
(* only fields, that are generally visible to the application *)
(* level, are eof, which indicates, that the end of the file x)

(% has been reached, and res, which is used to indicate the *%)

(* completion status of each operation. . *)

TYPE Descriptor ;

TYPE File = RECORD
res : Response;

eof BOOLEAN;
(* following items are not available %)
(* to the application program level. *)

Descr : Descriptor:
END;

(%----- Category : Opening, Closing, Renaming, Deleting *)

PROCEDURE Lookup (VAR F : File;
Filename : ARRAY OF CHAR;
New : BOOLEAN);

(* Looks for a file with the given name. If the file exists, it is
connected to F (opened). If the requested file is not found or new is
TRUE, a permanent file is created with the given name. After the call

F.res = done, if the file f is connected,
F.res = notdone, if the file does not exist or some error occurred. %)

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\FILESYST. DEF F -

PROCEDURE Close (VAR F : File);

(¥ Terminate any actual input or output operation on file F and

disconnect F from the actual file. %)

PROCEDURE Delete (VAR F : File);

(¥ Terminate any actual input or output operation on file F and

disconnect F from the actual file. The file is deleted. %)

PROCEDURE Rename (VAR F : File;
Filename : ARRAY OF CHAR);

(* Change the name of file F to Filename. If F.res returnes not done,
then a file with the given name already exists, or some other error

occured. *)

(¥----- Category : Position and Size %)

PROCEDURE SetPos (VAR F : File;
Pos : LONGCARD) ;

(* Sets the current read/nrite position of file F to Pos. If Pos is
greater than the actual file length, then the file is positioned to
its end. *)

PROCEDURE GetPos (VAR F : File;
VAR Pos : LONGCARD) ;

(* Get the actual read/write position of file F. *)

PROCEDURE Length (VAR F : File;
VAR Len : LONGCARD) ;

(X Get the number of bytes in file F. X)

 (¥----- Category : Reading x)

PROCEDURE ReadChar (VAR F : File;
VAR Ch : CHAR);

(X Read the next byte form file F and assign its value to Ch. If the
operation was not successfull, then Ch will return BC and F.res

indicates the problem. F.eof implies Ch = @C. The opposite, however,
is not true: Ch = GC does not imply F.eof. After the call
F.eof = FALSE, Ch has been read,
F.eof = TRUE , operation was not successfull.

IF F.eof = TRUE, then
F.res = done, end of file has been reached,
F.res # done, some error occured. *)

PROCEDURE ReadWord (VAR F | File:
VAR W : WORD);

(* Same as ReadChar, except that a word quantity is read from the
file. *)

(X----- Category : Writing -- *)

F- 18 F:\STANDARD\STDLIB\FILESYST.DEF SPC MODULA-2 V1.4

PROCEDURE WriteChar (VAR F : File;

. Ch : CHAR);

(* Write the byte Ch to file F at its current read/write position. *)

PROCEDURE WriteWord (VAR F : File;
W : WORD);

(* Same as WRiteChar for word quantities. *)

END FileSystem.

SPC MODULA-2 V1.4 F:\STANDARD\STOLIB\FILESYST . DEF F- 11

(%----- Category : Module Identification *)

(* Module Type : %) DEFINITION MODULE
(x. Name :%) HFS;
(xX. Function ‘ Hierarchical File System *)
(8. Version/Date : 1.8 6.11.87 x)
(* Product Name : SPC ¥)
(% Copyright : (c) 1987, MODsoft, D7588 Karlsruhe %)

(X¥----- Category : Module Abstract *%*

The module supports the naming conventions of a hierarchical file
system, while freeing the application modules from the syntax of
the filesystem at hand. By carefully using the exports of HFS,
programs may become filesystem independent. Actual access to files
is done via the services of FileSystem. Important terms :

1. Selection - is a full filename given as a string of

arbitrary length in an implementation
dependent syntax.

2. Volume - is the name of the medium containing a file.
3. Folder - is a catalog of files. Folders may be nested.
4. Document - (synonym File) is a collection of data.
5. Type ~ iS a sequence of characters, appended to the

document s name to indicate its type.
6. Current Folder - is the folder, nhich’s documents are accessed

when no extra folder name is specified.
*)

(¥----- Category : Type and Data %)

VAR FolderSep
VolumeSep ,
TypeSep : ARRAY ([@..@] OF CHAR;
NameLength : INTEGER;
TypeLength : INTEGER;

TYPE FileProc = PROCEDURE ((¥Filename : *) ARRAY OF CHAR);

(x Do something with the file named Filename. *)

 (¥----- Category : Primitives *)

PROCEDURE ForAllFilesDo (Selection : ARRAY OF CHAR;
What : FileProc;

rOption : BOOLEAN) ;

(X To all files, matching Selection, apply the procedure What. If the
rOption is on, then traverse all subdirectories of the directory

containing Selection. %)

PROCEDURE CurrentFolder (VAR Selection : ARRAY OF CHAR);

(% Answer the name of the current folder in Selection. %)

PROCEDURE AskName (VAR Selection : ARRAY OF CHAR:

VAR Done : BOOLEAN);

(x Ask the user for a filename. Answer the filename in Selection and

set Done TRUE if successfull. The default selction is passed in

Fo - 12 Fi \STANDARD\STOLIB\HFS. DEF SPC MODULA-2 V1.4

Selection to AskName. *)

PROCEDURE Decode (Selection : ARRAY OF CHAR;

VAR Volume : ARRAY OF CHAR;
VAR Folder : ARRAY OF CHAR;
VAR Document ı ARRAY OF CHAR;
VAR Type : ARRAY OF CHAR);

(* Decode a full filename given in Selection into its components as
explained above. *)

PROCEDURE Encode (Volume : ARRAY OF CHAR;

Folder : ARRAY OF CHAR:

Document ı ARRAY OF CHAR;

Type : ARRAY OF CHAR;
VAR Selection : ARRAY OF CHAR);

(* Construct a filename from the components given. *)

END HFS.

SPC MODULA-2 V1.4 F:\STANDARD\STOLIB\HFS. DEF F - 13

 (¥----- Category : Module Identification %)

(* Module Type : %) DEFINITION MODULE
(x. Name : *¥) InOut;
(8. Function ı Standard Input/Qutput Services *)
(x. Version Date : 23: 5 15.18.1988 %)
(% Product Name : SPC *)
(* Copyright : (c) 1987, MODsoft, D7588 Karlsruhe *)

(¥----- Category : Module Abstract %%

Provides the standard input/output service. Input/output is directed to
the interactive console, unless it is redirected by calling OpenInput
or OpenOutput to a disk file. *)

 (¥----- Category : Types and Data %)

FROM SYSTEM IMPORT ADDRESS;

VAR Done : BOOLEAN; (% Signal the success of certain functions. %)
TermCh : CHAR;

 (X----- Category : Control %)

PROCEDURE OpenInput (Extension : ARRAY OF CHAR);

(X Request a file name with the given extension. Done is TRUE if the
file was successfully opened. If open, subsequent input is read from
this file. *)

PROCEDURE OpenOutput (Extension : ARRAY OF CHAR);

(X Request a file name with the given extension. Done is TRUE if the
file was successfully opened. If open, subsequent output is written to
this file. %)

PROCEDURE RedirectInput (Name : ARRAY OF CHAR);

(* Redirect input to the named file. Done is TRUE if the file was
successfully opened. If open, subsequent input is read from this file. *)

PROCEDURE RedirectOutput (Name : ARRAY OF CHAR);

(* Redirect output to the named file. Done is TRUE if the file was

successfully opened. If open, subsequent output is Written to this file. *)

PROCEDURE CloseInput;

(¥ Closes input file, returns input to terminal. *)

PROCEDURE CloseOutput:

(% Closes output file, returns output to terminal. *)

 (X----- Category i Input ------7-------------- mn %)

Fo - 14 Fi \STANDARD\STOLIB\INOUT . DEF SPC MODULA-2 V1.4

PROCEDURE Read (VAR Ch : CHAR):

(* Read a character from standard input. Done is TRUE, if input has not
reached eof. %)

PROCEDURE ReadCard (VAR Number : CARDINAL);

& Read a string, convert it to CARDINAL and assign it to Number.

Syntax: cardinal = digit {digit}.
Leading blanks are ignored. Done is TRUE if Number was read. x)

PROCEDURE ReadInt (VAR Number : INTEGER);

(% Read string and convert to INTEGER.
Syntax: integer = ["+"|"-"] digit {digit}.
Leading blanks are ignored. Done is TRUE if Number was read. *)

PROCEDURE ReadReal (VAR Number ; REAL);

(* Read a string, convert it to REAL and assign it to Number. Syntax:

realnumber = fixedpointnumber Lexponent].
fixedpointnumber = [sign] {digit} ['.' {digit}].
exponent = (’e' | 'E') [sign] digit {digit).
sign = + |,
digit = oJ 1 I'2 1 3° a5.

Leading blanks are ignored. Done is TRUE if Number was read. *)

PROCEDURE ReadLongcard (VAR Number +: LONGCARD);

PROCEDURE ReadLongint (VAR Number : LONGINT);

PROCEDURE ReadlLongreal (VAR Number : LONGREAL);

PROCEDURE ReadString (VAR String : ARRAY OF CHAR);

(X Read string, i.e. sequence of characters not containing blanks nor
control characters. Leading blanks are ignored. Input is terminated by
any character <= " ". This character is assigned to TermCh. Backspace

is used for backspacing when input from terminal. x)

PROCEDURE ReadLn (VAR String : ARRAY OF CHAR);

(*X Read a line, i.e. a sequnce of characters not containing control
characters. Input is terminated by any characters < ° '. This character
is assigned to TermCh. Backspace is used for backspacing when input
from terminal. *)

 (%----- Category : Output : %)

PROCEDURE Write (Ch + CHAR);

(% Write character Ch to standard output. BS is interpreted. *)

PROCEDURE WriteString (String : ARRAY OF CHAR);

SPC MODULA-2 V1.4 F:\STANDARD\STOLIB\INOUT . DEF F- 15

(* Write the String to standard output. *)

PROCEDURE WriteCard (

PROCEDURE WriteHex (

PROCEDURE WriteOct (

PROCEDURE WriteInt (

PROCEDURE WriteReal (

PROCEDURE WriteLongcard (

PROCEDURE WriteLongint (

PROCEDURE WriteLongreal (

PROCEDURE WriteAddress (

Number
Length

Number
Length

Number

Length

Number
Length

Number

Length

Number

Length

Number
Length

Number
Length

Number
Length

: CARDINAL;
: CARDINAL) ;

: CARDINAL;
: CARDINAL) ;

> CARDINAL;
: CARDINAL);

: INTEGER;
: CARDINAL) ;

: REAL;
: CARDINAL;

FracLength : INTEGER) ;

: LONGCARD;
: CARDINAL) ;

‘+ LONGINT;
: CARDINAL);

: LONGREAL;
: CARDINAL;

FracLength : INTEGER) ;

: ADDRESS;
: CARDINAL);

(x Write integer/cardinal/real Number with (at least) n characters to
standard output. If n is greater than the number of digits needed,
blanks are added preceding the number. *

PROCEDURE Writeln;

(X terminate line *)

END InOut.

a 16 F:\STANDARO\STOLIB\INOUT . DEF SPC MODULA~2 V1.4

(¥----- Category : Module Identification --

(* Module Type : %) DEFINITION MODULE

(x, Name — : %) LMathLib;
x. Function : Standard Math Functions *)
(x. Version/Date : 1.8 24.39.87 *)
(X Product Name : SPC *)
(* Copyright (c) 1987, MODsoft, D758@ Karlsruhe *)

(¥----- Category : Module Abstract X%

*)

(¥----- Category : Types and Data %)

CONST e = 2.71828185D;
pi = 3.14159265D;

VAR Epsilon : LONGREAL;

(%----- Category : Double Precision Arithmetics *)

PROCEDURE exp (x : LONGREAL) : LONGREAL;

PROCEDURE In (x : LONGREAL) : LONGREAL;

PROCEDURE lg (x : LONGREAL) : LONGREAL;

PROCEDURE sqrt (x : LONGREAL) : LONGREAL:

PROCEDURE sin (x : LONGREAL) : LONGREAL;

PROCEDURE cos (x + LONGREAL) : LONGREAL;

PROCEDURE tan (x : LONGREAL) : LONGREAL;

PROCEDURE cot (x : LONGREAL) : LONGREAL;

PROCEDURE arcsin (x + LONGREAL) : LONGREAL;

PROCEDURE arccos (x : LONGREAL) : LONGREAL;

PROCEDURE arctan (x : LONGREAL) : LONGREAL;

PROCEDURE sinh (x : LONGREAL) : LONGREAL;

PROCEDURE cosh (x : LONGREAL) : LONGREAL:;

PROCEDURE tanh (x : LONGREAL) : LONGREAL;

(X¥----- Category : Conversions *)

PROCEDURE real (x : LONGINT) : LONGREAL;

PROCEDURE entier (x : LONGREAL) : LONGINT;

(X----- Category : Initialisation x)

PROCEDURE Init;

SPC MODULA-2 V1.4 F: \STANDARD\STOLIB\LMATHLIB. DEF F- 17

END LMathLib.

F - 18 Fs \STANDARD\STDLIB\LMATHLIB. DEF SPC MODULA-2 V1.4

(%----- Category : Module Identification *)

(X Module Type : %) DEFINITION MODULE
8. Name : %) MathLib; |
(x, Function : Standard Math Functions *)
Rx. Version/Date : 1.0 24.9.87 %)
(* Product Name : SPC ¥)
(% Copyright : (c) 1987, MODsoft, D7588 Karlsruhe x)

(¥----- Category : Module Abstract xx

*)

(X----- Category : Types and Data %)

CONST e = 2.71828183;
pi = 3.14159265;

VAR Epsilon : REAL;

(X%----- Category : Double Precision Arithmetics *)

PROCEDURE exp (x : REAL) : REAL:

PROCEDURE In (x : REAL) : REAL;

PROCEDURE lg (x + REAL) : REAL;

PROCEDURE sqrt (x : REAL) : REAL;

PROCEDURE sin (x + REAL) : REAL;

PROCEDURE cos (x + REAL) : REAL;

PROCEDURE tan (x : REAL) : REAL;

PROCEDURE cot (x + REAL) : REAL;

PROCEDURE arcsin (x : ‘REAL) : REAL;

PROCEDURE arccos (x : REAL) : REAL;

PROCEDURE arctan (x : REAL) : REAL;

PROCEDURE sinh (x : REAL) : REAL;

PROCEDURE cosh (x : REAL) : REAL;

PROCEDURE tanh (x + REAL) : REAL;

(X----- Category : Conversions %)

PROCEDURE real (x : INTEGER) : REAL:

PROCEDURE entier (x : REAL) : INTEGER;

END MathLib.

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\MATHLIB. DEF F - 19

Category : Module Identification

(* Module Type

: %) DEFINITION MODULE

Conversions

(x. Name : ¥) NumberConversions;
(x. Function ı Standard Number

(Xx. Version/Date : 1.88 15.1.88
(* Product Name : SPC
(X Copyright (c) 1987,1988, MODsoft, 07588 Karlsruhe

versa.

: CARDINAL:
: ARRAY OF CHAR;

(X----- Category : Module Abstract

Contains routines to convert numbers to strings and vice
x)

(%----- Category : Numbers to Strings

PROCEDURE CardToString (Number
VAR String

Width

(* Convert Number into a String of length

PROCEDURE IntToString (Number
VAR String

Width

(% See above. x)

PROCEDURE LongCardToString
(Number
VAR String

Width

(% See above. *)

PROCEDURE LongIntToString
Number

VAR String
Width

(X See above. *)

: CARDINAL) ;

Width. %)

: INTEGER:
' ARRAY OF CHAR;
: CARDINAL) ;

: LONGCARD;
: ARRAY OF CHAR;
: CARDINAL);

: LONGINT;
: ARRAY OF CHAR;
: CARDINAL);

 (&----- Category : Strings To Numbers

PROCEDURE StringToCard (String
VAR Number
VAR Ok

‘+ ARRAY OF CHAR;
: CARDINAL;
: BOOLEAN) ;

(* Convert String into a Number, andanswer, if Ok. x)

PROCEDURE StringTolnt (String
VAR Number

VAR Ok

(X See above. *)

PROCEDURE StringToLongCard

: ARRAY OF CHAR;
: INTEGER:
: BOOLEAN) ;

r = 28 F:\STANDARD\STDLIB\NUMBERCO. DEF SPC MODULA-2 V1.4

(String : ARRAY OF CHAR;
VAR Number : LONGCARD;
VAR Ok : BOOLEAN);

(X See above. *)

PROCEDURE StringToLongInt
(String : ARRAY OF CHAR;

VAR Number : LONGINT;

VAR Ok : BOOLEAN);

(X See above. *)

END NumberConversions.

SPC MODULA-2 V1.4 F: \STANBDARD\STOLIB\NUMBERCO. DEF F- 21

(¥----- Category : Module Identification x)

(X Module Type : %) DEFINITION MODULE
(x. Name ı %) Printer;
(x. Function : Printer Driver Module *)
8x. Version Date : 14:48 12.11.1988 *)
(* Product Name : SPC x)
(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe x)

(¥----- Category : Module Abstract ¥X

Printer provides the interface to the system's printer. The printer
may be configured by supplying a configuration file, which gives the
control codes for a particular printer. The configuration file has the
same format as the wordplus printer configuration (PRINTER.CFG).
Printer configuration files can be found in the public domain for
nearly all printers.

Configuration parameters, including the name of the configuration file
are stored within the environment variable PRINTFLAGS. x)

 (¥----- Category : Types and Data *)

TYPE HeadProc PROCEDURE ((% pageno : *) CARDINAL);

Fonts = (Pica, Elite, Small, Large);
FontSet = SET OF Fonts;

Attributes = (Highlight, Underline, Superscript, Subscript);
AttributeSet = SET OF Attributes;

(¥----- Category : Printer state *)

PROCEDURE Online () :BOOLEAN;

(* Answer TRUE if printer is ready. %)

 (X----- Category : Print primitives *)

PROCEDURE Write (C : CHAR);

(X Print a single character. If a special printcode is found send it
to the printer. If on the last position in line then WriteLn. *)

PROCEDURE WriteString (String : ARRAY OF CHAR);

(X Print a specified string using printer code. x)

PROCEDURE WriteLn;

(X Advance paper to the beginning of the next line, if the actual line
is the last line on the form then Page. *)

PROCEDURE Page:

(X Advance paper to the top of a nem form. %)

F- 22 F:\STANDARD\STDLIB\PRINTER.DEF SPC MOBULA-2 V1.4

(#----- Category : Print layout params

PROCEDURE Reset;

(X Set default values for column, line number and page number. *)

PROCEDURE CurrentPosition() : CARDINAL;

(* Answer current print position (1..LastPos) in line. *)

PROCEDURE CurrentLine () : CARDINAL;

(% Answer current line (1..LastLine) on page. x)

PROCEDURE CurrentPage () + CARDINAL;

_ (% Answer numbers of page since last call of Reset. %)

PROCEDURE CharsPerLine () : CARDINAL;

(% Answer maximum number of chars per line. *)

PROCEDURE LinesPerPage () : CARDINAL;

(*% Answer maximum number of lines per page. *)

PROCEDURE LeftBorderSize() : CARDINAL;

(* Answer indent on the left side. %)

PROCEDURE SetCharsPerLine(nenvalue : CARDINAL);

(% Set maximum number of chars per line. *)

PROCEDURE SetLinesPerPage(newvalue : CARDINAL);

(* Set maximum number of lines per page. *)

PROCEDURE SetLeftBorderSize
(nenvalue : CARDINAL);

(X¥ Set left indentation. *)

PROCEDURE InstallHeader (Header : HeadProc);

(* Tell printer, how to print the page header. %)

PROCEDURE Head (OnNotOff : BOOLEAN);

(* Activate or deactive the installed header procedure *)

(¥----- Category : Print attribute params

SPC MODULA-2 V1.4 F: \STANDARD\STOLIB\PRINTER. DEF F - 23

PROCEDURE SetAttribute (Attr : Attributes;
OnNotOf f : BOOLEAN);

(¥ Set an printing attribute on or off, if possible.%*)

PROCEDURE SetFont (Font : Fonts);

(X Set a print font for subsequent printing, if possible.*)

PROCEDURE SupportedFonts() : FontSet;

(% Returns the fonts supported by the current driver.)

PROCEDURE SupportedAttributes
() : AttributeSet;

(* Returns the attributes supported by the current driver.*)

 (¥----- Category : Initialisation %*)

PROCEDURE Init;

PROCEDURE GetName (VAR PrinterName: ARRAY OF CHAR);

(X Answer the name of the configured printer. *)

PROCEDURE Load (VAR CFGFileName: ARRAY OF CHAR);

(X Load a nen configuration file. %)

PROCEDURE Term;

END Printer.

F- 24 F:\STANDARD\STOLIB\PRINTER. DEF | SPC MODULA-2 V1.4

(¥----- Category : Module Identification x)

(* Module Type : %) DEFINITION MODULE
Ca Name : %) RealConversions:
(% . Function : Standard Realnumber Conversions *)
(x. Version Date : 8:39 2. 6.1988 *)
(* Product Name ı SPC *)
(% Copyright : (c) 1987,1988, MODsoft, 07508 Karlsruhe %)

(%----- Category : Module Abstract xx

Contains routines to convert real numbers to strings and vice versa.
*)

(¥----- Category : Numbers to Strings *)

?ROCEDURE RealToString (Number : REAL;
VAR String : ARRAY OF CHAR;

Width : CARDINAL;
FracHidth : INTEGER);

(* Convert real Number into a String of length Width with FracWidth
digits to the right of the decimal point. *)

PROCEDURE LongRealToString

(Number : LONGREAL;
VAR String : ARRAY OF CHAR;

Width : CARDINAL;
FracHidth : INTEGER);

(% See above. *)

 (¥----- Category : Strings to. Numbers %)

PROCEDURE StringToReal (String : ARRAY OF CHAR;
VAR Number ° : REAL;
VAR Ok : BOOLEAN) ;

(* Convert a String into a real Number and answer Ok if successfull. %)

PROCEDURE StringToLongReal
String : ARRAY OF CHAR;

VAR Number : LONGREAL;
? VAR Ok : BOOLEAN);

(X See above. *)

END Reallonversions.

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\REALCONV. DEF F- 25

 (¥----- Category : Module Identification %)

(* Module Type : %) DEFINITION MODULE
(x. Name : ¥) Storage;
(x. Function ı Standard Memory Management *)

(x. Version Date : 18:51 16.18.1988 %)
(* Product Name : SPC %)
(* Copyright : (c) 1987, MODsoft, D7588 Karlsruhe x)

(¥----- Category : Module Abstract %*

The module provides dynamic memory allocation and deallocation. However,
modules must carefully check, if the memory, they requested has been
successfully allocated. If not, the failed program MUST deallocate all
previously allocated memory and free all resources, before terminating.
If programs terminate, leaving memory allocated, the system has no
chance to garbage-collect this memory.
*)

 (¥----- Category : Types and Data *)

IMPORT SYSTEM;

TYPE Quantity = LONGCARD;

(%----- Category : Primitives %)

PROCEDURE ALLOCATE (VAR MemoryAddr : SYSTEM.ADDRESS;
Size : Quantity);

PROCEDURE Allocate (VAR MemoryAddr : SYSTEM.ADDRESS;
Size . + Quantity);

(* Allocate an area of Size bytes in length and return its address in
MemoryAddr. If no space is available, an error condition is raised. %)

PROCEDURE DEALLOCATE (VAR MemoryAddr : SYSTEM.ADDRESS);
PROCEDURE Deallocate (VAR MemoryAddr : SYSTEM.ADDRESS);

(X Deallocate the area of memory pointed to by MemoryAddr. This area
must have been allocated previously by Allocate. *) .

PROCEDURE Available (Size : Quantity)
: BOOLEAN;

(* Answer TRUE, if Size bytes could be allocated. %)

END Storage.

F - 26 F:\STANDARD\STDLIB\STORAGE . DEF SPC MODULA-2 V1.4

(X----- Category : Module Identification %)

(% Module Type : %) DEFINITION MODULE

(x. Name : %*%) Strings;
(x. Function ı String Primitives ¥)
(x. Version/Date : 1.81 18.1.88 *)
(* Product Name : SPC *)
(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe *)

(X----- Category : Module Abstract Kx

The Strings module realises the Modula-2 standard string processing
facilities. Strings are ARRAYs OF CHAR of arbitrary length. A String
is terminated either by a NUL character (@C) or by the length of the
character array (HIGH(String)+1). Positions within Strings are denoted
by indices ranging from 8 to stringlength-1. If an index greater than

the stringlength is passed to one of the procedures, then stringlength
1 is assumed. If the result of any string primitive is longer than

che destination character array, then the result is truncated.

*)

(*----- Category : Types and Data x)

CONST End = OC; (% Termination of Modula-2 Strings *)
Equal = 8; (% String Compare Results *)
Less =];
Greater = 1;

(¥----- Category : Inquiries *)

PROCEDURE Length (VAR Source : ARRAY OF CHAR)
+ CARDINAL;

(% Answer the number of characters in Source. *)

 (¥----- Category : String Manipulation *)

PROCEDURE Clear (VAR Destin : ARRAY OF CHAR);

(* Make Destin a string of length @. Extension to standard lib. *)

PROCEDURE Assign (VAR Destin : ARRAY OF CHAR;
Source : ARRAY OF CHAR);

(* Assign the Source string to the Destin array. x)

PROCEDURE Concat (Sourcel ,

Source2 : ARRAY OF CHAR;
VAR Destin : ARRAY OF CHAR);

(% Concatenate the Sourcel and Source2 strings and return the result

in the Destin character array. *)

PROCEDURE Insert (Source : ARRAY OF CHAR;

VAR Destin : ARRAY OF CHAR;

At : CARDINAL) ;

(% Insert the Source string immediatly before the character denoted by
At into the Destin string. *)

SPC MODULA-2 V1.4 F: \STANDARD\STOLIB\STRINGS. DEF F - 27

PROCEDURE Delete (VAR Destin : ARRAY OF CHAR;
At, For : CARDINAL);

(X Delete For characters starting nith the character at position At
from the Destin string. *)

PROCEDURE Copy (Source : ARRAY OF CHAR;

From, For : CARDINAL;

VAR Destin : ARRAY OF CHAR);

(* Copy For characters starting with the character at position From
from the Source string into the Destin character array, starting at @. *)

PROCEDURE Pad (VAR Destin : ARRAY OF CHAR;
UpTo : CARDINAL;
With : ARRAY OF CHAR);

(* Pad the Destin character array up to the character position UpTo
by repeating the string With. Extension to standard lib. %)

 (X----- Category : Comparisons ¥)

PROCEDURE Pos (Substr : ARRAY OF CHAR;
String : ARRAY OF CHAR)

: CARDINAL;

(* Search the string Substr within the String and return the starting
character index if found, otherwise MAX(CARDINAL). *)

PROCEDURE Compare (Stringl : ARRAY OF CHAR;
String2 : ARRAY OF CHAR)

+ INTEGER:

(% Compare Stringl with String2 and return 8 if they are equal, 1 if
Stringl greater String? or -1 if Stringi less than String2. Two strings
are equal, if the have the same length and contain the same characters.
A string A is greater than string B, if they contain the same characters
up to a certain index and then either string B has no more characters
or the next character of string A is greater than that of string B. %)

END Strings.

F - 28 F > \STANDARD\STOLIB\STRINGS. DEF SPC MODULA-2 V1.4

(¥----- Category : Madule Identification *)

(* Module Type : %) DEFINITION MODULE
8. Name : %) Terminal;
(x. Function : Window Based Standard Terminal *)
(8. Version/Date : 1.8 19.9.87 *)
(* Product Name : SPC *)
(% Copyright : (c) 1987, MODsoft, D75@8 Karlsruhe *)

(¥----- Category : Module Abstract xx

Standard terminal module used for basic interactive io. %)

(¥----- Category : Input and Output *)

PROCEDURE Read (VAR ch + CHAR);

(* Read a character from interactive input. No interpretation of control

characters is performed (transparent input). *)

PROCEDURE BusyRead (VAR ch : CHAR);

(* Look for a character in the input buffer. If none is present, then
answer BC. %)

PROCEDURE Write (ch : CHAR);

(¥ Write a character to interactive output. BS,CR and FF are
interpreted. %)

PROCEDURE WriteString (Text : ARRAY OF CHAR);

(X Write a string to interactive output. No control characters are
interpreted. %)

PROCEDURE WriteLn;

(* Terminate the current line and skip to the next line on interactive
output. %)

PROCEDURE WriteLong (Arg : LONGINT;
Length : CARDINAL) ;

(x Write a number to interactive output. Used for test purposes. *)

 (X----- Category : Window Driven Terminals %)

PROCEDURE Expose:

(X If Terminal has a window driven implementation, Terminal's window is

placed on top of other windows. Will be activated upon read. *)

PROCEDURE Hide;

(* If Terminal has a window driven implementation, Terminal'’s window is
iconised. *)

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\ TERMINAL . DEF F - 29

END Terminal.

F- 38 F:\STANDARD\STDLIB\TERMINAL.DEF SPC MODULA-2 V1.4

(*----- Category : Module Identification

(X
(x.

(*
(*
(X

TY

PR

(%

PR

Module Type : %) DEFINITION MODULE
Name ı %) TextStreams;
Function : Standard Textual Input/Output *)
Version Date : 9:37 11.12.1988 *)

Product Name : SPC %)
Copyright ı (c) 1987,1988, MODsoft, D7588 Karlsruhe *)

----- Category : Module Abstract xx

A TextStream is a stream of characters, not containing any control
characters with the exception of the end-of-line marker EOL. EOL is
a single character and is mapped to the implementation or hardware
dependent end-of-line action (and vice versa). Streams can be of
several types: terminal, printer and file (communication in later
versions). A stream is unidirectional. Once open, it can be either

only read or written. Several error conditions must be observed,
when using streams. These can be io errors, end-of-stream conditions
and formatting problems. After every input action the TermCh holds
the last character read from the stream, which is usually the item
terminating character. *)

---- Category : Types and Data *)

OM SYSTEM IMPORT ADDRESS;

PE Results = (Done , (% no problems occurred x)
NotDone ‚ (& formatting problems *)

I0Error ‚ (*% device, os problems x)
EndOfStream , (% no more characters x)
NotSupported); (* function not supported x)

Types = (TerminalIn , (* interactive device *)
TerminalOut , (* interactive device x)
PrinterOut , (% buffered device %)
FileIn , (% buffered device *)
FileOut); (* buffered device x)

Descriptor ;

PE Streams = RECORD
Result Results; (X see above *)
TermCh : CHAR; - (% terminator on last input %)
Descr : Descriptor; (* not visible to caller *)

NST EOL = 360; (* MODULA-2 end-of-line marker*)

coon Category : Control *)

OCEDURE Open (VAR Stream : Streams;
Name : ARRAY OF CHAR;
Type : Types);

Open Stream with Name and Type. If Type is FileIn or FileOut, Name
is the filename, not used otherwise. *)

OCEDURE Close (VAR Stream : Streams);

(* Close Stream. Stream cannot be used after call to Class. %)

SP C MODULA-2 V1.4 F:\STANDARD\STOLIB\TEXTSTRE. DEF F- 31

 (%----- Category : Input *)

PROCEDURE Read (VAR Stream ı Streams;
VAR Ch : CHAR);

(% Read the next character, which is either EOL or a non-control

character. Note, that TermCh contains the same character. *)

PROCEDURE ReadCard (VAR Stream : Streams;

VAR Number : CARDINAL) ;

(* Read a cardinal number from Stream and assign it to number if
Done. Leading blanks and control characters are ignored. If
NotDone, then Stream is not advanced, i.e. the same characters,
with the exception of the skipped blanks and control characters
can be read again. The character following the number is assigned
to TermCh. *)

PROCEDURE ReadInt (VAR Stream : Streams;
VAR Number : INTEGER);

(* Same as above for integer number. *)

PROCEDURE ReadReal (VAR Stream : Streams;
VAR Number : REAL);

(X Same as above for real number. %)

PROCEDURE ReadLongcard (VAR Stream ı Streams;
VAR Number : LONGCARD) ;

(X Same as above for long cardinal number. *)

PROCEDURE ReadLongint (VAR Stream : Streams;
VAR Number : LONGINT);

(X Same as above for long int number. %)

PROCEDURE ReadLongreal (VAR Stream : Streams;
VAR Number : LONGREAL);

(X Same as above for long real number. *)

PROCEDURE ReadString (VAR Stream ı Streams;
VAR String : ARRAY OF CHAR);

(X Same as above, but a string is returned not containing blanks
nor control characters. Leading blanks and control characters
are skipped. Terminating character is assigned to TermCh. *)

PROCEDURE ReadLn (VAR Stream ı Streams;

VAR String : ARRAY OF CHAR);

(X Skip any leading control characters with the exception of EOL.
Then transfer all characters up to the next control character

F- 32 F:\STANDARD\STDLIB\TEXTSTRE.DEF SPC MODULA-2 V1.4

to String. Assign the terminating character to TermCh. Note,
that String may be empty. *)

 (¥----- Category : Output *)

PROCEDURE Write (VAR Stream ı Streams;
Ch : CHAR);

(* If Ch is a control character, then it is ignored. Otherwise it is

written to Stream. If Stream is interactive (see declaraction of

StreamTypes) then the buffer is flushed immediatly. *)

PROCEDURE WriteString (VAR Stream : Streams;
String : ARRAY OF CHAR);

(* Write String to Stream, skipping all control characters. If
Stream is interactive, then the buffer is flushed immediatly. *)

PROCEDURE WriteCard (VAR Stream : Streams;
Number : CARDINAL;
Length : CARDINAL);

(* Write Number in decimal representation to Stream, using at least
Length digits (more if needed). Flush if interactive. %)

PROCEDURE WriteHex (VAR Stream ı Streams;

Number : CARDINAL:

Length : CARDINAL);

(% Same as above in sedecimal representation. Suffix ‘H’ is added. *)

PROCEDURE WriteQct (VAR Stream : Streams:
Number : CARDINAL:
Length : CARDINAL);

(X Same as above in octal representation. Suffix ‘0° is added. *)

PROCEDURE WriteInt (VAR Stream ı Streams;
Number : INTEGER;

Length : CARDINAL);

(x Same as above for integer numbers in decimal representation. *)

PROCEDURE WriteReal (VAR Stream : Streams;
Number : REAL;

Length : CARDINAL;
FracLength : INTEGER);

(% Same as above for real numbers in decimal representation. *)

PROCEDURE WriteLongcard (VAR Stream ı Streams;
Number : LONGCARD;
Length : CARDINAL);

(% Same as above for long cardinal numbers in decimal representation. *)

SPC MODULA-2 V1.4 F:\STANDARD\STDLIB\TEXTSTRE. DEF F - 33

PROCEDURE WriteLongint (VAR Stream : Streams;
Number : LONGINT;
Length + CARDINAL);

(% Same as above for long integer numbers in decimal representation. *)

PROCEDURE WriteLongreal (VAR Stream : Streams;
Number : LONGREAL ;
Length ; CARDINAL;
FracLength : INTEGER);

(%* Same as above for long real numbers in decimal representation. %)

PROCEDURE WriteAddress (VAR Stream : Streams:

Address : ADDRESS;
Length : CARDINAL);

(* Same as above for pointer values in sedecimal representation. *)

PROCEDURE WriteLn (VAR Stream ı Streams);

(xX Add an EOL to the Stream. *)

END TextStreams.

F - 34 F:\STANDARD\STOLIB\TEXTSTRE. DEF SPC MODULA-2 V1.4

Die SPCLIB Anhang G

SPC MODULA-2 V1.4 SPCLIB

Diese Seite wurde aus
satztechnischen Grunden frei

gelassen

SPCLIB SPC MODULA-2 V1.4

(%----- Category : Module Identification *)

(% Module Type : %) DEFINITION MODULE
x. Name ı %) Bytes;
*. Function : Fast Copy and Scan Routines *)
(% , Version Date : 7:26 18.11.1988 *)
(% Authors : R.Huetter *)
(X Product Name : SPC *)
(* Copyright : (c) 1988, MODsoft, 07506 Karlsruhe *)

(%----- Category : Module Abstract %%

Bytes provides a set of basic routines to efficiently scan and copy
sequences of bytes. The routines may be used to process OC terminated
strings, if the terminator is contained in one of the termination
conditions. Compared to the routines in module Strings, these routines
are in general faster, since they are all realised using asembler
loops. Another advantage of Bytes is, that all source and destination
operands are given as VAR parameters, thus preventing the system from
pushing strings onto the stack.

A set of bytes may be used to specify the termination condition for
scans and copies. The set type may be seen as a set of characters,

which is normally not a feature of the SPC-MODULA-2 implementation.
Procedures to manipulate large sets are part of this module as well.
*)

 (¥----- Category : Types and Data x)

FROM SYSTEM IMPORT BYTE; (X compatible to all 8 bit quantities. *)

TYPE SetOfBytes = ARRAY [8..16] OF BITSET;

(X----- Category : Scanning Sequences of Bytes *)

PROCEDURE ScanWhileNot (VAR Src : ARRAY OF BYTE:
For : INTEGER:
Equal : BYTE)

: INTEGER;

(* Scan the Src buffer while its component is not equal the value Equal,
or until For bytes are scanned or until all bytes in the buffer are
scanned whichever occurs first. Return the number of bytes scanned.*)

PROCEDURE ScanWhileIn (VAR Src : ARRAY OF BYTE;
For : INTEGER;

VAR In : SetOfBytes)
: INTEGER:

(* Scan the Src buffer while its component is in the byteset In,
or until For bytes are scanned or until all bytes in the buffer are
scanned whichever occurs first. Return the number of bytes scanned. *)

PROCEDURE ScanWhileNotIn(VAR Src : ARRAY OF BYTE;
For- : INTEGER;

VAR NotIn ı SetOfBytes)
: INTEGER;

(X Scan the Src buffer while its component is not in the byteset In,

SPC MODULA-2 V1.4 F: \STANDARD\SPCLIB\BYTES . DEF

or until For bytes are scanned or until all bytes in the buffer are

scanned whichever occurs first. Return the number of bytes scanned.*)

 (¥----- Category : Copying Sequences of Bytes %)

PROCEDURE CopyFor (VAR Dst, Src :! ARRAY OF BYTE;
For : INTEGER)

: INTEGER:

(X Copy the Src buffer into the Ost buffer, until For bytes were copied,

or until the Src buffer is exhausted or until the Dst buffer is full,
whichever occurs first. Return the numer of bytes copied. *)

PROCEDURE CopyWhileNot (VAR Dst, Src +: ARRAY OF BYTE;
For : INTEGER:
Equal : BYTE)

: INTEGER;

(% Copy the Src buffer into the Dst buffer, while the component of the Src
buffer does not equal the byte Equal, or until For bytes were copied,
or until the Src buffer is exhausted or until the Ost buffer is full,
whichever occurs first. Return the numer of bytes copied. *)

PROCEDURE CopyWhileIn (VAR Dst, Src : ARRAY OF BYTE;
For : INTEGER;

VAR In : SetOfBytes)
: INTEGER;

(* Copy the Src buffer into the Dst buffer, while the component of the Src
buffer is in the byteset In, or until For bytes were copied,
or until the Src buffer is exhausted or until the Dst buffer is full,
whichever occurs first. Return the numer of bytes copied. *)

PROCEDURE CopyWhileNotIn(VAR Dst, Src : ARRAY OF BYTE:
For : INTEGER;

VAR NotIn : SetOfBytes)
; INTEGER;

(x Copy the Src buffer into the Ost buffer, while the component of the Src
buffer is not in the byteset In, or until For bytes were copied,
or until the Src buffer is exhausted or until the Dst buffer is full,
whichever occurs first. Return the numer of bytes copied. *)

(X----- Category : Large Sets (including SetOfBytes above) ------------- %)

PROCEDURE Clear (VAR Dst : ARRAY OF BYTE);

(* Clear all bits in Dst, i.e. make Dst the empty set. %)

PROCEDURE Or (VAR Dst, Src : ARRAY OF BYTE);

(¥ Calculate the logical or between Dst and Src buffer and assign the

result to Dst. If Dst and Src are sets, this is equivalent to the
set operation Dst:= Dst + Src; If the Src buffer is shorter than the
Dst buffer, then Src is reused as long as necessary. *)

PROCEDURE AndNot (VAR Dst, Src : ARRAY OF BYTE);

F: \STANDARD\SPCLIB\BYTES. DEF SPC MODULA-2 V1.4

(* Calculate the logical difference between Dst and Src buffer and assign
the result to Dst. If Ost and Src are sets, this is equivalent to the
set operation Dst:= Ost - Src; If the Src buffer is shorter than the
Dst buffer, then Src is reused as long as necessary. *)

PROCEDURE And (VAR Dst, Src +: ARRAY OF BYTE);

(* Calculate the logical and between Dst and Src buffer and assign the
result to Dst. If Dst and Src are sets, this is equivalent to the
set operation Dst:= Dst * Src: If the Src buffer is shorter than the

Dst buffer, then Src is reused as long as necessary. *)

PROCEDURE Xor (VAR Dst, Src : ARRAY OF BYTE);

(* Calculate the exclusive or between Dst and Src buffer and assign the
result to Dst. If Dst and Src are sets, this is equivalent to the

set operation Dst:= Dst / Src: which is also called symmetric set
difference. If the Src buffer is shorter than the Dst buffer, then
Src is reused as long as necessary. %)

PROCEDURE Tst (VAR Src : ARRAY OF BYTE;

Element : INTEGER)
: BOOLEAN;

(* Return TRUE, if the given Element is contained in Src, FALSE if it is
not or if Src does not contain enogh elements at all. %)

PROCEDURE Incl (VAR Dst : ARRAY OF BYTE;
Element : INTEGER);

(* Include the given Element into Dst, provided, Dst contains enough
elements. %)

PROCEDURE Excl (VAR Ost : ARRAY OF BYTE;
Element + INTEGER);

(% Exclude the given Element from Dst. %)

END Bytes.

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\BYTES. DEF

 (%----- Category : Module Identification %)

(% Module Type : %) DEFINITION MODULE
(x. Name : %) CmdLine;
(x. Function : Standard Commandline Support Functions %)
& . Version Date : 19:39 16.10.1988 *)
(% Authors : R.Huetter %)
(% Product Name : SPC %)
(X Copyright : (c) 1988, MODsoft, 07566 Karlsruhe x)

(X----- Category : Module Abstract RR

Tools and utilities of the SPC-MODULA-2 language system are called via
a command line, which’ s format is common to all standard utilities. We
recommend to use this format with further utilities too, to perfectly
fit into the calling convention of the overall system.

The commandline has the following structure, where [](n..m) denotes a
component, which must occur n to m times. (n..m), if not explicitly
given defaults to (8..1).

<cmdline> ‚= <utility> [” ” <fileargs?) [” ” <options>]
<fileargs> t= <filename> [" “ <filename>] (@. .3)
<options> ‚= ([°-" <optionchar> C£°°°] <string> €°°°3]1(@..16)
<optionchar>::= “AP B"T ... Py" 12"
<utility> := <filename>

A utility may return a result string, which details the success or
failure of the utility. The result string is empty by default.

To properly correlate the command line with a utility, a utility must

parse its command line immidiatly after its start and must store its
result just before its termination.
*)

 (X----- Category : Primitives %)

PROCEDURE Set (Command : ARRAY OF CHAR);

(X Redefine the current command line and reset commandline parsing. *)

PROCEDURE UtilityName (VAR Name : ARRAY OF CHAR);

(%X Reset command line parsing and answer the utility name, which is
always present. *)

PROCEDURE FileArg (VAR Arg : ARRAY OF CHAR)
: BOOLEAN;

(* Answer, whether there is at least one more file argument and return
it's name. ¥) -

PROCEDURE Option (VAR OptionChar : CHAR;
VAR OptionStr : ARRAY OF CHAR)

: BOOLEAN:

(X Answer, whether there is at least one more option and return the

option character and the optional option string. *)

Fi \STANDARD\SPCLIB\CMDLINE . DEF SPC MODULA-2 V1.4

PROCEDURE Get (VAR Text : ARRAY OF CHAR);

(X Get the part of the command line not yet parsed. May be used to get
a non-standard command line, or to check, that command line is empty. *)

PROCEDURE ResultIs (Done : BOOLEAN;
Result : ARRAY OF CHAR);

(x Store the result of a command. *)

PROCEDURE Result (VAR Done : BOOLEAN:
VAR Result : ARRAY OF CHAR);

(X Get the result of a command. %)

END CmdLine.

SPC MODULA-2 V1.4 F: \STANDARD\SPCLIB\CMDLINE . DEF

(X¥----- Category : Module Identification *)

(* Module Type : %) DEFINITION MODULE
(¥ Name : *%) Environment;
x. Function : Managing Environment Variables *)
(8X Version/Date : 1.88 28.1.88 %)
(% Product Name : SPC ¥)
(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe *)

(¥----- Category : Module Abstract RX

Environment maintains a list of socalled enviroment variables. These
are labeled strings, which are read from the profile at system startup

and saved upon termination. Storing attributes in environment variables
is thus a simple way to save information for the next invocation of an
utility.

Another part of environment decouples filenames from the operating
systems conventions by transforming commonly used file types to system
dependent extensions. Language tools search paths are stored within
environment variables and are therefore managed by environment, too.

%)

 (¥----- Category : Types and Data *)

TYPE FileTypes = (Mod, Def, Obm, Sbm, Rfm, Cmd, Lst, Cnf, Bak,
Tmp, Lib, Prg, Other, None);

 (X¥----- Category : Environment Variable *)

PROCEDURE Get (VarName : ARRAY OF CHAR;
VAR String : ARRAY OF CHAR)

: BOOLEAN;

(* If environment variable VarName exists, then get its content into
String and asnwer TRUE else answer FALSE. *)

PROCEDURE GetIndexed (Index : INTEGER;
VAR VarName : ARRAY OF CHAR;
VAR String : ARRAY OF CHAR)

: BOOLEAN;

(% Environment variables are indexed from 1 to n, where n is the number
of variables. If Index is not greater than n, then return the indexed
variables name in VarName and its content in String and answer TRUE

else answer FALSE. *)

PROCEDURE Set (VarName : ARRAY OF CHAR;
String : ARRAY OF CHAR);

(* Set or modify the environment variable VarName using String. *)

 (X----- Category : Search Pathnames *)

PROCEDURE GetFilename (VAR Name : ARRAY OF CHAR;
Preference : INTEGER:

Type : FileTypes)
: BOOLEAN;

F: \STANDARD\SPCLIB\ENVIRONM. DEF SPC MODULA-2 V1.4

(* Construct a filename, using the given Name and Type. If Preference
is 8, then only change the filename extension, else use the search
path indexed by preference. Search pathes are determined by

environment variables Path<i> and ObjPath<i>, depending on whether

Type is an object or a source type. If Preference is not greater
than the number of paths configured answer TRUE else answer FALSE. x)

PROCEDURE GetFileTlupe (Name : ARRAY OF CHAR)
: FileTypes;

(* Answer the type of the given Name by inspection the filename
extension field. *)

PROCEDURE Save;

(X Save the environment variables into the profile. *)

END Environment.

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\ENVIRONM. DEF

(X----- Category : Module Identification *)

(¥ Module Type : *%) DEFINITION MODULE
(x. Name : ¥) Frags;
x. Function : Text Fragments Management *)
8. Version Date : 12:21 6. 9.1988 *)
(% Product Name : SPC %)
(* Copyright : (c) 1987, MODsoft, 07508 Karlsruhe x)

(%----- Category : Module Abstract **

A fragment is a packet containing an arbitrary number of characters,

called the fragment s content, and having a certain type. The type

normally determines the interpretation of the content. Both, type
and content are irrelevant to the module and are maintained by the
calling module. The type is any character between <blank> and ‘z’.
The content may be any sequence of characters not containing 8C
up to a length of 258 characters.

Fragments are stored in a fast and memory efficient way, which in
detail is transparent to the caller, as long, as memory is available.

The caller may, for example, assign fragment types like "plain text”,
"linefeed”, "font-control”, “graphics”, etc. The content is then
reinterpreted to detail the fragment type at hand, e.g. to specify
the font to be used from now on.

A cursor is maintained to indicate the hot spot within the sequence
of fragments. The cursor specifies a certain fragment called hot
fragment. The cursor may be moved to the hot fragment's predecessor

or its successor.

%)

(%----- Category : Types and Data %)

TYPE File;

TYPE Results = (Done
NotDone
NoMemory ,

FileNotFound ,
ToError ,
IllFiletype);

VAR Result ı Results;

TYPE Types = [' .2);

CONST ReservedType = ;
BeginOfFile = AS
EndOfFile = 'B';
PlainText = "0;
LineFeed = 'D;

TYPE Text = ARRAY [8..2523 OF CHAR;
TextPtr = POINTER TO Text;

(%----- Category : Initialisations *)

PROCEDURE Open (VAR aFile : File;

s
r

G - 18 F: \STANDARD\SPCLIB\FRAGS . DEF | SPC MODULA-2 V1.4

Name : ARRAY OF CHAR;

TextOnly : BOOLEAN);

(X Open the named diskfile and read its content into the newly created
fragments file F. If TextOnly is specified, then a standard textfile
is read, and fragments are of type PlainText or Linefeed. Otherwise
a true fragments file is expected, and it’s data is read

transparently. %)

PROCEDURE Create (VAR aFile : File);

(* Create a new fragments file. *)

PROCEDURE SavefAs (aFile : Files
Name : ARRAY OF CHAR;
TextOnly : BOOLEAN) ;

¥ Save the fragments file F to disk under Name. If TextOnly is set,
then only fragments of type PlainText and LineFeed are saved to a
standard text file. %)

PROCEDURE Abandon (aFile : File);

(x Delete fragments file F. Do not save its content. *)

 (%----- Category : Cursor Positioning ------------ x)

PROCEDURE Next (aFile : File)
: Types;

(* Make the next fragment the hot fragment and answer its type. If the
hot fragment is of type EndOfFile, then Result is NotDone. *)

PROCEDURE Prev (aFile : File)
: Types:

(¥ Make the previous fragment the hot fragment and answer its type. If

the hot fragment is of type BeginOfFile, Then Result is NotDone. *)

PROCEDURE Current (aFile : File)
: Types;

(* Ansner the hot fragment s type. *)

PROCEDURE OccurrencesOf (aFile ı File;

Type : CHAR)
ı INTEGER;

(% Answer the number of fragments of Type before the hot fragment. x)

 (X----- Category : Fragments - --%)

PROCEDURE Insert (aFile : File;
Type : Types;

VAR Content : ARRAY OF CHAR):

(X After the hot fragment insert a new fragment of Type with an

SPC MODULA-2 V1.4 F: \STANDARO\SPCLIB\FRAGS . DEF G- 11

initial Content. If hot fragment is BeginOfFile, the Result is
NotDone. *)

PROCEDURE Delete (aFile : File);

(* Delete the hot fragment. If hot fragment is BeginOfFile or
EndOfFile then Result is NotDone. *)

PROCEDURE Retype (aFile : File;
Type : CHAR);

(* Change the hot fragment's type to Type, provided it is neither
BeginOfFile nor EndOfFile. *)

PROCEDURE ContentOf (aFile : File;
VAR Content : ARRAY OF CHAR);

(* Answer the content of the hot fragment. %) |

PROCEDURE LengthOf (aFile : File)
: INTEGER;

(* Answer the length of the hot fragment. *)

PROCEDURE Pointer Of (aFile : File)
: TextPtr;

(* Answer a pointer to the current fragments content. The content is BC
terminated. The pointer may only be used for READ ONLY access to the
fragment's content. x)

PROCEDURE Test (aFile : File);

END Frags.

G - 12 F: \STANDARD\SPCLIB\FRAGS . DEF SPC MODULA-2 V1.4

 (X----- Category : Module Identification --------- *)

(* Module Type : %) DEFINITION MODULE
(x. Name : ¥) JCL;
(X. Function : Job Control Level Primitives *)
(x. Version Date : 8:13 19. 1.1989 *)
(* Product Name/Ident : SPC *)
(X Copyright : (c) 1988, R. Huetter, D7588 Karlsruhe *)

(¥----- Category : Module Abstract %%

Within the SPC MODULA-2 language system MODULA-2 is used as the job

control language. This module provides some of the primitives commonly
use on the job control level. Of course, all the other libraries may be
used, as well. Describing jobs as MODULA-2 programs has thus several

advantages. The most important is, that the full power of MODULA-2 and
its libraries is available on the job control level. *)

 (%----- Category : Types and Data --*)

IMPORT Clock;

TYPE (* The results of JCL primitives are members of a simplified *)
(X error type. If an error occurs, the error handler is invoked *)
(X to to some error processing. The default error handler just %)
(% prints a message to inout. It can be called by an applicationx)
(% dependent errr handler. *)

Results = (Ok, Syntax, Hard, Soft);

ErrorHandler = PROCEDURE ((% Result : *) Results,

(% Message : *) ARRAY OF CHAR,
(X Detail : *) INTEGER);

 (X----- Category : Errors - -- *)

PROCEDURE OnErrorDo (WhatToDo ı ErrorHandler);

(* Redefine the error handler, that will be invoked if an error occurs. *)

PROCEDURE Defaul tHandler (aResult : Results;

aMessage : ARRAY OF CHAR;
aDetail : INTEGER);

(* Print an error message to InQut. *)

 (¥----- Category : Messages and Inquiries ------- *)

PROCEDURE Echo (alext : ARRAY OF CHAR);

(¥* Print a message to InOut. *)

PROCEDURE Query (alext : ARRAY OF CHAR)
: CHAR:

(% Print a message and read a character. Return that character. *)

SPC MQDULA-2 V1.4 F:\STANDARD\SPCLIB\JCL . DEF G - 13

PROCEDURE Inquire (alext : ARRAY OF CHAR;
VAR aResponse : ARRAY OF CHAR);

(X Print a message and ask for some textual response. *)

(%----- Category : Run Programs *)

PROCEDURE Call (aCommand : ARRAY OF CHAR);

(X Set the command line to aCommand an call a program via the linking

loader. %)

(X----- Category : File Primitives *)

PROCEDURE Cp (Source : ARRAY OF CHAR;
Destin : ARRAY OF CHAR);

(* Copy Source files to Destin. If Source contains wildcards, then
Destin is expected to be a directory name, else Destin may be a file

name, as well. %)

PROCEDURE Mu (Source : ARRAY OF CHAR;
Destin : ARRAY OF CHAR);.

(% Move Source files to Destin. If Source contains wildcards, then

Destin is expected to be a directory name, else Destin may be a file
name, as well. %)

PROCEDURE Rm (aFile : ARRAY OF CHAR):

(* Delete aFile, while aFile may contain wildcards. *)

PROCEDURE Timestamp (aFile : ARRAY OF CHAR;
VAR aStamp : Clock.Time);

(* Return the timestamp of afile. %)

PROCEDURE Exists (aFile : ARRAY OF CHAR)
: BOOLEAN;

(X Answer, whether aFile exists at all. %)

PROCEDURE Cd (aFolder : ARRAY OF CHAR);

(* Change the current directory to aFolder. x)

PROCEDURE Wd (VAR aFolder : ARRAY OF CHAR);

(X Return the current directory (also called working directory. *)

PROCEDURE MkDir (aFolder : ARRAY OF CHAR):

(* Create a new directory (also called folder). *)

PROCEDURE RmDir (aFolder : ARRAY OF CHAR) ;

G- 14 F:\STANDARD\SPCLIB\JCL. DEF SPC MODULA-2 V1.4

(X Remove a directory. *)

PROCEDURE Space (aVolume ‘ ARRAY OF CHAR)
: LONGCARD;

(* Return the number of bytes left on aVolume. *)

END JCL..

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\JCL . DEF G6 - 15

 (X----- Category : Module Identification *)

(* Module Type : %) DEFINITION MODULE
(8. Name : ¥) Loader;
(x. Function : SPC Dynamic Loader Utility *)
(8. Version Date : 15: 4 24. 9.1988 %)
(X Product Name : SPC %)
(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe x)

(X----- Category : Module Abstract KX

Loader is the dynamic linking loader of the SPC-MODULA-2 system. Loader

allows threads (i.e. group of modules) to be brought into memory and
added to the list of resident modules. The main module of a thread is
then be started and runs as a subprogram of the calling thread.

All required linkage is done dynamically by the loader module while the

modules are read from mass storage (so called loadtime linking). %)

 (%----- Category : Load and Start a Thread ¥)

PROCEDURE Call (Name : ARRAY OF CHAR;
, Hold : BOOLEAN;

VAR ErrorMsg : ARRAY OF CHAR)
: BOOLEAN;

(* Load the thread given by Name into memory, do linkage as required and
start the thread as a subprogram or answer FALSE and a error message.

If hold is TRUE, then leave the thread in memory and linked so that
it may be started again within reading it from mass storage. *) ¢

END Loader.

G - 16 Fi \STANDARD\SPCLIB\LOADER. DEF SPC MODULA-2 V1.4

 (¥----- Category : Module Identification ----%)

(* Module Type : %) DEFINITION MODULE
(x. Name ı *%) Process:
(x. Function : Multitasking Kernel *)
(x. Version Date : 21:58 28. 6.1988 *)
(X Product Name/Ident : SPC %)
(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe *)

(#----- Category : Module Abstract xx

Process implements a simple coroutine scheduler to simplify programming
of concurrent programs. A Process is a coroutine as provided by module
Coroutines. Processes can be created, which implicitly enters it into
the list of ready Processes. From that time on, the Process runs,
whenever it is the first Process in the ready list.

A Process runs, until it explicitly Relinquishes (calls the Process

module to perform a dispatch cycle). Another way to enter run a
dispatch cycle is to consume units from a Resource.

A Resource is a pool of units, which are produced by some Process and

are consumed by another Process. Whenever a Process tries to consume
more units, than are available, the Process module enters a dispatch
cycle and resumes another process. The waiting Process is put into the

wait list for the requested Resource. If a process produces units,
Process checks, if there is a Process waiting for that Resource, and

whether its request for units can be met by the amount of currently
available units. If so, all waiting Processes are put into the ready
list, until there are no longer enough units.

Resources are therefore a means of process synchronisation.

It is essential, that the producing module keeps on running, until it

Relinquishes or calls for more units, than are available. At that time
the first module on the ready list continues processing.

NOTE: This is NOT a true multitasking, since dispatch cycles are

triggered by the processes explicitly (rather than by a timer or
external interrupt). An endless loop without calls to Relinquish |
or Consume prevents other processes from running. °

A Resource is processes do produce and consume.
Whenever a process wants to consume a Resource, and the Resource is

empty, the process is suspendend, and some other process is activated. *)

(%----- Category : Types and Data *)

TYPE Resource; (% something processes do produce and consume *)

(¥----- Category : Initialization *)

PROCEDURE Init;

(% Initialize the scheduler and enter the caller as a process into the

ready list. %)

PROCEDURE Term;

(* Terminate the scheduler. Continue processing with the caller of Init.
All processes are stopped. x)

SPC MODULA-2 V1.4 F: \STANDARD\SPCLIB\PROCESS. DEF 6 - 17

 (X----- Category : Process Creation x)

PROCEDURE Create (StartAt : PROC;

StackSize : CARDINAL:

VAR Done : BOOLEAN) ;

(X Create a new process and start its execution at StartAt, giving an

initial StackSize. If the memory request for the stacksegemnt fails,
Done will be FALSE. %

PROCEDURE Delete;

(x Delete the calling process. %)

 (¥----- Category : Process Synchronisation x)

PROCEDURE Relinquish;

(* Allow a dispatch cycle to be performed. *)

PROCEDURE Produce (Arg : Resource);

(* Produce one unit of a Resource and ready a waiting process, if any. *)

PROCEDURE Consume (Arg : Resource);

(% Consume one unit of a Resource, wait if no units available. *)

PROCEDURE Available (Arg ı Resource)

: BOOLEAN:

(X Answer, if units of a Resource are available. *)

PROCEDURE InitResource (VAR Arg : Resource;
Initial ; CARDINAL);

(* Initialise a Resource, and give Initial units. %*)

END Process.

G - 18 F:\STANDARD\SPCLIB\PROCESS.DEF SPC MODULA-2 Vi.4

(R----- Category : Module Identification -------~-----------------------

(* Module Type : %) DEFINITION MODULE
(x. Name : %) Rectangle;

(Xx. Function : Operations on Rectangles *)

(x. Version : 1.8 x)
(¥ Product Name ; SPC *)
(X Copyright : (c) 1987, MODsoft, D7588 Karlsruhe *)

(#----- Category : Module. Abstract TT a a pm tn nn nnn nn XX

Provide operations on rectangles. x)

(%----- Category : Types and Data *)

TYPE Instance = RECORD
X, Y W, H INTEGER;

END;

(X----- Category : Rectangle Primitives ------------------------------- x)

PROCEDURE Preset (VAR Arg : Instance;

x, y, W, h: INTEGER);

(xX Preset Arg to the value x/y-w/h. %)

PROCEDURE MoveRel (VAR Arg : Instance;

x, Y ' INTEGER);

(% Move Arg by the increment x/y. *)

PROCEDURE MoveAbs (VAR Arg : Instance;
Xx, Y : INTEGER);

(* Move Arg to x/y. %)

PROCEDURE Resize (VAR Arg : Instance;
w, h : INTEGER);

(% Set Arg's new size to w/h. *)

PROCEDURE Combine (VAR Arg : Instance;
With : Instance);

(% Answer the union of Arg and With in Arg. *)

PROCEDURE Intersect (VAR Arg : Instance;
With : Instance)

: BOOLEAN;

(* Intersect Arg with With and return the result as Arg. If the result
is not empty return TRUE else FALSE. ¥)

PROCEDURE Subtract (Arg : Instance;
From : Instance):

: BITSET;

SPC MODULA-2 V1.4 F: \STANDARD\SPCLIB\RECTANGL . DEF G - 19

(¥ Subtract ARQ, Zr om From and return the result as a bitset with the
following implication : If bit @ is on, then there is a resulting
Rectangle above Arg. If bit 1 is on , then there is are result below

Arg. If bit 2 is on, then we have a result to the left and if bit 3 is
on, then there is a result ro the right of Arg. The resulting Rectangles

can be obtained by calling SubResult with the bit number (8..3).

+-From +
| Bit @ |
| |
| +-Arg------- + |
Bit 2		Bit 3
+=------ 0... +		

| |
| Bit 1 |
+ +

x)

(¥----- Category : Inquiries %)

PROCEDURE SubResult (Arg : Instance;
From : Instance;

VAR Result : Instance;
_ N : INTEGER) ;

(% Return the Nth (8<=N<=3) resulting Rectangle from the operation

From-Arg. %)

PROCEDURE Empty (Arg ı Instance)
: BOOLEAN;

(* Ansner,: nhether Arg is empty. *)

PROCEDURE Includes (Arg : Instance;
xX, y : INTEGER)

: BOOLEAN;

(¥ Answer, if Arg includes the point x/y. *)

END Rectangle.

G - 28 F:\STANDARD\SPCLIB\RECTANGL . DEF SPC MODULA-2 V1.4

(X----- Category :

(* Module Type
(xX , Name

(* Function

(8. Version
(* Product Name

(% Copyright

(¥----- Category :
x)

(X----- Category :

Module Identification

Date :

Module Abstract

Types and Data

FROM SYSTEM IMPORT

“YPE AllocateProc

DeallocateProc

List

(X----- Category :

PROCEDURE Create

PROCEDURE Delete

PROCEDURE Get

PROCEDURE Put

END SplittedPieces.

List

: %) DEFINITION MODULE
: %) SplittedPieces;
: Splitted Piece List Management

: SPC
18:54 16.18.1988

(c) 1987,1988, MODsoft, 07588 Karlsruhe

=)

ADDRESS;

= PROCEDURE (VAR LONGINT) : ADDRESS;
= PROCEDURE (VAR ADDRESS);

 Primitives

(VAR Self
Alloc

Dealloc

ChunkSize
: BOOLEAN;

(VAR Self

(Self

Amount

VAR BlockPtr

(Self
VAR BlockPtr

ı List;

AllocateProc;

DeallocateProc;

LONGINT)

ı List);

: List;
: LONGINT;

: ADDRESS);

ı List;

: ADDRESS);

SPC MOBULA-2 V1.4 F:\STANDARD\SPCLIB\SPLITTED. DEF

 (X----- Category : Module Identification x)

(* Module Typa : %) DEFINITION MODULE
(x , Name : %) SSWiS;
x. Function : Small Systems Windowing Standard *)
(x, Version/Date : 8.81 66.83.88 *)
(X Product Name ı SSWIS %)
(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe *)

(X----- Category : Module Abstract ------------- RX

The Small Systems Windowing Standard is an interface library to an
operating system independent windowing system. The implementation module
of SSWiS will map the interface functions to the resident windowing
system. By only using SSWiS functions for window-, menue-, event-, etc.
processing, applications remain portable between different SSWiS
implementations. Important concepts are described below.

- Client
Modules, that want to use SSWis, register as SSWiS clients. Every
client has its own pool of resources. Many clients may coexist at
the same time. Different clients may belong to the same or to
different programs. Clients are known to SSWiS via ModuleHandles.

Current Module
The Current Module is the module, which receives subsequent
keyboard input. The current module may be selected under program

control as well as interactively.

Window
Windows allow SSWiS to give parts of screen space to different
clients. The window arrangement can be influenced by the clients
and the user, as well. Each client may use several windows.
Windows are known to SSWiS via WindowHandles.

- World
While screen space is shared on the basis of windows, each window

opens a view into a usually larger World (e.g. a textfile, a CAD
drawing, etc.). The world is discribed in world Coordinates, while

points on the screen are referenced via ScreenCoordinates. World
Coordinates in SSWiS are 32 bits wide.

- Menu
Menus are provided to interactivly select functions via menu items.

Items are group to titles. Each client has one set of menu titles,
which can be labelled, mask, etc. Titles and items are known to

SSWiS via TitleHandles and ItemHandles. As the current module
changes, SSWiS presents the titles of the current module.

- Form
A Form is a means of interactive data entry. SSWiS implements a

method to notify the user, to ask the user about something and to

identify the module.

- Callback Procedure
Clients register at SSWiS, to share input devices and screen space
with other clients. While controlling the screen and the input
devices, SSWiS calls procedures, that have been presented by the
clients at initialisation time. In particular two types of procedures
are use, one to Accept events and one to Restore the window

content. Since the procedures are called back at a later time, they

are commonly referred to as Callback Procedures.

- Cursor

G - 22 Fs \STANDARD\SPCLIB\SSWIS. DEF SPC MODULA-2 V1.4

TYPE ModuleHandles

The Cursor represents the mouse position with respect to the disply
screen. The cursor s shape can be configured, to meet differegt
echoing requirements.

Caret
The Caret represents another position, which is explicitly controlled
by the application. In text applications the caret may be used to
mark the point of text insertion. Since the caret is controlled by
SSWiS directly, it may be moved very rapidly and does not require
a screen restore operation.

Events

Since many clients share the same screen and the same input devices,
SSWiS must distribute the input device activity to its clients. The
input is communicated as events to the clients. An event is described

in detail by an EventReport. To process an event, the clients Accept
procedure is called back. |

---- Category : Handles for Various Objects x)

[8..31]; (% limited number of client Modules *)

WindowHandles = (@.. 7]; (* Windows per Module *)

TitleHandles = [8.. 6]; (% Menu Titels per Module x)
ItemHandles = {[8.. 71; (% Items per Menu Title *)

(%----- Category : World and Screen Coordinate space ------------------- x)

(* The applications drawing are is determined by the world- *)
(% space. The application may actually use a smaller part *)

(* thereof which will be called the world below. x)

Coordinates = LONGINT; (* nc-space is 32 bit nide. x)

Points = RECORD (* an absolute point within *)
X, Y Coordinates; (* the world. *)

ND; (x *)

Lines = RECORD (X an absolute line given by ¥%*)
A, B Points; (% start and end points nihin %)

END; (X the world. *)

(* The screen space is the area, where output must be generated.*)

(* Mapping of the applications world to the screen is done by %)
(% adding an offset to the world coordinates and restricting %)
(X¥ output to the windows extent. This mapping must be done by *)

& the application during restore operations. x)

TYPE ScreenCoordinates = INTEGER: (X screen space is 16 bit wide. *¥*)

ScreenPoints = RECORD (¥ a point in screen *)

ScreenCoordinates: (* space. *)
ND; (X *)

ScreenLines = RECORD (X same as Lines in x)
ScreenPoints; (* screen space. x)

ND; (x %)

(* The application is notified about several events occuring *)
(X during Window operation. Notification is based on callback %)

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\SSWIS.DEF G - 23

(* procedures provided by the application at window creation *)
(X time. x)

TYPE RestoreProc = PROCEDURE ((% Owner : *%) ModuleHandles,

(* Window : *¥) WindowHandles,
(* WorldArea : *) Lines,

(x Offset : ¥) Points);

(* The application is requested to restore part of their world %)
(X on the screen. WorldArea specifies position and size of the %)
(¥ area in wco-space, while Offset defines the position of the X%)
(* window content in we-space. Screen coordinates are obtained %)
(* by adding Offset to the worldcoordinates at hand. As long as *)
(% world-coordinates are within WorldArea, it is guaranteed, *)
(X that mapped screen-coordinates are within screen-space. *)

(¥----- Category : Standard Keyboard %)

(* Keystrokes are entered via the standard keyboard, which's x)
(* layout is considered to be system independent. It is mapped %)
(* by SWIS to the keyboard actually attached. %)

CONST NILKey = -1;

UpArr ow = 256;

Downarrow = 257;

LeftArron = 258;
RightArron = 259;
Help = 268;
Undo = 261;
Insert = 262;

Clear = 263;
NumLeftBracket = 264;

NumRightBracket = 265;
NumSlash = 266;
NumAsterisk = 267;

NumMinus = 269;
NumPlus = 276;
NumEnter = 271;
NumDot = 272;
Num@ = 273;
Numi = 274;
Num2 = 275;
Num3 = 276;
Num4 = 277;
Num5 = 278;
Num6 = 279;
Num? = 288;

Num8 = 281;
Num9 = 282;

Fil = 283;
F2 = 284;
F3 = 285;
F4 = 286;
F5 = 287;
F6 = 288;
F? = 289;
F8 = 298;
F9 = 291;
F18 = 292;

TYPE AllKeys = [-1..511]; (all keys known by SSWiS. *)
ControlKeys = € 8.. 31]; (* ASCII control keys, exc DEL %)
AlphaKeys = £ 32..126]; (% ASCII printable keys %)

6 - 24 F:\STANDARD\SPCLIB\SSWIS . DEF SPC MODULA-2 V1.4

TYPE

TYPE

TYPE

TYPE

TYPE

NationalKeys =

EditKeys =

MetaKeys =

SetOfMetaKeys =

Category : Mouse Styles

[128..255); (% national keys, system dep.
[256..511]; (* editing keys commonly used

(Shift

Control

Alternate);

SET OF MetaKeys:;

*)
*)

(* The mousecursor can be configured to have different styles,
(* and within each style (except off) to have different sprites.

MouseStyles =

MouseSprites =

(off ,
SpriteOnly
RubberLine
RubberBox
DragBox ,
ApplSpecific);

(StdArron

Hourglass
Disk

StdCross

StdText

FlatHand

Finger);

%)
%)

 Category : Input Events --

KeyEvent =
MetaKey
Position
Keys

ButtonActivities=

MouseEvent =

MetaKey i

ButtonDown

Position

Activity

MenuEvent =

Title
Item

EventTypes =

END:

END;

RECORD
SetOfMetaKeys;
Points;
ARRAY [8..283 OF AllKeys;

END;

(Clicked , (® pressed and released

DoubleClicked, (% two very fast clicks
Pressed , (% pressed and held
Released , (% released after pressed
WindowExit , (*% Window contents exited

Moved }; (% snap area exited

RECORD

SetOfMetaKeys;
BOOLEAN;

Points:

ButtonActivities:

RECORD

TitleHandles;

ItemHandles;

(Notification, (% window parameters changed
Keyboard , (*% keystrike occurred

Mouse , (% moved or button clicked
Menu , (% menu item selected

SPC MODULA-2 V1.4 F: \STANDARD\SPCLIB\SSWIS. DEF G6 - 25

Message ‚..(& piping system *)
Timer , (% system grants idle time *)
Identification); (* ... requested x)

TYPE EventReports = RECORD

CASE Type EventTypes DF
| Keyboard : Strokes : KeyEvent;
| Mouse : Clicks : MouseEvent;
| Menu : Selection : MenuEvent;
| Message : Pipe : ARRAY [8..481 OF CHAR;
| Timer f
| Identification
END;

END;

(* Events are communicated to clients by calling the Accept ¥)
(% callback procedure, below. Accept is given when registering. *)

TYPE AcceptProc = PROCEDURE ((¥ Owner : *) ModuleHandles,
(* Window : %) WindowHandles,

VAR (% Report : *) EventReports);

(* Owner is requested to process an event. The event is further *)

(* detailed by Report. The event has been received via Window. *%)

 (#----- Category : Window Layout x)

(x A windows has WindowElements to allow for interactive *)
(% manipulation of window parameters. These elements may or may *)
(% not be present in a particular windon.

TYPE WindowElements = (MessageLine
Iconiser

Fuller
Sizer
XScroller

YScroller);

SetOfWindonElements = SET OF WindonElements;

 (¥----- Category : Useful Constants *)

VAR NullPoint : Points;

NullLine ; Lines:

NullScreenPoint : ScreenPoints;

NullScreenLine : Screenlines;

NeverClip : Lines:

ScreenSize : ScreenPoints:

ScreenColours : INTEGER;

(* Switch to control umlauts on german keyboard. May be set ¥)
(* under program control or toggled by pressing both Shift keys.%)

Uml auts ; BOOLEAN;

.(8----- Category : Error Reporting - *)

TYPE Results = (Done,
NotDone,
NoMemory,

G - 26 F: \STANDARD\SPCLIB\SSWIS . DEF SPC MODULA-2 V1.4

TooManyModules,

TooManyWindons.

TooManyTitles);

VAR Result : Results; (X result of the last call. %

(*----- Category : Operating SWIS *)

PROCEDURE Reinit;

(X Cause SSWiS to restore its desktop and window configuration. %)

PROCEDURE PollEvents;

(* Cause SSWiS to enter its event processing loop. *)

PROCEDURE Resync;

(* Cause SSWiS to process window related events %)

(%----- Category : Registering the Application %)

PROCEDURE Register (VAR Handle : ModuleHandles;
ModuleName : ARRAY OF CHAR;
Accept : AcceptProc);

(X Register a module as an application known by SSWiS. Events will \

be communicated by calling Accept. *%)

PROCEDURE Deregister (Handle : ModuleHandles);

(X Deregister the application and free all its resources. %)

(*----- Category : Window Creation and Deletion *)

PROCEDURE CreateWindow (Owner : ModuleHandles:
Window : WindowHandles;
Restore : RestoreProc) ;

(% Owner creates a window with will be refreshed using Restore. x)

‚„PROCEDURE DeleteNindon (Onner : ModuleHandles;
Window : WindowHandles) ;

(% Delete a Window and it's resources. %)

PROCEDURE PlaceWindowOnTop
(Owner : ModuleHandles;

Window : WindowHandles) ;

(* Place the window on top of all other windows. *)

PROCEDURE IconiseWindow (Owner : ModuleHandles;
Window : WindowHandles) ;

(X Place a window behind all other windows. *)

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\SSWIS. DEF 6 - 27

PROCEDURE SetWindonTitle(Owner ı ModuleHandles;

Window : HindowHandles; .

Text : ARRAY OF CHAR);

(X Set the window's title. %)

PROCEDURE SetWindowMessage
(Owner : ModuleHandles;

Window : WindownHandles;

Text : ARRAY OF CHAR);

a
!

(X Set the window's message. *

PROCEDURE SetWindonElements
Owner : ModuleHandles;

Window : WindowHandles;

Elements : SetOfWindowElements) ;

(* Configure the window to have Elements. %)

PROCEDURE ExplicitRestore
(Owner : ModuleHandles;

Window : WindowHandles;

Clip : Lines);

(X Do an explicit restore of a window. Assume, that changes have taken
place only within the Clip area, which may be used to optimize the
restore operation. *)

(X----- Category : Window's Position and Size *)

(% The window's position and size on screen is partly controlled by the

application and by the user via interactive tools. However, SSWiS is
responsible to maintain certain conditions concerning screen layout,
and it may be impossible to meet the requirements exactly. *)

PROCEDURE PositionWindow(Owner ı ModuleHandles;

Windon ı Windonhandles;

Corner ı ScreenPoints);

(X Position the upper left corner of the window's border. This is only
a hint, and it is not guaranteed, that the Window is positioned. *)

PROCEDURE SizeWindowContent

(Owner ‘ ModuleHandles;

Window : WindonHandles;
MinSize
TdealSize
MaxSize : ScreenPoints);

(X Resize the windows content. IdealSize is a hint to SSWiS. The
Window must not become smaller than MinSize and it must not become
larger than MaxSize. SSWiS will choose a size between these
limits and as near as possible to IdealSize. *)

PROCEDURE PositionOfWindow

6 - 28 F:\STANDARD\SPCLIB\SSWIS. DEF SPC MODULA-2 V1.4

(Owner : ModuleHandles;

Window : WindowHandles:
VAR Corner ı ScreenPoints);

(* Answer the position of the window. *)

PROCEDURE SizeOfWindowContent

(Owner : ModuleHandles:

Window : WindowHandles:;

VAR Size : ScreenPoints);

(% Answer the size of the window's content. *)

(¥----- Category : World s Position and Size *)

(* The world is the application's drawing area. The world is partially

visible within the window's content. Moving the world to expose
different parts in the Window's content is controlled by either
the application or by the user via interactive tools of the window
itself. %)

PROCEDURE PositionWorld (Owner : ModuleHandles;

Window : WindowHandles:

Corner : Points);

(X Position the world, so that Corner (a point within the world)

corresponds to the upper left corner of the window's content.

Change of world’s position causes a notification event. *)

PROCEDURE SizeWorld (Owner : ModuleHandles;

Window : WindowHandles;

Size ı Points);

(* Resize the world. The worlds size is used by SSWiS to prevent
undefined holes within the window s content. Change of world’s
size causes a notification event. *)

PROCEDURE RasterWorld (Qwner : ModuleHandles:

Window : WindowHandles:;
GridSpacing: Points):

(* Tell SSWiS, the the invisible grid of world is not 1 pixel wide, but

GridSpacing pixels wide (in x and y). Gridspacing will be applied, when
the user scrolls by steps through the world. *)

PROCEDURE PositionOfWorld
(Owner : ModuleHandles:;

Window : WindowHandles:

VAR Corner : Points);

(* Answer the world’s position. *)

PROCEDURE SizeOfWorld (Owner : ModuleHandles;

Window : WindowHandles;

VAR Size : Points);

(X Answer the world's size. *)

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\SSWIS. DEF 6 - 29

 (X----- Category : Mouse Configuration *)

PROCEDURE ConfigureMouse (Owner : ModuleHandles;

Window : WindowHandles:
Style : MouseStyles;
Sprite ı MouseSprites;
CoolSpot : Points):

(* Owner configures the mouse to have Style and optionally show Sprite

as long, as it is in Window. %)

PROCEDURE SetCaret (Owner : ModuleHandles;

Window : WindonHandles;

HotSpot : Points);

(x Set the caret to the given position. *)

(%----- Category : Menu Primitives *)

(¥ A Menu is a means of command selection. A Menu consists of several
titles, where each title contains several items. Every window can
have it's own menu. A menu item is selected under control of SSWiS.

The Selection is communicated as an event to the owning module.

The syntax of menu elements is :

<MenuElement> = <Attributes><String>
<Attributes> mee CMY CTT)
<String> :ı= {CHAR}B..n

where :

the M attribute masks the entry, and no data can be entered,
the C attribute checks the entry

%)

PROCEDURE SetMenuTitle (Owner : ModuleHandles;

Title : TitleHandles;

Definition : ARRAY OF CHAR);

(¥ Owner gives the Definition for the menu Title of Window using the

above syntax. %)

PROCEDURE SetMenultem (Owner : Modulehandles;

Title : TitleHandles;

Item : ItemHandles;

Definition : ARRAY OF CHAR);

(* OWner gives the Definition for the menu Item of Title of Window
using the above syntax. *)

 (X----- Category : Forms Primitives *)

(* A Form is a means of interactive data entry. SSWiS has three standard
forms, which may be used to notify the user, to ask the user about
some parameters and last not least, to identify the current modules
by product name, version author and copyrights.

Forms may use buttons to label upto four push buttons, which can

6 - 38 F:\STANDARD\SPCLIB\SSWIS. DEF SPC MODULA-2 V1.4

be interactively selected. Buttons are given in the syntax:

<Button> ::= [<Label>{"|"<Label>}8..3]

*)

PROCEDURE NotifyForm (Message : ARRAY OF CHAR;
Buttons : ARRAY OF CHAR;

VAR Result : INTEGER);

(¥ Display a notification using Message and prompting Buttons. Result

is the default Button on entry and the selected button upon return. *)

PROCEDURE AskForm (Message : ARRAY OF CHAR;
Buttons : ARRAY OF CHAR;
Options : ARRAY OF CHAR:

VAR Answer : ARRAY OF CHAR;

VAR OptionsRes : BITSET;
VAR Result : INTEGER);

(% Display an editable form. Message is some constant text, while Answer

is preset by the caller and is edited by the user. Options are

provided by up to 4 buttons. Tffe selected buttons are given by

OptionsRes and are returned via OptionsRes. Buttons are provided to

exit the form, while Result specifies the default button and holds
the selected button upon return. %)

PROCEDURE Identify (Program : ARRAY OF CHAR;
Version » ARRAY OF CHAR;
Author » ARRAY OF CHAR;
Copyright : ARRAY OF CHAR);

(* Use a standard method to identify the calling module by the given

string arguments. x)

END SSWiS.

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\SSWIS . DEF 6 - 31

 (%----- Category : Module Identification %)

(X Module Type : %) DEFINITION MODULE
(x. Name ı %) System;
(Rx. Function : Modula-2 Runtime System for MC68888/ATARI ST %)
(x, Version Date : 8:22 16.18.1988 *)
(* Product Name : SPC %)
(* Copyright ı (c) 1987,1988, MODsoft, D7588 Karlsruhe %)

(%----- Category : Module Abstract ¥X%

System's functionality is devided into the following categories :

1. Processor dependent instruction supplement

Module System provides the instructions, that the processor does not
support. Since the code generator uses fixed indices to access these

instructions, most of the operators must be declared in the order
given belon.

2. Dynamic linkable module chain

SPC-MODULA-2 contains a dynamic load feature, which allows modules to
be brought into memory and integrated into the running system at
runtime. This is normally done by a module called Loader. Necessary
fixup and linkage must however be done by that module. System declares
the structures used to maintain the modules in memory. Furthermore,
funcions are provided to add groups of new modules and to start a
main module within such a group as a socalled thread. After the
thread has run, modules, which are no longer needed, are released

from memory. Calls are available, to abort a thread due to some error
conditions. HALT is another means to abort a thread.

The module chain can be inquired. to get some information about the
loaded modules. Furthermore can a module be made resident, which causes

it to remain in memory, even if it is not imported by any active

module.

3. Module Termination

Each module may declare a procedure, whch is called prior to releasing
the module. This may be used to do some cleanup and to orderly release
resources on module termination. All imported modules remain intact,
provided, that there are no import loops (module A imports B and B
imports A).

4. Active Procedure Chain

A procedure invocation is described by a so called procedure frame. The

chain of nested procedure calls may be traversed to get the procedure

frame of the caller.

5. Exceptions

Exceptions are abnormal conditions that occur during program execution

and normally indicate an error within the program. Exceptions may be
detected by hardware or by software, In any case an exception handler

is called to take some corrective action or to kill the running thread.

A thread (see above) may announce its own exception handler to do some
application dependent processing. Otherwise it uses the default
handler. The default handler again may be overriden (e.g. by the Loader
to load the debugger, etc.).

G - 32 Fs \STANDARD\SPCLIB\SYSTEM. DEF | SPC MODULA-2 V1.4

(K----- Category !

FROM

VAR BasePagePtr

(%----- Category :

PROCEDURE HALTX

PROCEDURE MULU32

PROCEDURE DIVU32

PROCEDURE MULS32

PROCEDURE DIVS32

PROCEDURE FADDs

PROCEQURE FSUBs

PROCEDURE FMULs

PROCEDURE rots

PROCEDURE FREMs

PROCEDURE FCMPs

PROCEDURE FNEGs

PROCEDURE FABSs

PROCEDURE FLOATS

PROCEDURE TRUNCs

PROCEDURE FADDI

PROCEDURE FSUBd

PROCEQURE FMULd

PROCEDURE FOIVd

Types and Data

Fixed Order of Operators

(%

(x

(x

(

(

SYSTEM IMPORT ADDRESS;

: ADDRESS;

Error

Opi

Op2

Opl

Op2

Opl

0p2

Opl

Op2

adder

addend

minuend

subtrahend :

multiplicand,
multiplier :

dividend

divisor

dividend

divisor

first

second

toNeg

toAbs

toFloat

tolrunc

adder
addend

minuend

subtrahend :

multiplicand,
multiplier :

dividend

divisor

ce ee ey ee ee en aan re nee oe ee oe ee

: RegisterDB)

: RegisterD®;

: RegisterDi)

: RegisterDB;

: RegisterDi)

: RegisterD®;

: RegisterDi)

+ RegisterD@;
: RegisterDi)

: REAL)

REAL)

REAL)

: REAL)

: REAL)

: REAL) x:

: REAL)

: REAL)

: LONGINT)

: REAL)

: LONGREAL)

LONGREAL)

LONGREAL)

: LONGREAL)

*);

: RegistersD@andD1 %);

: RegistersD8andDi %);

: RegistersD8andDi %);

: RegistersO@andDl x);

: REAL:

: REAL:

: REAL:

: REAL:

: REAL;

CCR X);

: REAL:

: REAL;

+ REAL;

: LONGINT;

: LONGREAL:;

; LONGREAL;

: LONGREAL ;

: LONGREAL;

SPC MODULA-2 V1.4 F+\STANDARD\SPCLIB\SYSTEM.DEF 6 - 33

PROCEDURE FREMd

PROCEDURE FCMPd

PROCEDURE FNEGd

PROCEBURE FABSd

PROCEDURE FLOATd

PROCEDURE TRUNCd

PROCEDURE FLONG

PROCEDURE FSHORT

Category :

PROCEDURE InstFPEmul ator (

dividend
divisor : LONGREAL) : LONGREAL;

first
second : LONGREAL) (%: CCR %);

toNeg : LONGREAL) : LONGREAL:

toAbs : LONGREAL) : LONGREAL;

toFloat : LONGINT) : LONGREAL;

toTrunc : LONGREAL) : LONGINT;

toConvert : REAL) : LONGREAL;

toConvert : LONGREAL) : REAL;

Emulator

Installing the Floatingpoint Emulator

: ADDRESS);

(X Install the system and hardware dependent floating point emulator *)

(* significant characters. The module key is 6 bytes in length. %)

2] OF INTEGER:

(%----- Category : Dynamic Linkable Module Chain --

TYPE (* A module name is recorded in the object file with 16

ModuleNames = ARRAY [8..153 OF CHAR;
ModuleKeys = ARRAY IB..

TYPE Threadlds = [8..15];
SetOfThreadiIds = SET OF Threadlds;

(* A module, which is linked to the module chain,
(* by the module descriptor and by the auxiliary
(X program may change those parts during runtime.

(X to those structures are read only.

ModuleDescrPtr =

AuxDescrPtr =

ModuleDescr =

Next

Frame

StaticBase
ImportedMods
ExportedProcs :
CodeLength

DataLength
ConstLength

Thread

Refere

Reserv

AuxDescr

Descr

Name

nces

ed

END;

POINTER TO ModuleDescr:;

POINTER TO AuxDescr;

RECORD

ModuleDescrPtr;
ADDRESS;

ADDRESS;

INTEGER;
INTEGER:

INTEGER:

INTEGER;

INTEGER;

ThreadIds;

SetOfThreadIds;

ADDRESS

RECORD

ModuleDescrPtr;

ModuleNames;

(%
(%

is descriped *)
descriptor. No %)
All pointers %)

x)

next descr in chain *)
start of code segment %)

length of

length of
length of

length of
length of
onning thread

module's global data *)
imports list %)
exports list %)
code area x)

variable area x)

constant area *)

back link to ModuleDescrx)
*)

6 - 34 F: \SSTANDARD\SPCLIB\SYSTEM. DEF SPC MODULA-2 V1.4

Key : ModuleKeys; (* *
Flags INTEGER; (¥ initialisation status %)

END;

TYPE SearchResults = (Done , (* module was found *)

NotFound , (X module was not found *)

IllegalKey (*% found, but key mismatch *)
NotDone 3 (* not found, none of abovex)

(X----- Category : Dynamic Linkable Module Chain (Primitives) ---~------ x)

PROCEDURE SearchModuleByName
(aName : ModuleNames;

aKey : ModuleKeys;
VAR aDescr : ModuleDescrPtr:

VAR aAuxDescr : AuxDescrPtr)
ı SearchResults;

(% Search the module chain for a module given by aName and aKey. Return

a pointer to its ModuleDescr and to its AuxDescr if found. In that
case answer Done, else answer the reason of failure, e.g. NotFound,
IllegalKey or NotDone. *)

PROCEDURE SearchModuleByStaticBase
(aStaticBase: ADDRESS;
VAR aDescr : ModuleDescrPtr;

VAR aAuxDescr : AuxDescrPtr)

: SearchResults;

(* Same as above, but the StaticBase, which is unique to each module is

given. *)

PROCEDURE NextDescriptor

(VAR aDescr : ModuleDescrPtr;
VAR aAuxDescr : AuxDescrPtr);

(% Answer the descriptor behind aDescr within the module chain and its
corresponding AuxDescr. If aDescr is NIL on entry, then the first
module descriptor is answered. If aDescr is NIL upon return, the end
of the modulelist has been reached. x)

 (X----- Category : Threads %)

(* A thread is a list of modules with the main module beeing *)
(X the first module of the list. Within the list, all references*)
(* to imported modules must be resolved and all necessary fixup %)

(X must have been done. This is normally the job of the Loader %)
(X module. %)
(* A thread is first linked to the currently known modules. It %)
(% may then be started to run until it completes or until it is *)

(X killed due to some exceptional condition. It remains in %)

(* memory, until a module calls unlink and obtains the original *)
(X module list. *)

PROCEDURE LinkThread (aDescr : ModuleDescrPtr)
: BOOLEAN:

(* Link a thread, given by aDescr to the list of threads. All imports

of the modules must have been resolved and all necessary fixup must
have been done. The module given by aDescr is the main module of the
Thread. *)

SPC MODULA-2 V1.4 F: \STANDARD\SPCLIB\SYSTEM. DEF

PROCEDURE RunThread (aDescr : ModuleDescrPtr) ;

(X Run the thread, to which the module, given by aDescr, belongs. %)

PROCEDURE KillThread (aDescr : ModuleDescrPtr) ;

(* Kill the thread, to which the module, given by aQDescr, belongs.
Furthermore, all threads that import modules of the terminating
thread are killed as well. %)

PROCEDURE UnlinkThread (VAR aDescr : ModuleDescrPtr)
: BOOLEAN;

(* Unlink the thread, to which the module, given by aDescr, belongs,
provided, the thread is not running and no other thread imports

modules of that thread. *)

(#----- Category : Module Termination (Primitives) --- -%)

PROCEDURE OnModuleTerminationDo

aHandler : PROC)
: BOOLEAN;

(% Request, that aHandler is called upon termination of the owning

Thread. The termination handler announced last is called first upon

thread termination. It is good practice, to install termination
handlers during module initialisation. Only 16 termination handlers
can be installed for one single thread. Answer TRUE if successfull. %)

(X¥----- Category : Dynamic Procedure Chain - %)

TYPE (X A procedure invocation is described by a procedure frame, *)
(* which contains the current PC within the module, the module’ sx)
(X static base value (see above) and a link to the calling *)
(X procedure's frame. %)

ProcedureFrames = RECORD

StaticBase ADDRESS;
DynamicBase i ADDRESS;
RelativePC LONGINT;

END;

(%----- Category : Dynamic Procedure Chain (Primitives) *)

PROCEDURE CallerOf (VAR aFrame : ProcedureFrames);

(X Using aframe search the calling procedure frame and return it in
aFrame. If aFrame is the main program upon entry, then return NIL in
aFrame's StaticBase. x)

 (¥----- Category : Exceptions %)

TYPE ExcTypes = (ProgramHalt
InvalidCaseIndex

G - 36 Fi \STANDARD\SPCLIB\SYSTEM. DEF SPC MODULA-2 V1.4

MissingResult

CorruptedPointer

DivideByZero
RangeViolation

ArithmOver flow
StackOverflow

Breakpoint

ControlC
ProcessorDependent
FPUnder flow
FPOver flow

FPDivideByZero
FPNotANumber

FPNotComparable

FPInvalidDomain
FPSingularity ,
FPTotalLossOfSignificance ,
FPPartLossOfSignificance

FPUnimplementedFunction);

VAR CurrExcType : ExcTypes;
CurrExcFrame : Procedureframes;

CurrExcRoot : ProcedureFrames;

(%----- Category : Exceptions (Primitives) - ----%)

PROCEDURE TextOfExc (anExc ; ExcTypes;

VAR aString : ARRAY OF CHAR);

(* Answer a textual representation of anExc in aString (ca. 4@ chars
are required). *)

PROCEDURE OnExceptionDo (aHandler : PROC);

(* Request, that subsequent exceptions of the calling thread be handled
by aHandler. %)

PROCEDURE SetDefaul tExcHandler

(aHandler : PROC);

(¥ Request, that subsequently loadad threads use aHandler as their
exception handler, provided, they do not announce their own handler. %)

PROCEDURE DefaultExcHandler:

(x Use some implementation dependent technique to display information
about the current exception and the active procedure chain. %)

END System.

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\SYSTEM. DEF 6 - 37

 (X----- Category : Module Identification *)

(* Module Type : %) DEFINITION MODULE
(x. Name : %) TextFiles;

(8. Function : Virtual Text File Management x)

(xX. Version Date : 19:48 5. 6.1988 ¥)
(* Product Name : SPC *)
(* Copyright : (c) 1987, MOBsoft, D7588 Karlsruhe x)

(%----- Category : Module Abstract XX

A Textfile is a sequence of lines. The implementation of Textfile is
hidden from the calling modules. Lines are referenced via line numbers
or labels. The advantage of labels is, that they reference the same
line, even if lines are inserted before the labeled line (line numbers
change implicitly). A Textfile maintains a pointer to the current line.

the pointer can be moved to line numbers or labels. The content of the

current line can be read, referenced via a pointer and changed. New lines
are inserted behind the current line. *)

(¥----- Category : Types and Data - | *)

TYPE Results = (Done, NotDone,
NoMemory, FileNotFound, IoError);

TYPE rglext = [8..255];
Text = ARRAY rgText OF CHAR;
TextPtr = POINTER TO Text;

Labels = [1..20];

File;

(#----- Category : Initialisations *)

PROCEDURE Init; (* no comment. *)

PROCEDURE Open (VAR F : File;
Name : ARRAY OF CHAR;

VAR Result : Results);

(% Open the named diskfile and read its content into the newly created

Textfile F. Answer Done=TRUE if successfull. *)

PROCEDURE Create (VAR F : File;
VAR Result: ': Results);

(X Create a nen Textfile. Return Done=TRUE if successfull. *)

PROCEDURE Savefs (F : File;
Name : ARRAY OF CHAR;

VAR Result : Results);

(* Save the Textfile F to disk under Name. Return Done=TRUE if

successfull. *)

PROCEDURE Abandon (F : File);

(* Delete Textfile F. Do not save its content. *)

6 - 38 Fi \STANDARD\SPCLIB\TEXTFILE . DEF | SPC MODULA-2 V1.4

(%----- Category : Text Primitives mem mmmmeeeeeeeeeeeeenn *)

PROCEDURE Position (F : File:

Line : CARDINAL);

(*% Position the current line pointer of Textfile F to linenumber Line.
IF Line is < 1 then the first line becomes the current line, if Line

ist > total number of line, the last line becomes the current line. *%)

PROCEDURE Replace (F : File;

VAR NewLine : ARRAY OF CHAR;

VAR Result : Results);

(¥ Replace the content of the current line by NewLine. %)

PROCEDURE Insert (F : File;

VAR NewLine : ARRAY DF CHAR;

VAR Result : Results);

(X Insert NewLine behind the current line. Please note, that linenumbers
of all subsequent lines are incremented. *)

PROCEDURE Delete (F : File);

(X Delete the current line. Note, that linenumbers of all subsequent
lines are decremented. x)

(R-- Category : Labels === mem nnn nnn nnn crane *)

PROCEDURE Label (FO. : File:
Lbl : Labels);

(% Set the label Lbl to the current position of file F. ®)

PROCEDURE LineNumberOf (F : File;

Lbl : Labels)

: CARDINAL;

(* Position file F TO label Lbl. *)

 (%----- Category : Inquiries ----7---------- = -- =- -*)

PROCEDURE ContentOf (F : File;

VAR Content : ARRAY OF CHAR);

(* Transfer the content of the current line into the buffer Content. x)

PROCEDURE LengthOf (F : File)
: CARDINAL;

(X Answer the length of the current line. %)

PROCEDURE PositionOf (F : File)
: CARDINAL:

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\TEXTFILE. DEF 6 - 39

(* Ansner the linenumber of the current line. x)

PROCEDURE TotalLinesOf (F : File)
: CARDINAL;

(X Answer the total number of lines of file F. ¥)

PROCEDURE PointerOf (F : File)

ı TextPtr;

(* Ansner a TextPtr to the content of the current line. The TextPtr must

. be used with extreme care. In particular is it not allowed to use the
term HIGH(tp). *)

END TextFiles.

6 - 46 Fi \STANDARD\SPCLIB\TEXTFILE. DEF SPC MODULA-2 V1.4

(X----- Category + Module Identification === meeeeeen *)

(x Module Type : *%) DEFINITION MODULE
x. Name : *) TextWindons;
(x. Function : Modula-2 Standard Window System %)
Rx. Version/Date : 1.1 1.8.87 *)
(* Product Name : SSWiS . x)
(% Copyright : (c) 1987,1988 MODsoft, 07588 Karlsruhe x)

(Kon Category : Module Abstract === mm nnn nnn nnn nnn nn *X

TextWindows provides the windowing environment of SSWiS, but

redefines the term “World Coordinates’. In the sense of a text window
the world consists of “Lines” and “Columns”, where lines and columns
are numbered @..N. Linenumbers grow from top to bottom (of the world),
columns grow from left to right. The position of the window, etc. can
be specified using lines and columns, as long as the window at hand

has been opened via TextWindows.Open (instead of SSWiS.CreateNindon).

The size of the world in terms of pixels depends on the character

font used. It is good programming practice, to isolate the application
modules from the details of character fonts by strictly relying on
the functionality provided by module TextWindons.

However it is possible, to manipulate the windows parameters by calling
the module SSWiS directly (passing the same handles). This is the

normal case for all screen coordinate-related functions, as well as
for the input event interface. Since the EventReport contains

world coordinates of module SSWiS, these coordinates must be
transformed to TextWindows.WorldCoordinates using the procedure

Identify.

Each text window maintains a socalled “Caret’” at some position within
the world of lines and columns. The caret is used to specify the

position of textual output generated via the WriteXXXX procedures.

Whenever output has been done, the caret position moves to the end
of the current write operation. It is essential, that the WriteXXXxx

procedures be only used by the restore callback procedures. The

caret position can be inquired and explicitly set.

The output procedures below are to be used by the restore procedure,
which, in turn, is triggered by textwindows. Thus, these procedures do
not need a Window handle, etc.
%*)

(8----- Category : Types and Data ------------------- -*)

IMPORT SSWiS;

(* The world of a textwindows consists of lines and columns. x)

(X The supported range is currently determined’ by 16bit value. ¥*)

TYPE Coordinates = INTEGER;

FontSizes = (Small, Normal, Large);

Points = RECORD
X, Y : Coordinates;

RestoreProc = PROCEDURE ((% Owner *) SSWiS ModuleHandles,
(¥ Window *) SSWiS.WindowHandles,

(¥ XY *) Points,

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\TEXTWIND. DEF G - 41

(* WH *%) Points);

(x Callback procedure to restore the content of Windon. The *)
(X affected area of the world is given in WorldCoords. ¥)

(8 Category : Opening, Llosing, Setup ----- mom *)

PROCEDURE Create (Owner : SSWiS.ModuleHhandles;

Nindon : SSWiS.WindowHandles;

Restore : RestoreProc);

(* Open a new text Window Window. Note, that you MUST use this procedure

to open a TextWindow (you cannot use SSWiS.CreateWindow). *)

PROCEDURE Delete (Owner : SSWiS.ModuleHandles:

Window : SSWiS.Windonhandles);

(X Close the TextWindon. *)

PROCEDURE ExplicitRestore

(Owner : SSWiS.ModuleHandles;

Window : SSWiS WindowHandles:

XY, WH : Points);

(* Issue an explicit repaint operation of window u, but restrict

repaint to the given rectangle within the world coordinate space. *)

PROCEDURE AssignFont (Owner : SSWiS.Modulehandles;
Window : SSWiS.Windonhandles;

FontSize ‘ FontSizes);

(¥ Assign non-proportional font for all output in Window. *)

(%----- Category : Control scrolling (World Coordinates) ----~----------- *)

PROCEDURE PositianWorld (Owner : SSWiS.ModuleHandles;

Window : SSWiS WindowHandles:

XY : Points);

(¥ Set the positon of the windows upper left corner in terms of
columns and lines. *%)

PROCEDURE SizeWorld (Owner ‘ SSWiS.Modulehandles;

Nindon : SSWiS .WindowHandles;

WH : Points);

(¥ Set the size of the application workspace in terms of

columns and lines. %)

PROCEDURE WorldOf (Owner : SSWiS ModuleHandles:

Window ; SSWiS.WindowHandles:

VAR XY. WH : Points):

(* Answer the position and outline of the “world” in terms of columns

and lines. *)

G - 42 Fi \STANDARD\SPCLIB\TEXTWIND. DEF SPC MODULA-2 V1.4

PROCEDURE InteriordOf i Owner © SSWiS.ModuleHandles:

Ce Window : SSWiS.WindowHandles:

~ VAR WH : Points);

(* Answer the actual size of the Window measured in lines and columns. *)

PROCEDURE Identify ~ (Owner ‘ SSWiS.ModuleHandles:
Window : SSWiS.WindowHandles:

RawXY : SSWiS.Points;
VAR XY >: Points):

(X Answer the position in terms of column/line behind absolute position
x/y. *)

PROCEDURE SetCaret (Owner : SSWiS.ModuleHandles:
Window : SSWiS.WindomNandles;

XY : Points);

(* Turn the caret OnNotOff and set it to position Col/Line. *)

(*----- Category : Streamlike Output (used by restore) ----------------- *)

PROCEDURE Position (XY : Points):

(X Set caret to Col/Line. x)

PROCEDURE Positionüf (VAR XY ' Points);

(* Answer caret position. *)

PROCEDURE Invert (OnNotOf f : BOOLEAN);

(* Turn inverse writing mode OnNotOff. *)

PROCEDURE Write (ch : CHAR);

(* Write character ch to window u at current position. *)

PROCEDURE WriteString (S : ARRAY OF CHAR);

(* Write a string at caret position to window u. *)

PROCEDURE WriteLn:;

(* End current line (line containing the caret) and skip to next
line on Window u. *)

PROCEDURE Clear;

(X Clear until end of window. *)

PROCEDURE WriteLine (WAR s : ARRAY OF CHAR);

(* Write a string at caret position to window u. Same as WriteString

but improved speed due to VAR parameter. %)

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\TEXTWIND. DEF 6 - 43

END TextWindows.

0-44 Fs \STANDARD\SPCLIB\TEXTWIND. DEF SPC MODULA-2 V1.4

(#----- Category : Module Identification === mm 0007 x)

(X Module Type : %) DEFINITION MODULE
(x. Name ı %*) XStr;
(x. Function : Extended String Primitives *)
(x. Version/Date : 1.8 29.5.1987 x)
(* Product Name ; SPC *)
(% Copyright : (c) 1987, MODsoft. 07586 Karlsruhe *)

(%----- Category : Module Abstract === --- mem mem *%*

XStr provides operations on strings beyound those of the standard module
Strings. In particular are conversions between non-string datatypes and

strings in either direction supported. XStr interfaces reference the

portion of interest by an index. The index is normally proceeded by the
XStr function itself. %)

 (¥----- Category : Types and Data ----------------- ----%)

TYPE TermProc = PROCEDURE (CHAR) : BOOLEAN:

(x Answer FALSE, if the character meets some *)
(X termination condition. *)

VAR NumberBase : CARDINAL;

(X----- Category : Copying and Scanning Strings ------------------------ *)

PROCEDURE CopyForWhile (While : TermProc;
VAR For : CARDINAL;
VAR From : ARRAY OF CHAR;
VAR FromInd : CARDINAL;
VAR To : ARRAY OF CHAR;
VAR ToInd : CARDINAL);

(* Copy the String From starting at character FromInd to the string To

starting at character ToInd until For characters are copied or the

termination procedure While answers FALSE to the current character. x)

PROCEDURE ScanForWhile (While : TermProc;
VAR For : CARDINAL;

VAR From : ARRAY OF CHAR;

VAR FromiInd ; CARDINAL) ;

(* Scan the String From starting at character FromInd until For
characters are copied or the termination procedure While answers
FALSE to the current character. %)

(X----- Category : Default Termination Procs ------------- 0m *)

PROCEDURE Forever (c : CHAR) : BOOLEAN;
PROCEDURE WhileInDigits (c : CHAR) : BOOLEAN:
PROCEDURE WhileInHexDigits (c : CHAR) : BOOLEAN;

PROCEDURE WhileEqualBlank (c : CHAR) : BOOLEAN;
PROCEDURE WhileInAlphas (c : CHAR) : BOOLEAN;
PROCEDURE WhileInAlphaNums (c : CHAR) : BOOLEAN:
PROCEDURE WhileInPathChars (c : CHAR) : BOOLEAN;

(¥----- Category : Texts -------------- mn *)

SPC MODULA-2 V1.4 F:\STANDARD\SPCLIB\XSTR. DEF G- 45

PROCEDURE Char (Ch : CHAR;
VAR String : ARRAY OF CHAR;
VAR Pas : CARDINAL) ;

(X Put the character Ch into String at position Pos. Advance Pos. *)

 (¥----- Category : Numbers To Strings *)

PROCEDURE Cardinal (Number : CARDINAL:
Length : CARDINAL;
Base : CARDINAL;

VAR String : ARRAY OF CHAR;
VAR Pos : CARDINAL);

(* Convert Number to a textual representation of Length characters

(leading blanks are inserted if required) using Base as the number base
and put it into String at Pos. Advance Pos is sucessfull. x)

PROCEDURE Longcard (Number : LONGCARD;

Length : CARDINAL;
Base : CARDINAL:

VAR String : ARRAY OF CHAR;
VAR Pos : CARDINAL);

(¥ See above. *)

PROCEDURE Integer (Number : INTEGER:
Length : CARDINAL;
Base : CARDINAL:

VAR String : ARRAY OF CHAR;
VAR Pos : CARDINAL);

(* See above. %)

PROCEDURE Longint (Number : LONGINT:
Length : CARDINAL;
Base : CARDINAL;

VAR String : ARRAY OF CHAR;
VAR Pos : CARDINAL) ;

(X See above. *)

PROCEDURE Real (Number : REAL;
Length : INTEGER;
FracLength : INTEGER;

VAR String : ARRAY OF CHAR:
VAR Pos : CARDINAL) :

(* Convert Number to a textual representation of Length characters

(leading blanks are inserted if required) in total and FracLength
characters behind the decimal point. Put it into String at Pos and
advance Pos is sucessfull. If FracLength is less than 6, then

scientific notation is used. If Number is not a valid real number,
then the string NAN is inserted into String, if the number does not
fit into Length, then Length asterisks are inserted. %)

PROCEDURE Longreal (Number : LONGREAL;
Length : INTEGER;

G - 46 F:\STANDARD\SPCLIB\XSTR. DEF SPC MODULA-2 V1.4

FracLength :

VAR String

VAR Pos

(X see above. *)

PROCEDURE InvCardinal (VAR Number
VAR String

VAR Pos
: BOOLEAN:

INTEGER;
: ARRAY OF CHAR;
: CARDINAL):

: CARDINAL:
: ARRAY OF CHAR;
: CARDINAL)

(* Parse String, starting for a position Pos, for a CARDINAL number. If
successfull then answer TRUE and advance Pos.

The number syntax is : digit{digit}.

PROCEDURE InvLongcard (VAR Number

VAR String

VAR Pos
: BOOLEAN;

(X See above. *)

PROCEDURE InvInteger (VAR Number
VAR String
VAR Pos

: BOOLEAN;

: LONGCARD:
: ARRAY OF CHAR;
: CARDINAL)

: INTEGER;
: ARRAY OF CHAR;
: CARDINAL)

(x* Parse String, starting for a position Pos, for an INTEGER number. If

successfull then answer TRUE and advance Pos.

The number syntax is :

PROCEDURE InvLongint (VAR Number
VAR String

VAR Pos
: BOOLEAN;

(X See above. %)

PROCEDURE InvReal (VAR Number

VAR String

VAR Pos
: BOOLEAN;

[+|-Idigit{digit}. *)

: LONGINT;
: ARRAY OF CHAR:
: CARDINAL)

: REAL:

: ARRAY OF CHAR;

: CARDINAL)

(* Parse String, starting for a position Pos, for a REAL number. If
successfull then answer TRUE and advance Pos. Real syntax is :

realnumber = fixedpointnumber [exponent].
fixedpointnumber = [sign] {digit} ['.' {digit}].
exponent = (‘e' | 'E') [sign] digit {digit}.
sign = it) fe.
digit SUS PL POS a Se lt 7 1 8 3.

The following numbers are legal representations of one

hundred: 188, 18E1, 188EB8, 1BBBE-i, E2, +E2, 1E2, +1E2,
+1E+2, LE+2 .%)

PROCEDURE InvLongreal (VAR Number : LONGREAL;

VAR String : ARRAY OF CHAR;

SPC MODULA-2 V1.4 Fs \STANDARD\SPCLIB\XSTR. DEF G - 47

VAR Pos : CARDINAL)
: BOOLEAN;

(X See above. *)

END XStr.

G - 48 F:\STANDARD\SPCLIB\XSTR. DEF SPC MODULA-2 V1.4

Die SYSLIB Anhang H

SPC MODULA-2 V1.4 SYSLIB

Diese Seite wurde aus

satztechnischen Grunden frei

gelassen

SYSLIB SPC MODULA-2 V1.4

(%----- Category : Module Identification ===" --- 000000 *%)

(* Module Type 4 %) DEFINITION MODULE
x. Name - + ¥%) AESApplications;

(xX. Function ı Interface to GEM AES x)
(x, Version/Date : 1.8 1.7.1987 ¥)
(* Product Name ı SPC x)
(% Copyright + (c) 1987, MODsoft, 07588 Karlsruhe x)

(#----- Category : Module Abstract -- xx

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.

' Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch’,
SYBEX, ISBN 3-88745-501-8, 1.Auflage 1987 *)

(#----- Category : Types and Data --- -- -%)

FROM SYSTEM IMPORT ADDRESS;

 (#----- Category : Primitives Torrence enn mm men *)

PROCEDURE Initialise () + INTEGER;

(¥ Initialise application. Returns ApId *)

PROCEDURE Read (Id, Length : INTEGER;
PBuf f ı ADDRESS);

(* Read from a message. pipe. ‘Returns coded return message, @ = error *)

PROCEDURE Write (Id, Length : INTEGER:
PBuf f : ADDRESS);

(* Write to a message pipe. Returns coded return message, 9 = error *)

PROCEDURE Find (VAR FPname : ARRAY OF CHAR)
: INTEGER;

(* Find the Id of another application in the system. x)

PROCEDURE TPlayback (TpMem : ADDRESS;
TpNum ,
TpScale : INTEGER);

(* Play back a piece of GEM AES recording of user's actions. *)

PROCEDURE TRecord (TrMem : ADDRESS;
TrNum : INTEGER) ;

(* Record the next ApTrNum user actions. Returns number recorded. x)

PROCEDURE Exit:

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\AESAPPLI. DEF

(X Exit application. *)

END AESApplications.

F:\GEMDOS\SYSLIB\AESAPPLI . DEF SPC MODULA-2 V1.4

(#----- Category : Module Identification ------~---~-------------------- *)

(* Module Type : *%) DEFINITION MODULE
(X. Name : *) AESBase:
x. Function : ¥)
x. Version/Date : 1.8 / 82.87.1987 *)

(* Product Name : SPC *)
(* Copyright : (c) 1987, MODsoft, 07588 Karlsruhe *)

(#----- Category : Module Abstract xx

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch”,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 *)

(%----~ Category : Types and Data arene --*)

FROM SYSTEM IMPORT ADDRESS;

CONST White = @;
Black = 1;
Red = 23
Green = 33

Blue = 4;

Cyan = 5;
Yellow = 6;
Magenta = 7

LightWhite = 8)

LightBlack = 9;
LightRed = 16;

LightGreen = 11;
LightBlue = 12;
LightCyan = 13;
LightYellow = 14;
LightMagenta = 15;

TYPE AESGlobalType = RECORD
apVersion : CARDINAL ;
apCount CARDINAL;
apID : CARDINAL;
apPrivate LONGCARD:
apPTree : ADDRESS;

apiResv ‘ LONGCARD;

ap2Resv LONGCARD;
apsResv LONGCARD;
ap4Resv : LONGCARD;

END;

AESControlType = RECORD
opcode : CARDINAL ;
sizelntIn : CARDINAL:
sizeIntOut : CARDINAL ;
sizeAddrIn : CARDINAL:
sizeAddrOut CARDINAL;

END;

AESIntInType = ARRAY [8..161 OF INTEGER;
AESIntQutType = ARRAY (@..7] OF INTEGER;
AESAddrInType = ARRAY (@..2] OF ADDRESS;
AESAddrOutType = ARRAY (@..1] OF ADDRESS;

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\AESBASE . DEF

AESParameterT ype=
control :

global

intIn

intOut

addrIn

addrOut

VAR AESParameters

AESG1 obal

AESControl

AESIntIn

AESIntOut

AESAddrIn

AESAddrOut

CallResult

PROCEDURE GEMCal] (

END AESBase.

RECORD
POINTER TO AESControl Type:
POINTER TO AESGlobal Type;
POINTER TO AESIntInType;
POINTER TO AESIntOutType;
POINTER TO AESAddrinType;
POINTER TO AESAddrOut Type:

END ;

: AESParameterType ;

: AESGlobalType ;
: AESControlType ;
: AESIntInType ;
: AESIntOutType ;
: AESAddrInType ;
: AESAddrOutType ;

: INTEGER;

Opcode : INTEGER:
Entrli ,
Cntri2 ,
Cntrl3 ,
Cntrl4 : INTEGER) ;

F: \GEMDOS\SYSLIB\AESBASE . DEF SPC MODULA-2 V1.4

(%----- Category : Module Identification %)

(* Module Type | %) DEFINITION MODULE
(8. Name : %) AESEvents;
8. Function : Interface to GEM AES 9
Rx. Version/Date : 1.8 1.7.1987 *)
(* Product Name i SPC *)
(* Copyright : (c) 1987, MODsoft, 07588 Karlsruhe *)

(X----- Category : Module Abstract = -- -%%

This madule implements the MODULA-2 interface ta GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch’,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 *)

 (Konno Category : Types and Data ----------------- -*)

FROM SYSTEM IMPORT WORD;

TYPE Events = (KeyboardEvent,
ButtonEvent,

MouselEvent,
Mouse2Event,

MessageEvent,
TimerEvent) ;

SetOfEvents = SET OF Events;

KbdStates = (RightShift,
LeftShift,

CTRL,

ALT);

SetOfkbdStates = SET OF KbdStates;

CONST (X Message values *)
MenuSelected = 18; (* Menu item was selected *)

WindonRedran = 20; (* Window needs redrawing *)
WindowTopped = 21; (* A window was moved to the top *)
WindowClosed = 22; (* Window was closed *)

WindowFulled = 23; (* WUndon was fulled %)

WindowArrowed = 24; (* Windon was arrowed *)

WindowHorizSlided = 25; (% Horizontal slider was moved *)

WindonwVertSlided = 26; (% Vertical slider was moved %)

WindowSized = 273 (* Window was sized %)
WindowMoved = 28; (X Window was moved *)
WindowNewTop = 29; (¥ Window was moved to top (activated) *)
AccessoryOpen = 48; (* Accessory requested to open *)
AccessoryClose = 41; (% Accessory requested to close *)

(¥----- Category : Primitives ------- rrr rrr rrr rrr rrr nnn *)

PROCEDURE Keyboard () : INTEGER:

(% Wait for keyboard input. *)

PROCEDURE Button (Clicks : INTEGER;
RequMask ,

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\AESEVENT . DEF

RequState

VAR x, y
VAR ButState
VAR KbdState

: INTEGER;

(% Wait for a mouse action. %)

PROCEDURE Mouse (RetOnExit

xX, Y, W,
VAR mX, mY

VAR ButState

VAR KbdState

: BITSET;
; INTEGER:
: BITSET;
ı SetOfKbdStates)

: BOOLEAN;
h : INTEGER;

‘ INTEGER:
: BITSET;
i SetOfKbdStates) ;

(% Wait for mouse to enter or leave a specified rectangle. *)

PROCEDURE Message (VAR MsgBuf fer : ARRAY OF WORD);

(* Wait for 16 bit message from the message pipe. *)

PROCEDURE Timer (Millisecs

(* Wait for time to pass *)

PROCEDURE Multiple (EventMask
Requllicks :

RequButtons:

ı BITSET: _
: BOOLEAN;

RequState
RetOnExiti

x2, y2

w2, h2

VAR MsgBuf fer
Millisecs

VAR mX, mY
VAR ButState
VAR KbdState
VAR KeyCode
VAR Clicks

: SetOfEvents;

(* Wait for multiple events. %)

PROCEDURE DoubleClick (NewSpeed

SetNotGet
: INTEGER :

(X Set or Get double click speed. *)

END AESEvents.

: LONGCARD) ;

ı SetOfEvents;

INTEGER;
BITSET;

: INTEGER;
: BOOLEAN;

: INTEGER;
: ARRAY OF INTEGER;
: LONGCARD;
: INTEGER;
: BITSET;
: SetOfKkbdStates;
: INTEGER;

: INTEGER)

: INTEGER:
: BOOLEAN)

F: \GEMDOS\SYSLIB\AESEVENT . DEF SPC MODULA-2 V1.4

 (%----- Category : Module Identification *)

(* Module Type : %) DEFINITION MODULE
(x, Name : %) AESForms;
x. Function ı%*)
(x, Version/Date : 1.8 / 82.07.1987 *)

(* Product Name : SPC x)
(% Copyright + (c) 1987, MODsoft, 07588 Karlsruhe *)

(X----- Category : Module Abstract ----------- 2227222227222 *%

This module implements the MODULA-2 interface to GEM AES. All functions

are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration

types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch’",

SYBEX, ISBN 3-88745-501-8, 1.Auflage 1987 *)

 (¥----- Category : Types and Data ----------------- -- %)

FROM SYSTEM IMPORT ADDRESS;
IMPORT AESObjects;

TYPE Phases = (Start, Grow, Shrink, Finish);

(%----- Category : Primitives *)

PROCEDURE Do (Tree : AESOb jects.TreePtr;

StartOb j : INTEGER)
: INTEGER ;

(* Causes the form library to monitor a users interaction with a form *)

PROCEDURE Dialogue (Flag : Phases;

LitX, Lity ,
LitW, Lith ,
BigX, BigY ,
BigN, BigH : INTEGER);

(* Multi forms action according to flag *)

PROCEDURE Alert (DefButton : INTEGER:
VAR String : ARRAY OF CHAR)

: INTEGER ;

(* Displays an alert *)

PROCEDURE Error (ErrorNum : INTEGER)
: INTEGER ;

(* Displays an error *)

PROCEDURE Center (Tree : AESOb jects. TreePtr;
VAR X, Y, N, H : INTEGER);

(* Centers a dialog box on the screen *)

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\AESFORMS. DEF

PROCEDURE FileSelectorInput
(VAR Path ,

Selection : ARRAY OF CHAR;
VAR OkNotCancel: BOOLEAN);

END AESForms.

H - 18 Fi \GEMDOS\SYSLIB\AESFORMS . DEF SPC MODULA-2 V1.4

(R%----- Category : Module Identification ------------------------------- *)

(* Module Type : %) DEFINITION MODULE
(x. Name : *%) AESGraphics;
x. Function : %)
(x. Version/Date : 1.8 / 82.07.1987 *)
(* Product Name ‘+ SPC *)
(% Copyright : (c) 1987, MODsoft, D7588 Karlsruhe x)

(----- Category : Module Abstract --------- 2-22 nn KX

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration

types to simplify access to them. They will be explained as necessary.

Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch’”,
SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 *)

(#----- Category : Types and Data --------------------2- 2-22 *)

IMPORT AESEvents, AESOb jects:

CONST Arrow = @;

TextCursor =];

Hourblass = 23

PointHand = 35

FlatHand = 4;

ThinCross = 5; x

ThickCross =6;

OutlineCross = 73 ;
UserDef = 255; "
MouseOf f = 256;

MouseOn = 257;

TYPE Cursors [Arrow. .Mouseün];

 (#----- Category : Primitives *)

PROCEDURE RubberBox (X, Y, W, H: INTEGER:
VAR LastW ;

LastH ' INTEGER);

(X Draws a “rubber box" *)

PROCEDURE DragBox (X, Y, W., H : INTEGER;

BoundX
BoundY

BoundW ;

BoundH : INTEGER:
VAR LastxX ,

LastY : INTEGER) —
-

(* Allow user to drag a box *)

PROCEDURE MoveBox (X, Y, W, H : INTEGER:

DestX ,
DestY : INTEGER);

(x Draws a moving box *)

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\AESGRAPH. DEF H- 11

PROCEDURE GrowBox (StX, Sty
StW, StH : INTEGER;
FinX, FinyY ,

FinW, FinH : INTEGER):

(X Draws an expanding box outline *)

PROCEDURE Shr inkBox (Finx, Finy ,

FinW, FinH : INTEGER;

StX, Sty

StW, StH : INTEGER);

(* Draws an shrinking box outline *)

PROCEDURE WatchBox (Tree : AESODjects.TreePtr:

Ob ject : INTEGER;
InState
QutState : AESObjects.SetOfStates)

: BOOLEAN;

(* Tracks mouse in and out of box *)

PROCEDURE SlideBox (Tree ‘ AESObjects.TreePtr;
Parent ,
Ob j : INTEGER;

_ VertNotHor : BOOLEAN)
: INTEGER ;

(% Tracks sliding box in a parent box *)

PROCEDURE Handle (VAR WChr, HChr ,
WBox, HBox : INTEGER)

: INTEGER ;

(* Gets the GEM VDI handle *)

PROCEDURE Mouse (Form : Cursors:
UserDef : AESObjects.AnyBitmapPtr) ;

PROCEDURE MouseKeyboardState
(VAR X, Y : INTEGER;
VAR ButtonState: BITSET;
VAR KbdState ı AESEvents. SetOfKbdStates);

(¥ Return mouse loc and state *)

END AESGraphics.

H- 12 F:\GEMDOS\SYSLIB\AESGRAPH. DEF SPC MODULA-2 V1.4

(¥----- Category : Module Identification *)

(* Module Type : %) DEFINITION MODULE
(8. Name : %) AESMenus;
(x. Function ı%)
(xX . Version/Date : 1.8 / 82.07.1987 *)
(* Product Name : SPC *)
(* Copyright : (c) 1987, MODsoft, 07588 Karlsruhe *)

(%----- Category : Module Abstract xx

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration

types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch’,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 *)

(X----- Category : Types and Data ------ =-- - =--- *)

IMPORT AESObjects;

(X----- Category : Primitives =-- - %)

PROCEDURE Bar (Tree : AESOb jects. TreePtr;
ShonNotHide: BOOLEAN);

(% Display or erase current menu bar *)

PROCEDURE ItemCheck (Tree : AESObjects.TreePtr;
Item : INTEGER;
SetNotRemy : BOOLEAN);

(* Display or erase a check mark next to a menu item *)

PROCEDURE ItemEnable (Tree : AESOb jects.TreePtr;
Item : INTEGER;

. Enable : BOOLEAN);

(x Enables or disables a menu item *)

PROCEDURE TitleNormal (Tree : AESOb jects. TreePtr;
Title : INTEGER;
Normal : BOOLEAN);

(x Displays a menu title in normal or reverse video x)

PROCEDURE Text (Tree : AESObjects.TreePtr;
Item : INTEGER:
String : ARRAY OF CHAR);

(* Changes the text of a menu item *)

PROCEDURE Register (Apid : INTEGER;
String : ARRAY OF CHAR)

: INTEGER;

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\AESMENUS. DEF H - 13

(* Place desk accessorie's text in a menu *)

END AESMenus.

H - 14 Fs \GEMDOS\SYSLIB\AESMENUS . DEF SPC MODULA-2 V1.4

(%----- Category : Module Identification ---------=--- 772722 - *)

(* Module Type : *%) DEFINITION MODULE
(Xx. Name : %) AESObjects;.

(x, Function : *)

(x, Version/Date : 1.8 / 82.87.1987 . x)
(X Product Name : SPC *)

(* Copyright (c) 1987, MODsoft, D7588 Karlsruhe %)

(%----- Category : Module Abstract

This module implements the MODULA-2 interface to GEM AES. All functions

are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch’,

(#----- Category :

SYBEX, ISBN 3-88745-58 1-8, 1.Auflage 1987 %)

 Types and Data

FROM SYSTEM IMPORT ADDRESS;

TYPE Types

Flags

SetOfFlags |

States

SetDfStates.

= (t8, tl, t2, t3,

uß, ul, u2, u3,

Box,

Text,
BoxText,

Image,
ProgDef,
InvisibleBox,

Button,

BoxChar,

String,

FormattedText,

FormattedBoxTe

Icon, |
Title);

(Selectable,

Default,

Exit,

Editable,

RadioButton,

LastObject,
TouchExit,

HideTree,
Indirect);

= SET OF Flags;

= (Selected,
Crossed,

Checked,

Disabled,

Outlined,
Shadowed) ;

= SET OF States;

t4, t5, t6, t7, t8, t9,

u4,.uS, u6, u?, u8, u9,

xt,

Edits

Justifications

AnyText

AnyBitmap

(InitText, AcceptChar, Terminate):

(Left, Right, Centered);
ARRAY [@..999] OF CHAR;
ARRAY [8..9991 OF BITSET;

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\AESOBJEC. DEF H - 15

AnyTextPtr = POINTER TO AnyText;
AnyBitmapPtr = POINTER TO AnyBitmap;
TedInfoPtr = POINTER TO TedInfo;

IconBlkPtr = POINTER TO IconBlk;

BitBlkPtr = POINTER TO BitBlk;
ApplBlkPtr = POINTER TO ApplBlk;
ParamBlkPtr = POINTER TO ParamBlk:;

Object = RECORD
Next INTEGER:
Head, Tail INTEGER:
Reserved CHAR:

Type Types;

Flag SetOfFlags;
State SetOfStates;

CASE : Types OF
Box, BoxChar,

Invisibl eBox : Colour : INTEGER;
(X Border ı [-127..1271:5 %)

Char ı CHAR;

| Text, BoxText
String, Title : TxtP : AnyTextPtr;

| Image : BitBIkKP : BitBlkPtr;
| ProgDef : ApplBIkP : AppiBikPtr;
| FormattedText, ©

FormattedBoxText,

Button ı TedInfoP : TedInfoPtr;
| Icon : IconBlkP : IconBlkPtr;
END;
Xx, y, W, A INTEGER:

END;

ObjectTree = ARRAY [8..999] OF Object;
TreePtr = POINTER TO ObjectTree;

TedInfo = RECORD
Text

Template

Valid AnyTextPtr;

Font INTEGER;
Reserved] INTEGER:

Justif Justifications;

Colour INTEGER;
Reserved2 INTEGER;
Thickness INTEGER;

TextLen INTEGER;

TemplateLen INTEGER;
END;

IconBlk = RECORD
Mask ;

Data AnyBitmapPtr;
Text AnyTextPtr;
Reserved CHAR;

Char CHAR;

xChar, yChar INTEGER;
x, y, wW, A INTEGER:

xText, ylext
nText, hText INTEGER:

END;

BitBlk = RECORD
Data AnyBitmapPtr;

n, N, x, y INTEGER;

H - 16 F: \GEMDOS\SYSLIB\AESOBJEC. DEF SPC MODULA-2 V1.4

Colour : INTEGER;
END:

ParamBlk = RECORD

Tree TreePtr;

Ob j ; INTEGER;

PreviousState : SetOfStates:

CurrentState : SetOfStates:

Xx, y¥, Ww, h INTEGER:

xc, yc, we, he: INTEGER;
END;

DrawProc = PROCEDURE (VAR ParamBik);

ApplBlk = RECORD

Code DrawProc;

Param ' ParamBlkPtr;

END;

(¥----- Category : Primitives -----~-----------~-----------------+------- *)

PROCEDURE Add (Tree : TreePtr;

Parent ;
Child : INTEGER);

(X Adds and object to the object tree x)

PROCEDURE Delete (Tree : TreePtr;
Ob j : INTEGER) ;

(* Delete an object from an object tree x)

PROCEDURE Draw (Tree : TreePtr;
StartÜbj
Depth

x, y, W, Hh: INTEGER);

(% Draws any object(s) in the object tree x)

PROCEDURE Find (Tree ı TreePtr;

StartOb j .
Depth : INTEGER;

x, Y : INTEGER)
: INTEGER ;

(X Finds an object under the mouse form %)

PROCEDURE Offset (Tree : TreePtr;

Ob j : INTEGER;

VAR x, y | INTEGER);

(% Computes an objects X and Y coords relative to the screen *)

PROCEDURE Order (Tree : TreePtr;

Ob j ,
NewPos : INTEGER) ;

(% Moves an object within its parents list *)

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\AESOBJEC. DEF H - 17

PROCEDURE Edit (Tree : TreePtr;
Ob j : INTEGER;
Char : CHAR:

IdX : INTEGER;

Kind : Edits;

VAR NewIdX : INTEGER);

(* Allow user to edit text in an object *)

PROCEDURE Change (Tree : TreePtr;

Ob j ,
x, y, W, h + INTEGER:
NewState : SetOfStates;

Redraw : BOOLEAN) ;

(* Changes an objects State value x)

END AESObjects.

H - 18 F: \GEMDOS\SYSLIB\AESOBJEC. DEF SPC MODULA-2 V1.4

(R----- Category : Module Identification --------------------------- x)

(* Module Type : %) DEFINITION MODULE
(Xx. Name ı %) AESResources;
(Xx, Function 1 ¥)
(x. Version/Date : 1.8 / 82.97.1987 x)
(* Product Name : SPC *)
(X Copyright : (c) 1987, MODsoft, D7588 Karlsruhe *)

(¥----- Category : Module Abstract ------- xx

This module implements the MODULA-2 interface to GEM AES. All functions

are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch’”,

SYBEX, ISBN 3-88745-501-8, 1.Auflage 1987 *)

(%----- Category : Types and Data ----------- ~~)

FROM SYSTEM IMPORT ADDRESS;
IMPORT AESOb jects;

TYPE ItemTypes = (Tree, Object, TedInfo, IconBlock,
BitBlock, String, ImageData, ObSpec,
Text, Template, Valid, IconBlkMask,
IconBlkData, IconBlkText, BitBlkData,
FreeString, Freelmage);

(¥----- Category : Primitives x)

PROCEDURE Load (FName : ARRAY OF CHAR);

(X Load a resource file *)

PROCEDURE Free;

(* Free loaded space *)

PROCEDURE GetAddr (Type : ItemTypes;
Index : INTEGER;

VAR Addr ; ADDRESS) ;

AG Get address of resource *)

PROCEDURE SetAddr (Type : ItemTypes:
Index : INTEGER:
Addr : ADDRESS);

(% Set address of resource %)

PROCEDURE ObjectFix (Tree : AESOb jects. TreePtr:
Ob j : INTEGER):

(* Convert object's character x,y to pixel x,y %)

END AESResources.

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\AESRESOU. DEF H - 19

H - 28 Fi: \GEMDOS\SYSLIB\AESRESOU. DEF SPC MODULA-2 V1.4

(X Category : Module Identification "=== 22222222 == =*)

(* Module Type : %) DEFINITION MODULE
x. Name ı %*%) AESScraps;
(x , Function : ¥)
a Version/Date : 1.8 / 82.87.1987 *)

(* Product Name ı SPC *)
(* Copyright : (c) 1987, MODsoft, 07568 Karlsruhe *)

(%----- Category : Module Abstract ---------------- ~~ KR

This module implements the MODULA-2 interface to GEM AES. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch”,

SYBEX, ISBN 3-88745-501-8, 1.Auflage 1987 *)

 (¥----- Category : Types and Data --- -- -%)

FROM SYSTEM IMPORT ADDRESS;

 (X¥----- Category : Primitives ---- -*)

PROCEDURE Read (Scrap : ADDRESS);

(% Reads the current scrap directory %)

PROCEDURE Write (Scrap : ADDRESS) ;

(¥ Writes the current scrap directory *)

END AESScraps.

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\AESSCRAP.DEF H - 21

(X----- Category : Module Identification

(* Module Type : %) DEFINITION MODULE
(x, Name : ¥) AESShells:;
(x. Function ı x)
(x. Version/Date : 1.8 / 82.87.1987 ¥)
(* Product Name : SPC *)
(* Copyright > (c) 1987, MODsoft, D75@8 Karlsruhe %)

(¥----- Category : Module Abstract XX

This module implements the MODULA-2 interface to GEM AES. All functions

are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch’,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 *)

 (X----- Category : Types and Data

FROM SYSTEM IMPORT ADDRESS;

 (#----- Category : Primitives

PROCEDURE Read (VAR Command
Tail

PROCEDURE Write (ChainNotXit:
GrafAppl

GEMApp1

Command

Tail

PROCEDURE Find (VAR Buffer

PROCEDURE Envrn (VAR Value

Param

END AESShel ls.

: ARRAY OF CHAR);

BOOLEAN;
: BOOLEAN;
: BOOLEAN:

: ARRAY OF CHAR);

: ARRAY OF CHAR);

: ARRAY OF CHAR):

H - 22 F: \GEMDOS\SYSLIB\AESSHELL . DEF SPC MODULA-2 V1.4

(*----- Category : Module Identification ===" 000 000n *)

(* Module Type : *) DEFINITION MODULE
(x. Name : *%) AESWindons;

x. Function : Interface to GEM AES *)
(x. Version/Date : 1.8 1.7.1987 *)

(* Product Name : SPC *)

(*% Copyright : (c) 1987, MODsoft, D7588 Karlsruhe *)

(#----- Category : Module Abstract --------------- = = r%

This module implements the MODULA-2 interface to GEM AES. All functions

are explained in various documents about GEM on the ATARI ST computer.

Honever, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 *)

(X Category : Types and Data -- Wott tetas a sae ncn ene nc en *)

FROM SYSTEM IMPORT ADDRESS:

TYPE Elements = (NameLine , Closer , Fuller

Mover , Infoline , Sizer

UpArrow ‚ Downarrow , VertSlider
LeftArrow , RightArrow , HorizSlider);

SetOfElements = SET OF Elements:

TYPE Items = (Illegal,
Kind,

Name, , Info,

WorkXYWH, CurrXYWH,

PreuXYWH, Full XYWH,
HorizSliderPos, VertSliderPos,
Top,

FirstXYWH, NextXYWH,
Reserved, NenDesk,

HorizSliderSize, VertSliderSize,
WindowScreen) :

TtemStruc = RECORD
CASE Field : Items OF

Kind: Elems : SetOfElements:
| Name, Info: Str : ADDRESS;
| NewDesk: Tree : ADDRESS:

Ob j : INTEGER;
WorkXYWH , CurrXYWH,
PrevXYWH , Full XYWH,
FirstXYWH, NextXYWH: x,y,w,h: INTEGER;

| HorizSliderPos,
VertSliderPos: Pos : INTEGER;

| HorizSliderSize,
VertSliderSize: Size : INTEGER;

| Top: Wind : INTEGER;
| ELSE Nothing: CARDINAL;
END;

END;

TYPE WindowAreas (WindonOutline, WindowInterior);

UpdateFlags = (EndUpdate,
BeginUpdate,

SPC MODULA-2 V1.4 Fi \GEMDOS\SYSLIB\AESWINDO. DEF H - 23

EndMouseControl ,

BeginMouseControl);

 (R----- Category : Primitives *)

PROCEDURE Create (Kind : SetOfElements;
X, Y, WH, H : INTEGER)

: INTEGER ;

(X Create a new Window with specified elements and maximum size of
X/Y+W/H. Return the AES window handle if successfull. ¥)

PROCEDURE Open (Handle : INTEGER:
X, Y, HW. H: INTEGER):

(* Open the window with an outline of X/Y+W/H. %)

PROCEDURE Close (Handle : INTEGER);

(xX Close the windon. *)

PROCEDURE Delete (Handle : INTEGER);

(X Delete the window and free space. %)

PROCEDURE Get (Handle : INTEGER;
VAR Item : ItemStruc);

(* Answers info of a window further specified by Item.Field in-Item. *%)

PROCEDURE Set (Handle : INTEGER;

Item ı ItemStruc);

(X Sets info of a window further specified by Item“)

PROCEDURE Find (mX, mY : INTEGER)
: INTEGER ;

(X Find window under position mX/mY. *)

PROCEDURE Update (BegEnd : UpdateFlags);

(* Update window x)

PROCEDURE Calc (Type . : Windonfreas;
Kind ı SetOfElements;

Inx, InY

InW, Inh : INTEGER ;

VAR OutX, Outy ,

OutW, OutH : INTEGER);

(* Calc window outline (Type = WindowOutline) from interior or
interior (Type = WindowInterior) from outline. *)

H - 24 F: \GEMDOS\SYSLIB\AESWINDO. DEF SPC MODULA-2 V1.4

END AESWindows.

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\AESWINDO. DEF H - 25

(#----- Category : Module Identification ----------- x)

(* Module Type : %) DEFINITION MODULE
x. Name : %) AltResource;
8x. Function + Load and Fixup AES Resource Files x)

x. Version/Date : 1.8 / 82.07.1987 x)
(* Product Name : SPC %)
(* Copyright : (c) 1987, MODsoft, D7588 Karlsruhe x)

(X----- Category : Module Abstract AR

Since MODULA-2 applications are highly modular, it is necessary to load
several RSC-Files, depending on the modules loaded. AltResource loads
RSC-Files into dynamic memory and does the necessary fixup. X)

 (¥----- Category : Types and Data ---- *)

FROM SYSTEM IMPORT ADDRESS;

IMPORT AESResources;

TYPE DataPtr:

 (¥----- Category : Loading and Deleting Resource *)

PROCEDURE Load (VAR Data : DataPtr;
Name : ARRAY OF CHAR;

VAR Done : BOOLEAN);

(* Load a named RSC-File into a piece of dynamic memory and return its
pointer if successfull. This corresponds to AESResources.Load with
the exception, that AltResource may load more than one file. *)

PROCEDURE Free (VAR Data : DataPtr);

(* Free a previously loaded RSC-File. *)

(K---=- Category : Obtaining Addresses ----------------------- 22-7 %)

PROCEDURE GetAddr (Data : DataPtr;
Type : AESResources.ItemTypes;

Index : CARDINAL:

VAR Addr : ADDRESS) ;

(X Get the address of an indexed tree within the RSC-File. *)

END AltResource.

H - 26 Fs \GEMBDOS\SYSLIB\ALTRESOU. DEF SPC MODULA-2 V1.4

(%----- Category : Module Identification -----------------------------

--%)

(* Module Type : %) DEFINITION MODULE
x. Name : ¥) Bios;
(x. Function : BIOS Interface to Modula-2 *)
(x. Version/Date : 1.8 / 8.9.88 *)
(* Product Name : SPC *)

(&* Copyright : (c) 1988, MODsoft, D7588 Karlsruhe *)

(X----- Category : Module Abstract ------------ - xx

This module implements the MODULA-2 interface to BIOS. All functions

are explained in various documents about GEM on the ATARI ST computer. ¥*)

(X----- Category : Types and DATA --------------- --%)

FROM SYSTEM IMPORT ADDRESS;

TYPE ScanCodes = [8..255];

Devices = (Printer,

Aux,

Console,

Midi,
Keyboard);

BlockModes = (Read,
Write,

ReadNoMedi aChange,

WriteNoMediaChange);

BiosParmBlock = RECORD
BytesPerSec : INTEGER;
SecPerClust : INTEGER;

BytesPerClust: INTEGER;
DirLength ! INTEGER;
FATLength INTEGER;
FAT2Start : INTEGER:
FirstFreeSec : INTEGER;

NumOfClust INTEGER;

Flags ARRAY [1..8] OF INTEGER:
END;

BiosParmPtr = POINTER TO BiosParmBlock;

Drives = [8..15);
SetüfDrives = SET OF Drives:

MemDefPtr = POINTER TO MemDefBlock:

MemParmBlock = RECORD

FreeList MemDefPtr ;

AllocList MemDefPtr ;
RovingPtr MemDefPtr;

END;
MemDefBlock = RECORD

Next MemDefPtr;

Start : ADDRESS;

Length LONGINT;
OnnerProc MemDefPtr;

END;

MediaStat = (MediaChanged,
Medi aMightChanged,
MediaNotChanged);

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\BIOS. DEF H - 2¢

VAR

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

END Bios.

Category :

Result

Getmpb

Bconstat

Bconin

Bconout

Rwabs

SetException

TickCal

Getbpb

Bcostat

Medi aChange

DriveMap

KeyShifts

Bios

: LONGINT;

Functions

(VAR mpb

(Dev
: BOOLEAN;

(Dev

VAR Ch

VAR ScanCode

(Dev
Cc

(Flag
Buffer

Count

Sector

Dev

(Nr
Vec

: ADDRESS;

() : LONGINT;

(Dev

: BiosParmPtr;

(Dev

: BOOLEAN;

(Dev

ı Mediastat;

() : SetOfDrives;

(Mode
: LONGINT;

 ~~-~¥)

: MemParmBlock):

: Devices)

: Devices;

: CHAR;

‘ Scanlodes);

: Devices;

ı CHAR);

: BlockModes;

: ADDRESS;
: CARDINAL:
: CARDINAL;
: Drives);

. INTEGER;
: ADDRESS }

: INTEGER)

: Devices)

: INTEGER)

: INTEGER)

H - 28 Fs \GEMDOS\SYSLIB\BIOS. DEF SPC MODULA-2 V1.4

(X----- Category : Module Identification ----------------~--------------- *)

(X Module Type : %) DEFINITION MODULE
(Xx. Name ; ®) Files;

(Xx. Function : Basic File Services ¥
(X. Version/Date : 1.1 21.1.88 *)
(* Product Name : SPC *)
(X Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe x)

(x ----- Category : Module Abstract %X

Files pprovides the basic interface to the operating system dependent
file system (not to confuse with module FileSystem). The interface to
Files is slightly system dependent. So applications should use disk
files via FileSystem, ByteStreams or TextStreams. *)

(%----- Category : Types and Data --------------- 2222222222200 *)

FROM SYSTEM IMPORT WORD, BYTE, ADDRESS;
IMPORT Clock;

TYPE Results (Done, NotDone);

Types (Text, Data, Code, DontCare);

TYPE File = RECORD
Type Types;

Handle ; INTEGER;
END;

(¥----- Category : Opening, Closing, Renaming, Deleting --------------- ~%)

PROCEDURE Lookup (VAR F : File;
FileName ı ARRAY OF CHAR;
FileType : Types;

VAR Result : Results);

(x Lookup the named file and open it if successfull. Type is set to

the apprpriate value, if type is of signifcance for the caller. %)

PROCEDURE Create (VAR F : File;
FileName : ARRAY OF CHAR;
FileType : Types;

VAR Result : Results);

(X Create a named file of a given type. If the file already exists,
the delete the old one first. %)

PROCEDURE Close (VAR F : File;

VAR Result : Results):

(* Close the file and disconnect the file variable from it. %

PROCEDURE Delete (FileName : ARRAY OF CHAR;

VAR Result : Results);

(* Delete the named file. x)

PROCEDURE Rename (FileName : ARRAY OF CHAR;
NewName : ARRAY OF CHAR:

SPC MODULA~2 V1.4 Fi \GEMDOS\SYSLIB\FILES. DEF H - 29

VAR Result : Results);

(¥ Rename the named file to NewName. x)

 (¥----- Category : Position and Size --- *)

PROCEDURE SetPos (VAR F : File;
Pos : LONGINT;

VAR Result : Results):

(* Set the position of the filepointer to Pos. The units of Pos are

system dependent. *)

PROCEDURE GetPos (VAR F : File;
VAR Pos ‘ LONGINT;

VAR Result : Results):

(* Get the poition of the filepointer. The units of Pos are system
dependent. x)

PROCEDURE Length (VAR F : File:

VAR Len : LONGINT;
VAR Result : Results);

(% Get the Length of the file. The units are system dependent. x)

PROCEDURE Timestamp (VAR F | File;
VAR Stamp : Clock.Time) ;

(X Answer the creation/modification timestamp of file F. u

 (R----- Category : Basic Input/Output ------------------ 722-2200 *)

PROCEDURE ReadBlock (VAR F : File;
BlockPtr : ADDRESS;
Bytes : LONGINT;

VAR BytesRead : LONGINT;
VAR Result : Results);

(X Read a block of Bytes into BlockPtr. Answer the number of BytesRead. *)

PROCEDURE WriteBlock (VAR F : File;
BlockPtr : ADDRESS;
Bytes : LONGINT;

VAR BytesWritt : LONGINT;
VAR Result : Results);

(X Write the block given via BlockPtr of Bytes length into file F and
answer the Number of BytesWritten. %)

END Files.

H - 38 F:\GEMDOS\SYSLIB\FILES. DEF SPC MODULA-2 V1.4

(%----- Category : Module Identification ===" === mn *)

(* Module Type : %) DEFINITION MODULE
(X. Name : *%) GemDos:

(x. Function : GEMDOS Interface to Modula-2 x)
(x. Version Date : 8:18 16.11.1988 ¥)

(% Product Name : SPC x)
(* Copyright : (c) 1987, MODsoft, 07588 Karlsruhe *)

(X----- Category : Module Abstract ----%%

This module implements the MODULA-2 interface to GEM DOS. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA~-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch’,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 x)

(X----- Category : Types and Data --------------- x)

IMPORT SYSTEM;

CONST FolderSep = N\'}
VolumeSep = '1'3
TypeSep = 7,0
NameLength = 8
TypeLength = 3;

CONST StdiIn = QB;

StdOut =1|;

Serial = 2;

Parallel = 3; °

TYPE ScanCodes = [8..255);

Drives = [8..159);
SetOfDrives = SET OF Drives:

Attributes = (WriteProtect,
Hidden,

SystemFile,
Label,

Directory,
Saved) ;

SetOfAttributes = SET OF Attributes;

DosTime = CARDINAL;

DosDate = CARDINAL;

DTAPtr = POINTER TO DTA;

DTA = RECORD

Reserved ARRAY [L8..193 OF CHAR;

Attributes : Set0fAttributes;

Time : DosTime;

Date : DosDate;
Length LONGINT;

Name ARRAY [8..131 OF CHAR;

END;

BasePagePtr = POINTER TO BasePage;

BasePage = RECORD

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\GEMDOS. DEF H - 31

LowTPA SYSTEM. ADDRESS;
HighTPA SYSTEM. ADDRESS;

TextBase SYSTEM. ADDRESS;
TextLength LONGINT;

DataBase SYSTEM. ADDRESS;

DataLength LONGINT;
BssBase SYSTEM. ADDRESS;

BssLength LONGINT;

DefDTA DTAPtr;

ParentBasePage: BasePagePtr;
ra ' SYSTEM. ADDRESS;

Environment SYSTEM. ADDRESS;

rb ARRAY L[838H..87FH] OF CHAR;

CommandLine ARRAY (@..4FH] OF CHAR:

END;

OpenModes = (ReadOnly, WriteOnly, ReadWrite);

SeekModes = (Abs, Rel, AbsReverse);

LoadModes = (LoadStart, Resi, Res2,

LoadOnly, StartOnly, CrBasePage) ;

GetModes = (Set, Get):

FileTimes = RECORD

Time : DosTime;

Date DosDate;

END;

DiskInfo = RECORD

FreeClusters LONGINT;

TotalClusters : LONGINT;
SectorSize LONGINT;

ClusterSize LONGINT;

END;

Handles = INTEGER;

Paths = ARRAY (8..64] OF CHAR;

VAR Result : LONGINT;

(¥----- Category : GemDbos Functions ------------------- 427m %)

PROCEDURE Term®;

PROCEDURE ConIn (VAR Ch : CHAR:

VAR ScanCode : ScanCodes) :

PROCEDURE ConQOut (Ch ; CHAR);

PROCEDURE AuxIn (VAR Ch : CHAR);

PROCEDURE AuxQut (Ch : CHAR);

PROCEDURE PrnQut (Ch : CHAR);

PROCEDURE ConRawI0 (VAR Ch : CHAR);

PROCEDURE ConRawiIn (VAR Ch : CHAR):

PROCEDURE ConNegIn (VAR Ch : CHAR);

H - 32 F:\GEMDOS\SYSLIB\GEMDOS. DEF SPC MODULA-2 V1.4

4

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

ConWriteString(Line

ConReadString (VAR Line

ConInStat

SetDru

ConQutStat

PrnOutStat

AuxInStat

AuxOutStat

GetDrive

SetDTA

Super

GetDate

SetDate

GetTime

SetTime

betDTA

Version

TermResident

DiskFree

DirCreate

DirDelete

SetPath

Create

Open

Close

Read

Write

() : BOOLEAN;

(Drive
: SetOfDrives;

() : BOOLEAN:

() : BOOLEAN:

() : BOOLEAN;

0 : BOOLEAN;

() : Drives;

(VAR Dta

(VAR Stck

(VAR Today

(Today

(VAR Now

(Now

() : DTAPtr;

() +: CARDINAL;

(Memory

Return

(VAR Info

Drive

(Name

(Name

(Name

(Name

Attribute

: Handles;

(Name

Mode

: Handles;

(Handle

(Handle

Buffer

Size

: LONGINT;

(Handle

Buffer

Size

: ARRAY OF CHAR);

: ARRAY OF CHAR):

: Drives)

: DTA);

: LONGINT);

ı DosDate);

: DosDate);

: DosTime);

: DosTime);

: LONGCARD;
: INTEGER) ;

: DiskInfo;

: Drives);

: ARRAY OF CHAR);

: ARRAY OF CHAR);

: ARRAY OF CHAR);

: ARRAY OF CHAR;
: SetOfAttributes)

: ARRAY OF CHAR;
: OpenModes)

: Handles);

: Handles;
ı SYSTEM. ADDRESS;

: LONGINT)

: Handles;

: SYSTEM. ADDRESS;

: LONGINT)

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\GEMDOS . DEF H - 33

: LONGINT;

PROCEDURE Delete (Name : ARRAY OF CHAR);

PROCEDURE Seek (Handle : Handles;

Mode : SeekModes;

Position : LONGINT);

PROCEDURE Attribute (Name : ARRAY OF CHAR;

Mode : GetModes;

VAR Attrib : SetOfAttributes) :

PROCEDURE Dup (StdHandle : Handles)
: Handles;

PROCEDURE Force (StdHandle : Handles;

NonStdHndl : Handles);

PROCEDURE GetPath (VAR Path : Paths;

Drive : Drives);

PROCEDURE MemAl loc (Amount ‘ LONGINT)
: LONGINT;

PROCEDURE MemFree (Block : SYSTEM. ADDRESS) ;

PROCEDURE Shrink (Block ı SYSTEM. ADDRESS;

Size : LONGINT);

PROCEDURE Exec (Mode : LoadModes;

Path : ARRAY OF CHAR;

CmdLine : ARRAY OF CHAR;

Environment: ARRAY OF CHAR)

: LONGINT;

PROCEDURE Term (Return : INTEGER) ;

PROCEDURE SearchFirst (Spec : ARRAY OF CHAR;
Attr : SetO0fAttributes) ;

PROCEDURE SearchNext;

PROCEDURE Rename (OldName : ARRAY OF CHAR;

NewName : ARRAY OF CHAR);

PROCEDURE Timestamp (VAR DatTim : FileTimes;
Handle ı Handles;

Mode : GetModes) ;

END GemDos.

F:\GEMDOS\SYSLIB\GEMDOS. DEF SPC MODULA-2 V1.4

(R------- ee atta %)
(8 Module LineA V 1.1 ---X)
(¥--- -_.- ---*)
(X--- ---%)
(%--- Die graphischen Grundroutinen des Atari ST ~~-%)

(8--- ---X)
(¥--- Programmiersprache : SPC-Modula-2 V1.3 ---%)
(%X--- Computersystem ATARI 1848 ST ---%)
(*--- Autor Une A. Ruttkamp ---%)
(X¥--- Datum 21.18.1988 ---*)
(%--- ---*)
(¥--- ---- x

DEFINITION MODULE LineA;

FROM SYSTEM IMPORT ADDRESS;

TYPE

FontPointer = POINTER TO FontTyp:

FontTyp = RECORD

FacelD : CARDINAL: (* Fontnummer x)

FontSize : CARDINAL; (* Fontgröße in Satzpunkten *)
FaceName : ARRAY (@..31] OF CHAR;

(* Namen des Zeichensatzes %)
LowADE ı CARDINAL: (X kleinster ASCII-Wert x)
HighADE + CARDINAL; (* größter ASCII-Wert *)
TopLine : CARDINAL: (X Abstand Top-Baseline x)
AscentLine > CARDINAL: (¥ Abstand Ascent-Baseline x)
HalfLine + CARDINAL: (X Abstand Half-Baseline %)

DescentLine + CARDINAL; (* Abstand Descent-Baseline *)
BottomLine : CARDINAL: (X Abstand Bottom-Baseline *)

MaxFontWidth : CARDINAL; (* maximale Zeichenbreite %)
MaxFaceNidth : CARDINAL: (X maximale Zeichenzellenbreite x)
LeftOffset + CARDINAL: (X Offset links x)
RightOffset ; CARDINAL; (X Offset rechts *)
Thickening ı CARDINAL: (X Verbreiterungsfaktor *)

UnderlineSize : CARDINAL: (% Unterstreichungsdicke x)
LightMask : CARDINAL: (¥ Maske fur helle Schrift x)
Sk ewMask : CARDINAL; (* Maske für Kursivschrift %)
Flags : BITSET: (% Bits: 8 Sytstemfont

li Horizontal Offset Tabelle
2 Formatflag
3 aus: proportional

ein: mono-spaced

HorizOffsetTab: POINTER TO ARRAY [OC..377C] OF CARDINAL;
(X Horizontal Offset Tabelle

CharOffsetlab: POINTER TO ARRAY [@C..377C] OF CARDINAL;
(* Zeichen Offset Tabelle

FontData- + ADDRESS; (% Zeiger auf Zeichensatzdaten

FormWidth + CARDINAL; (* Breite des Zeichensatzimage

FormHeight : CARDINAL: (% Hohe des Zeichensatzes
NextFont : POINTER TO FontTyp:

(X Zeiger auf nächsten Font
END;
FontArray = ARRAY [8..21 OF FontPointer;

LineAVarPointer = POINTER TO LineAVarRecord;

LineAVarRecord = RECORD

VideoPlanes : CARDINAL: (* Anzahl der Bildschirmebenen

VBytesLine : CARDINAL: (* Bytes pro Bildschirmzeile
(* Die Control Arrays *)
Contr] : POINTER TO ARRAY (@..11] OF INTEGER;
IntIn : POINTER TO ARRAY [8..1271 OF INTEGER;
PtsIn : POINTER TO ARRAY ([@..127] OF INTEGER:

*)

*)
x)
x)
x)

*) N

*)

*)

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\LINEA. DEF H - 35

IntOut : POINTER TO ARRAY (@..127] OF INTEGER;
PtsOut : POINTER TO ARRAY [8..127] OF INTEGER:
Bpl : CARDINAL; (% Farbwert fur Plane 8 *
Bp2 : CARDINAL; (% Farbwert fur Plane lL *)

Bp3 : CARDINAL: (% Farbwert für Plane 2 x)
Bp4 ; CARDINAL; (% Farbwert fur Plane 3 *)
LstLin : INTEGER; (X auf -1 setzen *)
LineStyle : CARDINAL; (%*% Linienmuster x)
WriteMode : CARDINAL; (% VDI-Schreibmodus *)
X1,Y1,X2,Y2 : CARDINAL; (* Koordinaten *)
PatPointer : ADDRESS; (x Zeiger auf FUllmuster x)
PatMask : CARDINAL: (% Füllmuster Maske x)
MultiFill : CARDINAL: (% Füllmuster mono / farbig *)

Clip : CARDINAL: (%* Clipping aus/an *)
XMinClip : CARDINAL; (*% linke obere Ecke des Clip *)
YMinClip : CARDINAL; (% Rechtecks %)
XMaxClip : CARDINAL; (% rechte untere Ecke des Clip *)
YMaxClip : CARDINAL; (% Rechtecks *)
XAccData : CARDINAL; (% vor Textausgabe auf 8888H %)
DDAInc : CARDINAL: (% Vergrößerungsfaktor *)
ScaleDir : CARDINAL; (%* Vergr. Richtung (i=vergrößern) %)
MonoStatus : CARDINAL: (% Proportionalschrift ja/nein %)
SourceX : CARDINAL; (1% X Koordinate im Zeichensatz *)
SourceY : CARDINAL: (%*% Y Koordinate im Zeichensatz x)
DestX : CARDINAL: (% X Koordinate auf dem Bildschirm %)
DestY : CARDINAL: (% Y Koordinate auf dem Bildschirm *%)
Del tax : CARDINAL; (% Breite des Zeichens *)
DeltaY : CARDINAL; (% Höhe des Zeichens *)
FontBase : FontPointer; (* Zeiger auf Zeichensatzimage *)
FontWidth : CARDINAL; (% Breite des Zeichensatzimage *)
Style : CARDINAL; (% Schreibstil ¥)

LightMask : CARDINAL; (% Maske fur Schattierung *)
Sk ewMask : CARDINAL; (% Maske fur Italics *)
Weight : CARDINAL; (%* zusätzliche Breite bei Bold x)
ROf f : CARDINAL: (% Kursiv-Offset rechts *)
LOff : CARDINAL: (* Kursiv-Offset links *
Scale : CARDINAL; (% Vergrößerung ja/nein x)
CharUp : CARDINAL: (% Rotationswinkel * 18 x)

TextF6 : CARDINAL; (% Textfarbe x)
Scrtchp : ADDRESS; (* Zeiger auf Texteffektbuffer *)
Scrpt2 : CARDINAL; (% Offset für Texteffektbuffer *)
TextBb : CARDINAL; (% Text Hintergrundfarbe *)
CopyTran : CARDINAL; (% Copy Raster Form Flag *)

END;

LineAVDIPointer = POINTER TO LineAVDIRecord;
LineAVDIRecord = RECORD

InquireTab : ARRAY [@..44] OF INTEGER: (% VDI Inquire Werte *)
DeviceTab : ARRAY (@..56] OF INTEGER; (% VDI Workst. Werte *)
Reserved : ARRAY (@..265] OF INTEGER: (* Platzhalter *)
CelHeight : CARDINAL; (* Zeichenhöhe x
CelMaxX : CARDINAL; (% Maximale Cursor X-Position *)
CelMaxY : CARDINAL: (* Miximale Cursor Y-Position *%)
CelLineWidth +: CARDINAL: (* Breite einer Characterzeile in Bytes %)
BGColor : CARDINAL: (% Hintergrundfarbe *)
FOColor : CARDINAL; (* Vordergrundfarbe ~ *)
CursorAdr ı ADDRESS; * Adresse der aktuellen Cursorposition *)
CursorOffset : INTEGER: (x Vert. Offset zum phys. Bildsch.anfang %)
CursorX : CARDINAL: (* X-Position des Cursors x)

Cursory : CARDINAL; (% Y-Position der Cursors x)
CurBlinkCnt : CHAR; (* Cursor Blinkgeschwindigkeit *)
CurBlinkTim : CHAR; (* Zahler für Cursorblinken x)
FontAdr : FontPointer: (% Zeiger auf Systemzeichensatzdaten *)

LastFontChar -: CARDINAL: (* Letztes Zeichen im Zeichensatz *)

FirstFontChar : CARDINAL; (% Erstes Zeichen im Zeichensatz %)

H - 36 F:\GEMDOS\SYSLIB\LINEA. DEF SPC MODULA-2 V1.4

FontWidth ; CARDINAL: (* Breite des Fontdaten in Bytes *)
PixelWidth : CARDINAL: (% Bildschirmbreite in Pixeln x)
FontOffsetAdr : ADDRESS; (x Zeiger auf Zeichensatz-Offset-Tabelle %)

CursorFlag : BITSET; (* Bestimmt des Verhalten des Cursor *)
PixelHeight : CARDINAL; (% Bildschirmhöhe in Pixeln x)
PixLinekidth : CARDINAL; (% Bytes pro Pixelzeile *)

END;

BitBltPointer = POINTER TO BitBltRecord;
BitBltRecord = RECORD

BlockWidth : CARDINAL; (* Breite des Blocks in Pixeln %)
BlockHeight : CARDINAL; (%X Höhe des Blocks in Pixeln *)
PlaneCount : CARDINAL; (* Anzahl der Farbplanes *)
F6Color : CARDINAL; (% Vordergrundfarbe *)
B6Color ‘+ CARDINAL; (* Hintergrundfarbe *)
Optable : ARRAY [8..3]3 OF CHAR; (*% Logische Verknüpfungstabelle x)
SourceX : CARDINAL; (* X-Koord. des Quellrasters *)
SourceY : CARDINAL; (* Y-Koord. des Quellrasters *)
SourcePtr ı ADDRESS; (X Anfangsadresse des Q-Rasters *)
SNextWord : CARDINAL; (* Highres 2,Midres 4,Lowres 8 %)
SNextLine : CARDINAL; (* Breite des Q-Rasters in Bytes*)
SNextPlane : CARDINAL; (¥ gleich 2 *)

DestX : CARDINAL; (* X-Koord. des Zielrasters *)
DestY : CARDINAL: (* Y-Koord. des Zielrasters *)

DestPtr : ADDRESS; (X Anfangsadresse des Z-Rasters *)
DNextWord : CARDINAL: (* Highres 2,Midres 4,Lowres 8 %*)
DNextLine : CARDINAL; (* Breite des Z-Rasters in Bytesx)
DNextPlane +: CARDINAL: (*X gleich 2 x)

PatternPtr : ADDRESS; (* Undierung mit dieser Maske %)
PNextLine : CARDINAL; (X Breite der Maske in Bytes *)
PNextPlane : CARDINAL; (* Offset zur folgenden Plane x)

PMaskHeight : CARDINAL: (* Höhe der Maske in Zeilen *)
reserved : ARRAY [8..231 OF CHAR;

END;

MFormPointer = POINTER TO MFormRecord:
MFormRecord = RECORD

XHot, YHot : CARDINAL;
NoPl anes : CARDINAL ;
MaskCol, CursCol : CARDINAL:
Mask : ARRAY (@..15] OF CARDINAL;
Cursor : ARRAY (@..15] OF CARDINAL;

END;

SDBPointer = POINTER TO SDBRecord;
SOBRecord = RECORD

XHot, YHot : CARDINAL;
Form : INTEGER;
BgColor, FgColor : CARDINAL:
Image : ARRAY [6..31] OF CARDINAL:

END;

WriteModes = (Replace, Transparent, Invert, InverseTransparent);

PROCEDURE Initialize (0) : LineAVarPointer:

(*--- Mit dieser Prozedur werden die LineA-Funktionen für jede An- ---%)

(%--- wendung zugänglich. Initialiesiert wird mit InitializeÜ) ---%*)
(X¥--- nichts, aber man kann mit der Kenntnis des LineAVarRecord s ---%)
(%--- neitere Operationen implementieren. Siehe Profibuch. Für die ---%)
(*--- Benutzung der weiteren LineA-Funktionen ist Initialize() ohne ---*)
(¥--- Bedeutung. ---%)

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\LINEA. DEF H - 37

PROCEDURE VDIDescription () : LineAVDIPointer;

(X--- Liefert einen Pointer auf eine Strukur, die sehr wichtige ---%)
(*--- Informationen bezüglich Bildschirmauflüsung und Zeichensatz ---%)

(¥--- enthält. Man spart sich den Weg übers VDI, das ist alles. ---%)

PROCEDURE GetFont(VAR Fonts : FontArray);

(X--- Liefert eine Tabelle mit den Zeigern auf die drei Systemfonts ---*)

PROCEDURE PutPixel (X, Y, Color : CARDINAL):

(X--- Setzt einen Pixel absolut mit den gegebenen X-Y-Pixelkoordi- ---%)
(X¥--- naten auf dem Bildschirm. Den Farbnert nachlesen im Profibuch. ---*)

PROCEDURE GetPixel UX, Y : CARDINAL } : CARDINAL;

(X¥--- Mit GetPixel kann man abfragen welchen Farbwert ein Pixelpunkt---%*)

(%--- auf dem Bildschirm hat. ---%)

PROCEDURE Line (X1, Yi, X2, Y2 : CARDINAL;
Bpl, Bp2, Bp3, Bp4 : CARDINAL; |

LineStyle : CARDINAL;
WrtMode : WriteModes);

(¥--- Zeichnet eine, die beiden Punkte verbindende, Linie unter Be- ---*)

(¥--- rucksichtigung der Bitplans Bpi bis Bp4, einem Liniemuster ---%)
(¥--- LineStyle und dem Verkniipfungsmodi WrtMode. -~-%)

PROCEDURE Pline(X1, YL, X2, Y2 : CARDINAL:
WrtMode : WriteModes);

(*--- Entspricht exakt der Line Funktion mit dem Wert 1 für Bpi bis ---%)

(*--- Bp4 und 65535 fiir LineStyle. So wird man meistens Linien ---%)
(*%--- ziehen. ---X)

PROCEDURE HorizLine (X1, YL, X2 : CARDINAL:
Bpi, Bp2, Bp3, Bp4 : CARDINAL;
WrtMode : WriteModes;
PatPointer : ADDRESS;
PatMask + CARDINAL:
Mul tiFill : BOOLEAN) ;

(*--- HorizLine ist angeblich schneller als Line, aber auch kompli- ---*)

(¥--- zierter. PatPointer zeigt auf eine Sammlung von Musterlinien, ---%)
(%--- PatMask ist die Anzahl der Linienmuster und MultiFill bestimmt---%)
(¥--- ob sich die Linie auf alle Planes durchschlagen soll. ---*)

PRÜCEDURE FillRectangle(X1, Yi, X2, Y2 ‘+ CARDINAL:
Bpi, Bp2, Bp3, Bp4 : CARDINAL:
WrtMode ; WriteModes;
PatPointer : ADDRESS;
PatMask ‘+ CARDINAL:

MultiFill : BOOLEAN:
Clip : BOOLEAN:
XMinClip, YMinClip,
XMaxClip, YMaxClip : CARDINAL });

(¥--- Fullt ein Rechteck mit den entsprechenden Farben in BpXx ---*)
(*--- und beachtet das Cliprechteck um nicht darüberhinaus zu ---%)

H - 38 Fs \GEMDOS\SYSLIB\LINEA. DEF SPC MODULA~2 V1.4

(%--- malen ---%)

PROCEDURE FillPolygon(Coords : ARRAY OF INTEGER;
CoordNo, Y : CARDINAL;

Bpl, Bp2, Bp3, Bp4 : CARDINAL:

WrtMode ı WriteModes;

PatPointer : ADDRESS:

PatMask : CARDINAL:
MultiFill : BOOLEAN;

Clip : BOOLEAN;

XMinClip, YMinClip,
XMaxClip.” YMaxClip : CARDINAL);

(¥--- Die in Coords eingetragenen Koordinaten (X8,Y8,X1,Y1...) ---%)
(%--- bestimmen eine Fläche, die bei jedem Aufruf ein wenig mehr ---%*)
(*--- gefüllt wird. Y gibt dabei an nelche Linie gerade an der ---%)
(%*--- Reihe sein soll. Näheres : Profibuch. ---%)

PROCEDURE BitBlt(Ptr : BitBltPointer);

(%--- Siehe BitBltRecord für die Parameter. Aufgabe von BitBlt ist ---%)

(%--- es Bildschirmausschnitte zu kopieren. Die Anwendungen sind ---%)
(¥--- vielzahlig. ---%)

PROCEDURE TextBlt(WrtMode ı WriteModes;
Clip : BOOLEAN;
XMinClip, YMinClip,
XMaxClip, YMaxClip +: CARDINAL:

TextFG, TextBG : CARDINAL;

FontBase : FontPointer;

FontWidth : CARDINAL;

SourceX, SourceY + CARDINAL:

DeltaX, DeltaY ‘+ CARDINAL:

Style : CARDINAL;

LightMask + CARDINAL:

Sk ewMask : CARDINAL:

Weight : CARDINAL;
Roff, LOff : CARDINAL;

Scale : BOOLEAN;

DDAInc, ScaleDir : CARDINAL:
CharUp : CARDINAL;
MonoStatus ‘+ CARDINAL:
Scrtchp “+ ADDRESS;

Scrpt2 : CARDINAL);

(*--- Ausgabe von einzelnen Zeichen auf dem Bildschirm. Die ---*)
(%--- Parameternamen stimmen mit denen im LineAVarRecord über- ---*)

(¥--- und ihre Funktion ist dort nachzulesen. ---%)

PROCEDURE ShowMouse(Absolute : BOOLEAN);

(¥--- Wenn Absolute = TRUE ist, wird die Maus auf jeden Fall ---%)
(*--- nieder eingeschaltet, sonst nur, wenn zuvor nur einmal ---%)

(*--- HideMouse aufgerufen worden ist. ---*)

PROCEDURE HideMouse;

(¥--- Schaltet die Maus aus und vergrößert die Verschachtelungs- ---%)
(*X--- tiefe im Wechselspiel von Maus AN-AUS. ---%)

PROCEDURE TransformMouse(Ptr : MFormPointer);

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\LINEA. DEF H - 39

(%--- Hiermit kann man sich seine eigene Maus kreieren. ---%)

PROCEDURE UndrawSprite(Save : ADDRESS);

(%--- Löscht ein mit DrawSprite gemaltet Sprite. Save muß natürlich ---%)
(%--- ein Speicherbereich sein, denn man sich zuvor mit DranSprite ---*)
(%--- hat geben lassen. Dadurch nird der Hintergrund nieder herge- ---%)
(¥--- stellt. ---%)

PROCEDURE DrawSprite(XHot, YHot +: CARDINAL:
SDB : SDBPointer;

Save : ADDRESS);

(*--- Malt ein Sprite, wie in SDB beschrieben. Save muß auf einen ---%)

(*--- Speicherbereich zeigen, der mindstens 18+64%Anzahl der Farb- ---%)

(*--- ebenen Bytes groß ist. -~-%)

END LineA.

H - 48 F: \GEMDOS\SYSLIB\LINEA. DEF SPC MODULA-2 V1.4

(X----- Category : Module Identification -------------------- 7-77 *)

(* Module Type : *) DEFINITION MODULE
(x , Name : *) VDIAttributes;

8. Function : ¥)
(8. Version/Bate : 1.82 / 19.87.1987 x)
(* Product Name : SPC . *)
(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe x)

(#----- Category : Module Abstract -- === moon mem RK

This module implements the MODULA-2 interface to GEM VDI. All functions
are explained in various documents about GEM on the ATARI ST computer.

However, some datatypes are declared as MODULA-2 records or enumeration

types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch’,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 x)

(X----- Category : Types and Data --------------- 22220 cre *)

TYPE

WritingModes = (IllegalWriteMode,
Replace, Transparent,

Xor, ReverseTransparent);

ColourRange = INTEGER;

ColourIntensity = {6 .. 1600 1;

ColourComposition = RECORD
Red, Green, Blue : ColourIntensity;

END;

TenthDegree > = €@.. 36800];

LineStyles = (IllegalLineStyle,
Solid , LongDash , Dots,
DashDot , Dash . DashDotDot,
UserDefinedLine):;

LineEndStyles = (Normal, Arrow. Rounded);

MarkerTypes = (IllegalMarker,
Dot Plus , Asterisk,
Square, DiagonalCross , Diamond);

) TextEffect = (Bold , Light , Italic,
Underlined , Outlined . Shadowed);

TextEffects = SET OF TextEffect:

FillStyles = (Hollow , Filled , Pattern,
Hatch , UserDefinedInterior);

FillRange = Ci... 24];

FontTypes = (IllegalFont,
BigFont, Small Font) ;

m
 HorAlignment = (LeftJustified, Centered, RightJustified);

_
 VertAlignment = (Baseline , HalfLine , AscentLine,

BottomLine , DescentLine , Topline);

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\VDIATTRI.DEF

CoordinateTypes = (NormalCoords,
ReservedCoords,
RasterCoords):

(* attribute functions *)

PROCEDURE SetWritingMode (Handle : INTEGER;
Mode : WritingModes)

: WritingModes;

(X set mode used for subsequent drawing operations *)

PROCEDURE SetColour (Handle : INTEGER;

ColourIndex: ColourRange;
RGBIn : ColourComposition);

(% set colour representation *)

PROCEDURE SetLineType (Handle : INTEGER;
Style : LineStyles)

: LineStyles;

(* set polyline line type *)

PROCEDURE DefineLineStyle (Handle : INTEGER;
Pattern : INTEGER);

(X Set user-defined line style using the bits of pattern-parameter *%)

PROCEDURE SetLineWidth (Handle,
Width : INTEGER)

: INTEGER;

(* Set polyline line width %)

PROCEDURE SetLineColour (Handle : INTEGER;
ColourIndex: ColourRange)

: ColourRange:

(X sets colour index for subsequent polyline operations *)

PROCEDURE SetEndLineStyle (Handle : INTEGER;
BeginStyle,
EndStyle : LineEndStyles);

(* set polyline end styles *)

PROCEDURE SetMarkerType (Handle : INTEGER;
Symbol : MarkerTypes)

: MarkerTypes;

(X set polymarker type *)

PROCEDURE SetMarkerHeight (Handle,
Height : INTEGER)

H - 42 F:\GEMDOS\SYSLIB\VDIATTRI.DEF SPC MODULA-2 V1.4

: INTEGER;

(¥ Set polymarker height *)

PROCEDURE SetMarkerColour (Handle ' INTEGER:
ColourIndex: ColourRange)

: ColourRange:

(* set polymarker colour index x)

PROCEDURE SetAbsCharHeight (Handle,

AbsoluteHeight: INTEGER;
VAR Charkidth,

CharHeight,

CellWidth,
CellHeight :

(X Set character height, absolute mode x)

PROCEDURE SetPointCharHeight (Handle,

INTEGER);

HeightInPoints: INTEGER;

VAR CharWidth,

CharHeight,

CellWidth,
CellHeight :

: INTEGER;

(X set character cell height, points mode *)

PROCEDURE SetRotation (Handle
Angle

: TenthDegree;

(X set character baseline vector *)

PROCEDURE SetFont (Handle
Font

: FontTypes:

(¥ Set text face *)

PROCEDURE SetGraphicTextColour (Handle
ColourIndex :

: ColourRange:

(X set graphic text colour index *)

PROCEDURE SetGraphicTextEffects (Handle

Effect
: TextEffects;

(* set graphic text special effects x)

PROCEDURE SetGraphicTextAlignment (Handle
HorIn

VertIn
VAR HorOut

INTEGER)

: INTEGER;
: TenthDegree)

: INTEGER;
: FontTypes)

‘+ INTEGER:
ColourRange)

: INTEGER;
: TextEffects)

; INTEGER:
: HorAlignment:
: VertAlignment:

: HorAlignment;

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\VDIATTRI. DEF H - 43

VAR VertOut

(¥ Set graphic text alignment *)

PROCEDURE SetFillInteriorStyle (Handle
Style

: FillStyles;

(% set fill interior style *)

PROCEDURE SetFillStyleIndex (Handle
StyleIndex

: FillRange;

(X Set fill style index *)

PROCEDURE SetFillColour A Handle
ColourIndex:

: ColourRange;

(% set fill colour index *)

PROCEDURE SetFillPerimeterVisibility (Handle

: BOOLEAN:

(* set fill perimeter visibility %)

PROCEDURE DefineFillPattern (Handle
VAR PFillPatt

Planes

(% Set user-defined fill pattern *)

END VDIAttributes.

: VertAlignment);

: INTEGER:
: FillStyles)

: INTEGER;
: FillRange)

: INTEGER;
ColourRange)

: INTEGER;

PerVisible: BOOLEAN)

: INTEGER;
: ARRAY OF INTEGER;
: INTEGER);

NH - 44 F:\GEMDOS\SYSLIB\VDIATTRI.DEF SPC MODULA-2 V1.4

(#---- Category : Module Identification --------- somone cn *)

(* Module Type : *) DEFINITION MODULE

(x. Name ı *) VDIBase;

(Xx. Function . %)

(*% , ~ Version/Date : 1.82 / 19.87.1987 x)

(X Product Name : SPC *)

(X Copyright . : (c) 1987,1988. MODsoft, 07588 Karlsruhe *)

(X¥----- Category : Module Abstract -- --- x*

This module implements the MODULA-2 interface to GEM VDI. All functions

are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch”,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 %)

(8 - Category : Types and Data ---- === om

FROM SYSTEM IMPORT ADDRESS:

TYPE
CtrlArrayType = ARRAY [(@..127] OF INTEGER:

VAR
contr] : ARRAY [8..11] OF INTEGER:

intin,

ptsin,

intout,

ptsout : CtrlArraylype:

ADRintin,
ADRptsin,
ADRintout,

ADRptsout,
ADRParams : ADDRESS;

parameterBlock : ARRAY [@..4] OF ADDRESS;

(%----- Category : interface procedures ---- === mem eenenn

PROCEDURE CallVDI;

PROCEDURE SetContr} (cd, cl,
c3, c5,

I c6 : INTEGER):

END VDIBase.

SPC MODULA-2 V1.4 Fi \GEMDOS\SYSLIB\VDIBASE . DEF H- 45

(K----- Category : Module Identification ~----- rr mnt rrr n rrr rrr rrr nnn %)

(* Module Type : %) DEFINITION MODULE

(* . Name : %) VDIControls;

(Xx. Function : ¥)

(x. Version/Date : 1.82 / 19.07.1987 x)

(* Product Name : SPC %)
(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe %)

(%---- Category : Module Abstract --------- m mm *K

This module implements the MODULA-2 interface to GEM VDI. All functions

are explained in various documents about GEM on the ATARI ST computer.

However, some datatypes are declared as MODULA-2 records or enumeration

types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch’',

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 x)

(R--- Category : Types and Data -------------- mm memeeeen %)

FROM VDIOutputs IMPORT VDIRectangle;

FROM VDIAttributes IMPORT LineStyles,

MarkerTypes,
ColourRange,

FontTypes,

FillStules,
FillRange,
Coordinatelypes;

TYPE
DeviceTypes = INTEGER:

WorkstationType = (OutputDevice,
InputDevice,

InQutDevice,

ReservedDevice,
MetafileDevice);

WorkstationInitRec = RECORD

Deviceld : DeviceTypes:
LineStyle : LineStyles;

LineColour ı ColourRange;

MarkerTupe : MarkerTypes:
MarkerColour ‘ ColourRange;
Font : FontTypes:
TextColour : ColourRange:;

FillStyle : FillStyles;

FillIndex : FillRange:
FillColour ‘ ColourRange:
CoordinateSystem . : CoordinateTypes;

END;

WorkstationDescription = RECORD
RasterWidthOfScreen,
RasterHeightOfScreen : CARDINAL:
reservedd ı CARDINAL:
HorRasterIncrement,
VertRasterIncrement : CARDINAL; (* mm/1888 *)
MaxTextSizes,
MaxLineStyles,

MaxLineWidths,
MaxMarkers,

H - 46 Fi \GEMDOS\SYSLIB\VDICONTR. DEF SPC MODULA-2 V1.4

MaxMarkerSizes,

MaxFonts,

MaxPatterns,

MaxHatchings,

MaxColours,
MaxBasicGraphFuntions : CARDINAL:

SupportedGraphFuncs : ARRAY € 8 .. 9 J] OF INTEGER;

SupportedAttributes : ARRAY € 6 .. 9 J] OF CARDINAL; (*% 797? x)
ColoursPossible,

TextRotationPossible,

FillInteriorPossible,

FuncCellArrayPossible : BOOLEAN:
MaxPossibleColours : CARDINAL;

LocatorControl ‘ CARDINAL;

ValuatorControl : CARDINAL;
ChoiceControl + CARDINAL;
StringControl : CARDINAL ;
TypeOfWorkstation : WorkstationType:
MinCharWidth,
MinCharHeight,
MaxCharWidth,

MaxCharHeight,

MinLineWidth,
Reserved@a,

MaxLineWidth,
Reserved@b,
MinMarkerWidth,

MinMarkerHeight,
MaxMarkerWidth,

MaxMarkerHeight : CARDINAL;
E t

’

(* Control functions *%)

PROCEDURE OpenWorkstation (VAR WorkIn : WorkstationlnitRec;

VAR Handle : INTEGER;
VAR WorkOut : WorkstationDescription);

(* loads a device driver, and initialises device with parameters passed *)

PROCEDURE CloseWorkstation (Handle : INTEGER);

(% closes graphics device properly, and returns to alpha mode x)

PROCEDURE OpenVirtualWorkstation(VAR Workin : WorkstationlnitRec:
VAR Handle : INTEGER;

>» VAR WorkQut : WorkstationDescription);

(X open virtual screen norkstation *)

PROCEDURE CloseVirtualWorkstation(Handle : INTEGER);

(* close virtual device, preventing further output to it x)

PROCEDURE ClearNorkstation (Handle : INTEGER);

(* clear workstation. Erases the screen *)

J

PROCEDURE UpdateWorkstation (Handle : INTEGER);

SPC MOBULA-2 V1.4 Fi \GEMBOS\SYSLIB\VDICONTR. DEF H- 47

(X execute immediately all pending graphics commands *)

PROCEDURE LoadFonts (Handle,
Select : INTEGER)

: INTEGER:

(* loads fonts and makes them available *)

PROCEDURE UnloadFonts (Handle, Select : INTEGER);

(¥ dissociates fonts and removes them from memory *

PROCEDURE SetClipping (Handle : INTEGER;
ClippingOn : BOOLEAN;

VAR ClipArea : VDIRectangle);

(%* enable/disable clipping of all ouput by GEM VDI %)

END VDIControls.

H - 48 F:\GEMDOS\SYSLIB\VDICONTR.DEF SPC MODULA-2 V1.4

+

(¥----- Category

(* Module Type
(Xx. Name : *%) VDIEscapes;
(x. Function ı%)
(x. Version/Date : 1.82 / 19.07.1987
(X Product Name : SPC

(* Copyright

(%----- Category :

‘ Module Identification -----

: %) DEFINITION MODULE

(c) 1987 ,1988, MODsoft,

Module Abstract -----------

07588 Karlsruhe x)

This module implements the MODULA-2 interface to GEM VDI. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MOQDULA-2 records or enumeration

types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch”,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 x)

(%----- Category : Types and Data --------------7- 2222222220000 *)

FROM SYSTEM IMPORT ADDRESS;

FROM VDIOutputs IMPORT VDIRectangle,
Coordinate:

TYPE
FilmNameType = ARRAY [€ @ .. 124] OF INTEGER;
FilmIndexType = ARRAY € @.. 71,68 .. 1] OF INTEGER;

(% escapes x)

PROCEDURE InquireCharCells (Handle : INTEGER;
VAR rons,

colums : INTEGER);

(¥ inquire addressable character cells *)

PROCEDURE ExitAlphaMode (Handle : INTEGER);

(X Exit alpha mode *)

PROCEDURE EnterAlphaMode (Handle : INTEGER);

(%* enter alpha mode *)

PROCEDURE CursorUp (Handle : INTEGER):

(* alpha cursor up *)

PROCEDURE CursorDown (Handle : INTEGER);

(% alpha cursor down *)

PROCEDURE CursorRight (Handle : INTEGER);

(% alpha cursor right %)

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\VDIESCAP . DEF H - 49

PROCEDURE CursorLeft (Handle : INTEGER

(X alpha cursor left %)

PROCEDURE CursorHome (Handle : INTEGER

(* home alpha cursor %)

PROCEDURE EraseToE0S (Handle : INTEGER

(* erase to end of alpha screen %)

PROCEDURE EraseToEOL (Handle : INTEGER

(* erase to end of alpha text line *)

);

M3

);

);

PROCEDURE CursorAddress (Handle, row, column : INTEGER);

(% direct alpha cursor address x)

PROCEDURE OutputText (Handle » INTEGER:
VAR string : ARRAY OF CHAR):

(% output cursor addressable alpha text *)

PROCEDURE ReverseVideoOn (Handle : INTEGER);

(X reverse video on *)

PROCEDURE ReverseVideoOff (Handle : INTEGER);

(* reverse video off *)

PROCEDURE InquireCursorAddress§ (Handle : INTEGER;

VAR ron,
column : INTEGER);

(% inquire current alpha cursor address *)

PROCEDURE InquireTabletStatus (Handle : INTEGER)
: INTEGER:

(* inquire tablet status *)

PROCEDURE HardCopy (Handle : INTEGER);

(%X hard copy *)

PROCEDURE DisplayCursor (Handle : INTEGER:
Location : Coordinate);

(x place graphic cursor at location *)

H - 58 Fi \GEMDOS\SYSLIB\VDIESCAP. DEF SPC MOBULA-2 V1.4

PROCEBURE Removelursor (Handle : INTEGER);

(* remove last graphic cursor x)

PROCEDURE FormAdvance (Handle : INTEGER }:

(x form advance *)

PROCEDURE OutputWindow (Handle : INTEGER;
Area : VDIRectangle);

(* output windon *)

PROCEDURE ClearDisplayList (Handle : INTEGER);

(* clear display list %)

PROCEDURE OutputBitImageFile (Handle : INTEGER:
FileName : ARRAY OF CHAR;
aspect,

scaling,

numPts : INTEGER;

Area : VDIRectangle);

(* output bit image file *)

PROCEDURE SelectPalette (Handle,
palette : INTEGER)

| INTEGER:

(* select palette *)

PROCEDURE InquirePaletteFilms (Handle : INTEGER:
VAR FilmNames : FilmNameType);

(X inquire palette film types *)
(* only for Polaroid recorder *)

PROCEDURE InquirePaletteState (Handle : INTEGER;

. VAR port,

filmName,
lightness,

interlace,

planes : INTEGER;

VAR indexes : FilmIndexType):

(¥ inquire palette driver state x)
(* only for Polaroid recorder x)

PROCEDURE SetPaletteState (Handle,
port,
filmName,
lightness,
interlace,

planes ı INTEGER;

indexes : FilmIndexType);

SPC MODULA-2 V1.4 Fs \GEMDOS\SYSLIB\VDIESCAP . DEF H - Si

(X set palette driver state *)

(X only for Polaroid recorder %)

PROCEDURE SavePaletteState (Handle : INTEGER);

(X save palette driver state *)
(X only for Polaroid recorder %)

PROCEDURE SuppressPaletteMessages (Handle : INTEGER);

(X suppress palette messages *)
(* only for Polaroid recorder %)

PROCEDURE PaletteErrorInquire (Handle : INTEGER)
: INTEGER;

(* palette error inquire *)

(* only for Polaroid recorder %)

PROCEDURE UpdateMetafileExtents (Handle,

minx, miny,

maxX, maxY : INTEGER);

(X update metafile extents *)

PROCEDURE WriteMetafile (Handle,
numIntin : INTEGER;

VAR intIn : ARRAY OF INTEGER;
numPtsin : INTEGER;

VAR ptsIn : ARRAY OF INTEGER);

(* write metafile item *)

PROCEDURE ChangeFileName (Handle : INTEGER:
FileName : ARRAY OF CHAR 3;

(% change gem vdi filename *)

PROCEDURE SetLineOffset (Handle : INTEGER:
offset : INTEGER);

(X set raster offset to start of logical screen (normally @) %)

PROCEDURE InitSystemFont (Handle : INTEGER;
FontHeader : ADDRESS);

(X install a font as system-font *)
(* width of chars always 8 bit for ATARI ! *)

END VDIEscapes.

H - 52 F: \GEMDOS\SYSLIB\VDIESCAP. DEF SPC MODULA-2 V1.4

(Roo n= Category : Module Identification --==7=7-772-27-=22---2-- 2-0 *)

(* Module Type : %) DEFINITION MODULE
(x . Name : *) VDIInputs;

(x, Function 1 %)
(8. Version/Date : 1.82 / 19.07.1987 *)
(* Product Name : SPC *)
(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe %)

(%----- Category : Module Abstract ----------- Omen RX

This module implements the MODULA-2 interface to GEM VDI. All functions
are explained in various documents about GEM on the ATARI ST computer.
However, some datatypes are declared as MODULA-2 records or enumeration

types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich "ATARI ST Profibuch”,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 %)

(X----- Category : Types and Data -------------------- 227722222 *)

FROM SYSTEM IMPORT ADDRESS;

FROM VOIOutputs IMPORT Coordinate:

FROM VDIAttributes IMPORT ColourRange:

TYPE
MouseFormType = RECORD

HotSpot : Coordinate;

ReservedEql : INTEGER; (¥ set tol *
MaskColour,
CursorColour : ColourRange;
MaskForm,
CursorForm : ARRAY € @ .. 15] OF INTEGER;

END;

DeviceTypes = (IllegalDT, Locator, Valuator, Choice, String);
InputModes = (IllegalIM, Request, Sample);
ValuatorStatus = (NoAction, ValuatorChanged, KeypressCharacter):
KeyboardSpecials= (SHIFTRight, SHIFTLeft, CTRL, ALT);
MouseCodes = (LeftButton, RightButton);
EchoType = (NoEcho, Echo):

KeyboardState = SET OF KeyboardSpecials;
MouseState = SET OF MouseCodes;

(* input functions *)

PROCEDURE SetInputMode (Handle : INTEGER;
DevType : Devicelypes;
Mode : InputModes);

(* Set input mode %)

PROCEDURE InputLocatorRQ (Handle : INTEGER;

Location : Coordinate:

VAR RetLocation: Coordinate:

VAR Term : INTEGER);

(X input locator, request mode *)

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\VDIINPUT . DEF H - 53

PROCEDURE InputLocatorSM (Handle
Location

VAR Term

: INTEGER;

(* input locator, sample mode x)

(* TRUE - changed, FALSE - not changed %)

PROCEDURE InputValuatorRQ (Handle,
Valuatorin :

VAR ValuatorOut,
Terminator :

(X input valuator, request mode *)

PROCEDURE InputValuatorsSM C Handle,

Valln

VAR ValOut,

‘ Term
VAR Status

(* input valuator, sample mode *)

PROCEDURE InputChoiceRQ (Handle,
ChIn

VAR ChOut

(* input choice, request mode *)

PROCEDURE InputChoiceSM (Handle
VAR Choice

: BOOLEAN:

(% input choice, sample mode x)
(x TRUE - changed, FALSE - not changed *)

PROCEDURE InputStringRQ (Handle,
MaxLength

EchoMode

VAR EchoXY
VAR String

(X input string, request mode *)

: INTEGER;

: Coordinate;

VAR RetLocation: Coordinate:
: INTEGER)

INTEGER;

INTEGER);

: INTEGER:

: INTEGER:

: ValuatorStatus);

: INTEGER:
: INTEGER);

: INTEGER;
: INTEGER)

: INTEGER;

: EchoType;

: Coordinate;
+ ARRAY OF CHAR I;

(X read from keyboard until <CR> or MaxLength encountered *)

PROCEDURE InputStringSM (Handle,
MaxLength
EchoMode

VAR EchoXY
VAR String

: INTEGER:

(* input string, sample mode *)
(*X returns length of String *)

PROCEDURE SetMouseForm (Handle

MouseForm

: INTEGER;

‘ EchoType;

: Coordinate;

: ARRAY OF CHAR)

: INTEGER:
: MouseFormType);

H - 54 F: \GEMDOS\SYSLIB\VOIINPUT . DEF SPC MODULA-2 V1.4

(% Set mouse form *)

PROCEDURE ExchangeTimerV (

VAR
VAR

(* Exchange timer interrupt vector *)

PROCEDURE ShowCursor (

(X* show cursor *)

PROCEDURE HideCursor (

(X Hide cursor *)

PROCEDURE SampleMouseButton (

VAR

VAR

(* Sample mouse button state %)

PROCEDURE ExchangeButtonV (

VAR

(X Exchange button change vector %)

PROCEDURE ExchangeMovementV (

| VAR

(% Exchange mouse movement vector *%)

PROCEDURE ExchangeCursorV (

VAR

(% exchange cursor change vector %)

PROCEDURE SampleKeyboard (
VAR

Handle

TimAddr

OTimAddR
TimConv

Handle

Reset

Handle

Handle

PStatus

Location

Handle

PUsrCode

PSavCode

Handle

PUsrCode

PSavCode

Handle

PUsrCode

PSavCode

Handle

PStatus

(¥ sample keyboard state information %)

END VDIInputs.

: INTEGER:
: ADDRESS;
: ADDRESS;
: INTEGER);

: INTEGER;
: INTEGER);

: INTEGER);

: INTEGER;

: MouseState;
: Coordinate);

: INTEGER:
: ADDRESS:
: ADDRESS);

: INTEGER;
: ADDRESS;
: ADDRESS);

; INTEGER:
; ADDRESS;
; ADDRESS };

: INTEGER;
: KeyboardState);

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\VDIINPUT . DEF H - 55

(#----- Category : Module Identification ------ "0000 *)

(* Module Type : *) DEFINITION MODULE
(x Name : *) VOIInquires:

(x. Function : ¥)
(x Version/Date : 1.82 / 19.87.1987 *)
(* Product Name : SPC *)

(* Copyright : (c) 1987,1988. MODsoft. D7588 Karlsruhe *)

(R----- Category : Module Abstract mem nn RK

This module implements the MODULA-2 interface to GEM VDI. All functions

are explained in various documents about GEM on the ATARI ST computer.

However, some datatypes are declared as MODULA-2 records or enumeration

types to simplify access to them. They will be explained as necessary.
Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch”,

SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 *)

(R----- Category : Types and Data ------------------ -- %)

FROM VDIAttributes IMPORT ColourRange,

ColourComposition,

TenthDegree,
LineStyles,
LineEndStyles,

HorAlignment,
VertAlignment,
WritingModes,
MarkerTypes,

FillStyles,
FillRange:

FROM VDIInputs IMPORT InputModes;

FROM VDIControls IMPORT WorkstationInitRec,

WorkstationDescription;

FROM VDIOutputs IMPORT Coordinate,
. VDIRectangle;

TYPE

DeviceTypes = (NoScreen,
SeparatScreensAndControllers,
SeparatScreensOneController,

OneControllerSeparatbraphicMemory,
~ OneControllerQneMemory) :

ValidTextRotations = (NoRotations,
NintyDegreeRotations,
ContinuousRotations):

ExtendWSDescription = RECORD

Device : Devicelypes;
MaxBackgroundColours : CARDINAL;
MaxTextEffects : CARDINAL;

ZoomPossible : BOOLEAN;

MaxColourPl anes : CARDINAL:

LookUpTablePossible : BOOLEAN:
RasterOpsPerSecond > CARDINAL;
ContourFillPossible : BOOLEAN;
SupportedlextRotations: ValidlextRotations;

MaxWritingModes : CARDINAL;
MaxInputMode ı InputModes;

H - 56 Fi \GEMDOS\SYSLIB\VOLINQUI . DEF SPC MODULA-2 V1.4

TextAlignmentPossible : BOOLEAN;

ChangePenPossible : BOOLEAN:
ChangeRibbonPossible : BOOLEAN;
MaxPointsForQutput : INTEGER;

MaxLengthOfintin : INTEGER;

MaxMouseButtons » CARDINAL:

TypesForWidedLinesPoss: BOOLEAN:
MxWRModesForWidedLines: CARDINAL:

Reserved : ARRAY { @ .. 37] OF INTEGER:
END;

CombinedWSDescr = RECORD

CASE : BOOLEAN OF

TRUE : NormalDescr : Workstationdescription;
| FALSE : ExtendDescr : ExtendWSDescription:
END;

END;

LineAttrType
LineStyle

LineColour
WriteMode
BeginStyle,
EndStyle
LineWidth

END;

MarkerAttrType
MarkerType
MarkerColour

WriteMode
MarkerWidth,
MarkerHeight

}

FillAttrType
FillStyle

FillColour

FillType
WriteMode
FrameVisible

END;

TextAttrType
- Font

ColourIndex

Rotation

HorOrient

VertOrient
WriteMode

CharWidth,
CharHeight,

CellWidth,
CellHeight

ExtendCoords

(% Inquire functions %)

= RECORD
: LineStyles:
: ColourRange;
: WritingModes;

‘ LineEndStyles;
: CARDINAL;

= RECORD
: MarkerTypes:
: ColourRange;

: WritingModes;

: CARDINAL;

= RECORD
: FillStyles;

: ColourRange;
: FillRange;
: WritingModes;
: BOOLEAN:

= RECORD
: INTEGER:
: ColourRange;

: TenthDegree;
: HorAlignment;
: VertAlignment;
: WritingModes;

: INTEGER:

END;

= ARRAY € @ .. 3] OF Coordinate;

PROCEDURE ExtendedInquire (Handle : INTEGER:
Extended : BOOLEAN;

VAR WorkOut : CombinedNSDescr) ;

SPC MODULA-2 V1.4 Fi \GEMBOS\SYSLIB\VDIINQUI . DEF H - 57

(% Extended Inquire function *)

PROCEDURE InquireColour (Handle ; INTEGER;

VAR ColourIndex: ColourRange;
SetFlag ‘| INTEGER;

VAR RGB : ColourComposition);

(% inquire colour representation *)

PROCEDURE InquireLineAttributes (Handle : INTEGER;
VAR Attrib : LineAttrType);

(¥ inquire polyline attributes x)

PROCEDURE InquireMarkerAttributes(Handle : INTEGER;
VAR Attrib : MarkerAttrType);

(* inquire polymarker attributes x)

PROCEDURE InquireFillAttributes (Handle : INTEGER;
VAR Attrib :<FillAttrType);

(X inquire fill area attributes %)

PROCEDURE InquireTextAttributes (Handle ; INTEGER;
VAR Attrib : TextAttrType);

(% Inquire graphic text attributes *)

PROCEDURE InquireTextExtent (Handle : INTEGER;
| String : ARRAY OF CHAR;

VAR Extent : ExtendCoords);

(% Inquire text extent %)
(% Extent: 4 corner-coordinates of the extent-rectangle x)

PROCEDURE InquireCharWidth (Handle : INTEGER:

Character : CHAR;

VAR CellWidth,

LeftDelta,
RightDelta : INTEGER)

: INTEGER:

(% inquire character cell width *)
(* RETURN -1 - character not allowed

n - ORD(character) %)

PROCEDURE InquireFaceName (Handle,
ElementNum : INTEGER:

VAR Name : ARRAY OF INTEGER)
: INTEGER;

(X inquire face name and index *)
(* Name requires a minimum length of 32 elements x)

PROCEDURE InquireCellArray (Handle : INTEGER;
PxyArray ; UDTRectangle:

H - 58 Fi \GEMDOS\SYSLIB\VDIINQUI . DEF SPC MODULA-2 V1.4

RowLength,

NumRows : INTEGER:

VAR ElUsed,
RowsUsed,

Status : INTEGER:
VAR ColArray : ARRAY OF INTEGER);

(% inquire cell array *)
(* ColArray requires a minimum length of ?? elements %)

PROCEDURE InquireInputMode (Handle,

DevT ype : INTEGER;
VAR InputMode : INTEGER);

(X inquire input mode *)

PROCEDURE InquireFaceInfo (Handle : INTEGER;

VAR MinADE,
MaxADE : INTEGER;

VAR Distances : ARRAY OF INTEGER;

VAR MaxWidth : INTEGER;

VAR Effects : ARRAY OF INTEGER);

(X inquire current face information *)
(xX Distances requires a minimum length of 5 elements *)

(* Effects requires a minimum length of 3 elements *)

END VDIInquires.

SPC MODULA-2 V1.4 Fs \GEMDOS\SYSLIB\VDIINQUI . DEF H - 59

(%----- Category : Module Identification -------- 7-77 --------- 722 ---- *)

(* Module Type : %) DEFINITION MODULE
(X , Name : *%) VDIQutputs;
x. Function : x)

x. Version/Date : 1.82 / 19.87.1987 *)
(* Product Name : SPC *)

(* Copyright : (c) 1987,1988, MODsoft, D7588 Karlsruhe x)

(%---- Category : Module Abstract ---------------------- 72200000 RK

This module implements the MODULA-2 interface to GEM VDI. All functions

are explained in various documents about GEM on the ATARI ST computer.

However, some datatypes are declared as MODULA-2 records or enumeration
types to simplify access to them. They will be explained as necessary.

Suggested reading: Jankowski, Reschke, Rabich “ATARI 5ST Profibuch’,
SYBEX, ISBN 3-88745-581-8, 1.Auflage 1987 x)

(X----- Category : Types and Data ------------------ 2222277222 *)

FROM VDIAttributes IMPORT ColourRange,
TenthDegree:

TYPE
Coordinate = RECORD

xX, Y : INTEGER;
END;

VOTRectangle \ = RECORD
LowerLeft,

UpperRight : Coordinate:

(X Output functions *)

PROCEDURE PolyLine (Handle,
Count : INTEGER:

VAR PxyArray : ARRAY OF Coordinate);

(* display a polyline on graphics display *)

PROCEDURE PolyMarker (Handle.
Count : INTEGER:

VAR PxyArray ; ARRAY OF Coordinate);:

(* draw markers at points specified *)

PROCEDURE GraphicText (Handle : INTEGER;

Location ; Coordinate:

VAR String : ARRAY OF CHAR);

(X nrite text to display surface *)

PROCEDURE FillArea (Handle,
Count : INTEGER:

VAR PxyArray : ARRAY OF Coordinate);

(* fill a complex polygon *)

H - 68 F:\GEMDOS\SYSLIB\VDIOQUTPU. DEF | SPC MODULA-2 V1.4

PROCEDURE CellArray (Handle

. PxyArray

(X bit tricky to explain .

PROCEDURE ContourFill (

(*X fill an area *)

PROCEDURE FillRectangle (

(X fill rectangle *)

RowLength,

ElUsed,
NumRows ,

WrtMode

ColArray

Handle

Index

Handle
PxyArray

(% generalised drawing primitives x)

PROCEDURE DrawBar (

PROCEDURE DranArc (

PROCEDURE DrawPieSlice (

PROCEDURE DrawCircle (

PROCEDURE DrawEllipticalarc (

PROCEDURE DrawEllipticalPie (

PROCEDURE DrawEllipse (

Handle
PxyArray

Handle

Center

Radius

BegAng,
EndAng

Handle

Center

Radius

BegAng,

EndAng

Handle

Center

Radius

Handle

Center

xRadius,

yRadius

BegAng,
EndAng

Handle

Center

xRadius,

yRadius

BegAng.

EndAng

Handle

Center

xRadius,

yRadius

: TenthDegree

: TenthDegree

: INTEGER;
: VDIRectangle:

: INTEGER:
: ARRAY OF INTEGER);

. see documentation %)

: INTEGER;

StartLocat : Coordinate;

: ColourRange);:

: INTEGER;
: VDIRectangle);

: INTEGER:
: VDIRectangle);

: INTEGER;

: Coordinate:
: INTEGER:

—

w
e

: INTEGER:

: Coordinate:

: INTEGER:

—

: INTEGER;

: Coordinate;
: INTEGER);

: INTEGER;

: Coordinate;

: INTEGER:

: TenthDegree

: INTEGER;

; Coordinate;

: INTEGER;

: TenthDegree

: INTEGER;

: Coordinate;

: INTEGER);

N

-
-

—

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\VDIOQUTPU. DEF H - 61

PROCEDURE OrawRoundedBox (Handle : INTEGER;

PxyArray : VDIRectangle);

PROCEDURE DrawRoundedFilledBox (Handle : INTEGER;
PxyArray : VDIRectangle);

(X justified graphics text %)

PROCEDURE JustifiedText (Handle : INTEGER;
StartLocat: Coordinate;

VAR String : ARRAY OF CHAR:
Length,
WordSpace.

CharSpace : INTEGER):

(X output text both left and right justified x)

END VDIOutputs.

H - 62 r+ \GEMDOS\SYSLIB\VDIOUTPU. DEF SPC MODULA-2 V1.4

(%---- Category : Module Identification ===" === mono *)

(¥ Module Type : *%) DEFINITION MODULE

(Xx, Name : %) VDIRasters;

(x. Function : *)

3%. Version/Date : 1.82 / 19.87.1987 %)

(¥ Product Name : SPC x)
(* Copyright : (c) 1987,1988, MODsoft, 07598 Karlsruhe x)

(%----- Category : Module Abstract === om mom rn nnn nm KK

This module implements the MODULA-2 interface to bEM VDI. All functions

are explained in various documents about GEM on the ATARI ST computer.

However, some datatypes are declared as MODULA-2 records or enumeration

types to simplify access to them. They will be explained as necessary.

Suggested reading: Jankowski, Reschke, Rabich “ATARI ST Profibuch”,
SYBEX, ISBN 3-88745-501-0, 1.Auflage 1987 x)

(%----- Category : Types and Data --------------------- 77-2222 *)

FROM VDIAttributes IMPORT ColourRange,
WritingModes;

FROM VDIOutputs IMPORT VODIRectangle,
Coordinate:

FROM SYSTEM IMPORT ADDRESS;

TYPE
MemoryFormDefBlock = RECORD

UpperLeftRasterAddr ı ADDRESS;

Width : CARDINAL: (¥ in points %)
Height : CARDINAL: (* in points *)
WordWidth : CARDINAL: (* in words *)
FormatFlag : CARDINAL; (* 8 = device specific

1 = standard *)

Planes » + CARDINAL;

Reservedl,

Reserved2,
Reserved3 : CARDINAL; (x for future use *)

END;

MFDBAddress = POINTER TO MemoryFormDefBlock ;

LogicModes = (ClearD , SAndD , SAndNotD, S,
NotSAndD ,D , SXorD ‚ 50rD,
Nor ‚ NXor ‚ NotD , SOrNotD,

- Not5 , NotSOrD, Nand , SetD):
(8 5S - soure, D - destination %)

(% raster operations *)

PROCEDURE CopyRasterOpaque (Handle : INTEGER;
WrMode : LogicModes;

FromArea,
ToArea : VDIRectangle;
SourceMFDB.

DestMFDB ı MFDBAddress);

(* copy raster, opaque *)

PROCEDURE CopyRaster Transparent (Handle : INTEGER;

SPC MODULA-2 V1.4 F:\GEMDOS\SYSLIB\VDIRASTE. DEF

(* copy raster, transparent *)

PROCEDURE TransformForm (

(¥ transform form *)

PROCEDURE GetPixel (

(X get pixel %)

END VDIRasters.

WrMode

FramArea,

ToArea

SourceMFDB,

DestMFDB

OnColour,
OffColour

Handle

SourceMFDB,

DestMFOB

Handle

: WritingModes;

: UDTRectangle:

: MFDBAddress;

‘ ColourRange);

: INTEGER;

: MFOBAddress);

: INTEGER;

Pixellocat :

VAR PixelValue :

VAR ColourIndex:

Coordinate:

INTEGER;

ColourRange);

H - 64 F: \GEMDOS\SYSLIB\VOTRASTE . DEF SPC MODULA-2 V1.4

(X----- Category : Module Identification ~~----------------------------- *)

(* Module Type : %) DEFINITION MODULE
(x. Name : ¥) Watch;

(x. Function : SPC Desktop Clock %)
8. Version Date : 24:33 19. 8.1988 *)
(¥ Product Name : SPC x
(* Copyright : (c) 1987,1988, MODsoft, 07588 Karlsruhe *)

(%----- Category : Initialisation --7------------------- 22222222 - *)

PROCEDURE Init;

(¥ Initialise Watch and register at SWiS. x)

PROCEDURE Term:

(* Terminate Watch and deregister from SSWis. x)

END Watch.

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\WATCH. DEF H - 65

Category :

(* Module Type
x.
x.
(x

Name
Function

Version/Date

(% Product Name
(X Copyright

Category : Module Abstract

 Module Identification -
: *) DEFINITION MODULE

: *) XBios:

: XBIOS Interface TO Modula-2

: 1.8 / 13.9.88

: SPC

(c) 1988, MODsoft, 07508 Karlsruhe

This module implements the MODULA-2 interface to XBIOS. All functions

are explained in various documents about GEM on the ATARI ST computer. %*)

FROM

TYPE

Category :

SYSTEM IMPORT

MouseTypes

MouseParams

TopMode

Buttons

XParam
YParam

XMax

YMax

XInitial

YInitial

ScreenRes

Palette

ToRec

Buffer

BufSize

Head
Tail

LOW

High

ToRecPtr

KeyTab
UnShift
Shift
CapsLock

KeyT abPtr

KeyVecs

Midiln

KbdErr

MidiErr

StatPack

MousePack

ClockPack

JoyPack

MidiSys

Types and Data -- =-

ADDRESS:

= (DisableMouse,

RelativeMode,

AbsoluteMode,
Unused,
KeycodeMode);

POINTER TO RECORD
: [8. ;

CHAR;
CHAR;
CHAR;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

END;
= (Low, Medium, High);

= ARRAY [8..151 OF INTEGER;

= RECORD
ADDRESS:
INTEGER;
INTEGER:
INTEGER:
INTEGER;
INTEGER;

END;

= POINTER TO IoRec;

= RECORD
ADDRESS:
ADDRESS;
ADDRESS;

END;
= POINTER TO Keylab;

RECORD
ADDRESS;
ADDRESS:
ADDRESS:

. ADDRESS;
ADDRESS ;
ADDRESS;
ADDRESS:
ADDRESS:

H - 66 Fi \GEMDOS\SYSLIB\XBIOS. DEF SPC MODULA-2 V1.4

KbdSys ADDRESS;

END:

KeyVecsPtr = POINTER TO KeyVecs:

PrintParmBlock = RECORD

ScreenAdd i ADDRESS;

ScreenDffset : INTEGER;

ScreenWidth : INTEGER;

ScreenHeigth : INTEGER;
Left INTEGER:

Right INTEGER:
Resolution ScreenRes;

PrinterRes INTEGER;

ColorTab : POINTER TO Palette;

PrinterType : LONGINT;
PrinterPort : INTEGER:

PrintMask : INTEGER:

END;

PrintParmPtr = POINTER TO PrintParmBlock:

VAR Result : LONGINT;

(X----- Category : XBios Functions -------------- 2277222222200 -*)

PROCEDURE InitMouse (Mouselype : MouseTypes:
Parms : MouseParams;

Vector ı ADDRESS);

PROCEDURE PhusBase () : ADDRESS;

PROCEDURE LogBase 0) : ADDRESS; | “

PROCEDURE GetResolution () : ScreenRes;

PROCEDURE SetScreen (Log : ADDRESS;
Phys : ADDRESS:

Res ı ScreenRes);

PROCEDURE SetPalette (VAR P ~ + Palette);

PROCEDURE SetColor (Nummer : INTEGER:

Color : INTEGER)
: INTEGER;

PROCEDURE FlopRead (Buffer : ADDRESS;
Device : INTEGER;

Sector : INTEGER;

Track : INTEGER;

Side : INTEGER:
Count : INTEGER):

PROCEDURE FlopWrite (Buffer : ADDRESS;
Device : INTEGER:

Sector : INTEGER:

Track : INTEGER;
Side : INTEGER:

Count : INTEGER);

PROCEDURE FlopFormat (Buffer : ADDRESS;
Device : INTEGER;

SecPerTrack: INTEGER;

Track : INTEGER;
Side : INTEGER;

SPC MODULA-2 V1.4 F: \GEMDOS\SYSLIB\XBIOS. DEF H - 67

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

MidiWrite

MFPInt

betloRec

RSConfig

KeyTable

Random

Protobt

FlopVerify

ScreenDump;

CursorConfig

SetTime

GetTime

BiosKeys;

KeyboardWrite

DisableInt

Enablelnt

Giaccess

Offgibit

Ongibit

Interleave : INTEGER;

MagicNWord : LONGINT:

Virgin : CARDINAL);

(Count : INTEGER:

Str : ARRAY OF CHAR);

(IntNr : INTEGER:

Int : ADDRESS);

(Device : INTEGER)

: ToRecPtr;

(Speed : INTEGER:
Control : INTEGER;

ucr : INTEGER:

rsr : INTEGER;

tsr : INTEGER:
scr ; INTEGER);:

(UnShift : ARRAY OF CHAR;

Shift : ARRAY OF CHAR:

CapsLock : ARRAY OF CHAR)
: KeyTabPtr:

() : LONGINT;

(Buffer : ADDRESS;

SerialNr : LONGINT;

DiskType : INTEGER:

ExecFlag ; INTEGER);

(Buffer : ADDRESS;

Device : INTEGER:

Sector ; INTEGER;

Track : INTEGER:

Side : INTEGER:

Count : INTEGER);

(Func : INTEGER;

Rate : INTEGER)
: INTEGER;

(Time : LONGINT);

0) : LONGINT;

(Count : INTEGER:

Str : ARRAY OF CHAR);

(Nr : INTEGER);

(Nr : INTEGER);

(Data : CHAR;

Register : INTEGER)

: CHAR:

(Nr > INTEGER 3;

(Nr : INTEGER J);

Fi \GEMDOS\SYSLIB\XBIOS. DEF SPC MODULA-2 V1.4

PROCEDURE Xbtimer (Timer : INTEGER:

Control ‘ INTEGER;

Data : INTEGER:

Vector ı ADDRESS);

PROCEDURE DoSound (Str ; ARRAY OF CHAR);

PROCEDURE SetPrinter (Contig : INTEGER)

: INTEGER;

PROCEDURE KeyBase () : KeyVecsPtr;

PROCEDURE KbdRate (Init : CHAR;

Repeat : CHAR)
; INTEGER;

PROCEDURE PrintBlock (Parms : PrintParmPtr):

PROCEDURE VSync:;

PROCEDURE Supexec (Vector ' ADDRESS);

PROCEDURE PuntAES;

PROCEDURE BlitterMode (Flag : INTEGER)
: INTEGER;

(* BlitterMode function only in Blitter-TOS %)

END XBios.

SPC MODULA-2 V1.4 Fi \GEMDOS\SYSLIB\XBIOS. DEF H - 69

Index

5-1,
A 8-21

Binding ne: 2-13
NS hs ee 5-15 I nn 5-9

Accept—Prozedur 8-11 9_2

ADDRESS Sanssesesnneentesunnnunennen 5-1 2 Block-Operationen IN 4-5

ADR................senennnennns 5-12 BOOLEAN ann 5-10,

Alignment....................: 9 9-2

Anmelden als Applikation Buffer-Flag.......................... 7-15

in GEM... een: 18 BVTE nennen: 5-12
IN SSWIS eee 8-11 ByteStreams nn. 2.9 °

Arbeits-Directory................. 1-10

Argumente

in xShell...........................- 3-3
in Linker nn 7-23 C
in Compiler... 5-3
in Prelinker- 7-27 = Carte. 8-23
in Make2nnnnnnnn 7-30 CARDINAL:. nn. 5-9,

9-2

CAPneneeneneeennenneenenn 5-15

B CHAReneeneenneneenenenen 5-9,
9-2

Backup-Flag.......................- 7-16 Check-Flag..................: 7-16

Betriebssystem-Aufrufe......5-14 CHR... es 5-15

Binden, dynamsich............. 2-7, Clipboard... 4-6

SPC MODULA-2 V1.4 Index 1-1

8-16

Clock... 29

CMD. nn Bag BOM OF ener erenrrenrrnerne 4
CmdLine Environment... 2-11

Kurzbeschreibung 2-12 Environment-Variablen
in xShell en. 3-6 in xShell0.0..... 3-17

Code-Segment............ 9-6 Enumerationstypen............. 9-10,

CODE Prozeduren.............. 5-14 -
COMPALE nn 7-19 ERR.LST................eneeee. 5-5

Copy in Füllen. 7-18 md 601742) 0 4-7

Coroutines 2-10 EVENES 20.0... nennen 8-11

CUrSOFPOSIION .-cecccccccccseee 4-9 EXCL 000... cceeeeeccceeeeseeseeeeeeeeees 5-15

Cursorzeile.........ceeeeee 4-3

D Fehler
Datei.............neennnes 5-2

Dateien Anzeige... cecececeteteeees 4-1
selektieren in xShell....... 3-4

Fensterucnessseneseeeneneneenn 8-3

Daten-Segment 9-6 aktives... 8-4
Datentypen Randelemente 8-5

in MODULA-2................-- 5-9 Inhalt... eee 8-5
IN SSWIS |... eee 8-15 Tit@l....... eee eeeeeeeeeeeeeereeeeeee 8-3

DEC ooo cccccecceeeeeeeeeeens 5-15 Filer.......eenn 7-3

DEF ooo... een 5-4 FileSystem 2-9

Defaul-Kommando 3-9 Flags in Filer................ 7-15

Delete in Filer..................... 7-17 FLOAT..............ennen 5-15

Desktop-Accessories 1-7 FLOATDen 5-15

Desktop... 8-3 Formulare... ee 8-8,

DESKTOP.NF ann. 1-7 8-24
FORWARD... ee 5-14

Frame-Pointer..................... 9-11

Funktionstasten

Index SPC MODULA-2 V1.4

in Editor... eee 4-10

IN SSWIS 20.0. eee 8-7 INSTALLPRO u... 1-3

Geräte-Koordinaten............ 8-15 CL

Kurzbeschreibung 3-14

JOD nn eeeeeeneeennennennn 3-14

H Job-Control-Language......3-14

aN ee 5-15

HFSeneeneennnnenn 2-9 K

HIGH nn 5-15

Hilfsdeskriptor...................... 9-6 Keyboard-Events................ 8-18

Hotline..................eee- 1-2 Kommandodatei

für Compile 5-1

für Prelink.................... 7-27

Kommandozeile

| in xShellcee... 3-4
textuelle Eingabe............. 3-16

Identifikation vee e nce cencesccecssecs 8-7 für Compile II 5-3

Identification-Eventis........... 8-20 für Link... 7-23

INC u.a: 5-16 In Prelinker......ne 7-27
INCL nn 5-16 [Ur Make a
Info in Fler anne 5-19 2 Kompaktheit..un >

}insert-Mo nn 4-3, Kompatibilitat Lnsennsnesensnsenenn 5-10

4-9 Koordinatensysteme 8-15

Implementierung.................- 2-2

Initialisierungsreihenfolge ...7-26

INLINE anne 5-73 |
INOuteneennnen 2-8

Ladepfade nennen 1- N - ; In XSHEN ann 3-9
nn I Lader. 27

SPC MODULA-2 V1.4 Index |-3

Ladevorgang........eeeeee 9-9

Laufzeitfehler

in Debugger.................... 6-1

Laufzeitsystem................. 9-1

Lieferumfang........................ 1-1

la) (<r 2-7,

7-23

LIZENZVErtrag ee 1-1

LONG ooo. ccceeeeeceeeeeee 5-12

LONGBITSET........................ 5-9,
9-4

LONGCARD 5-9,
9-2

LONGINT..............eeeees 5-9,
9-3

LONGREALe.. 5-9,
9-4

LMathLib 2-10

Meta-Tasten........................ 8-18

MIN oo. eee cesar ey 5-16

MOD 00... cceee cee eeeeev ones 5-4

Moduldeskriptor................... 9-5

Modulkonzept...................... 2-2

Modulorganisation............... 9-5

Modulschlussel

in xShellnc.. 3-9

in Compiler 5-7

Modultabelle 9-7,

9-9

Modulvariablen 9-7

Motion-EventS..................... 8-19

Mouse-Events..................... 8-19

Move in Filer 7-18

Multitasking 3-1

N

Normung... ee eeeeeteeeeeeees 2-1

Make... 7-29 no manonen.
Makro in Make 7-31 UmDETJONVETSIONS u 10
Markeneneeeneeneneneeseennn 4-8

Maschinenabhangigkeit9-2

MathLib 2-10 O

MAX oe eccccccececeeceeceeeeeeeeeenenes —1
. 5-16 Objekte _ |

Menu Shel 8 IN XSHEM oes 3-2
in xShell - .
in Editor... 4-5 ObjPath ..00... ee 5-6

TA ESIS\ | [se 8-6, OBM une 94
8-24 ODDeennnen 5-16

Events beet eee e ees ee eee seeseensesues 8-19 Optionen

Message-EventS................. 8-20 in xShell....................- 3-5

1-4 Index SPC MODULA-2 V1.4

REAL occ eeeeee ee ee 5-9

Ts nn. 5-5, Redraw-Prozedur.............- 8-13
| 7-36 REG oe 5-12

PASCAL, Unterschiede 0_1 Registrierkarte...................... 1-1

Pfade... eee cece teres 5-5 Registrierung... eee. 1-2
POINTER TO....................... 5-10, Rename in Filer.................. 7-18

9-3 Replace-FlaQg....................... 7-15

PollEvents LOOP.................. 8-10, Replace-Modus 4-3,

8-20 4-9

Prelinkernn. 7-27 Restiktionen. 5-17

ad 6 0) re 7-33 Resultate

Printer... cccececeeeeeeseeeeeens 2-9 IN XSNEM ee 3-5
PROCEDURE 5_10 RFM...........2 nn. 5-4

ProzedurproloQ.................... 9-12 RSC-File
Prozedurrahmen 9-10 in xShell 3-7

Prozedurtabelle 9-7

PFOCESS nennen: 2-11

Profile S
in xShell 3-7

Programmkomplexitat......... 0-9 SS) 5-4

PrOZEÄUrtYP ann. 9-5 Schnittstelle 2-2

Pseudo-Multitasking........... 3-1, Search in Filer.................... 7-19

8-2 Serialisierung- 1-2

SETREG 22... 5-12

f SET OF. 5-10
9-3

Q SHIFT ooo... e eee eee 5-13

Query—Flag....eeeccceccseeseeees 7-15 SHORT nn. 5-12

Single-Pass-Compiler........ 5-1

SIZE........... 0... 5-16

R Softwarebausteine............... 2-3

Spaltennummenn 4—4

SPC MODULA-2 V1.4 Index |-5

SPCLIB................... nn. 2-11 Threadscceeeeeeeeeeneaneennnnn 9-5

Speicherbedarf Timer-Events....................... 8-20

systemweit..... eerste 1-1 Transformationen 8-15
In SPM nn Sn Tree in Filer... eee. 7-19

StacksiZe oo... ccceceseeseeeeeeee 7-23, TRUNG nennen >-16
g-24 TRUNCD....... ee 5-16

Stackorganisation................ 9-10

Standardbibliothek 2-3

STDLBB na. 2-8 U
Storage... 2-10

StriNgSccaaeenneenneeanenennnennnn 2-19 Umgebung in xShell.......... 3-2

SSWIS nn a nn 12
Kurzbeschreibung 2-12 Utilities
mit xShell....................... 3_2 in xShell0...0..... 3-12

Suchen in Editor................ 4-7

syntaktische Straffungen....2-5

SYSLIBnnnnnnn 2-13 V
SYStOMececccecececeeeeesseeeeees 2-12
SYSTEM, Pseudomodul.....5-12 VA 5-11
systemabhängige Moduln..2-2 Verbose-Flag ern 7-14

systemnahe Elemente....... 2_4 Verify-Flag................en 7-16

T W
Tastatur Weltbild ...00000 ee, 8-6 .

Bedienung in xShell....... 3-8 Welt-Koordinaten................ 8-15

in Filer... eee 7-13 Werkzeuge
N SSWIS 2... 8-18 im Hauptspeicher halten3-5

Terminal With oo... cece steerer 7

Kurzbeschreibung 2-8 WORD nen 5-13
in xShell 3-6

TextFiles............................... 2-11

TextStreams.................n.. 2-9

I-6 Index SPC MODULA-2 V1.4

X
xShell

Design-Idee 3-1

Übersicht... eee cece 3-1
als Applikation 1-8

XSU......nnneeenneenn 2-11

Z
ZENNEIDIOCK ss seceeceeeeeeeeee 4-11
Zeilennummernn................. 4-4,

4-9

Zielgruppe von M.2............. 2-6

Zuweisungskompatibilität....5- 10

Zyklen bei Importen........... 7-26

SPC MODULA-2 V1.4 Index

Index SPC MODULA-2 V1.4

Name Modul Typ Lib Seite

Abandon Fraas PROCEDURE SPCLIB G-11

Abandon TextFiles PROCEDURE SPCLIB G-38

AcceptProc SSWiS TYPE SPCLIB G-26

AccessoryClose AESEvents CONST SYSLIB H-07

AccessoryOpen AESEvents CONST SYSLIB H-07

ACK ASCII CONST STDLIB F-93-
Add AESObjects PROCEDURE SYSLIB H-17

ADDRESS SYSTEM TYPE SYSTEM E-03

ADR SYSTEM PROCEDURE SYSTEM E-903
ADRintin VDIBase VAR SYSLIB H-45

ADRintout VDIBase VAR SYSLIB H-45

ADRParams VDIBase VAR SYSLIB H-45

ADRptsin VDIBase VAR SYSLIB H-45
ADRptsout VDIBase VAR SYSLIB H-45

AESAddrIn AESBase VAR SYSLIB H-06
AESAddrInType AESBase TYPE SYSLIB H-05
AESAddrOut AESBase VAR SYSLIB H-06
AESAddrOutType AESBase TYPE SYSLIB H-05

AESControl AESBase VAR SYSLIB H-06
AESControlType AESBase TYPE SYSLIB H-05
AESGlobal AESBase VAR SYSLIB H-06
AESGlobalType AESBase TYPE SYSLIB H-05
AESIntIn AESBase VAR SYSLIB H-06
AESIntInType AESBase TYPE SYSLIB H-05

AESIntOut AESBase VAR SYSLIB H-06
AESIntOutType AESBase TYPE SYSLIB H-05
AESParameters AESBase VAR SYSLIB H-06

AESParameterType AESBase TYPE SYSLIB H-06
Alert AESForms PROCEDURE SYSLIB H-09

AllKeys SSWiS TYPE SPCLIB G-24
Allocate Storage PROCEDURE STDLIB F-26
ALLOCATE Storage PROCEDURE STDLIB F-26
AllocateProc SplittedPieces TYPE SPCLIB G-21
AlphaKeys SSWis TYPE SPCLIB G-24
And Bytes PROCEDURE SPCLIB 6-05
AndNot Bytes PROCEDURE SPCLIB G-04
AnyBitmap AESObiects TYPE SYSLIB H-15
AnyBitmapPtr AESObjects TYPE SYSLIB H-16
AnyText AESObjects TYPE SYSLIB H-15

AnyTextPtr AESObjects TYPE SYSLIB H-16

AppliBlk AESObjects TYPE SYSLIB H-17
ApplBlkPtr AESObiects TYPE SYSLIB H-16
arccos LMathLib PROCEDURE STDLIB F-17
arccos MathLib PROCEDURE STDLIB F-19
arcsin LMathLib PROCEDURE STDLIB F-17

arcsin MathLib PROCEDURE STDLIB F-19
arctan LMathLib PROCEDURE STDLIB F-17
arctan MathLib PROCEDURE STDLIB F-19
Arrow AESGraphics CONST SYSLIB H-11
AskForm SSWiS PROCEDURE SPCLIB G-31
AskName HFS PROCEDURE STDLIB F-12

SPC MODULA-2 V1.4 LIB-INDEX J-01

Name Modul Typ Lib Seite

Assian Strings PROCEDURE STDLIB F-27
AssianFont TextWindows TYPE SPCLIB G-42
Attribute GemDos PROCEDURE SYSLIB H-34
Attributes GemDos TYPE SYSLIB H-31
Attributes Printer TYPE STDLIB F-22
AttributeSet Printer TYPE STDLIB F-22
AuxDescr System TYPE SPCLIB G-34
AuxDescrPtrt System TYPE SPCLIB G-34
AuxIn GemDos PROCEDURE SYSLIB H-32
AuxInStat GemDos PROCEDURE SYSLIB H-33

AuxOut GemDos PROCEDURE SYSLIB H-32
AuxOutStat GemDos PROCEDURE SYSLIB H-33

Available Process PROCEDURE SPCLIB G-18

Available Storage PROCEDURE STDLIB F-26

Bar AESMenus PROCEDURE SYSLIB H-13
BasePage Gemdos TYPE SYSLIB H-31

BasePagePtr GemDos TYPE SYSLIB H-31
BasePagePtr System VAR SPCLIB G-33

Bconin Bios PROCEDURE SYSLIB H-28

Bconout Bios PROCEDURE SYSLIB H-28
Bconstat Bios PROCEDURE SYSLIB H-28
Bcostat Bios PROCEDURE SYSLIB H-28
BeqinOfFile Frags CONST SPCLIB 6-190
BEL ASCII CONST STDLIB F-03
BiosKeys XBios PROCEDURE SYSLIB H-68

BiosParmBlock Bios TYPE SYSLIB H-27
BiosParmPtr Bios TYPE SYSLIB H-27
BitBlk AESObjects TYPE SYSLIB H-16

BitBlkPtr AESObjects TYPE SYSLIB H-16
BitBlt LineA PROCEDURE SYSLIB H-39
BitBltPointer LineA TYPE SYSLIB H-37

BitBltRecord LineA TYPE SYSLIB H-37
Black AESBase CONST SYSLIB H-05

BlitterMode XBios PROCEDURE SYSLIB H-69
BlockModes Bios TYPE SYSLIB H-27

Blue AESBase CONST SYSLIB H-05

BS ASCII CONST STDLIB F-®3

BusyRead Terminal PROCEDURE SPCLIB Resu
Button AESEvents PROCEDURE SYSLIB H-97
ButtonActivities SSWiS TYPE SPCLIB G-25
BYTE SYSTEM TYPE SYSTEM E-03

Calc AESWindows TYPE SYSLIB H-24
Call JCL PROCEDURE SPCLI G-14

Call Loader PROCEDURE SPCLIB G-16
CallerOf System PROCEDURE SPCLIB G-36
CallResult AESBase VAR SYSLIB H-06
CallVvDI VDIBase PROCEDURE SYSLIB H-45

CAN ASCII CONST STDLIB F-03

Cardinal AStr PROCEDURE SPCLIB G-46

J-02 LIB-INDEX SPC MODULA-2 V1.4

Name

Modul Typ Lib Seite

CardToString NumberConversions PROCEDURE STDLIB F-20

Cd JCL PROCEDURE SPCLIB G-14

CellArray YDIOutputs PROCEDURE SYSLIB H-61

Center AESForms PROCEDURE SYSLIB H-09

Change AESObjects PROCEDURE SYSLIB H-13

ChangeFileName VDIEscapes PROCEDURE SYSLIB H-52

Char XStr PROCEDURE SPCLIB G-46
CharsPerLine Printer PROCEDURE STDLIB F-23

Clear Bytes PROCEDURE SPCLIB G-04

Clear SSWiS CONST SPCLIB G-24

Clear Strings PROCEDURE STDLIB F-27

Clear TextWindows TYPE SPCLIB G-43
ClearDisplayList VDIEscapes PROCEDURE SYSLIB H-51

ClearWorkstation VDIControls PROCEDURE SYSLIB H-47
Close AESWindows TYPE SYSLIB H-24

Close ByteStreams PROCEDURE STDLIB F-04
Close Files PROCEDURE SYSLIB H-29
Close FileSystem PROCEDURE STDLIB F-10
Close GemDos PROCEDURE SYSLIB H-33

Close TextStreams PROCEDURE STDLIB F-31

CloseInput InOut PROCEDURE STDLIB F-14
CloseQutput InOut PROCEDURE STDLIB F-14

CloseVirtualWorkstation VDIControls PROCEDURE SYSLIB H-47
CloseWorkstation VDIControls PROCEDURE SYSLIB H-47

ColourComposition VDIAttributes TYPE SYSLIB H-41
ColourIntensity VDIAttributes TYPE SYSLIB H-41
ColourRange VDIAttributes TYPE SYSLIB H-41

Combine Rectangle PROCEDURE SPCLIB G-19
CombinedWSDescr VDIInquires TYPE SYSLIB H-57

Compare Strings PROCEDURE STDLIB F-23
Concat Strings PROCEDURE STDLIB F-27
ConfigureMouse SSWiS PROCEDURE SPCLIB G-30
ConIn GemDos PROCEDURE SYSLIB H-32

ConInStat GemDos PROCEDURE SYSLIB H-33
ConNegIn GemDos PROCEDURE SYSLIB H-32

ConOut GemDos PROCEDURE SYSLIB H-32

ConOutStat GemDos PROCEDURE SYSLIB H-33
ConRawIn GemDos PROCEDURE SYSLIB H-32
ConRawIO GemDos PROCEDURE SYSLIB H-32

ConReadString GemDos PROCEDURE SYSLIB H-33
Consume Process PROCEDURE SPCLIB G-18

Contentof Frags PROCEDURE SPCLIB G-12

Contentof TextFiles PROCEDURE SPCLIB G-39
ContourFill VDIOut puts PROCEDURE SYSLIB H-61
contri VDIBase VAR SYSLIB H-45

Controlkeys SSWiS TYPE SPCLIB G-24
ConWriteString GemDos PROCEDURE SYSLIB H-33

Coordinate VDIOut puts TYPE SYSLIB H-60
Coordinates SSWiS TYPE SPCLIB G-23

Coordinates TextWindows TYPE SPCLIB G-41
CoordinateTypes VDIAttributes TYPE SYSLIB H-42

SPC MODULA-2 V1.4 LIB-INDEX J-03

Name Modul Typ Lib Seite

Copy Strings PROCEDURE STDLIB F-28

CopyFor Bytes PROCEDURE SPCLIB G-04

CopyForWhile XStr PROCEDURE SPCLIB G-45
CopyRasterOpaque VDIRasters PROCEDURE SYSLIB H-63

CopyRasterTransparent VDIRasters PROCEDURE SYSLIB H-63

CopyWhileIn Bytes PROCEDURE SPCLIB G-04

CopyWhileNot Bytes PROCEDURE SPCLIB G-@4
CopyWhileNotIn Bytes PROCEDURE SPCLIB G-94

cos LMathLib PROCEDURE STDLIB F-17

cos MathLib PROCEDURE STDLIB F-19
cosh LMathLib PROCEDURE STDLIB F-17

cosh MathLib PROCEDURE STDLIB F-19
cot LMathLib PROCEDURE STDLIB F-17
cot MathLib PROCEDURE STDLIB F-19
Cp JCL PROCEDURE SPCLIB G-14
CR ASCII CONST STDLIB F-®3
Create AESWindows PROCEDURE SYSLIB H-24
Create Files PROCEDURE SYSLIB H-29
Create Fraaqs PROCEDURE SPCLIB G-11
Create GemDos PROCEDURE SYSLIB H-33

Create Process PROCEDURE SPCLIB G-18

Create SplittedPieces PROCEDURE SPCLIB G-21
Create TextFiles PROCEDURE SPCLIB G-38

Create TextWindows TYPE SPCLIB G-42
CreateWindow SSWiS PROCEDURE SPCLIB 6-27

CtrlArrayType VDIBase TYPE SYSLIB H-45

Current Frags PROCEDURE SPCLIB G-11
CurrentFolder HFS PROCEDURE STDLIB F-i12
CurrentLine Printer PROCEDURE STDLIB F-23
CurrentPage Printer PROCEDURE STDLIB F-23

CurrentPosition Printer PROCEDURE STDLIB F-23
CurrExcFrame System VAR SPCLIB G-37

CurrExcRoot System VAR SPCLIB G-37
CurrExcType System VAR SPCLIB G-37
CursorAddress VDIEscapes PROCEDURE SYSLIB H-50
CursorConfig XBios PROCEDURE SYSLIB H-68
CursorDown VDIEScapes PROCEDURE SYSLIB_ H-49
CursorHome VDIEscapes PROCEDURE SYSLIB H-50

CursorLeft VDIEscapes PROCEDURE SYSLIB H-50
CursorRight VDIEscapes PROCEDURE SYSLIB H-49
Cursors AESGraphics TYPE SYSLIB H-11
CursorUp VDIEscapes PROCEDURE SYSLIB H-49

Cyan AESBase CONST SYSLIB H-05

DataPtr AltResource TYPE SYSLIB H-26

DCi ASCII CONST STDLIB F-03
DC2 ASCII CONST STDLIB F-03
DC3 ASCII CONST STDLIB F-93
DC4 ASCII CONST TDLIB F-03
Deallocate Storage PROCEDURE STDLIB F-26

DEALLOCATE Storage PROCEDURE STDLIB F-26

J-04 LIB- INDEX SPC MODULA-2 V1.4

Name

Bm
Oo
O
O

F

~J
2
W
D

Rm
&

A
1
H

WwW

A
P

Modul Typ Lib Seite

DeallocateProc SplittedPieces TYPE SPCLIB G-2
Decode Clock PROCEDURE STDLIB F-@

Decode HFS PROCEDURE STDLIB F-1
DecodedTime Clock TYPE STDLIB F-@
DefaultExcHandler System -PROCEDURE SPCLIB G-3

DefaultHandler JCL PROCEDURE SPCLIB G-1

DefineFillPattern VDIAttributes PROCEDURE SYSLIB H-4
DefineLineStyle VDIAttributes PROCEDURE SYSLIB H-4

DEL ASCII CONST STDLIB F-@

Delete AESObjects PROCEDURE SYSLIB H-1
Delete AESWindows TYPE SYSLIB H-2

Delete Files PROCEDURE SYSLIB H-2

Delete _ FileSystem PROCEDURE STDLIB F-1
Delete Frags PROCEDURE SPCLIB G-1

Delete GenDos PROCEDURE SYSLIB H-3

Delete Process PROCEDURE SPCLIB G-18
Delete SplittedPieces PROCEDURE SPCLIB 6-21
Delete String PROCEDURE STDLIB F-28
Delete TextFiles PROCEDURE SPCLIB G-39

Delete TextWindows TYPE SPCLIB G-42
DeleteWindow SSWiS PROCEDURE SPCLIB G-27

Deregister SSWiS PROCEDURE SPCLIB G-27
Descriptor ByteStreams TYPE STDLIB F-04
Descriptor FileSysten TYPE STDLIB F-@9

Descriptor TextStreans TYPE STDLIB F-31
Devices Bios TYPE SYSLIB H-27
DeviceTypes VDIControls TYPE SYSLIB H-46

DeviceTypes VDIInputs TYPE SYSLIB H-53
DeviceTypes VDIInquires TYPE SYSLIB H-56

Dialogue AESForms PROCEDURE SYSLIB H-09
DirCreate GemDos PROCEDURE SYSLIB H-33
DirDelete GemDos PROCEDURE SYSLIB H-33

DisableInt XBios PROCEDURE SYSLIB H-68

DiskFree GemDos PROCEDURE SYSLIB H-33
DiskInfo GemDos TYPE SYSLIB H-32
DisplayCursor VDIEscapes PROCEDURE SYSLIB H-59
DIVS32 System PROCEDURE SPCLIB G-33
DIVU32 System PROCEDURE SPCLIB G-33
DLE ASCII CONST STDLIB F-®3

Do AESForns PROCEDURE SYSLIB H-09
Done InOut VAR STDLIB F-14
DosDate GemDos TYPE SYSLIB H-3l
DoSound XBios PROCEDURE SYSLIB H-69
DosTime GemDos TYPE SYSLIB H-3l
DoubleClick AESEvents PROCEDURE SYSLIB H-98.

DownArrow SSWiS CONST SPCLIB G-24
DragBox AESGraphics PROCEDURE SYSLIB H-11

Draw AESObjects PROCEDURE SYSLIB H-17

DrawArc VDIOutputs PROCEDURE SYSLIB H-61

DrawBar YDIOutputs PROCEDURE SYSLIB H-61

DrawCircle VDIOutputs PROCEDURE SYSLIB H-61

SPC MODULA-2 V1.4 LIB-INDEX J-05

Lib

Name Modul Typ Seite

DrawEllipse VDIOutputs PROCEDURE SYSLIB H-61
DrawEllipticalArc VDIOutputs PROCEDURE SYSLIB H-61
DrawEllipticalPie VDIOutputs PROCEDURE SYSLIB H-61

DrawPieSlice VDIOutputs PROCEDURE SYSLIB H-61
DrawProc AESObjects TYPE SYSLIB H-17
DrawRoundedBox VDIOutputs PROCEDURE SYSLIB H-62

DrawRoundedFilledBox VDIOutputs PROCEDURE SYSLIB H-62
DrawSprite LineA PROCEDURE SYSLIB H-39

DriveMap Bios PROCEDURE SYSLIB H-28
Drives Bios TYPE SYSLIB H-27
Drives GemDos TYPE SYSLIB H-31

DTA GemDos TYPE SYSLIB H-3i
DTAPtr GemDos TYPE SYSLIB H-31
Dup GemDos PROCEDURE SYSLIB H-34

e LMathLib CONST STDLIB F-17
e MathLib CONST STDLIB F-19
Echo JCL PROCEDURE SPCLIB G-13
EchoType VDIInputs TYPE SYSLIB H-53
Edit AESObjects PROCEDURE SYSLIB H-18
EditKeys SSWiS TYPE SPCLIB G-25
Edits AESObjects TYPE SYSLIB H-15
Elements AESWindows TYPE SYSLIB H-23
EM ASCII CONST STDLIB F-03
Empty Rectangle PROCEDURE SPCLIB G-20
EnableInt XBios PROCEDURE SYSLIB H-68
Encode Clock PROCEDURE STDLIB F-06
Encode HFS PROCEDURE STDLIB F-13
End Strings TYPE STDLIB F-27

EndOfFile Frags CONST SPCLIB G-10
ENQ ASCII CONST STDLIB F-@3
EnterAlphaMode VDIEscapes PROCEDURE SYSLIB H-49

entier LMathLib PROCEDURE STDLIB F-17
entier MathLib PROCEDURE STDLIB F-19
Envrn AESShells PROCEDURE SYSLIB H-22
EOL ASCII CONST STDLIB F-93
EOL TextStreams CONST STDLIB F-31

EOT ASCII CONST STDLIB F-93
Epsilon LMathLib VAR STDLIB F-17
Epsilon MathLib VAR STDLIB F-19
Equal Strings TYPE STDLIB F-27

EraseToEOL VDIEscapes PROCEDURE SYSLIB H-5@
EraseToEOS VDIEscapes PROCEDURE SYSLIB H-50

Error AESForms PROCEDURE SYSLIB H-09
ErrorHandler JCL TYPE SPCLIB G-13

ESC ASCII CONST STDLIB F-03
ETB ASCII CONST STDLIB F-03
ETX ASCII CONST STDLIB F-93
EventReports SSWIS TYPE SPCLIB G-26
Events AESEvents TYPE SYSLIB H-97
EventTypes SSWiS TYPE SPCLIB G-25

3-06 LIB-INDEX SPC MODULA-2 V1.4

Name

Modul Typ Lib Seite

ExchangeButtonV VDIInputs PROCEDURE SYSLIB H-55

ExchangeCursorV VDIInputs PROCEDURE SYSLIB H-55

ExchangeMovementV VDIInputs PROCEDURE SYSLIB H-55
ExchangeTimerV VDIInputs PROCEDURE SYSLIB H-55
Excl Bytes PROCEDURE SPCLIB G-05
ExcTypes System TYPE SPCLIB G-36
Exec GemDos PROCEDURE SYSLIB H-34
Exists JCL PROCEDURE SPCLIB G-14

Exit AESApplications PROCEDURE SYSLIB H-03
ExitAlphaMode VDIEscapes PROCEDURE SYSLIB H-49

exp LMathLib PROCEDURE STDLIB F-17

exp MathLib PROCEDURE STDLIB F-19

ExplicitRestore SSWiS PROCEDURE SPCLIB G-28

ExplicitRestore TextWindows TYPE SPCLIB G-42
Expose Terminal PROCEDURE STDLIB F-29

ExtendCoords VDIInquires TYPE SYSLIB H-57
ExtendedInquire VDIInquires PROCEDURE SYSLIB H-57
ExtendWSDescription VDIInquires TYPE SYSLIB H-56

Fi SSWiS CONST SPCLIB G-24

F10 SSWiS CONST SPCLIB G-24
F2 SSWiS CONST SPCLIB G-24

F3 SSWiS CONST SPCLIB G-24
F4 SSWiS CONST SPCLIB G-24
F5 SSWiS CONST SPCLIB G-24

F6 SSWiS CONST SPCLIB G-24
F7 SSWiS CONST SPCLIB G-24

F8 SSWiS CONST SPCLIB G-24
F9 SSWiS CONST SPCLIB G-24
FABSd Systen PROCEDURE SPCLIB G-34

FABSs System PROCEDURE SPCLIB G-33
FADDA System PROCEDURE SPCLIB G-33

FADDs System PROCEDURE SPCLIB G-33
FCMPd System PROCEDURE SPCLIB G-34

FCMPs System PROCEDURE SPCLIB G-33

FDIVd System PROCEDURE SPCLIB 6-33
FDIVs System PROCEDURE SPCLIB G-33
FF ASCII . CONST STDLIB F-03

File Files TYPE SYSLIB H-29

File FileSystem TYPE STDLIB F-09
File Frags TYPE SPCLIB G-10

File TextFiles TYPE SPCLIB 6-38

FileArg CmdLine PROCEDURE SPCLIB G-06
FileProc HFS . TYPE STDLIB F-12

FileSelectorInput AESForms PROCEDURE SYSLIB H-19

FileTimes GemDos TYPE SYSLIB H-32
FileTypes Environment TYPE SPCLIB G-08
FillArea VDIOutputs PROCEDURE SYSLIB H-60
FillAttrType VDIInquires TYPE SYSLIB H-57
FillPolyaon LineA PROCEDURE SYSLIB H-39

FillRange VDIAttributes TYPE SYSLIB H-41

SPC MODULA-2 V1.4 LIB-INDEX J-07

Name Modul Typ Lib Seite

FillRectangle LineA PROCEDURE SYSLIB H-38
FillRectangle VDIOutputs PROCEDURE SYSLIB H-61

FillStyles VDIAttributes TYPE SYSLIB H-41
FilmIndexType VDIEscapes TYPE SYSLIB H-49
FilmNameType VDIEscapes TYPE SYSLIB H-49
Find AESApplications PROCEDURE SYSLIB H-®3
Find AESObjects PROCEDURE SYSLIB H-17

Find AESShells PROCEDURE SYSLIB H-22
Find AESWindows TYPE SYSLIB H-24
Flags AESObjects TYPE SYSLIB H-15
FlatHand AESGraphics CONST SYSLIB H-11
FLOATd System PROCEDURE SPCLIB G-34

FLOATS System PROCEDURE SPCLIB 6-33
FLONG System PROCEDURE SPCLIB G-34

FlopFormat XBios PROCEDURE SYSLIB H-67
FlopRead XBios PROCEDURE SYSLIB H-67
FlopVerify XBios PROCEDURE SYSLIB H-68
FlopWrite XBios PROCEDURE SYSLIB H-67
FMULd System PROCEDURE SPCLIB G-33
FMULS Systen PROCEDURE SPCLIB 6-33

FNEGd System PROCEDURE SPCLIB G-34
FNEGs System PROCEDURE SPCLIB G-33

FolderSep GemDos CONST SYSLIB H-31
FolderSep HFS VAR STDLIB F-12

FontArray LineA TYPE SYSLIB H-35

FontPointer LineA TYPE SYSLIB H-35
Fonts Printer TYPE STDLIB F-22
FontSet Printer TYPE STDLIB F-22

FontSizes TextWindows TYPE SPCLIB G-41
FontTyp LineA TYPE SYSLIB H-35
FontTypes VDIAttributes TYPE SYSLIB H-41
ForAllFilesDo HFS PROCEDURE STDLIB F-12
Force GemDos PROCEDURE SYSLIB H-34
Forever XStr PROCEDURE SPCLIB G-45
FormAdvance VDIEscapes PROCEDURE SYSLIB 4H-51
Free AESResources PROCEDURE SYSLIB H-19
Free AltResource PROCEDURE SYSLIB H-26

FREMd System PROCEDURE SPCLIB G-34
FREMs System PROCEDURE SPCLIB G-33

FS ASCII CONST STDLIB F-03
FSHORT Systen PROCEDURE SPCLIB G-34
FSUBd System PROCEDURE SPCLIB G-33
FSUBs Systen PROCEDURE SPCLIB G-33

GEMCall AESBase PROCEDURE SYSLIB H-06
Get AESWindows TYPE SYSLIB H-24

Get lock PROCEDURE STDLIB F-06

Get CndLine PROCEDURE SPCLIB G-07
Get Environment PROCEDURE SPCLIB G-08

Get SplittedPieces PROCEDURE SPCLIB G-21

GetAddr AESResources PROCEDURE SYSLIB H-19

J-98 LIB-INDEX SPC MODULA-2 V1.4

Name Modul Typ Lib Seite

GetAddr AltResource PROCEDURE SYSLIB H-26

Getbpb Bios PROCEDURE SYSLIB H-28
GetDate GemDos PROCEDURE SYSLIB H-33

GetDrive GemDos PROCEDURE SYSLIB H-33

GetDTA GemDos PROCEDURE SYSLIB H-33

GetFilename Environment PROCEDURE SPCLIB G-08
GetFileType Environment PROCEDURE SPCLIB G-09
GetFont LineA PROCEDURE SYSLIB H-38

Getindexed Environment PROCEDURE SPCLIB G-08
GetIoRec XBios PROCEDURE SYSLIB H-68
GetModes GemDos TYPE SYSLIB H-32

Getmpb Bios PROCEDURE SYSLIB H-28

GetName . Printer PROCEDURE STDLIB F-24
GetPath GemDos PROCEDURE SYSLIB H-34
GetPixel LineA PROCEDURE SYSLIB H-38

GetPixel VDIRasters PROCEDURE SYSLIB H-64
GetPos Files PROCEDURE SYSLIB H-30
GetPos FileSysten PROCEDURE STDLIB F-19
GetResolution XBios PROCEDURE SYSLIB H-67

GetTime GemDos PROCEDURE SYSLIB H-33

GetTime XBios PROCEDURE SYSLIB H-68
Giaccess XBios PROCEDURE SYSLIB H-68
GraphicText VDIOutputs PROCEDURE SYSLIB H-60
Greater Strings TYPE STDLIB F-27
Green AESBase CONST SYSLIB H-05
GrowBox AESGraphics PROCEDURE SYSLIB H-12
GS ASCII CONST STDLIB F-03

HALTX System PROCEDURE SPCLIB G-33

Handle AESGraphics PROCEDURE SYSLIB H-12

Handles GemDos TYPE SYSLIB H-32

HardCopy VDIEscapes PROCEDURE SYSLIB H-59
Head Printer PROCEDURE STDLIB F-23
HeadProc Printer TYPE STDLIB F-22

Help SSWis CONST SPCLIB G-24
Hide Terminal PROCEDURE STDLIB F-29
HideCursor VDIInputs PROCEDURE SYSLIB H-55
HideMouse LineA PROCEDURE SYSLIB H-39

HorAlignnent VDIAttributes TYPE SYSLIB H-41
HorizLine LineA PROCEDURE SYSLIB H-38

HourGlass AESGraphics CONST SYSLIB 4H-11

HT ASCII CONST STDLIB F-93

IconBlk AESObjects TYPE SYSLIB H-16
IconBlkPtr AESObjects TYPE SYSLIB H-16

IconiseWindow SSWiS PROCEDURE SPCLIB G-27
Identify SSWiS PROCEDURE SPCLIB G-31

- Identify TextWindows TYPE SPCLIB G-43
Incl Bytes PROCEDURE SPCLIB G-05

Includes Rectangle PROCEDURE SPCLIB G-20

Init LMathLib PROCEDURE STDLIB F-17

SPC MODULA-2 V1.4 LIB-INDEX J-99

Name Modul Typ Lib Seite

Init Printer PROCEDURE STDLIB F-24

Init Process PROCEDURE SPCLIB 6-17
Init TextFiles PROCEDURE SPCLIB G-38

Init Watch PROCEDURE SYSLIB H-65

Initialise AESApplications PROCEDURE SYSLIB H-03
Initialize LineA PROCEDURE SYSLIB H-37

InitMouse XBios PROCEDURE SYSLIB H-67
InitResource Process PROCEDURE SPCLIB G-18
InitSystemFont VDIEscapes PROCEDURE SYSLIB H-52
INLINE SYSTEM PROCEDURE SYSTEM E-03
InputChoiceRQ VDIInputs PROCEDURE SYSLIB H-54
InputChoiceSM VDIInputs PROCEDURE SYSLIB H-54
InputLocatorRQ VDIInputs PROCEDURE SYSLIB H-53

InputLocatorSM VDIInputs PROCEDURE SYSLIB H-54

InputModes VDIInputs TYPE SYSLIB H-53

InputStringRQ VDIInputs PROCEDURE SYSLIB H-54

InputStringSM VDIInputs PROCEDURE SYSLIB H-54

InputValuatorRQ VDIInputs PROCEDURE SYSLIB H-54
InputValuatorsSM VDIInputs PROCEDURE SYSLIB H-54

Inquire JCL . PROCEDURE SPCLIB 6-14

InquireCellArray VDIInquires PROCEDURE SYSLIB H-58
InquireCharCells VDIEscapes PROCEDURE SYSLIB H-49
InquireCharWidth VDIInquires PROCEDURE SYSLIB H-58
InquireColour VDIInquires PROCEDURE SYSLIB H-58
InquireCursorAddress VDIEscapes PROCEDURE SYSLIB 8-50
InquireFacelInfo VDIInquires PROCEDURE SYSLIB H-59
InquireFaceName VDIInquires PROCEDURE SYSLIB H-58
InquireFillAttributes VDIInquires PROCEDURE SYSLIB H-58
InquireInputMode VDIInquires PROCEDURE SYSLIB H-59

InquireLineAttributes VDI Inquires PROCEDURE SYSLIB H-58

InquireMarkerAttributes VDIInquires PROCEDURE SYSLIB H-58
InquirePaletteFilms VDIEscapes PROCEDURE SYSLIB H-51
InquirePaletteState VDIEscapes PROCEDURE SYSLIB H-51
InquireTabletStatus VDIEscapes PROCEDURE SYSLIB H-50
InquireTextAttributes VDIInquires PROCEDURE SYSLIB H-58
InquireTextExtent VDIInquires PROCEDURE SYSLIB H-58
Insert Frags PROCEDURE SPCLIB G-11
Insert SSWiS CONST SPCLIB G-24
Insert Strings PROCEDURE STDLIB F-27
Insert TextFiles PROCEDURE SPCLIB G-39
InstallHeader Printer PROCEDURE STDLIB F-23
Instance Rectangle TYPE SPCLIB G-19

Integer XStr PROCEDURE SPCLIB G-46
Interiorof TextWindows TYPE SPCLIB 6-43
Intersect Rectangle PROCEDURE SPCLIB 6-19
intin VDIBase VAR SYSLIB 4-45
intout VDIBase VAR SYSLIB H-45
IntToString NumberConversions PROCEDURE STDLIB F-20
InvCardinal XStr PROCEDURE SPCLIB 6-47

Invert TextWindows TYPE SPCLIB 6-43
Invinteger XStr PROCEDURE SPCLIB G-47

J-10 LIB-INDEX SPC MODULA-2 V1.4

Name

Modul Typ Lib Seite

InvLonacard XStr PROCEDURE SPCLIB G-47

InvLongint XStr PROCEDURE SPCLIB G-47

InvLongreal XStr PROCEDURE SPCLIB G-47

InvReal XStr PROCEDURE SPCLIB G-47

IoRec XBios TYPE SYSLIB H-66
IoRecPtr XBios TYPE SYSLIB H-66
IOTRANSFER Coroutines PROCEDURE STDLIB F-08
ItemCheck AESMenus PROCEDURE SYSLIB H-13

ItemEnable AESMenus PROCEDURE SYSLIB AH-13

ItemHandles SSWiS TYPE SPCLIB G-23

Items AESWindows TYPE SYSLIB H-23
ItemStruc AESWindows TYPE SYSLIB H-23
ItemTypes AESResources TYPE SYSLIB H-19

Justifications AESObjects TYPE SYSLIB H-15
JustifiedText VDIOutputs PROCEDURE SYSLIB H-62

KbdRate XBios PROCEDURE SYSLIB H-69

KbdStates AESEvents TYPE SYSLIB H-07
KeyBase XBios PROCEDURE SYSLIB H-69
Keyboard AESEvents PROCEDURE SYSLIB H-07

KeyboardSpecials VDIInputs TYPE SYSLIB H-53
KeyboardState VDIInputs TYPE SYSLIB H-53

KeyboardWrite XBios PROCEDURE SYSLIB H-68
KeyEvent SSWiS TYPE SPCLIB G-25

KeyShifts Bios PROCEDURE SYSLIB H-28
KeyTab XBios TYPE SYSLIB H-66
KeyTable XBios PROCEDURE SYSLIB H-68
KeyTabPtr XBios TYPE SYSLIB H-66

KeyVecs XBios TYPE SYSLIB H-66

KeyVecsPtr XBios TYPE SYSLIB H-67
KillThread System PROCEDURE SPCLIB G-36

Label TextFiles PROCEDURE SPCLIB G-39
Labels TextFiles TYPE SPCLIB G-38
LeftArrow SSWiS CONST SPCLIB G-24

LeftBorderSize Printer PROCEDURE STDLIB F-23
Length Files PROCEDURE SYSLIB H-30

Length FileSystem PROCEDURE STDLIB F-10

Length Strings PROCEDURE STDLIB F-27
Lengthof Frags “ PROCEDURE SPCLIB G-12

Lengthof TextFiles PROCEDURE SPCLIB G-39

Less Strings TYPE STDLIB F-27
LF ASCII CONST STDLIB F-03

lg LMathLib PROCEDURE STDLIB F-17

lg MathLib PROCEDURE STDLIB F-i9
LightBlack AESBase CONST SYSLIB H-05
LightBlue AESBase CONST SYSLIB H-05

LightCyan AESBase CONST SYSLIB H-@5
LightGreen AESBase CONST SYSLIB H-05
LightMagenta AESBase CONST SYSLIB H-05

SPC MODULA-2 V1.4 LIB-INDEX J-11

Nane Modul Typ Lib Seite

LightRed AESBase CONST SYSLIB H-05

LightWhite AESBase CONST SYSLIB H-95
LightYellow AESBase CONST SYSLIB H-05

Line LineA PROCEDURE SYSLIB H-38
LineAttrType VDIInquires TYPE SYSLIB H-57
LineAVarPointer LineA TYPE SYSLIB H-35
LineAVarRecord. LineA TYPE SYSLIB H-35
LineAVDIPointer Linea TYPE SYSLIB H-36
.LineAVDIRecord LineA TYPE SYSLIB H-36
LineEndStyles VDIAttributes TYPE SYSLIB H-41
LineFeed Frags CONST SPCLIB G-10
LineNumberOf TextFiles PROCEDURE SPCLIB G-39
Lines SSWiS TYPE SPCLIB G-23
LinesPerPage Printer PROCEDURE STDLIB F-23
LineStyles VDIAttributes TYPE SYSLIB H-41
LinkThread System PROCEDURE SPCLIB G-35
List SplittedPieces TYPE SPCLIB G-21
In ı LMathLib PROCEDURE STDLIB F-17
ln MathLib PROCEDURE STDLIB F-19

Load AESResources PROCEDURE SYSLIB H-19

Load AltResource PROCEDURE SYSLIB H-26
Load Printer PROCEDURE STDLIB F-24
LoadFonts VDIControls PROCEDURE SYSLIB H-48
LoadModes GemDos TYPE SYSLIB H-32
LoqBase XBios PROCEDURE SYSLIB H-67

LogicModes VDIRasters TYPE SYSLIB H-63
LONG SYSTEM PROCEDURE SYSTEM E-03
Longcard XStr PROCEDURE SPCLIB G-46
LongCardToString NumberConversions PROCEDURE STDLIB F-20
Longint XStr PROCEDURE SPCLIB G-46

LongIntToString NumberConversions PROCEDURE STDLIB F-20
Longreal XStr PROCEDURE SPCLIB G-46
LongRealToString RealConversions PROCEDURE STDLIB F-25
Lookup Files PROCEDURE SYSLIB H-29
Lookup FileSystem PROCEDURE STDLIB F-99

Magenta AESBase CONST SYSLIB H-05
MarkerAttrType VDIInquires TYPE SYSLIB H-57
MarkerTypes VDIAttributes TYPE SYSLIB H-41
MediaChange Bios PROCEDURE SYSLIB H-28
MediaStat Bios TYPE SYSLIB H-27
MemAlloc GemDos PROCEDURE SYSLIB H-34
MemDefBlock Bios TYPE SYSLIB H-27

MemDefPtr Bios TYPE SYSLIB H-27

MemFree GemDos PROCEDURE SYSLIB H-34

MemoryFormDefBlock VDIRasters TYPE SYSLIB H-53
MemParmBlock Bios TYPE SYSLIB H-27
MenuEvent SSWis TYPE SPCLIB 6-25

MenuSelected AESEvents CONST SYSLIB H-®7

Message AESEvents PROCEDURE SYSLIB H-98
MetaKeys SSWiS TYPE SPCLIB G-25

J-12 LIB-INDEX SPC MODULA-2 ¥1.4

Name Modul Typ Lib Seite

MFDBAddress VDIRasters TYPE SYSLIB H-63
MFormPointer LineA TYPE SYSLIB H-37
MFormRecord LineA TYPE SYSLIB H-37
MFPInt XBios PROCEDURE SYSLIB H-68
MidiWrite XBios PROCEDURE SYSLIB H-68
MkDir JCL PROCEDURE SPCLIB G-14
ModuleDescr System TYPE SPCLIB G-34
ModuleDeserPtr System TYPE SPCLIB 6-34

ModuleHandles SSWiS TYPE SPCLIB G-23

ModuleKeys System TYPE SPCLIB G-34
ModuleNames System TYPE SPCLIB G-34

Mouse AESEvents PROCEDURE SYSLIB H-08
Mouse AESGraphics PROCEDURE SYSLIB H-12
MouseCodes VDIInputs TYPE SYSLIB H-53
MouseEvent SSWiS TYPE SPCLIB G-25
MouseFormType VDIInputs TYPE SYSLIB H-53
MouseKeyboardState AESGraphics PROCEDURE SYSLIB H-12
MouseOff AESGraphics CONST SYSLIB H-11
MouseOn AESGraphics CONST SYSLIB H-11
MouseParams XBios TYPE SYSLIB H-66
MouseSprites SSWiS TYPE SPCLIB G-25
MouseState VDIInputs TYPE SYSLIB H-53

MouseStyles SSWiS TYPE SPCLIB G-25
MouseTypes XBios TYPE SYSLIB H-66
MoveAbs Rectangle PROCEDURE SPCLIB G-19
MoveBox AESGraphics PROCEDURE SYSLIB H-il

MoveRel Rectangle PROCEDURE SPCLIB G-19-

MULS32 System PROCEDURE SPCLIB G-33
Multiple AESEvents PROCEDURE SYSLIB H-08
MULU32 System PROCEDURE SPCLIB G-33
Mv JCL PROCEDURE SPCLIB G-14

NAK ASCII CONST STDLIB F-93
NameLength GemDos CONST SYSLIB H-31

NameLength HFS VAR STDLIB F-12
NationalKeys SSWiS TYPE SPCLIB G-25
NeverClip SSWiS VAR SPCLIB G-26
NEWPROCESS Coroutines PROCEDURE STDLIB F-08
Next Frags PROCEDURE SPCLIB G-ii
NextDescriptor System PROCEDURE SPCLIB G-35

NilKey SSWiS CONST SPCLIB G-24
NotifyForn Sswis PROCEDURE SPCLIB G-31
NUL ASCII CONST STDLIB F-03
NullLine. SSWis | VAR SPCLIB G-26
NullPoint SSWiS VAR SPCLIB G-26

NullScreenLine SSWIS VAR SPCLIB G-26
NullScreenPoint SSWis VAR SPCLIB G-26
Numd SSWiS CONST SPCLIB G-24
Numi SSWiS CONST SPCLIB G-24
Num2 SSWiS CONST SPCLIB G-24

Num3 SSWiS CONST SPCLIB G-24

SPC MODULA-2 V1.4 LIB-INDEX J-13

Name Modul Typ Lib Seite

Num4 SSWiS CONST SPCLIB G-24
Num5 SSWiS CONST SPCLIB G-24
Num6 “ SSWiS CONST SPCLIB G-24

Num7 SSWiS CONST SPCLIB G-24

Num8 SSWiS CONST SPCLIB G-24
Nun9 SSWiS CONST SPCLIB G-24

NumAsterisk SSWiS CONST SPCLIB 6-24
NumberBase XStr VAR SPCLIB G-45

NumDot SSWiS CONST SPCLIB G-24

NumEnter SSWiS CONST SPCLIB G-24
NumLeftBracket SSWiS CONST SPCLIB G-24

NumMinus SSWiS CONST SPCLIB G-24
NumPlus SSWiS CONST SPCLIB G-24

NumRightBracket' SSWiS CONST SPCLIB G-24

NumSlash SSWiS CONST SPCLIB G-24

Object AESObjects TYPE SYSLIB H-16
ObjectFix AESResources PROCEDURE SYSLIB H-19
ObjectTree AESObjects TYPE SYSLIB H-16
OccurencesOf Frags PROCEDURE SPCLIB G-il
Offgibit XBios PROCEDURE SYSLIB H-68
Offset AESObjects PROCEDURE SYSLIB H-17
OnErrorDo JCL PROCEDURE SPCLIB 6-13
OnExeptionDo System PROCEDURE SPCLIB G-37

Ongibit XBios -PROCEDURE SYSLIB H-68

Online Printer PROCEDURE STDLIB F-22

OnModuleTerminationDo System PROCEDURE SPCLIB G-36
Open AESWindows TYPE SYSLIB H-24
Open ByteStreams PROCEDURE STDLIB F-04

Open Frags PROCEDURE SPCLIB G-10

Open GemDos PROCEDURE SYSLIB H-33
Open TextFiles PROCEDURE SPCLIB G-38

Open TextStreams PROCEDURE STDLIB F-31
OpenInput Inout PROCEDURE STDLIB F-14
OpenModes GemDos TYPE SYSLIB H-32
OpenOutput InOut PROCEDURE STDLIB F-14
OpenVirtualWorkstation VDIControls PROCEDURE SYSLIB H-47
OpenWorkstation VDIControls PROCEDURE SYSLIB H-47
Option CmdLine PROCEDURE SPCLIB G-®6

Or Bytes PROCEDURE SPCLIB G-04
Order AESObjects PROCEDURE SYSLIB H-17
OutlineCross AESGraphics CONST SYSLIB H-11
OutputBitImageFile “ VDIEscapes PROCEDURE SYSLIB H-51
OutputText VDIEscapes PROCEDURE SYSLIB H-50

QutputWindow VDIEscapes PROCEDURE SYSLIB H-51

Pad Strings PROCEDURE STDLIB F-28
Page Printer PROCEDURE STDLIB F-22

Palette XBios TYPE SYSLIB H-66
PaletteErrorInquire VDIEscapes PROCEDURE SYSLIB H-52
Parallel GenDcs CONST SYSLIB H-31

J-14 LIB-INDEX SPC MODULA-2 V1.4

Name Modul Typ Lib Seite

ParamBlk AESObjects TYPE SYSLIB H-17

ParamBlkPtr AESObjects TYPE SYSLIB H-16

parameterBlock VDIBase VAR SYSLIB H-45

Paths GemDos TYPE SYSLIB H-32

Phases AESForms TYPE SYSLIB H-09
PhysBase XBios PROCEDURE SYSLIB H-67

pi LMathLib CONST STDLIB F-17

pi MathLib CONST STDLIB F-19

PlaceWindowOnTop SSWiS PROCEDURE SPCLIB G-27

PlainText Frags CONST SPCLIB G-19
Pline LineA PROCEDURE SYSLIB H-38

PointerOf Frags PROCEDURE SPCLIB G-12
PointerOf TextFiles PROCEDURE SPCLIB G-40

PointHand AESGraphics CONST SYSLIB H-1i

Points SSWiS TYPE SPCLIB 6-23

Points TextWindows TYPE SPCLIB G-4i
PollEvents SSWiS PROCEDURE SPCLIB G-27

PolyLine vDIOutputs PROCEDURE SYSLIB H-60
PolyMarker VDIOutputs PROCEDURE SYSLIB H-60
Pos Strings PROCEDURE STDLIB F-28
Position TextFiles PROCEDURE SPCLIB G-39

Position TextWindows TYPE SPCLIB G-43
Positionof TextFiles PROCEDURE SPCLIB G-39

Positionof TextWindows TYPE SPCLIB 6-43
PositionOfWindow SSWiS PROCEDURE SPCLIB G-28

PositionOfWorld SSWiS PROCEDURE SPCLIB G-29
PositionWindow SSWiS PROCEDURE SPCLIB G-28

PositionWorld SSWiS PROCEDURE SPCLIB 6-29

PositionWorld TextWindows TYPE -SPCLIB G-42
Preset Rectangle PROCEDURE SPCLIB G-19

Prev Frags PROCEDURE SPCLIB G-11

PrintBlock XBios PROCEDURE SYSLIB H-69

PrintParmBlock XBios TYPE SYSLIB H-67

PrintParmPtr XBios TYPE SYSLIB H-67
PrnOut GemDos PROCEDURE SYSLIB H-32

PrnOutStat GemDos PROCEDURE SYSLIB H-33
ProcedureFrames Systen TYPE SPCLIB G-36
Produce Process PROCEDURE SPCLIB G-18

Protobt XBios. PROCEDURE SYSLIB H-68

ptsin VDIBase VAR SYSLIB H-45
ptsout VDIBase VAR SYSLIB H-45
PuntAES XBios PROCEDURE SYSLIB H-69

Put SplittedPieces PROCEDURE SPCLIB G-21
PutPixel LineA PROCEDURE SYSLIB 4H-38

Quantity Storage TYPE STDLIB F-26

Query JCL PROCEDURE SPCLIB 6-13

Random XBios PROCEDURE SYSLIB H-68

RasterWorld SSWiS PROCEDURE SPCLIB G-29

Read AESApplications PROCEDURE SYSLIB H-93

SPC MODULA-2 V1.4 LIB-INDEX J-15

Name Modul Typ Lib Seite

Read AESScraps PROCEDURE SYSLIB H-21

Read AESShells PROCEDURE SYSLIB H-22

Read ByteStreans PROCEDURE STDLIB F-04
Read GemDos PROCEDURE SYSLIB H-33
Read InOut PROCEDURE STDLIB F-15
Read Terminal PROCEDURE STDLIB F-29
Read TextStreans PROCEDURE STDLIB F-32
ReadBlock Files PROCEDURE SYSLIB H-30
ReadByte ByteStreams PROCEDURE STDLIB F-05
ReadCard InOut PROCEDURE STDLIB F-15
ReadCard TextStreams PROCEDURE STDLIB F-32

ReadChar FileSystem PROCEDURE STDLIB F-10

ReadInt InOut PROCEDURE STDLIB F-15

ReadInt TextStreams PROCEDURE STDLIB F-32

ReadLn InOut PROCEDURE STDLIB F-15

ReadLn TextStreams PROCEDURE STDLIB F-32
ReadLongcard InOut PROCEDURE STDLIB F-15
ReadLongcard TextStreams PROCEDURE STDLIB F-32

ReadLongint InOut PROCEDURE STDLIB F-15
ReadLongint TextStreams PROCEDURE STDLIB F-32

 Readlongreal InOut PROCEDURE STDLIB F-15
ReadLongreal TextStreams 2 PROCEDURE STDLIB F-32
ReadReal InOut PROCEDURE STDLIB F-15
ReadReal TextStreams PROCEDURE STDLIB F-32

ReadString InOut PROCEDURE STDLIB F-15
ReadString TextStreams PROCEDURE STDLIB F-32
ReadWord ByteStreams PROCEDURE STDLIB F-05
ReadWord FileSystem PROCEDURE STDLIB F-10
real LMathLib PROCEDURE STDLIB F-17
real MathLib PROCEDURE STDLIB F-19

Real XStr PROCEDURE SPCLIB G-46
RealToString RealConversions PROCEDURE STDLIB F-25
Red AESBase CONST SYSLIB H-05

RedirectInput InOut PROCEDURE STDLIB F-14
RedirectOutput InOut PROCEDURE STDLIB F-14
REG SYSTEM PROCEDURE SYSTEM E-03

Register AESMenus PROCEDURE SYSLIB H-13

Register sswWwis PROCEDURE SPCLIB G-27

Reinit SSWiS PROCEDURE SPCLIB G-27
Relinquish Process PROCEDURE SPCLIB G-18
RemoveCursor VDIEscapes PROCEDURE SYSLIB H-51
Renane Files PROCEDURE SYSLIB H-29
Renane FileSystem PROCEDURE STDLIB F-10
Rename GemDos PROCEDURE SYSLIB H-34
Replace TextFiles PROCEDURE SPCLIB G-39
ReservedType Frags CONST SPCLIB G-10
Reset Printer PROCEDURE STDLIB F-23
Resize Rectangle PROCEDURE SPCLIB G-19
Resolution Clock CONST STDLIB F-06
Resource Process TYPE SPCLIB G-17

Response FileSystem TYPE STDLIB F-09

J-16 LIB-INDEX SPC MODULA-2 V1.4

Name

Modul Typ Lib Seite

RestoreProc SSWiS TYPE SPCLIB G-24

RestoreProc TextWindows TYPE SPCLIB G-41

Result CmdLine PROCEDURE SPCLIB G-07

Result Frags VAR SPCLIB G-10
Result GemDos VAR SYSLIB H-32
Result SSWis VAR SPCLIB 6-27

Result XBios VAR SYSLIB H-67

ResultIs CndLine PROCEDURE SPCLIB G-07

Results ByteStreams TYPE STDLIB F-04

Results Files TYPE SYSLIB H-29
Results Frags TYPE SPCLIB G-19
Results JCL TYPE SPCLIB G-13

Results SSWiS TYPE SPCLIB G-26

Results TextFiles VAR SPCLIB G-38

Resync SSWiS PROCEDURE SPCLIB G-27

Retype Frags PROCEDURE SPCLIB G-12

ReverseVideoOff VDIEscapes PROCEDURE SYSLIB H-5@

ReverseVideoOn VDIEscapes PROCEDURE SYSLIB H-50
rgText TextFiles TYPE SPCLIB G-38
RightArrow SSWiS CONST SPCLIB G-24
Rm . JCL PROCEDURE SPCLIB G-14

RmDir JCL PROCEDURE SPCLIB G-14
RS” ASCII CONST STDLIB F-03
RSConfig XBios PROCEDURE SYSLIB H-68

RubberBox AESGraphics PROCEDURE SYSLIB H-11
RunThread System PROCEDURE SPCLIB G-36

Rwabs Bios PROCEDURE SYSLIB H-28

SampleKeyboard VDIInputs PROCEDURE SYSLIB H-55
SampleMouseButton VDIInputs PROCEDURE SYSLIB H-55

Save Environnent PROCEDURE SPCLIB 6-09
SaveAs Frags PROCEDURE SPCLIB G-11
SaveAs TextFiles PROCEDURE SPCLIB G-38

SavePaletteState VDIEscapes PROCEDURE SYSLIB H-52
ScanCodes Bios TYPE SYSLIB H-27
ScanCodes GemDos TYPE SYSLIB H-31
ScanForWhile XStr PROCEDURE SPCLIB G-45
ScanWhileIn Bytes PROCEDURE SPCLIB 6-03
ScanWhileNot Bytes PROCEDURE SPCLIB 6-63
ScanWhileNotIn Bytes PROCEDURE SPCLIB 6-93

ScreenColours SSWiS VAR SPCLIB G-26

ScreenCoordinates SSWiS TYPE SPCLIB G-23
ScreenDump XBios PROCEDURE SYSLIB H-68
ScreenLines SSWiS TYPE SPCLIB G-23
ScreenPoints SSWiS TYPE SPCLIB G-23

ScreenRes XBios TYPE SYSLIB H-56

ScreenSize SSWiS VAR SPCLIB G-26
SDBPointer LineA TYPE SYSLIB H-37

SDBRecord LineA TYPE SYSLIB H-37

SearchFirst GemDos PROCEDURE SYSLIB H-34
SearchModuleByName Systen PROCEDURE SPCLIB 6-35

SPC MODULA-2 V1.4 LIB-INDEX J-17

Name Modul Typ Lib Seite

SearchModuleByStaticBase System PROCEDURE SPCLIB G-35
SearchNext GemDos PROCEDURE SYSLIB H-34

SearchResults System TYPE SPCLIB G-35
Seek GemDos PROCEDURE SYSLIB H-34

SeekModes GemDos TYPE SYSLIB H-32

SelectPalette VDIEscapes PROCEDURE SYSLIB H-51
Serial GemDos CONST SYSLIB H-31
Set AESWindows TYPE SYSLIB H-24

Set Clock PROCEDURE STDLIB F-06

Set CmdLine PROCEDURE SPCLIB G-96
Set Environment PROCEDURE SPCLIB G-®8
SetAbsCharHeight VDIAttributes PROCEDURE SYSLIB H-43

SetAddr AESResources PROCEDURE SYSLIB H-19
SetAttribute Printer PROCEDURE STDLIB F-24

SetCaret SSWiS PROCEDURE SPCLIB G-30
SetCaret TextWindows TYPE SPCLIB G-43
SetCharsPerLine Printer PROCEDURE STDLIB F-23
SetClipping VDIControls PROCEDURE SYSLIB H-48
SetColour VDIAttributes PROCEDURE SYSLIB H-42

SetColour XBios PROCEDURE SYSLIB H-67

SetContrl VDIBase PROCEDURE SYSLIB H-45

SetDate GemDos PROCEDURE SYSLIB H-33
SetDefaultExcHandler System PROCEDURE SPCLIB G-37
SetDrv GemDos PROCEDURE SYSLIB H-33
SetDTA GemDos PROCEDURE SYSLIB H-33
SetEndLineStyle VDIAttributes PROCEDURE SYSLIB H-42
SetException Bios PROCEDURE SYSLIB H-28
SetFillColour VDIAttributes PROCEDURE SYSLIB H-44
SetFillInteriorStyle VDIAttributes PROCEDURE SYSLIB H-44

SetFillPerimeterVisibility VDIAttributes PROCEDURE SYSLIB H-44
SetFillStyleIndex VDIAttributes PROCEDURE SYSLIB H-44
SetFont Printer PROCEDURE STDLIB F-24
SetFont VDIAttributes PROCEDURE SYSLIB H-43

SetGraphicTextAlignment VDIAttributes PROCEDURE SYSLIB H-43
SetGraphicTextColour VDIAttributes PROCEDURE SYSLIB H-43
SetGraphicTextEffects VDIAttributes PROCEDURE SYSLIB H-43
SetInputMode VDIInputs PROCEDURE SYSLIB H-53
SetLeftBorderSize Printer PROCEDURE STDLIB F-23
SetLineColour VDIAttributes PROCEDURE SYSLIB H-42
SetLineOffset VDIEscapes PROCEDURE SYSLIB H-52
SetLinesPerPage Printer PROCEDURE STDLIB F-23
SetLineType VDIAttributes PROCEDURE SYSLIB H-42
SetLineWidth VDIAttributes PROCEDURE SYSLIB H-42

SetMarkerColour VDIAttributes PROCEDURE SYSLIB H-43

SetMarkerHeight VDIAttributes PROCEDURE SYSLIB H-42
SetMarkerType VDIAttributes PROCEDURE SYSLIB H-42
SetMenulten SSWiS PROCEDURE SPCLIB 6-390
SetMenuTitle SSWiS PROCEDURE SPCLIB G-30

SetMouseForn VDIInputs PROCEDURE SYSLIB H-54

SetOfAttributes GemDos TYPE SYSLIB H-31

SetOfBytes Bytes TYPE SPCLIB G-93

J-18 LIB-INDEX SPC MODULA-2 V1.4

Name Modul Typ Lib Seite

SetOfDrives Bios TYPE SYSLIB H-27
SetOfDrives GemDos TYPE SYSLIB H-31

SetOfElements AESWindows TYPE SYSLIB H-23

SetOfEvents AESEvents TYPE SYSLIB H-07

SetOfFlags - AESObjects TYPE SYSLIB H-15
SetOfKbdStates AESEvents TYPE SYSLIB H-07

SetOfMetaKeys SSWiS TYPE SPCLIB 6-25
SetofStates AESObjects TYPE SYSLIB H-15

SetOfThreadIds System TYPE SPCLIB 6-34
SetOfWindowElements SSWis TYPE SPCLIB G-26
SetPalette XBios PROCEDURE SYSLIB H-67

SetPaletteState VDIEscapes PROCEDURE SYSLIB H-51

SetPath GemDos PROCEDURE SYSLIB H-33

SetPointCharHeight VDIAttributes PROCEDURE SYSLIB H-43
SetPos Files PROCEDURE SYSLIB H-30
SetPos FileSystem PROCEDURE STDLIB F-10
SetPrinter XBios PROCEDURE SYSLIB H-69
SETREG SYSTEM PROCEDURE SYSTEM E-03
SetRotation VDIkttributes PROCEDURE SYSLIB H-43
SetScreen XBios PROCEDURE SYSLIB H-67

SetTime GemDos PROCEDURE SYSLIB H-33
SetTime XBios PROCEDURE SYSLIB H-68
SetWindowElements SSWiS PROCEDURE SPCLIB G-28
SetWindowMessage SSWiS PROCEDURE SPCLIB G-28
SetWindowTitle SSWiS PROCEDURE SPCLIB G-28

SetWritingMode VDIAttributes PROCEDURE SYSLIB H-42
SHIFT SYSTEM PROCEDURE SYSTEM E-04
SHORT SYSTEM PROCEDURE SYSTEM E-04
ShowCursor VDIInputs PROCEDURE SYSLIB H-55

ShowMouse LineA PROCEDURE SYSLIB H-39

Shrink GemDos PROCEDURE SYSLIB H-34
ShrinkBox AESGraphics PROCEDURE SYSLIB H-12

SI ASCII CONST STDLIB F-@3
sin LMathLib PROCEDURE STDLIB F-17
sin MathLib PROCEDURE STDLIB F-19
sinh LMathLib PROCEDURE STDLIB F-17
sinh MathLib PROCEDURE STDLIB F-19
SIZE SYSTEM PROCEDURE SYSTEM £E-03
SizeOfWindowContent SSWiS PROCEDURE SPCLIB G-29
SizeOfWorld SSWiS PROCEDURE SPCLIB 6-29
SizeWindowContent SSWiS PROCEDURE SPCLIB 6-28
SizeWorld SSWiS: PROCEDURE SPCLIB G-29

SizeWorld TextWindows TYPE SPCLIB G-42
SlideBox AESGraphics PROCEDURE SYSLIB H-12
so ASCII CONST STDLIB F-®3

SOH “ASCII CONST STDLIB F-@3
Space JCL PROCEDURE SPCLIB G-15

sqrt LMathLib PROCEDURE STDLIB F-17

sart MathLib PROCEDURE STDLIB F-19

States AESObjects. TYPE SYSLIB H-15

Stdin GemDos CONST SYSLIB H-31

SPC MODULA-2 V1.4 LIB-INDEX J-19

Name Modul Typ Lib Seite

StdOut GemDos CONST SYSLIB H-31

Streans ByteStreams TYPE STDLIB F-04

Streams TextStreams TYPE STDLIB F-3l

StringToCard NumberConversions PROCEDURE STDLIB F-20
StringToInt NumberConversions PROCEDURE STDLIB F-20
StringToLongCard NumberConversions PROCEDURE STDLIB F-20
StringToLongInt NumberConversions PROCEDURE STDLIB F-21

 StringToLongReal RealConversions PROCEDURE STDLIB F-25
StringToReal RealConversions PROCEDURE STDLIB F-25
STX ASCII CONST STDLIB F-93
SUB ASCII CONST STDLIB F-03

Sub Clock PROCEDURE STDLIB F-06
SubResult Rectangle PROCEDURE SPCLIB G-20
Subtract Rectangle PROCEDURE SPCLIB 6-19

Super GemDos PROCEDURE SYSLIB H-33

Supexec XBios PROCEDURE SYSLIB H-69
SupportedAttributes Printer PROCEDURE STDLIB F-24
SupportedFonts Printer PROCEDURE STDLIB F-24
SuppressPaletteMessages VDIEscapes PROCEDURE SYSLIB H-52
SYN ASCII CONST STDLIB F-03

tan LMathLib PROCEDURE STDLIB F-17
tan MathLib PROCEDURE STDLIB F-19
tanh LMathLib PROCEDURE STDLIB F-17
tanh MathLib PROCEDURE STDLIB F-19
Tedinfo AESObjects TYPE SYSLIB H-16

TedInfoPtr AESObjects . TYPE SYSLIB H-16
TenthDegree VDIAttributes TYPE SYSLIB H-41
Tern GemDos PROCEDURE SYSLIB H-34
Term Printer PROCEDURE STDLIB F-24

Tern Process PROCEDURE SPCLIB 6-17
Term Watch PROCEDURE SYSLIB H-65

TermCh InOut VAR STDLIB F-14

TermO GemDos PROCEDURE SYSLIB H-32
TermProc XStr TYPE SPCLIB G-45

TermResident GemDos PROCEDURE SYSLIB H-3
Test Frags PROCEDURE SPCLIB G-1

Text AESMenus PROCEDURE SYSLIB H-13

Text Frags TYPE SPCLIB G-10
Text TextFiles TYPE SPCLIB 6-38

TextAttrType VDIInquires TYPE SYSLIB H-57
TextBlt LineA PROCEDURE SYSLIB H-39
TextCursor AESGraphics CONST SYSLIB H-il

TextEffect VDIAttributes TYPE SYSLIB H-41
TextEffects VDIAttributes TYPE SYSLIB H-4i

TextOfExc System PROCEDURE SPCLIB G-37

TextPtr Frags TYPE SPCLIB G-10
TextPtr TextFiles TYPE SPCLIB G-38
ThickCross AESGraphics CONST SYSLIB H-1il
ThinCross AESGraphics CONST SYSLIB H-1l
ThreadIds System TYPE SPCLIB G-34

J-20 LIB-INDEX SPC MODULA-2 V1.4

Name Modul Typ Lib Seite

TickCal Bios PROCEDURE SYSLIB H-28

Time Clock TYPE STDLIB F-06

Timer AESEvents PROCEDURE SYSLIB H-08
TimeStamp Files PROCEDURE SYSLIB H-30
Timestamp GemDos PROCEDURE SYSLIB H-34

Timestamp JCL PROCEDURE SPCLIB G-14
TitleHandles SSWiS TYPE SPCLIB 6-23
TitleNormal AESMenus PROCEDURE SYSLIB H-13

TotalLinesOf TextFiles PROCEDURE SPCLIB G-49
TPlayback AESApplications PROCEDURE SYSLIB H-®3
TRANSFER Coroutines PROCEDURE STDLIB F-08
TransformForn VDIRasters PROCEDURE SYSLIB H-64

TransformMouse LineA PROCEDURE SYSLIB H-39

TRecord AESApplications PROCEDURE SYSLIB H-03

TreePtr AESObjects TYPE SYSLIB H-16
TRUNCA System PROCEDURE SPCLIB G-34
TRUNCS Systen PROCEDURE SPCLIB G-33
ts TextStreams TYPE STDLIB F-31

Tst Bytes PROCEDURE SPCLIB G-@5
TypeLength GemDos CONST SYSLIB H-31
TypeLength HFS VAR STDLIB F-i2
Types AESObjects TYPE SYSLIB H-15
Types ByteStreams TYPE STDLIB F-04
Types Files TYPE SYSLIB H-29
Types Frags TYPE SPCLIB G-i19
Types TextStreans TYPE STDLIB F-31
TypeSep GemDos CONST SYSLIB H-3l
TypeSep HFS VAR STDLIB F-12

Umlauts SSWis VAR SPCLIB G-26

Undo SSWiS CONST SPCLIB G-24
UndrawSprite LineA PROCEDURE SYSLIB H-39
UnlinkThread System PROCEDURE SPCLIB G-36
UnloadFonts VDIControls PROCEDURE SYSLIB H-48
UpArrow SSWiS CONST SPCLIB G-24
Update AESWindows TYPE SYSLIB H-24
UpdateFlags AESWindows TYPE SYSLIB H-23
UpdateMetafileExtents VDIEscapes PROCEDURE SYSLIB H-52

UpdateWorkstation VDIControls PROCEDURE SYSLIB H-47
US ASCII CONST STDLIB F-03
UserDef AESGraphics CONST SYSLIB H-11
UtilityName CmdLine PROCEDURE SPCLIB G-06

VAL SYSTEM PROCEDURE SYSTEM E-94
VaiidTextRotations VDIInquires TYPE SYSLIB H-56
ValuatorStatus VDIInputs TYPE SYSLIB H-53

VDIDescription LineA PROCEDURE SYSLIB H-38
VDIRectangle VDIOutputs TYPE SYSLIB H-69

Version GemDos PROCEDURE SYSLIB H-33
VertAlignment VDIAttributes TYPE SYSLIB H-41
VolumeSep GemDos CONST SYSLIB H-31

SPC MODULA-2 V1.4 LIB-INDEX J-21

W
U
D

F
W
D

A
H

W
W

~
3

J
A
J

A
D
W

T
I
D

D
W
N

O
O

O
N
 o
m

b
o

Name Modul Typ Lib Seite

VolumeSep HFS VAR STDLIB -12

VSync XBios PROCEDURE SYSLIB H-69
VT ASCII CONST STDLIB F-®3

WatchBox AESGraphics PROCEDURE SYSLIB H-1
Wd JCL PROCEDURE SPCLIB G-1

Weekdays Clock TYPE STDLIB F-@
WhileEqualBlank XStr PROCEDURE SPCLIB G-4
WhileInAlphaNuns XStr PROCEDURE SPCLIB G-4

WhileInAlphas XStr PROCEDURE SPCLIB G-4
WhileInDigits Str PROCEDURE SPCLIB G-4

WhileInHexDigits XStr PROCEDURE SPCLIB G-4
WhileInPathChars XStr PROCEDURE SPCLIB G-4

White AESBase CONST SYSLIB H-d

WindowAreas AESWindows TYPE SYSLIB H-2
WindowArrowed AESEvents CONST SYSLIB H-9
WindowClosed AESEvents CONST SYSLIB H-@
WindowElements SSWiS TYPE SPCLIB G-2
WindowFulled AESEvents CONST SYSLIB H-@
WindowHandles SSWiS TYPE SPCLIB G-2
WindowHorizSlided AESEvents CONST SYSLIB H-@
WindowMoved AESEvents CONST SYSLIB H-@
WindowNewTop AESEvents CONST SYSLIB H-@

WindowRedraw AESEvents CONST SYSLIB H-@
WindowSized AESEvents CONST SYSLIB H-@

WindowTopped AESEvents CONST SYSLIB H-®
WindowVertSlided AESEvents CONST SYSLIB H-9@
WORD SYSTEM TYPE SYSTEM E-9

WorkstationDescription VDIControls TYPE SYSLIB H-4

WorkstationInitRec VDIControls TYPE SYSLIB H-4
WorkstationType VDIControls TYPE SYSLIB H-4
Worldof TextWindows TYPE SPCLIB G-4

Write AESApplications PROCEDURE SYSLIB H-®
Write AESScraps PROCEDURE SYSLIB H-2
Write AESShells PROCEDURE SYSLIB H-2
Write ByteStreams PROCEDURE STDLIB F-@
Write GemDos PROCEDURE SYSLIB H-3
Write InOut PROCEDURE STDLIB F-15
Write Printer PROCEDURE STDLIB F-22
Write Terminal PROCEDURE STDLIB F-29
Write TextStreams PROCEDURE STDLIB F-33
Write TextWindows TYPE SPCLIB G-43
WriteAddress InOut PROCEDURE STDLIB F-16
WriteAddress TextStreans PROCEDURE STDLIB F-34
WriteBlock Files PROCEDURE SYSLIB H-30'
WriteByte ByteStreams PROCEDURE STDLIB F-05
WriteCard InOut PROCEDURE STDLIB F-16

WriteCard TextStreans PROCEDURE STDLIB F-33

WriteChar FileSystem PROCEDURE STDLIB F-11
WriteHex InoOut PROCEDURE STDLIB F-16

WriteHex TextStreams PROCEDURE STDLIB F-33

J-22 LIB-INDEX SPC MODULA-2 V1.4

Name

Modul Typ Lib Seite

Writelnt InOut PROCEDURE STDLIB F-16

Writelnt TextStreams PROCEDURE STDLIB F-33

WriteLine TextWindows TYPE SPCLIB G-43
WriteLn InOut PROCEDURE STDLIB F-16
WriteLn Printer PROCEDURE STDLIB F-22

WriteLn Terminal PROCEDURE STDLIB F-29
WriteLn TextStreans PROCEDURE STDLIB F-34

WriteLn TextWindows TYPE SPCLIB G-43

WriteLong Terminal PROCEDURE STDLIB F-29

WriteLongcard InOut PROCEDURE STDLIB F-16
WriteLongcard TextStreams PROCEDURE STDLIB F-33

WriteLongint InOut PROCEDURE STDLIB F-16
WriteLongint TextStreams PROCEDURE STDLIB F-34

WriteLongreal InOut PROCEDURE STDLIB F-16

WriteLongreal TextStreams PROCEDURE STDLIB F-34

WriteMetafile VDIEscapes PROCEDURE SYSLIB H-52
WriteModes LineA TYPE SYSLIB H-37

WriteOct “Inout PROCEDURE STDLIB F-16
WriteOct TextStreams PROCEDURE STDLIB F-33
WriteReal Inout PROCEDURE STDLIB F-16
WriteReal TextStreams PROCEDURE STDLIB F-33

WriteString InOut PROCEDURE STDLIB F-15
WriteString Printer PROCEDURE STDLIB F-22

WriteString Terminal PROCEDURE STDLIB F-29
WriteString TextStreams PROCEDURE STDLIB F-33

WriteString TextWindows TYPE SPCLIB G-43
WriteWord ByteStreams PROCEDURE STDLIB F-05
WriteWord FileSystem PROCEDURE STDLIB F-11
WritingModes VDIAttributes TYPE SYSLIB H-41

Xbtimer XBios PROCEDURE SYSLIB H-69
Xor Bytes PROCEDURE SPCLIB G-05

Yellow AESBase CONST SYSLIB H-05

SPC MODULA-2 V1.4 LIB-INDEX J-23

a

ee a
a

re
re

e
e

a

e
e

ee
e
e

ee a
es

e
e

e
e

T
T
T

ON
e
e

i
ee

Be
M
n

a

a

O9
3

E53
n
t
 ba

.

.
a

u
ne nn
n
n

wi
~~

j

-
.

“
m

=
rs

eae

=
"=

ms
ne

=
a

en
-

e
e

2

=

>

:
x

“

{
es

ei
=

“
;

~
.

®.

22
ar;

