

ATARI ST
1 Hh Fase

Christian Nieber

ATARIST
Programmieren

in Maschinensprache

ATARI ST
Programmieren

in Maschinensprache

Christian Nieber

&
DÜSSELDORF - SAN FRANCISCO - PARIS - LONDON

Anmerkungen:

ATARI, 260ST, 520ST, 520ST+, 1040ST, SM124, SF354, SF314, SH324 sind
eingetragene Warenzeichen von ATARI Inc., USA
Centronics ist eingetragenes Warenzeichen von Centronics Data Computer Corp.

Satz: SYBEX-Verlag GmbH, Düsseldorf
Titelgestaltung: Patrice Larue/tgr
Gesamtherstellung: Boss-Druck und Verlag, Kleve

Der Verlag hat alle Sorgfalt walten lassen, um vollständige und akkurate Informationen in die-
sem Buch bzw. Programm und anderen evtl. beiliegenden Informationsträgern zu publizieren.
SYBEX-Verlag GmbH, Düsseldorf, übernimmt keine Garantie noch die juristische Verant-
wortung oder irgendeine Haftung für die Nutzung dieser Informationen, für deren Wirtschaft-
lichkeit oder fehlerfreie Funktion für einen bestimmten Zweck. Ferner kann der Verlag für
Schäden, die auf eine Fehlfunktion von Programmen, Schaltplänen o.ä. zurückzuführen sind,
nicht haftbar gemacht werden, auch nicht für die Verletzung von Patent- und anderen Rechten
Dritter, die daraus resultieren.

ISBN 3-88745-678-5
1. Auflage 1987

Alle Rechte vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie,
Mikrofilm oder in einem anderen Verfahren) ohne schriftliche Genehmigung des Verlages
reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder
verbreitet werden.

Printed in Germany
Copyright © 1987 by SYBEX-Verlag GmbH, Düsseldorf

Inhaltsverzeichnis

Vorwort 2... ee eee eee eee eee ena 9

Kapitel 1: Was ist Maschinensprache? 0.002 e cee eee 13
Der Aufbau eines Computers 00. ccc eee eee eens 13
Wie sage ich's meinem Computer 0.0... cece eee eee eee 17
Und was kommt nach dem Assembler? 0.0 e eee ee eee 19
Was tutein Linker? 2.0... eee eee eens 22

Kapitel 2: Einfiihrung in Maschinensprache4. 25
Der innere Aufbau des MC68000 «0... eee eee 25
Erste Schritte 20... eee eee e een eeas 29
Die Addition in Maschinensprache und das Userbyte 32
Die Subtraktion in Maschinensprache 00... eee ee eee 37
Die Multiplikation 2.0... 0.0.0... ene nee eens 38
Die Division 0... eee nee eee e eens 43
SHIFT und ROTATE 0.0... ccc eee eens 45
SHIFT-Befehle 0.0.0... ccc eee eee eee Lec eeeae 45
ROTATE-Befehle 2... cee eee eee Sl
Logische Operationen ccc eee eee eee eee nas 52
Der AND-Befehl 2.0.0.0... 00. eee eee nns 53
Der OR-Befehl0 0.0... cc eee ee eens 54
Der EOR-Befehl 0... 0c ene een een eas 55
Der NOT-Befehl 0.0... c ccc cece cee tees nn 56
Bedingte Verzweigungen 0... cece ee eee eens 57
Flags als Verzweigungsbedingung 0c cece eee eeeeeee 59
Verzweigungen nach CMP 0... . ccc eee ne ens 59
Sonstige Verzweigungen ccc cee ences . 62
Die DBcc-Befehle ... 0... 0. ce eee ene ees 62
Adreßberechnung bei Verzweigungsbefehlen 65
Die Adressierungsarten des MC68000 222222 ee eee 66
Register-direkte Adressierung 0... ccc cece eee eee eens 67
Konstanten-Adressierung 2.0.0.0... 0. ccc ccc eee nes 67
Absolute Adressierung eee eee eee ees 68
Indirekte Adressierung des Speichers 00. eee ee eee eee 68
Implizite Adressierung eines Registers 0... ccc eee eee 72
Programm zihler-relative Adressierung-. cece eee eee 72

6 ATARI ST - Programmieren in Maschinensprache

Stackorganisation und Programmspriinge ren 74
Der Stack 2... ccc ccc ccc cee cee eee eee eee eee eeeeee 74
Unterprogramme cece cece ccc cence eee eee ee eeee 76
Parametertibergabe zu Unterprogrammen0eeeeeee 78
Kontrollstrukturen in Assembler 0.0... ccc cece cece eeeees 81
IF-THEN-ELSE ... wee eee eee eee Cece e cece ence eees 81
Realisierung von Schleifen ccc cece eee eee neces 82
Organisation von ATARI ST-Programmen002 eee eeee 84
Grundlagen der Bedienung eines Assemblers-.0- 000. 90
Befehle 20... ccc ccc ccc cc cece ence eee e eee eee eee ee eeees 91
Assembler-Direktiven 2.0... 0... ccc ccc cece eee ee eet eee neces 95
Das erste lauffähige Programm 0... cece eee eee eee . 101
Die Benutzung einer RAM-Disk 0.0... cece eee eee ee eee 111
Makros 2... ccc cc cee ee eee eee eee e eee eee eeeeeeee 112
Die Benutzung eines Debuggers 0... cc eee eee ee eee nee 118
Besonderheiten des Prozessors MC68000 2... 0. cece ee ee 123
Der Supervisormodus 0... cece eee eee eee eee eee ences 123
Das Systembyte 2.2... ccc ccc cee eee eee eee eee teen eens 124

Kapitel 3: Die Befehle des MC68000 in systematischer Reihenfolge 129
Ein-Operand-Befehle 2... cece cece eee eee teenies 131
Schieben und Rotieren 2.2... . cece cc cece eee eee ee eeee 132
Arithmetische und logische Ein-Operand-Befehle 142
EXT und SWAP 2... ccc ccc cc cence teen eee e ee enees 150
Zwei-Operand-Befehle cece ccc cect eet teens 153
Die MOVE-Befehle 2.0... . ce ccc cee ene tee eens 153
Arithmetische Befehle 0... ccc cece ee eee eee eees 165
Logische Befehle 0... ccc ccc cc eect eee eeenee 189
Bit-Befehle 0.0.0... ccc cece cece eee eee e cece eens 196
Bedingte Befehle 2.0... .. occ ccc cece ce teen eee ence 201
Sprungbefehle Lee ee ee ee eee ee eee ee eee eee eee teenies 206
Sonstige Befehle .. 0.0... ec cee eee ee nee teen tenes 214

Kapitel 4: Zusammenarbeit mit dem Betriebssystem 227
Das GEMDOS ... cece cence eee n eee ne nee 228
Das BIOS 2... ce ccc ee cence tenet e nee e eee eenee 241
Das XBIOS 2... ccc ce eee eee e tence ene eees 245
Die GEM-Aufrufe 2.0.0... ccc cece cee eet eneees 254
AES-Aufrufe 2.0... ccc ccc cece ence nent e teen eens 255
Das VDI (Virtual Device Interface) 0.0... cc eee eee ee ees 257
Die LINE-A-Routinen 6... ccc cece cee eeenne 261

Kapitel 5: Einige nützliche Routinen 000 ce ee eee eee 269
Ausgabe von Zeichenketten eee eee te eee ees 269

Inhaltsverzeichnis 7

Eingabe von Zeichenketten cece cc cee eee cee eee eee 212
Ausgabe von hexadezimalen Zahlen cee eee ee eee eee 277
Eingabe von hexadezimalen Zahlen eee eee eee eee 218
Ausgabe von Dezimalzahlen 2.1... cece cece ee ee eee teenies 280
Eingabe von Dezimalzahlen cece cece eee eee eee 284
Die Langwortdivision ccc cece cece eee eee eect eens 286

Kapitel 6: Maschinennahe Programmierung2008. 289
Setzen eines Punktes in hoher Auflésung 0... 00s eee eee 289
Setzen eines Punktes in niedriger Aufl6sung0.. 292
Linien ziehen in hoher und niedriger Auflésung 296
Programmierung von Interrupts cc cee eee eee eee teen ee 308
Klangerzeugung durch direkte Amplitudensteuerung we. 319
Eine RAM-Disk 2.0... eee ec ce ee cece e teen eee eens 325

Kapitel 7: Tips und Tricks fiir schnellere Programme 333
Optimierungen auf Befehlsebene Meee e cece e eee ees 334
Allgemeine Optimierungen cece ccc cece eee eens 335
Optimierung von MOVE-Befehlen Dee e cece econ nen 336
Optimierung von arithmetischen Befehlen ernennen 338
Optimierung von Verzweigungsbefehlen-.2 eee 341
Selbstmodifizierender Code cece eee ee ee eens 342
Optimierung auf der Realisierungsebene2-2005- 344
Optimierung auf der Algorithmenebene..... settee renee eee etenes 350

Anhang A: Zahlendarstellung in Maschinensprache Lecce eee eeeeeeees 355

Anhang B: Unterschiede verschiedener Assembler ee 365

Anhang C: Tips fiir Umsteiger 00.0.0. cc ccc ce eens 373

Anhang D: Tips zum Einbinden von Assembler
in andere Programmiersprachen0 00000 Kernen 375

Anhang E: Tips zur Fehlersuche eee cece eee ee eee cette eeeeees 395

Anhang F: Befehlstabelle
Adressierungsarten und Ausführungszeiten0 eee wees 399

Anhang G: Glossar0.. 0. ccc ccc ccc cence nent eee e eens 409

Vorwort

Assembler ist keine Programmiersprache fiir Computer-Neulinge. Wenn Sie
bei "ROM" ausschließlich an eine südliche Stadt denken und "Byte" fiir ein irr-
tümlich großgeschriebenes englisches Tätigkeitswort halten — dann sind Sie
nicht nur mit diesem Buch, sondern auch mit Assembler und Maschinenspra-
che allgemein falsch beraten. Sie sollten also zumindest schon einmal mit ei-
nem Computer gearbeitet und auch einige Grundkenntnisse über die Pro-
grammierung von Computern haben. Erfahrungen mit einer beliebigen Pro-
grammiersprache sind zwar nicht unbedingt nötig, können aber nützlich sein.
Insbesondere gehe ich nicht davon aus, daß Sie schon einmal mit einem Assem-
bler gearbeitet haben; dessen Bedienung und Funktionsweise werden ausführ-
lich erklärt.

Mit den ST-Computern hat es die Firma ATARI fertiggebracht, den Personal-
Computer-Markt fiir einige Zeit in Aufregung zu halten. Die Griinde dafiir
sind vielfältig. Zum einen schlug das sensationelle Preis-/Leistungs-Verhältnis
ein, zum anderen setzte die konsequent verwendete grafische Benutzeroberflä-
che Maßstäbe. Mit der leistungsfähigen Hardware kam auch der Trend zur hö-
heren Programmiersprache: Selbst professionelle Programme sind nur selten
in Assembler geschrieben, denn der ST macht mit seiner Geschwindigkeit die
geringe Geschwindigkeit so mancher höheren Programmiersprache wett. Nun
stellt sich die Frage: Warum sollte man ein solches System in Maschinenspra-
che bzw. Assembler programmieren?

Tatsache ist, daß es auch auf einem Computer wie dem ATARIST eine Reihe
von Aufgaben gibt, die man nur in Assembler programmieren kann oder die
in Assembler zumindest besser als in irgend einer höheren Programmierspra-
che machbar sind. Es gibt in der Hauptsache zwei Gründe, aus denen die Ma-
schinensprache interessant ist: Zum einen finden sich in fast jedem größeren
Programm Funktionen, die die Geduld des Benutzers auf die Probe stellen.
Hier kann die Maschinensprache Abhilfe schaffen, denn ihre Geschwindigkeit
ist noch immer von keiner höheren Programmiersprache zu erreichen. Zum
anderen gibt es bei jedem Computer Aufgaben, die nur in Assembler machbar
sind.

Wenn es um das vollständige Ausnutzen der Hardware geht, kommt keine hö-
here Programmiersprache mehr mit.

10 ATARI ST - Programmieren in Maschinensprache

Assembler ist eine Programmiersprache für Praktiker. Im Grunde sind die
Befehle der Maschinensprache nicht außerordentlich kompliziert; mindestens
ebenso wichtig wie das Wissen über die Funktionsweise der einzelnen Befehle
ist das Wissen über ihr Zusammenspiel und die Zusammenarbeit des Pro-
gramms mit der Hardware. Deshalb ziehen sich Beispiele durch das ganze
Buch. Der erste Teil befaßt sich damit, Schritt für Schritt die einzelnen Befeh-
le und ihre Verwendung zu erklären. Darauf folgt ein genaues Verzeichnis
sämtlicher Maschinensprachebefehle, das auch als Nachschlagewerk geeignet
ist. Dann geht es in die Praxis.

Der Umgang mit dem Betriebssystem von Maschinensprache aus wird aus-
führlich erklärt, und es werden viele speziell auf den ATARI ST zugeschnitte-
ne, nützliche Routinen angegeben. Schließlich geht es um die zwei wichtigsten
Einsatzgebiete der Assemblerprogrammierung: Hardware-nahe Programmie-
rung und Höchstgeschwindigkeit. An einigen Programmen wird demonstriert,
wie man die leistungsfähige Hardware des ATARI ST zu Héchstleistungen ani-
miert. Als besondere Zugabe wird außerdem ein eigenes Kapitel der Optimie-
rung von Assemblerprogrammen gewidmet, denn fast immer ist es wün-
schenswert, die höchstmögliche Geschwindigkeit zu erreichen.

Um dieses Buch sinnvoll nutzen zu können, brauchen Sie einen Assembler.
Davon gibt eine Vielzahl auf dem Markt, und sie unterscheiden sich sowohl in
der Leistungsfähigkeit als auch im Preis voneinander. Leider ist die Assem-
blersprache nicht in allen Punkten genormt. Um den somit anstehenden Anpas-
sungsproblemen vorzubeugen, befinden sich auf der beiliegenden Diskette an
alle marktgängigen Assembler angepaßte Versionen der Listings aus diesem
Buch. So werden Sie hoffentlich keine Probleme mit Ihrem Assembler haben.
Darüber hinaus werden in Anhang B die besonderen Eigenheiten aller zum
Zeitpunkt des Erscheinens des Buches für den ATARI ST verfügbaren Assem-
bler besprochen. Auch sonst wird auf die praktische Programmierung einge-
gangen; so werden etwa Methoden zur Fehlersuche erläutert, oder es wird der
eine oder andere Trick gezeigt, der die Arbeit mit einem Assembler erleich-
tern kann.

Auf einem System wie dem ATARI ST spielt die Verbindung von Assembler
mit einer höheren Programmiersprache eine große Rolle - schließlich stellt
die Entwicklung von Assemblerprogrammen noch immer einen erheblich hö-
heren Aufwand dar als die Programmierung in einer Hochsprache. Deshalb
geht man oft den Mittelweg: Nur die Operationen, bei denen Assembler seine
Fähigkeiten wirklich ausspielen kann, werden auch in dieser Sprache pro-
grammiert — alles andere wird in einer höheren Programmiersprache ge-
schrieben. Es ist nur manchmal problematisch, die beiden miteinander zu
verbinden. Deshalb wird auf die Verbindung von Assembler mit den verbrei-
tetsten höheren Programmiersprachen besonders eingegangen.

Vorwort 11

Gegenstand dieses Buches ist die Assembler-Programmierung. Wie fast alle
Programmiersprachen leitet Assembler sein Vokabular von der englischen
Sprache ab. Die Fachausdrücke werden bei ihrem ersten Auftreten erklärt und
können auch im Begriffsregister nachgeschlagen werden. Sie brauchen also
nicht Englisch zu können, um dieses Buch zu verstehen.

Sie werden sehen: Es macht Spaß, aus dem Computer Höchstleistungen heraus-
zuholen, wie es nur in Maschinensprache möglich ist!

13

Kapitel 1

Was ist Maschinensprache?

Im folgenden Kapitel werden jene Grundlagen über Hardware und die Pro-
grammierung allgemein dargelegt, die zum Verständnis der Maschinenspra-
che unbedingt notwendig sind. Sollten Sie allerdings schon zu jenen Fortge-
schrittenen zählen, die Erfahrungen mit Maschinensprache auf anderen Pro-
zessoren haben, so können Sie das erste Kapitel bedenkenlos überspringen.

Der Aufbau eines Computers

Unter Maschinensprache versteht man den Befehlssatz, der vom Mikroprozes-
sor direkt verstanden und ausgeführt wird, ähnlich wie etwa in der Program-
miersprache BASIC Befehle wie PRINT, GOTO oder INPUT direkt verstan-
den werden.

Maschinensprache unterscheidet sich jedoch grundlegend von allen anderen
Programmiersprachen, denn sie stellt die unterste Ebene der Program-
mierung dar. Nur sie wird vom Prozessor wirklich verstanden. Alle anderen
Sprachen, die sogenannten Hochsprachen, müssen erst auf die eine oder andere
Art in Maschinensprache übersetzt werden. Es wird später in diesem Kapitel
noch darauf eingegangen. Im Vergleich zu den zitierten Hochsprachen-Befeh-
len sind Maschinensprachebefehle viel primitiver; so bewirkt oft ein Hoch-
sprachebefehl die Ausführung vieler hundert Maschinensprachebefehle.

Es liegt einfach in der Struktur der heutigen Hardware, daß Maschinenspra-
chebefehle so wenig mächtig sind. Stark vereinfacht besteht ein Mikrocompu-
ter aus der Zentraleinheit (CPU, Central Processing Unit), dem Speicher und
den Chips für bestimmte Aufgaben wie zum Beispiel Ein-/Ausgabe oder die
Erzeugung des Monitorbildes. Verbunden wird das Ganze durch ein Bussy-
stem, das den Informationsaustausch zwischen den einzelnen Chips regelt (sie-
he Abb. 1.1).

Zunächst einmal zum Aufbau des Speichers: Er enthält den Programmcode
und die Daten. Informationen können darin abgelegt und später wieder gelesen
werden. Der Speicher ist aus einer großen Zahl von Zellen aufgebaut, die ih-
rerseits aus mehreren Bits bestehen (Abb. 1.2). Jedes Bit kann nur zwei Zu-
stände annehmen, die man beispielsweise mit An und Aus bezeichnet. Man

14 ATARI ST - Programmieren in Maschinensprache

kann die Zustände allerdings auch als die Ziffern 0 und 1 interpretieren. Fügt
man nun mehrere Bits zusammen, wobei die Stelle jedes Bits festliegen muß,
so kann man mit ihnen eine binäre Zahl darstellen. Mit 8 Bits lassen sich so
ganze Zahlen von 0 bis 255 darstellen, mit 16 Bits schon Zahlen von O bis
65535.

Gewöhnlich besteht eine Speicherzelle aus 8 Bits, da viele Computer 8 Bits ne-
beneinander verarbeiten. Die Zusammenfassung von 8 Bits wird Byte genannt.
Mehr über das binäre Zahlensystem finden Sie in Anhang A.

spezielle Bausteine

Grafik

| Chip

Datenbus

Speicher
Abb. 1.1: Der allgemeine Aufbau eines Computers

Bit f 6 Oo 4 3 2 1 0

010110113
Wert 128 64 32 16.8 4 2 1

Abb. 1.2: Binäre Darstellung der Zahl 91

Was ist Maschinensprache? | 15

Im Grunde ist es aber nur eine von vielen möglichen Interpretationen, die Bits
als Ziffern einer binären Zahl zu betrachten. Auf unterster Ebene handelt es
sich ja nur um Gruppen von Transistoren, die zwei verschiedene Zustände an-
nehmen können.

Oft genug wird eine Gruppe von Bits tatsächlich als eine binär dargestellte
Zahl interpretiert; ein anderes Mal kann sie jedoch auch für einige Buchstaben
aus einem Text stehen, und noch ein anderes Mal kann sie als ein paar Punkte
auf dem Bildschirm interpretiert werden. Es gibt viele mögliche Bedeutungen
für eine Gruppe von Bits. Um den Inhalt von Speicherstellen darzustellen,
werden in den meisten Fällen allerdings Zahlen verwendet, weil sie die über-
sichtlichste und allgemeingültigste Art der Darstellung von Bitmustern bieten.

Eine Art der Interpretation von Bitmustern haben wir noch nicht erwähnt:
Maschinenbefehle. Es handelt sich dabei um ein begrenztes Repertoire von
einfachen Operationen, die der Prozessor auf seine Art "versteht" und ausfüh-
ren kann. Damit auf die einzelnen Speicherstellen in vernünftiger Weise zu-
gegriffen werden kann, sind sie mit O beginnend durchnumeriert. Man kann
sich diese Nummern als "Hausnummern" vorstellen, wobei der "Bewohner"
des "Hauses" der Wert der Speicherzelle ist. So wird die Nummer einer Spei-
cherzelle auch als Adresse bezeichnet.

Der Hauptspeicher des Computers kann beschrieben und gelesen werden. Es
handelt sich dabei um das sogenannte RAM, was für "Random Access Memo-
ry", also "Speicher mit wahlfreiem Zugriff" steht. Das RAM hat jedoch einen
Nachteil: Sobald die Stromversorgung abgeschaltet wird, ist der gesamte In-
halt des RAM unwiederbringlich verloren. Um dies zu umgehen und ständig
gebrauchte Programme immer im Speicher verfügbar zu haben, ohne daß die-
se bei jedem Systemstart neu geladen werden müßten, hat man das ROM ent-
wickelt. ROM steht für "Read Only Memory", also Nur-lese-Speicher. Des-
halb befindet sich bei den meisten Computern das Betriebssystem (das Pro-
gramm, welches die Hardware dem Benutzer und den Anwendungsprogram-
men zugänglich macht) im ROM.

Die Zentraleinheit (CPU) kann man sich als Gehirn des Computers vorstellen:
Mit ihr werden alle Berechnungen durchgeführt und das gesamte System ge-
steuert. Die CPU hat die Möglichkeit, Speicherzellen zu beschreiben und aus-
zulesen. Was geschieht nun, wenn sie ein Programm ausführt? Die CPU holt
sich Befehlscode für Befehlscode aus dem Speicher, analysiert ihn und führt
die gewünschte Aktion durch. Falls notwendig, holt sie dafür benötigte Daten
auch noch aus dem Speicher. Wo sie diese Daten zu suchen hat, weiß sie durch
die Adresse, die Teil des Befehls ist.

Eine CPU verfügt immer über mehrere Register. Ein Register ist eine Art
Speicherzelle, die innerhalb der CPU liegt und mit der verschiedene mathema-

16 ATARI ST - Programmieren in Maschinensprache

tische und logische Operationen durchgeführt werden können. Bei vielen
CPU's kénnen Berechnungen nur in Registern ausgeführt werden. Der Ablauf
der Manipulation eines Speicherplatzes wird dann oft so aussehen, daß die Da-
ten zunächst vom Speicher in ein Register geladen, dort den gewünschten Ope-
rationen unterzogen und danach wieder in den Speicher zurückgeschrieben
werden.

Beispiel:

Im Laufe der Programmausführung trifft die CPU auf ein Bitmuster mit der
binären Darstellung

10010110

oder dezimal 150. Sie stellt fest, daß dies der Befehl ist, den Inhalt eines Spei-
cherplatzes zu lesen und in ein Register zu laden. (Dieses Beispiel ist fiktiv und
entstammt nicht der Maschinensprache des MC68000.) Die Adresse, aus der
gelesen werden soll, steht in den beiden darauffolgenden Bytes.

Nehmen wir an, diese Bytes enthalten binär 00000011 und 11110100, also 3
und 232. Gewöhnlich findet eine Adresse nicht in einem Byte Platz, da man da-
mit nur 256 Speicherplätze unterscheiden könnte. Deshalb werden Adressen je
nach der Größe des Arbeitsspeichers in 2, 3 oder sogar 4 Bytes dargestellt.
Unser fiktiver Prozessor soll diese beiden 8-Bit-Zahlen deshalb zu einer 16-
Bit-Adresse zusammenfügen, wobei das erste Byte die oberen 8, das zweite die
unteren 8 Bits liefert.

Es entsteht die Adresse

0000001111110100

oder dezimal 1000. Auf dieses Ergebnis kommt man auch, wenn man 3 * 256
+ 232 *] berechnet. Das ergibt sich daraus, daß die Wertigkeit des oberen
Bytes 256, die des unteren nur 1 beträgt. Das Ganze läuft also darauf hinaus,
daß der Inhalt des Speicherplatzes 1000 (dezimal) in ein Register kopiert wird.
Nach der Ausführung dieses Befehls nimmt der Prozessor den im Speicher
darauffolgenden Befehl in Angriff. Normalerweise werden die Befehle also li-
near hintereinander abgearbeitet.

Natürlich besteht ein Computer nicht nur aus CPU, ROM und RAM, denn
sonst hätte er ja keinerlei Möglichkeit, mit der Außenwelt in Verbindung zu
treten, also zum Beispiel Zeichen auf dem Drucker auszugeben oder ein Bild
auf dem Monitor zu erzeugen. Für diese Funktionen verfügt jeder Computer
über spezialisierte Chips, die die Schnittstellen bedienen, den Monitor ansteu-

Was ist Maschinensprache? 17

ern oder die Tastatur abfragen. Natürlich muß die CPU mit diesen Chips auch
kommunizieren können, um beispielsweise Parameter für eine Schnittstelle
einzustellen oder die Bildschirmauflösung zu wählen. Auch dieser Datenaus-
tausch erfolgt über den Datenbus. Die Spezialchips verfügen — ähnlich wie die
CPU - über Register, die von der CPU wie Speicherzellen angesteuert werden.
Das Bussystem sorgt dafür, daß die Informationen den richtigen Adressaten
erreichen.

Wie sage ich's meinem Computer

Nun werden Sie sich sicher fragen, wie man den Maschinencode erzeugt. Die
primitivste Form der Eingabe wäre sicherlich, den Code binär Byte für Byte
einzugeben. Falls Sie jetzt meinen, dies wäre eine ausgesprochen umständliche
Methode, haben Sie nicht unrecht.

Allerdings wurde in der Anfangszeit der Computerei tatsächlich so program-
miert. Die Eingabe von Programmen bestand darin, in einer Reihe von 8
Schaltern binäre Zahlen einzugeben und auf einen Knopf zu drücken, sobald
die richtige Kombination eingestellt war und in den Speicher gebracht werden
sollte. Dann erfolgte die gleiche Prozedur für den nächsten Speicherplatz, und
so weiter...

Logisch, daß diese Art der Eingabe nicht nur sehr zeitaufwendig und umständ-
lich (schließlich mußte man ständig mit Befehlstabellen arbeiten), sondern
auch äußerst fehleranfällig war, denn es ist sehr schwierig, mit binären Zahlen
zu arbeiten, ohne sie durcheinanderzubringen.

Der nächste Schritt, eine Eingabe mit Zehner- oder Hexadezimaltastatur, war
auch noch nicht das wahre Vergnügen, mußte man doch immer noch mit unan-
schaulichen Zahlen statt mit einigermaßen verständlichen Befehlsworten
arbeiten, wie sie heute in allen Hochsprachen üblich sind. Den Durchbruch
brachten daher erst die sogenannten Mnemonics, Abkürzungen, die die Funk-
tionen der Befehle wiedergeben. So würde etwa der oben beschriebene Befehl,
den Inhalt eines Speicherplatzes in ein Register zu laden, so lauten:

MOVE 1000,DO

MOVE (engl. für "bewege") sagt dabei, was der Befehl tun soll, nämlich Daten
von einem Platz zum anderen bewegen. MOVE ist zwar ein Mnemonic, aber
ausnahmsweise keine Abkürzung. Nur dort, wo die Arbeitsweise eines Befehls
mit komplizierteren Worten beschrieben werden muß, werden Abkürzungen
von höchstens fünf Buchstaben Länge verwendet.

18 ATARI ST - Programmieren in Maschinensprache

Auf das Mnemonic folgen die Operanden, die mitteilen, womit die Operation
durchgeführt werden soll: 1000 steht für die Quelle, also die Speicherzelle, aus
der die Daten geholt werden sollen. Der zweite Operand ist das Ziel, also der
Ort, wohin die Daten geschrieben werden sollen. Quelle und Ziel werden im-

mer durch ein Komma getrennt. In diesem Fall ist das Ziel ein Prozessorregi-
ster namens DO.

Für die Programmierung mit Mnemonics braucht man natürlich schon ein
komplexeres Eingabeprogramm: Es muß den Befehlscode und die Operanden
analysieren, daraus mit Hilfe einer im Computer gespeicherten Befehlstabelle
den Befehlscode errechnen und in einem gewünschten Speicherbereich ab-
legen. Solche Programme, sogenannte Direkt-Assembler, werden heute auch

' noch oft verwendet, allerdings nicht zur eigentlichen Eingabe von Program-
men, sondern zum Austesten und zur Fehlersuche in halbfertigen Program-
men, wobei man oft noch kleine Veränderungen vornehmen will.

Mit Hilfe der Mnemonics kann schon recht gut programmiert werden. Nur
eine Tatsache erweist sich noch als störend: Jedes Programm muß auf eine An-
zahl von Variablen zugreifen, um so mehr, je größer es ist. In Maschinenspra-
che sind Variablen nichts anderes als bestimmte Speicherplätze, die vom Pro-
grammierer eben als Variablen benutzt werden. Wenn diese Variablen jedoch
nur mit ihren Adressen identifizierbar sind, also durch abstrakte Zahlen dar-
gestellt werden, ist es recht schwierig, ohne Verwechslungen mit ihnen umzu-
gehen. Darüber hinaus ist der Dokumentationswert dieser Adressen gleich
null, es ist also sehr schwierig, an einem solchen Programm nachträglich noch
Veränderungen vorzunehmen. Deshalb ist es viel angenehmer, wenn man be-
stimmte Adressen mit anschaulichen, vom Programmierer gewählten Namen

bezeichnen kann, die für Außenstehende verständlich sind. Diese Namen müs-
sen nur einmal im Programm festgelegt werden, und die dazugehörigen
Adressen können an allen anderen Stellen über ihren Namen angesprochen
werden. Es gibt tatsächlich Programme, die dies ermöglichen: Es handelt sich

um sogenannte Assembler (engl. "Zusammensetzer"). Die Namen, die für be-
stimmte Zahlen stehen, werden Symbole genannt.

Wenn sich in Speicherzelle 1000 eine Zählvariable befindet, würde obiges Bei-
spiel unter einem Assembler etwa so aussehen:

ZAHLER EQU 1000

[andere Befehle]

MOVE ZÄHLER,DO

Was ist Maschinensprache? 19

Die Anweisung "ZÄHLER EQU 1000" legt fest, daß künftig das Wort "ZÄH-
LER" für die Adresse 1000 steht. Diese Anweisung ist eine sogenannte Sym-
boldefinition. Der Befehl "MOVE ZÄHLER,DO" hat also für den Computer
die gleiche Bedeutung und erzeugt den gleichen Code wie "MOVE 1000,D0",
er ist nur für Menschen leichter zu verstehen. Erst durch die Verwendung ei-
nes Assemblers können wirklich lesbare Programme erzeugt werden. Natür-
lich ist es hierbei nicht mehr möglich, Befehl für Befehl einzugeben und sofort
fertig für die Ausführung im Speicher abzulegen, da der Assembler alle An-
weisungen auf einmal im Blickfeld haben muß, um die Symbole durch ihre
Werte zu ersetzen.

Und so sieht der Umgang mit einem Assembler aus: Zunächst müssen mit ei-
nem Editor alle Befehle und Symboldefinitionen in der gewünschten Reihen-
folge eingegeben werden. Dann bearbeitet der Assembler den so entstandenen
Text. Er versucht nun, alle Symbole durch ihre Werte zu ersetzen und die
Mnemonics in Maschinencode umzurechnen. Wenn alles korrekt ist, erzeugt
er den ausführbaren Code im Speicher oder als Datei auf der Diskette.

Der Assembler stellt wohl die letzte Stufe in der Linie der Maschinensprache-
programmierung dar. Den nächsten Schritt in Richtung höherem Program-
mierkomfort stellen die Hochsprachen dar, wobei jedoch die einfachere Pro-
grammierung mit weniger effizienten Programmen erkauft werden muß.

Und was kommt nach Assembler?

Trotz der symbolorientierten Programmierung mit einem Assembler stellt
diese Form des Programmentwurfs noch einen erheblichen Arbeitsaufwand
dar. Da die Maschinensprachebefehle nur so elementare Aktionen bewirken,
wie sie eben ein Prozessor auf einmal erledigen kann, benötigen selbst kleine
Programme schon relativ viele Befehle. Das erschwert die Fehlersuche natür-
lich gewaltig.

Es wäre viel schöner, wenn sich der Programmierer weniger auf irgendwel-
che Hardware-Eigenheiten und mehr auf das eigentliche Problem, das sein
Programm lösen soll, konzentrieren könnte. Mit anderen Worten, eine Pro-
grammiersprache ist gefragt, die weniger auf die Maschine, aber mehr auf den
Menschen eingeht.

Das Prinzip der höheren Programmiersprachen ist, übliche Schreibweisen wie
zum Beispiel geklammerte mathematische Ausdrücke zu verstehen und außer-
dem häufig gebrauchte Unterprogramme wie Ein- und Ausgabe von Text di-
rekt als Befehle zur Verfügung zu stellen. Natürlich kann der Mikroprozessor

20 ATARI ST - Programmieren in Maschinensprache

eine solche Sprache nicht direkt verstehen. Man braucht daher ein Programm,
das als Mittler zwischen Mensch und Maschine dient, also die Hochsprache in
Maschinensprache übersetzt. Es gibt dafür nun zwei Möglichkeiten, die beide
ihre Vor- und Nachteile haben: Interpreter und Compiler.

Falls Sie bei Interpreter (engl. Dolmetscher) an einen Interpreten, also einen
"life" auftretenden Künstler denken, liegen Sie gar nicht so falsch. Ein Inter-
preter ist tatsächlich ein während der Programmausführung, also gewisserma-
Ben "life" arbeitendes Programm. Es analysiert den Programmcode, unter-
sucht ihn auf Befehlswörter und ruft entsprechende Routinen sofort auf.

Gewöhnlich verfügt ein Interpreter über einen integrierten Editor, der auch
interaktives Arbeiten gestattet. Man kann Programmroutinen direkt aufrufen
und vielfach auch Befehle direkt eingeben und ausführen lassen und daher sehr
schnell Änderungen am Programmcode vornehmen.

Das bekannteste Beispiel für Interpretersprachen ist BASIC. Weniger bekannt
sind dagegen beispielsweise Logo und LISP. Der bedeutende Nachteil der In-
terpretersprachen ist die Ausführungsgeschwindigkeit: Da der Interpreter ei-
nen großen Teil der Rechenzeit mit Organisation wie etwa der Analyse des
Codes oder dem Suchen von bestimmten Codesegmenten zubringt, sind die
entstehenden Programme nicht sehr effizient. Sicherlich haben Sie schon so
manches BASIC-Programm erlebt, das selbst mit der Initialisierung schon ge-
raume Zeit zubrachte. Dies ist auch der Grund, weshalb es relativ wenige In-
terpretersprachen gibt: Sie sind nur da gefragt, wo es auf eine sehr schnelle
Programmentwicklung, aber nicht auf die Ausführungszeit ankommt.

BASIC war ursprünglich als Lernsprache konzipiert, die durch die interaktive
Arbeitsweise einen leichten Einstieg in die Computerei ermöglichen sollte. Bei
LISP liegt es dagegen am ungewöhnlichen Konzept, daß diese Sprache nur
sehr schwierig anders denn als Interpreter zu verwirklichen ist. Logo, eine re-
lativ junge Programmiersprache, dient heute noch in erster Linie als Lern-
sprache, bietet jedoch durch die enge Anlehnung an LISP auch Möglichkeiten
für die Programmierung von künstlicher Intelligenz.

Die zweite Möglichkeit, eine höhere Programmiersprache zu verwirklichen,
besteht darin, das Programm nicht stückchenweise Befehl für Befehl in Ma-
schinensprache umzusetzen, sondern sich den gesamten Code auf einmal vor-
zunehmen und ihn in ein eigenständiges Maschinenspracheprogramm zu über-
setzen. Das ist das Prinzip der Compiler (engl. Zusammensteller). Da die
Übersetzung vor dem eigentlichen Programmlauf erfolgt, kann sich der Com-
piler dabei natürlich Zeit lassen und versuchen, einen möglichst effizienten
Code zu erzeugen.

Was ist Maschinensprache? 21

Wenn Sie sich den Interpreter als einen Simultanübersetzer vorstellen, dann
wäre der Compiler ein Literat, der sich in sein stilles Kämmerlein zurück-
zieht, um dort eine möglichst kunstvolle Übersetzung eines fremdsprachigen
Romans zu liefern. Somit erzeugt der Compiler Programme, die ein wesent-
lich besseres Laufzeitverhalten aufweisen als interpretierte.

Um Ihnen einen Anhaltspunkt zu geben: Je nach Programmiersprache, Ver-
sion und Programm sind compilierte Programme etwa um den Faktor 3 bis 15
schneller als interpretierte. Allerdings muß dieser Vorteil, wie so oft in Tech-
nik und Wissenschaft, mit Nachteilen an anderer Stelle erkauft werden: Der
Programmiervorgang gestaltet sich wesentlich aufwendiger, und die Vorteile
der interaktiven Arbeitsweise sind dahin. Und so sieht die Arbeit mit einem
Compiler aus: _

1) Der Programmcode wird im allgemeinen mit Hilfe eines separaten Edi-
tors erstellt und als Textdatei abgespeichert. (Es handelt sich um den soge-
nannten Quellcode.) |

2) Alsdann wird der Compiler aufgerufen, um sich mit dem Code zu befas-
sen. (Meist muß der entstehende Maschinencode auch noch durch einen
Linker geschickt werden. Was das ist, wird im nächsten Abschnitt er-
klärt.) Falls hierbei Fehler auftreten, gehe zurück zu 1, sonst fahre fort
mit 3.

3) Endlich kann das Programm ausgetestet werden. Falls noch Fehler logi-
scher Art im Programm sind, die der Compiler nicht aufspiiren konnte,
zuriick zu 1 ...

Sie sehen also, daß man laufend zwischen verschiedenen Programmen hin- und
herspringen muß. Hier erleichtert ein schnelles Speichermedium die Arbeit
ganz gewaltig. Schritt 2 kann, wenn alles über die Diskettenstation läuft,
durchaus fünf Minuten oder mehr dauern. Wenn das System allerdings groß
genug ist, daß alle Programmteile gleichzeitig im Speicher Platz finden, so
kann man auf Compilierzeiten von weniger als 30 Sekunden kommen. Dies er-
klärt auch, warum Compilersprachen im unteren Heimcomputerbereich, also
auf 8-Bit-Mikrocomputern mit höchstens 64K Speicher, kaum Verwendung
finden. Die Arbeit damit gestaltet sich einfach viel zu langwierig und umständ-
lich.

Die meisten Programmiersprachen sind Compilersprachen: Pascal, Modula II,
C, FORTRAN usw. Es gibt sie für den militärischen Bereich sowie als Lern-
sprachen und auch als hochspezialisierte Sprachen für künstliche Intelligenz
oder Robotersteuerung. Ä

22 ATARI ST — Programmieren in Maschinensprache

Obwohl sie interpretierten Programmen weit überlegen sind, kommen compi-
lierte Programme in der Ausführungsgeschwindigkeit doch niemals an ein
gutes Assemblerprogramm heran. Der Grund ist darin zu suchen, daß oft in
viel größerer Genauigkeit gerechnet wird, als es für das Programm eigentlich
erforderlich wäre, oder aber Programmteile sind deshalb ineffektiv, weil sie
schon im Quellcode umständlich formuliert waren. Letzteres kommt daher,
daß das Sprachkonzept von Hochsprachen maschinennahe — und somit effekti-
ve — Formulierung oft nicht zuläßt. In Assembler hingegen hindert nichts den
Programmierer daran, besonders zeitkritische Teile eines Programms mit
Blick auf eine Tabelle der Ausführungszeiten der einzelnen Befehle zu opti-
mieren.

Vielleicht werden Sie sich inzwischen fragen, was eine Beschreibung von In-
terpreter- und Compilersprachen in einem Maschinensprachebuch zu suchen
hat. Nun, es geht um folgendes: Auf einem leistungsfähigen System wie dem
ATARI ST, das genügend Speicherplatz bietet, werden größere Programme
sicherlich nur selten vollständig in Assembler geschrieben. Vielmehr wird
man versuchen, besonders zeitkritische Passagen von hochsprachlich formu-
lierten Programmen durch entsprechende Maschinenspracheroutinen zu erset-
zen. Daher wird in diesem Buch auch darauf eingegangen, wie Sie Maschi-
nenspracheroutinen zusammen mit den verbreitetsten Hochsprachen verwen-
den können.

Was tut ein Linker?

Linker heißt auf deutsch "Binder". Er fügt (bindet) Programmteile in Form
von Maschinencode zusammen. Und das ist das Prinzip: Der Compiler (oder
Assembler) erzeugt keinen direkt ausführbaren Code. Statt dessen wird noch
eine weitere Instanz dazwischengeschaltet: der Linker. Dies mag zunächst un-
praktisch erscheinen, hat aber durchaus praktische Gründe. Die Wurzeln lie-
gen in der Technik des modularen Programmierens.

Das Wort "Modul" ist Ihnen vielleicht schon von der Unterhaltungselektronik
in Form von Fernseh- und HiFi-Geräten bekannt. Moderne Geräte sind in sau-
ber getrennte und oft auf vielfältige Weise kombinierbare, unabhängige funk-
tionale Einheiten gegliedert. Falls nun ein solches Gerät ausfällt, so hat der
Servicetechniker nur noch das defekte Modul zu lokalisieren und als Ganzes
auszutauschen. Das Arbeiten mit Modulen ist auch bei der Programmierung
möglich.

Beispiel:

Nehmen wir an, Sie wollen ein Spiel mit bewegter Grafik und ein Zeichenpro-
gramm erstellen, die beide eine Funktion zu Linienziehen brauchen. Sie kKönn-

Was ist Maschinensprache? 23

ten nun für jedes der Programme eine eigene Funktion programmieren. Ratio-
neller und eleganter wäre es jedoch, die Funktion als eigenes Modul nur ein-
mal zu schreiben und zu compilieren. Dieses Modul müßte dann nur noch mit
den beiden Programmen verbunden werden. Und genau das ist die Aufgabe
des Linkers.

Im einzelnen funktioniert das so:

Der Compiler oder Assembler hinterläßt im Objektcode, den er produziert
(also dem Maschinensprachemodul), nicht nur den Programmcode, sondern
auch Informationen über bestimmte Symbole, die entweder speziell markiert
worden sind oder einfach im Quellcode nicht definiert sind. In letzterem Fall
nimmt der Compiler an, es waren damit Symbole in irgend einem anderen
Modul gemeint. Nun wird der Linker mit der Information, welche Module er
zusammenbinden soll, aufgerufen. Für jedes undefinierte Symbol, das in
einem Modul auftritt, durchsucht er alle anderen Module in der Hoffnung, daß
es in einem von ihnen definiert ist. Zu einer korrekt aufgelösten Referenz ge-
hören also immer zwei: Ein Modul, in dem das Symbol definiert ist, und ein
anderes, in dem es aufgerufen (= referenziert) wird. Das Ganze bewirkt, daß
Sie Symbole aus anderen Modulen in Ihrem Programm benutzen können, als
wären sie dort definiert.

Ein Linker erlaubt in Ihrer Programmierumgebung auch größtmögliche Fle-
xibilität: So ist es beispielsweise ein leichtes, eine einfach zu bedienende
Schnittstelle zu den Betriebssystemfunktionen als Modul zu schreiben, die
fortan von jedem Programm genutzt werden kann.

Ein Linker erweist sich auch durch einen weiteren Umstand als nützlich: Er
ermöglicht es, Programmteile, die in verschiedenen Programmiersprachen
geschrieben sind, zu verbinden. Voraussetzung ist allerdings, daß die verschie-
denen Compiler und Assembler das gleiche Format für ihre Objektmodule
verwenden, also auf denselben Linker zugeschnitten sind. Leider trifft dies oft
nur dann zu, wenn sie vom gleichen Softwarehaus stammen. Dann allerdings
können Sie ein Programm teilweise in BASIC (compiliert), teils in Pascal, C
und Assembler schreiben. Ob das unbedingt so sinnvoll ist, ist eine andere Fra-
ge. Eines ist jedoch ganz gewiß sinnvoll: nämlich Assembler mit einer Hoch-
sprache zu verbinden. |

Es wäre sehr mühselig, größere Programme vollständig in Assembler zu
schreiben, denn trotz des relativen Komforts eines Assemblers ist das Zusam-
mensetzen von großen Programmen aus den vergleichsweise primitiven Be-
fehlen, die der Computer direkt versteht, eine äußerst zeitraubende Beschäfti-
gung. So ist es doch viel einfacher, nur jene Programmteile, die entweder zeit-
kritisch sind oder eine maschinennahe Programmierung erfordern, in Assem-

24 ATARI ST — Programmieren in Maschinensprache

bler zu schreiben und andere Dinge, wie beispielsweise den Aufbau von Menüs
und die Kommunikation mit dem Benutzer, in einer Hochsprache zu formulie-
ren.

Bei vielen Compilersprachen — C, Pascal und Modula II mégen hier als Bei-
spiele dienen — bietet sich bei der Verwendung eines Linkers sogar die Még-
lichkeit, die Standardbibliotheken (jene Module, die die Standardfunktionen
dieser Sprachen enthalten) um eigene in Assembler geschriebene Funktionen
zu erweitern. Auf diese Art können Sie praktisch Ihre eigene Befehlserweite-
rung schreiben.

Da somit die Einbindung von Assemblermodulen in Hochsprachen gerade auf
einem System wie dem ATARI ST eine große Rolle spielt, wird darauf in An-
hang D eingegangen.

25

Kapitel 2

Einführung in Maschinensprache

Im Gegensatz zu den meisten höheren Programmiersprachen ist Assembler
keine Sprache, mit der man vom ersten Moment an arbeiten kann, etwa wie in

BASIC

10 PRINT "HALLO"

Vielmehr muß man schon einen gewissen Anteil der Maschinensprachebefehle
beherrschen, um überhaupt ein lauffähiges Programm schreiben zu können.
Am Anfang werden wir Ihnen daher nur Ausschnitte aus Programmen vor-
führen, die nicht dazu gedacht sind, für sich allein ausprobiert zu werden. Be-
denken Sie folgendes: Beim Erlernen von Maschinensprache liegt die Schwie-
rigkeit nicht so sehr darin, die Befehle zu beherrschen - die sind relativ schnell
gelernt -, sondern vielmehr darin, aus so kleinen Bausteinen wie ein paar
arithmethischen und logischen Operationen, Vergleichsoperationen und be-
dingten Verzweigungen das Gebäude des Programms zusammenzusetzen.

Der innere Aufbau des MC68000

Für den Maschinenspracheprogrammierer stellt sich der MC68000, die CPU
des ATARI ST, "von innen” wie in Abb. 2.1 dar. Wie jeder Mikroprozessor
verfügt er über eine Anzahl von Registern. Beim 68000 fällt sofort ins Auge,
daß er damit besonders reichlich ausgestattet ist: 15 Register stehen dem Pro-
grammierer frei zur Verfügung. Doch befassen wir uns zunächst mit den Re-
gistern, die bestimmten Aufgaben vorbehalten sind.

Da wäre zunächst der Programmzähler (engl. program counter, abgekürzt
PC). Er enthält immer die Adresse des nächsten auszuführenden Befehls. Er
umfaßt 32 Bits, von denen allerdings die oberen 8 Bits in der gegenwärtigen
Version des MC68000 brachliegen. Überhaupt ist das mit der Adressierung so
eine Sache: Adressen sind grundsätzlich 32 Bits lang. Man könnte damit also
rein theoretisch 2° = ca. 4,29 Milliarden Bytes adressieren. Tatsache ist je-
doch, daß eine solche Masse Speicher selbst heute noch ein kleines Vermögen
kosten würde. Deshalb hielten es die Entwickler des MC68000 nicht fiir not-

26 ATARIST - Programmieren in Maschinensprache

wendig, tatsächlich alle Bits zu verwenden. Dies schlägt sich darin nieder, daß
nur 24 der 32 Adreßleitungen herausgeführt wurden. Die restlichen Bits wer-
den einfach ignoriert. Deshalb schadet es auch nichts, wenn etwa in den oberen
8 Bits einer Adreßvariable irgendwelche zusätzlichen Informationen stehen.

Datenregister Adressregister

31 6/15 87 0 31 16 [15 0

| HO AG |
i Nk °/ "| " Ay 0

31 4 87 0! 131 5 0 | Bo! Äl
131 6115 8/7 0 [31 6 15 0

| b8 0% ı AB |
“" B14 y " A 4 0

31 6115 8/7 0| 31 16 115 0|

| be | AS |
(34 16 115 87 0 i3t 16 115 0

| | | L | Alb
31 6115 87 0 31 16 115 0

| D7 | "| System — Stackpointer | A7
31 16 115 01 ©

User — Stackpointer 5

System -- User —

Byt Byt
115 - oi - 4 (31 16 15 |
| SiR |___Programmzpaehler PC |

Abb. 2.1: Das Register des MC68000-Prozessors

Lange Rede, kurzer Sinn: Sie haben nur 24 Bit zur Adressierung zur Verfü-
gung, womit genau 16 Megabytes, also 16777216 Bytes adressiert werden
können. Übrigens ist der Speicher trotz der 16-Bit-Architektur des MC68000
byteweise aufgebaut, man hat es also mit Einheiten von 8 Bit zu tun. Doch da-
mit werden wir uns später noch eingehender auseinandersetzen.

Jetzt also zurück zum Programmzähler: Er kann über einige Befehle direkt
angesprochen werden. Als Programmierer braucht man sich jedoch nur selten
um die Berechnung der Adressen von Programmteilen zu kümmern: Das ist

Einführung in Maschinensprache 27

Aufgabe des Assemblers. Daher ist es nicht zu empfehlen, den Programmzäh-
ler direkt zu manipulieren.

Interessanter ist hier schon das Statusregister (SR), das 16 Bit umfaßt. Wie der
Name schon sagt, enthält es Informationen über den Status des Systems. Beim
68000 wird es in zwei Teile unterteilt: Die oberen 8 Bit werden Systembyte
genannt, die unteren 8 Bit Userbyte. Das Systembyte enthält eher vom laufen-
den Programm unabhängige Informationen über den gegenwärtigen Zustand
der Hardware, während das Userbyte von jedem Programm laufend benutzt
wird. Im Userbyte werden Informationen über das Ergebnis der letzten
durchgeführten arithmetischen, logischen oder Vergleichsoperationen aufbe-
wahrt. Genauer wird das Userbyte in Kapitel 2.3 beschrieben.

Von großer Bedeutung ist auch der Stackpointer (SP, deutsch: Stapelzeiger).
Eigentlich müßte man sagen "die Stackpointer", denn der MC68000 hat zwei
davon. Um dieses "Doppelte Lottchen" zu erklären, muß ich etwas weiter aus-
holen: Der 68000 kann Programme in zwei unterschiedlichen Modi ausführen,
dem Supervisormodus und dem Usermodus. Im Supervisormodus ist wirklich
alles erlaubt. Im Usermodus (dem Modus, in dem die meisten Programme lau-
fen) ist man hingegen etwäs eingeschränkt: Auf bestimmte Speicherbereiche
darf nicht zugegriffen werden, und bestimmte Maschinensprachebefehle dür-
fen nicht ausgeführt werden. Es handelt sich dabei um sogenannte privilegierte
Befehle.

Jetzt werden Sie sich vielleicht fragen, warum man sich solche Mühe macht,
um Sie als Assemblerprogrammierer jener absoluten Freiheit (und der damit
verbundenen Verantwortung) zu berauben, die der Assemblerprogrammie-
rung doch sonst auf Microcomputern zu eigen ist. Der Grund ist darin zu su-
chen, daß der MC68000 ursprünglich für Mehrplatzsysteme konzipiert war.

In einem Mehrplatzsystem (ein Computer, der mehrere Terminals bedient)
muß etwas anders organisiert werden, damit nicht jedes Programm die Mög-
lichkeit hat, die Systemvariablen zu manipulieren. Dies könnte sonst leicht zu
unerwünschten Nebenwirkungen auf anderen Terminals führen oder gar das
gesamte System zum Absturz bringen. Dem hat man von der Hardwareseite
einen Riegel in Form des Usermodus vorgeschoben. Andererseits muß das Be-
triebssystem und meist auch der Bediener der Systemkonsole die Möglichkeit
haben, alle laufenden Programme gleichzeitig zu kontrollieren und auch die
Systemvariablen zu ändern. Dafür wurde der Supervisormodus eingerichtet.

In einem Einplatzsystem, das nicht einmal für Multitasking vorgesehen ist,
verlieren diese Dinge natürlich ihre Bedeutung. Doch offenbar wollten die

28 ATARI ST — Programmieren in Maschinensprache

Entwickler des ATARI ST jene Hardwarefahigkeit nicht verschenken und ent-
schlossen sich, nur das Betriebssystem im Supervisormodus laufen zu lassen,
während Programmen der Usermodus zugeteilt wird. Dies hat den Sinn, daß
ein abstürzendes Programm nicht unbedingt das ganze System mitreißt, da es
die vom Betriebssystem benutzten Speicherbereiche nicht beeinflussen kann.
Leider lehrt die Erfahrung, daß es trotzdem noch oft genug geschieht, aber
manchmal funktioniert es eben...

Für Supervisor- und Usermodus stehen also zwei getrennte Stackpointer zur
Verfügung. Der Stack (deutsch: für Stapel) ist ein reservierter Speicherbe-
reich, der hauptsächlich dem Aufruf von Unterprogrammen und der Parame-
terübergabe von einer Funktion zur anderen dient. Es handelt sich dabei um
einen sogenannten LIFO-Stack (engl. Last In — First Out, zuletzt hinein — zu-
erst heraus). Man kann sich diesen in etwa wie einen Tellerstapel vorstellen,
auf den der Tellerwäscher einen Teller nach dem anderen legt und von dem
der Ober immer den obersten, also den zuletzt hinaufgelegten, herunter-
nimmt. Auch auf den Stack wird später noch ausführlicher eingegangen.

Kommen wir zu dem zunächst wichtigsten: den frei verwendbaren Prozessor-
Registern. Der 68000 bietet 15 davon. Die ersten 8 werden Datenregister ge-
nannt und mit DO bis D7 bezeichnet, die restlichen 7, AO bis A6, sind die
Adreßregister.

Wie schon der Name sagt, dienen die Adreßregister zum Adressieren, wäh-
rend die Datenregister zum Rechnen verwendet werden. Allerdings ist diese
Aufteilung nicht ohne Ausnahmen: In begrenztem Maße kann auch mit den
Adreßregistern gerechnet werden, und gelegentlich werden sogar die Daten-
register zum Adressieren verwendet.

Durch die zahlreichen Register bietet es sich beim 68000 geradezu an, einen
großen Teil der Berechnungen in einem Programm nur in den internen Regi-
stern ablaufen zu lassen. Dies spart nicht nur Zeit — es sind ja keine aufwendi-
gen Speicherzugriffe mehr nötig, da die Daten gewissermaßen "vor der Tür"
liegen —, sondern es spart auch Speicherplatz, da Maschinensprachebefehle, die
die Register ansprechen, immer kürzer sind als solche, die Daten im Speicher
adressieren.

Die Register sind allesamt 32 Bit lang. Je nach Befehl werden davon allerdings
oft nicht alle Bits angesprochen: Es ist möglich, nur die ersten 16 oder die er-
sten 8 Bit anzusprechen. Weil der MC68000 eine Datenbusbreite von 16 Bits
(= ein Wort) hat, ist dies der Standardwert fiir die Verarbeitungsbreite.

Einführung in Maschinensprache 29

Erste Schritte

Zu den häufigsten Aufgaben der CPU zählt es, Daten zu bewegen: innerhalb
des Speichers, vom Speicher in ein Prozessorregister oder umgekehrt, oder
von Register zu Register. Dies wird mit dem MOVE-Befehl ermöglicht (engl.
to move: bewegen).

Ein Beispiel:

MOVE 1000,DO

steht für "bewege den Inhalt des Speicherplatzes mit der Adresse 1000 in das
Datenregister DO".

Zunächst etwas Allgemeines zu den Befehlen des 68000: Die meisten Befehle
haben zwei Operanden. Der erste folgt dem Mnemonic, der zweite wird vom
ersten durch ein Komma getrennt. Der erste Operand stellt gewöhnlich die
Quelle (engl. source) dar; er wird nicht verändert, sondern gibt nur an, wo die
Daten hergeholt werden sollen. Der zweite Operand ist das Ziel (engl.: desti-
nation): Dort wird das Ergebnis hingeschrieben. In unserem Beispiel ist also
"MOVE" das Mnemonic, "1000" die Quelle und "DO" das Ziel.

Genau genommen bewegt dieser Befehl die Inhalte der Speicherzellen 1000
und 1001 nach DO, denn die Verarbeitungsbreite ist ja 16 Bit, also ein Wort.
Dabei werden die 8 Bit des Speicherplatzes 1000 als die oberen, die aus 1001
als die unteren 8 Bit interpretiert. Wenn also in Adresse 1000 (jetzt als Byte
betrachtet) eine 1 steht und in 1001 eine 44, dann steht nach dem Befehl im Re-
gister DO 1 * 256 + 44 = 300 (Abb. 2.2). |

u
1000 1

1001 44

gg ee eet

Abb. 2.2: Die Ausführung des Befehls MOVE 1000,DO

30 ATARI ST - Programmieren in Maschinensprache

Falls Sie vorher auf Prozessoren wie 6502, 6510, Z80 oder 8086 program-
miert haben, werden Sie damit vermutlich noch einige Schwierigkeiten haben:
Dort werden die Bytes nämlich im Speicher genau andersherum abgelegt. Als
Faustregel kann man sich merken, daß es beim MC68000 genau so ist wie bei
unserer Zahlendarstellung: zuerst die hochwertigen, dann die niederwertigen
Ziffern.

Vielleicht fragen Sie sich inzwischen, warum man denn den Speicher nicht
gleich in 16-Bit-Einheiten gliedert, wo doch ohnehin 16 Bits auf einmal be-
wegt werden. Nun, das kommt daher, daß ein Computer nicht nur mit Zahlen

umgeht, sondern auch viel mit Texten zu tun hat. Da ein Zeichen im ASCII-
Code 8 Bits füllt, ist es sinnvoll, wenn weiterhin jedes Byte im Speicher einzeln
erreicht werden kann.

Außerdem ist es ja manchmal auch durchaus sinnvoll, nur 8 Bit lange Zahlen
zu verwenden. Deshalb verfügt der 68000 auch über die Möglichkeit, seine
Verarbeitungsbreite auf 8 Bit zu beschränken, um somit jedes Byte im Spei-
cher einzeln ansprechen zu können. Dies tun Sie, indem Sie an das Mnemonic
einen Punkt und an den Buchstaben ein B anhängen. Wenn Sie also nur das
Byte Nummer 1000 nach DO bewegen wollten, müßten Sie schreiben

MOVE.B 1000,DO

Obwohl hier weniger Bits bewegt werden, ergibt sich kein Geschwindigkeits-
vorteil, da die oberen 8 Bit der üblichen Verarbeitungsbreite von 16 Bit
brachliegen. Das Ergebnis dieses Befehls ist, daß die Bits Nummer 8 bis 31 des
Registers DO (es handelt sich ja um 32-Bit-Register) unverändert bleiben. Nur
die unteren 8 Bit, also Nummer O bis 7, werden von obigem Befehl über-
schrieben. |

Da der 68000 durch die Adreßbildung viel mit 32-Bit-Zahlen, sogenannten
Langworten (engl. longwords), zu tun hat, bietet er auch die Möglichkeit, mit
einem Befehl 32 Bit auf einmal zu verarbeiten. Diesmal wird ein Punkt und
der Buchstabe L (für longword) angehängt. Der Befehl

MOVE.L 1000,D0

bewegt somit 4 Bytes ab Speicherstelle 1000 in das Datenregister DO. Wie üb-
lich kommen die höchstwertigsten Bits zuerst. Nach der Operation steht also
der Inhalt von Speicherzelle 1000 in den hochwertigsten 8 Bits des Datenregi-
sters DO, der von 1001 in den darauffolgenden 8 Bit, dann kommen die 8 Bits
aus 1002 und zuletzt der Inhalt von 1003.

Einführung in Maschinensprache 31

Für Langwort-Operationen braucht der Prozessor deutlich länger als für
Wort- oder Byte-Operationen, da er einen solchen Befehl in zwei Schritten zu
16 Bit ausführen muß: Durch die 16-Bit-Architektur des Datenbusses können
natürlich nicht 32 Bit auf einmal vom Speicher zur CPU übertragen werden.
Allerdings geht es immer noch schneller als mit 2 MOVE-Befehlen, die je-
weils ein Wort bewegen.

Übrigens gibt es auch für Wort-Operationen einen sogenannten Extender
(deutsch: Anhängsel) wie ".B" oder ".L" : Es ist logischerweise ".W". Ich bin
nur deshalb noch nicht darauf eingegangen, weil er bei den meisten Assem-
blern überflüssig ist. Sie nehmen automatisch einen Wortzugriff an, wenn an
einem Mnemonic kein Extender hängt. Es steht Ihnen allerdings frei, trotzdem
zu schreiben

MOVE.W 1000,D0

was völlig äquivalent ist zu

MOVE 1000,D0

Die Extender gelten nicht nur fir den MOVE-Befehl, sondern ebenso fiir alle

arithmetischen und logischen Befehle.

Bekanntlich werden bei der Assemblerprogrammierung auch gerne hexadezi-
male Zahlen verwendet (siehe Anhang A). Damit die hexadezimalen Zahlen
nicht mit Dezimalzahlen verwechselt werden können, müssen sie irgendwie
identifiziert werden. Die übliche Konvention verlangt, daß Hexadezimalzahlen
mit einem vorangestellten Dollar-Zeichen ($) kenntlich gemacht werden. Da
dezimal 1000 der hexadezimalen Darstellung 3E8 entspricht, kann man besag-
ten MOVE-Befehl also auch so formulieren:

MOVE $3E8,DO

Damit wird genau der gleiche Code erzeugt.

Da oftmals auch binäre Zahlen praktisch sein Können, kann jede beliebige Zahl
auch als eine Folge von Nullen und Einsen eingegeben werden. Das spezielle
Kennzeichen für eine Binärzahl ist das Prozentzeichen:

MOVE %1111101000,D0

Noch eine gleichwertige Darstellung, da 1111101000 die binäre Darstellung
von dezimal 1000 ist.

32 ATARI ST - Programmieren in Maschinensprache

Die Addition in Maschinensprache und das Userbyte

Natürlich ist es ist auf die Dauer langweilig, den Rechner nur Daten im Spei-
cher herumschieben zu lassen. Daher wollen wir ihn jetzt zwei Zahlen addie-
ren lassen. Nehmen wir an, die erste Zahl steht ab Zelle 1000 im Speicher, die
zweite ab 2000. Der Inhalt von 1000 soll zu dem in Speicherzelle 2000 addiert
werden. Leider ist man in der Wahl von Quelle und Ziel nicht so frei, daß man
einfach schreiben könnte

ADD 1000,2000 nicht erlaubt!

Mindestens einer der beider Operanden, also Quelle oder Ziel, muß ein Regi-
ster sein. Deshalb müssen wir das Ganze etwas umständlicher formulieren:

MOVE 1000,DO

ADD DO, 2000

Das Mnemonic ADD (engl. to add: addieren) steht hier fiir den Additionsbe-
fehl. Sie sehen, daß man nicht nur Register als Ziel verwenden kann, sondern
auch Speicheradressen. Bei arithmetischen und logischen Operationen wird
immer die Quelle mit dem Ziel verknüpft (also in diesem Fall addiert) und das
Ergebnis im Ziel abgelegt, während die Quelle unverändert bleibt.

Obiger Befehl addiert zwei Worte — es war ja kein Extender angegeben.
Manchmal will man jedoch auch nur Byte-Werte addieren. Die Befehlsfolge
dazu wäre

MOVE.B 1000,D0
ADD.B DO,2000

Damit wird nur das Byte 1000 zum Byte 2000 addiert. Natiirlich bezieht sich
die angegebene Verarbeitungsbreite ebenso auf das Ziel wie auf die Quelle; in
unserem Beispiel würde also die Speicherzelle 2001 auf jeden Fall unverändert
bleiben.

Auch hier kann die Langwort-Adressierung verwendet werden. Dazu dienen
folgende Befehle:

MOVE.L 1000,DO
ADD.L DO, 2000

Es werden 4 Bytes ab Nummer 1000 zu 4 Bytes ab Nummer 2000 addiert.

Bevor wir uns mit weiteren Befehlen beschäftigen, ist es wichtig, sich mit der
Zahlendarstellung im Computer auseinanderzusetzen.

Einführung in Maschinensprache 33

Bei positiven Zahlen gibt es kein Problem: Die Bitfolge wird direkt als binäre
Zahl behandelt. Doch wie werden negative Zahlen dargestellt? Es gibt mehre-
re Möglichkeiten dafür. Die vielleicht naheliegendste wäre, ein Bit zu reser-
vieren, das nichts weiter als das Vorzeichen darstellt. Tatsächlich wird es auch
bei einigen Anwendungen so gemacht. Die Methode hat nur einen Nachteil:
Die Addition von so dargestellten vorzeichenbehafteten Zahlen gestaltet sich
aufwendig, da das Resultat ganz vom Vorzeichen der beiden Zahlen abhängt
und außerdem das Vorzeichenbit auf recht komplizierte Weise neu errechnet
werden muß.

Um die Arbeit zu erleichtern, wendet man die Zweierkomplementdarstellung
an. Dabei wird der darstellbare Zahlenbereich — jetzt von vorzeichenlosen
Zahlen — genau in der Mitte geteilt. Die darunterliegenden Zahlen werden wei-
terhin als positiv betrachtet, jene darüber als negativ. Die negativen Zahlen er-
geben sich, wenn man die eigentlichen (vorzeichenlosen) Zahlen von der höch-
sten darstellbaren Zahl plus eins abzieht und vor das Ergebnis ein Minuszei-
chen setzt. In unserem Beispiel müßten Sie also die entsprechende Zahl von
7+1=8 abziehen. Versuchen wir es mit der Zahl 7:

8-7=1, ergibt -1

Bei 8 Bit ergibt sich für die vorzeichenlosen Zahlen ein Bereich von 0 bis 255.
Die Zahlen ab 128 haben dabei ihr negatives Äquivalent: Sie stehen für den Be-
reich von —128 bis —1. Dabei entspricht die 128 der -128, 129 steht für —-127,

und so weiter bis 255, die für —1 steht. Für 16 Bit ergeben sich entsprechend
Bereiche von 0 bis 65536 oder von —32768 bis +32767, für 32 Bit von
—2.147.483.648 bis +2.147.483.647 oder von O bis 4.294.967 .295.

Ich habe noch nicht erwähnt, warum die Zweierkomplementdarstellung besser
ist als die Methode mit dem Vorzeichenbit. Der Grund ist, daß Zweierkomple-

mentzahlen bei Addition und Subtraktion auf völlig gleiche Art behandelt wer-
_ den können wie vorzeichenlose Zahlen: Das Ergebnis stimmt in jedem Fall!

Beispiel: Addieren wir zwei 8-Bit-Zahlen:

00101010 = 42 dezimal
+ 11110100 = -12

(1)00011110 = 30

Der entstehende Ubertrag hat nur bei der vorzeichenlosen Betrachtung einen
Sinn und wird deshalb hier einfach ignoriert.

34 ATARI ST — Programmieren in Maschinensprache

J etzt noch einmal das Gleiche als vorzeichenlose Zahlen betrachtet:

00101010 = 42 dezimal
+ 11110100 = 244

100011110 = 256 +30 = 286

Bei diesem Beispiel muß allerdings der Übertrag ausgewertet werden, damit
das Ergebnis stimmt. Sie sehen, daß Sie bei Subtraktion und Addition nicht
darauf achten müssen, ob die Zahlen mit oder ohne Vorzeichen sind; es hängt
ganz von der Interpretation ab, ob den Bitmustern ein Vorzeichen zugeschrie-
ben wird oder nicht. Mehr über die Zahlendarstellung im Computer finden Sie
in Anhang A.

Das User — Byte

OOO XNZVC

Wert 128 64 32 16 8 4 2 1

Abb. 2.3: Aufbau des CCR (Condition Code Register)

Nun zurück zur Addition: Bei dieser Operation wird nicht nur das Ziel verän-
dert, sondern es werden auch die Statusflags neu gesetzt. Es handelt sich dabei
um bestimmte Bits im weiter oben beschriebenen Statusregister, die je nach
bestimmten Eigenschaften des Ergebnisses von logischen und arithmetischen
Operationen gesetzt oder gelöscht werden. Die Flags befinden sich im unteren
Byte des 16 Bit langen Statusregisters, dem sogenannten Userbyte oder Condi-
tion Code Register (CCR). Abbildung 2.3 zeigt die Anordnung der Flags.

Die Bedeutung der Flags:

— Das C-Bit (Carry-Flag) wird auf eins gesetzt, wenn bei einer Addition oder
Subtraktion ein Übertrag bei positiven Zahlen auftritt. Bei Operationen mit —
Zweierkomplementzahlen braucht der Carry allein nicht beachtet zu wer-
den. Das C-Bit wird auch von Schiebeoperationen geändert.

Einführung in Maschinensprache 35

— Das N-Bit (Negative-Flag) wird eingeschaltet, wenn das Ergebnis i in Zwei-
erkomplementdarstellung eine negative Zahl ist. Erinnern wir uns, daß eine
Zahl genau dann negativ ist, wenn das oberste Bit auf 1 gesetzt ist. Das N-Bit
stimmt also mit dem obersten Bit des Ergebnisses überein.

— Das Z-Bit (Zero-Flag) wird genau dann auf 1 gesetzt, wenn das Ergebnis ei-
ner Operation Null ist.

— Das V-Bit (Overflow-Flag) wird eingeschaltet, wenn bei einer Operation
mit Zweierkomplementzahlen ein Überlauf auftritt, also der Bereich der
darstellbaren Zahlen verlassen wird. Solange man mit positiven Zahlen ar-
beitet, braucht man sich um das V-Flag nicht zu kümmern.

— Das X-Bit (Extend-Flag) hat weitgehend die gleiche Bedeutung wie das C-
Bit (Carry-Flag): Beide zeigen an, ob ein Überlauf bei Addition oder Sub-
traktion auftrat. Der Unterschied besteht einzig und allein darin, daß das C-
Flag auch von zahlreichen Operationen beeinflußt wird, die nicht arithmeti-
scher oder logischer Natur sind, wie zum Beispiel dem MOVE-Befehl. Das
X-Flag ist also "haltbarer".

Wozu dienen diese Flags nun? Sie können abgefragt werden, damit abhängig
von ihrem Zustand verschiedene Aktionen durchgeführt werden. Dazu dienen
die sogenannten bedingten Verzweigungen, mit denen wir uns später noch aus-
einandersetzen werden. Das X-Flag nimmt allerdings eine Sonderstellung ein:
Es gibt Rechenbefehle, die das X-Flag direkt in ihre Rechnungen einbeziehen.

Übrigens können die Flags nicht nur von arithmetischen Befehlen beeinflußt
werden, sondern sie können auch gezielt mittels MOVE beschrieben werden.
Hierfür gibt es den Befehl

MOVE wert, CCR

CCR steht dabei für "Condition Code Register", also Bedingungs-Code-Regi-
ster, eben das Register, das die Flags enthält. Ein 8-Bit-Wert wird in dieses Re-
gister geschrieben, wobei die oberen 3 Bits keine Bedeutung haben und igno-
riert werden. Wenn beispielsweise nur das X-Bit gesetzt und alle anderen
Flags gelöscht werden sollen, schreibt man

MOVE #%00010000,CCR

Betrachten Sie dazu noch einmal Abbildung 2.3. Erinnern wir uns, daß das
Prozent-Zeichen eine Binärzahl einleitet.

36 | ATARI ST - Programmieren in Maschinensprache

Hier begegnet uns gleich etwas Neues: die unmittelbare Adressierung. Das be-
deutet nichts weiter, als daß ein Operand nicht erst von woanders geholt wer-
den muß, sondern gleich im Befehl enthalten ist. In unserem Beispiel bezeich-
net das Doppelkreuz (#), daß die folgende Zahl nicht als Adresse eines Spei-
cherplatzes gemeint ist, sondern einfach für sich selbst steht. Es soll nicht der
Inhalt von Speicherplatz 16 (gleich 00010000 binär) ins CCR bewegt werden,
sondern die Zahl 16 selbst. Natürlich ist die unmittelbare Adressierung nur bei
der Quelle sinnvoll und erlaubt.

Stürzen wir uns gleich wieder in die Praxis: Nehmen wir an, Sie brauchen für
eine bestimmte Anwendung besonders große Zahlen, so daß 32 Bit zu deren
Darstellung nicht mehr ausreichen. Deshalb wollen Sie 64-Bit-Zahlen verwen-
den. (Zugegeben, das ist etwas an den Haaren herbeigezogen, da man ja mit 32.
Bit auch schon Zahlen bis über 4 Milliarden darstellen kann. Aber dies ist nun
einmal die einfachste Methode, den Gebrauch des X-Flags zu zeigen.) Dabei
stellt sich nun das Problem, wie man denn mit solchen Zahlen rechnet, da ja
für den Umgang mit so großen Zahlen keine speziellen Befehle vorgesehen
sind.

Zum Beispiel die Addition: Die erste Idee wäre, die Operation in zwei Schrit-
ten zu 32 Bit auszuführen. Problematisch ist dabei nur, daß ja aus der Addition
der unteren 32 Bit ein Übertrag auftreten kann, der korrekt behandelt werden
muß. Hier hilft uns nun das X-Flag weiter. Nehmen wir an, eine 64-Bit-Zahl
ab 1000 soll zu einer weiteren ab 2000 addiert werden:

MOVE.L 1004,D0
ADD.L DO,2004
MOVE.L 1000,D0
MOVE.L 2000,D1
ADDX.L DO,D1
MOVE.L D1,2000

Es wird dabei angenommen, daß die Zahlen im 68000er-üblichen Format an-
geordnet werden, also zuerst die oberen, danach die unteren Bits.

Zuerst werden also wie üblich die beiden unteren Hälften der Zahlen addiert.
Mit dem Befehl ADD werden gleichzeitig alle Flags entsprechend gesetzt.
Dann folgt ADDX, ein bisher unbekannter Befehl: Dieser führt eine Addition
durch, bei der der Übertrag einer eventuell vorhergehenden Addition richtig
behandelt wird. Genauer gesagt, ADDX wirkt wie ADD, nur daß zum Ergeb-
nis noch Eins addiert wird, wenn das X-Flag gesetzt ist. Andernfalls wird das
Ergebnis der Addition unverändert gelassen. Man kann es auch so ausdrücken:

ADDX: Ziel := Ziel + Quelle + X-Flag _

Einführung in Maschinensprache 37

Das Zeichen ":=" steht hier für die Zuweisung, wie es etwa in der Program-
miersprache Pascal üblich ist.

Vielleicht wundern Sie sich, daß die ADDX-Operation auf so umständliche
Weise ausgeführt werden muß. Der Grund ist, daß ADDX in seinen Adressie-
rungsarten sehr beschränkt ist; hier kommt deshalb nur die Form "Register zu
Register" in Frage. Deshalb müssen beide Operanden zuerst in Register gela-
den und das Ergebnis in den Zieloperanden zurückgeschrieben werden.

Der ADDX-Befehl addiert also die oberen 32 Bit der beiden Zahlen unter Be-
achtung des Übertrags der unteren 32 Bit. Die Befehle ADD und ADDX sind
genau für diese Verwendung bestimmt. Natürlich braucht man sich nicht auf
64-Bit-Zahlen zu beschränken, denn der ADDX-Befehl setzt ja seinerseits wie-
der das X-Flag. Indem also weitere ADDX-Befehle angehängt werden, können
beliebig lange Zahlen addiert werden.

Eine Variante des ADD-Befehles soll nicht unerwähnt bleiben: ADDQ. Dieses
Kürzel steht für "Add Quick" und führt die schnelle Addition einer kleinen
Konstanten zum Zieloperanden aus. Die Konstante darf nur 3 Bit lang sein,
wobei allerdings die Bitkombination 000 als 8 interpretiert wird. Somit kann
der Wert von 1 bis 8 reichen. Der Zieloperand kann in Byte-, Wort- und
Langwortbreite bearbeitet werden. So können Sie anstatt

ADD.L #2,DO

also besser folgendes schreiben:

ADDQ.L #2,DO

Letztere Variante braucht nicht nur weniger Speicherplatz, sondern wird auch
schneller ausgeführt.

Die Substraktion in Maschinensprache

Das Mnemonik für die Substraktion ist logischerweise SUB. Um zwei Worte
voneinander abzuziehen, schreiben Sie also:

MOVE 1000,DO

SUB D0,2000

Achtung! Die Operanden liegen hier in einer Reihenfolge, die genau anders-
herum ist, als man es gewohnt ist: Die Quelle wird hier vom Ziel abgezogen,

38 ATARIST - Programmieren in Maschinensprache

also der erste Operand vom zweiten. Das kommt daher, daß der Befehl als eine

Kurzschreibweise für "Ziehe den Inhalt von DO vom Inhalt von 2000 ab" ge-
dacht ist. Das Ergebnis der Subtraktion wird wie üblich im Ziel abgelegt, also
in 2000. Natürlich gibt es auch den SUB-Befehl in verschiedenen Verarbei-
tungsbreiten, also für Bytes:

MOVE.B 1000,D0

SUB.B DO,2000

oder für Langworte:

MOVE.L 1000,DO

SUB.L DO,2000

Der SUB-Befehl setzt die Statusflags auf die gleiche Weise wie der ADD-Be-
fehl. Deshalb können auch unsere 64-Bit-Zahlen voneinander abgezogen wer-
den:

MOVE.L 1004,D0
SUB.L DO0,2004
MOVE.L 1000,D0

MOVE.L 2000,D1
SUBX.L DO,D1
MOVE.L D1,2000

Beim SUB-Befehl wird das X-Flag genau dann auf 1 gesetzt, wenn ein Borgen
des obersten Bits erforderlich ist. Der SUBX-Befehl berücksichtigt genau die-
sen Fall: Wenn das X-Flag gesetzt ist, wird das Ergebnis der Subtraktion um
eins vermindert. In formaler Schreibweise:

SUBX: Ziel := Ziel - Quelle - X-Flag

Für den SUBX-Befehl gilt genauso wie für ADDX — wenigstens darin liegt
Konsequenz -, daß als Operanden entweder nur Datenregister oder nur Spei-
cheradressen verwendet werden dürfen, aber keine Mischformen.

Auch hier gibt es wieder die Quick-Variante SUBQ, die eine 3-Bit-Konstante
von 1 bis 8 vom Zieloperanden abzieht.

Die Multiplikation

Als nächstes wollen wir uns mit der Multiplikation befassen. Der 68000 kann
immerhin mit einem einzigen Befehl zwei Zahlen multiplizieren, was für eine

Einführung in Maschinensprache 39

CPU überhaupt nicht selbstverständlich ist, denn auf den meisten Prozessoren
muß dafür extra ein Programm geschrieben werden, das die Multiplikation
auf die Addition zurückführt.

Wir wollen uns ab jetzt angewöhnen, in den Beispielprogrammen keine direk-
ten Speicheradressen zu verwenden, sondern Symbole. Es wird angenommen,
daß am Anfang eines Assemblerprogramms diese Symbole definiert werden,
etwa in der Form

OP1 EQU 1000
OP2 EQU 2000

Hierbei handelt es sich um eine Anweisung an den Assembler, ein Symbol mit
einer Konstante oder einer Speicheradresse zu identifizieren. Immer wenn
fortan das Symbol benutzt wird, setzt der Assembler dafiir den ihm nunmehr
zugewiesenen Wert ein. Die Verwendung von Symbolen macht die Program-
me übersichtlicher, da die Namen zur Dokumentation beitragen.

Jetzt also zurück zur Multiplikation: Den Befehl zur Multiplikation gibt es in
wesentlich weniger Ausführungen als die Befehle ADD und SUB. Als Operan-
den können nur zwei Worte verwendet werden, und das Ziel muß in jedem
Fall ein Datenregister sein. Das Ergebnis ist dabei 32 Bit lang, denn das Pro-
dukt von zwei 16-Bit-Zahlen kann ja höchstens 32 Bit umfassen. Das sieht etwa
so aus:

MOVE OP2,DO
MULU OP1,DO
MOVE.L DO,ERG

Das Mnemonik MULU steht für "multiply unsigned", also multipliziere vor-
zeichenlos. Bei der Multiplikation muß im Gegensatz zur Subtraktion und Ad-
dition zwischen vorzeichenlosen und vorzeichenbehafteten Zahlen unterschie-
den werden. Deshalb gibt es auch noch eine Variante für Zweierkomplement-
zahlen:

MOVE OP2,DO
MULS OP1,DO
MOVE.L DO,ERG

Übrigens gehören MULU und MULS zu den Befehlen, deren Ausführung am
längsten dauert: Eine Multiplikation nimmt ungefähr zehnmal so viel Zeit in
Anspruch wie eine Addition, denn im Gegensatz zu letzterer ist sie nicht ein-
fach mit ein paar Logikelementen zu realisieren.

Da die Multiplikation von Bytes nicht implementiert ist, müssen auch hierfür
die Befehle MULU und MULS verwendet werden. Vorher müssen die Bytes
allerdings auf Worte erweitert werden.

40 ATARI ST — Programmieren in Maschinensprache

Für vorzeichenlose Zahlen sieht das folgendermaßen aus:

CLR DO
CLR D1
MOVE.B OP1,DO
MOVE.B OP2,D1
MULU DO,D1
MOVE D1,ERG

Hier begegnet uns ein neuer Befehl: CLR, was für "CLeaR" (deutsch: löschen)
steht. Dieser Befehl löscht den angegebenen Operanden, schreibt also eine 0
hinein. Auch diesen Befehl gibt es in Byte-, Wort- und Langwortbreite. Übri-
gens hatte man statt "CLR DO" ebensogut schreiben können

MOVE #0,D0

Noch einmal zurück zu unserer Byte-Multiplikation: Zunächst werden die Re-
gister DO und D1 gelöscht (Wortbreite). Dann werden die beiden Byte-Ope-
randen hineinkopiert. Bedenken Sie dabei, daß dadurch nur Bits 0 bis 7 beein-
flußt werden, während Bits 8 bis 15 weiterhin auf 0 bleiben. Die Operanden
sind also korrekt erweitert worden. Dann erfolgt die Multiplikation und die
Abspeicherung des Ergebnisses. Beachten Sie, daß das Ergebnis nur in Wort-
breite bewegt wird, denn das Produkt von zwei 8-Bit-Zahlen kann höchstens
16 Bit umfassen.

Natürlich kann die Multiplikation auch mit vorzeichenbehafteten Bytes durch-
geführt werden:

MOVE.B OP1,DO
MOVE.B OP2,D1
EXT DO
EXT D1
MULS DO,D1
MOVE D1,ERG

Zuerst werden die beiden Operanden in die Register DO und D1 kopiert. Mit
dem neuen Befehl EXT, der für EXTend (engl. erweitern) steht, werden die
Bytes vorzeichenrichtig auf Worte erweitert. Erinnern wir uns, daß das Vor-
zeichen einer Zahl gleichwertig mit deren oberstem Bit ist. Ist dieses Bit 1, so
ist sie negativ, sonst positiv. Der Befehl EXT überträgt nun den Inhalt von Bit
7 in die Bits 8 bis 15. Wenn die Zahl also positiv ist, so werden dort lauter Nul-
len hineingeschrieben, bei einer negativen Zahl Einsen. EXT gibt es in Wort-
und Langwortbreite. Bei letzterer Variante wird ein Wort vorzeichenrichtig
zu einem Langwort erweitert.

Nach den EXT-Befehlen folgt die Multiplikation mit Vorzeichen und die Ab-
speicherung des Ergebnisses. Auch hier sind nur 16 Bit des Ergebnisses rele-
vant.

Einführung in Maschinensprache 41

Will man zwei 32-Bit-Zahlen multiplizieren, so wird das Ganze schon schwie-
riger, denn auch diese Operation muß auf 16-Bit-Multiplikationen zurückge-
führt werden. Um das Prinzip zu verstehen, überlegen wir uns zunächst ein-
mal, wie eine schriftliche Multiplikation durchgeführt wird:

42 * 87

14 = 7* 2, Stellenwert 1
28 = 7 * 4, Stellenwert 10

16 = 8 * 2, Stellenwert 10
32 = 8 * 4, Stellenwert 100

3654

Das Prinzip ist also, daß man die Multiplikation von großen Zahlen in die Mul-
tiplikation von Zahlen zwischen 0 und 9 aufteilt und so die gesamte Multipli-
kation vereinfacht. Bei der Multiplikation von 32-Bit-Zahlen geschieht im
Prinzip nichts anderes, nur daß das Einmaleins des Rechners eben nicht nur bis
9* 9, sondern bis 65535 * 65535 reicht (Abb. 2.4).

OP1H opıı | x OP2H | OP2L 5

OPiL X OP2L u

+ OP1H xX OP2L u

+ OP1L X OP2H u

+ OP1H X OP2H u

ERGEBNIS

ERG ERG + 2 ERG + 4 ERG + 6

Abb. 2.4: Die Langwortmultiplikation

42 ATARI ST - Programmieren in Maschinensprache

Nun muß das Ganze nur noch formuliert werden:

MOVE OP1+2,DO
MULU OP2+2,DO
MOVE.L DO,ERG+4
MOVE OP1,DO
MULU OP2,DO
MOVE.L DO,ERG
MOVE OP1+2,D0
MULU OP2,DO
ADD.L DO,ERG+2
MOVE ERG,D1
CLR D2
ADDX D2,D1
MOVE OP1,DO
MULU OP2+2,DO
ADD.L DO,ERG+2
ADDX D2,D1
MOVE.L D1,ERG

OP1 Low x OP2 Low

Stellenwert 0

OP1 High x OP2 High

Stellenwert 2 hoch 32

OP1 Low x OP2 High

Stellenwert 2 hoch 16

oberstes Wort holen

für ADDX löschen

Übertrag addieren
OP1 High x OP2 Low

Stellenwert 2 hoch 16

Ubertrag!
oberstes Wort schreiben +

+
+

+
+

+
F

F
F
F

OF

F
OF

KF
OF

OF

Hier haben wir es erstmals mit einer etwas komplizierteren Anweisungsfolge
zu tun. Sie ist jedoch nicht schwer zu verstehen, da sie völlig geradlinig ab-
läuft.

Die ersten vier Befehle multiplizieren die niederwertigen 16 Bits der beiden
Operanden (OP1 + 2, OP2 + 2) miteinander und legen das Ergebnis in den
Bytes 4 bis 7 des Gesamtergebnisses ERG ab. Beachten Sie, daß auch hier die
beiden Operanden vom Typ Wort sind, das Ergebnis hingegen ein Langwort
ist.

Die nächsten drei Befehle bewirken das gleiche mit den oberen 16 Bits der
Operanden. Hier wird das Resultat in den Bytes 0 bis 3 des Gesamtergebnisses
abgelegt. Es ist wichtig, daß dabei keine Überschneidung entsteht, sonst könnte
das Ergebnis nicht einfach mit dem MOVE-Befehl hineingeschrieben werden.
Deshalb wurde auch genau diese Reihenfolge für die Berechnung der vier
Teilergebnisse verwendet.

Nun zu den restlichen zwei Teilergebnissen: Zunächst wird das Produkt des
niederwertigen Worts des ersten Operanden (OP1 + 2) mit dem hochwertigen
Wort des zweiten (OP2) berechnet. Dieses muß jetzt "in der Mitte", also von
Byte 2 bis 5 des Gesamtergebnisses, addiert werden. Hier entsteht schon eine
Falle, die leicht übersehen werden kann: Bei der Addition von zwei Langwor-
ten kann ein Übertrag von einem Bit entstehen, der dem Gesamtergebnis der
Bytes 0 und 1 hinzugezählt werden muß. Da es in der Maschinensprache des
68000 keinen Befehl gibt, um direkt das Übertragsbit einem Operanden hinzu-
zuzählen, behilft man sich mit der folgenden Befehlsfolge:

 Einfiihrung in Maschinensprache 43

MOVE ERG,D1
CLR D2
ADDX D2,ERG

Es wird also eine Null mit Ubertrag addiert. Wir miissen hier diesen Umweg
benutzen statt "ADDX #0,ERG", da ADDX fiir uns nur in der Adressierungs-
art "Register zu Register" in Frage kommt. Erinnern wir uns: Das X-Flag
wird dann angeschaltet, wenn ein vorhergehender ADD-Befehl einen Über-
trag produziert. In diesem Fall fügt ein darauffolgender ADDX-Befehl zur
Summe der beiden Operanden Eins hinzu. Obige Befehlsfolge bewirkt also ge-
nau das, was wir wollen.

Die nächste Befehlsgruppe multipliziert die oberen zwei Bytes des ersten Ope-
randen (OP1) mit den unteren des zweiten (OP2 + 2). Sie ist also genau kom-
plementär zu der vorherigen Befehlsgruppe. Auch hier muß das Ergebnis zu
den Bytes 2 bis 5 des Gesamtergebnisses addiert werden, und es folgt wieder
der gleiche Vorgang mit dem Übertrag und schließlich das Zurückschreiben
des Wertes aus D1 nach ERG.

Diese Art der Multiplikation kann auch auf Zahlen angewandt werden, die län-
ger als 32 Bit sind. Es müssen nur alle Teilergebnisse mit der richtigen Wer-
tigkeit addiert und die Überträge beachtet werden. Wenn Sie wollen, versu-
chen Sie einmal, die nötigen Teilergebnisse für eine 64-Bit-Multiplikation zu
bestimmen.

Die Division

Nun fehlt uns nur noch die vierte Grundrechenart: Die Division. Auch dafür
gibt es einen Maschinensprachebefehl. Da die Division komplementär zur
Multiplikation ist, werden durch sie nicht wie bei der Multiplikation zwei
Wort-Operanden zu einem Langwort verkettet, sondern ein Langwort wird
durch ein Wort geteilt, wobei das Ergebnis seinerseits ein Wort ist. Für die
vorzeichenlose Division sieht dies dann etwa folgendermaßen aus:

MOVE.L OP1,DO
DIVU OP2,D0
MOVE DO,ERG

DIVU steht hier für "DIVide Unsigned", also teile vorzeichenlos. Auch beim
DIVU-Befehl darf — genau wie bei den Multiplikationsbefehlen — nur ein Da-
tenregister als Ziel angegeben werden. Beachten Sie, daß auch hier die Regel
gilt, daß der Quelloperand mit dem Zieloperanden verkettet wird und das Er-

44 ATARI ST — Programmieren in Maschinensprache

gebnis im Zieloperanden abgelegt wird. Die Operanden werden also auch hier,
ebenso wie schon beim SUB-Befehl, genau andersherum geschrieben, als man
es gewohnt ist.

Auch DIVU hat sein Pendant für die Division mit Vorzeichen. Es heißt DIVS
und steht für "divide signed". Es wird genauso angewandt wie DIVU:

MOVE.L OP1,DO
DIVS OP2,DO
MOVE DO,ERG

Leider kann die Division einer ganzen Zahl durch eine andere nicht so sauber
behandelt werden wie die Multiplikation. Zunächst einmal gilt, daß das Ergeb-
nis der Division ebenfalls nur ganzzahlig sein kann und deshalb immer abge-
rundet wird. Ein Problem stellt der Fall dar, daß das Ergebnis der Division ei-
nes Langwortes durch ein Wort nicht unbedingt in einem Wort darstellbar ist,
etwa wenn eine große Zahl durch 1 dividiert wird. In diesem Fall ist das Er-
gebnis undefiniert, und das Overflow-Flag wird auf 1 gesetzt. Wenn also die-
ser Fall auftreten kann, sollten Sie immer den Zustand des V-Flags überprü-
fen.

Was schon Generationen von Mathematikern Kopfzerbrechen bereitete, muß
auch hier eine Sonderbehandlung erfahren: die Division durch Null. Es liegt
normalerweise in der Verantwortung des Programmierers, es nicht dazu kom-
men zu lassen. Sollte es doch einmal geschehen, dann löst der Prozessor eine
Art Ausnahmezustand aus, mit dessen Varianten wir uns später noch ausführ-
lich befassen werden. Wenn Sie sichergehen wollen, sollten Sie also vor der
Division den zweiten Operanden testen.

Will man kleinere Zahlen teilen, zum Beispiel ein Wort durch ein Byte, so
muß man die Operanden wieder erweitern. Für eine vorzeichenlose Division
sieht das so aus:

CLR.L DO
MOVE OP1,DO
CLR D1
MOVE.B OP2,D1
DIVU D1,DO
MOVE DO,ERG

Zunächst wird das Register DO gelöscht und daraufhin der erste Operand in
Wortbreite hineingeschrieben, wobei die oberen 16 Bit nicht verändert wer-
den und somit den Wert Null behalten. Aus dem Wort ist also ein Langwort
geworden. Mit dem zweiten Operanden wird im Prinzip genauso verfahren,
nur daß hier ein Byte in ein Wort verwandelt wird. Schließlich wird die Divi-
sion durchgeführt und das Ergebnis abgespeichert.

Einführung in Maschinensprache 45

Nun noch einmal der gleiche Vorgang für die Division mit Vorzeichen:

MOVE OP1,DO
EXT.L DO
MOVE.B OP2,D1
EXT D1
DIVS D1,DO
MOVE DO,ERG

Hier wird zunächst der erste Operand in das Register DO bewegt und dort mit
dem EXT-Befehl vorzeichenrichtig auf Langwortbreite erweitert. Danach ge-
schieht das gleiche mit dem zweiten Operand, der allerdings von Byte- auf
Wortbreite erweitert wird. Dann erfolgt die übliche Division.

Bei den Befehlen DIVU und DIVS gibt es noch eine Besonderheit: Es wird
nicht nur das Ergebnis der Division berechnet, sondern auch der Rest. Dieser
wird in den oberen 16 Bits des Zielregisters abgelegt. Nun fragen Sie sich viel-
leicht, wie man dort herankommt, da man mit den Verarbeitungsbreiten Wort

und Byte ja nur an die unteren Bits kommt. Nun, dafür gibt es den SWAP-Be-
fehl. Er kann nur auf ein Datenregister angewendet werden und vertauscht die
oberen 16 Bits mit den unteren 16 Bits. Wenn Sie also bei einer Division auch
den Rest ermitteln wollen, müßte das so aussehen:

MOVE.L OP1,DO
DIVU OP2,D0
MOVE DO,ERG
SWAP DO
MOVE DO,REST

Zuerst wird also wie üblich die Division durchgeführt und das Ergebnis abge-
speichert. Darauf folgt der SWAP-Befehl, der die untere Hälfte des Langwor-
tes DO mit der oberen Hälfte vertauscht. Die neue untere Hälfte wird dann als
Rest in den Speicher bewegt.

SHIFT und ROTATE

Manchmal ist es durchaus sinnvoll, die Bits einer Speicherzelle um einige Stel-
len zu verschieben. Dafür ist eine ganze Gruppe von Befehlen zuständig, die
alle möglichen Fälle behandeln.

SHIFT-Befehle

Shift steht für Verschieben. Die Wirkung eines solchen Befehls ist die, daß alle
Bits um (zunächst) eine Stelle nach rechts oder links verschoben werden. Da-
bei rückt eine Null nach, und das herausgeschobene Bit landet im X-Flag und
Carry-Flag (Abb. 2.5).

46 ATARI ST - Programmieren in Maschinensprache

logisches Schieben nach rechts (LSR)

>

vorher 1

1001101111, 0
NNNNANANI™S 5

re (0111110011011, 11
8

logisches Schieben nach links (LSL)

<

vorher 1

10/01/0111

LAA Ah fh fo %-*e
re 1100101110 |

Abb. 2.5: Logisches Schieben nach rechts und links (LSR/LSL)

So gibt es zunächst einmal zwei Befehle, die diese Aufgabe übernehmen: LSL
(Logical Shift Left, logisches Verschieben nach links) und LSR (Logical Shift
Right, logisches Verschieben nach rechts). "Links" steht hier für ein Verschie-
ben auf die höherwertigen Bits zu, "rechts" auf die niederwertigen, entspre-
chend der Reihenfolge, wie man die Ziffern einer Zahl auf ein Blatt Papier
schreiben würde.

Allerdings sind noch andere Verschiebebefehle notwendig: Wenn mit Zahlen
im Zweierkomplement gearbeitet wird, wird ja irgend ein Bit ins Vorzeichen
hireingeschoben und somit unter Umständen das Vorzeichen der Zahl verän-
dert. Um dies zu vermeiden, hat man auch SHIFT-Befehle für vorzeichenbe-
haftete Zahlen implementiert: Der ASR-Befehl (Arithmetic Shift Right, arith-
metisches Verschieben nach rechts) läßt einfach das Vorzeichen unverändert

Einführung in Maschinensprache 47

und schiebt nur die restlichen Bits um eine Stelle nach rechts, wobei das Vor-
zeichen auch in das ihm folgende Bit übertragen wird (Abb. 2.6). Der ASL-
Befehl (Arithmetic Shift Left, arithmetisches Schieben nach links) ist jedoch
genaugenommen nur eine Attrappe, denn seine Wirkungsweise ist genau iden-
tisch mit der von LSL.

arithmetisches Schieben nach rechts (ASR)

>

vorher

 11001011) (0
NNNNNNN Dur

oe 1/11001/01) 1

Abb. 2.6: Arithmetsches Schieben nach rechts (ASR)

Wenn Sie eine dezimale Zahl mit 100 multiplizieren wollen, so werden Sie
nicht erst zum Taschenrechner oder zu Bleistift und Papier greifen, sondern
einfach zwei Nullen anhängen. Genau das gleiche macht der Prozessor bei den
Verschiebeoperationen, nur daß er eben im Binärsystem rechnet. So entspricht
das Verschieben um eine Stelle nach links (also das Anhängen eines Nullbits)
einer Multiplikation mit 2, das Verschieben nach rechts einer Division durch
2. Bei letzterem landet der Rest im Carry-Bit, denn der Prozessor kennt nun
einmal keine Nachkommastellen. Eine solche Verschiebeoperation ist für den
Prozessor wesentlich einfacher und schneller auszuführen als eine echte Mul-
tiplikation mittels MULU oder MULS.

Hieraus ergibt sich nun auch, warum ASL und LSL identisch sind: Damit bei
ASL das Vorzeichen verändert wird, ist es notwendig, daß das Bit rechts neben
dem Vorzeichenbit ungleich dem Vorzeichenbit selbst ist. In diesem Fall muß
es sich ohnehin um eine recht große (oder, wenn sie negativ ist, sehr kleine)
Zahl gehandelt haben, deren Multiplikation mit 2 ein Ergebnis liefert, das au-
Berhalb des darstellbaren Bereichs liegt. Da das reelle Ergebnis also sowieso
falsch wäre, spielt es auch keine Rolle mehr, ob das Vorzeichenbit verändert
wird. Beispielsweise für 8 Bit müßte eine solche Zahl im Bereich von —128 bis

48 ATARI ST — Programmieren in Maschinensprache

-65 oder +64 bis +127 liegen, deren Multiplikation mit zwei eine Zahl von
-256 bis -130 oder +128 bis +254 liefert, was die Grenzen einer 8-Bit-Zwei-
erkomplementzahl sprengt.

Jetzt zur Praxis: Nehmen wir an, Sie wollen die Variable OP1 vorzeichenlos
mit zwei multiplizieren. Sofern es sich um ein Wort handelt, schreiben Sie ein-
fach

ASL OP1

Wie Sie sehen, kann ASL (und ebenso die anderen Schiebebefehle) direkt auf
eine Speicherzelle angewendet werden. In diesem Fall ist nur Wortlänge er-
laubt. Es gibt jedoch noch eine zweite Variante, bei der sich der Zieloperand in
einem Datenregister befinden muß. In diesem Fall kann man nicht nur in
Langwort- und Byte-Breite verschieben, sondern auch um mehrere Stellen auf
einmal. Dafür ist natürlich noch ein zweiter Operand notwendig, der die An-
zahl der Stellen angibt, um die verschoben werden soll. Wenn ein Operand
beispielsweise mit 8 multipliziert werden soll, muß er um 3 Stellen nach links
verschoben werden (2 * 2 * 2 = 8):

MOVE OP1,DO
ASL #3,D0
MOVE DO,OP1

Wichtig fiir das Verschieben um mehrere Stellen ist folgendes: Die Wirkung
ist die gleiche, als ob mehrere Male hintereinander um eine Stelle verschoben
wird. Das heißt, für ASL werden von rechts Nullen nachgeschoben, während
nur das zuletzt hinausgeschobene Bit im Carry landet. Übrigens darf der di-
rekte Zähler nur von 1 bis 8 reichen. Ein Verschieben um mehr Stellen ist
auch möglich, doch muß dann der Quelloperand ein Datenregister sein, das die
Anzahl der Stellen enthält. Dabei können Werte bis zu 64 angegeben werden.
Das ist eigentlich schon zuviel des Guten, denn selbst von einem Langwort
bleiben in jedem Fall nur noch Nullen übrig, wenn es um mehr als 31 Stellen
verschoben wird.

Wenn ein Langwortoperand um 16 Stellen verschoben werden soll, sieht das
so aus:

MOVE.L OP1,DO
MOVE #16,D1
ASL.L D1,DO
MOVE.L DO,OP1

Auch hier können größere Einheiten als 32 Bit auf einmal verschoben werden.
Dabei hilft uns wieder das Extend-Flag, denn es gibt auch Varianten der Ver-

Einführung in Maschinensprache

schiebebefehle, die dieses Bit mit einbeziehen. So steht ROXL für "ROtate Left
through X-Flag", also "rotiere nach links durch das Extend-Flag", und ROXR
für die entsprechende Rotation nach rechts.

In der ersten Verwendungsart, in der ein Wort im Speicher um eine Stelle ver-
schoben wird, gleicht ROXL dem Befehl ASL bis auf den Umstand, daß statt
einer Null von rechts der Inhalt des Extend-Flags nachgeschoben wird (Abb.

2.7).

rotieren nach rechts durch X- Flag (ROXR)

>

vorher 110010174 1

NNONNNNN De
tte (11111001011 14

rotieren nach links durch X - Flag (ROXL)

4

vorher 11100/1011 1

LAA A ASS Cres
1 1lololtioltitt) 1

Abb.2.7: Rotieren nach rechts und links durch X-Flag (ROXR/ROXL)

50 ATARI ST - Programmieren in Maschinensprache

Um eine 64-Bit-Zahl nach links zu schieben, müßten Sie also schreiben

ASL OP1+6
ROXL OP1+4
ROXL OP1+2
ROXL OP1

Hier machen wir uns den Umstand zunutze, daß ROXL seinerseits das heraus-
geschobene Bit im X-Flag plaziert und daher beliebig oft aneinandergereiht
werden kann. Beachten Sie, daß mit den niederwertigsten Bytes (OP1 + 6) be-
gonnen wurde. Dies ist notwendig, da ja die höherwertigeren Bytes auf das
herausgeschobene Bit ihrer Vorgänger angewiesen sind.

Auch in der oben beschriebenen zweiten Variante, bei der ein Datenregister
um mehrere Stellen auf einmal verschoben wird, können die ROXL- und
ROXR-Befehle verwendet werden. Dies ist jedoch nur selten sinnvoll, da sich
die CPU im Extend-Flag ja nur ein Bit "merken" kann. Sie könnten also eine
64-Bit-Zahl nicht korrekt um drei Stellen verschieben, indem Sie einfach ASL
und ROXL benutzen, da ja nur eines der drei hinausgeschobenen Bits im hö-
herwertigen Teil der Zahl ankommt. Hier behilft man sich am einfachsten, in-
dem man drei Verschiebungen um eine Stelle vornimmt. Wegen dieser Pro-
bleme wollen wir hier nur die Verschiebung um eine Stelle benutzen. Unter
Verwendung der Datenregister hätte man obige Befehlssequenz auch so for-
mulieren können:

MOVE.L OP1+4,DO
ASL.L #1,DO
MOVE.L DO,OP1+4
MOVE.L OP1,DO
ROXL.L #1,D0
MOVE.L DO,OP1

Hierbei wird der Operand nicht in 4 Einheiten zu 2 Byte, sondern in 2 Einhei-
ten zu 4 Byte rotiert — was auf das gleiche hinausläuft. .

Übrigens gilt alles, was über den ASL-Befehl gesagt wurde, ebenso für ASR,
LSL und LSR - schließlich ist der 68000 Prozessor allgemein so aufgebaut,
daß ähnliche Befehle auch in ähnlichen Varianten existieren. Nur eines sollten
Sie beachten, wenn Sie nach rechts schieben: Im Gegensatz zum Verschieben
nach links müssen sie dabei mit den höchstwertigen Bytes beginnen, denn dies-
mal müssen die herausgeschobenen Bits in die nächstniedrigen Bytes hineinge-
schoben werden. Um eine 64-Bit-Zahl ein Bit nach rechts zu schieben (also
durch zwei zu teilen), schreibt man:

ASR OP1
ROXR OP1+2
ROXR OP1+4
ROXR OP1+6

Einführung in Maschinensprache 51

Die ROTATE-Befehle

rotieren nach rechts (ROR)

 >

vorher 1

1001011
NVNANAA ACT PRs?
111

nachher | 4 00:101)] |1
t

rotieren nach links (ROL)

.

vorher 1 O 0
10/01

AAA hf
oe 110101110 11

111
Lt X-Flag

1/1
4 4

Abb. 2.8: Rotieren nach rechts und links (ROR/ROL)

Der Vollständigkeit halber sollen hier auch die Befehle ROL (ROtate Left, ro-
tiere nach links) und ROR (ROtate Right, rotiere nach rechts) erwähnt wer-
den, auch wenn sie nur sehr selten benutzt werden. Ihre Wirkungsweise ist der
von LSL und LSR ähnlich, nur daß das herausgeschobene Bit nicht nur in Car-
ry und X-Flag erscheint, sondern auch an der anderen Seite des Operanden

52 ATARIST — Programmieren in Maschinensprache

wieder hineingeschoben wird (Abb. 2.8). Auch hier gibt es zwei Varianten:
Bei der ersten muß der Operand im Speicher liegen, ist auf Wortlänge be-
schränkt und darf nur um eine Stelle verschoben werden, während die zweite
nur auf Datenregister angewendet werden kann, aber dafür eine Verschiebung
um bis zu 64 Stellen erlaubt.

Wenn das Register DO den hexadezimalen Wert 4321 enthält und der Befehl

ROL.W #4,DO

ausgeführt wird, so befindet sich danach in DO die Zahl 3214, denn die Ver-
schiebung um vier Binärstellen entspricht einer Verschiebung um eine hexade-
zimale Stelle. Die vier Bits der 4 sind also nach links hinausgeschoben worden
und gleichzeitig rechts wieder angehängt worden.

Die Rotate-Befehle verwendet man allgemein sehr selten. Dies kommt nicht
zuletzt daher, daß die Rotation von Bits vom mathematischen oder logischen
Standpunkt her nicht besonders sinnvoll ist. Deshalb gibt es sie in dieser Form
auch kaum auf anderen Prozessoren. Eine denkbare Anwendung wäre folgen-
de: Man möchte auf das obere Byte eines Langwortes im Byte-Modus zugrei-
fen. Man könnte natürlich schreiben

MOVE #24,D1
LSR.L D1,DO
MOVE.B DO,Ziel

wobei der uns interessierende Wert in DO steht (Beachten Sie, daß die Anzahl
der Verschiebungen in einem Datenregister stehen muß). Eleganter, kürzer
und schneller auszuführen wäre aber

ROL.L #8,DO
MOVE.B DO,Ziel

Logische Operationen

Neben den bekannten arithmetischen Operationen gibt es auch noch andere
Arten, wie man Zahlen miteinander verknüpfen kann: mit den logischen Ope-
rationen AND, OR und EOR. Bei Computern dienen diese Operationen nur
selten dazu, Wahrheitswerte zu verknüpfen, sondern vielmehr zum Verändern

bestimmter Bits. Gemeinsam ist diesen Befehlen, daß sie alle bitweise wirken:

 Einfiihrung in Maschinensprache 53

Es wird immer ein Bit aus der Quelle mit dem Bit der entsprechenden Stelle
des Zieloperanden verkniipft und das daraus resultierende Bit wird wieder im
Ziel abgelegt.

Der AND-Befehl

Die AND-Operation entspricht in etwa dem umgangssprachlichen "und". Zwei
Zahlen werden bitweise miteinander verknüpft: Es werden jeweils gleichwer-
tige Bits aus der Quelle und dem Ziel untersucht. Im Ergebnis wird das ent-
sprechende Bit nur dann gesetzt, wenn beide Bits Eins sind, in allen anderen
Fällen steht dort eine Null. Um es in einer Wahrheitstafel wiederzugeben:

Quelle Ziel Ergebnis

a
e

D
D

=

O
m
 ©

=

O
O

©

Der AND-Befehl kann in praktisch allen Adressierungsarten und Byte-, Wort-
und Langwortbreite benutzt werden. Z- und N-Bit werden entsprechend dem
Gesamtergebnis gesetzt. Um ein Beispiel zu geben:

MOVE.B #%10101010,D0

AND.B #%00001111,D0

Um die bitweise Wirkung des AND-Befehls deutlicher zu machen, werden die
Operanden hier in binärer Schreibweise angegeben. Schreiben wir die beiden
Operanden untereinander:

10101010
AND 00001111

00001010

Im Register DO steht also nach der Operation der Wert 1010, dezimal 10. Wie
unser Beispiel zeigt, kann man den AND-Befehl dazu verwenden, bestimmte
Bits bedingungslos auf 0 zu setzen, während andere Bits nicht beeinflußt wer-
den. Dies ist beispielsweise bei bestimmten Hardwareregistern sinnvoll, in de-

54 ATARI ST - Programmieren in Maschinensprache

nen jedem Bit eine Bedeutung zugeschrieben ist. Bei allen Bits, die in dem Re-
gister gelöscht werden sollen, wird im Quelloperanden eine Null stehen, bei
den zu erhaltenden Bits eine Eins. Bei einer Null kann ja im Ergebnis auf kei-
nen Fall mehr eine Eins erscheinen, während bei einer Eins in einem Operan-
den direkt der Wert aus dem anderen Operanden übernommen wird.

Der OR-Befehl

Sinnvollerweise zeigt der OR-Befehl Parallelen zum umgangssprachlichen
"oder": Der OR-Befehl wirkt ähnlich wie AND, nur wird hier ein Bit genau
dann gesetzt, wenn das Bit in der Quelle oder im Ziel gesetzt war. Die Wahr-
heitsafel der OR-Verknüpfung sieht so aus:

Quelle Ziel Ergebnis

e
e

C
D

=

O
e
 ©

—

a

e
m

C
S

Hier steht im Ergebnis also nur dann eine Null, wenn beide Bits zuvor Null

waren. Als Gegenstiick zu AND wird OR dazu benutzt, bestimmte Bits bedin-
gungslos zu setzen. Uberall dort, wo in einem Operanden ein Bit gesetzt ist,
wird im Ergebnis auch ein Bit gesetzt sein. Ist das Bit hingegen im ersten Ope-
randen gelöscht, so ergibt sich das Resultat direkt aus dem Bit des zweiten
Operanden. Betrachten wir hierzu wieder ein Programmfragment:

MOVE.B #%10101010,D0

OR.B #300001111,DO

Hier bewirkt der OR-Befehl, daß die unteren vier Bits in DO auf jeden Fall ge-
setzt werden, während die oberen vier Bits erhalten bleiben. Somit entsteht
folgendes Ergebnis:

10101010
OR 00001111

10101111

Einführung in Maschinensprache 55

Der EOR-Befehl

EOR, in anderen Zusammenhängen auch oft mit XOR bezeichnet, steht für
"eXclusive OR", also "ausschließendes oder", was soviel bedeutet wie "das eine
oder das andere, aber nicht beides". So ist die Wirkung von EOR denn auch,
daß ein Bit im Ergebnis genau dann gesetzt ist, wenn das Bit im ersten oder im
zweiten Operanden gesetzt ist, aber nicht, wenn es in beiden gesetzt ist. Eine
Wahrheitstafel macht das deutlicher:

Quelle Ziel Ergebnis

=

e
t

C
>

=
O
r
e
m

©

OD

©

In der Praxis dient EOR dazu, bestimmte Bits zu invertieren. Wenn in einem
Operanden eine Eins steht, so wird das Ergebnis genau der Gegenwert des Bits
aus dem zweiten Operanden sein: Eine Null wird zu einer Eins und umgekehrt.
Ist jedoch das Bit eines Operanden gelöscht, so wird der Wert des zweiten
Operanden unverändert übernommen. Betrachten wir die Wirkung der fol-
genden Befehle:

MOVE.B #%10101010,D0

EOR.B #%00001111,D0

Nach der Ausführung steht in DO

10101010

EOR 00001111
10100101

Die invertierende Eigenschaft des EOR kann beispielsweise benutzt werden,
um ein Unterprogramm jedes zweite Mal etwas Bestimmtes ausführen zu las-
sen:

CLR.B wechsel Unser Wert muß initialisiert

werden

56 ATARI ST - Programmieren in Maschinensprache

unter EOR.B #SFF,wechsel
BNE markel

[was hier steht, wird nur]
[jedes 2. Mal ausgeführt]

markel

BNE steht fir "Branch if Not Equal". Dieser Befehl verzweigt genau dann
zum Speicherplatz "markel", wenn das Ergebnis der EOR-Operation Null ist.
Genauer wird dieser Befehl in diesem Kapitel unter dem Abschnitt "Bedingte
Verzweigungen" erklärt.

Hier wird die Variable "wechsel" also bei jedem Aufruf invertiert, und ein
Programmteil wird nur ausgeführt, wenn sie auf 0 steht. Schließlich entspricht
der hexadezimale Wert $FF einem Byte von 8 Einsen. Dabei wäre es in diesem
Fall völlig egal, welchen Wert man statt $FF nimmt, solange er nur verschie-
den von 0 ist, denn die einzelnen Bits sind ja völlig unabhängig voneinander.
Daraus kann man erkennen, daß es eine der Eigenschaften von EOR ist, daß
eine Zahl mit sich selbst "EXKLUSIV-ODER" immer 0 ergibt.

Der NOT-Befehl

Da es oft vorkommt, daß eine Zahl vollständig invertiert werden soll, stellt der
Prozessor 68000 dafür noch extra einen Befehl namens NOT zur Verfügung.
Seine Wirkung ist genau die gleiche wie die eines EOR, bei dem der erste Ope-
rand aus lauter Einsen besteht. Statt

EOR.B #$FF,DO

kann man also auch schreiben

NOT.B DO

Manchmal will man auch das Vorzeichen einer Zahl in Zweierkomplement-
darstellung ändern. Eine Vorzeichenänderung nimmt der Prozessor vor, in-
dem er alle Bits der Zahl invertiert und 1 hinzuzählt (siehe Anhang A). Um das
Vorzeichen eines Wortes in DO zu ändern, müßte man schreiben:

EOR #SFFFF,DO
ADD #1,D0

Einführung in Maschinensprache 57

oder, wie wir eben gesehen haben:

NOT DO
ADD #1,DO

Da die Änderung des Vorzeichens einer Zahl in Zweierkomplementdarstel-
lung ziemlich oft vorkommt, haben die Entwickler des 68000 auch dafür einen
Befehl zur Verfügung gestellt: Er nennt sich NEG (von engl. negate, negiere).
Der Befehl

NEG DO

hat genau die gleiche Wirkung wie obige Befehlsfolge, auch das Carry-Bit
wird genauso gesetzt.

Bedingte Verzweigungen

Es kommt recht oft vor, daß man einen Speicherbereich mit einem bestimmten
Wert füllen will — etwa, um den Bildschirm auf eine bestimmte Farbe zu setzen
oder um Variablenfelder zu initialisieren. Entwickeln wir also eine Routine,
die einen Speicherbereich byteweise mit einem bestimmten Wert füllt.

fuelll

MOVE.B wert,DO * Wert ins Register laden
MOVE.L anfang, AO * Anfang in AO |

loop

MOVE.B DO, (AO) * Byte schreiben
ADDQ.L #1,A0 * Adresse um 1 erhöhen
CMP.L ende, AO * Ende erreicht?
BNE loop * noch nicht, also weiter

An diesem Beispiel lernen Sie sowohl eine neue Adressierungsart als auch den
BNE-Befehl kennen. Doch gehen wir systematisch vor: Zuerst wird der Wert,
mit dem der Speicherbereich gefiillt werden soll, ins Register DO geladen, und
die Anfangsadresse wird in Register AO geschrieben. Dann kommt das Pro-
gramm in eine Schleife (engl. loop), in der immer ein Byte an die Adresse, die
in AO steht, geschrieben wird und dann die Adresse in AO erhöht wird. Beach-
ten Sie, daß hier die Quick-Variante des ADD-Befehls Verwendung fand. Dar-
aufhin wird untersucht, ob die Endadresse schon erreicht ist. Solange dies
nicht der Fall ist, werden die Schritte der Schleife wiederholt. Übrigens füllt
diese Schleife den Bereich einschließlich Anfangsadresse, jedoch ausschließ-
lich Endadresse.

Hier haben wir die Methode verwendet, eine berechnete Adresse zu verwen-
den, die sogenannte indirekte Adressierung.

58 ATARI ST - Programmieren in Maschinensprache

Mit

MOVE.B DO, (AO)

ist gemeint, daß der Inhalt von AO die Adresse bezeichnet, an die der Wert ge-
schrieben wird. Beachten Sie den Unterschied zu

MOVE.B DO,AO

was einfach den Wert aus DO nach AO überträgt. Die Klammern bedeuten so-
mit eine "Indirektion" mehr, das heißt, der Prozessor wird angewiesen, nicht
gleich die angegebene Stelle zum Schreiben oder Lesen zu verwenden, sondern
nachzuschauen, was für ein Wert dort steht, und den Wert als Adresse zu ver-
wenden. Natürlich kann diese Adressierungsart auch beim Quelloperanden
verwendet werden:

MOVE.B (A0),DO

überträgt die Daten in der umgekehrten Richtung.

Nach dem Erhöhen der Adresse um Eins — Eins deshalb, weil es sich ja hier um
Byte-Adressierung handelt — taucht schon wieder ein neuer Befehl auf: der
CMP-Befehl. Er steht fiir "CoMPare" (vergleichen) und vergleicht Quell- und
Zieloperand miteinander, woraufhin die System-Flags entsprechend gesetzt
werden. Die Operanden werden jedoch nicht verandert. Intern geschieht dies,
indem der Zieloperand vom Quelloperand abgezogen wird und die Flags ent-
sprechend dem Ergebnis gesetzt werden. Somit kann man CMP mit dem SUB-
Befehl vergleichen, allerdings sind die Funktionen von Quelle und Ziel ver-
tauscht.

Natürlich existiert CMP auch in den Verarbeitungsbreiten Byte, Wort und
Langwort. Da kein Ergebnis berechnet wird, ist der CMP-Befehl nur sinnvoll,
wenn bald danach die System-Flags ausgewertet werden. Und damit sind wir
bei der Gruppe der Branch-Befehle, den bedingten Verzweigungen.

BNE steht fiir "Branch if Not Equal", also "verzweige, wenn nicht gleich”.
Das bedeutet, der Programmfluß soll verzweigen, wenn das Zero-Flag nicht
gesetzt ist. Allgemein prüfen die Branch-Befehle bestimmte System-Flags ab,
ob sie gesetzt oder nicht gesetzt sind. Ist — je nach Befehl — die Bedingung nicht
erfüllt, so geschieht nichts weiter, und das Programm wird mit dem nächsten
Befehl fortgesetzt. Ist die Bedingung jedoch erfüllt, so wird zu dem angegebe-
nen Label verzweigt. In unserem Beispiel funktioniert das so: Der CMP-Be-
fehl vergleicht die aktuelle Adresse mit der Endadresse. Sind beide gleich, so
wird das Z-Bit gesetzt, andernfalls gelöscht. Natürlich werden auch die ande-

Einführung in Maschinensprache | 59

ren Flags gesetzt, die uns allerdings hier nicht weiter interessieren. Als näch-
stes wird BNE ausgeführt, der nur dann wieder zum Label "loop" verzweigt,
wenn das Zero-Flag nicht gesetzt ist, solange aktuelle Adresse und Endadresse
ungleich sind.

Da unser BNE-Befehl nur einer aus einer ganzen Gruppe von Branch-Befeh-
len ist, betrachten wir nun die anderen Branch-Befehle. Jeder Branch-Befehl
besteht aus zwei Teilen. Der erste — bezeichnet durch die zwei hinteren Buch-
staben des Mnemoniks - gibt die Bedingung an, die geprüft werden soll, der
zweite das Label, zu dem verzweigt wird, wenn die Bedingung wahr ist.

Flags als Verzweigungsbedingung

Die einfachste Bedingung, die wir überprüfen können, ist der Zustand der vier
Flags Carry, Overflow, Zero und Negative. Da wir bei jedem den Zustand
"gesetzt" oder "gelöscht" prüfen können, ergeben sich acht Bedingungen.

Carry
BCS Branch if Carry Set Springe, wenn C=1
BCC Branch if Carry Clear Springe, wenn C=0

Overflow
BVS Branch if oVerflow Set Springe, wenn V=1
BVC Branch if oVerflow Clear Springe, wenn V=0

Zero
BEQ Branch if EQual Springe, wenn Z=1
BNE Branch if Not Equal Springe, wenn Z=0

Negative
BMI Branch if MlInus Springe, wenn N=1
BPL Branch if PLus Springe, wenn N=0

Verzweigungen nach CMP

Oft werden die Branch-Befehle dazu verwendet, je nach dem Ergebnis des
CMP-Befehls bestimmte Aktionen zu veranlassen. Mit CMP sollen zwei Zah-
len miteinander verglichen werden in der Form

CMP B,A

Ho ATARI ST - Programmieren in Maschinensprache

wobei A und B für beliebige Register oder Speicherzellen stehen. Beachten
Sie, daß hier die Schreibweise genau umgekehrt zur algebraischen Notation
ist, wo man etwa schreiben würde "A < B". Der zweite Operand muß also hier
vorangestellt werden.

Es sind sechs Bedingungen vorgesehen, nach denen verzweigt werden kann:

A= B

AB

A> B

A< B

A >=B

A <=B N
M

P
W
N
D

Die Fälle 1 und 2 sind mit den erwähnten Bedingungen schon abgedeckt, denn
A = B und A <> B werden mit BEQ und BNE behandelt. Bedenken Sie, daß
A =B gleichbedeutend ist mit B- A = 0, und daß der CMP-Befehl genau den
Ausdruck B - A intern berechnet.

Für die restlichen Fälle müssen wir unterscheiden, ob es sich um vorzeichenlo-
se Zahlen oder Zahlen in der Zweierkomplementdarstellung handelt. Ein Bei-
spiel zeigt, daß beim Vergleichen von Zahlen darauf geachtet werden muß, ob
sie vorzeichenbehaftet sind oder nicht:

Bei vorzeichenlosen Bytes ist (binär)

11100011 > 00000011

während bei vorzeichenbehafteten Zahlen die erste der beiden negativ wäre
und somit

11100011 < 00000011

Betrachten wir zunächst die vorzeichenlosen Zahlen.

Vergleich vorzeichenloser Zahlen

Es gibt vier Möglichkeiten zu unterscheiden:

BHI Branch if Hlgher
Verzweige, wenn A>B
erfüllt, wenn (C OR Z) = 0

Einführung in Maschinensprache 61

BCS Branch if Carry Set
Verzweige, wenn A < B
Diese Bedingung ist erfüllt, wenn C=1.
BCS hat somit zwei Bedeutungen.

BCC _ Branch if Carry Clear
Verzweige, wenn A >= B.
Diese Bedingung ist erfüllt, wenn C=1.
Auch BCC hat zwei Bedeutungen.

BLS Branch if Lower or Same

Verzweige, wenn A<=B erfüllt,
wenn C=1 OR Z=1

Zu jeder der Bedingungen ist auch angegeben, wie sie sich aus den Flags erge-
ben. In den meisten Fallen kann es dem Assemblerprogrammierer jedoch egal
sein, wie die Relation der beiden Zahlen intern festgestellt wird.

Will man mit vorzeichenbehafteten Zahlen arbeiten, so kann die Verwendung
der eben besprochenen Bedingungen — wie wir oben gesehen haben — zu einem
falschen Ergebnis führen. Daher gibt es von diesen vier Relationen auch Aus-
gaben für die Zweierkomplementzahlen.

Vergleich von vorzeichenbehafteten Zahlen

Auch hier gibt es wieder vier Bedingungen:

BLT Branch if Less Than
Verzweige, wenn A<B
erfüllt, wenın(NEORV)=1

BGT Branch if Greater Than
Verzweige, wenn A >B erfüllt,
wenn(ZAND(NEORV))=1

BLE Branch if Less or Equal
Verzweige, wenn A <=B erfüllt,
wenn(ZOR(NEORV))=]1

BGE _ Branch if Greater or Equal
Verzweige, wenn A>=B erfüllt,
wenn(NEORV)=0

62 ATARI ST — Programmieren in Maschinensprache

Auch hier gilt, daB die Art, in der die Bedingungen festgestellt werden, im all-
gemeinen nicht weiter interessiert.

Sonstige Verzweigungen

Es gibt noch andere Verzweigungen außer den bisher beschriebenen. Es sind:

BT Branch if True _verzweige in jedem Fall

BF Branch if False verzweige niemals

Statt BT kann auch BRA für "branch" geschrieben werden, da dies eigentlich
keine bedingte Verzweigung mehr ist, sondern ein unbedingter Sprung.

BF erscheint gänzlich sinnlos, da dieser Befehl niemals verzweigt und somit
überhaupt nichts tut. Er wurde nur der Vollständigkeit halber in den Befehls-
satz aufgenommen. Wie wir aber später noch sehen werden, kann die Bedin-
gung F für "False" in anderen Befehlen durchaus sinnvoll verwendet werden.

Die DBcc-Befehle

Betrachten wir noch einmal unsere Füll-Schleife. Eine andere Möglichkeit wä-
re, eine zusätzliche Variable zu verwenden, die die Differenz zwischen End-
und Anfangsadresse enthält, und diese herunterzuzählen. Legen wir die Diffe-
renz ins Register D1:

Fuell2:

MOVE.B Wert,DO

MOVE.L Anfang, AO
MOVE.L Ende,D1
SUB.L Anfang,D1

loop MOVE.B DO, (AO)

ADDQ.L #1,A0
SUBQ.L #1,D1
BNE loop

Wert ins Register laden
Anfang in AO
Differenz=Ende-Anfang
in D1 berechnen
Byte schreiben
Adresse um 1 erhöhen
Differenz herunterzählen
noch nicht Null, weiter +

+
+

*

H
F

Diese Version der Füll-Schleife dürfte sogar etwas schneller sein als die erste.

Es kommt oft vor, daß ein Wert am Ende einer Schleife dekrementiert (um
eins verringert) wird und je nach dem Ergebnis — Null oder nicht Null — ver-

Einführung in Maschinensprache 63

zweigt wird. Deshalb haben die Konstrukteure des MC68000 auch dafür einen
Befehl — oder vielmehr eine ganze Gruppe von Befehlen - vorgesehen, die die-
se beiden Aufgaben auf einmal bewältigen. Es handelt sich dabei um die DBcc-
Befehle. "DB" steht für "Decrement and Branch", also dekrementiere (verrin-
gere um eins) und verzweige. "cc" bedeutet "condition code", also Bedin-
gungs-Abkürzungen, und steht stellvertretend für alle Buchstabenkombinati-
onen, die man erhält, wenn man von den besprochenen Branch-Befehlen das B
wegläßt (nicht zu verwechseln mit CC, dem Code für "Carry Clear").

Diese Befehlsgruppe hat zwei Operanden: Der erste ist ein Datenregister (DO -
D7), der zweite ein Label. So haben die DBcc-Befehle die Form

DBcc Dn,Label

fir n=0,1,2,...,7

Die Ausführungsweise ist folgende: Zunächst wird die angegebene Bedingung
geprüft. Trifft sie zu, so wird nichts weiter getan und mit dem nächsten Befehl
fortgefahren. Wenn sie nicht zutrifft, dann wird zunächst das angegebene Da-
tenregister in Wortbreite dekrementiert. Ist der Inhalt danach verschieden von
—1, so wird zum Label verzweigt und somit eine Schleife ein weiteres Mal wie-
derholt. Ist jedoch -1 erreicht, so wird mit dem nächsten Befehl fortgefahren.
Die Flags werden in keinem Fall beeinflußt. Betrachten Sie dazu Abb. 2.9.

Man kann sich das Verhalten von DBcc veranschaulichen, indem man eine Be-
fehlsfolge aus schon bekannten Befehlen aufschreibt:

DBcc Dn,Schleife
Weiter: [nächster befehl]

ist äquivalent zu

Bcc Weiter

SUBQ.W #1,Dn
CMP .W #-1,Dn
BNE Schleife

Weiter: [nächster befehl]

64 ATARI ST - Programmieren in Maschinensprache

Schleifen —

Rumpf

 Abbruch —
Bedingung

erfuelit ?

Zaehier : =

Zaehler — 1

 Zaehler = -1?

Abb. 2.9: Logischer Aufbau einer DBcc-Schleife

Tatsächlich werden so zwei Bedingungen auf einmal geprüft, die zum Verlas-
sen der Schleife führen. So sind die meisten DBcc-Befehle nur sinnvoll, wenn
direkt davor ein CMP-Befehl oder eine andere Operation steht, die die Flags
beeinflußt und eine extra-Bedingung zum Verlassen der Schleife liefert. Da
dies nicht oft der Fall ist, ist DBF bei weitem der am häufigsten verwendete
Befehl dieser Gruppe. Wenn Sie "F" als "condition code" oben einsetzen, wer-

Einführung in Maschinensprache | 65

den Sie merken, daß damit die Schleife nur noch verlassen werden kann, wenn
der Zähler -1 ist. Beachten Sie, daß in dieser Beziehung die Wirkung des
DBcc-Befehls genau entgegengesetzt zu der von Bcc ist: Bei DBcc wird dann
verzweigt (solange der Zähler noch nicht —1 ist), wenn die angegebene Bedin-
gung nicht erfüllt ist. Daher hier auch die Verwendung von DBF.

Übrigens — in einem Punkt stimmt die Wirkung der Ersatz-Befehlsfolge nicht
mit der von DBcc überein, nämlich darin, daß bei dieser Version die Flags
verändert werden, was ja bei DBcc nicht der Fall ist.

Nun wieder zurück zu unserer Füllroutine. Hier können wir DBF gut verwen-
den:

Fuell3:
MOVE.B Wert,DO * Wert ins Register laden
MOVE.L Anfang,AO * Anfang in AO
MOVE.L Ende,D1 * Differenz=Ende-Anfang
SUB.L anfang,D1 * in D1 berechnen
SUBO.W #1,D1 * eins abziehen

Loop MOVE.B DO, (AQ) * Byte schreiben
ADDQ.L #1,A0 * Adresse um 1 erhöhen
DBF D1,Loop * dekrementieren und

* verzweigen

Diese Version ist noch um einiges schneller. Die Verwendung von DBF bringt
allerdings auch Nachteile mit sich: Wir können mit dieser Routine keine Spei-
cherbereiche mehr füllen, die größer als 64K sind, denn DBF behandelt ja nur
16 Bit der Differenz. Außerdem muß man darauf achten, daß DBF die Schleife
bei —1 abbricht und nicht wie die bisherigen Versionen der Füllroutine bei 0.
Dies ist eigentlich dafür gedacht, daß eine Schleife mit allen Werten vom An-
fangswert bis hinunter zu 0 einschließlich durchlaufen wird. In vielen Fällen
mag dies ja sinnvoll sein, aber wir können es hier nun gerade nicht gebrau-
chen. Deshalb wird der Differenzwert vor dem Eintritt in die Schleife um 1
vermindert.

-Adrefberechnung bei Verzweigungsbefehlen

Noch ein Wort zur Darstellung der Adressen bei den Branch-Befehlen: Bei
den Bcc- und DBcc-Befehlen wird die Adresse normalerweise als 16-Bit-
Adreßdistanz angegeben. Das heißt, daß nicht die absolute Adresse abgespei-
chert wird, sondern die Differenz zwischen der Adresse, zu der gesprungen
werden soll, und der Adresse, an der der Branch-Befehl steht. Vorteil dieser
Methode ist es, daß Speicher gespart wird, da ja für die Adresse nur ein Wort
statt zweien nötig ist. Außerdem kann dieser Befehl auch in relozierbaren Pro-

66 ATARI ST — Programmieren in Maschinensprache

grammen verwendet werden, da ja die Adreßdifferenz zwischen zwei Befeh-
len immer gleich ist, egal, wo das Programm nun gerade steht. Bei der Aus-
führung wird die absolute Adresse errechnet, indem die Adreßdistanz zum ak-
tuellen Stand des PC addiert wird (genaugenommen ist das die Adresse des Bcc
plus zwei, da der PC bei der Analyse des Befehlswortes schon ein Wort weiter-
geschoben worden ist).

Wenn es sich um kurze Sprünge im Bereich —126 bis +129 handelt, Kann für
die Adreßdifferenz auch nur ein Byte angegeben werden, was wiederum ein
Wort und etwas Rechenzeit spart. Kenntlich gemacht wird dies durch den Ex-
tender ".S" nach dem Befehl:

ewig BRA.S ewig

Manche Assembler nehmen — zumindest optional — diese Optimierung aller-
dings selbständig vor, sofern die Adreßdifferenz entsprechend gering ist.

Nachteil dieser Methode der Adreßberechnung ist aber, daß nur Adressen in

der Umgebung des Branch-Befehls erreicht werden können, bei 16 Bit von

-32766 bis +32769. Will man über diesen Bereich hinaus, so muß der JMP-
Befehl verwendet werden, der bedingungslos an eine Adresse verzweigt, die
mit einem Langwort angegeben wird:

JMP irgendwohin

Mit diesem Befehl kann jeder Punkt des Speichers erreicht werden.

Die Adressierungsarten des MC68000

Bisher haben wir immer von Operanden gesprochen, ohne genauer darauf ein-
zugehen, was ein Operand eigentlich alles sein kann. Da der MC68000 hier
eine Vielzahl von Varianten bietet, sind diese es wert, daß man ihnen einen ei-
genen Abschnitt widmet.

Die vielfältigen Adressierungsarten kann man sechs Hauptgruppen zuordnen:

. Register direkt

. Konstanten-Adressierung

. Absolute Adressierung des Speichers

. Indirekte Adressierung des Speichers

. Implizite Adressierung eines Registers

. Programmzähler-relative Adressierung N
a
m

B
W
P

=

Einführung in Maschinensprache 67

In praktisch allen Fällen sind sämtliche Adressierungsarten auf die Verarbei-
tungsbreiten Byte, Wort und Langwort anwendbar. Befassen wir uns zunächst
mit der bisher schon oft verwendeten Adressierungsart, die Register direkt an-
spricht.

Register-direkte Adressierung

Dies heißt nichts weiter, als daß ein Operand sich in einem Register befindet.

Dazu ein Beispiel:

CLR.W DO

Mit Registern sind Datenregister und Adreßregister gemeint. Es ist nur zu be-
achten, daß bei Adreßregistern keine Byte-Befehle zulässig sind. Auch Wort-
Befehle verhalten sich auf Adreßregistern etwas anders. Während bei einem
Wortzugriff auf ein Datenregister die oberen 16 Bits unverändert bleiben,
wird ein Wort, das in ein Adreßregister geschrieben wird, automatisch vorzei-

chenrichtig erweitert. Dies hat den Sinn, daß zur Adressierung in den unteren
32K, in denen sich die Systemvariablen befinden, oder in den oberen 32K, wo

die Hardware-Register liegen, nur ein Wort reserviert werden muß.

Konstanten-Adressierung

Konstanten-Adressierung ist das, was wir immer mit einem Doppelkreuz (#)

kenntlich gemacht haben: Der Operand folgt direkt dem Befehl. Dazu ein Bei-
spiel:

MOVE.L #$314159,D0

Dazu könnte man einwenden, daß es sich in Wirklichkeit um Registeradressie-
rung handelt, denn schließlich ist ja DO betroffen. Ganz unberechtigt ist dieser
Einwand nicht: Beim Prozessor 68000 muß man immer zwischen Adressie-
rung von Quelle und Ziel unterscheiden. Um es also ganz exakt auszudrücken:
Die Adressierungsart der Quelle ist "unmittelbar", die des Ziels ist "Register-
direkt". Diese unmittelbare Adressierungsart ist natürlich nur für die Quelle
sinnvoll und erlaubt.

Je nach der Verarbeitungsbreite des Befehls ist der direkt hinter dem Befehls-
wort abgespeicherte Operand 8, 16 oder 32 Bit lang. Ausnahme: Bei ADDQ
und SUBQ ist der konstante Operand in jeder Verarbeitungsbreite nur 3 Bit
breit. Bei MOVEQ sind es 8 Bit. |

68 ATARI ST - Programmieren in Maschinensprache |

Absolute Adressierung

Absolute Adressierung bedeutet nichts anderes, als daß die Adresse einer Spei-
cherzelle direkt angegeben wird. Es gibt allerdings zwei Arten, die Adresse
anzugeben:

Absolut lang

Hier wird die Adresse in einem Langwort (32 Bit) angegeben. Wenn dieses
Langwort im Speicher steht, gibt das erste Wort (das mit der niedrigeren
Adresse) den höherwertigen Teil, das zweite den niederwertigen Teil der
Adresse an. Beim 68000 werden allerdings nur die unteren 24 Bit der Adresse
genutzt. Die restlichen 8 Bit werden ignoriert.

Beispiel:

CLR.W 520000

Absolut kurz

Hier gibt nur ein Wort die Adresse an. Um die vollständige Adresse zu erhal-
ten, wird das Wort intern auf 32 Bit vorzeichenrichtig erweitert. Die Verwen-
dung von kurzen Adressen spart Speicherplatz und Rechenzeit, ist aber nur bei
Zugriffen auf die untersten oder obersten 32K des Speicherbereiches anwend-
bar.

Beispiel:

CLR.L $200

Indirekte Adressierung des Speichers

Bei allen hier aufgeführten Adressierungsarten ist die Adresse des Speicher-
platzes, auf den zugegriffen werden soll, in einem oder in mehreren Registern
enthalten. Indirekte Adressierung wird durch Klammern um das oder die Re-
gister kenntlich gemacht, worin die Adresse enthalten ist.

Register-Indirekte Adressierung

Hier steht die absolute Adresse eines Operanden in den vollen 32 Bit eines
Adreßregisters. Ausgedrückt wird dies dadurch, daß man um die Bezeichnung

Einführung in Maschinensprache 69

des Adreßregisters Klammern setzt. Die folgende Befehlsfolge dient dazu,
Speicherstelle 1000 zu löschen:

MOVE.L #1000,A0

CLR.L (AO)

Dies läuft so ab, daß der Prozessor, nachdem er einen solchen Befehl erkannt
hat, den Wert aus dem angegebenen Adreßregister ausliest und diesen wieder-
um als Operandenadresse verwertet.

Adreßregister indirekt mit Postinkrement

"Postinkrement" bedeutet soviel wie "Erhöhen nach der Operation". Die Wir-
kungsweise ähnelt jener der Register-indirekten-Adressierung. Auch hier ent-
hält ein Adreßregister die Adresse des Operanden im Speicher. Der Unter-
schied ist jedoch, daß nach der Ausführung des Befehls die Adresse im Regi-
ster erhöht wird, und zwar um die Anzahl der bearbeiteten Bytes. Das heißt:
Bei Bytes um 1, bei Wortbreite um 2 und bei Langworten um 4. Diese Adres-
sierungsart ist dazu gedacht, Felder schnell und ohne viel Mitzählen vom er-
sten bis zum letzten Element durchgehen zu können. Notiert wird das Ganze
durch die üblichen Klammern um das Adreßregister und ein nachgestelltes
"+", Ein besonders gutes Beispiel dafür liefert die Füllroutine aus dem vorher-
gehenden Kapitel: |

Fuell4: MOVE.B Wert,DO Wert in DO laden *

MOVE.L Anfang,AO * Anfang in AO
MOVE.L Ende,Dl * Differenz=Ende-Anfang
SUB.L Anfang,Dl * in D1 berechnen
SUBQ.W #1,D1 * eins abziehen

Loop: MOVE.B DO, (AQ) + * Byte schreiben und Adresse erhöhen
DBF D1,Loop * dekrementieren und verzweigen

Das ist mittlerweise schon die vierte Version, die wieder etwas schneller und
eleganter als ihr Vorgänger ist. Hätten Sie gedacht, daß man eine so simple
Routine auf so viele (sinnvolle) Arten formulieren kann? Dabei wird im sieb-
ten Kapitel demonstriert, wie man eine solche Schleife noch schneller machen
kann. |

Der Befehl MOVE.B DO0,(A0)+ ersetzt hier die MOVE- und die ADDQ-An-
weisung aus der dritten Version. Somit besteht die eigentliche Schleife jetzt
nur noch aus zwei Befehlen!

Es ist natürlich auch erlaubt und durchaus sinnvoll, für Quell- und Zielope-
rand gleichzeitig diese Adressierungsart zu verwenden, etwa in

MOVE.L (A0O)+, (Al)+

70 ATARI ST - Programmieren in Maschinensprache

eine Anweisung, die, sofern sie in einer Schleife steht, bequem Speicherberei-
che kopieren kann.

Adreßregister indirekt mit Predekrement

"Predekrement", was für "verringern vor der Operation" steht, kann man als
Gegenstück zum Postinkrement betrachten. Hier wird zuerst die Adresse im

' Register je nach Verarbeitungsbreite um 1, 2 oder 4 verringert und dann auf
diese Adresse zugegriffen. Dargestellt wird das, indem man ein Minus vor die
Klammer um das Adreßregister setzt. Die Adressierungsarten mit Postinkre-
ment und Predekrement bieten sich dazu an, einen Stack (Stapel) zu realisieren
(die Verwendungs von Stacks wird im nächsten Kapitel noch ausführlich be-
handelt).

Auf dem ATARI ST wachsen die Stacks nach unten, also von den höheren
Adressen zu den niedrigeren. Erinnern Sie sich noch, daß man den System-
Stackpointer mit SP bezeichnet und es sich dabei in Wirklichkeit um Register
A7 handelt? Eine Methode, den Inhalt von Register DO nach D1 zu übertragen,
könnte man so realisieren.

MOVE.L DO,- (SP)
MOVE.L (SP)+,D1

Nach Ausführung dieser Befehle enthält Di den gleichen Wert wie DO.
Deshalb muß das Dekrementieren vor und das Inkrementieren nach dem Be-

fehl ausgeführt werden.

Adreßregister indirekt mit Adreßdistanz

Auch hier steht wieder eine Adresse in einem Adreßregister. Doch vor die
Klammer um die Bezeichnung des Adreßregisters kann man noch eine 16-Bit-
Konstante schreiben, die intern zum Inhalt des Registers addiert wird, um die
Adresse des Operanden zu bestimmen: Es handelt sich dabei um die Adreßdi-
stanz. Der Inhalt des Adreßregisters wird dabei nicht verändert.

Beispiel:

MOVE.L #1000,A0

CLR.B 2 (AO)

Nach der Ausführung dieser Befehlsfolge ist Speicherplatz 1002 gelöscht, und
in AO steht noch immer die Adresse 1000.

Einführung in Maschinensprache 71

Gehen wir den Vorgang einmal Schritt für Schritt durch: Nachdem der Befehl
von der CPU erkannt worden ist, wird die Adresse aus dem angegebenen Regi-
ster geholt und der 16-Bit-Index, der hinter dem Befehlswort abgespeichert
ist, vorzeichenrichtig auf Langwortbreite erweitert. Danach werden beide
Werte intern addiert, und das Ergebnis ist schließlich die Adresse des Operan-
den. Der Index kann von -32768 bis +32767 reichen.

Adreßregister indirekt mit Index und Adreßdistanz

Dies ist wohl die komplizierteste Adressierungsart. Jedoch im Grunde besteht
sie aus nichts weiter als ein paar Additionen. Hier wird in den Klammern zu-
nächst einmal wieder ein Adreßregister angegeben. Ebenfalls innerhalb der
Klammern folgt, durch ein Komma getrennt, der sogenannte Index. Es handelt
sich dabei um ein weiteres Register, das diesmal nicht nur ein Adreßregister,
sondern auch ein Datenregister sein darf. Für den Index kann ein Extender
".W" oder ".L" angegeben werden, der die Verarbeitungsbreite dieses Regi-
sters angibt. Wird keiner angegeben, so nimmt der Assembler automatisch
"„W" an. Nun kommt die dritte Komponente: Vor der Klammer steht noch
eine vorzeichenbehaftete 8-Bit-Konstante, die Adreßdistanz. Die Adresse er-
gibt sich als Summe aller drei Komponenten, wobei alles, was kürzer als ein
Langwort ist, zunächst vorzeichenrichtig auf Langwortbreite erweitert wird.

Beispiel:

CLR.L -8(A2,DO.W)

Nehmen wir an, daß in A2 die Adresse $1000 steht, während DO $410 enthält.
(Die oberen 16 Bit von DO interessieren uns dabei nicht.) Die Adresse wird
nun folgendermaßen errechnet (hexadezimal):

A2: 00001000

DO: 00000410
Konstante: FFFFFFF8

(1) 00001408

FFFFFFF8 ist die Zweierkomplementdarstellung von —-8. Wie üblich werden
bei der Addition von Zweierkomplementzahlen Überträge ignoriert. Der In-
halt von Speicherplatz $1408 wird nun von obigem Befehl gelöscht.

In der Praxis kommt es oft vor, daß man keine Adreßdistanz braucht, wohl
aber den Index. In diesem Fall schreibt man für die Adreßdistanz einfach Null.
Sie merken es schon — es gibt keine Adressierungsart nur mit Index, aber ohne
Adreßdistanz.

7 ATARIST - Programmieren in Maschinensprache

Implizite Adressierung eines Registers

"Implizite Adressierung" heißt nichts anderes, als daß Register von einem Be-
fehl beeinflußt werden, obwohl sie dort nicht ausdrücklich erwähnt werden.
Betroffen sind davon nur der Programmzähler PC und der Stapelzeiger SP. So
wird etwa der PC von jedem Befehl verändert, in dem er einfach weiterge-
schoben wird, während manche Befehle ihn auf kompliziertere Weise beein-

flussen, wie etwa die Branch-Befehle. Es gibt noch eine ganze Reihe anderer
Befehle, die sich ähnlich auf PC oder SP auswirken, aber bei ihnen geht schon
aus der Funktion hervor, wie die Register beeinflußt werden.

Programmzähler-relative Adressierung

Die meisten Programme sind grundsätzlich auf eine bestimmte Position im
Speicher angewiesen, um laufen zu können. Doch manchmal ist es wünschens-
wert, daß Programme an jedem Platz im Speicher lauffähig sind, etwa wenn
man bestimmte Routinen zu jedem Zeitpunkt zur Verfügung haben will, die
aber andere Programme nicht an der Ausführung hindern sollen (beispiels-
weise einen speziell angepaßten Druckertreiber). Mit der Programmzähler-
relativen Adressierungsart wurde die Möglichkeit geschaffen, solche Pro-
gramme zu schreiben. Die Grundidee dabei ist, daß beim Zugriff auf Pro-
gramm-eigene Daten nicht die absolute Adresse der Daten angegeben wird,
sondern die Differenz zwischen der Adresse des Operanden und der Adresse
des darauf zugreifenden Befehls. Diese Differenz kann der Assembler wäh-
rend des Assemblierens ausrechnen. Bei der Ausführung des Befehls wird
dann die Adresse des Befehls — also der aktuelle Inhalt der Programmzählers —
wieder addiert, um die eigentliche Adresse zu erzeugen. Auf diese Art ist das
Programm nicht auf eine bestimmte Position der Daten angewiesen: Die Daten
wandern mit, wenn der Programmcode im Speicher verschoben wird.

Der für die Adreßberechnung benutzte Programmzählerstand ist die Adresse
des ersten Wortes nach dem Befehlscode, da der Programmzähler bei der
Adreßberechnung eben auf diesen Wert zeigt.

Leider reicht die PC-relative Adressierungsart allein nicht aus, um Program-
me gleichzeitig relozierbar und effizient zu machen, da sie einerseits nicht bei
allen Befehlen implementiert ist, andererseits praktisch nur beim Quellope-
randen verwendet werden darf. Wir werden aber noch sehen, daß das Be-
triebssystem des ATARI ST trotzdem dafür sorgt, daß Programme an jeder
beliebigen Position im Speicher laufen können. Bei der PC-relativen Adressie-
rung gibt es zwei Varianten, die genauso aufgebaut sind wie "Adreßregister
indirekt mit Adreßdistanz" und "Adreßregister indirekt mit Index und Adreß-
distanz".

Einfiihrung in Maschinensprache 73

Programmzähler-relativ mit Adreßdistanz

Hier wird die Summe aus dem Inhalt des Programmzählers und der vorzei-
chenerweiterten Adreßdistanz gebildet. Die Distanz kann wieder von —32768
bis +32767 reichen. Beachten Sie, daß bei größeren Distanzen diese Adressie-
rungsart nicht mehr verwendet werden Kann.

Beispiel:

Befehl: MOVE DO, 24 (PC)

Dieser Befehl bewegt den Inhalt des Wortes aus der Speicherstelle
(Befehl + 26) nach DO. Warum 26? Weil ja der PC im Moment der Adreßbe-
rechnung auf (Befehl + 2) zeigt.

Normalerweise brauchen Sie solche Adreßdistanzen nicht selbst zu berechnen,
denn dazu ist ja der Assembler da. Bei vielen Assemblern können Sie statt ei-
ner Zahl auch einfach ein Label verwenden, der natürlich irgendwo definiert
sein muß. Der Assembler übernimmt dann die Berechnung der Adreßdistanz:

MOVE DO, Zähler (PC)

Zähler: DS.W 1

Dieser Befehl wird auf die Speicherstelle "Zähler" zugreifen.

Manche Assembler verwenden sogar, wo immer es möglich ist, PC-relative
Adressierung. Das heißt, diese Adressierungsart wird immer da verwendet,
wo Label als Operanden benutzt werden. Da jedoch viele Befehle die Möglich-
keit der PC-relativen Adressierung vermissen lassen und andere sie nur beim
Zieloperanden erlauben, kann diese Methode zu großen Problemen führen.

Wenn man wirklich vom Code her relozierbare Programme schreiben will,
bleibt in vielen Fällen nur noch die Adreßberechnung mittels LEA.

Programmzähler-relativ mit Index und Adreßdistanz

Hier berechnet sich die Operandenadresse aus drei Komponenten:

1. dem aktuellen Stand des PC
2. dem Inhalt des Indexregisters
3. der 8-Bit-Adreßdistanz

74 ATARI ST - Programmieren in Maschinensprache

Wie üblich werden alle Werte, die kürzer als ein Langwort sind, zuvor vorzei-
chenrichtig erweitert.

Beispiel:

CLR.L 24 (PC,DO.W)

Auch hier kann anstelle der Zahl ein Symbol angegeben werden, wobei der
Assembler dafür die Differenz zwischen der Befehlsadresse +2 und dem Sym-
bol einsetzt:

CLR.L Tab (PC,DO.W)

Sinnvoll ist diese Adressierungsart dann, wenn das Indexregister den Index in
einer Tabelle enthält und die Adreßdistanz die Entfernung zum Tabellenan-
fang zeigt. Problematisch ist dabei nur, daß das angegebene Symbol im Be-
reich —-128 bis +127 Bytes vom Befehl liegen muß. Wegen dieser Einschrän-
kung findet diese Adressierungsart recht selten Verwendung.

Stackorganisation und Programmsprünge

Bis jetzt haben wir uns immer nur mit kleinen Routinen beschäftigt. Program-
me bestehen jedoch im allgemeinen aus vielen Routinen, die sich gegenseitig —
auch verschachtelt - aufrufen können. Wie sich später noch zeigen wird, benö-
tigt man dafür einen sogenannten Stack (engl. für Stapel).

Der Stack

Der Stack ist ein reservierter Speicherbereich, in dem Daten abgelegt und spä-
ter wiedergeholt werden können. Die Daten werden immer nur ans Ende ge-
schrieben und von dort auch wieder gelesen. Daher brauchen wir einen Zeiger
auf das Ende des Stacks. Dieser ist auf der Hardware des MC68000 in Form
des Stackpointers SP realisiert, was im Grunde ein Deckname für das Adreß-
register A7 ist.

Eigentlich gibt es zwei Stackpointer: einen für den Usermodus und einen An-
deren für den Supervisormodus. Im jeweiligen Modus ist immer nur der dazu-
gehörende Stackpointer erreichbar. Übrigens können aufgrund der Vielzahl
der Adressierungsarten des 68000 alle Adreßregister vom Programmierer als
Stackpointer benutzt werden. Nur wird eben A7 von allen Befehlen benutzt,

Einführung in Maschinensprache 75

die implizit auf den Stack zugreifen. Auf dem ST wächst der Stack von oben
nach unten. Die Adresse in A7 zeigt immer auf die unterste Adresse des letzten
Wertes, der dort abgelegt wurde.

Würde man folgendermaßen einen Wert auf dem Stack ablegen:

MOVE.L Wert,- (SP)

so wird der Stackpointer vor dem Schreiben des Wertes um die Anzahl der zu
schreibenden Bytes verringert. Nach dem Schreiben zeigt er also wieder auf
dem Stack die untere Adresse des neuen Wertes. Übrigens dürfen auf dem
Stack nur Worte und Langworte abgelegt werden, denn würde ein Befehl aus-
geführt werden wie

MOVE.B Chaos, -(SP)

dann würde zwar bei der Ausführung dieses Befehls alles gut gehen. Wenn
aber irgendwann später im Programm wieder ein Wort oder Langwort auf
dem Stack abgelegt werden soll, dann zeigt der Stackpointer auf eine ungerade
Adresse, und das Resultat wäre ein Absturz des ATARIST.

Um einen Wert vom Stack wieder herunterzuholen, geht man so vor:

MOVE.L (SP)+,DO

Damit wird der Wert, auf den der Stackpointer gerade zeigt, heruntergeholt,
und danach wird der Stackpointer um die Anzahl der gelesenen Bytes hochge-
zählt.

Da es recht oft vorkommt, daß mehrere Register auf den Stack gesichert wer-
den müssen — etwa, wenn ein umfangreiches Unterprogramm aufgerufen
wird, das wichtige Register verändert —, haben die Konstrukteure des
MC68000 auch dafür etwas vorgesehen: den MOVEM-Befehl (MOVE Mul-
tiple — bewege mehrfach).

Ein Beispiel:

MOVEM DO-D4,- (SP)

bewegt die Inhalte der Register DO bis D4 auf den Stack. Bei diesem Befehl,
der in Wort- und Langwortbreite arbeitet, kann eine Liste von Registern ange-
geben werden, die in nach ihrer Nummer aufsteigender Reihenfolge auf dem

76 | ATARI ST - Programmieren in Maschinensprache

Stack abgelegt werden (Datenregister immer vor Adreßregistern). Auch so et-
was ist möglich:

MOVEM.L A3-A5/DO-D2/D5/AO,-(SP)

Hier werden die Register DO bis D2 ,D5, AO und A3 bis A5 als Langworte ab-
gelegt. Wie Sie sehen, können die Register beliebig ausgewählt werden. Intern
funktioniert das so, daß dieser Befehl ein Wort mitbekommt, in dem jedes Bit
für ein Register steht. Es legt fest, ob das entsprechende Register abgelegt wer-
den soll oder nicht. Die Umsetzung der Registerliste in dieses Wort übernimmt
der Assembler.

. Um die so gesicherten Register wiederzuholen, schreibt man

MOVEM (SP) +,DO-D4

beziehungsweise

MOVEM.L (SP)+,A3-A5/D0-D2/D5/A0

Damit gelangen - sofern der Stackpointer nicht verändert worden ist — wieder
die alten Inhalte in die Register.

Eines sollten Sie bei der intensiven Benutzung des Stacks berücksichtigen: Es
wird bei Stack-Zugriffen nicht geprüft, ob etwa irgendwelche Grenzen über-
schritten werden. Normalerweise sollte das nicht zu Problemen führen, da der
Stack gewöhnlich mindestens 4K Platz zum Wachsen hat. Kritisch wird es nur
dann, wenn irgendwelche Routinen Reste auf dem Stack zurücklassen, die mit
der Zeit immer mehr anwachsen. Das Resultat eines Stacküberlaufs ist selten
ein Absturz, sondern eher ein Programm, das sich merkwürdig benimmt.
Achten Sie daher immer darauf, daß nirgendwo etwas auf dem Stack zurück-
gelassen wird.

Unterprogramme

Die wichtigste Funktion des Stacks besteht darin, die Aufrufe von Unterpro-
grammen zu verwalten. Wie Sie es vielleicht von anderen Programmierspra-
chen kennen, ist es sehr komfortabel, wenn man Codesequenzen mit einem ein-
zigen Befehl aufrufen kann — wie etwa mit dem GOSUB in BASIC. Der Ablauf
ist dabei folgender: Aus dem Hauptprogramm findet ein Sprung zum Unter-
programm statt, das mit seinem Namen, seiner Adresse oder — wie in BASIC —

mit einer Zeilennummer identifiziert wird. Dort werden nun die Befehle so
lange abgearbeitet, bis der Befehl erkannt wird, der den Riicksprung ins auf-

Einführung in Maschinensprache 77

muß irgendwo vermerkt werden, an welcher Stelle im aufrufenden Programm
fortgefahren werden soll. Die möglicherweise naheliegendste Möglichkeit, die
Adresse, von der das Unterprogramm aufgerufen wurde, in einem festen Spei-
cherplatz abzulegen, können wir gleich wieder verwerfen, denn dies würde
keine geschachtelten Unterprogramme erlauben: Beim zweiten geschachtelten
Aufruf eines Unterprogramms wäre der erste Wert der Rücksprungadresse
verschwunden. Deshalb wird hier eine Datenstruktur gebraucht, die Werte,
die darauf abgelegt wurden, so lange behält, bis sie wieder gelesen werden.
Und genau diese Voraussetzungen erfüllt der Stack.

Mit dem Stack funktioniert der Unterprogrammaufruf folgendermaßen:

Der Sprung zu einem Unterprogramm erfolgt mit den Befehlen JSR (Jump to
SubRoutine) oder BSR (Branch to SubRoutine), deren Operand die Adresse
des Unterprogramms ist. Daraufhin wird der aktuelle Wert des Befehlszählers
PC auf den Stack gesichert und der PC danach mit der angegebenen Adresse
geladen — was auf einen Sprung zum Unterprogramm hinausläuft. Das Unter-
programm wird nun so lange ausgeführt, bis der Prozessor auf die Anweisung
RTS (ReTurn from Subroutine) trifft. Dieser Befehl holt den gesicherten
Wert des PC wieder vom Stack und fährt mit dem Befehl fort, der dem JSR
oder BSR folgt.

Beispiel:

linie ziehen:

JSR punkt
MOVE #1000,D0

punkt: .
[Befehle des Unterprogramms]

RTS

Bei dieser angedeuteten Befehlsfolge wird, sobald der JSR-Befehl ausgeführt
wird, zum Label "punkt" gesprungen, und die dortigen Befehle werden ausge-
führt. Bei der Ausführung des RTS wird die Kontrolle wieder dem Hauptpro-
gramm übergeben und der dem JSR folgende Befehl ausgeführt, also in diesem
Fall MOVE #1000,D0.

Die Befehle JSR und BSR gleichen sich in ihrer Wirkung. Der Unterschied
liegt nur in der Art, wie die Adresse des Unterprogramms angegeben wird.

78 ATARI ST - Programmieren in Maschinensprache

Bei BSR wird — genau wie bei allen Branch-Befehlen — die Adresse als 16-Bit-
oder 8-Bit-Adreßdistanz angegeben, das heißt, die Differenz zwischen der
Adresse des Unterprogramms und der Adresse, an dem das BSR steht. Diese
Art, Adressen anzugeben, ermöglicht relozierbare Programme, da ja die
Adreßdistanz zweier Befehle des gleichen Programms immer gleich ist, egal,
wo das Programm nun gerade steht. Bei der Ausführung addiert der Prozessor
die angegebene Adreßdistanz zum aktuellen Stand des PC, um die Adresse des
Unterprogramms zu erhalten.

Nachteil dieser Methode ist jedoch, daß der Bereich, der mittels BSR erreicht
werden kann, begrenzt ist. Will man über -32766 bis +32769 Bytes vom Be-
fehl aus gemessen hinaus, so muß JSR verwendet werden. Bei diesem Befehl
wird — entsprechend dem JMP-Befehl — meistens die absolute Adresse des Un-
terprogramms als Langwort angegeben. Allerdings verfügt JSR auch über die
PC-relativen Adressierungsarten und noch einige andere.

Eine Alternative zu RTS stellt der Befehl RTR (return from subroutine and
restore CCR) dar. Er bewirkt, daß vor dem Rücksprung aus dem Unterpro-
gramm das CCR vom Stack geholt wird. So werden im aufrufenden Pro-
gramm, durch die Abarbeitung des Unterprogramms, die Flags nicht verän-
dert. Da das CCR beim Aufruf des Unterprogramms nicht automatisch auf den
Stack gesichert wird, muß bei der Verwendung dieses Befehls der erste Befehl
des Unterprogramms das CCR sichern:

Unterprog: MOVE.W SR,- (SP)

Beachten Sie, daß das gesamte SR gesichert werden muß (wovon das CCR ja
das untere Byte ist), da es keinen Befehl gibt, um allein das CCR-Byte zu lesen.
Bei der Ausführung des RTR werden allerdings nur die unteren 8 Bit des gesi-
cherten Wortes ins SR geschrieben, damit das System-Byte unverändert bleibt
(Man könnte ja vorher das Wort auf dem Stack manipuliert haben). Also auch
hier keine Möglichkeit, vom User-Modus in den Supervisormodus zu gelan-
gen!

Mit Hilfe des Userstacks, der mit Register A7 verwaltet wird, führt der Pro-
zessor die Aufbewahrung der Rücksprungadressen praktisch automatisch
durch. Doch um eines muß sich der Programmierer kümmern: Die Übergabe

' von Parametern zum Unterprogramm.

Parameterübergabe an Unterprogramme

Bei kurzen Unterprogrammen, die keine weiteren Unterprogramme aufrufen,
ist wohl die sinnvollste Form der Parameterübergabe, diese einfach in be-

Einführung in Maschinensprache 79

stimmte Register zu laden und dann das Programm aufzurufen. Wir können
diese Methode nur dann nicht verwenden, wenn entweder die Anzahl der Para-
meter die Anzahl der Register übersteigt oder mehrere Unterprogramme ge-
schachtelt werden sollen. Auch hier bietet sich deshalb die Benutzung des
Stacks an. Zum Ablegen eines Wortes auf den Stack benutzt man einen Befehl
in der Form

MOVE DO,-(SP)

oder, völlig äquivalent

MOVE DO,-(A7)

Leider kann das Unterprogramm die Werte nicht einfach in der Form

MOVE (SP)+,D2

herunterholen, da ja der oberste Eintrag auf dem Stack die Rücksprungadresse
des JSR wäre und der Stackpointer im Unterprogramm nicht verändert wer-
den darf. Andernfalls kann der Prozessor die Rücksprungadresse nicht wie-
derfinden. Deshalb greift man am besten mit der Adressierungsart " Adreßre-
gister indirekt mit Adreßdistanz" auf die Parameter zu:

MOVE 4(SP),D2

Der Stackpointer zeigt nach dem Aufruf des Unterprogramms direkt auf das
erste Byte der gesicherten Rücksprungadresse. Da diese ein Langwort umfaßt,
erreicht man vier Bytes höher genau das erste Byte des ersten Parameters. Die
Adresse der folgenden Parameter errechnet sich je nach der Länge der vor-
hergehenden. Nehmen wir an, es sollen ein Wort, ein Langwort und noch ein
Wort übergeben werden:

MOVE parameter3,-(SP) * dritter Parameter

MOVE.L parameter2,-(SP) * zweiter Parameter

MOVE parameteri,-(SP) * erster Parameter

JSR routine * UP aufrufen
ADDQ.L #8,SP. * Stack korrigieren

routine: MOVE 4(SP),DO * Parameter 1 in DO
MOVE.L 6(SP),D1 * Parameter 2 in Di
MOVE 10 (SP) ,D2 * Parameter 3 in D2

80 ATARI ST — Programmieren in Maschinensprache

- Parameter3 -

+———_ 10(SP)

- Parameter2 —

+ 6(SP)

- Parameter1 -

+ 4(SP)

Rueckkehr — |
| Adresse

+ Stackpointer
—
—
—
 =

Abb. 2.10: Anordnung der Parameter auf dem Stack

Abbildung 2.10 zeigt die Anordnung der Parameter auf dem Stack nach dem
Aufruf des Unterprogramms. Bei dieser Form der Parameterübergabe ist es
wichtig, nach der Rückkehr aus dem Unterprogramm den Stack wieder zu
korrigieren, das heißt, ihn auf den Stand zu setzen, den er vor dem Ablegen
der Parameter hatte. Schließlich wird ja der Stackpointer im Unterprogramm
nicht verändert. Deshalb addieren wir zum Stackpointer die Gesamtanzahl von
Bytes, die wir als Parameter hinaufgeschoben haben. Die Rücksprungadresse
muß dabei nicht mehr beachtet werden, da diese ja schon mit dem RTS-Befehl
vom Stack geholt wurde.

Beachten Sie auch, daß der Parameter, der zuletzt auf den Stack geschoben
wird, nachher an unterster Stelle steht. Es ist reine Konvention, den letzten
Parameter zuerst auf den Stack abzulegen, zumal ja die Reihenfolge und
Bedeutung der Parameter ohnehin vom Unterprogramm abhängt. Erwähnens-
wert sei noch, daß innerhalb eines C-Programms die Parameter ebenfalls ge-
nau in dieser Art und Reihenfolge übergeben werden. Dies ist auch deshalb in-
teressant, da die Betriebssystemprozeduren in ähnlicher Weise aufgerufen
werden. Doch darauf wird im Kapitel 4 noch ausführlich eingegangen.

Einfiihrung in Maschinensprache 81

Beachten Sie, daß bei der hier vorgestellten Parameterübergabekonvention
nur Worte oder Langworte überreicht werden können, aber keine größeren
Datenobjekte wie Zeichenketten oder Felder. Will man Prozeduren, die solche
Objekte als Eingabe erhalten, trotzdem flexibel gestalten, so empfiehlt sich die
Übergabe von Zeigern. Dabei legt der aufrufende Code die Adresse eines sol-
chen Datenobjekts auf dem Stack ab, die vom Unterprogramm wiederum als
Zeiger auf den eigentlichen Parameter verwendet wird.

Kontrollstrukturen in Assembler

Der folgende Abschnitt zeigt Ihnen die wichtigsten Kontrolistrukturen der
strukturierten Programmierung und wie sie angewendet werden.

IF-THEN-ELSE

In Assembler sind alle Bedingungsabfragen mit Programmsprüngen verbun-
den. Wir wollen einen Programmteil umsetzen, der in einigen BASIC-Dialek-
ten oder in Pascal etwa so aussieht (Worte in eckigen Klammern stehen natür-
lich nicht für sich selbst, sondern sind durch entsprechende Befehlsfolgen oder
Ausdrücke zu ersetzen):

IF [Bedingung] THEN [Befehlsfolge A]
ELSE [Befehlsfolge B]

ENDIF

Wenn die Bedingung wahr ist, wird Befehlsfolge A ausgeführt, andernfalls
Befehlsfolge B.

In Assembler wird das so realisiert:

IF [Bedingung testen]
Bcc ELSE * Bedingung Falsch

THEN .

[Befehlsfolge A]

BRA ENDIF

ELSE .
[Befehlsfolge B]

ENDIF .

[Weiter im Programm]

82 ATARI ST - Programmieren in Maschinensprache

Für "Bcc" ist der Branch-Befehl einzutragen, der dann ausgeführt wird, wenn
die Bedingung nicht wahr ist. Nehmen wir an, man wollte folgende Befehlsfol-
ge in Assembler umsetzen:

Beispiel:

IF a>b THEN b:=a

ELSE b:=0

ENDIF

Nach obigem Schema erhalten wir dann:

IF MOVE b,DO * in Register
CMP DO,a *a?b
BLE ELSE * Wenn a<=b

THEN MOVE a,b * bi=a
BRA ENDIF * weiter im Programm

ELSE CLR b * b:=0

ENDIF

Natürlich kann der ELSE-Teil auch weggelassen werden. In diesem Fall wird
statt zum ELSE-Teil gleich zum ENDIF verzweigt.

Übrigens ist ENDIF kein gültiges Label, da es mit der später besprochenen
END-Anweisung kollidiert. Es wurde hier nur der Klarheit halber verwendet.

Realisierung von Schleifen

Fangen wir mit der REPEAT-UNTIL-Schleife an:

REPEAT [Befehlsfolge] UNTIL [Bedingung]

Die Befehlsfolge wird so lange ausgeführt, bis die Bedingung zutrifft, jedoch
mindestens einmal. Nun das gleiche in Assembler:

REPEAT .

[Befehlsfolge]

UNTIL [Bedingung testen]
Bcc REPEAT * Wenn Bedingung falsch

REPEND

[Weiter im Programm]

Wieder muß die Negation der Bedingung abgefragt werden; die Verzweigung
Bcc darf nur dann ausgeführt werden, wenn die Bedingung falsch ist.

Einführung in Maschinensprache 83

Wenn man zwischendurch die Schleife verlassen will, kann man das einfach
mit einem

BRA REPEND

tun — was natürlich nicht strukturiert ist, aber praktisch sein kann.

Die nächste Schleifenform ist die WHILE-Schleife:

WHILE [Bedingung] DO [Befehlsfolge] WEND

Solange die Bedingung wahr ist, wird die Befehlsfolge wiederholt. Der Unter-
schied zur REPEAT-UNTIL-Schleife besteht darin, daß WHILE-Schleifen ab-
weisend sind. Das heißt, daß die Befehlsfolge überhaupt nicht ausgeführt wird,
wenn die Bedingung nicht gleich am Anfang zutrifft. In Assembler:

WHILE DBRA entry

DO .
[Befehlsfolge]

entry [Bedingung testen]
Bcc DO * Wenn Bedingung wahr

WEND .

[Weiter im Programm]

Diesmal muß das Bcc dann ausgeführt werden, wenn die Bedingung wahr ist.
Die Abfrage der Bedingung steht hier immer noch physisch am Ende der
Schleife. Man könnte sie auch an den Anfang stellen; unser Verfahren hat je-
doch den Vorteil, daß dadurch in jedem Schleifendurchlauf ein BRA-Befehl
eingespart wird. Auch hier kann natürlich die Schleife jederzeit mit

BRA WEND

abgebrochen werden.

Nun noch zu einer recht spezialisierten Schleife: der FOR-Schleife. In den
meisten BASIC-Dialekten sieht sie so aus:

FOR [Zähler]=[Anfang] TO [Ende]

[Befehlsfolge]
NEXT [Zähler]

Sicher ist es manchmal praktisch, wenn diese Schleife abweisend ist, d.h. wenn
der Anfangswert gleich beim Eintritt in die Schleife größer ist als der End-
wert, wird die Befehlsfolge überhaupt nicht durchlaufen.

84 ATARI ST - Programmieren in Maschinensprache

Man könnte die FOR-Schleife folgendermaßen in eine WHILE-Schleife um-
wandeln:

[Zähler]=[Anfang]

WHILE [Zähler]<=[Ende]

DO

[Befehlsfolge]

[Zahler]=[Zahler]+1

WEND —

Dementsprechend wird auch die Umsetzung in Assembler vorgenommen, wo-
bei der Zähler sich in DO befinden soll:

FOR MOVE [Anfang],DO

WHILE BRA TEST

DO .
[Befehlsfolge]

ADDQ #1,D0
TEST CMP [Ende],D0

BLE DO
WEND ,

Natürlich könnte man hier leicht die Schrittweite von 1 auf einen anderen
Wert verändern. Nur bei der Verwendung einer negativen Schrittweite gilt es
zu beachten, daß entsprechend auch Ende kleiner als Anfang ist und der Ver-
zweigungsbefehl BLE deshalb durch BGE ersetzt werden muß.

Bei diesem Skelett einer FOR-Schleife wurde davon ausgegangen, daß Anfang
und Ende Werte sind, die direkt in bestimmten Variablen stehen. Handelt es
sich jedoch um Ausdrücke, so sollten sie vor dem Eintritt in die Schleife be-
rechnet und irgendwo abgelegt werden, denn es wäre unpraktisch, den Aus-
druck für jede Abfrage neu zu berechnen.

Organisation von ATARI ST-Programmen

Anders als bei vielen kleineren Computern haben ausführbare Programme auf
dem ATARI ST eine klar gegliederte Struktur: Jedes Programm ist in drei so-
genannte Segmente (Sections) unterteilt, die unterschiedliche Funktionen ha-
ben (Abb. 2.11). Zunächst wäre da die "Text Section". Dies hat nichts mit les-
barem Text zu tun, sondern steht für den eigentlichen Programmcode. Natür-
lich braucht jedes Programm auch Variablen — also Daten. Hier wird zwischen
initialisierten und nicht initialisierten Daten unterschieden. Die initialisierten

Einführung in Maschinensprache 85

Daten, also Konstanten oder Variablen, deren Anfangswert schon vor dem
Start des Programms feststehen muß, werden in der "Data Section" abgespei-
chert. Andere Daten, deren Wert sich erst im Laufe des Programms ergibt,
sollten in der "BSS Section" (BSS: Block Storage Section) abgespeichert wer-
den. Die Unterteilung der drei Segmente wird im Quellcode vom Program-
mierer angegeben.

 *— Ende des TPA (p_hitpa)
Anfangswert des Stackpointers

Application
User

Area

 ee Anfang des TPA (p_lowtpa)

Abb. 2.11: Gliederung eines Programms und GEMDOS

Die Aufteilung in Daten- und Textsegment erscheint wirklich nicht sehr sinn-
voll, da die beiden Bereiche völlig gleich behandelt werden. Auch der Assem-
bler bringt keine Fehlermeldungen, wenn man Daten ins Textsegment oder
Befehle ins Datensegment schreibt. Man braucht die Aufteilung in Daten- und
Textsegment nicht unbedingt vorzunehmen, aber weil dazu wenig Aufwand
nötig ist, Kann man es genausogut tun.

Die Einführung der BSS-Section ist aber ganz gewiß sinnvoll, da dieses Seg-
ment nicht zusammen mit den anderen beiden Segmenten im Programmfile
abgespeichert wird. Ein anderes Argument für die Benutzung der BSS-Section
ist, daß dadurch der Programmcode etwas übersichtlicher wird.

86 ATARI ST — Programmieren in Maschinensprache

Einen Bereich aus Abb. 2.11 haben wir noch nicht besprochen: die Basepage.
Hier merkt sich das Betriebssystem Informationen über das Programm. So
wird die Möglichkeit geschaffen, daß ein Programm ein anderes aufruft, um
nach der Beendigung seines Unterprogramms normal weiterarbeiten zu kön-
nen. Diese Informationen werden in 256 Bytes direkt vor dem Anfang des
Textsegments abgelegt. Welche Informationen dort stehen, darauf wird später
in diesem Abschnitt noch eingegangen.

Wenn ein Programm gestartet wird, dann wird der gesamte restliche Speicher
als "Application User Area" deklariert, also als Speicher, mit dem das Pro-
gramm irgend etwas anfangen kann. Der Stackpointer wird auf das letzte Byte
dieses Speicherbereiches gesetzt, von wo aus er nach unten erweitert werden
kann.

 III SS N + Ende der Datei

N SS
Y

Hl

IHNEN ll:

EHI] ily |
}

Ht Hl hl Al

U.

 Anfang der Datei
Abb. 2.12: Format einer ausführbaren Datei unter GEMDOS

Als Programmdatei auf der Diskette sieht das Ganze etwas anders aus (Abb.
2.12). Hier finden wir zwar auch Text- und Datensegment. Jedoch zusätzlich
am Anfang, im sogenannten Header, befinden sich noch einige Informationen
über das Programm, womit hauptsächlich die Längen der 3 Segmente gemeint
sind. Nach dem Text- und Datensegment folgt noch ein Abschnitt: die Relozie-
rungs-Daten. Wie schon oben gezeigt, muß es möglich sein, mehrere Pro-
gramme gleichzeitig im Speicher zu halten. Daraus ergibt sich, daß ein Pro-

Einführung in Maschinensprache 87

gramm nicht immer an die gleiche Adresse geladen wird. Da aber der Code
des 68000 nicht von sich aus relozierbar ist und es durch die gravierenden Ein-
schränkungen der PC-relativen Adressierungsart auch nicht sein kann, muß
eben das Betriebssystem direkt nach dem Laden des Programms alle Adressen,
die nicht von vornherein PC-relativ sind, neu berechnen. Somit stellen die Re-
lozierungs-Daten eine vom Assembler erzeugte Liste von Adressen dar, die all
jene Speicherplätze ausweist, für die eine absolute Adresse berechnet werden
muß. Um deren Aufbau und Funktion braucht sich der Programmierer jedoch
nicht weiter zu kümmern. Wichtig ist nur, daß der vom Assembler erzeugte
Code, wie er im Assemblerlisting erscheint, an der logischen Adresse Null be-
ginnt. Die Umrechnung auf physikalische Adressen erfolgt erst direkt vor der
Ausführung.

Wahlweise kann den Relozierungsdaten noch eine Symboltabelle folgen, die
alle definierten Labels, ihre Art und ihren Wert enthält. Diese wird nur dann

angelegt, wenn beim Linken eine bestimmte Option angegeben wird. Bei der
Ausführung des Programms hat diese Tabelle keine Bedeutung. Nur ein De-
bugger kann damit etwas anfangen.

Was geschieht nun, wenn ein Programm unter TOS gestartet wird’?

Zunächst schaut das Betriebssystem im Fileheader der Programmdatei nach,
wie lang das Programm ist, und teilt dem Programm den gesamten verfügba-
ren Speicherbereich zu. Dann wird der Programmcode, also Text- und Daten-
segment, geladen, und die Adressen werden nach den Relozierungsdaten um-
gerechnet: Das Programm wird reloziert. Nun muß nur noch die Basepage
eingerichtet und der Stackpointer initialisiert werden. Beim Start des Pro-
gramms wird der Userstackpointer auf das obere Ende des freien Speicherbe-
reiches gesetzt. Die Adresse der Basepage wird als Langwort auf dem Stack
abgelegt. Darüber wird noch ein weiteres Langwort abgelegt, auf das wir hier
aber nicht weiter eingehen. Der Befehl, um an die Adresse der Basepage zu ge- —
langen, würde also so aussehen:

progstart: MOVE.L 4(SP),A5

Somit steht die Adresse der Basepage in AS.

Organisation der Basepage

Die folgende Tabelle gibt für jeden Eintrag in der Basepage die dezimale Di-
stanz in Bytes zum Anfang, den offiziell dokumentierten Namen und die Be-
deutung an (es handelt sich ausnahmslos um Langworte):

88 ATARI ST — Programmieren in Maschinensprache

Distanz Name Beschreibung |

00 _lowtpa Anfangsadresse des TPA
04 p_hitpa Endadresse des TPA + 1
08 _ tbase Anfangsadresse des Textsegments
12 p_tlen Länge des Textsegments in Bytes
16 _ dbase Anfangsadresse des Datensegments
20 _ dien Länge des Datensegments in Bytes
24 p_bbase Anfangsadresse des BSS-Segments
28 p_blen Länge des BSS-Segments in Bytes
32) env Pointer auf den Environment-String

Mit TPA ist der "Transient Program Area" gemeint, also ein Bereich fiir nicht
fest im Betriebssystem verankerte Programme". Somit steht TPA letztlich für
nichts anderes als den gesamten Speicherplatz, der nicht vom Betriebssystem
oder von vorher schon gelaufenen Programmen belegt wird: also der Spei-
cher, der vor dem Laden eines Programms noch frei ist.

Sicher haben Sie schon einmal ein Programm vom Typ TTP (Tos Takes Para-
meters) aufgerufen, bei dem die Benutzeroberfläche die Möglichkeit bot, dem

Programmaufruf Parameter mitzugeben. Der String, den Sie dort eingeben,
muß dem Programm nun irgendwie zugänglich gemacht werden. Er wird ein-
fach in der Basepage ab Distanz 128 (hexadezimal $80) abgelegt, wo er in der
C-üblichen Konvention mit einem Nullbyte abgeschlossen wird. Daraus ergibt
sich, daß Parameter-Strings bis zu 127 Zeichen lang sein können.

Dem gestarteten Programm sämtlichen verfügbaren Speicherplatz zuzuordnen
hat einige Nachteile:

— Da kein Speicher mehr verfügbar ist, kann das Programm keine anderen
Programme mehr aufrufen.

— Accessories oder Hintergrundprogramme wie etwa Druckerspooler funk-
tionieren unter Umständen nicht mehr.

— Es können keine Speicherblocks mit der Betriebssystemfunktion malloc()
reserviert werden.

— Das Programm könnte bei zukünftigen, eventuell Multitasking-fähigen Ver-
sionen des TOS nicht mehr korrekt laufen.

Deshalb ist es für jedes größere Programm empfehlenswert, nur den Teil des
Speichers zu reservieren, der wirklich gebraucht wird. Dazu stellt das Be-

Einführung in Maschinensprache | 89

triebssystem eine Routine namens "setblock" zur Verfiigung, die einen Spei-
cherbereich fiir das Programm reserviert, der durch seine Anfangsadresse
und seine Länge in Bytes definiert wird. Genaugenommen wird vor dem Start
ein Block, der eben den gesamten freien Bereich umfaßt, für das Programm
reserviert. Wird nun besagte Funktion "setblock" mit der Adresse eines Blocks
aufgerufen, der schon existiert, dann wird damit gleichzeitig die vorherige
Reservierung rückgängig gemacht und die neue Länge als Länge des Blocks
eingesetzt. Deshalb sollten Sie an den Anfang größerer Programme eine Initia-
lisierung dieser Art voranstellen, die die Programmlänge berechnet, den un-
benutzten Speicherplatz freigibt und den Stackpointer auf einen korrekten
Wert setzt:

start:

MOVE. L 4(SP),A5 * Basepageadresse in A5
MOVE.L 12(A5),DO * Länge des Textsegments...

ADD.L 20(A5),DO * + Länge des Datensegments...
ADD .L 28(A5),DO * + länge des BSS-Segments...
ADD.L #$1100,D0 * + 4K (=$1000) für den Stack...

* + 256 (=$100) Bytes für die
* Basepage

MOVE .L A5,D1 * neuer SP = Basepageadresse...
ADD.L DO,D1 * + berechnete Lange...
AND .L #-2,D1 * auf gerade Adresse abrunden
MOVE.L D1,SP * in den Stackpointer damit
MOVE .L DO,-(SP) * Länge des reservierten Bereichs
MOVE.L A5,-(SP) * Anfangsadresse des Bereichs
CLR -(SP) * überflüssiger Parameter (Dummy)
MOVE.W #S4A,-(SP) * GEMDOS Funktion setblock
TRAP #1 * Aufruf des GEMDOS
ADD.L #12,SP * Stack wiederherstellen

init: * hier kann es mit dem

* Programm richtig losgehen

Zu diesem Programmsegment sind sicher einige Erklärungen erforderlich.
Zunächst wird die Adresse der Basepage — wie oben beschrieben — vom Stack
geholt. Dann stellt das Programm die Gesamtlänge des Speichers, die benötigt
wird, fest. Dieser Wert muß vom Programm folgendermaßen errechnet wer-
den:

256 (=$100) Bytes für die Basepage
+ Länge des Textsegments.
+ Länge des Datensegments
+ Länge des BSS-Segments
+ ein beliebig gewählter Wert für den Stackbereich, der hier auf 4 Kilo-

bytes gesetzt wurde

Daraufhin wird der Userstackpointer (das Programm befindet sich beim Start
immer im User-Modus) auf das Ende dieses Bereiches gesetzt und die Be-

90 ATARI ST — Programmieren in Maschinensprache

triebssystemfunktion setblock aufgerufen, um den Programmspeicherbereich
zu reservieren. Würde man die Funktion "setblock" von einer höheren Pro-
grammiersprache wie etwa C oder Pascal aus aufrufen, so würde das etwa so
aussehen:

setblock (dummy, Adresse, Lange)

wobei "dummy" ein Wort ist, dem keine Bedeutung zukommt, das aber trotz-
dem vorhanden sein muß, "Adresse" die Anfangsadresse des Blocks ist und
"Länge" eben die Länge des Blocks als Langwort. Die Parameterübergabe
funktioniert genauso, wie es im vorherigen Abschnitt besprochen wurde, nur
der Aufruf des GEMDOS wird hier etwas anders durchgeführt, nämlich mit
dem TRAP-Befehl.

Man kann den TRAP-Befehl mit dem JSR-Befehl vergleichen, nur daß hier
nicht die Zieladresse im Befehl angegeben wird, sondern nur die Nummer ei-
nes Zeigers, in dem die Zieladresse steht. Der Zeiger steht am Anfang des
Speichers und wird bei der Initialisierung des Betriebssystems dort hinge-
schrieben. So wird auch im Fall einer Änderung der Betriebssystemadressen
sichergestellt, daß die Programme immer den richtigen Einsprungpunkt fin-
den. Auf die genaue Funktionsweise der Systemaufrufe wird noch in Kapitel 4
eingegangen.

Obige Befehlssequenz wird allerdings in den Programmen aus diesem Buch
keine Verwendung finden, da ihre Anwendung nur bei wirklich großen Pro-
grammen sinnvoll ist. Zur Verwendung in Ihren eigenen Programmen befin-
det sich auf der Diskette die Datei MEMINIT.S, die genau obige Kommando-
sequenz enthält und zum Einfügen in Assemblerprogramme gedacht ist.

Wenn man ein Programm beendet, muß man es dem Betriebssystem mitteilen,

damit dieses den vom Programm belegten Speicherplatz wieder freigeben und
zum Desktop (oder zum Programm, das es aufgerufen hat) zurückkehren
kann. Auch dafür gibt es eine Betriebssystemfunktion:

ende: MOVE #0,-(SP) * GEMDOS Funktion 0: term()
TRAP #1 * GEMDOS aufrufen
wee * hier kommt man niemals hin

Grundlagen der Bedienung eines Assemblers

Nun wird es ernst: Wir wollen uns ansehen, wie Programme in der Praxis ein-
gegeben, assembliert und gestartet werden.

Einführung in Maschinensprache 91

Befehle

Jeder vollständige Assembler versteht sämtliche Befehlskürzel. Da die Be-
zeichnungen der Prozessorbefehle und der Adressierungsarten vom Hersteller
verbindlich festgelegt werden, sollten damit normalerweise keine Probleme
auftreten. Im allgemeinen stellen Assembler bestimmte Ansprüche an die
Form, in der ein Befehl eingegeben wird. Deshalb soll hier noch einmal in al-
ler Deutlichkeit gesagt werden, wie ein Befehl aussehen muß:

Es gibt zwei Möglichkeiten, wie eine Zeile aussehen darf:

[Label] [Befehl] [Operanden]

oder einfach

[Befehl] [Operanden]

Im ersten Fall muß der Assembler irgendwie das Label von einem Befehl un-
terscheiden können, denn man kann im Prinzip Mnemonics als Label mißbrau-
chen. Das sollten Sie aber besser nicht tun, da es leicht zu Verwechslungen füh-
ren kann. Label werden nun als solche gekennzeichnet, indem sie wahlweise
direkt beim ersten Zeichen auf der Zeile beginnen oder aber irgendwo begin-
nen und von einem Doppelpunkt gefolgt sind. Die folgenden drei Schreibwei-
sen sind also erlaubt:

hier: LSR #1,D0

oder

hier LSR #1,D0

oder

hier: LSR #1,D0

Ein Label darf auch ganz allein auf einer Zeile stehen; es wird dann so inter-
pretiert, als stiinde es vor dem folgenden Befehl. Also gibt es noch eine vierte
Schreibweise:

hier:

LSR #1,D0

In einem Label sind Groß- und Kleinbuchstaben, Ziffern, Punkt (.) und der
Unterstrich (_) erlaubt, wobei zwischen Groß- und Kleinschreibung unter-
schieden wird. Beim Assembler aus dem Entwicklungspaket dürfen Label be-
liebig lang sein; es werden jedoch nur die ersten acht Zeichen beachtet.

92 ATARI ST - Programmieren in Maschinensprache

Der Assembler behandelt ein Label so, daß er ihm die Adresse des darauffol-
genden Befehls zuweist. Label dürfen nur einmal definiert, aber beliebig oft
benutzt werden (referenziert).

Nun zum nächsten Feld, dem Befehlsfeld: Wenn die erste Form verwendet
wird, müssen Label und Befehl durch mindestens ein Leerzeichen getrennt
werden. Bei der zweiten Form darf der Befehl nicht auf dem ersten Zeichen
der Zeile beginnen, damit er nicht für ein Label gehalten wird. Übrigens ist es
bei Mnemonics im allgemeinen egal, ob man sie groß oder klein schreibt, was
auch für Registernamen gilt. Sie könnten also statt

MOVE.B DO,-(SP)

auch schreiben

move.b dO, - (sp)

oder, wenn Sie es extravagant lieben

MoVe.B a0,-(sP)

In diesem Buch werden bei Befehlsfolgen innerhalb des Textes großgeschrie-
bene Mnemonics benutzt; in größeren Listings werden jedoch wegen der etwas
besseren Lesbarkeit kleingeschriebene Mnemonics verwendet. Ob man nun
Groß- oder Kleinschreibung wählt, ist Geschmackssache.

Das Operandenfeld wird durch mindestens ein Leerzeichen vom Befehlsfeld
getrennt. Als Registernamen erkennt der Assembler:

DO-D7 Datenregister

AO-A7 _ Adreßregister
SP Stackpointer (=A7)
CCR Condition Code Register (Userbyte)
SR Status-Register (Systembyte und Userbyte)
USP User Stack Pointer
PC Program Counter, Befehlszähler

Im Operandenfeld selbst dürfen keine Leerzeichen stehen.

Wußten Sie schon, daß der Assembler auch rechnen kann? Er kann es, denn
manchmal kann ein Befehl in der Art

MOVE.L #SFF,listet4

Einführung in Maschinensprache | 93

sinnvoll sein. Hier will man, daß an die Adresse, die sich aus der Summe von 4
und dem Wert des Symbols ergibt, etwas geschrieben wird. Der Assembler
kann noch einiges mehr als die simple Addition. Hier finden Sie eine Liste der
Operatoren in der Reihenfolge ihrer Priorität:

monadisches Minus (negativer Wert)
verschieben nach links (entsprechend der Wirkungsweise von ASL)
verschieben nach rechts (entspricht ASR)
logisches UND der einzelnen Bits (entspricht AND)
logisches ODER der einzelnen Bits (entspricht OR)
Multiplikation
Division
Addition
Subtraktion |

—
K
o

V
A

|
+

e
y

A

Der Assembler versteht auch beliebig geklammerte Ausdrücke. Einen Um-
stand gilt es in manchen Fällen zu beachten: Der Assembler arbeitet nur mit
ganzzahligen Werten, nicht etwa mit Kommazahlen, wie man es beispielsweise
vom BASIC-Interpreter gewohnt ist. Dies schlägt sich darin nieder, daß die
Division mit Vorsicht zu genießen ist, denn sie hat immer ein ganzzahliges Er-
gebnis. So können etwa die Ausdrücke

index/4*laenge

und

index*laenge/4

verschiedene Ergebnisse haben, da Multiplikation und Division als gleichwer-
tige Operatoren von links nach rechts abgearbeitet werden. Im ersten Fall
wird daher erst die Division durchgeführt, wobei der Rest unter den Tisch
fällt, und dann das Ergebnis mit "laenge” multipliziert, während beim zweiten
erst das fertige Produkt durch 4 geteilt wird.

Verwechseln Sie die Berechnungen des Assemblers nicht mit den Berechnun-
gen des Programms, denn natürlich kann der Assembler nur mit Werten rech-
nen, die zur Assemblierzeit schon bekannt sind. Werte von Variablen fallen lo-
gischerweise nicht darunter.

Neben den bisher verwendeten Dezimalzahlen können auch binäre, oktale oder
hexadezimale Zahlen angegeben werden, die jeweils durch ein bestimmtes Zei-
chen gekennzeichnet werden:

% binäre Zahl: MOVE #%00110011,D0
@ oktale Zahl: MOVE #@377,D0
S hexadezimale Zahl: MOVE #SE477,D0

94 ATARI ST — Programmieren in Maschinensprache

Diese Art von Zahlen darf auch in beliebigen Ausdriicken auftauchen. Eine
weitere Ari, eine Konstante anzugeben, ist die Form des ASCII-Wertes. Dabei
geben Sie in Anführungsstrichen einen Buchstaben an, für den sein ASCH-
Wert eingesetzt wird.

Beispiel:

SUB.B #"A",DO

erzeugt den gleichen Code wie

SUB.B #65,D0

denn 65 ist der ASCII-Code des Zeichens "A".

Nach dem Operandenfeld (das bei einigen Befehlen auch wegfallen kann) darf
noch eine Bemerkung stehen, die nach der Konvention von Motorola nicht
speziell gekennzeichnet werden muß. Der Assembler ignoriert einfach alles,
was nach dem Operandenfeld kommt, bis eine neue Zeile begonnen wird.
Wenn allerdings eine ganze Zeile nur als Bemerkung dienen soll, so muß an
der ersten Stelle ein Stern (*) stehen:

* Dies ist eine Bemerkung

Eine so gekennzeichnete Zeile wird vom Assembler völlig ignoriert.

Bei manchen Assemblern wird jede Bemerkung mit einem Semikolon einge-
leitet. Dort muß das Semikolon auch dann vorhanden sein, wenn nach den
Operanden noch eine Bemerkung folgt. In diesem Buch wird allerdings nur
die oben beschriebene Art benutzt, da der recht verbreitete Assembler aus dem
ATARI-Entwicklungspaket nicht mit Semikolons arbeitet.

Bei den Programmen dieses Buchs werden auch Bemerkungen hinter Befehlen
mit einem Stern eingeleitet. Nach obiger Konvention ist das eigentlich unnötig;
es ist nur dazu gedacht, die Bemerkungen vom Programmcode abzuheben.
Wie Sie sehen, läßt Ihnen der Assembler die Möglichkeit, Ihre Zeilen zu ge-
stalten, wie es Ihnen gefällt, sofern es nicht zu Mißverständnissen führen kann.

Übersichtlich wird ein Programm dadurch, daß man jeden Abschnitt durch
eine Tab-Position festlegt, also einen für den Zeilenanfang für Labels, ein
Tabulator-Stop für Befehle, einer für die Operanden und ein weiterer für
eventuelle Bemerkungen.

Einführung in Maschinensprache 95

Assembler-Direktiven

Manchmal will man den Assembler auch direkt ansprechen, z.B."Schreibe den
assemblierten Code an die und die Stelle" oder "Hier beginnt ein neues Seg-
ment". Dafür gibt es die Assembler-Direktiven. Sie erinnern an Befehlscodes,
nur erzeugen sie keinen Maschinencode, sondern wenden sich direkt an den
Assembler. Glücklicherweise hat Motorola auch für diese Direktiven einen
Standard gesetzt, an den sich tatsächlich auch die meisten Assembler halten!
Deshalb kann hier ein Überblick über die Direktiven gegeben werden, der mit
einiger Wahrscheinlichkeit auch für Ihren Assembler gilt (die Abweichungen
der verbreitetsten Assembler finden Sie in Anhang B).

Direktiven müssen — genau wie Mnemonics — mindestens durch ein Leerzei-
chen vom Zeilenanfang getrennt sein. Die meisten können allerdings auch mit
einem Label versehen werden, wobei dann der Wert des Labels die Adresse
der ersten Speicherstelle ist, die durch die Direktive angesprochen wird.

Oftmals will man Symbolen einen konstanten Wert zuweisen. Dafür verwen-
det man die Anweisung EQU:

EOU equal

Einem Symbol wird ein Wert zugewiesen. Auf der linken Seite steht ein Sym-
bolname nach den für Labels üblichen Konventionen, rechts eine Zahl, ein an-
deres Symbol oder ein Ausdruck.

Beispiele:

tablen EQU 99

fehler: EQU —1

chaos EQU ("A">>2+3) !$110101100-tablen

An dieser Stelle ist es sinnvoll, darauf hinzuweisen, daß die meisten Assembler
zwischen sogenannten relativen und absoluten Symbolen unterscheiden. Es
gibt zunächst einmal zwei Möglichkeiten, wie ein Symbol zu seinem Wert
kommen kann:

— durch Angabe einer Zahlenkonstante
Dies ist sinnvoll, wenn man etwa bestimmte Konstanten beim Namen nennen

will. So erspart man es sich, bei einer Änderung des Programms den Wert
an allen Stellen zu ändern, an denen er verwendet wird, etwa in der Form:

tablen EQU 200.

Überall nachfolgend wird jetzt "tablen" als Synonym für die Konstante 200
betrachtet.

96 ATARI ST - Programmieren in Maschinensprache

— durch Setzen des Labels auf eine Adresse
Hiermit ist einfach die Verwendung eines Labels als Markierung gemeint.

Alle anderen möglichen Belegungen von Symbolen ergeben sich als das Resul-
tat von Operationen auf diese beiden Grundtypen.

Der erste Typ erzeugt einen absoluten Wert, das heißt, der Wert wird als kon-

stant betrachtet, egal wo das Programm im Speicher nun gerade abläuft. Wenn
ein solcher absoluter Wert als Adresse betrachtet wird, auf die man zugreift
oder die angesprungen wird, dann wird beim Relozieren des Programms
nichts daran geändert. Das ist sinnvoll, sofern man auf feste Speicherplätze -
wie etwa die Systemvariablen — zugreifen will. Absolute Werte können nicht
bei Befehlen verwendet werden, die relative Adressen als Operanden verlan-
gen.

Die andere Art der Symboldefinition führt hingegen zu relativen Symbolen.
Das heißt, jede Verwendung eines solchen Symbols, die nicht von vornherein
PC-relativ ist, wird vom Assembler vermerkt, um beim Relozieren vor dem
Start des Programms berücksichtigt zu werden. Da es sich bei relativen Wer-
ten nur um Adressen handeln kann, gestattet der Assembler im allgemeinen ih-
re Verwendung als Zahlenwert nur dort, wo eine 32-Bit-Zahl angegeben wer-
den kann. So ist zum Beispiel folgendes nicht erlaubt:

labell:

MOVE .W #labeli,A0

Der Assembler wiirde mit einer Fehlermeldung oder zumindest mit einer
Warnung darauf hinweisen.

Es gelten genau festgelegte Gesetze, was die Verkniipfung dieser beiden Arten
von Symbolen ergibt. Um es genau zu erfahren, schlagen Sie am besten in Ih-
rem Assemblerhandbuch nach. Als Faustregeln möge jedoch folgendes gelten:

— Ein absolutes Symbol verknüpft mit einem absoluten Symbol ergibt immer
ein absolutes Symbol.

— Operationen mit einem absoluten und einem relativen Symbol ergeben im-
mer ein relatives Symbol, sofern sie sinnvoll und erlaubt sind.

— Einzige erlaubte Operation mit zwei relativen Symbolen ist die Subtraktion,
wobei das Resultat ein absoluter Wert ist.

Einführung in Maschinensprache 97

Im allgemeinen brauchen Sie sich aber um diese Regeln nicht weiter zu küm-
mern, da es der Assembler meistens so macht, wie man es erwarten würde,

und andernfalls wird mit einer Fehlermeldung auf das Problem hingewiesen.

Recht häufig sieht man in Programmen auch die Direktiven DC und DS, die —
in Analogie zu den Befehlen — auch mit den Anhängseln ".B", ".W" und ".L"
versehen werden dürfen. Ihre Bedeutung:

DC Define Code

Diese Direktive legt einen oder mehrere Werte einfach hintereinander im
Speicher ab, entsprechend der Initialisierung von Variablen in einigen Compi-
lersprachen. Es können, durch Kommata getrennt, ein oder mehrere Zahlen
bzw. Ausdrücke angegeben werden, die nacheinander im Speicher abgelegt
werden:

DC.L 123456, -1,531415927, zahl&%11110000

Wie üblich wird Wortbreite angenommen, wenn kein Anhängsel angegeben
wird.

Bei der Variante DC.B gibt es noch eine Besonderheit: Hier kann auch eine
Zeichenkette als Operand angegeben werden. Die Zeichen werden einfach in
"Anführungszeichen" oder Hochkommas' eingeschlossen, was dem Assem-
bler befiehlt, sie in aufeinanderfolgenden Bytes abzulegen. Strings können —
durch Kommas getrennt — auch mit anderen Operandenarten gemischt wer-
den:

meldung: DC.B "Fehler Nummer 99",0

Hier werden die ASCH-Werte für die Buchstaben "F", "e", "h" und so weiter
hintereinander abgelegt. Das Label "meldung" bezeichnet dabei die Adresse
des ersten Zeichens des Strings. Würde man also den Inhalt der Adresse "mel-
dung" auslesen, so erhielte man den ASCH-Wert von "F". Die Null weist den
Assembler an, hinter dem String noch ein Nullbyte zu erzeugen. Dies ist die
TOS-übliche Konvention, Strings anzugeben: Das Ende des Strings wird durch
ein Nullbyte markiert. Dies kommt nicht zuletzt daher, daß ein großer Teil des
Betriebssystems TOS in der Hochsprache C geschrieben wurde, denn in dieser
Compilersprache werden Strings genauso verarbeitet. Wenn eine Zeichenkette
also zu irgendeinem Zeitpunkt dem Betriebssystem übergeben werden soll,
sollte sie durch ein Nullbyte abgeschlossen werden.

98 ATARI ST — Programmieren in Maschinensprache

Achtung Falle! Achten Sie bei Byte-Daten darauf, ob die Anzahl der abgeleg-
ten Bytes nicht zufallig ungerade ist, denn manche Assembler versuchen sonst,
etwa nachfolgende Daten im Wort- oder Langwortformat an ungeraden
Adressen abzulegen. Der Prozessor kann so bekanntlich in arge Bedrangnis
kommen. Um sicher zu gehen, geben Sie deshalb nach Strings die Direktive

EVEN

an, die nichts weiter tut, als den Programmzähler auf die nächste gerade
Adresse zu setzen.

DS Define Storage (reserviere Speicher)

Diese Direktive reserviert einen Speicherbereich entsprechend den nicht ini-
tialisierten Variablen in Hochsprachen. Die Größe des Bereichs wird als Aus-
druck angegeben. Auch hier gibt es wieder die drei Anhangsel ".B", ".W" und
"L", die die Art der Werte angeben, für die Platz reserviert werden soll. So
haben etwa die folgenden Anweisungen die gleiche Wirkung:

array: DS.B 200

array: DS.W 100
array: DS.L 50

In allen drei Fällen werden 200 Bytes reserviert, wobei das Label "array" für
die Adresse des ersten Bytes steht. Allerdings sollten Sie nicht vergessen, daß
in dem so reservierten Speicher zunächst einmal irgendwelche zufälligen Wer-
te stehen, sofern er sich im Text- oder Datensegment befindet. Sie sollten also
zuerst etwas hineinschreiben, bevor etwas gelesen wird.

Übrigens ist DC die einzig erlaubte Möglichkeit, Speicherplätze im BSS-Seg-
ment anzusprechen, da das BSS-Segment nicht abgespeichert wird. Anderer-
seits sollten möglichst alle DC-Direktiven im BSS-Segment stehen, um den
Speicherverbrauch des Programms auf der Diskette zu reduzieren und die La-
dezeiten zu verkürzen. Bei Variablen im BSS kann man sich darauf verlassen,
daß sie beim Programmstart mit Nullen gefüllt worden sind. Dafür sorgt das
Betriebssystem, bevor dem Programm die Kontrolle übergeben wird.

Eines muß dem Assembler noch mitgeteilt werden: Wie die einzelnen Segmen-
te unterteilt sind. Für jedes Segment gibt es eine Direktive:

TEXT Hier beginnt das Textsegment. Allerdings ist diese Direktive meist
nicht erforderlich, da der Assembler am Anfang des Programms

Einführung in Maschinensprache 99

standardmäßig alles als TEXT auffaßt. Nötig ist diese Direktive also
nur, wenn man mit einem anderen als dem Textsegment beginnt.

DATA Hier beginnt das Datensegment.

BSS Hier beginnt das Block Storage Segment.

END Hier ist das Programm zu Ende. Alles folgende wird vom Assembler
ignoriert. Stellen Sie die END-Direktive immer ans Ende Ihrer Pro-
gramme, da die meisten Assembler mit einer Fehlermeldung oder
zumindest mit einer Warnung reagieren, wenn die END-Direktive
fehlt.

Wenn Sie wollen, können Sie jede der drei Segment-Direktiven in einem Pro-
gramm auch mehrmals verwenden. Der Assembler fügt dann die Daten für je
ein Segment beim Assemblieren wieder zusammen, so daß es zuletzt doch nur
drei Segmente sind. Zu diesem Zweck verfügt der Assembler gleich über drei
“location counter", also Adreßzähler, nämlich für jedes Segment einen. Alle
drei stehen am Anfang auf Null. Wenn jedoch eine dieser drei Direktiven zum
zweiten Mal gefunden wird, so geht der Assembler vom alten Zählerstand des
entsprechenden Segments aus, hängt also die neuen Daten an.

In diesem Buch werden Programme immer in der Reihenfolge Textsegment-
Datensegment-BSS gegliedert, was aus der Sicht des Assemblers zwar völlig
willkürlich, aber allgemein üblich ist.

Wichtig sind noch die Direktiven XDEF und XREF, die eine Möglichkeit zur
Modularisierung bieten.

XDEF eXternal DEFinition. Diese Direktive macht Labels auch außerhalb
des Moduls erreichbar. Als Argument werden ein im Modul defi-
niertes Label oder, durch Kommata getrennt, mehrere Labels ange-
geben.

XREF eXternal REFerence. Dies ist das Gegenstück zu XDEF. XREF
macht ein Label zugänglich, das aus einem anderen Modul mit XDEF
exportiert worden ist. Fortan kann dieses Label dann angesprochen
werden, als wäre es im importierenden Modul definiert. Auch hier
wird ein Label oder eine Liste von Labels angegeben.

XREF und XDEF werden vom Assembler nur in der Form behandelt, daß die-
ser eine Notiz für den Linker hinterläßt, die diesem sagt, daß ein Symbolname
für die allgemeine Verwendung freigegeben ist bzw. in den anderen Modulen,
die zusammengebunden werden, zu suchen ist. In allen Modulen, die dem Lin-

100 ATARI ST — Programmieren in Maschinensprache

ker übergeben werden, darf dasselbe Label nur einmal mittels XDEF defi-

niert, jedoch beliebig oft referenziert (XREF) werden. Wird allerdings ein
Label mehrfach definiert oder aber referenziert, obwohl es nicht definiert ist,
so führt das zu einem Fehler beim Linken, und es wird kein lauffähiges Pro-
gramm erzeugt. Mit XDEF werden meistens die Adressen von Funktionen ex-
portiert, seltener Variablen.

Beispiel:

Zunächst werden Symbole in einem Modul definiert:

XDEF funa, funb

TEXT

funa:

funb:

END

Ein anderes Modul kann dann folgendermaßen darauf zugreifen:

XREF funb

TEXT

modul2:

JSR . funb

END

Bei größeren Programmen ist die Modularisierung ein praktisches Mittel,
nicht nur die Übersichtlichkeit des Programms zu erhöhen, sondern auch die
Effizienz bei der Programmentwicklung zu steigern. Wenn ein großes Pro-
gramm in mehrere thematisch abgegrenzte Module aufgeteilt wird, so braucht
immer nur das Modul neu assembliert zu werden, an dem gerade gearbeitet
wird. Die anderen Module werden als Objektdateien irgendwo aufbewahrt und
können vom Linker für jeden Testlauf zum neu assemblierten Modul gebun-
den werden, was natürlich wesentlich schneller geht, als jedesmal alles zu as-
semblieren. Abgesehen davon hat man oft keine andere Wahl, da einige Pro-
grammeditoren (etwa ED.TTP aus dem ATARI-Entwicklungssystem) ohne-
hin keine Programmdateien verwalten, die länger als 32 KByte sind.

Einführung in Maschinensprache 101

Soviel zu den wichtigsten Direktiven. Es gibt noch zur Schreibweise einiges zu
sagen:

Die meisten Assembler akzeptieren Direktiven wahlweise in Groß- oder
Kleinschreibung. Einige Assembler verlangen vor jeder Direktive einen
Punkt. Was also in diesem Buch folgendermaßen geschrieben wird:

DATA
DC 123,$ffff ‘

müßte man bei anderen Assemblern so schreiben:

.data

.dc 123, S£ff£f

Leider wird die Konvention der Direktiven nicht so gründlich eingehalten wie
die der Mnemoniks. So kann es sein, daß Sie auch die Bezeichnungen der Di-
rektiven an Ihren Assembler anpassen müssen.

Das erste lauffähige Programm

Am besten erkennt man das Zusammenspiel dieser Direktiven an einem Bei-
spiel. Das erste lauffähige Programm tut nichts anderes, als den Spruch "Hallo,
hier bin ich" auf den Bildschirm zu bringen:

Programm "Hallo Welt"

Gibt nur auf dem Bildschirm aus "Hallo, hier bin ich!"
und wartet dann auf einen Tastendruck

+
+

+
+

HF
F

zunachst werden erst einmal Konstanten definiert
CONWS EQU $09 * Code fiir die

Betriebssystemfunktion,
die eine Zeichenkette
schreibt
Code fiir Einlesen eines
Zeichens
von der Tastatur ohne

Anzeige
Beenden des Programms

x

CNECIN EQU 508

x

+
+

+
+

+
+

+

TERM EQU $00
x

* Hier beginnt das Textsegment
TEXT * eigentlich tiberfliissig

x

* Aufruf der Betriebssystemfunktion conws (text)

start move.l #hallo,-(sp) * 2. Parameter: Adresse
der Zeichenkette
1. Parameter: Funktions-
nummer 9 +

+
*

move #CONWS,- (sp)

102 ATARI ST — Programmieren in Maschinensprache

trap #1 * Betriebssystemaufruf
addq.l #6,5p * Stack aufräumen

* Fertig mit der Ausgabe!

+

* Jetzt nur noch auf eine Taste warten: cnecin()

move #CNECIN,- (sp) * einziger Parameter: Funkti-
* onsnummer 8

trap #1 * wieder ab zum Betriebssystem
addq.l #2,sp * immer schön ordentlich sein

* ein braves Programm sagt immer Bescheid, wenn es fertig ist
move #TERM, - (sp) * Code für "Programm beenden"
trap #1 * und wieder ins Betriebssystem

* * hier kommen wir nicht mehr
* hin

* Hier beginnt das Datensegment
DATA

hallo DC.B "Hallo, hier bin ich!",O
* BSS-Segment gibt es in diesem Miniprogramm nicht
x

END * nur noch das unumgängliche
* Ende

Tatsächlich kommt auch das kleinste Programm kaum ohne Betriebssy-
stemaufrufe aus. Sobald es an die Eingabe oder Ausgabe von Ergebnissen geht,
ist ein Betriebssystemaufruf fast unumgänglich. Deshalb wollen wir hier eini-
ges darüber vorwegnehmen (ausführlich wird das Ganze in Kapitel 4 behan-
delt).

Am häufigsten werden die GEMDOS-Aufrufe verwendet. Wie schon bespro-
chen, funktioniert die Parameterübergabe so, daß alle Parameter auf den Stack
geschoben werden, die letzten zuerst. Der erste Parameter (also der, der zu-
letzt auf dem Stack abgelegt wird) ist dabei die Funktionsnummer, die von 0
bis 87 reichen kann. Der Übersichtlichkeit halber geht man am besten so vor
wie in diesem Programmbeispiel: Man definiert sie mittels EQU-Konstanten,
die für die Nummern bestimmter Betriebssystemfunktionen stehen. Die Na-
men der Funktionen sind von ATARI festgelegt und in Anhang F beschrieben.
Nachdem nun die Funktionsnummer abgelegt ist, wird der Einsprung mit dem
TRAP-Befehl vollzogen, wobei für GEMDOS-Aufrufe immer

TRAP #1

verwendet wird. Danach ist das aufrufende Programm selbst dafür verant-
wortlich, den Stackpointer wieder auf den ursprünglichen Wert zurückzuset-
zen.

GEMDOS bietet Funktionen fiir Ein- und Ausgabe auf verschiedene Gerite
und Dateien, die Verwaltung von Disketteninhaltsverzeichnissen, Speicherver-
waltung und Aufruf sowie Beendigung von Programmen.

Einführung in Maschinensprache 103

Wir brauchen in unserem Programm zunächst einmal eine Funktion, um eine
Zeichenkette auf den Bildschirm zu schreiben. Dafür ist die Funktion Nummer
9, CONWS, gedacht. CONWS steht für "CONsole Write String", also "schrei-
be eine Zeichenkette zur Console". Als einzigen Parameter außer der Funkti-
onsnummer bekommt sie die Adresse der Zeichenkette, die geschrieben wer-
den soll. Wie üblich muß die Zeichenkette mit einem Nullbyte abgeschlossen
sein.

Als nächstes soll ein beliebiges Zeichen von der Tastatur eingelesen werden.
Dazu dient CNECIN, "Console No ECho INput", also Lesen von der Console
ohne Echo. Mit Echo ist hier die Anzeige des getippten Zeichens auf dem Bild-
schirm gemeint, aber genau das tut eben diese Funktion nicht. Diesmal gibt es
überhaupt keine Parameter. Das gelesene Zeichen wird im unteren Byte von
DO zurückgegeben. Da uns das Zeichen aber nicht interessiert, wird mit dem
Inhalt von DO nichts weiter angestellt.

Schließlich muß das Programm dem Betriebssystem noch irgendwie mitteilen,
daß es beendet ist. Dazu dient die Funktion TERM (TERMinate program) mit
der Nummer 0. Bei deren Ausführung wird der vom Programm beanspruchte
Platz wieder verfügbar gemacht, und die Kontrolle wird dem aufrufenden
Programm übergeben, was normalerweise das Desktop sein dürfte.

Soviel zu unserem Miniprogramm. Um den Umgang mit dem Assembler zu
lernen, soll dieses Programm lauffähig werden.

Zunächst muß der Quellcode, also obiger Text, in den Computer eingegeben
werden. Bei den meisten Assemblern läuft das so, daß der Text zunächst ein-

mal mit einem beliebigen Editor eingetippt wird. Wenn man fertig ist, wird
das Ergebnis in Form einer Datei abgespeichert. Nun muß man den Editor
verlassen, den Assembler aufrufen und ihm diese Textdatei überreichen. Die-
ser erzeugt, wenn alles gutgeht, eine Objektcodedatei. Diese muß im allgemei-
nen noch durch den Linker geschickt werden, damit ein lauffähiges Programm
erzeugt werden kann. Auf den letzten drei Instanzen — Assemblieren, Linken,
Ausführen — Können jeweils Fehler auftreten. In diesem Fall muß noch einmal
editiert werden, bis das Programm fehlerlos ist. Abbildung 2.13 stellt diesen
Programmierzyklus grafisch dar.

Nachteil dieser Methode ist, daß für die Erzeugung eines lauffähigen Pro-
gramms mindestens drei Programme ausgeführt werden müssen. Sie können
so jeden beliebigen Editor verwenden, also auch die meisten Textverarbei-
tungsprogramme. Bedingung ist nur, daß der Text im normalen ASCII-For-
mat abgespeichert wird, also einfach Zeichen für Zeichen, so wie er auf dem
Bildschirm steht. Achten Sie darauf, denn manche Textverarbeitungspro-
gramme verwenden ein eigenes Format, um den Text abzuspeichern.

104 ATARI ST — Programmieren in Maschinensprache

START

Editieren

Assemblieren

Fehler beim

Assemblleren ?

Linken

Fehler beim

Linken ?

Ausfuehren

Fehler

beim Ausfuehren

(Absturz) ?

v

Abb. 2.13: Flußdiagramm des Programmierzyklus

Einfiihrung in Maschinensprache | 105

Es geht natürlich auch anders. Es gibt integrierte Assemblerpakete, bei denen
der Editor gleich Teil des Assemblers ist. Dort können Sie editieren, assem-
blieren, ausführen und sogar nach Fehlern suchen, ohne das Programm wech-
seln zu müssen. Dies ist sicher sehr vorteilhaft, solange Sie reine Assembler-
programme schreiben müssen. Nur hat diese Art von Assemblern oft den
Nachteil, daß sie über keinen Linker verfügen und somit keine Möglichkeit
bieten, Assembler mit anderen Programmiersprachen zu kombinieren.

Da die Bedienung eines solchen integrierten Editor-Assembler-Debuggers
recht einsichtig ist, wollen wir nur die Verwendung der recht verbreiteten
oben beschriebenen Sorte weiter ausführen. Genauer gesagt, wollen wir die
Verwendung am Assembler aus dem ATARI-Entwicklungspaket demonstrie-
ren, da sich dieses Paket recht genau an den Motorola-Standard hält, der von
den meisten anderen Assemblern kopiert wird. Wenn Sie mit der Bedienung
des ATARI-Assemblers zurechtkommen, wird Ihnen auch ein anderer Assem-
bler keine Probleme bereiten. So lassen sich alle Programme in diesem Buch
ohne Änderungen mit dem ATARI-Assembler verwenden.

Der ATARI-Assembler ist eigentlich nur von einem Kommandozeileninter-
preter aus vernünftig zu bedienen. Klicken Sie deshalb COMMAND.PRG an.
Nach dem Laden erscheint eine Copyrightmeldung und der Buchstabe des ak-
tuellen Laufwerks in geschweiften Klammern.

Der ATARI-Assembler hat eine Eigenheit: Wenn Sie ihn zum ersten Mal ver-
wenden, sollten Sie ihn zuerst einmal initialisieren mit dem Kommando

as68 -I as68init

Daraufhin legt er die Datei "as68init" an, ohne die er sich weigert zu assem-
blieren.

Nun geht es also an den ersten Schritt: die Eingabe des Programmcodes. Neh-
men Sie dazu am besten einen Editor wie etwa ED.TTP. Unser Quellcode soll
unter dem Namen HALLO.S abgespeichert werden. Das "S" im Extender steht
für "Source code", also Quellcode. Auf anderen Systemen und bei anderen As-
semblern ist auch die Endung "ASM" für Assembler recht verbreitet. Der
ATARI-Assembler scheint entgegen der Dokumentation etwas gegen jegliche
andere Endung als "S" zu haben. Bei "ASM"-Dateien bringt er einige Fehler-
meldungen und verabschiedet sich dann, aber nicht ohne vorher Ihre Quell-
codedatei ruiniert zu haben. Also bleibt Ihnen nichts anderes übrig, als sich an
die Endung .S zu gewöhnen.

Das entsprechende Kommando lautet also:

ed.ttp hallo.s

106 ATARI ST — Programmieren in Maschinensprache

Daraufhin befinden Sie sich im Editor und können das Programm abtippen.

Nachdem Sie den Quellcode abgespeichert und den Editor verlassen haben,
geht es nun an das Assemblieren. Der Assembler bekommt als Argument den
Namen der Datei, die er assemblieren soll. Daneben kann man dem Assembler
noch Optionen überreichen, die jeweils aus einem Buchstaben bestehen und
mit einem Minus-Zeichen (-) eingeleitet werden. Die Option "-P" (Print) etwa
veranlaßt den Assembler, ein Assemblerlisting zu produzieren (sonst tut er es

nicht). Dort wird der Quellcode noch einmal aufgelistet, doch zusätzlich wer-
den Informationen zum erzeugten Code und zum Wert von Symbolen ausgege-
ben. Wenn Sie ein Assemblerlisting auf den Bildschirm ausgeben lassen wol-
len, rufen Sie den Assembler so auf:

as68 -P hallo.s

Beachten Sie, da8 beim Aufruf von as68 der Extender ".prg" nicht angegeben
werden muß. Der Kommandointerpreter erkennt ".prg"-Files und fügt bei ih-
nen automatisch den richtigen Extender hinzu. Leider kennt er keine ".tos"-
und ".ttp"-Programme.

Meistens will man aber das Assemblerlisting nicht über den Bildschirm laufen
sehen, sondern zur späteren Weiterverarbeitung in eine Datei schreiben oder
auf dem Drucker ausgeben. Dazu bietet der Assembler die Möglichkeit der
Ausgabeumleitung. Geben Sie einfach einen weiteren Parameter an, bestehend
aus einem Größer-als-Zeichen (>) und — ohne Leerzeichen dazwischen — dem
Dateinamen oder dem Gerätenamen, worauf die Ausgabe erfolgen soll. Sie
schreiben also

as68 -P hallo.s >PRN:

um das Listing auf den Drucker auszugeben, und

as68 -P hallo.s >hallo.lst

um das Listing in die Datei "hallo.lst" zu schreiben.

Die wichtigsten Optionen sind:

U- veranlaßt den Assembler dazu, alle nicht in diesem Modul definierten
Symbole als extern zu betrachten, das heißt, sie werden so behandelt, als
würden sie mit XREF importiert. So sparen Sie die Verwendung von
XREF-Direktiven. Nachteil ist, daß man im Falle eines Tippfehlers in ei-
nem Symbolnamen erst beim Linken merkt, daß das Symbol nirgendwo
definiert ist.

Einführung in Maschinensprache 107

L- zwingt den Assembler dazu, für alle Adressen Langworte zu verwenden.
Wenn diese Option nicht angegeben wird, nimmt der Assembler an man-
chen Stellen nur Worte — mit dem Resultat, daß das Programm nur noch
in den ersten 32K des Speichers laufen kann. Da diese schon vom Be-
triebssystem belegt werden, wird es leider überhaupt nicht laufen. Des-
halb: unbedingt immer Option -L angeben!

Der Grund ist, daß der ATARI-Assembler eigentlich nicht für TOS, sondern
für das Betriebssystem CP/M 68k entwickelt wurde. Ursprünglich hatte ATA-
RI ja vor, den ST mit diesem CP/M auszurüsten, man ist jedoch dazu überge-
gangen, ein eigenes Betriebssystem zu entwickeln, das der ST-Hardware bes-
ser gerecht wird: eben TOS. Wie wir noch sehen werden, ist dies nicht die ein-
zige Stelle, an der Reste von CP/M 68k auftauchen.

Der wahre Befehl, um unser Programm zu assemblieren, lautet also

as68 -L hallo.s

Daraufhin nimmt sich der Assembler unser Programm vor und produziert die
Datei "hallo.o", wobei ".o" für "object code" steht.

Der Linker bekommt in unserem Fall nur den Namen der produzierten ".0"-
Datei als Argument. Obwohl es hier nur ein einziges Modul gibt, muß es trotz-
dem durch den Linker geschickt werden. Das Kommando lautet also:

link68 hallo.o

Daraus erzeugt der Linker eine Datei namens hallo.68k. Aber das ist doch kein
üblicher TOS-Extender für ein lauffähiges Programm? Richtig, hier kommt
wieder einmal CP/M 68k ins Spiel. Die Datei hallo.68k wäre bestenfalls unter
diesem Betriebssystem lauffähig (wenn überhaupt).

Damit das Programm aber trotzdem zum Laufen gebracht werden kann, lie-
fert ATARI das Programm RELMOD.PRG mit. Dieses ist dafür zuständig,
".68K"-Dateien in ausführbare TOS-Programme umzuwandeln. Der Aufruf
lautet:

relmod hallo.68k hallo.tos

Das besagt, daß aus der Datei "hallo.68k" die Datei "hallo.tos” erzeugt werden
soll. Natürlich kann man statt letzterem auch "hallo.prg" angeben, wenn es
sich um eine GEM-Anwendung handelt.

Nun haben wir es endlich geschafft, ein ausführbares Programm zu erzeugen.

108 ATARI ST — Programmieren in Maschinensprache

Rufen Sie das Programm nun auf mit

hallo.tos

und die freundliche Meldung erscheint tatsächlich auf dem Bildschirm.

Wenn Sie nun sagen, das sei eine ganze Menge Aufwand, nur um "Hallo, hier
bin ich!" auf den Bildschirm zu schreiben, wird es Sie wahrscheinlich auch
nicht trösten, daß das ausführbare Programm kürzer als 100 Bytes ist, was si-

cher in keiner anderen Programmiersprache möglich wäre. Aber zumindest
ein Teil dieses Aufwands kann mit Hilfe einer Batchdatei wegfallen.

Rufen wir uns noch einmal ins Gedächtnis, welche Schritte zum Assemblieren
und Linken notwendig waren:

as68 -L hallo.s

link68 hallo.o

relmod hallo.68k hallo.tos

Außerdem kann es von Vorteil sein, die zwischendurch angelegten Dateien mit
dem Programm RM.PRG gleich wieder zu löschen:

rm hallo.o

rm hallo.68k

Diese Prozedur kann nun mit Hilfe einer Batchdatei automatisiert werden. Da-

bei geht es um folgendes:

Zum Entwicklungspaket gehört ein Programm namens BATCH.TTP. Ruft
man es auf und übergibt ihm dabei als Argument einen Dateinamen, so liest es
den Inhalt der Datei Zeile für Zeile aus und führt die darin enthaltenen Kom-
mandos nacheinander aus, als wären sie im Kommandointerpreter eingetippt
worden. Praktisch ist dabei, daß beim Aufruf von BATCH.TTP noch weitere
Parameter angegeben werden können, die an die Batch-Datei weitergereicht
werden. Dort werden diese Parameter mit %1, %2 und so weiter angespro-
chen. Dabei werden die Parameter an der angegebenen Stelle als Text einge-
setzt. Eine Batch-Datei zum Assemblieren und Linken müßte also so aussehen:

as68 -L %31.s
link68 %1.0
rm %1.o

relmod %1.68k %1.tos
rm %$1.68k

Einführung in Maschinensprache 109

Wenn Sie diese Zeilen mit einem Editor eingeben und sie in der Datei "asm.
bat" ablegen, können Sie vom Kommandointerpreter aus eingeben:

batch.ttp asm hallo

und es werden genau die gewünschten Schritte durchgeführt. Sie können es
sich noch einfacher machen, indem Sie die Batch-Datei "a.bat" nennen und das
Programm "batch.ttp" in "b.prg" umnennen. Dann brauchen Sie nur noch ein-
zugeben:

ba hallo

Nachteil der Batchverarbeitung ist, daß in dem Fall, daß der Assembler Syn-
taxfehler findet, alle nachfolgenden Programme trotzdem aufgerufen werden,
die Dateien, auf die sie angesetzt sind, nicht finden und mit einer Fehlermel-
dung aussteigen. Leider gibt es keine einfache und zugleich befriedigende Lö-
sung für dieses Problem; die einzige Möglichkeit ist, daß Sie einfach eine Taste
drücken und damit den Ablauf der Batch-Datei unterbrechen.

Sehen wir uns jetzt das Assembler-Listing, das mit der "P"-Option erzeugt
werden kann, einmal genauer an. Der Befehl, um ein Listing von unserem
Programm in die Datei "hallo.lst" zu schreiben, lautet:

as68 -L -P hallo.s >hallo.lst

Hier auszugsweise ein paar Zeilen aus dem Assemblerlisting (die Bemerkun-
gen, die auch aufgelistet werden, wurden der Ubersichtlichkeit halber wegge-
lassen):

17 00000000 2F3C00000000 start move.l #hallo,-(SP)

18 00000006 3F3C0009 move #CONWS,- (SP)

19 0000000A 4E41 trap #1

20 0000000C 5C8F addq.1 #6,SP

33 00000000 DATA

34 00000000 48616C6C6F2C2068 hallo DC.B "Hallo, hier bin ich!",0

34 00000008 6965722062696E20

34 00000010 6963682100

110 ATARI ST — Programmieren in Maschinensprache

Nun zur Bedeutung der einzelnen Felder:

Die erste Zahl in jeder Zeile ist die Zeilennummer. Die Zeilen werden vom
Assembler einfach laufend durchnumeriert, damit er sich bei der Ausgabe von
Fehlermeldungen darauf beziehen kann. Die nächste Zahl, eine achtstellige He-
xadezimalzahl, zeigt den "location counter", also den Adreßzähler des Assem-
blers, bevor der Befehl auf dieser Zeile assembliert wird. So steht beim ersten
Befehl an dieser Stelle eine Null. Hier zeigt sich auch, daß für jedes Segment
ein eigener Adreßzähler existiert: Nach der Direktive DATA beginnt der Zäh-
ler wieder bei null. Genau diese Zahl ist es, die einem Label in dieser Zeile als
Wert zugewiesen wird.

Die folgenden hexadezimalen Zahlen zeigen den erzeugten Code. Sehen wir
uns einmal die Übersetzung des folgenden Befehls genauer an:

MOVE.L #hallo,-(SP)

Zunächst steht da das Wort $3F3C, was für den Prozessor soviel bedeutet wie

"Nimm das folgende Langwort und lege es auf dem Stack ab". Danach folgt
der Langwort-Operand, in diesem Fall der Wert des Labels "hallo". Dieser ist
einfach null, da dieses Label die erste Speicherstelle des Datensegments be-
zeichnet. Intern merkt sich der Assembler, daß der Wert des Operanden nicht
endgültig ist und vor dem Start reloziert werden muß, indem die physikalische
Anfangsadresse des Datensegments addiert wird.

Bei der Definition des freundlichen Textes gibt der Assembler an dieser Stelle
den entsprechenden ASCII-Code an, und zwar auf drei Zeilen verteilt, da nicht
alles auf eine Zeile paßt.

Danach folgt nur noch der Original-Quellcode. Wenn allerdings in einer Zeile
ein Fehler auftritt, so wird danach die Fehlermeldung eingefügt.

Nach der Auflistung des Programms hängt der Assembler noch folgenden Ab-
schnitt an:

Symbol Table

CONIN 00000008 ABS CONWS 00000009 ABS TERM 00000000 ABS
hallo 00000000 DATA start 00000000 TEXT.

Hier gibt er die Werte sämtlicher Symbole aus. Hinter dem Wert gibt er die
Art des Symbols an, und zwar "ABS" fiir absolute Symbole, und fiir relative
die Bezeichnung des Segments, in denen sie definiert sind.

Einführung in Maschinensprache 111

Bleibt nur noch die Frage zu klären, was Ihnen das Assemblerlisting nützt.
Nun, einerseits dient es dazu, vom Assembler entdeckte Fehler zu lokalisieren.
Wenn hingegen alle Syntaxfehler beseitigt sind, kann das Assemblerlisting zur
Suche nach logischen Fehlern mit Hilfe eines Debuggers nützlich sein. (Was
ein Debugger ist und wie er bedient wird, wird im nächsten Abschnitt noch er-
klärt.)

Trotz aller Tricks ist die Arbeit mit dem ATARI-Assembler über Kommando-
aufrufe recht unkomfortabei. Wenn Sie also über eine flexible Shell wie etwa
MENU+ von Metacomco verfügen, können Sie diese an den ATARI-Assem-
bler anpassen. Auf der beiliegenden Diskette befindet sich die Datei ME-
NU.INF, die MENU+ an den Assembler aus dem Entwicklungspaket anpaßt.
Sorgen Sie nur dafür, daß sich diese Datei beim Starten von MENU+ im glei-
chen Directory (Inhaltsverzeichnis) befindet; den Rest macht MENU+.

Im Grunde tut so eine Shell auch nichts anderes, als Kommandos in obiger Art
abzusetzen, nur sind diese in der Shell versteckt und werden von der Shell ge-

wöhnlich in der Form verwaltet, daß etwa ein Anklicken der Option "Assem-
blieren" ein Absetzen des Assembler-Kommandos in der oben beschriebenen
Form bewirkt.

Benutzung einer RAM-Disk

Wenn Sie das Testprogramm auf der Diskette assembliert haben, hatten Sie ge-
nug Zeit für eine Kaffeepause. Falls Ihr Computer jedoch über genügend Spei-
cherplatz verfügt, ist die Benutzung einer RAM-Disk sehr empfehlenswert
(sofern Sie nicht gerade mit einer Festplatte ausgestattet sind). Um völlig in
der RAM-Disk arbeiten zu können, müssen Sie zuerst folgende Dateien hinein-
kopieren:

AS68.PRG der Assembler
AS68INIT mit der I-Option erzeugte Datei
AS68S YMB.DAT gehört zum Assembler
LINK68.PRG der Linker
RELMOD.PRG Programm zum Wandeln von .68k in .TOS

RM.PRG Programm zum Löschen von Dateien
COMMAND.TOS der Kommandointerpreter
BATCH.TTP (oder B.PRG) der Batch-Abarbeiter
ASM.BAT (oder A.BAT) unsere Batchdatei

Dazu kommt noch

— ein Editor
— Routinenbibliotheken und Linkdateien nach Bedarf; für den Umgang mit

den Programmen aus diesem Buch werden sie nicht gebraucht.

112 ATARIST — Programmieren in Maschinensprache

Wenn Sie als Editor ED.TTP nehmen, kommt das Ganze zusammen auf etwa
165 Kilobytes. So sollte eine 200 Kbyte große RAM-Disk ausreichen, sofern
Ihre Programme nicht zu groß werden. Dieser Umstand ist deshalb besonders
interessant, da eine 200 Kbyte große RAM-Disk auch auf einem ST mit 512
Kbyte und ROMs zu installieren ist, ohne daß der Assembler beeinträchtigt
wird.

Was die Kommandos betrifft, wird eine RAM-Disk gewöhnlich genauso be-
handelt wie eine Diskette. Nur eines gibt es zu beachten: Da Assemblerpro-
gramme in der Entwicklungsphase gerne einmal abstürzen, sollten Sie vor je-
dem Testlauf den geänderten Quellcode auf einer Diskette sichern, denn beim
Programmabsturz ist gewöhnlich der Inhalt der RAM-Disk verloren. Vorteil-
haft ist eine resetfeste RAM-Disk, denn diese kann ihre Dateien meistens über
einen Programmabsturz hinweg retten. Leider funktioniert das auch nicht im-
mer, denn auch die beste RAM-Disk kann nicht verhindern, daß ein Pro-
gramm quer über den ganzen Speicher schreibt und so auch den Inhalt der
RAM-Disk zerstört.

Trotz allem ist der Gebrauch einer RAM-Disk sehr empfehlenswert, da er As-
semblier- und Linkzeiten von Minuten auf Sekunden reduziert.

Makros

Nicht jeder Assembler hat sie, aber jeder Programmierer wünscht sie sich. Ei-
nes gleich vorweg: Der Assembler aus dem ATARI-Entwicklungspaket verar-
beitet keine Makros. Außerdem ist es etwas problematisch, daß Makros oft mit
etwas unterschiedlicher Syntax behandelt werden. Die Beispiele in diesem Ka-
pitel sind in der Syntax des Metacomco-Assemblers abgefaßt, der sich in die-
sem Punkt voll an den Motorola-Standard hält.

Was sind Makros?

Wenn man große Assemblerprogramme schreibt, wird man bald feststellen,
daß bestimmte Codesequenzen sich ständig wiederholen. Nehmen wir zum
Beispiel ein Programm, das viel mit Textausgabe zu tun hat. Dort wird man
immer wieder den Systemaufruf zur Ausgabe einer Zeichenkette finden:

MOVE.L string,-(SP) * Adresse der Zeichenkette

MOVE #9,-(SP) * Code 9: CONWS
TRAP #1 * GEMDOS-Aufruf

ADDQ.L #6,SP * Stackpointer korrigieren

Einführung in Maschinensprache 113

Um die ständige Wiederholung zu vermeiden, könnte man natürlich ein Unter-
programm schreiben, das dann so aussieht:

* Unterprogramm zur Ausgabe eines Strings

* Adresse des Strings wird in Register DO.L überreicht
print MOVE.L DO,-(SP)

MOVE #9,-(SP)
TRAP #1
ADDQ.L #6,SP
RTS

Nachteil dieser Methode ist jedoch, daß immer noch zwei Befehle für die Aus-
gabe eines Strings gebraucht werden, denn zuerst muß die Adresse des Strings
ins Register DO geladen werden, und dann erfolgt der Aufruf des Unterpro-
gramms. Außerdem leidet die Geschwindigkeit des Programms unter den JSR-
und RTS-Befehlen. Zugegeben, bei diesem Beispiel macht es kaum etwas aus,
da die Betriebssystemroutine zum Schreiben einer Zeichenkette ohnehin einige
Zeit braucht. Doch stellen Sie sich vor, wir wollten statt dessen eine Routine

zum Plotten eines Punktes aufrufen. Dann könnte das Programm merklich be-
schleunigt werden, wenn der Code zum Plotten des Punktes direkt da steht, wo
er gebraucht wird, und nicht mittels JSR aufgerufen werden muß. Da es ziem-
lich umständlich ist, zu diesem Zweck Zeilen blockweise mit einem Editor zu
kopieren, wurde das Makro erfunden. Ein Makro ist eine an einer Stelle im

Programm definierte Codesequenz, die bei einem Aufruf an einer anderen
Stelle im Quellcode vom Assembler als Text eingesetzt wird.

Ein Beispiel macht dies klarer. Definieren wir uns zuerst ein Makro, das genau
das gleiche tut wie obiges Unterprogramm:

PRINT MACRO

MOVE .L #9,-(SP)
TRAP #1
ADDQ.L #6, SP
ENDM

Hier begegnen uns gleich zwei neue Direktiven: MACRO und ENDM.

MACRO sagt dem Assembler, daß hier die Definition eines Makros be-
ginnt. Diese Direktive muß mit einem Label (nach den üblichen
Konventionen) versehen sein, das den Namen des Makros angibt.

ENDM END Macro

besagt, daß das Makro hier zu Ende ist. Alle Befehle zwischen
MACRO und ENDM werden vom Assembler als "Wert" des
Makros abgespeichert.

114 ATARI ST - Programmieren in Maschinensprache

Den Namen des Makros "PRINT" hätte man natürlich auch klein schreiben
können. Es ist jedoch eine Art Konvention, Makronamen in Großbuchstaben
zu schreiben, und es hilft Ihnen auch, Makronamen von Labeln zu unterschei-
den. Bedenken Sie, daß der Assembler bei Symbolnamen zwischen Groß- und
'Kleinbuchstaben unterscheidet.

Der Aufruf eines Makros ist denkbar einfach: Man schreibt einfach in das

Operandenfeld seinen Namen. Das sieht dann zum Beispiel so aus:

MOVE.L string,DO >

PRINT

Was den Perfektionisten hier immer noch stört, ist der MOVE-Befehl. Aber
auch dieses Problem kann umgangen werden, denn Makros erlauben es auch,
daß man ihnen Parameter übergibt. Im Makro werden diese Parameter durch
den Backslash (\), gefolgt von einer Zahl, angesprochen (nicht zu verwechseln
mit dem Prozentzeichen (%), das der Benutzung von Parametern bei Batchda-
teien diente). Dabei wird mit \l der erste Parameter angesprochen, mit \2 der
zweite und so weiter. Die Parameter werden als Text eingesetzt, das heißt,
wenn in einer Zeile des Makros etwa steht:

MOVE.L \1,-(SP)

und der erste Parameter "string" war, dann entfernt der Assembler die \1 aus
der Zeile und setzt statt dessen den Wert des Parameters, also string ein. Erst
dann wird der Code für die entstandene Anweisung generiert. Der Assembler
tut also so, als ob man geschrieben hätte:

MOVE.L string,-(SP)

So ist es nicht schwer, unser Makro entsprechend umzuschreiben:

PRINT MACRO

MOVE .L /1,-(SP)
MOVE .L #9,-(SP)
TRAP #1
ADDQ.L #6,SP
ENDM

Beim Aufruf braucht man also nur noch folgendes anzugeben:

PRINT string

Einführung in Maschinensprache 115

Wenn das Makro mehrere Parameter hätte, so würden diese beim Aufruf
durch Kommas getrennt.

Der Assembler behandelt also diesen Makroaufruf so, als hätte man an dieser

Stelle tatsächlich geschrieben:

MOVE .L string,- (SP)

MOVE.L #9,-(SP)
TRAP #1

ADDQ.L #6,SP

Die Ersetzung als Text ist recht flexibel. Bisher haben wir es immer so aufge-
faßt, daß an der Stelle, die durch das Label "string" gekennzeichnet ist, ein
Zeiger auf die auszugebende Zeichenkette steht. Man kann aber das gleiche
Makro auch dann verwenden, wenn der String selbst durch einen Label ge-
kennzeichnet ist, wie es im Programmbeispiel im letzten Abschnitt der Fall
war. Wir müssen also dafür die direkte Adressierungsart verwenden:

PRINT #hallo

Dieser Aufruf generiert aus der ersten Zeile des Makros den Befehl

MOVE.L #hallo,-(SP)

Natürlich wäre auch der folgende Aufruf denkbar, falls die Adresse des
Strings schon im Register AO steht:

PRINT AO

Auch hier erzeugt der Assembler genau das, was man erwartet, nämlich

MOVE.L A0,-(SP)

und den Rest wie gehabt.

Falls Sie allerdings Makros benutzen, die Sie nicht selbst geschrieben haben,
sollten Sie mit der Benutzung von Registern vorsichtig sein. Es könnte ja sein,
daß im Makro gerade jenes Register, das Sie angeben, verändert wird. Das
kann zwar zu einem interessanten Ergebnis führen, aber garantiert nicht zu
dem, was Sie erreichen wollten.

Ein Problem stellt es dar, innerhalb eines Makros Label verwenden zu wollen.
Denn was geschieht, wenn ein Makro innerhalb eines Progamms mehrmals
aufgerufen wird? Das Label wird mehrfach im Programm definiert, worauf
der Assembler mit einer Fehlermeldung reagiert. Um dieses Problem zu um-

116 ATARI ST - Programmieren in Maschinensprache

gehen, stellt der Assembler ein spezielles Symbol zur Verfügung, das mit "\@"
(Backslash Klammeraffe) bezeichnet wird und für die Nummer des Aufrufs
des Makros steht, in dem es verwendet wird. Genauer: "\@" wird durch die
Zeichenkette ".nnn" ersetzt, wobei nnn die Anzahl der Aufrufe des Makros ist.
Genau wie die Parameter wird dieses Symbol als Text ersetzt, also beim ersten
Aufruf des Makros durch ".001", beim zweiten durch ".002" und so weiter.
Um die Verwendung zu zeigen, hier ein Makro, das eine Warteschleife reali-
siert:

WAIT MACRO

MOVE \1,D0

wait1\@ MOVE #SFFFF,D1

wait2\@ DBRA D1,wait2\@
DBRA DO,waiti\@
ENDM

Dieses Makro besteht aus zwei geschachtelten Schleifen. Nehmen wir an, es
- handelt sich um den ersten Aufruf dieses Makros (vom Anfang des Quellcodes

an), und es wird angegeben:

WAIT 50

dann wird der Assembler daraus folgendes erzeugen:

| MOVE 50,D0
wait1.001 MOVE #SFFFF,D1
wait2.001 DBRA D1,wait2.001

DBRA DO,wait1.001

Manchmal wird man vor der Entscheidung stehen, ob fiir eine bestimmte
Codesequenz ein Makro oder ein Unterprogramm besser geeignet ist. Die
Vorteile von Makros sind:

— Das Makro ist effizienter, da kein JSR und RTS ausgefihrt wird.

— Makros sind einfacher aufzurufen.

— Makros können Parameter in verschiedenen Adressierungsarten bekom-
men.

Subroutinen haben dagegen den Vorteil, daß der Code nur einmal Speicher-
platz beansprucht, während beim Makro ja bei jedem Aufruf der Platz für den
Code beansprucht wird. So werden Makros im allgemeinen nur für relativ
kurze Codesequenzen verwendet, bis etwa zu einigen Dutzend Befehlen. Ohne-
hin fällt bei längeren Codesequenzen auch der Vorteil der größeren Geschwin-
digkeit des Makros weg, da die Ausführungszeit eines BSR und RTS gegenü-
ber dem restlichen Code vernachlässigbar wird.

Einführung in Maschinensprache 117

Dieser Abschnitt erhebt keinen Anspruch auf Vollständigkeit; die meisten As-
sembler bieten noch die eine oder andere Direktive, die im Zusammenhang
mit Makros nützlich sein kann. Da dies jedoch von Assembler zu Assembler
recht unterschiedlich gehandhabt wird, können wir Sie nur auf Ihr Benutzer-
handbuch verweisen.

Bei manchen Assemblern werden recht umfangreiche Makrobibliotheken mit-
geliefert, die etwa die Betriebssystemfunktionen leichter zugänglich machen.
Falls Sie über eine solche Makrobibliothek verfügen, befassen Sie sich ruhig
einmal damit, da so etwas recht nützlich sein kann.

Zum Abschluß dieses Abschnitts hier noch einmal das "Hallo Welt"-Pro-
gramm aus dem letzten Abschnitt, diesmal mit Makros implementiert:

* Programm "Hallo Welt"
* 2. Version mit Makros
* Achtung!!! Wird nur von Makro-Assemblern verarbeitet, also
* insbesondere nicht vom ATARI-Assembler
x

* Gibt nur auf dem Bildschirm aus "Hallo, hier bin ich!"
* und wartet dann auf einen Tastendruck
*

TERM EQU $00 * Beenden des Programms
*

* Hier werden die Makros definiert

CONWS MACRO * schreibt einen String zur Konsole
move.l \1,-(sp) * 2. Parameter: Adresse der Zeichen-

* kette
move #9,-(sp) * 1. Parameter: Funktionsnummer 9
trap #1 * Betriebssystemaufruf
addq.l #6,sp * Stack aufräumen
ENDM

CNECIN MACRO * liest ein Zeichen von der
* Tastatur

move #3,-(sp) * einziger Parameter:
* Funktionsnummer 8

trap #1 * Ab zum GEMDOS
addq.l #2,sp * wie üblich
ENDM

* Hier beginnt das Textsegment
TEXT * eigentlich überflüssig

*

* Aufruf der Betriebssystemfunktion conws (text)
start CONWS #hallo
* Fertig mit der Ausgabe!
x

* Jetzt nur noch auf eine Taste warten: cnecin()

CNECIN

118 ATARI ST — Programmieren in Maschinensprache

x

* ein braves Programm sagt immer Bescheid, wenn es fertig ist
move #TERM, - (sp) * Code für "Programm Beenden"
trap #1 * und wieder ins Betriebssystem

* * hier kommen wir nicht mehr hin
* Hier beginnt das Datensegment

DATA

hallo DC.B "Hallo, hier bin ich!",0
* BSS-Segment gibt es in diesem Miniprogramm nicht
*

END * nur noch das unumgängliche Ende

Die Benutzung eines Debuggers

Die hauptsächliche Tätigkeit des Assemblerprogrammierers stellen wohl die
oftmals schwer zu findenden logischen Programmfehler, die sogenannten
"bugs" (engl. Wanzen, Käfer) dar. Um diese Fehler zu suchen, nimmt man
einen Debugger ("Entwanzer").

Was bietet nun so ein Debugger für Möglichkeiten der Fehlersuche? Zunächst
kann man ein fertiges Programm laden und sich Informationen über die Lage
seiner Segmente im Speicher ausgeben lassen. Dann gibt es immer eine Funk-
tion, um den Inhalt von Speicherplätzen zu betrachten und auch zu verändern.
Darüber hinaus hat man die Möglichkeit, sich Teile des Programms disassem-
blieren zu lassen, also von Maschinensprache in die lesbare Mnemonik-Form
verwandeln zu lassen. Sehr praktisch zur Fehlersuche ist die Möglichkeit des
"Tracens” von Programmen. Das bedeutet, daß der Debugger die Ausführung
des Programms Schritt für Schritt simuliert und dabei jeden ausgeführten Be-
fehl und den Status des Prozessors auflistet.

Einige Debugger bieten die Möglichkeit, auf die Symbole zuzugreifen, die
man im Quellcode des Programms definiert hat. Der ATARI-Assembler bei-
spielsweise fügt in die ".o"-Datei eine komplette Liste aller verwendeten Sym-
bole ein. Nur wird diese Liste vom Linker unterschlagen — sofern man beim
Linken nicht eine bestimmte Option abgibt. Diese Option lautet bei LINK68
"[s,l]". Dabei steht "s" fiir "symbol table", womit gemeint ist, daß eine Symbol-
tabelle in der ".68k"-Datei erzeugt werden soll. "1" erweitert diese Option da-
hingehend, daß nicht nur mit XDEF als global deklarierte, sondern auch mo-
dullokale Symbole in der Liste erscheinen sollen. (In unserem Beispielpro-
gramm sind alle Symbole modullokal.)

Das Batchfile zum Produzieren eines Programms mit Symboltabelle sieht also
so aus:

Einführung in Maschinensprache 119

as68 -1l %1.s
l1ink68 [s,1] %1.0
rm $1.0

relmod %1.68k %1.TOS
rm %1.68k

Nennen Sie diese Datei zum Beispiel "ad.bat", "a" für Assembler und "d" für
Debugger.

Die Symboltabelle wird einfach an die anderen Segmente des Programms an-
gehängt. Wenn das Programm allerdings normal ausgeführt wird, so ver-
braucht die Symboltabelle keinen Speicherplatz, da sie gar nicht erst geladen
wird. Sie ist eben nur für einen Debugger interessant.

Nehmen wir uns beispielhaft den Debugger SID68.TOS aus dem ATARI-Ent-
wicklungssystem vor. Natürlich kann man diesen Debugger nicht nur mit vom
ATARI-Assembler erzeugten Programmen verwenden, sondern mit jedem
ausführbaren Programm. Die Symboltabelle ist zur Benutzung dieses Debug-
gers nicht unbedingt erforderlich, aber recht nützlich.

Bei diesem Debugger bestehen die Kommandos nur aus einem Buchstaben, ge-
folgt von den Parametern des Kommandos. Speicheradressen werden entwe-
der hexadezimal angegeben, oder man verwendet ein Label, vor das man einen
Punkt setzt.

Nach dem Aufruf des Debuggers wollen wir zuerst das Programm laden. Das
geschieht mit dem Kommando

E hallo.tos

"E" steht für "load for Execute”. Als Antwort gibt der Debugger Informati-
onen über Lage und Länge der drei Segmente aus.

Um das Programm disassemblieren zu lassen, kann das "L"-Kommando (List)
verwendet werden. Als Argument kann eine Speicheradresse angegeben wer-
den, oder eben ein Label. Mit dem Befehl

L .start

werden 12 Befehle unseres Programms disassembliert — ab Label "start", das
ja den Anfang unseres Programms markiert.

Wenn man sich die hexadezimale Darstellung eines Speicherbereichs ansehen
will, kann dies mit dem "D"-Kommando (Display) geschehen. Gibt man etwa
ein: |

120 ATARI ST - Programmieren in Maschinensprache

D .start

so kann man das Programm in Form von Hexadezimalzahlen sehen.

Interessante Möglichkeiten bietet das "T"-Kommando (Trace). Als Argument
erhält es eine Speicheradresse. Bei der Ausführung dieses Kommandos simu-
liert der Debugger die Maschinenspracheoperationen und gibt nach der Aus-
führung jedes Befehls dessen Adresse, den disassemblierten Befehl selbst und
den Zustand sämtlicher CPU-Register aus. Mit einem Tastendruck kann das
Tracing jederzeit unterbrochen werden, damit man sich einen genaueren
Überblick über den Zustand des Programms verschaffen kann. Probieren Sie
einmal folgenden Befehl aus:

T .start

Doch Vorsicht, die Befehle werden tatsächlich ausgeführt! Unsere Meldung
wird tatsächlich ausgegeben (was leider in den Ausgaben des Trace-Pro-
gramms etwas untergeht), und der Aufruf der GEMDOS-Funktion TERM
führt nicht nur zur Beendigung unseres Programms, sondern auch zu der des
Debuggers. Die GEMDOS-Traps werden übrigens der Übersichtlichkeit hal-
ber nicht in das Tracing einbezogen; es wird nur der TRAP-Befehl gelistet.

Wenn man ein Listing des Quellcodes neben sich liegen hat, ist es so recht gut
möglich, den Programmlauf zu verfolgen.

Wie bei den meisten Bildschirmausgaben, kann auch hier die Ausgabe mit der
Tastenkombination <Ctrl>-<S> gestoppt werden. Fortsetzen kann man sie
dann mit <Ctrl>-<Q>.

Bei groBen Programmen, die schon mit der Initialisierung einige Zeit verbrin-
gen, kann es recht müßig sein, den Programmlauf bis zu dem Punkt tracen zu
lassen, an dem man den Fehler vermutet. Dafür bietet SID68 sogenannte
Breakpoints und Passpoints.

Ein Breakpoint ist ein spezieller Maschinenbefehl, der vom Debugger an eine
bestimmte Stelle des Programms geschrieben wird. Sobald der Befehl an die-
ser Stelle ausgeführt wird, geht die Kontrolle wieder an den Debugger über,
der sofort den ursprünglichen Befehl an dieser Stelle wiederherstellt. Break-
points erlauben es, sich gezielt den Zustand des Programms an einer ganz be-
stimmten Stelle anzusehen und eventuell von dort aus zu tracen.

Breakpoints können mit dem "G"-Kommando (Goto) verwendet werden.
Wird als Argument nur eine Adresse bzw. ein Label angegeben, so wird das

Einführung in Maschinensprache 121

Programm an dieser Stelle ausgeführt. Mit folgendem Befehl kann also das
Programm gestartet werden:

G .start

Auch hier wird der Debugger mit dem Aufruf von TERM verlassen.

Natürlich ist es nicht schön, wenn jedesmal bei der Ausführung des Pro-

gramms der Debugger verlassen wird. Deshalb wird an die Stelle, an der der
Aufruf der Funktion TERM stattfindet, ein Breakpoint gesetzt. Breakpoints
werden einfach als weitere Parameter beim Aufruf des "G"-Kommandos an-
gegeben, also:

G .start, .fertig

Dies heißt, daß die Programmausführung am Label "start" beginnen soll, wäh-
rend beim Label "fertig" ein Breakpoint gesetzt wird. Und tatsächlich, nach-
dem die Meldung auf dem Bildschirm erscheint und eine Taste gedrückt wor-
den ist, meldet sich der Debugger wieder zu Wort, indem er den Zustand der
CPU ausgibt und dann auf die nächste Eingabe wartet.

Die so definierten Breakpoints werden beim Abbruch des Programms sofort
wieder entfernt. Der Assembler bietet aber noch eine weitere Möglichkeit des
gezielten Programmstops: Passpoints. Sie werden ähnlich verwaltet wie
Breakpoints, nur gehört zu jedem Passpoint ein Zähler, der angibt, wie oft der
Passpoint durchlaufen werden soll, bevor das Programm stoppt. Solange der
Passpoint nicht entsprechend oft durchlaufen worden ist, bemerkt man nichts
von der kurzen Programmunterbrechung. Erst wenn der Zähler null erreicht,
wird wie üblich der CPU-Status ausgegeben und auf eine neue Eingabe gewar-
tet. Diese Funktion ist besonders für die Fehlersuche in Schleifen gedacht, bei
denen man die Behandlung von bestimmten Werten untersuchen will. Gesetzt
wird ein Passpoint mit folgendem Kommando:

P <Adresse>

oder

P <Adresse>,<Zahler>

Im ersten Fall wird der Zahler des zu setzenden Passpoints auf 1 gesetzt, das
heißt, er verhält sich genauso wie ein Breakpoint. Im zweiten Fall wird auch
noch der Zähler zum Passpoint angegeben.

122 ATARI ST - Programmieren in Maschinensprache

Löschen kann man Passpoints mit dem Kommando:

-P <Adresse>

Passpoints sind statisch, das heißt, sie überdauern auch Start und Abbruch ei-
nes Programms. Wenn Sie also erreichen wollen, daß das Programm immer
abgebrochen wird, bevor es TERM aufruft, müßten Sie eingeben:

P.fertig

GEM-Programme lassen sich mit SID68 manchmal nicht korrekt starten, da
SID vom Betriebssystem als TOS-Anwendung betrachtet wird und die GEM-
Routinen deshalb nicht unbedingt zur Verfügung stehen. Hier hilft ein kleiner
Trick: Benennen Sie SID68.TOS in SID68.PRG um. Wenn Sie nun SID star-
ten, sieht zwar der Bildschirmaufbau zunächst etwas merkwürdig aus, aber da-
für läuft SID jetzt offiziell unter GEM, und alle GEM-Programme lassen sich
problemlos austesten.

Soviel zum Debugger. Natiirlich ist dies keine vollstandige Anleitung zur Be-
nutzung von SID68; Absicht dieses Abschnitts ist es nur, an einigen Beispielen
die Benutzung eines Debuggers zu zeigen, zumal Sie vermutlich ohnehin einen
anderen als SID68 benutzen werden.

Manche Programme lassen sich mit einem Debugger sehr gut bearbeiten. Bei
anderen hat man jedoch Probleme, etwa wenn das Programm ständig etwas auf
den Bildschirm schreibt oder sogar grafische Ausgaben produziert (GEM-
Programme). In diesem Fall zerstört die Ausgabe des Debuggers ständig den
Bildschirmaufbau des Programms.

Schwierig ist das Verfolgen von Interrupts. Deshalb muß man oft zu einer an-
deren Methode greifen als zum Debugger, um Informationen über den Zu-
stand einen Programms zu erhalten. Eine recht praktische Möglichkeit ist es,
sich einige Prozeduren zur Ausgabe von Dezimalzahlen und von Strings zu
schreiben. Wenn man einen Makroassembler hat, nimmt man dazu am besten
Makros, ansonsten muß man sich mit Subroutinen behelfen. Wichtig ist, daß
diese Prozeduren den Zustand des Prozessors nicht verändern, damit die Pro-
grammabarbeitung nicht beeinflußt wird, wobei man auch bedenken sollte,
daß die meisten Systemroutinen einige Register verändern. Deshalb stellt man
an den Anfang der Ausgabeprozeduren am besten den Befehl

MOVEM.L DO-D7/AO-A6,-(SP)

um alle Registerinhalte zu sichern. Am Ende der Prozedur steht entsprechend

MOVEM.L (SP)+,DO-D7/AO-A6

. Einführung in Maschinensprache _ 123

Wenn der momentane Zustand des CCR von Bedeutung ist, legen Sie auch die-
ses auf dem Stack ab. So kann eigentlich kaum etwas schiefgehen. |

Besonderbeiten des Prozessors MC68000

Als fortschrittlicher Prozessor bietet der MC68000 noch einige zusätzliche
Möglichkeiten. Zunächst wäre da die Trennung zwischen User- und Supervi-
sormodus. —

Der Supervisormodus

Jedes Programm auf dem ATARI ST wird zunächst einmal im USER-Modus
gestartet. Das bedeutet, daß Sie einige Dinge nicht dürfen. Einerseits ist es im

 Usermodus nicht erlaubt, auf die Systemvariablen zuzugreifen, sei es lesend
oder schreibend. Der Speicherbereich von Adresse 0 bis $800 (2048) wird von
der MMU, der Speicherverwaltungseinheit des ATARI ST, geschiitzt. Bei
einem Zugriff auf diese Adressen im USER-Modus tritt ein Busfehler auf. Ein
weiteres Handicap ist, daß einige Prozessorbefehle nur im Supervisormodus
ausgeführt werden dürfen; andernfalls gibt es einen "privilege violation"-Feh-
ler. Die kritischen Befehle, die größtenteils noch nicht erwähnt wurden, sind:

STOP . Prozessor stoppen
RESET Hardware initialisieren
RTE Rückkehr von einer Exception
MOVE to SR Wert ins SR schreiben
AND (word) to SR Bits im SR léschen
OR (word) to SR Bits im SR setzen
EOR (word) to SR Bits im SR invertieren
MOVE from USP User-Stackpointer lesen

Natiirlich ist es im USER-Modus nicht erlaubt, den Inhalt des Systembytes zu
verändern, denn dadurch könnte ein Programm ja das Supervisor-Bit setzen
und sich dadurch selbst das Privileg des Supervisor-Modus verschaffen. Dies
würde dem Konzept der Einschränkung der Möglichkeiten im USER-Modus
widersprechen. Ansonsten finden Sie die Erklärung dieser teilweise recht aus-
gefallenen Befehle im nächsten Kapitel.

Ein Befehl ist noch etwas kritisch:

MOVE from SR Inhalt des SR lesen

124 ATARI ST — Programmieren in Maschinensprache

Dieser Befehl ist zwar auf dem MC68000 uneingeschränkt verwendbar und
sogar notwendig, wenn man den Inhalt des User-Bytes auslesen will, doch der
68010-Prozessor, der große Bruder des MC68000, gestattet ihn nur im Super-
visormodus. Deshalb ist es empfehlenswert, diesen Befehl möglichst nur im
Supervisor-Modus zu verwenden, wenn Sie darauf Wert legen, daß ihre Pro-
gramme auch auf zukünftigen Modellen noch problemlos laufen.

Wie man in den Supervisormodus (und wieder hinaus) gelangt, erfahren Sie in
Kapitel 4 unter "Das GEMDOS".

Das Systembyte

Das Systembyte besteht genau wie das Userbyte aus 8 Bits, von denen nur 5 ge-
nutzt werden. Die anderen ergeben immer null, wenn sie ausgelesen werden.
Das Systembyte belegt die oberen 8 Bits des 16 Bits umfassenden Statusregi-
sters und ist nur im Supervisormodus beschreibbar. Abbildung 2.14 zeigt die
Anordnung der Flags im Systembyte.

Das System — Byte

Bit 15 14 13 12 11 10 9 8

T/0S|0 Ok /Ih k
A _-

N

Interruptmaske

Abb. 2.14: Aufbau des System-Bytes (Bits 8 — 15 des Statusregisters)

Die Interruptmaske

Diese 3 Bits regeln das Auftreten von Interrupts, Unterbrechungen, die den
Prozessor veranlassen, für kurze Zeit etwas anderes zu tun. Bei 3 Bits ergeben
sich 8 Kombinationen. Davon stehen die Werte 0 bis 7 für Prioritäten von In-
terrupts. Auf dem ATARI ST werden folgende Prioritätsebenen benutzt:

Einführung in Maschinensprache 125

Ebene _ Interrupt

Horizontal Blank Interrupt
Vertical Blank Interrupt
MFP 68901 Interrupt ON

&
 bh

Genauer wird darauf im Kapitel 6 unter "Programmierung von Interrupts"
eingegangen.

Die drei Bits der Interruptmaske legen nun fest, welche Interrupts erlaubt sind
und welche nicht. Es können nur jene Interrupts auftreten, deren Priorität hö-
her ist als der Wert der Interruptmaske. Üblicherweise beträgt der Wert der
Interruptmaske auf dem ATARI ST 3, wodurch nur die Interrupts der Ebenen
4 und 6 gestattet werden. Die Interruptebene 7 hat die Besonderheit, daB sie
auch dann nicht maskierbar ist, wenn die Interruptmaske auf 7 steht; ein Inter-
rupt der Ebene 7 wiirde also in jedem Fall durchkommen. Auf dem ATARI ST
wird allerdings von dieser Möglichkeit kein Gebrauch gemacht. Wenn ein In-
terrupt auftritt, dann wird die Interruptmaske automatisch auf den Wert der
Priorität des Interrupts gesetzt. Dadurch kann die Ausführung der Interrupt-
routine nur durch Interrupts höherer Priorität unterbrochen werden, aber
nicht durch solche gleicher oder niedrigerer Priorität.

Das Supervisor-Flag (S-Bit)

Das S-Bit zeigt an, ob sich der Prozessor im Supervisormodus befindet. 1 steht
für Supervisormodus, O für Usermodus. Bekanntlich gibt es keine direkte
Möglichkeit, vom User- in den Supervisormodus zu gelangen; dafür wird ein
Betriebssystemaufruf verwendet. Umgekehrt sollte man nicht direkt das S-Bit
manipulieren, um vom Supervisor- in den Usermodus zu gelangen, da es fatale
Folgen haben kann, wenn das Betriebssystem von diesem Übergang nichts mit-
bekommt.

Das Trace-Flag (T-Bit)

Das Trace-Flag ist eine Besonderheit des MC68000. Hilfsmittel zur Fehlersu-
che, sogenannte Debugger, bieten oft eine Möglichkeit, dem Prozessor bei der
Abarbeitung eines Programms genau auf die Finger zu schauen, indem nach
jedem ausgeführten Befehl das entsprechende Mnemonic angezeigt wird und
die Registerinhalte ausgegeben werden. Um die Programmierung eines sol-
chen Debuggers zu erleichtern, bietet der MC68000 nun den Trace-Modus. Ist

126 ATARI ST - Programmieren in Maschinensprache

das T-Bit gesetzt, dann wird nach jedem von der CPU ausgeführten Befehl
eine bestimmte Exception ausgelöst, in der der Zustand der Register ausgege-
ben oder etwas ähnlich Nützliches getan werden kann. Erst nach der Beendi-
gung dieser Exception wird der nächste Befehl ausgeführt. Siehe auch in
diesem Kapitel unter "Die Exceptions”.

Der 68000 bietet einige Möglichkeiten, Exceptions zu behandeln. Es handelt
sich dabei um Ausnahmebedingungen, die entweder vom Prozessor selbst
kommen — meist durch Programmabstürze — oder von der angeschlossenen
Hardware ausgelöst werden. Von außen können dabei Interrupts (Unterbre-
chungen) oder ein Busfehler ausgelöst werden.

Eine ankommende Exception wird vom Prozessor folgendermaßen behandelt:
Die Abarbeitung des gerade laufenden Befehls wird unterbrochen. Dann be-
gibt sich der Prozessor in den Supervisor-Modus und legt den Inhalt des Pro-
grammzählers und des Statusregisters auf dem Supervisor-Stack ab. Danach
wird eine von der Ursache. der Exception abhängige Routine aufgerufen, de-
ren Einsprungpunkt in einer Liste von Adressen in den ersten 1024 Bytes des
Speichers festgelegt wird. Wenn die Exception beendet ist und das unterbro-
chene Programm normal weitergeführt werden soll, so kann das mit dem Be-
fehl RTE (ReTurn from Exception) geschehen, der Statusregister und Pro-
grammzähler vom Stack wiederherstellt. Sofern es sich um eine Fehlerbedin-
gung handelt, wird eine Betriebssystemroutine ausgeführt, die je nach Ursache
eine bestimmte Anzahl der gefürchteten Bomben auf den Bildschirm bringt.
Das auslösende Programm wird abgebrochen, und es wird ein Warmstart des
Systems versucht, der leider nicht immer gelingt. Es ist für Programme prin-
zipiell auch möglich, hier eigene Routinen zur Exception-Behandlung zu ver-
wenden. Debugger machen von dieser Möglichkeit Gebrauch.

An den absoluten Adressen O0 und 4 befinden sich der Stackpointer und der
Programmzähler, die beim Start des Systems oder bei einem Reset geladen
werden. Deshalb beginnen die Exception-Vektoren erst bei Adresse 8 (Vek-
tornummer 2).

Adresse | Art der Exception

$08 | Busfehler—2 Bomben

Dieser Fehler tritt auf, wenn

— auf einen nicht existenten Speicherbereich zugegriffen wird
— versucht wird, in einen ROM-Bereich zu schreiben
— im USER-Modus auf die Systemvariablen ($0000-$0800) oder

auf die Hardwareregister (ab $FF7FFF) zugegriffen wird

Einführung in Maschinensprache 127

Adresse Art der Exception

$10

$14

$18

gic

$20

Adreßfehler - 3 Bomben

Ein Adreßfehler tritt auf, wenn bei einer Wort- oder Lang-
wortoperation auf eine ungerade Adresse zugegriffen wird.

Illegaler Befehl - 4 Bomben

Der Prozessor traf auf ein Befehlswort, dem keine Bedeutung
zugeordnet ist.

Division durch Null (keine Bomben)

kann bei DIVU oder DIVS auftreten. Die Division durch Null
führt nicht zu Bomben; die Exception wird zwar ausgeführt,
aber der zugeordnete Vektor zeigt direkt auf ein RTE, wodurch
sofort mit dem nächsten Befehl fortgefahren wird. Der Zustand
des Prozessors ist dadurch zwar teilweise undefiniert, aber das
laufende Programm wird wenigstens nicht abgebrochen.

CHK-Befehl - 6 Bomben

Beim CHK-Befehl wurde eine Bereichsüberschreitung festge-
stellt

TRAPV-Befehl - 7 Bomben

Bei der Ausführung eines TRAPV-Befehls war das Overflow-
Bit gesetzt, d.h. ein Überlauf bei arithmetischen Operationen ist
aufgetreten.

Privilegverletzung —- 8 Bomben

Ein nur im Supervisor-Modus zulässiger Befehl sollte im User-
Modus ausgeführt werden.

Auch wenn man sicher nur selten Programme schreibt, die diese Vektoren
selbst benutzen, hilft diese Aufstellung, bei einem Programmabsturz aus der
Anzahl der Bomben auf die Ursache der Katastrophe zu schließen. In Anhang
E wird noch genauer darauf eingegangen, wie man die Exception-Meldungen
zur Fehlersuche nutzen kann.

129

Kapitel 3

Die Befehle des MC68000
in systematischer Reihenfolge

In diesem Kapitel werden die Befehle des 68000 im einzelnen behandelt. Dabei
wird die Beschreibung eines jeden Befehls folgendermaßen gegliedert:

— Zuerst wird das Mnemonik des Befehls mit einer stichwortartigen Beschrei-
bung angegeben.

— Danach ist die Funktion des Befehls in symbolischer Schreibweise darge-
stellt. Dabei gilt folgende Legende:

Q
Q
Z
(Z)
<=

+—*/

-(SP)

- (SP)+

N,Z,V,B,X

Adresse des Quelloperanden
Inhalt des Quelloperanden
Adresse des Zieloperanden
Inhalt des Zieloperanden
wird zu (Zuweisung)
die üblichen mathematischen Operationen
bitweises UND und ODER
bitweise Negation (Invertieren)

bezeichnet die Bits a bis b eines Operanden; etwa (Q)<7:0>
für das untere Byte des Quelloperanden
ein beliebiges Datenregister von DO bis D7
ein beliebiges AdreßRregister von AO bis A7
Stackpointer (A7)
User-Stackpointer
Supervisor-Stackpointer
Programmzähler (Program Counter)
User-Byte (Condition Code Register)
Status Register (System- und User-Byte)
Ein Wert wird auf dem Stack abgelegt, nachdem der SP um
2 oder 4 verringert wurde.
ein Wert wird vom Stack heruntergeholt. Danach wird der
SP um 2 oder 4 erhöht
Die Systemflags. Werden sie in Ausdrücken verwendet, so
ist ihr Wert mit 1 gleichzusetzen, wenn sie gesetzt sind, mit
0, wenn sie gelöscht sind.

130 ATARI ST — Programmieren in Maschinensprache

Die Beeinflussung des Programmzählers wird nicht gesondert beschrieben, da
sie implizit in jedem Befehl enthalten ist.

— Darunter folgt die Angabe der möglichen Adressierungsarten für diesen Be-
fehl. Die Bedeutung der Adressierungsarten ist in Kapitel 2, Seite 66 be-
schrieben.

— Es wird angegeben, welche der fünf Bits des Statusregisters beeinflußt wer-
den. Die Bits sind:

Negative (negativ, oberstes Bit gesetzt)
Zero (Null-Flag)
Overflow (Überlauf-Flag)
Carry (Übertrag)
Extend (Erweiterungsflag, entspricht oft Carry) <

N
<
N
Z

Soweit nicht anders angegeben, haben die Flags folgende Standardbedeutung:

Z wird gesetzt, wenn der Zieloperand nach der Ausführung einer
arithmetisch/logischen Operation gleich null ist; sonst wird es gelöscht.

N wird gesetzt, wenn der Zieloperand nach der Ausführung einer
arithmetisch/logischen Operation negativ ist. Das heißt, das höchstwer-
tige Bit in der verwendeten Verarbeitungsbreite ist gesetzt.

V_ wird gesetzt, wenn bei einer arithmetischen Operation ein Uberlauf bei
vorzeichenbehafteter Betrachtung der Zahlen auftritt und das Ergebnis
nicht mehr stimmt. Im allgemeinen belanglos bei vorzeichenlosen Zah-
len.

C wird gesetzt, wenn bei einer arithmetischen Operation bei vorzeichen-
behafteter Betrachtung ein Uberlauf (Ubertrag) auftritt. C wird auch
von den Verschiebebefehlen beeinflußt.

X wird oft genauso wie C gesetzt. Es gibt allerdings einige Operationen,
die C, nicht jedoch X beeinflussen.

— Danach folgt eine genaue Beschreibung des Befehls.

— Es kann noch ein Abschnitt über Besonderheiten des Befehls folgen (etwa
spezielle Anwendungen des Befehls).

— Wenn die Wirkungsweise des Befehls unklar sein könnte, werden Beispiele
angegeben.

Die Befehle des MC68000 in systematischer Reihenfolge 131

Bei den Adressierungsarten gibt es allgemein folgendes zu beachten:

Die Adressierungsarten "Adreßregister indirekt mit Displacement" und
"Adreßregister indirekt mit Index und Displacement" werden abgekürzt mit
"indirekt mit Displacement" bzw. "indirekt mit Index und Displacement".

Wenn nichts anderes angegeben wird, sind Operationen immer wahlweise in
Byte-, Wort- oder Langwortbreite ausfiihrbar.

Bei Zugriffen auf Adreßregister sind nur Wort- und Langwortbreite erlaubt.
Wird bei einem Adreßregister als Ziel Wortbreite verwendet, so wird das
Wort automatisch auf Langwortformat erweitert, während bei Datenregistern
die oberen 16 Bits nicht beeinflußt werden.

Bei den arithmetisch/logischen Befehlen muß einer der Operanden immer ein
Datenregister sein. Eine Ausnahme bilden nur die Befehlsvarianten, bei denen
man ein "A" oder "I" an das Mnemonik anhängt. Dabei steht "A" für Adreßre-
gister und "I" für Immediate (Direktoperand). Ein "A" hängt man an, wenn
Quelle oder Ziel ein Adreßregister ist. Das "I" wird verwendet, wenn die
Quelle ein Direktoperand, aber das Ziel kein Datenregister ist. Diese Abwand-
lungen werden als eigenständige Befehle jeweils nach den Grundbefebhlen auf-
geführt, da sie sich teilweise in der Beeinflussung der Systemflags unterschei-
den.

Die meisten Assembler setzen die "A"- und "I"-Abwandlungen, wenn sie nötig
sind, selbständig ein. Wenn man also etwa schreibt

ADD 4(A0),A5

verläßt man sich einfach auf die Fahigkeit des Assemblers, denn eigentlich
meint man folgendes:

ADDA.W 4(A0),A5

Daneben gibt es noch die "Q"-Abwandlung (Quick). Diese Abwandlung ist nur
erlaubt, wenn der Quelloperand direkt angegeben wird und nicht langer als 3
Bits ist. (Einzige Ausnahme: Bei MOVEQ darf der Operand mit Vorzeichen 8
Bit lang sein.) Die "Q"-Variante wird allerdings vom Assembler nicht automa-
tisch erzeugt.

Ein-Operand-Befehle

Bei den Ein-Operand-Befehlen ist der einzige Operand gleichzeitig Eingangs-
wert und Ausgabewert der Operation, die mit ihm durchgeführt werden soll.

132 ATARI ST - Programmieren in Maschinensprache

Schieben und Rotieren

Die Verschiebebefehle sind hier der Übersichtlichkeit halber nur unter den
Ein-Operand-Befehlen aufgeführt, obwohl sie eigentlich jeweils zwei Varian-
ten haben: Die eine hat nur einen Operanden, die andere zwei.

Adressierungsarten:

Typ 1:

ZIEL Bei dem Typ mit nur einem Operanden sind folgende Adres-

Typ2:

QUELLE

ZIEL

sierungsarten erlaubt:

Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Bei diesem Typ ist nur der Wort-Modus erlaubt (16 Bits).

(zwei Operanden)

Datenregister direkt
unmittelbar

Datenregister direkt

Es gibt acht Verschiebebefehle:

LSL
LSR
ASL
ASR
ROL
ROR
ROXL
ROXR

Die Befehle des MC68000 in systematischer Reihenfolge 133

logical shift left L SL
Logisches Verschieben nach links

Operation:

Beschreibung:

Typ I:

Typ 2:

(Z) <- (Z) um n Stellen nach links verschoben

: gesetzt, wenn Ergebnis < 0
: gesetzt, wenn Ergebnis = 0
: gesetzt, wenn sich das Vorzeichen dndert
: enthält das letzte links herausgeschobene Bit
: wie C x

N
<
N
Z

Besprechen wir zuerst, was den beiden Typen gemeinsam ist.
Der Operand wird nach links verschoben (ein Verschieben um
ein Bit nach links entspricht einer Multiplikation mit 2, egal
ob der Operand vorzeichenbehaftet ist oder nicht). Dabei wer-
den von rechts, also im niedrigsten Bit des Operanden, Nullen
nachgeschoben.

Es wird nur um ein Bit nach links geschoben. Das links her-
ausfallende Bit kann man danach im Carry- und X-Flag wie-
derfinden.

Der Quelloperand wird interpretiert als Anzahl der Stellen,
um die nach links verschoben werden soll. Es gibt zwei Mög-
lichkeiten, diese Anzahl anzugeben: Als unmittelbarer Ope-
rand, wobei Werte von 1 bis 8 erlaubt sind, oder als Inhalt ei-
nes Datenregisters. Bei letzterer Möglichkeit werden nur die
unteren 6 Bit des Datenregisters beachtet; man kann also um O
bis 63 Stellen verschieben. Eine Verschiebung um n Stellen
nach links entspricht einer Multiplikation des Operanden mit
2", Nach der Operation steht das zuletzt herausgeschobene Bit
in Carry- und X-Flag. Das V-Flag wird gesetzt, wenn durch
die Verschiebung das Vorzeichen des Operanden geändert
wurde.

ATARI ST — Programmieren in Maschinensprache

LSL

logical shift left
Logisches Verschieben nach links

Besonderheit:
Beispiele:

zu Typ |

zu Typ 2

LSL hat genau die gleiche Wirkung wie ASL.

—1 nach links verschoben ergibt —2 undC= 1,
+2 nach links verschoben ergibt +4 undC = 0,
—3 nach links verschoben ergibt -6 undC= 1

Folgender Befehl wird ausgeführt:

LSL.W #3,D0

Wenn DO vorher 3 enthielt, ist das Ergebnis 24 und C=0, bei
—1 ergibt sich -8 und C=1, und bei +8192 ergibt sich 0 und
C=1

Die Befehle des MC68000 in systematischer Reihenfolge 135

logical shift right LSR
logisches Schieben nach rechts

Operation:

Flags:

Beschreibung:

Typ 1:

Typ 2:

Beispiele:

zu Typ 1

zu Typ 2

(Z) <- (Z) um n Stellen nach rechts verschoben

N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn sich das Vorzeichen ändert
C : enthält das letzte rechts herausgeschobene Bit
X : wie C

Ein vorzeichenloser Operand wird nach rechts verschoben
(ein Verschieben nach rechts entspricht einer abrundenden
Division durch 2). Dabei rücken von links, also im obersten
Bit des Operanden, Nullen nach.

Es wird nur um ein Bit nach rechts geschoben. Das rechts her-
ausfallende Bit steht nach der Operation im Carry- und X-
Flag. |

Der Quelloperand wird interpretiert als Anzahl der Stellen,
um die nach rechts verschoben werden soll. Die Anzahl der
Stellen wird entweder direkt angegeben (1 — 8) oder steht in
einem Datenregister (0 — 63). Eine Verschiebung um n Stel-
len nach rechts entspricht einer ganzzahligen Division des
Operanden durch 2". Nach der Operation steht das zuletzt her-
ausgeschobene Bit im Carry- und X-Flag. Das V-Flag wird
gesetzt, wenn durch die Verschiebung das Vorzeichen des
Operanden geändert wurde.

+7 nach rechts verschoben ergibt +43 und C=l,
+8 nach rechts verschoben ergibt +4 und C=0,
-8 (=65528) nach rechts verschoben ergibt 32764

Folgender Befehl wird ausgeführt:

LSR.W #3,D0

Wenn DO vorher 8 enthielt, ist das Ergebnis 1 und C = 0, bei
+36 ergibt sich +4 und C =0

ATARI ST - Programmieren in Maschinensprache

arithmetic shift left

ASL arithmetisches (vorzeichenbehaftetes)
Verschieben nach links

siehe unter LSL (die Befehle sind identisch)

Die Befehle des MC68000 in systematischer Reihenfolge 137

arithmetic shift right
arithmetisches (vorzeichenbehaftetes) ASR
Verschieben nach rechts

Operation: (Z) <- (Z) um n Stellen nach rechts verschoben

Flags: N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn sich das Vorzeichen andert
C : enthalt das letzte rechts herausgeschobene Bit
X : wie C

Beschreibung: Ein vorzeichenbehafteter Operand wird nach rechts verscho-
ben (ein Verschieben nach rechts entspricht einer abrunden-
den Division durch 2). Dabei wird das Vorzeichen des Ope-
randen bewahrt.

Typ I: Es wird nur um ein Bit nach rechts geschoben. Das rechts her-
ausfallende Bit steht nach der Operation im Carry- und X-
Flag. Das oberste Bit des Operanden (Vorzeichen) bleibt er-
halten und wird in das zweitoberste kopiert.

Typ 2: Der Quelloperand wird interpretiert als Anzahl der Stellen,
um die nach rechts verschoben werden soll. Die Anzahl der
Stellen wird entweder direkt angegeben (1 — 8) oder steht in
einem Datenregister (0 — 63). Eine Verschiebung um n Stel-
len nach rechts entspricht einer ganzzahligen Division des
Operanden durch 2°. Nach der Operation steht das zuletzt her-
ausgeschobene Bit in Carry- und X-Flag. Das oberste Bit des
Operanden (Vorzeichen) bleibt erhalten und wird in die neu
hineingeschobenen Bits Kopiert.

Beispiele: |

zu Typ I —1 nach rechts geschoben ergibt —1 und C = 1,
+5 nach rechts geschoben ergibt +2,
-5 nach rechts geschoben ergibt —3

zu Typ 2 Folgender Befehl wird ausgeführt:

ASR #3,D0

Wenn DO vorher +36 enthalt, ergibt sich +4 und C = 0, bei
—25 ergibt sich 4 und C = 1

ATARI ST - Programmieren in Maschinensprache

ROL

rotate left

rotiere Bits nach links

Operation:

Beschreibung:

Typ 1:

Typ 2:

Beispiel:

(Z) <- (Z) um n Stellen nach links rotiert

N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn sich das Vorzeichen ändert
C : enthält das letzte links herausgeschobene Bit
X : unberührt

Die Bits des Operanden werden nach links rotiert. Das heißt,
beim Verschieben nach links herausfallende Bits werden
gleichzeitig rechts wieder hineingeschoben.

Es wird nur um ein Bit nach links rotiert. Das links herausfal-
lende Bit steht nach der Operation im niederwertigsten Bit des
Operanden und außerdem im Carry (nicht im X-Bit!).

Der Quelloperand wird interpretiert als Anzahl der Stellen,
um die nach links rotiert werden soll. Die Anzahl der Stellen
wird entweder direkt angegeben (1 — 8) oder steht in einem
Datenregister (0 — 63). Nach der Operation steht das zuletzt
herausgeschobene Bit im Carry- (nicht im X-Flag!).

Diese Befehlsfolge wird ausgeführt:

MOVE #$1234,D0
ROL #4,D0

Danach enthalt DO $2341

Die Befehle des MC68000 in systematischer Reihenfolge 139

rotate right

rotiere Bits nach rechts

ROR

Operation:

Beschreibung:

Typ 1:

Typ 2:

Besonderheit:

Beispiel:

(Z) <- (Z) um n Stellen nach rechts rotiert

N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn sich das Vorzeichen ändert
C : enthalt das letzte rechts herausgeschobene Bit
X : unberührt

Die Bits des Operanden werden nach rechts rotiert. Das heißt,
beim Verschieben nach rechts herausfallende Bits werden
gleichzeitig links wieder hineingeschoben.

Es wird nur um ein Bit nach rechts rotiert. Das rechts heraus-
fallende Bit steht nach der Operation im obersten Bit (Bit 15)
des Operanden und außerdem im Carry (nicht im X-Bit!).

Der Quelloperand wird interpretiert als Anzahl der Stellen,
um die nach rechts rotiert werden soll. Die Anzahl der Stellen
wird entweder direkt angegeben (1 — 8) oder steht in einem
Datenregister (0 — 63). Nach der Operation steht das zuletzt
herausgeschobene Bit im Carry-, aber nicht im X-Flag.

Mathematisch gesehen entspricht ROR - im Gegensatz zu LSR
und ASR - nichts besonderem!

Diese Befehlsfolge wird ausgeführt:

MOVE #$1234,D0

ROR #4,D0

Danach enthält DO $4123

140 ATARI ST — Programmieren in Maschinensprache

ROXL rotate left through extend-flag

 Rotieren nach links tiber X-Flag

Operation:

Beschreibung:

Typ 1:

Typ 2:

Besonderheit:

(Z) <- (Z) um n Stellen nach links verschoben

: gesetzt, wenn Ergebnis < 0
: gesetzt, wenn Ergebnis = 0
: gesetzt, wenn sich das Vorzeichen ändert
: enthält das letzte links herausgeschobene Bit
: wie C K

M
A
<
K
N
Z

Der Zieloperand wird nach links verschoben. Das links her-
ausfallende Bit wird im Carry- und X-Flag abgelegt, wahrend
rechts, also im niederwertigsten Bit, der alte Inhalt des X-
Flags nachriickt.

Es wird nur um ein Bit nach links geschoben. Das links her-
ausfallende Bit steht nach der Operation im Carry- und X-
Flag. In Bit 0 wird der alte Inhalt des X-Flags geschrieben.

Der Quelloperand wird interpretiert als Anzahl der Stellen,
um die nach links verschoben werden soll. Die Anzahl der
Stellen wird entweder direkt angegeben (1 — 8) oder steht in
einem Datenregister (0 — 63). Nach der Operation steht das
zuletzt herausgeschobene Bit im Carry- und X-Flag. Der alte
Inhalt des X-Flags wird in das zuerst hineingeschobene Bit ge-
schrieben, also in Bit 1- n, wenn um n Stellen verschoben
wurde und 1 die Verarbeitungsbreite (8, 16, 32) ist. Alle ande-
ren hineingeschobenen Bits sind gelöscht.

ROXL ist als Erweiterung von LSL für beliebig lange Zahlen
gedacht, nicht als Erweiterung von ROL.

Die Befehle des MC68000 in systematischer Reihenfolge 14

rotate right through extend-flag ROXR
Rotieren nach rechts über X-Flag

Operation:

Flags:

Beschreibung:

Typ 1:

Typ 2:

Besonderheit:

(Z) <- (Z) um n Stellen nach rechts verschoben

: gesetzt, wenn Ergebnis < 0
: gesetzt, wenn Ergebnis = 0
: gesetzt, wenn sich das Vorzeichen ändert

: enthält das letzte rechts herausgeschobene Bit
: wie C | x

N
<
N
Z

Der Zieloperand wird nach rechts verschoben. Das rechts her-
ausfallende Bit wird im Carry- und X-Flag abgelegt, während
links der alte Inhalt des X-Flags nachrückt.

Es wird nur um ein Bit nach rechts geschoben. Das rechts her-
ausfallende Bit steht nach der Operation im Carry- und X-
Flag. In Bit 15 wird der alte Inhalt des X-Flags geschrieben.

Der Quelloperand wird interpretiert als Anzahl der Stellen,
um die nach rechts verschoben werden soll. Die Anzahl der
Stellen wird entweder direkt angegeben (1 — 8) oder steht in
einem Datenregister (0 — 63). Nach der Operation steht das
zuletzt herausgeschobene Bit im Carry- und X-Flag. Der alte
Inhalt des X-Flags wird in das zuerst hineingeschobene Bit ge-
schrieben, also in Bit n — 1, wenn um n Stellen verschoben
wurde. Alle anderen hineingeschobenen Bits sind gelöscht.

ROXR ist als Erweiterung von LSR oder ASR für beliebig
lange Zahlen zu sehen, nicht als Erweiterung von ROR, wie
man meinen Könnte!

142 . ATARI ST — Programmieren in Maschinensprache

Arithmetische und logische Ein-Operand-Befehle

Unter diese Gruppe fallen:

NEG
NEGX
NBCD
NOT
CLR
TST
TAS

Alle diese Befehle bieten folgende Adressierungsmöglichkeiten:

ZIEL Datenregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Alle Befehle außer NBCD erlauben Byte-, Wort- oder Langwortbreite.

Die Befehle des MC68000 in systematischer Reihenfolge 143

Invertieren eines Operanden

NOT

Operation: (Z) <- ~(Z)

Flags: N:
: gesetzt, wenn Ergebnis = 0

V:
Z

C
X

gesetzt, wenn Ergebnis < 0

gelöscht
: gelöscht
: unberührt

Beschreibung: Der Operand wird invertiert. Das bedeutet, daß jede binäre 0
durch eine 1 ersetzt wird und jede 1 durch eine 0. Diese Ope-
ration ist vergleichbar mit dem EOR mit einem Operanden
aus lauter Einsen. Die Flags C und V werden immer auf 0 ge-
setzt. Wenn man den Operanden als vorzeichenbehaftet be-
trachtet, entspricht NOT dem Invertieren des Vorzeichens
und der Subtraktion von 1.

144 ATARI ST — Programmieren in Maschinensprache

NEG

negate
Vorzeichenumkehr

Operation:

Flags:

Beschreibung:

(Z) <- ~(Z)+1

N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn ein Vorzeichenwechsel stattfand
C : gesetzt, wenn ein Borgen in der obersten Stelle stattfand
X : wie C

Das Zweierkomplement des Operanden wird gebildet. Intern
geht das so vor sich, daß der Prozessor wie bei NOT jedes Bit
invertiert und dann 1 zu dem Ergebnis addiert. C und X zei-
gen an, ob bei der Addition der 1 ein Übertrag entstand
(gleichbedeutend damit, daß eine 1 aus einer imaginären hö-
heren Stelle geliehen wurde).

Die Befehle des MC68000 in systematischer Reihenfolge 145

Negate with X-Flag
Vorzeichenwechsel mit X-Flag

NEGX

Operation: (Z) <- ~(Z)+1-X

Flags: N : gesetzt, wenn Ergebnis < 0
: gesetzt, wenn Ergebnis = 0
: gesetzt, wenn ein Vorzeichenwechsel stattfand

: wie C

Z
V
C : gesetzt, wenn ein Borgen in der obersten Stelle stattfand
X

Beschreibung: Der Operand und das X-Flag werden addiert und das Ergebnis
wird negiert. NEGX ist als eine Erweiterung des NEG-Be-
fehls auf Zahlen gedacht, die mehr als 32 Bits lang sind. Um
eine solche Zahl zu negieren, wendet man NEG auf die nieder-
wertigsten Bytes an und danach beliebig oft den Befehl NEGX
nacheinander auf die höherwertigeren Bytes.

146 ATARI ST — Programmieren in Maschinensprache

NB CD negate binary coded decimal with x-flag

negiere BCD mit X-Flag

Operation:

Beschreibung:

Besonderheit:

(Z) <- 0-(Z)-X im BCD-Verfahren

N : undefiniert
Z : gesetzt, wenn Ergebnis = 0
V : undefiniert
C : gesetzt, wenn ein Borgen aus einer höheren BCD-Stelle

stattfand
X : wie C

Das BCD-Format stellt je eine Dezimalziffer durch eine
Gruppe von vier Bits dar. Die Null wird durch das Bitmuster
0000 dargestellt, 9 durch 1001 und die Werte dazwischen ent-
sprechend. Die Bitmuster 1010 bis 1111 sind nicht belegt und
werden manchmal fiir die Darstellung von Vorzeichen ver-
wendet. Der 68000er bietet Befehle fiir den Umgang mit die-
ser selten verwendeten Zahlendarstellung. NBCD addiert den
Wert des X-Flags zum Zieloperanden und negiert ihn an-
schließend. C und X zeigen dabei an, ob ein Borgen aus einer
imaginären höheren Dezimalstelle erfolgte. Dieser Befehl ist
nur bei Byte-Operanden erlaubt.

Es gibt kein NBCD ohne Berücksichtigung des X-Flags. Des-
halb vor der Benutzung immer das X-Flag löschen!

Die Befehle des MC68000 in systematischer Reihenfolge 147

Clear CLR
Nullsetzen eines Operanden

Operation: (Z) <- 0

Flags: N : gelöscht
| Z : gesetzt

V : gelöscht
C : gelöscht
X : unberührt

Beschreibung: Der Operand wird gelöscht. CLR ist eigentlich nur eine Ab-
kürzung für

MOVE.x #0, Ziel

' Die Flags N, V und C werden auf null gesetzt, während Z auf
1 gesetzt wird.

148 ATARI ST - Programmieren in Maschinensprache

TST

Test
Operand testen

Operation:

Beschreibung:

keine

: gesetzt, wenn Operand < 0
: gesetzt, wenn Operand = 0
: gelöscht
: gelöscht
: unberührt x

N
<
N
Z

Dieser Befehl setzt nur N und Z entsprechend dem Wert des
Operanden, läßt diesen aber unverändert. TST wird oft ver-
wendet, um etwa den Wert programmeigener Flags zu über-
prüfen und abhängig von N oder Z zu verzweigen.

Die Befehle des MC68000 in systematischer Reihenfolge 149

test and set TAS
testen und Bit 7 setzen

Operation: (Z) <- (Z) mit gesetztem Bit 7

Flags: N : gesetzt, wenn Operand < 0
Z : gesetzt, wenn Operand = 0
V : gelöscht
C : gelöscht
X : unberührt

Beschreibung: Dieser sehr selten verwendete Befehl ist nur auf Bytes an-
wendbar. Der Operand wird getestet, und die Flags werden
entsprechend gesetzt. Erst dann wird Bit 7 gesetzt. Dieser Be-
fehl ist nur bei Time-Sharing-Verfahren interessant und wird
auf dem ST kaum verwendet.

Besonderheit: Die Flags werden vor der Operation gesetzt.
TAS ist durch keine Exception abzubrechen.

150 ATARI ST - Programmieren in Maschinensprache

EXT und SWAP

Hier sind die Befehle aufgeführt, die in die beiden anderen Gruppen der Ein-
Operand-Befehle nicht hineinpassen: EXT und SWAP.

Die Befehle des MC68000 in systematischer Reihenfolge 151

Sign Extend
Operand vorzeichenrichtig auf Wort- EXT
oder Langwortformat erweitern

Adressierungsart: Datenregister direkt

Flags: : gesetzt, wenn Operand < O0
: gesetzt, wenn Operand = 0
: gelöscht
: gelöscht
: unberührt x

N
<
N
Z

Beschreibung: Der Operand in Byte- oder Wortbreite wird vorzeichen-
richtig auf Wort- bzw. Langwortbreite erweitert. Der Be-
fehl

EXT.W Ziel

überträgt den Inhalt von Bit 7 des Operanden in die Bits 8
bis 15.

EXT.L Ziel

überträgt Bit 15 in die Bits 16 bis 31.

152 ATARI ST - Programmieren in Maschinensprache

SWAP

Hochwertiges und niederwertiges
Wort vertauschen

Adressierungsart: Datenregister direkt

Flags:

Beschreibung:

Z
V
Cc
x

: gesetzt, wenn Operand < 0
: gesetzt, wenn Operand = 0
: gelöscht
: gelöscht
: unberührt

Der Prozessor tauscht die oberen 16 Bits des angegebenen
Datenregisters gegen die unteren 16 Bits aus.

Die Befehle des MC68000 in systematischer Reihenfolge 153

Zwei-Operand-Befehle

Allen Befehlen dieser Gruppe ist gemeinsam, daß der Quelloperand mit dem
Zieloperanden verknüpft und das Ergebnis im Zieloperanden abgelegt wird.
Einzige Ausnahme: EXG

Die MOVE-Befehle

Es gibt gleich eine ganze Gruppe von MOVE-Befehlen, die sich durch die Art
der ansprechbaren Operanden und die Zugriffsmöglichkeit auf spezielle Pro-
zessorregister unterscheiden:

MOVE

MOVEA

MOVEM

MOVEP

MOVEQ

MOVE to CCR

MOVE to SR

MOVE from SR

MOVE USP

EXG

ATARI ST — Programmieren in Maschinensprache

MOVE Wert in den Zieloperanden schreiben

Operation: (Z) <- (Q)

N : gesetzt, wenn Quelle < 0
Z : gesetzt, wenn Quelle = 0
V : gelöscht
C : gelöscht
X : unberührt

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Besonderheit:

Datenregister direkt
Adreßregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Datenregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Der Wert des Quelloperanden wird in den Zieloperanden ge-
schrieben. Dabei werden N und Z entsprechend dem übertra-
genen Wert gesetzt, während C und V gelöscht werden.

Bei diesem Befehl gilt die Beschränkung nicht, daß entweder
Ziel oder Quelle ein Datenregister sein muß.

Die Befehle des MC68000 in systematischer Reihenfolge 155

move to address register MOVEA

Laden ins Adreßregister

Operation: An <- (Q)

Flags: N : unberührt
Z : unberührt
V : unberührt
C : unberührt
X : unberührt

Adressierungsarten:

OUELLE Datenregister direkt

ZIEL

Beschreibung:

Besonderheit:

Adreßregister direkt
Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Adreßregister direkt

Der angegebene 32-Bit-Operand wird in ein Adreßregister
geladen. Es ist auch der Wort-Modus erlaubt, wobei das Wort
vorzeichenrichtig auf 32 Bit erweitert wird. Im Gegensatz
zum normalen MOVE läßt MOVEA die Flags unverändert.

Die meisten Assembler bilden MOVE auf MOVEA ab, wenn
die Adressierungsarten es verlangen.

ATARI ST — Programmieren in Maschinensprache

MOVEM move multiple registers

mehrere Register in/aus Speicher laden

Operation: <Registergruppe> <- (Q) (Q+4) (Q+8) ...
oder
(Z) (Z+4) (Z+8) ... <- <Registergruppe>

N : unberiihrt
Z : unberührt
V : unberührt
C : unberührt
X : unberührt

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

AdreBregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement indirekt
absolut kurz/lang
Registerliste

Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
predekrement indirekt
absolut kurz/lang
Registerliste

Dieser Befehl dient dazu, ausgewählte Daten- und Adreßregi-

ster schnell aufeinanderfolgend in den Speicher zu schreiben
oder sie wieder zu lesen. Die ausgewählten Register werden
dabei in einem 16-Bit-Wort gespeichert, wobei eine 1 dem
Prozessor sagt, daß das entsprechende Register bewegt wer-
den soll. Der Assembler bietet folgende Möglichkeit, eine Re-
gisterliste anzugeben:

— es kann ein Registername angegeben werden (etwa D2)
— es können zwei Registernamen, getrennt durch einen Strich

(-) angegeben werden. Die Datenregister DO bis D7 werden

Die Befehle des MC68000 in systematischer Reihenfolge 157

move multiple registers MOVEM
mehrere Register in/aus Speicher laden

auf die Zahlen 0 bis 7, die Adreßregister AO bis A7 auf 8 bis
15 abgebildet. Durch die Bereichsangabe werden alle Regi-
ster angesprochen, die den Zahlen zwischen dem Wert des
ersten und dem Wert des zweiten angegebenen Registers
entsprechen. D4 — A2 beispielsweise bezeichnet die Regi-
ster D4 bis D7 und AO bis A2; DO - AT bezeichnet alle Da-
ten- und Adreßregister. Mehrere Operanden der obigen
zwei Arten können durch "/" miteinander kombiniert wer-
den.

Normalerweise werden beim Schreiben in den Speicher zu-
erst die Datenregister in aufsteigender Reihenfolge und
dann die Adreßregister abgelegt. Eine Ausnahme bildet die
Predekrement-Adressierungsart, bei der die Reihenfolge
genau umgekehrt ist. Der Grund ist, daß oft Register mit
dem Prädekrement-Modus auf dem Stack abgelegt werden,
die man später mittels Postinkrement wieder einlesen will.
Um die Symmetrie zu erhalten, muß beim Ablegen im Prä-
dekrement-Modus die umgekehrte Reihenfolge eingehalten
werden. Wichtig ist auf jeden Fall, daß das Ablegen auf und
Lesen vom Stack mit MOVEM funktioniert.

Die Flags werden nicht beeinflußt.

ATARI ST - Programmieren in Maschinensprache

MOVEP | move peripheral

schreiben/lesen mit peripheren Geraten

Operation: (Z) << Dn<31:24> oder (Z) < Dn<15:8>
(Z+2) <- Dn<23:16> (Z) < Dn<7:0>
(Z+4) < Dn<15:8>
(Z+6) <- Dn<7:0>

oder in umgekehrter Richtung

: unberührt
: unberührt
: unberührt
: unberührt
: unberührt x

N
<
N
Z

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

AdreBregister indirekt mit Displacement
Datenregister direkt

Adreßregister indirekt mit Displacement
Datenregister direkt

Dieser Befehl dient zum Schreiben auf oder Lesen aus be-
stimmten Hardwareregistern. Aus Hardwaregriinden ist es
einfach, 8-Bit-Chips so mit der CPU zu verdrahten, daß an je-
der Wortadresse nur ein 8-Bit-Register des Chips erreichbar
ist. (Die Register des Videochips Shifter werden etwa auf die-
se Weise angesprochen.) Deshalb teilt MOVEM den Operan-
den in einzelne Bytes auf, die dann jeweils mit einem Byte Ab-
stand geschrieben werden. Das erste Byte wird an die angege-
bene Adresse geschrieben (die auch ungerade sein darf), das
nächste 2 Bytes weiter und so fort. Beim Lesen aus dem Spei-
cher geht das Ganze genau umgekehrt vor sich. Es sind nur
zwei Modi erlaubt, der Transfer von einem Register zu einem
Adreßregister indirekt mit Displacement oder umgekehrt.
Beide können im Wort-Modus (2 Bytes) oder Langwort-Mo-
dus (4 Bytes) verwendet werden. Die Flags werden von die-
sem Befehl nicht beeinflußt.

Die Befehle des MC68000 in systematischer Reihenfolge 159

move quick

Laden eines Datenregisters mit einem MOVEQ
kurzen unmittelbaren Operanden

Operation:

Flags:

Dn <- (Q) vorzeichenerweitert

N : gesetzt, wenn Operand < 0
Z : gesetzt, wenn Operand = 0
V : gelöscht
C : gelöscht
X: unberührt

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Besonderheit:

8 Bit unmittelbar

Datenregister direkt

Der 8-Bit-Wert wird in das unterste Byte des angegebenen
Datenregisters geschrieben. Dann wird der Wert vorzeichen-
richtig auf die gewünschte Länge erweitert, indem Bit 7 in alle
höheren Bits übertragen wird.

MOVEQ ist besonders schnell, da der Wert gleich im Befehls-
wort untergebracht wird und so keine weiteren Speicherzu-
griffe erfolgen müssen.

MOVERQ ist der einzige "Quick"-Befehl, bei dem der Wert 8
Bits lang sein darf (sonst sind es nur 3 Bits). Dafür ist man
beim Ziel auf ein Datenregister beschränkt.

160 ATARI ST — Programmieren in Maschinensprache

MOVE to CCR move to condition code register

 Wert ins Flag-Register schreiben

Operation: CCR <- (Q)

: Bit 3 des Quelloperanden
: Bit 2 des Quelloperanden
: Bit 1 des Quelloperanden
: Bit 0 des Quelloperanden
: Bit 4 des Quelloperanden x

N
<
N
Z

Adressierungsarten:

QUELLE

Beschreibung:

Besonderheit:

Datenregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Dieser Befehl ist nur im Wort-Modus erlaubt. Die unteren 8
Bits des Quelloperanden werden in das CCR geschrieben, wo-
bei die Flags in der oben beschriebenen Weise ihre Werte er-
halten. Die Bits 5 bis 7 werden ignoriert; sie sind im CCR im-
mer null.

Es gibt kein "MOVE from CCR", dazu muß der Befehl
"MOVE from SR" verwendet werden.

Die Befehle des MC68000 in systematischer Reihenfolge 161

move to status register
Wert ins Status-Register (User-Byte MOVE to S R und System-Byte) schreiben

Operation: SR <- (Q)

Flags: : Bit 3 des Quelloperanden
: Bit 2 des Quelloperanden
: Bit 1 des Quelloperanden
: Bit O des Quelloperanden
: Bit 4 des Quelloperanden <

N
<
N
Z

Adressierungsarten:

OUELLE Datenregister direkt
Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Beschreibung: Auch dieser Befehl existiert nur im Wort-Modus. Der Quell-
operand wird ins Statusregister geschrieben. Dadurch können
sowohl die Systemflags als auch Interruptebene, Prozessor-
modus und Trace-Bit geändert werden. Deshalb ist dieser Be-
fehl nur im Supervisor-Modus erlaubt.

Besonderheit: Privilegierter Befehl

162 ATARI ST — Programmieren in Maschinensprache

MOVE from SR Inhalt des Status Register

 (User-Byte und System-Byte) lesen

Operation: (Z) <- SR

N : unberührt
Z : unberührt
V : unberührt
C : unberührt
X : unberührt

Adressierungsarten:

ZIEL

Beschreibung:

Besonderheit:

Datenregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Der Wert des Statusregisters (16 Bit) wird ausgelesen und im
Zieloperanden abgelegt. So können Systemflags, Interrupt-
ebene, Prozessormodus und Trace-Bit überprüft werden. Die

Flags werden durch diesen Befehl nicht verändert.

Auf dem Prozessor 68000 ist "MOVE from SR" frei ver-
wendbar. Nur auf dem 68010 darf dieser Befehl ausschließ-
lich im Supervisormodus benutzt werden, da es dort einen Be-
fehl "MOVE from CCR" gibt, der das Auslesen der Userflags
ermöglicht. Um die Lauffähigkeit Ihrer Programme auch auf
zukünftigen Prozessorgenerationen zu sichern, sollten Sie des-
halb "MOVE from SR" möglichst nur im Supervisormodus
verwenden.

Die Befehle des MC68000 in systematischer Reihenfolge 163

move user stack pointer
Zugriff auf den USP vom MOVE USP
Supervisormodus aus

Operation: (Z) <-USP
oder
USP <- (Q)

Flags: N : unberührt
Z : unberührt
V : unberührt
C : unberührt
X : unberührt

Adressierungsarten:

QUELLE Adreßregister direkt

ZIEL Adreßregister direkt

Beschreibung: Der Stackpointer A7 besteht eigentlich aus zwei Registern: ei-
nes für den Supervisormodus und eines für den Usermodus.
Das jeweils andere ist normalerweise nicht erreichbar. MOVE
USP bietet nun die Möglichkeit, im Supervisormodus auf den
"User Stack Pointer" zuzugreifen. Dabei kann der Inhalt des
USP in ein Adreßregister geschrieben oder aus einem gelesen
werden. Die Flags werden nicht beeinflußt. Da dieser Befehl
im Usermodus unsinnig wäre, ist er nur im Supervisormodus
erlaubt.

_ Besonderheit: Privilegierter Befehl

164 ATARI ST - Programmieren in Maschinensprache

EXG exchange registers
Inhalte zweier 32-Bit-Register vertauschen

Operation: (Z) <- (Q), (Q) <- (Z)

Flags: N : unberührt
| Z. : unberührt

V : unberührt
C : unberührt
X : unberührt

Adressierungsarten:

QUELLE Datenregister direkt
Adreßregister direkt

ZIEL Datenregister direkt
Adreßregister direkt

Beschreibung: Die vollen 32 Bit der beiden angegebenen Register werden
vertauscht. Dabei dürfen Daten- und Adreßregister beliebig
gemischt werden.

Besonderheit: EXG ist der einzige Befehl, bei dem der Quelloperand verän-
dert wird.

Die Befehle des MC68000 in systematischer Reihenfolge 165

Arithmetische Befehle

Bei den arithmetischen Befehlen berücksichtigt der 68000-Befehlssatz die vier
Grundoperationen Addition, Subtraktion, Multiplikation und Division. Auch
die CMP-Befehle werden zu den arithmetischen gerechnet, da sie im Grunde
eine Subtraktion durchführen. Unter diese Gruppe fallen:

ADD
ADDX
ADDA
ADDI
ADDQ
ABCD
SUB
SUBX
SUBA
SUBI
SUBQ
SBCD
CMP
CMPA
CMPI
CMPM
MULU
MULS
DIVU
DIVS

166 ATARI ST - Programmieren in Maschinensprache

ADD Addition

Operation: (Z) <- (Z)+(Q)

Flags: N: gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn der Zahlenbereich der vorzeichenbehafteten

Zahlen verlassen wird
C : gesetzt, wenn ein Übertrag auftritt
X: wieC |

Adressierungsarten:

QUELLE Datenregister direkt
AdreBregister direkt
AdreBregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

ZIEL Datenregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Beschreibung: Der Quelloperand wird zum Zieloperanden addiert. Nach der
Operation werden die Flags entsprechend dem Ergebnis ge-
setzt. Bei der Adressierung gilt es zu beachten, daß mindestens
einer der Operanden in einem Datenregister stehen muß. An-
dernfalls handelt es sich um eine der Varianten ADDI oder
ADDA.

Die Befehle des MC68000 in systematischer Reihenfolge 167

add with extend-flag
Addition mit X-Flag — | ADDX

Operation: (Z) <- (Z)+(Q)+X

Flags: N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn der Zahlenbereich der vorzeichenbehafteten

Zahlen verlassen wird
C : gesetzt, wenn ein Ubertrag auftritt
X: wieC

Adressierungsarten:

QUELLE Datenregister direkt
Adreßregister indirekt

ZIEL Datenregister direkt
Adrefregister indirekt

Beschreibung: Der Quelloperand wird unter Beriicksichtigung friher aufge-
tretener Überträge zum Zieloperanden addiert. Nach der
Operation werden die Flags entsprechend dem Ergebnis ge-
setzt.

ADDX bietet nur zwei Möglichkeiten, die Operanden zu
adressieren: Entweder befinden sich beide im Speicher und
werden indirekt über ein Datenregister angesprochen, oder
beide befinden sich in Datenregistern. Ein Mischen der beiden
Adressierungsarten ist nicht erlaubt.

ADDX dient zur Erweiterung des ADD-Befehls auf beliebig
lange Zahlen, da dieser Befehl den Übertrag berücksichtigt
und ihn auch selbst neu setzt. Man addiert zuerst die nieder-
wertigsten Bytes mittels ADD, dann aufsteigend die höher-
wertigeren Bytes mit beliebig vielen ADDX-Befehlen.

168 ATARI ST - Programmieren in Maschinensprache

AD DA add address register

Addieren zu einem Adreßregister

Operation: An <- An+(Q)

: unberührt
: unberührt
: unberührt
: unberührt
: unberührt X

x
N
<
N
Z

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Besonderheit:

Datenregister direkt
Adreßregister direkt
Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Adreßregister direkt

Der Operand, der 16 oder 32 Bits lang ist, wird zum Inhalt des
angegebenen Adreßregisters addiert. Wenn der Quelloperand
nur 16 Bits lang ist, wird er vorher intern auf 32 Bit erwei-
tert. Im Gegensatz zu ADD ändert ADDA die Flags nicht.

ADD wird von den meisten Assemblern nach ADDA über-
setzt, wenn die Kombination der Adressierungsarten es ver-
langt.

Die Befehle des MC68000 in systematischer Reihenfolge 169

add immediate ADDI
unmittelbaren Operanden addieren

Operation:

Flags:

(Z) <- (Z)+(Q)

N : gesetzt, wenn Ergebnis < 0
Z, : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn der Zahlenbereich der vorzeichenbehafteten

Zahlen verlassen wird
C : gesetzt, wenn ein Übertrag auftritt
X: wieC

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Besonderheit:

unmittelbar

Datenregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Die Wirkungsweise ist genau wie beim ADD-Befehl: Der
Quelloperand wird zum Zieloperanden addiert. ADDI bietet
nur eine Erweiterung der Adressierungsarten, denn bei ADD
ist man mit einem unmittelbaren Operanden als Quelle auf ein
Datenregister als Ziel beschränkt. ADDI erlaubt hingegen
auch ein Ansprechen des Speichers im Zusammenhang mit un-
mittelbaren Daten.

ADD wird von den meisten Assemblern nach ADDI übersetzt,
wenn die Kombination der Adressierungsarten es verlangt.

170 ATARI ST - Programmieren in Maschinensprache

ADDO add quick

addition eines kurzen unmittelbaren Operanden

Operation: (Z) <- (Z)+(Q)

N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn der Zahlenbereich der vorzeichenbehafteten

Zahlen verlassen wird.
C : gesetzt, wenn ein Übertrag auftritt
X: wieC

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

unmittelbar

Datenregister direkt
Adreßregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Ein 3-Bit-Operand wird zum Zieloperanden addiert. Die
Flags werden genau wie beim ADD-Befehl gesetzt. Dabei ist
ein Zahlenbereich von 1 bis 8 erlaubt; die 8 wird dabei durch
das Bitmuster 000 codiert.

Die Befehle des MC68000 in systematischer Reihenfolge 171

add binary coded decimal
BCD-Zahlen mit X-Flag addieren AB CD

Operation: (Z) <- (Z)+(Q)+X im BCD-Verfahren

Flags: N : undefiniert
Z : gesetzt, wenn Ergebnis = 0
V : undefiniert
C : gesetzt, wenn ein Ubertrag entsteht
X: wie C

Adressierungsarten:

OUELLE Datenregister direkt
Adreßregister indirekt

ZIEL Datenregister direkt
Adreßregister indirekt

Beschreibung: Wie alle BCD-Befehle existiert ABCD nur im Byte-Modus.
Zwei Bytes und der Inhalt des X-Flags werden nach dem
BCD-Verfahren addiert (siehe NBCD). Es sind nur die Adres-
sierungsarten "Datenregister direkt" und " Adreßregister indi-
rekt" erlaubt, die nicht gemischt werden dürfen. X, Zund C
werden dem Ergebnis der Addition entsprechend gesetzt,
während der Wert von N und V nicht definiert ist.

Besonderheit: Es gibt kein ABCD ohne Berücksichtigung des X-Flags, des-
halb sollte vor der ersten Verwendung das X-Flag mittels
"MOVE to CCR" gelöscht werden.

172 ATARI ST - Programmieren in Maschinensprache

SUB

subtract
Subtraktion des Quelloperanden

vom Zieloperanden

Operation: (Z) <- (Z)-(Q) (genauer (Z)+~(Q)+1)

N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn der Zahlenbereich der vorzeichenbehafteten

Zahlen verlassen wird
C : gesetzt, wenn ein Borgen in der obersten Stelle auftritt
X : wie C

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Datenregister direkt
Adreßregister direkt
Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Datenregister direkt -
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Der Quelloperand wird vom Zieloperanden abgezogen. Intern
wird dazu jedes Bit des Quelloperanden invertiert, 1 hinzuge-
zählt und das Ergebnis zum Zieloperanden addiert. Nach der
Operation werden die Flags entsprechend dem Ergebnis ge-
setzt. Bei der Adressierung gilt es zu beachten, daß mindestens
einer der Operanden in einem Datenregister stehen muß. An-
dernfalls handelt es sich um eine der Varianten SUBI oder
SUBA. Beachten Sie, daß die Reihenfolge der Operanden ge-
nau umgekehrt ist, als man es gewohnt ist:

SUB A,B
berechnet B-A und legt das Ergebnis in B ab.

Die Befehle des MC68000 in systematischer Reihenfolge 173

ith d-fl ent SUBX

Operation: (Z) <- (Z)-(Q)-X
(genauer (Z)+~(Q)+1-X)

Flags: N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn der Zahlenbereich der vorzeichenbehafteten

Zahlen verlassen wird
C : gesetzt, wenn ein Borgen in der obersten Stelle auftritt
X: wieC

Adressierungsarten:

QUELLE Datenregister direkt
Adreßregister indirekt

ZIEL Datenregister direkt
Adreßregister indirekt

Beschreibung: Der Quelloperand wird unter Berücksichtigung früher aufge-
tretener Überträge vom Zieloperanden abgezogen. Nach der
Operation: werden die Flags entsprechend dem Ergebnis ge-
setzt. Entweder befinden sich beide Operanden im Speicher
und werden indirekt über ein Datenregister angesprochen,
oder sie befinden sich in Datenregistern. Ein Mischen der bei-
den Adressierungsarten ist nicht erlaubt.

SUBX dient zur Erweiterung des SUB-Befehls auf beliebig
lange Zahlen, da dieser Befehl den Übertrag berücksichtigt
und ihn auch selbst neu setzt. Man subtrahiert zuerst die nie-
derwertigsten Bytes mittels SUB, dann aufsteigend die höher-
wertigeren Bytes mit beliebig vielen SUBX-Befehlen.

174 ATARI ST - Programmieren in Maschinensprache

SUB A subtract from address register

 Subtrahieren von einem Adreßregister

Operation:

Flags:

An <- An-(Q)
(genauer An+~(Q)+1)

N : unberührt

Z : unberührt

V : unberührt

C : unberührt
X : unberührt

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Besonderheit:

Datenregister direkt
Adreßregister direkt
Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Adreßregister direkt

Der Operand, der 16 oder 32 Bits lang ist, wird vom Inhalt
des angegebenen Adreßregisters subtrahiert. Wenn der Quell-
operand nur 16 Bits lang ist, wird er vorher intern auf 32 Bits
erweitert. Im Gegensatz zu SUB ändert SUBA die Flags nicht.

SUB wird von den meisten Assemblern in SUBA verwandelt,
wenn die verwendeten Adressierungsarten es verlangen.

Die Befehle des MC68000 in systematischer Reihenfolge 175

subtract immediate SUB I
unmittelbaren Operanden subtrahieren

Operation:

Flags:

(Z) <- (Z)-(Q)
(genauer (Z)+~(Q)+1)

N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn der Zahlenbereich der vorzeichenbehafteten

Zahlen verlassen wird
C : gesetzt, wenn ein Borgen in der höchsten Stelle auftritt
X: wieC

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Besonderheit:

unmittelbar

Datenregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Die Wirkungsweise ist genau wie beim SUB-Befehl: Der
Quelloperand wird vom Zieloperanden abgezogen. SUBI bie-
tet nur eine Erweiterung der Adressierungsarten, denn bei
SUB ist man mit einem unmittelbaren Operanden als Quelle an
ein Datenregister als Ziel gebunden. SUBI erlaubt hingegen
auch ein Ansprechen des Speichers im Zusammenhang mit un-
mittelbaren Daten. |

SUB wird von den meisten Assemblern wie SUBI behandelt,
wenn die verwendeten Adressierungsarten es verlangen.

176 ATARI ST - Programmieren in Maschinensprache

SUB Q substract quick

Subtraktion eines kurzen unmittelbaren Operanden

Operation: (Z) <- (Z)-(Q)

N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn der Zahlenbereich der vorzeichenbehafteten

Zahlen verlassen wird.
C : gesetzt, wenn ein Borgen in der obersten Stelle auftritt
X: wieC

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

unmittelbar

Datenregister direkt
Adreßregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Ein 3-Bit-Operand wird vorzeichenlos auf die Breite des Ziel-
operanden erweitert und dann von diesem abgezogen. Die
Flags werden genau wie beim SUB-Befehl gesetzt. Ein Zah-
lenbereich von 1 bis 8 ist erlaubt; die 8 wird dabei durch das
Bitmuster 000 codiert.

Die Befehle des MC68000 in systematischer Reihenfolge 177

subtract binary coded decimal
BCD-Zahlen mit X-Flag subtrahieren SB CD

Operation: (Z) <- (Z)-(Q)-X im BCD-Verfahren
(genauer (Z)+~(Q)+1-X)

Flags: N : undefiniert
Z : gesetzt, wenn Ergebnis = 0
V : undefiniert
C : gesetzt, wenn ein Borgen in der obersten Stelle auftritt
X : wie C

Adressierungsarten:

QUELLE Datenregister direkt
Adreßregister indirekt

ZIEL Datenregister direkt
Adreßregister indirekt

Beschreibung: SBCD existiert nur im Byte-Modus. Ein Byte wird von einem
anderen im BCD-Verfahren subtrahiert (siehe NBCD). Es
sind nur die Adressierungsarten "Datenregister direkt" und
"Adreßregister indirekt" erlaubt, die nicht gemischt werden
dürfen. X, Zund C werden dem Ergebnis der Subtraktion ent-
sprechend gesetzt, während der Wert von N und V nicht defi-
niert ist.

Besonderheit: Es gibt kein SBCD ohne Berücksichtigung des X-Flags, des-
halb sollte vor der ersten Verwendung das X-Flag mittels
"MOVE to CCR" gelöscht werden.

178 ATARI ST - Programmieren in Maschinensprache

CMP compare

 Vergleich zweier Operanden

Operation: (Q)-(Z)
(genauer (Q)+-(Z)+1)

Flags: N: gesetzt, wenn Quelle < Ziel
Z : gesetzt, wenn Quelle = Ziel
V : gesetzt, wenn bei der internen Subtraktion der Zahlenbe-

reich der vorzeichenbehafteten Zahlen verlassen wird
C : gesetzt, wenn Quelle < Ziel
X : unberührt

Adressierungsarten:

QUELLE Datenregister direkt
Adreßregister direkt
Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

ZIEL Datenregister direkt

Beschreibung: Das Zieldatenregister wird mit dem. Quelloperanden vergli-
chen. Beide Operanden werden nicht verandert, nur die Flags
werden entsprechend dem Ergebnis des Vergleiches gesetzt.
Intern geht der Vergleich so vor sich, daß das Ziel von der
Quelle abgezogen wird (genau umgekehrt gegenüber dem
SUB-Befehl!) und die Flags entsprechend dem Ergebnis ge-
setzt werden. Normalerweise folgt dem CMP-Befehl bald eine
bedingte Verzweigung, damit je nach dem Ergebnis des Ver-
gleiches verschiedene Befehle ausgeführt werden können.
Auch hier ist die Reihenfolge der Operanden genau anders-
herum als bei der mathematischen Schreibweise:

179

Die Befehle des MC68000 in systematischer Reihenfolge

compare
Vergleich zweier Operanden

CMP

CMP A,B

entspricht

B relop A

wobei "relop" (Relations-Operator) einer von >, <, 2, < ist,
entsprechend den Bedingungskiirzeln HI, CS, CC, LS fiir vor-
zeichenlose Zahlen oder GT, LT, GE, LE fiir Zweierkomple-
mentzahlen. Beim Test auf Gleichheit oder Ungleichheit spielt
die Reihenfolge der Operanden natiirlich keine Rolle.

180 ATARI ST - Programmieren in Maschinensprache

CMP A compare with address register

 Vergleich mit einem Adreßregister

Operation: (Q)-An
(genauer (Q)+-An+1)

N: gesetzt, wenn Quelle < An
Z : gesetzt, wenn Quelle = An
V : gesetzt, wenn bei der internen Subtraktion der Zahlenbe-

reich der vorzeichenbehafteten Zahlen verlassen wird
C : gesetzt, wenn Quelle < An
X : unberührt

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Besonderheit:

Datenregister direkt
Adreßregister direkt
Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement
indirekt absolut kurz/lang
unmittelbar

Adreßregister direkt

Ein Adreßregister wird mit der Quelle verglichen, und die
Flags werden entsprechend gesetzt, während beide Operanden
nicht verändert werden. Intern wird dafür das Adreßregister
von der (vorzeichenerweiterten) Quelle abgezogen. Bei der
Quelle sind nur Wort- und Langwortbreite erlaubt. Beachten
Sie auch hier die Reihenfolge der Operanden (vergleiche
CMP). |

CMP wird von den meisten Assemblern als CMPA betrachtet,
wenn die Adressierungsarten es erfordern.

Die Befehle des MC68000 in systematischer Reihenfolge 181

compare immediate CMPI
Ziel mit unmittelbarem Operanden vergleichen

Operation:

Flags:

(Q)-(Z)
(genauer (Q)+~(Z)+1)

N: gesetzt, wenn Quelle < Ziel
Z : gesetzt, wenn Quelle = Ziel
V : gesetzt, wenn bei der internen Subtraktion der Zahlenbe-

reich der vorzeichenbehafteten Zahlen verlassen wird
C : gesetzt, wenn Quelle < Ziel
X : unberührt

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Besonderheit:

unmittelbar

Datenregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

CMPI vergleicht einen Operanden aus dem Speicher oder in
einem Datenregister mit einem unmittelbaren Wert. Die Aus-
führung entspricht der von CMP; CMPI bietet nur andere
Adressierungsmöglichkeiten. Zur Reihenfolge der Operanden
siehe CMP.

CMP wird von den meisten Assemblern als CMPI behandelt,
wenn die verwendeten Adressierungsarten es verlangen.

182 ATARI ST - Programmieren in Maschinensprache

CMPM compare memory
Vergleich zweier Operanden aus dem Speicher

Operation: (Q)-(Z)
(genauer (Q)+~(Z)+1)

Flags: N: gesetzt, wenn Quelle < Ziel
Z : gesetzt, wenn Quelle = Ziel
V : gesetzt, wenn bei der internen Subtraktion der Zahlenbe-

reich der vorzeichenbehafteten Zahlen verlassen wird
C : gesetzt, wenn Quelle < Ziel
X : unberührt

Adressierungsarten:

OUELLE Adreßregister indirekt

ZIEL Adreßregister indirekt

Beschreibung: Die Inhalte zweier Operanden, die in der Adressierungsart
| "Adreßregister indirekt" angegeben werden müssen, werden

miteinander verglichen und die Flags entsprechend gesetzt.
CMPM ist nur eine Erweiterung von CMP hinsichtlich der
Adressierungsarten. Weitere Informationen siehe unter CMP.

Besonderheit: CMP wird nach CMPM übersetzt, wenn die Adressierungsar-
ten es verlangen.

Die Befehle des MC68000 in systematischer Reihenfolge 183

multiply unsigned M U
Vorzeichenlose 16-Bit-Multiplikation

Operation:

Flags:

Dn <- Dn * (Q)

: gesetzt, wenn Ergebnis (32 Bit) <0
: gesetzt, wenn Ergebnis = 0
: geléscht
: geloscht
: unberührt M

A
<
K
N
Z

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Besonderheit:

Datenregister direkt
Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Datenregister direkt

Zwei vorzeichenlose Wort-Operanden werden miteinander
multipliziert. Das Ziel der Operation muß dabei ein Datenre-
gister sein. Das 32 Bit lange Ergebnis wird im angegebenen
Datenregister gespeichert. Beachten Sie, daß das Produkt von
zwei 16-Bit-Operanden immer in 32 Bit Platz findet.

Da der Prozessor für die Multiplikation ein relativ aufwendi-
ges Microcode-Programm durchläuft, braucht die Multiplika-
tion ein Mehrfaches einer normalen Befehlsausführungszeit.

184 ATARI ST — Programmieren in Maschinensprache

MI |] S multiply signed

vorzeichenbehaftete 16-Bit-Multiplikation

Operation: Dn <- Dn * (Q)

: gesetzt, wenn Ergebnis (32 Bit) < 0
: gesetzt, wenn Ergebnis = 0
: gelöscht
: gelöscht
: unberührt x

N
<
N
Z

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Besonderheit:

Datenregister direkt
Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Datenregister direkt

Zwei Wort-Operanden werden unter Beachtung der Vorzei-
chen miteinander multipliziert. Das 32 Bit lange Ergebnis
wird in dem angegebenen Datenregister abgelegt. Auch bei
der Multiplikation mit Vorzeichen wird das Ergebnis immer
in 32 Bit Platz finden. Beachten Sie, daß das Ergebnis von
MULS nur dann mit dem Ergebnis von MULU überein-
stimmt, wenn beide Operanden positiv sind.

Auch hier eine deutlich längere Befehlsausführungszeit als üb-
lich. |

Die Befehle des MC68000 in systematischer Reihenfolge 185

divide unsigned \ /]
Vorzeichenlose Division 32 Bit durch 16 Bit DI

Operation: Dn <- Dn/ (Q)

Flags: N : gesetzt, wenn Ergebnis (16 Bit) < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn Ergebnis langer als 16 Bit
C : gelöscht
X : unberührt

Adressierungsarten:

QUELLE Datenregister direkt

ZIEL

Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Datenregister direkt

Beschreibung: Eine 32-Bit-Zahl in einem Datenregister (Dividend) wird
durch den 16 Bits umfassenden Quelloperanden (Divisor) ge-
teilt. Das Ergebnis wird im Ziel-Datenregister abgelegt, wo-
bei die unteren 16 Bits das Ergebnis der Division und die obe-
ren 16 Bits den Divisionsrest darstellen. Die Flags werden ent-
sprechend dem Ergebnis, also den unteren 16 Bits, gesetzt.
Der Divisionsrest entspricht "Dividend Modulo Divisor". Bei
einer Division durch null wird eine Exception ausgelöst und
zum Vektor ab $14 gesprungen. Da dieser normalerweise di-
rekt auf ein RTE zeigt, wird das Programm nicht abgebro-
chen, aber der Prozessor befindet sich in einem etwas undefi-
nierten Zustand. Das Ergebnis der Division findet leider nicht
immer in 16 Bits Platz. Sollte es größer sein, so bricht der
Prozessor die Division ab und setzt das V-Flag auf 1. Da der
Prozessor keine Kommazahlen darstellen kann, wird das Er-
gebnis immer abgerundet.

186 ATARI ST — Programmieren in Maschinensprache

DI V | divide unsigned
Vorzeichenlose Division 32 Bit durch 16 Bit

Besonderheit: Beachten Sie, daß die Reihenfolge der Operanden genau um-
gekehrt ist, als man es von der mathematischen Schreibweise
gewohnt ist:

DIVU a,b

berechnet b/a (b muß ein Datenregister sein).

DIVU benötigt ein Vielfaches der Ausführungszeit eines
durchschnittlichen Befehls.

Die Befehle des MC68000 in systematischer Reihenfolge 187

divide signed
Vorzeichenbehaftete Division 32 Bits durch 16 Bits D IVS

Operation: Dn <- Dn / (Q)

Flags: N : gesetzt, wenn Ergebnis (16 Bit) < 0
Z : gesetzt, wenn Ergebnis = 0
V : gesetzt, wenn Ergebnis länger als 16 Bit
C : gelöscht
X : unberührt

Adressierungsarten:

QUELLE Datenregister direkt

ZIEL

Beschreibung:

Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Datenregister direkt

Eine 32-Bit-Zahl in einem Datenregister (Dividend) wird un-
ter Beachtung der Vorzeichen durch den 16 Bits umfassenden
Quelloperanden (Divisor) geteilt. Das Ergebnis wird im Ziel-
Datenregister abgelegt, wobei die unteren 16 Bits das vorzei-
chenbehaftete Ergebnis der Division und die oberen 16 Bits
den Divisionsrest darstellen. Die Flags werden entsprechend
dem Ergebnis, also den unteren 16 Bits, gesetzt. Der Divisi-
onsrest entspricht "Dividend Modulo Divisor". Bei einer Di-
vision durch null wird eine Exception ausgelöst und zum Vek-
tor $14 gesprungen. Da dieser normalerweise direkt auf ein
RTE zeigt, wird das Programm nicht abgebrochen, aber der
Prozessor befindet sich in einem etwas undefinierten Zustand.
Das Ergebnis der vorzeichenbehafteten Division findet leider
nicht immer in 16 Bits Platz. Sollte es größer sein, so bricht
der Prozessor die Division ab und setzt das V-Flag auf 1. Da
der Prozessor keine Kommazahlen darstellen kann, wird das

188 ATARI ST — Programmieren in Maschinensprache

DIVS divide signed
Vorzeichenbehaftete Division 32 Bits durch 16 Bits

Ergebnis immer abgerundet. Der Rest hat immer das Vorzei-
chen des Quelloperanden, also des Wertes, durch den geteilt
wird.

Besonderheit: Beachten Sie, daß die Reihenfolge der Operanden genau um-
gekehrt ist, als man es von der mathematischen Schreibweise
gewohnt ist:

DIVU a,b

berechnet b/a (b muß ein Datenregister sein).

DIVS benötigt ein Vielfaches der Ausführungszeit eines
durchschnittlichen Befehls.

Die Befehle des MC68000 in systematischer Reihenfolge 189

Logische Befehle

Der MC68000 beherscht die drei wichtigsten logischen Operationen mit zwei
Operanden: ODER, UND und EXKLUSIV-ODER. Alle Operationen werden
mit allen Bits der beiden Operanden durchgeführt. Mit den Abwandlungen er-
geben sich folgende Befehle:

OR
ORI
AND
ANDI
EOR
EORI

ATARI ST - Programmieren in Maschinensprache

OR
 bitweises ODER

Operation: (Z) <- (Z) (Q)

N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : geléscht
C : gelöscht
X : unberührt

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Datenregister direkt
Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Datenregister direkt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Jedes Bit des Zieloperanden wird mit dem entsprechenden Bit
des Quelloperanden ODER-verknüpft. Das heißt, daß ein Bit
im Zieloperanden genau dann gesetzt wird, wenn dieses Bit
vorher entweder im Zieloperanden oder im Quelloperanden
gesetzt war oder in beiden. Die Flags werden entsprechend
dem Ergebnis gesetzt. Der OR-Befehl wird selten zum Be-
rechnen von Wahrheitswerten benutzt; vielmehr dient er da-

zu, ausgewählte Bits im Zieloperanden zu setzen. Jedes Bit,
das im Quelloperanden gesetzt ist, wird nach der Ausführung
auch im Zieloperanden gesetzt sein; die anderen Bits des Ziel-
operanden bleiben erhalten. Bei der Adressierung ist zu be-
achten, daß entweder die Quelle oder das Ziel ein Datenregi-
ster sein muß.

Die Befehle des MC68000 in systematischer Reihenfolge 191

or immediate

 einer unmittelbaren Quelle
bitweises ODER mit ORI (ORI to SR)

Operation:

Flags:

(Z) <- (Z) (Q)

N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gelöscht
C : gelöscht
X : unberührt

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Besonderheit:

unmittelbar

Datenregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
Statusregister

Jedes Bit des Zieloperanden wird mit dem entsprechenden Bit
des unmittelbar angegebenen Quelloperanden ODER-ver-
knüpft. Das heißt, daß ein Bit im Zieloperanden genau dann
gesetzt wird, wenn dieses Bit vorher entweder im Zieloperan-
den oder im Quelloperanden gesetzt war oder in beiden. ORI
ist eine Erweiterung des OR-Befehls hinsichtlich der Adres-
sierungsarten. ORI bietet die Besonderheit, daß als Ziel auch
das Statusregister (SR) verwendet werden kann. Im Byte-Mo-
dus können ausgewählte Systemflags gesetzt werden. Im
Wort-Modus kann das Systembyte verändert werden, weshalb
dieser Befehl nur im Supervisormodus verwendet werden
darf.

ORI.W to SR ist ein privilegierter Befehl. Die meisten Assem-
bler übersetzen OR nach ORI, wenn die verwendete Adressie-
rungsart es verlangt.

ATARI ST — Programmieren in Maschinensprache

AND

 bitweises UND

Operation: (Z) <-(Z) (Q)

N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gelöscht
C : gelöscht
X : unberührt

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Datenregister direkt
Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Datenregister direkt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Jedes Bit des Zieloperanden wird mit dem entsprechenden Bit
des Quelloperanden UND-verknüpft. Das heißt, daß ein Bit im
Zieloperanden genau dann gesetzt wird, wenn dieses Bit vor-
her im Zieloperanden und im Quelloperanden gesetzt war.
Die Flags werden entsprechend dem Ergebnis gesetzt. Der
AND-Befehl wird kaum zum Berechnen von Wahrheitswer-
ten benutzt; seine Aufgabe ist es vielmehr, ausgewählte Bits im
Zieloperanden zu löschen. Jedes Bit, das im Quelloperanden
gelöscht ist, wird nach der Ausführung auch im Zieloperan-
den gelöscht sein; die anderen Bits des Zieloperanden bleiben
erhalten. Bei der Adressierung ist zu beachten, daß entweder
die Quelle oder das Ziel ein Datenregister sein muß.

Die Befehle des MC68000 in systematischer Reihenfolge 193

and immediate ANDI
bitweises ODER mit
einer unmittelbaren Quelle (ANDI TO SR)

Operation:

Flags:

(Z) <- (Z) (Q)

N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gelöscht
C : gelöscht
X : unberührt

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Besonderheit:

unmittelbar

Datenregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
Statusregister

Jedes Bit des Zieloperanden wird mit dem entsprechenden Bit
des unmittelbar angegebenen Quelloperanden UND-ver-
knüpft. Das heißt, daß ein Bit im Zieloperanden genau dann
gesetzt wird, wenn dieses Bit vorher im Zieloperanden und im
Quelloperanden gesetzt war. ANDI ist eine Erweiterung des
OR-Befehls hinsichtlich der Adressierungsarten. ANDI bietet
die Möglichkeit, als Ziel das Statusregister (SR) zu adressie-
ren. Im Byte-Modus können so ausgewählte Systemflags ge-
löscht werden. Im Wort-Modus kann das Systembyte verän-
dert werden, weshalb dieser Befehl nur im Supervisormodus
verwendet werden darf.

ANDILW to SR ist ein privilegierter Befehl. Die meisten As-
sembler übersetzen AND nach ANDI, wenn die verwendete
Adressierungsart es verlangt.

ATARI ST — Programmieren in Maschinensprache

EOR

exclusive or

bitweises EXKLUSIV-ODER

Operation: (Z) <- (Z) EOR (Q)

N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gelöscht
C : gelöscht
X : unberührt

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Datenregister direkt
Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Datenregister direkt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Jedes Bit des Zieloperanden wird mit dem entsprechenden Bit
des Quelloperanden EXKLUSIV-ODER verknüpft. Das heißt,
daß ein Bit im Zieloperanden genau dann gesetzt wird, wenn
dieses Bit vorher entweder im Zieloperanden oder im Quell-
operanden gesetzt war, aber nicht in beiden. Die Flags werden
entsprechend dem Ergebnis gesetzt. EOR dient selten zum Be-
rechnen von Wahrheitswerten. Meist wird es dazu verwendet,
ausgewählte Bits im Zieloperanden zu invertieren. Jedes Bit,
das im Quelloperanden gesetzt ist, führt dazu, daß das entspre-
chende Bit des Zieloperanden invertiert wird. Die anderen
Bits des Zieloperanden bleiben erhalten. Bei der Adressierung
ist zu beachten, daß entweder die Quelle oder das Ziel ein Da-
tenregister sein muß.

Die Befehle des MC68000 in systematischer Reihenfolge 195

exclusive or immediate

bitweises EXKLUSIV-ODER | FORI
mit einer unmittelbaren Quelle

Operation: (Z) <- (Z) EOR (Q)

Flags: N : gesetzt, wenn Ergebnis < 0
Z : gesetzt, wenn Ergebnis = 0
V : gelöscht
C : gelöscht
X : unberührt

Adressierungsarten:

QUELLE unmittelbar

ZIEL Datenregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang

Beschreibung: Jedes Bit des Zieloperanden wird mit dem entsprechenden Bit
des unmittelbar angegebenen Quelloperanden EXKLUSIV-
ODER-verknüpft. Das heißt, daß ein Bit im Zieloperanden ge-
nau dann gesetzt wird, wenn dieses Bit vorher entweder im
Zieloperanden oder im Quelloperanden gesetzt war, aber
nicht in beiden. EORI ist eine Abwandlung des EOR-Befehls
hinsichtlich der Adressierungsarten.

Besonderheit: Die meisten Assembler übersetzen EOR nach EORI, wenn die

verwendete Adressierungsart es verlangt.

196 | ATARI ST - Programmieren in Maschinensprache

Bit-Befehle

Der MC68000 bietet Befehle, mit denen auf einzelne Bits des Zieloperanden
zugegriffen werden kann:

BSET
BCLR
BCHG
BTST

Da diese Bit-Befehle über große Gemeinsamkeiten verfügen, hier zunächst
einmal die Adressierungsarten für alle Bit-Befehle: Ä

QUELLE Datenregister direkt
unmittelbar

ZIEL Datenregister direkt
Adreßregister indirekt
indirekt mit Displacement
indirekt mit Index und Displacement
postindecrement/predecrement indirekt
absolut kurz/lang

Für die vier Befehle gilt folgendes: Der Inhalt des Quelloperanden bestimmt
das Bit des Zieloperanden, das bearbeitet werden soll. Es gibt keine Varianten
mit verschiedenen Verarbeitungsbreiten; vielmehr ist die Länge eines Operan-
den im Speicher auf 8 Bit festgelegt, die eines Datenregisters auf 32 Bit. Wenn
also das Ziel ein Datenregister ist, werden nur die letzten fünf Bits der Quelle
beachtet, bei Speicherzellen nur die letzten drei. Die übrigen Bits der Quelle
werden ignoriert. Wie üblich ist Bit O das niederwertigste, Bit 7 bzw. 31 das
höchstwertige des Operanden.

Die Befehle des MC68000 in systematischer Reihenfolge 197

Bit sten und auf 1 setzen B SET

Operation: (Z) <- (Z) mit Bit n gesetzt
n=(Q)<4:0> oder n=(Q)<2:0>

: unberührt
: gesetzt, wenn Bit = 0
: unberührt
: unberührt
: unberührt <

N
<
N
Z

Beschreibung: Zunächst wird das durch den Quelloperanden angegebene Bit
im Zieloperanden getestet; ist es null, so wird das Z-Flag ge-
setzt, andernfalls gelöscht. Dann wird das Bit im Zieloperan-
den gesetzt. Wenn n wie oben angegeben der Wert der ersten 3
oder 5 Bits des Quelloperanden ist, entspricht die Operation
einer ODER-Verknüpfung mit 2". Alle anderen Flags außer Z
bleiben unverändert.

 ATARI ST — Programmieren in Maschinensprache

BCLR

bit clear

Bit testen und auf 0 setzen

Operation: (Z) <- (Z) mit Bit n gelöscht

n=(Q)<4:0> oder n=(Q)<2:0>

X
x
N
<
N
Z
 : unberührt

: gesetzt, wenn Bit = 0

: unberührt
: unberührt
: unberührt

Beschreibung: Zunächst wird das durch den Quelloperanden angegebene Bit
im Zieloperanden getestet; ist es null, so wird das Z-Flag ge-
setzt, andernfalls gelöscht. Erst nach dieser Abfrage wird das
Bit im Zieloperanden gelöscht. Wenn n wie oben angegeben
der Wert der ersten 3 oder 5 Bits des Quelloperanden ist, ent-
spricht die Operation einer UND-Verkniipfung mit minus 2°.
Alle anderen Flags außer Z bleiben unverändert.

Die Befehle des MC68000 in systematischer Reihenfolge 199

bit change
Bit testen und invertieren

BCHG

Operation: (Z) <- (Z) mit Bit n invertiert
n=(Q)<4:0> oder n=(Q)<2:0>

: unberührt

: gesetzt, wenn Bit = 0
: unberührt
: unberührt
: unberührt

Flags:

x
N
<
N
Z

Beschreibung: Zunächst wird das durch den Quelloperanden angegebene Bit
im Zieloperanden getestet; ist es null, so wird das Z-Flag ge-
setzt, andernfalls gelöscht. Dann wird das Bit im Zieloperan-
den invertiert. Wenn n wie oben angegeben der Wert der er-
sten 3 oder 5 Bits des Quelloperanden ist, entspricht die Ope-
ration einer EXKLUSIV-ODER-Verknipfung mit 2". Alle
anderen Flags außer Z bleiben unverändert.

ATARI ST - Programmieren in Maschinensprache

BTST

bit test

Bit testen

Operation: keine

x
N
<
N
Z
 : unberührt

: gesetzt, wenn Bit = 0
: unberührt

: unberührt

: unberührt

Beschreibung: Das durch den Quelloperanden angegebene Bit im Zieloperan-
den wird getestet; ist es null, so wird das Z-Flag gesetzt, an-
dernfalls gelöscht. Der Wert des Bits wird also invers ins Z-
Flag geschrieben. Alle anderen Flags bleiben unverändert.

Die Befehle des MC68000 in systematischer Reihenfolge 201

Bedingte Befehle

Die bedingten Befehle führen zu unterschiedlichen Resultaten, je nachdem,
welche Bedingungsflags gerade gesetzt sind. Es gibt 16 sogenannte Befehls-
codes (condition codes), die jeweils für eine abprüfbare Bedingung stehen. Zu-
nächst eine Liste der Bedingungscodes und ihrer Bedeutung:

T tue T ist immer wahr
F false F ist niemals wahr
HI higher A > B (ohne Vorzeichen)
LS lower or same A <= B (ohne Vorzeichen)
CC carry clear C=0 oder A 2 B (ohne Vorzeichen)
CS carry set C=1 oder A < B (ohne Vorzeichen)
NE not equal Z=0 oder A <> B
EQ equal Z=1 oder A = B
VC __ overflow clear V=0
VS __ overflow set V=1
PL plus N=0
MI minus N=1
GE greater or equal A 2 B (mit Vorzeichen)
LT _ less than A < B (mit Vorzeichen)
GT greater than A > B (mit Vorzeichen)
LE _ less or equal A SB (mit Vorzeichen)

Dabei beziehen sich die Relationen zwischen A und B auf einen vorangegange-
nen Vergleich

CMP B,A

Alle Relationen werden auf den Zustand eines oder mehrerer Flags zuriickge-
fuhrt; manchmal ist das so offensichtlich wie bei CC, wo das Carry-Flag
gleichzeitig fiir die Bedingung "A < B" steht, in anderen Fallen handelt es sich
um recht komplizierte logische Verkniipfungen mehrerer Flags.

Weitere Informationen über bedingte Befehle und die Bedeutung der Bedin-
gungscodes finden Sie in Kapitel 2, Abschnitt "Bedingte Verzweigungen". Die
Systemflags werden von keinem der bedingten Befehle beeinflußt. Bei den fol-
genden bedingten Befehlen steht "cc" für condition code (Bedingungscode)
und kann durch jedes der 16 oben genannten Kürzel ersetzt werden. Die Be-
fehle sind:

Bcc

DBcc

Scc

202 ATARI ST - Programmieren in Maschinensprache

Bcc

branch if...
bedingter relativer Sprung

Operation: Wenn Bedingung: PC <- PC + Adreßdistanz

: unberührt
: unberührt
: unberührt
: unberührt
: unberührt X

x
N
<
N
Z

Adressierungsarten:

Beschreibung:

8 Bit PC-relativ

16 Bit PC-relativ

Der Prozessor testet, ob eine bestimmte Bedingung erfüllt ist.
Trifft die Bedingung nicht zu, so fährt er mit der nächsten An-
weisung fort. Ist sie jedoch erfüllt, so verzweigt der Prozessor
zur angegebenen Adresse. Gewöhnlich wird die Adresse dem
Assembler in Form eines Labels überreicht, der daraus den
Abstand der Adresse des Branch-Befehls und der Zieladresse
errechnet. So sind die Branch-Befehle automatisch relozier-
bar. Der Adreßabstand kann wahlweise eine Länge von 8 Bit
haben, womit ein Bereich von -126 bis +129 von der Adresse
des Branch-Befehls gerechnet angesprochen werden kann,
oder 16 Bit lang sein, wobei sich ein Bereich von —32766 bis
+32769 ergibt. Die Standardform ist der 16-Bit-Abstand; die
8-Bit-Form wird durch das Anhängsel ".S" am Befehlscode
gekennzeichnet. Manche Assembler generieren allerdings au-
tomatisch die kurze Form, wann immer es möglich ist, da die-
se nicht nur kürzer, sondern auch schneller ist. Für BT,
branch if true, die bedingungslose Verzweigung, die man ei-
gentlich unter den Sprungbefehlen einordnen müßte, kann
man auch BRA fir "branch always" schreiben. BF wird nie-
mals verzweigen und ist daher vergleichbar mit NOP. Der Be-
fehl BSR, der manchmal auch unter den bedingten Verzwei-
gungen aufgeführt wird, ist hier unter den Sprungbefehlen be-
schrieben.

Die Befehle des MC68000 in systematischer Reihenfolge 203

decrement and branch until ...
Zählschleife mit zusätzlicher Abbruchbedingung DB CC

Operation: Wenn Bedingung: nächster Befehl
sonst: Dn<-Dn-1

Wenn Dn=-1: nächster Befehl

sonst: Verzweigung

: unberührt
: unberührt
: unberührt
: unberührt
: unberührt X

<
N
<
N
Z

Adressierungsarten:

Beschreibung:

PC-relativ 16 Bit

Als Operanden zu DBcc werden in dieser Reihenfolge ein Da-
tenregister und eine relative Adresse angegeben. Diese recht
komplexe Anweisung ist dafür gedacht, an das Ende einer
Zählschleife gestellt zu werden, wobei das angegebene Daten-
register den Zähler enthält.

Zusätzlich kann die Schleife noch durch eine bestimmte Be-
dingung verlassen werden. Zunächst wird die Bedingung ab-
geprüft. Ist sie wahr, so geschieht nichts weiter, und es wird
sofort mit dem nächsten Befehl fortgefahren. Andernfalls
wird der Inhalt des angegebenen Datenregisters in Wortbreite
um eins verringert. Der neue Inhalt des Datenregisters wird
überprüft: Ist er -1, so wird die Schleife als beendet betrach-
tet, und der Prozessor fährt mit dem folgenden Befehl fort.
Andernfalls muß die Schleife ein weiteres Mal durchlaufen
werden. Es wird zur relativ angegebenen Adresse verzweigt.

Bei DBcc wird die Sprungadresse relativ als 16-Bit-Offset an-
gegeben. Allerdings kann DBcc nur rückwärts, also zu einer
niedrigeren Adresse verzweigen. Dadurch ergibt sich ein
Adreßbereich bis zu -65534 Bytes. Der am häufigsten ver-

ATARI ST - Programmieren in Maschinensprache

DB CC decrement and branch until ...

 Zählschleife mit zusätzlicher Abbruchbedingung

wendete Befehl dieser Gruppe ist DBF, denn dieser macht von
der Möglichkeit, eine besondere Bedingung als außergewöhn-
liche Abbruchbedingung der Schleife zu wählen, keinen Ge-
brauch; Er verzweigt also nur, solange der Zähler im Daten-

register nicht zu -1 wird. Statt DBF kann oft auch DBRA (de-
crement and branch) verwendet werden.

Zwei Dinge gibt es bei der Verwendung von DBcc zu beach-
ten:

— DBcc verhält sich genau entgegengesetzt zu Bcc: Bei DBcc
kann nur verzweigt werden, wenn die Bedingung nicht
wahr ist.

— Der Zähler muß eins niedriger als die Zahl der gewünsch-
ten Schleifendurchläufe gewählt werden, da erst bei —1 ab-
gebrochen wird. Sinnvoll ist diese Festlegung dann, wenn
der Zähler in der Schleife etwa als Index verwendet wird
und alle Werte einschließlich der Null durchlaufen soll.

Die Befehle des MC68000 in systematischer Reihenfolge 205

set if ...

Setzen eines Programmflags nach einer Bedingung

SCC

Operation:

Flags:

Wenn Bedingung: (Z) <- 11111111 (binär)
sonst: (Z) <- 00000000 (binär)

: unberührt
: unberührt
: unberührt
: unberührt
: unberührt x

N
<
N
Z

Adressierungsarten:

ZIEL

Beschreibung:

Datenregister direkt
Adreßregister indirekt
Indirekt mit Displacement
Indirekt mit Index und Displacement
Postinkrement/Predekrement indirekt
absolut kurz/lang

Dieser Befehl kann nur in Byte-Breite verwendet werden.
Wenn die abgeprüfte Bedingung erfüllt ist, wird das adres-
sierte Byte mit binären Einsen gefüllt, also auf dezimal 255
gesetzt. Trifft die Bedingung nicht zu, so wird der Operand
auf null gesetzt. Dieser Befehl dient dazu, den aktuellen Wahr-
heitswert einer Bedingung zu speichern, damit er zu einem
späteren Zeitpunkt abgefragt werden kann.

206 ATARI ST — Programmieren in Maschinensprache

Sprungbefehle

‚Alle Sprungbefehle beeinflussen in irgendeiner Form den Befehlszähler. Es
handelt sich dabei um direkte Sprünge, Aufruf von Unterprogrammen und
Rückkehr aus denselben:

JMP
JSR
BSR
TRAP
RTS
RTR
RTE

Keiner der Sprungbefehle beeinflußt die Flags.

Die Befehle des MC68000 in systematischer Reihenfolge 207

jump JMP Direkter Sprung

Operation: PC <-Z

Flags: : unberührt
: unberührt

: unberührt

: unberührt

: unberührt x
N
<
N
Z

Adressierungsarten:

ZIEL Adreßregister indirekt
Indirekt/PC-relativ mit Displacement
Indirekt/PC-relativ mit Index und Displacement
absolut kurz/lang

Beschreibung: Es wird ein Programmsprung zur angegebenen Adresse aus-
geführt. Bei der PC-relativen Adressierungsart bleibt der
Programmsprung relozierbar wie bei den bedingten Verzwei-
gungen. Bei den anderen Adressierungsarten finden jedoch
absolute Sprünge statt. Als eine Alternative siehe auch BT
(BRA).

ATARI ST - Programmieren in Maschinensprache

JSR

Jump to subroutine
Unterprogrammaufruf

Operation: -(SP) <- PC
PC <-Z

: unberührt
: unberührt
: unberührt
: unberührt

: unberührt X
N
<
N
Z

Adressierungsarten:

ZIEL

Beschreibung:

Adreßregister indirekt
Indirekt/PC-relativ mit Displacement
Indirekt/PC-relativ mit Index und Displacement
absolut kurz/lang

Der Prozessor legt den Inhalt des PC auf dem Stack ab und
verzweigt zur angegebenen Adresse. Somit wird ein Unter-
programm aufgerufen, das mit RTS die Kontrolle dem aufru-
fenden Programm zurückgeben kann. Wie bei JMP kann die
Adresse entweder absolut oder PC-relativ angegeben werden.
JSR ist in den Adressierungsarten flexibler als die Alternative
BSR, aber langsamer.

Die Befehle des MC68000 in systematischer Reihenfolge 209

Branch to subroutine B S R
relativer Unterprogrammaufruf

Operation:

Flags:

-(SP) <- PC
PC <- PC+AdreBdistanz

N : unberührt
Z : unberührt
V : unberührt
C : unberührt
X : unberührt

Adressierungsarten:

Beschreibung:

PC-relativ 8 Bit

PC-relativ 16 Bit

Der Prozessor legt den aktuellen Stand des Befehlszählers auf
dem Stack ab und verzweigt zur angegebenen Adresse. Die
Adresse wird wie bei den bedingten Verzweigungsbefehlen
angegeben als Differenz der Adresse des BSR und der Ziel-
adresse. Es können entweder 8 Bit oder 16 Bit Adreßdistanz
angegeben werden, wobei sich ein Bereich von —126 bis +129
oder -32766 bis +32769 ergibt. Standard ist die 16-Bit-Va-
riante; die kürzere und schnellere 8-Bit-Form wird durch ein
angehängtes ".S" kenntlich gemacht. Natürlich können in dem
aufgerufenen Unterprogramm die. Flags verändert werden.
Der Unterschied zu JSR besteht darin, daß BSR nur PC-relativ
verzweigen kann.

210 ATARI ST - Programmieren in Maschinensprache

IRAP

 Programmgesteuerte Exception

Operation: -(SSP) <- SR (16 Bit)
-(SSP) <- PC
PC <- Trapvektor n (n=0...15)

: unberührt
: unberührt

: unberührt

: unberührt

: unberührt X
x
N
<
N
Z

Adressierungsarten:

Beschreibung:

Angabe einer unmittelbaren Vektornummer 0 bis 15

Zunächst legt der Prozessor den SR und PC in dieser Reihen-
folge auf dem Stack ab. Anschließend wird der unmittelbar
angegebene Wert von O bis 15 als Index in einer Vektortabelle
benutzt und ein Programmsprung zur dort angegebenen
Adresse ausgeführt. Dabei geht der Prozessor automatisch in
den Supervisor-Modus. Der TRAP-Befehl ist für den Aufruf
von Betriebssystemroutinen gedacht: Er bietet eine genormte
Einsprungstelle. Folgende Trap-Vektoren sind beim ATARI
ST belegt:

TRAP#l GEMDOS
TRAP#2 GEM (VDI und AES)
TRAP #13 BIOS
TRAP #14 XBIOS

Alle anderen TRAP-Vektoren können vom Programmierer
frei verwendet werden. Die Trap-Vektoren belegen ab der
Adresse $80 16 Langworte. Sie können nur im Supervisor-
Modus geändert werden.

 Die Befehle des MC68000 in systematischer Reihenfolge 211

return from subroutine RTS
Rückkehr von einem Unterprogramm

Operation: PC <- (SP)+

Flags: : unberührt
: unberührt
: unberührt

: unberührt

: unberührt X
x
N
<
N
Z

Adressierungsarten:

keine

Beschreibung: Der Prozessor holt den alten Wert des PC (Langwort) vom
| Stack und springt so zu der aufrufenden Adresse des Unter-

programms zurück. Voraussetzung für eine korrekte Ausfüh-
rung ist natürlich, daß der Wert des Stackpointers im Unter-
programm nicht verändert wird. Im Gegensatz zu RTR und
RTE werden die Flags nicht verändert.

212 ATARI ST - Programmieren in Maschinensprache

return from subroutine and restore CCR
RTR Rückkehr von einem Unterprogramm

mit Wiederherstellung des CCR

Operation: CCR <- (SP)+
PC <- (SP)+

: Bit 3 des vom Stack geholten Wortes
: Bit 2 des vom Stack geholten Wortes
: Bit 1 des vom Stack geholten Wortes
: Bit 0 des vom Stack geholten Wortes
: Bit 4 des vom Stack geholten Wortes x

N
<
N
Z

Adressierungsarten:

keine

Beschreibung: Der Prozessor holt zunächst einen 16-Bit-Wert vom Stack und
schreibt die unteren 8 Bit in das CCR. Danach wird der alte
Stand des PC vom Stack wiederhergestellt. Beachten Sie, daß
der Prozessor bei einem Unterprogrammaufruf mit JSR oder
BSR die Flags nicht automatisch auf dem Stack ablegt. Wenn
Sie Ihr Unterprogramm mit RTR verlassen wollen, sollte der
erste Befehl des Unterprogramms folgender sein:

MOVE SR,-(SP)

Die Befehle des MC68000 in systematischer Reihenfolge 213

return from exception
Rückkehr von Exception
mit Wiederherstellung des SR RIE

Operation: SR <- (SP)+
PC <- (SP)+

Flags: N: Bit 3 des vom Stack geholten Wortes
Z : Bit 2 des vom Stack geholten Wortes
V : Bit 1 des vom Stack geholten Wortes
C : Bit O des vom Stack geholten Wortes
X : Bit 4 des vom Stack geholten Wortes

Adressierungsarten:

keine

Beschreibung: Der Prozessor holt zunächst einen 16-Bit-Wert vom Stack und
schreibt ihn in das SR. Danach wird der alte Stand des PC vom
Stack wiederhergestellt. RTE ist für die Rückkehr von einer
Exception-Routine gedacht. Da das gesamte SR wieder auf den
Stand vor der Exception gestellt wird, wird auch sicherge-
stellt, daß der Prozessor in den gleichen Zustand — Supervi-
sor- oder Usermodus — zurückkehrt, in dem er sich vor der
Exception befand. Da der Befehl das Systembyte verändert,
darf er nur im Supervisormodus ausgeführt werden. Excep-
tions werden jedoch ohnehin im Supervisormodus ausgeführt.

Besonderheit: Privilegierter Befehl

214 ATARI ST - Programmieren in Maschinensprache

Sonstige Befehle

In dieser Kategorie sind jene Befehle aufgeführt, die sich in die anderen Kate-
gorien nicht einordnen lassen. Es handelt sich dabei einerseits um recht kom-
plexe Befehle, die die Implementierung von Compilern begünstigen, anderer-
seits um sehr hardwarenahe Befehle:

LINK
UNLK
TRAPV
CHK

LEA
PEA

STOP
RESET

NOP

Die Befehle LINK und UNLK sind recht schwer zu verstehen; sie sind aller-
dings fiir den Assemblerprogrammierer auch kaum von Bedeutung, da sie in
erster Linie fiir den Einsatz durch Compiler ausgelegt sind.

Die Befehle des MC68000 in systematischer Reihenfolge 215

Stackbereich vorübergehend reservieren

LINK

Operation: -(SP) <- An
An <-SP
SP <-SP+(Z)

Flags: N : unberührt
Z : unberührt
V : unberührt
C : unberührt
X : unberührt

Adressierungsarten:

QUELLE Adreßregister direkt

ZIEL unmittelbar 16 Bit

Beschreibung: Dieser Befehl ist dazu gedacht, am unteren Ende des Stacks
einen Raum für lokale Variablen am Anfang eines Unterpro-
gramms zu reservieren.

Als Operanden werden unmittelbar die Länge des Bereiches
angegeben, um den der Stack erweitert werden soll, und ein
Adreßregister, der sogenannte "frame pointer”.

Zunächst wird der Inhalt des Adreßregisters auf dem Stack
gesichert. Als nächstes wird der Inhalt des Stackpointers (nach
dem Ablegen des Registerinhalts) in das Adreßregister über-
tragen. Nun folgt der entscheidende Schritt: Der angegebene
Wert wird vorzeichenrichtig zum Stackpointer addiert und
das Ergebnis wieder im Stackpointer abgelegt. Wenn der Pro-
grammierer einen negativen Wert angegeben hat, wird der
Stackpointer entsprechend nach unten verschoben und so Spei-
cherplatz für lokale Variablen angelegt.

Gewöhnlich wird auf diese Variablen mit "-n(SP)" zugegrif-
fen. Damit das Unterprogramm auch auf etwa vorher auf dem

216 ATARI ST — Programmieren in Maschinensprache

LINK

 Stackbereich vorübergehend reservieren

Stack abgelegte Argumente zurückgreifen kann, bleibt der al-
te Wert des SP im "frame pointer" erhalten. Und da Unterpro-
gramme sich ja auch verschachtelt aufrufen können, muß der
alte Wert des "frame pointers" auf dem Stack abgelegt wer-
den. So kann in allen Unterprogrammen das gleiche Register
als "linkage pointer" dienen.

Ein Unterprogramm, das mit LINK Platz reserviert, sollte
diesen vor der Riickkehr ins aufrufende Programm mit
UNLK wieder freigeben.

Die Befehle des MC68000 in systematischer Reihenfolge 217

mit LINK reservierten Stackbereich freigeben K

Operation: SP <-An
An <- (SP)+

Flags: N : unberührt
Z : unberührt
V : unberührt
C : unberührt
X : unberührt

Adressierungsarten:

ZIEL Adreßregister direkt

Beschreibung: Dieser Befehl ist das Gegenstück zur LINK-Anweisung und
dient dazu, mit LINK auf dem Stack reservieren Platz wieder
freizugeben. Im allgemeinen findet das am Ende des Unter-
programms, unmittelbar vor der RTS-Anweisung statt. Zu-
nächst wird der Stackpointer mit dem Inhalt des angegebenen
Adreßregisters geladen. Dann wird der Inhalt des Adreßregi-
sters vom Stack geholt. Wenn bei UNLK das gleiche Adreßre-
gister wie bei LINK angegeben wird und dieses zwischen-
durch nicht verändert wird, dann wird der alte Wert des
Stackpointers und des Adreßregisters wiederhergestellt: Alles
ist wieder, wie es vor dem LINK-Befehl war.

218 ATARI ST - Programmieren in Maschinensprache

trap on overflow
TRAPV Auslosung einer Exception,

wenn ein Uberlauf auftrat

Operation: Wenn V=1: TRAPV-Exception

: unberührt
: unberührt
: unberührt
: unberührt
: unberührt x

N
<
N
Z

Adressierungsarten:

keine

Beschreibung: Wenn das V-Flag gesetzt ist, führt der Prozessor eine Excep-
tion aus. Dazu werden SR und PC auf den Stack gesichert, und
es wird durch den Vektor in $1C gesprungen. Sofern die Ex-
ception nicht abgefangen wird, werden dadurch 7 Bomben auf
den Bildschirm gebracht. Wenn das V-flag jedoch nicht ge-
setzt ist, geschieht nichts weiter, und der Prozessor fährt mit
dem nächsten Befehl fort. Die Flags werden nicht beeinflußt.
Der Befehl wird praktisch nur von Compilern verwendet, um
einen Überlauf bei Integer-Berechnungen aufzuspüren.

Die Befehle des MC68000 in systematischer Reihenfolge 219

check data register against boundaries
Uberpriifen, ob der Inhalt eines Datenre- CHK
gisters in einem giiltigen Bereich liegt

Operation: Wenn Dn > (Q) (vorzeichenlos): CHK-Exception

: gesetzt, wenn Dn < 0
: undefiniert
: undefiniert
: undefiniert
: unberührt x

<
N
<
N
Z

Adressierungsarten:

QUELLE

ZIEL

Beschreibung:

Datenregister direkt
Adreßregister indirekt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
postinkrement/predekrement indirekt
absolut kurz/lang
unmittelbar

Datenregister direkt

Das angegebene Datenregister wird vorzeichenlos und in
Wortbreite mit dem Quelloperanden verglichen. Ist der Inhalt
des Datenregisters größer, so wird eine Exception ausgeführt.
Dazu legt der Prozessor SR und PC auf dem Stack ab und ruft
die Routine auf, deren Adresse im Exception-Vektor ab $18
steht. Normalerweise sind 6 Bomben das Ergebnis. Ist der In-
halt des Datenregisters jedoch im zulässigen Bereich, so wird
mit der Programmausführung normal fortgefahren. Es gilt zu
beachten, daß der Zustand von C, Z und V nach der Ausfüh-
rung von CHK nicht festgelegt ist. Diese Anweisung wird
eigentlich nur von Compilern eingesetzt, etwa um zu überprü-
fen, ob ein Index in ein Feld im zulässigen Bereich liegt.

ATARI ST - Programmieren in Maschinensprache

LEA

load effective address
Lade effektive Adresse in ein Adreßregister

Operation: An<-Q

Flags: N : unberührt
Z : unberührt
V : unberührt
C : unberührt
X : unberührt

Adressierungsarten:

OUELLE Adreßregister direkt
| indirekt/PC-relativ mit Displacement

indirekt/PC-relativ mit Index und Displacement
absolut kurz/lang

ZIEL Adreßregister direkt

Beschreibung: Der Prozessor berechnet die Quelladresse und lädt sie in ein
Adreßregister. Beachten Sie, daß die Adresse geladen wird,
nicht der Inhalt der Adresse. Flags werden nicht beeinflußt.
Diese Anweisung ist hauptsächlich dazu gedacht, jene Lücken
zu füllen, die sich durch beschränkte Adressierungsarten bei
den meisten Befehlen auftun. So ist es etwa meist nicht mög-
lich, den Zieloperanden einer arithmetischen oder logischen
Operation PC-relativ zu adressieren. Hier kann man sich mit
LEA behelfen: Man lädt erst mittels LEA die gewünschte
Adresse in ein Adreßregister und verwendet dann die Adres-
sierungsart "AdreBregister indirekt", die bei fast allen Befeh-
len erlaubt ist. Dazu ein Beispiel:

LEA $5000(PC),AO * Adresse des Zieloperanden
ADD DO, (AO) * DO zum Ziel addieren

Als zusätzliches Bonbon erlaubt LEA in einigen Fällen, mit
Adreßregistern zu rechnen:

LEA 0(A0,A1),A2

Die Befehle des MC68000 in systematischer Reihenfolge 221

load effective address
Lade effektive Adresse in ein Adreßregister LEA

berechnet die Summe aus AO und Al und legt sie in A2 ab. Be-
liebt ist es auch, die Adressierungsart "indirekt mit Displace-
ment" zum Rechnen zu verwenden:

LEA $100 (AO) ,AO

Dieser Befehl ist etwas schneller als das entsprechende

ADDA #$100,A0

222 ATARI ST — Programmieren in Maschinensprache

PE A push effective address onto stack
effektive Adresse auf dem Stack ablegen

Operation: -(SP) <-Q

Flags: N : unberührt
Z : unberührt

V : unberührt

C : unberührt

X : unberührt

Adressierungsarten:

QUELLE Adreßregister direkt
indirekt/PC-relativ mit Displacement
indirekt/PC-relativ mit Index und Displacement
absolut kurz/lang

Beschreibung: Der Prozessor berechnet die Quelladresse (richtig — hier gibt
es nur einen Quelloperanden; das Ziel ist der Stack) und legt
sie als Langwort auf dem Stack ab. Wie bei LEA gilt, daß die
Adresse des Operanden abgelegt wird, nicht der Inhalt der
Adresse. Nützlich ist diese Anweisung dann, wenn die Adres-
sen von Datenobjekten als Argumente an ein Unterprogramm
übergeben werden sollen.

Die Befehle des MC68000 in systematischer Reihenfolge 223

stop processor

Prozessor anhalten und auf Interrupt warten

STOP

Operation:

Flags:

SR <- (src)
HALT-Zustand

N : Bit 3 des Quelloperanden
Z : Bit 2 des Quelloperanden
V : Bit 1 des Quelloperanden
C : Bit 0 des Quelloperanden
X : Bit 4 des Quelloperanden

Adressierungsarten:

QUELLE unmittelbar 16 Bit

Beschreibung:

Besonderheit:

Zuerst wird der unmittelbar angegebene Wort-Operand ins
SR übertragen. Dann geht der Prozessor in den HALT-Zu-
stand. Das heißt, daß die CPU so lange inaktiv ist, bis ein In-
terrupt oder Reset-Signal eintrifft. Sinn dieser Anweisung ist
es, daß die CPU bei einigen sehr hardwarenahen Operationen
den Bus freigibt und so andere Bausteine nicht in ihren Buszu-
griffen behindert, wie sie es in einer Warteschleife tate. Wenn
der Baustein die Kontrolle wieder der CPU übergeben will,
löst er einen Interrupt aus. Auch das Reset-Signal, ausgelöst
durch einen Druck auf den Reset-Knopf, beendet den HALT-
Zustand. Diese Anweisung ist nur im Supervisor-Modus aus-
führbar.

privilegierter Befehl

224 ATARI ST - Programmieren in Maschinensprache

RESET
 Hardware-Initialisierung

Operation: RESET-Pin auf High setzen

Flags: : unberührt
: unberührt
: unberührt

: unberührt
: unberührt X

x
N
<
N
Z

Adressierungsarten:

keine

Beschreibung: Der Prozessor setzt eine bestimmte Leitung auf High. Da-
durch werden alle Bausteine in einen definierten Grundzu-
stand versetzt. Beim ST wird diese Anweisung nur beim Ein-
schalten des Rechners oder nach dem Drücken des Reset-
Knopfes ausgeführt. RESET darf nur im Supervisormodus
ausgeführt werden.

Besonderheit: privilegierter Befehl

Die Befehle des MC68000 in systematischer Reihenfolge 225

gm NOP

Operation: keine

Flags: : unberührt
: unberührt
: unberührt
: unberührt

: unberührt x
N
<
N
Z

Adressierungsarten:

keine

Beschreibung: Es geschieht nichts. Der Prozessor fährt einfach mit der nach-
sten Anweisung fort. Dieser Befehl kann z.B. dazu verwendet
werden, unerwünschte Befehle in einem Programm zu über-
schreiben. Es ist vielleicht interessant, den Befehlscode von
NOP zu wissen, damit man etwa in einem Debugger Befehle
"wegstreichen" kann: Der Code ist $8771.

ATARI ST — Programmieren in Maschinensprache

Line A Emulator/
Line F Emulator frei belegbare Opcodes

Operation:

Flags:

-(SSP) <-SR
-(SSP) <- PC
PC <- Inhalt von Ausnahmevektor 10/11

: unberührt
: unberührt
: unberührt
: unberührt
: unberührt x

N
<
N
Z

Adressierungsarten:

Beschreibung:

keine

Bei einem nicht implementierten Opcodes wird normalerwei-
se die Exception 4 durchgeführt. Alle Opcodes die die Form
$Axxx oder $Fxxx haben (xxx steht für drei beliebige Hexa-
dezimalziffern) sind jedoch davon ausgenommen. Der erste
wird als ein Line-A-Befehl bezeichnet und führt zu einem
Sprung durch den Vektor ab Adresse $28, der zweite, ein
Line-F-Befehl, durch $2C. Vom Hersteller der CPU ist diese
Funktion dazu gedacht, nicht implementierte Opcodes durch
einen solchen Line-A- oder Line-F-Befehl zu ersetzen. Auf
dem ATARI ST ist man einen Schritt weiter gegangen: Die
Line-A-Befehle mit den Opcodes $A000 bis $AOOE werden
für grundlegende Grafikroutinen verwendet (siehe auch Kapi-
tel 4) und sind auch für den Programmierer interessant. Die
Line-F-Befehle werden intern vom GEM benutzt und sollten
besser nicht in eigenen Programmen verwendet werden. In
einem Assemblerprogramm werden diese Opcodes etwa fol-
gendermaßen untergebracht:

[Programmcode]

DC.W SA000

227

Kapitel 4

Zusammenarbeit mit dem Betriebssystem

In diesem Kapitel werden die Aufrufkonventionen aller auf dem ST vorhande-
nen Routinen erläutert, die mehr oder weniger eng zum Betriebssystem gehö-
ren.

Der ATARI ST verfügt über eine fast unüberschaubare Menge von Betriebs-
systemroutinen. Allein der Betriebssystemkern bietet 104 Funktionen, die sich
aus 53 GEMDOS,-, 12 BIOS- und 39 XBIOS-Aufrufen zusammensetzen. Dazu
kommen noch die Line-A-Routinen und die über 100 GEM-Aufrufe. Aber
keine Angst, das Ganze vereinfacht sich dadurch etwas, daß das Betriebssystem
hierarchisch organisiert ist (Abb. 4.1).

Um keine Begriffsverwirrung aufkommen zu lassen: TOS umfaßt das GEM-
DOS, BIOS und XBIOS. TOS steht für "Tramiel Operating System", benannt
nach dem Chef der Firma ATARI, und ist der Name des Betriebssystems der
ST-Computer. GEMDOS, BIOS, XBIOS sind nur Gruppen von Betriebssy-
stemroutinen.

Die oberste Ebene des TOS bildet das GEMDOS. Es benutzt die Dienste von
BIOS und XBIOS; sie sind für die Ausführung der Operationen — etwa in
Form von Hardware-Ansteuerung — zuständig.

Das GEM - namentlich VDI und AES - ist nicht unmittelbarer Teil des Be-
triebssystems. Wenn die GEM-Routinen benutzt werden, stehen sie noch eine
Ebene höher, denn sie benutzen ihrerseits die GEMDOS-Aufrufe. Auf unter-
ster Ebene verfügt GEM noch über die sogenannten Line-A-Routinen, die
grundlegende Grafikoperationen bieten. Dem Programmierer stehen sämtli-
che auf Abb. 4.1 eingezeichneten Routinengruppen zur Verfügung.

Durch diese hierarchische Ordnung ergibt sich, daß oft mehr als ein Weg zum
Ziel führt. Es gibt oft mehr als eine mögliche Funktion, um eine bestimmte
Operation vorzunehmen.

Logisch, daß eine Funktion um so schneller ausgeführt wird, je niedriger sie in
der Hierarchie steht. Diese Vielfalt kann durchaus nützlich sein, da man als
Programmierer mitunter die Wahl zwischen schneller ausführenden und ein-
facher zu benutzenden Funktionen hat. Natürlich muß von Fall zu Fall ent-
schieden werden, worauf man mehr Wert legt.

228 ATARI ST - Programmieren in Maschinensprache

AES

\ > GEM — Aufrufe

VDI
GEMDOS |

Line — A

Abb.4.1: Hierarchie der GEM- und Betriebssystemroutinen
Die Pfeile stehen für die Benutzt-Beziehung

Das GEMDOS

Die GEMDOS-Funktionen orientieren sich stark an den Funktionen des Be-
triebssystems MS-DOS. Insbesondere die Funktionsnummern entsprechen sich
bei beiden Betriebssystemen. Allerdings wurden nicht alle Funktionen des MS-
DOS übernommen; besonders Hardware-abhängige Funktionen, die den Pro-
zessor Intel 8086/88 betreffen, wurden natürlich fortgelassen. Daraus erklä-
ren sich die Lücken in der Vergabe der Funktionsnummern.

Zusammenarbeit mit dem Betriebssystem 229

GEMDOS steht fiir "GEM Disk Operation System", also GEM-Disketten-Be-
triebssystem. Wie schon der Name andeutet, bietet das GEMDOS Funktionen
für den Zugriff auf Geräte und für die Verwaltung von Disketten- oder Plat-
tendateien, darüber hinaus für den Aufruf und die Beendigung von Program-
men, Datumsabfrage und das Erlangen des Supervisor-Status.

Sämtliche Parameter für GEMDOS-Routinen werden auf dem Stack überge-
ben; darunter fällt auch die Funktionsnummer. Dabei sollten Sie darauf ach-
ten, ob es sich bei den Parametern um Worte oder Langworte handelt. Der
Sprung ins Betriebssystem erfolgt schließlich mit einem TRAP-Befehl, wobei
dem GEMDOS der Vektor 1 zugeordnet ist. Sofern die Funktion einen Wert
zurückliefert, wird dieser im unteren Wort DO zurückgegeben. Wie üblich ist
das aufrufende Programm dafür verantwortlich, die Parameter nach dem
Aufruf wieder vom Stack abzuräumen. Dazu addiert es die Gesamtlänge der
Parameter (inklusive Funktionsnummer) zum Stackpointer, wobei für jedes
Wort 2 und für jedes Langwort 4 angerechnet werden.

Vielleicht möchten Sie jetzt einwenden, daß die Benutzung des Stacks doch
eine recht unpraktische Art der Parameterübergabe ist, wo die Übergabe in
Registern — der 68000 hat schließlich genügend davon — mit Sicherheit viel ef-
fizienter wäre. Tatsache ist ja auch, daß es bei anderen Betriebssystemen oft so
gemacht wird. Allerdings ist dieser Einwand leicht zu kontern: Das Betriebs-
system des ATARI ST wurde nicht speziell für Assemblerprogrammierer aus-
gelegt, sondern vielmehr auf eine einfache Benutzung von C aus. So unter-
scheidet sich der Aufrufmechanismus der GEMDOS-Funktionen von dem in C
eigentlich nur dadurch, daß statt des JSR (oder BSR) ein TRAP den eigentli-
chen Sprung zur Routine übernimmt.

Bei fast allen Funktionen bedeutet die Rückgabe eines negativen Worts in DO,
daß ein Fehler aufgetreten ist; DO enthält dann den negativen TOS-Fehlercode.
Dem GEMDOS sind die Fehlercodes von -32 bis —49 zugeordnet; ihre Be-
schreibung finden Sie am Ende dieses Abschnitts. Meistens werden Rückgabe-
werte zwar im Langwortformat in DO abgelegt, aber bei manchen Routinen
kommt es vor, daß nur ein Wort den Fehlercode enthält. Untersuchen Sie des-
halb sicherheitshalber immer nur wortweise, ob in DO eine Fehlernummer
steht.

Bei der Programmierung sollten Sie beachten, daß die GEMDOS-Routinen
nicht nur das Register DO, sondern auch AO verändern. AO wird in den mei-
sten Fällen die Adresse der Funktionsnummer auf dem Stack enthalten. Wenn
also der Inhalt von AO oder DO nach dem Aufruf noch gebraucht wird, sollten
Sie diesen vorher in Sicherheit bringen.

230 ATARI ST - Programmieren in Maschinensprache

Allgemein formuliert kann ein GEMDOS-Aufruf also folgendermaßen ausse-
hen:

MOVE .x ...r7(SP) * Parameter n .

MOVE. x ...r= (SP) * Parameter 2
MOVE.x ...r (SP) * Parameter 1
MOVE .W #Nummer, — (SP) * GEMDOS-Funktionsnummer
TRAP #1 * eigentlicher Aufruf
ADD .W #Lange, SP * Stack aufräumen

* Dieser Teil folgt nur, wenn die Funktion tatsächlich
* einen Fehlercode zurückgeben kann

TST.W DO * DO negativ?

BMI Fehler * Ja, Fehler auswerten

Beachten Sie, daß die Parameter im Vergleich zu ihrer Reihenfolge in einer
Hochsprache hier genau umgekehrt auf den Stack geschoben werden.

Natürlich bleibt es dem Programmierer überlassen, zur Stack-Korrektur statt
des ADD.W-Befehls das schnellere ADDQ zu verwenden, sofern der zu addie-
rende Wert kleiner als 8 ist, oder auch

LEA Länge (SP) ,SP

was auch etwas schneller als ADD.W ist.

Ein Beispiel für GEMDOS-Aufrufe wird hier nicht angegeben, da ein solches
schon als im Kapitel 2 Abschnitt "Das erste lauffähige Programm" auftauchte.

Eine GEMDOS-Funktion ist für Assembler-Programmierer besonders inter-
essant: Es handelt sich um die Funktion Nummer 32 mit dem Namen SUPER.
Mit dieser Funktion wechselt man in den Supervisor-Modus, und man kann ihn
mit derselben Funktion auch wieder verlassen. SUPER wirkt wie ein Umschal-
ter; es wird immer in den Modus gewechselt, in dem man sich gerade nicht be-
findet.

Als Parameter erhält die Funktion den Initialisierungswert des Stackpointers,
den man im Supervisor- bzw. User-Modus wünscht. Wird jedoch beim Um-
schalten in den Supervisormodus eine 0 (Langwort) angegeben, so benutzt die
Funktion den alten User-Stackpointer auch für den Supervisor-Modus. Dies ist
der Normalfall. Rückgabewert ist dann der alte Wert des Supervisor-Stack-
pointers. Diesen Wert sollte sich das Programm merken, da er bei der Wieder-

Zusammenarbeit mit dem Betriebssystem 231

herstellung des User-Modus in jedem Fall gebraucht wird. Unter diesen Vor-
aussetzungen sieht ein Wechsel in den Supervisor-Modus und zurück so aus:

* hier läuft das Programm noch im USER-Modus
x

CLR.L - (SP) * 0: User- als Supervisor-Stack
MOVE .W #32,-(SP) * Funktionsnummer von SUPER
TRAP #1 %* GEMDOS-Aufruf
ADDQ.L #6,SP * Stack-Korrektur
MOVE .L DO,old_ssp * alten Supervisor-Stackpointer

* sichern . .
hier kann das Programm mit allen Privilegien x

* des Supervisor-Modus etwas anstellen .
* Rückkehr in den USER-Modus
x

MOVE .L old _ssp,-(SP) * alter Supervisor-Stackpointer
MOVE .W #32,-(SP) * SUPER-Funktionsnummer
TRAP #1 * GEMDOS-Trap

ADDQ.L #6,SP * und den Stack korrigieren
* hier läuft das Programm wieder im User-Modus

Sämtliche Betriebssystemaufrufe funktionieren auch im Supervisormodus, es
sei denn, man ist durch die XBIOS-Funktion SUPEXEC hineingelangt. Aller-
dings muß ein Programm vor seiner Beendigung wieder in den User-Modus
schalten, sonst gibt es bei der Rückkehr zum Desktop Bomben...

Es ist überhaupt empfehlenswert, den Supervisor-Modus nur dann einzuschal-
ten, wenn man ihn wirklich braucht, denn bei einem Programmabsturz im Su-
pervisormodus ist die Chance geringer, daß das System wieder "hochgezogen"
werden kann. Der Usermodus ist ja gerade dazu da, wichtige Speicherbereiche
des Betriebssystems vor unkontrollierten Zugriffen zu schützen.

SUPER hat eine Besonderheit: Es ist die einzige GEMDOS-Funktion, bei der
auch die Register Al und D1 verändert werden können. Wenn also deren In-
halte von Bedeutung sind, sollten diese Register vorher gesichert werden.

Nun zur Beschreibung der GEMDOS-Aufrufe im einzelnen:

Die hexadezimale Zahl vor jeder Funktionsbeschreibung ist die Funktions-
nummer, die beim Aufruf als oberster Wert auf dem Stack stehen muß. Die
restlichen Parameter werden in C-ähnlicher Syntax angegeben. Bei Verwen-
dung der Funktionsaufrufe von Assembler aus müssen also zuerst die eigentli-
chen Parameter in der umgekehrten Reihenfolge wie hier angegeben, also von
rechts nach links, auf dem Stack abgelegt werden, dann folgt die Funktions-
nummer. Nach der Ausführung des TRAP #1 muß der Stack korrigiert wer-
den; der Wert, der dafür addiert werden muß, wird in eckigen Klammern hin-
ter dem C-Funktionsaufruf angegeben. Danach werden die Typen der einzel-

232 ATARI ST - Programmieren in Maschinensprache

nen Parameter angegeben. Es ist zu beachten, daß mit dem Typ Byte gemeint
ist, daß nur das untere Byte eines Wortes von Bedeutung ist; es muß aber trotz-
dem ein Wort auf dem Stack abgelegt werden.

Langworte haben meist die Bedeutung von Zeigern, größtenteils auf Zeichen-
ketten. Zeichenketten müssen immer mit einem Nullbyte abgeschlossen wer-
den.

Rückgabewerte werden immer in DO übergeben. -1 zeigt dabei gewöhnlich
an, daß die Funktion.korrekt ausgeführt worden ist.

Um es noch einmal deutlich zu machen, setzen wir einmal die GEMDOS-
Funktion Dfree um. Beschrieben ist sie folgendermaßen:

$36 Dfree (buf,drv) [8]
buf: Langwort
drv: Wort

In Assembler sieht der Aufruf so aus:

MOVE .W drv,-(SP) * 2. Parameter
MOVE .L buf,-(SP) * 1. Parameter

MOVE .W #$36,- (SP) * Funktionsnummer
TRAP #1 * ins GEMDOS
ADDQ.L #8,SP * Stack korrigieren

$00 Pterm00 [2]
Programm beenden; die Kontrolle wird an das aufrufende Programm
zurückgegeben (mit Rückgabewert 0).

$01 Cconin([2]

Ein Zeichen vom Standardeingabekanal (Tastatur) lesen und gleichzeitig
auf dem Standardausgabekanal (Bildschirm) ausgeben. Rückgabewert ist
ein Langwort, wobei im untersten Byte das gelesene ASCII-Zeichen
steht, während das untere Byte des oberen Wortes den Tastaturcode ent-
hält.

$02 Cconout(chr) [4]
chr: Byte
Schreibt ein Zeichen auf den Standardausgabekanal (Bildschirm). Es-
cape-Sequenzen werden richtig interpretiert.

$03 Cauxin() [2] 7
Liest ein Zeichen von der seriellen Schnittstelle (RS232-Schnittstelle).

Zusammenarbeit mit dem Betriebssystem 233

$04

$05

$07

$0A

$0B

Cauxout(chr) [4]
chr: Byte
Gibt ein Zeichen auf der seriellen Schnittstelle aus.

Cprnout(chr) [4]
chr: Byte
Gibt ein Zeichen auf dem Drucker aus. Wenn das Zeichen nicht gedruckt
werden kann, erhalt man den Riickgabewert 0, andernfalls —1.

Crawio(wrd) [4]
wrd: Wort
Wenn wrd den Wert $00FF hat, wird ein Zeichen ohne Echo vom Stan-
dardeingabekanal gelesen, sofern gerade eins im Puffer ansteht; ist gera-
de keines verfügbar, dann ist der Rückgabewert 0. Bei allen anderen
Werten außer $0O0OFF wird "wrd" als ASCII-Zeichen interpretiert und
auf dem Standardausgabekanal ausgegeben.

Crawin() [2]
Ein Zeichen vom Standardeingabekanal ohne Echo lesen. Steuerzeichen
wie <Ctrl>-<C>, <Ctrl>-<S> oder <Ctrl>-<Q> werden nicht interpre-
tiert.

Cnecin() [2]
Ein Zeichen vom Standardeingabekanal ohne Echo lesen. Hier werden
Steuerzeichen wie <Ctrl>-<C>, <Ctrl>-<S> oder <Ctrl>-<Q> interpre-
tiert.

Cconws(str) [6]
str: Langwort
Eine Zeichenkette, deren Adresse in "str" übergeben wird, wird auf dem
Standardausgabekanal ausgeben. Die Zeichenkette muß mit einem Null-
byte abgeschlossen sein.

Cconrs(buf) [6]
buf: Langwort
Editierbare Zeichenkette vom Standardeingabekanal lesen. "buf" zeigt
auf einen reservierten Bereich; das erste Byte dieses Bereichs enthält die
maximale Länge der einzugebenden Zeichenkette, das zweite nach der
Rückkehr die tatsächliche Anzahl der eingegebenen Zeichen. Die gelese-
nen Zeichen werden ab dem dritten Byte abgelest.

CconisQ [2]
Gibt null zuriick, wenn ein Zeichen am Standardeingabekanal verfiigbar
ist, andernfalls einen von null verschiedenen Wert.

ATARI ST - Programmieren in Maschinensprache

$0E

$10

$11

$12

$13

$19

$2A

Dsetdrv(drv) [4]
Aktuelles Laufwerk festlegen; "drv" ist die Laufwerksnummer (0 = A;,
1=B;, ...). Rückgabewert ist ein Bitvektor der momentan angeschlosse-
nen Laufwerke (Bit 0 = A:, Bit1=B;, ...)

Cconost) [2]
Gibt null zurück, wenn die Console bereit ist, Zeichen auszugeben, an-
dernfalls einen von null verschiedenen Wert.

Cprnos() [2]
Gibt null zuriick, wenn der Drucker bereit ist, Zeichen auszugeben, an-
dernfalls einen von null verschiedenen Wert.

Cauxis() [2]
Gibt null zurück, wenn ein Zeichen an der seriellen Schnittstelle verfüg-
bar ist, andernfalls einen von null verschiedenen Wert.

Cauxos() [2] Ä
Gibt null zurück, wenn die serielle Schnittstelle bereit ist, Zeichen auszu-
geben, andernfalls einen von null verschiedenen Wert.

Dgetdrv() [2]
Gibt die Nummer des aktuellen Laufwerks zurück (0 = A:, 1=B;, ...)

Super(stack) [6]
Stack: Langwort
Wechselt zwischen User- und Supervisormodus. Wenn sich der Prozes-
sor beim Aufruf von Super im Usermodus befindet, schaltet er den Su-
pervisor-Modus ein und benutzt "stack" als den neuen Supervisor-Stack-
pointer. Wenn "stack" den Wert Null hat, wird der User-Stack als Super-
visorstack weiterbenutzt. Wenn der Prozessor sich im Supervisormodus
befindet, schaltet er in den Usermodus um und benutzt fortan "stack" als
Supervisor-Stackpointer. Wenn "stack" den Wert —1 hat, wird nur 0
oder 1 zurückgegeben, je nachdem, ob der Prozessor sich im User- oder
Supervisormodus befindet.

Tgetdate() [2]
Gibt das Systemdatum zurück. Rückgabewert ist ein Bitfeld, das folgen-
dermaßen interpretiert werden muß:

0..4 Tag 1..31
5..8 Monat 1..12
9..15 Jahr 0..119, gerechnet ab 1980

Zusammenarbeit mit dem Betriebssystem 235

$2B

$2C

9D

$31

Tsetdate(date) [4]
date: Wort
Systemdatum in obigem Format setzen.

Tgettime() [2]
Gibt die Systemzeit zurück. Rückgabewert ist ein Bitfeld, das folgender-
maßen interpretiert werden muß:

Bits
0...4 Sekunden 1..59
5...8 Minuten 1..59
9...15 Stunden 0..23

Tsettime(time) [4]
time: Wort
Systemzeit in obigem Format setzen.

FgetdtaQ [2]
Ermittelt die Adresse des aktuellen DTA (Disk Transfer Address). Siehe
Funktionen Fsetdta, Fsnext und Fsfirst.

Sversion() [2]
Gibt die Versionsnummer des GEMDOS zuriick.

Ptermres(keep,ret) [8]
keep: Langwort

ret: Wort
Beendet einen Prozeß, reserviert aber den von ihm belegten Speicher.
"ret" ist der Rückgabewert des Prozesses, "keep" die Anzahl der Bytes
ab Anfang der Basepage, die reserviert werden sollen.

Dfree(buf,drv) [8]
buf: Langwort
drv: Wort
Liefert Informationen über das Laufwerk, dessen Nummer in "drv"
übergeben wird (O=aktuelles Laufwerk, 1=A:, 2=B:, ...). "buf" zeigt auf
mindestens 16 reservierte Bytes, in denen vier Langworte zurückgege-
ben werden:

buf b free Anzahl der freien Cluster
buf+4 _b_total Gesamtanzahl Cluster
buf+8 b_secsiz Anzahl der Bytes in einem Sektor
buf+l2 bclsiz Anzahl Sektoren pro Cluster

 236 ATARI ST - Programmieren in Maschinensprache

$39 Dcreate(path) [6]
path: Langwort
Erzeugt einen Ordner. "path" zeigt auf eine Zeichenkette, die den Pfad-
namen des anzulegenden Ordners enthält und mit einem Nullbyte abge-
schlossen ist.

$3A Ddelete(path) [6]
path: Langwort
Löscht einen Ordner. "path" zeigt auf eine Zeichenkette, die den Pfadna-
men des zu löschenden Ordners enthält und mit einem Nullbyte abge-
schlossen ist.

$3B Dsetpath(path) [6]
path: Langwort
Legt das aktuelle Directory fest. "path" zeigt auf eine Zeichenkette mit
dem Pfadnamen.

$3C Fcreate(name,attr) [8]
name: Langwort
attr: Wort
Legt eine Datei an; "name" zeigt auf den Dateinamen (Pfadnamen).
Wenn eine Datei mit dem angegebenen Namen schon existiert, wird sie
auf Länge Null abgeschnitten. Im Parameter "attr" können Datei-Attri-

_ bute festgelegt werden:

Bit
0 nur Lesezugriff auf Datei erlaubt
1 versteckte Datei; wird nicht angezeigt
2 Systemdatei; ebenfalls versteckt
3 Diskettenkennung (11 Zeichen lang)

Rückgabewert ist eine Handle-Nummer oder eine negative Fehlernum-
mer.

$3D Fopen(name,mode) [8]
name: Langwort
mode: Wort |
Offnet eine Datei mit dem angegebenen Namen. "mode" bestimmt die
Zugriffsart:

mode

0 nur lesen

1 nur schreiben

2 lesen und schreiben

Zusammenarbeit mit dem Betriebssystem 237

$3E

$3F

$41

$42

Rückgabewert ist eine Handle-Nummer oder eine negative Fehlernum-
mer. Die kleinste mögliche Handle-Nummer ist 6, da die ersten 5 Num-
mern bereits für die Standard-Kanäle vergeben sind, nämlich

0 für Standard-Eingabe (Tastatur)
1 für Standard-Ausgabe (Bildschirm)
2 für Standard-Fehlerkanal (Bildschirm)
3 für die serielle Schnittstelle (AUX:)
4 fiir den Drucker (PRN:, LST:)

Fclose(handle) [4]
handle: Wort
Schließt die Datei mit der Nummer handle.

Fread(handle,count,buf) [12]
handle: Wort
count: Langwort
buf: Langwort
Bytes aus einer Datei lesen. Aus der Datei mit der Nummer "handle"
werden count Bytes in den Puffer "buf" gelesen. Riickgabewert ist die
Anzahl der tatsächlich gelesenen Bytes oder eine negative Fehlernum-
mer.

Fwrite(handle,count,buf) [12]
handle: Wort
count: Langwort
buf: Langwort | |
Bytes in eine Datei schreiben. In die Datei mit der Nummer "handle"
werden "count" Bytes aus dem Puffer "buf" geschrieben. Riickgabewert
ist die Anzahl der tatsächlich geschriebenen Bytes oder eine negative
Fehlernummer.

Fdelete(name) [6]
name: Langwort
Löscht die Datei mit dem angegebenen Namen.

Fseek(offset,handle,mode) [10]
offset: Langwort
handle: Wort
mode: Wort
Setzt den Dateizeiger für Schreib/Lesezugriffe auf einen bestimmten
Wert. "offset" wird je nach dem Wert von "mode" unterschiedlich inter-
pretiert:

ATARI ST — Programmieren in Maschinensprache

$43

45

$47

mode
0 ab Dateianfang positionieren
1 ab aktueller Position positionieren
2 ab Dateiende positionieren (offset muß negativ sein)

Fattrib(path, mode, attr) [10]
path: Langwort
mode: Wort

attr: Wort
Wenn "mode" null ist, liefert die Funktion die Attribute der mit "path"
bezeichneten Datei. Hat "mode" den Wert 1, so werden die Attribute der
Datei auf den Wert 1 gesetzt. Die Bits in "attr" haben folgende Bedeu-
tung:

Bit
0 nur Lesezugriff erlaubt
1 versteckte Datei
2 Systemdatei (auch versteckt)
3 Diskettenkennung
4 Ordner
5 Archiv-Bit, z.Z. unbenutzt

Fdup(stdhandle) [4]
stdhandle: Wort
Liefert eine zweite Handle-Nummer fiir einen Standard-Kanal, der mit
"stdhandle" ausgewählt wird (siehe Fopen). Man hat somit zwei Handle-
Nummern, die sich auf das gleiche Gerät beziehen.

Fforce(stdhandle, nonstdhandle) [6]
stdhandle: Wort
nonstdhandle: Wort
Leitet den Kanal "stdhandle" (siehe Fopen) in den Kanal "nonstdhandle"
um. Wenn "nonstdhandle” beispielsweise eine Datei bezeichnet, kann da-
mit die Ausgabe, die normalerweise auf dem Bildschirm erfolgen wür-
de, in diese Datei umgelenkt werden.

Dgetpath(pathbuf, drv) [8]
pathbuf: Langwort
drv: Wort
Schreibt den aktuellen Zugriffspfad für das angegebene Laufwerk in den
Puffer "pathbuf". Es sollten mindestens 64 Bytes reserviert werden.

Zusammenarbeit mit dem Betriebssystem 239

$48

$49

HA

$4B

Malloc(amount) [6]
amount: Langwort
Reserviert Speicherplatz. "amount" gibt die Anzahl der benötigten
Bytes an; Rückgabewert ist ein Zeiger auf die (gerade) Anfangsadresse
des reservierten Speicherbereiches oder 0, falls ein Fehler auftrat.

Mfree(addr) [6]
addr: Langwort
Gibt einen mit Malloc reservierten Speicherblock wieder frei. Dessen
Adresse wird in "addr" übergeben.

Mshrink(zero, mem, size) [12]
ZETO: Wort
mem: Langwort
size: Langwort
Verkürzt einen mit Malloc reservierten Speicherblock. "zero" muß null
sein, "mem" ist die Adresse des Speicherblocks, "size" die Anzahl der
Bytes, die im Block gehalten werden sollen.

Pexec(mode, path, commandline, environment) [16]
mode: Wort
path: Langwort
commandline: Langwort
environment: Langwort
Lädt und/oder startet ein anderes Programm. "path" gibt den Pfadnamen
des Programms an, "commandline" eine Kommandozeile, die dem Pro-
gramm übergeben wird, "environment" den MS-DOS-kompatiblen En-

vironment-String; ist "environment" null, dann erbt das Programm den

Environment-String des aufrufenden Prozesses. Zulässige Werte für
"mode" sind:

mode
0 laden und starten
3 nur laden
4 nur Basepage für das Programm einrichten.
5 Programm starten

Das aufrufende Programm bleibt in jedem Fall resident. Im Modus Null
wird der Rückgabewert des aufgerufenen Programms geliefert; ein ne-
gativer Funktionswert signalisiert in jedem Fall einen Fehler.

Pterm(code)
code: Wort
Programm beenden und den angegebenen Wert an das aufrufende Pro-
gramm zurückgeben.

a

ATARI ST - Programmieren in Maschinensprache

ME

$4F

$56

$57

Fsfirst(spec, attr)[8]
spec: Langwort
attr: Wort
Directory nach einer Datei durchsuchen, deren Name auf das Muster
paßt, auf das "spec" zeigt. Mit "attr" können nur Dateien mit bestimmten
Attributen ausgewählt werden (siehe Fattrib). Das Ergebnis wird in der
aktuellen DTA abgelegt:

Bytes
0..20 uninteressant
21 Dateiattribut
22 — 23 ~+Dateierzeugungszeit
24 - 25 Dateierzeugungsdatum
26 — 29 Dateigröße (Langwort)
30 — 43 Dateiname

Fsnext() [2]
Nächste Datei suchen, die auf die Angaben von Fsfirst paßt.

Frename(zero, old, new) [12]
zero: Wort
old: Langwort
new: Langwort
Ändert einen Dateinamen von "old" nach "new". Zero ist reserviert und

muß den Wert 0 haben.

Fdatime(handle, buf, set) [10]
handle: Wort
buf: Langwort
set: Wort
Wenn "set" den Wert Null hat, wird Datum und Zeit der Erzeugung der
Datei mit der Nummer "handle" im Puffer "buf" abgelegt; wenn "set" 1
ist, werden Datum und Zeit aus dem Puffer "buf" festgelegt.

Fehlermeldungen

Beim GEMDOS können folgende negative Fehlernummern auftreten:

32
33
—34
-35
—36

Ungültige Funktionsnummer
Datei nicht gefunden
Pfadname nicht gefunden
Zu viele Dateien geöffnet
Zugriff nicht möglich

Zusammenarbeit mit dem Betriebssystem 241

Gelegentlich kann es auch vorkommen, daß das GEMDOS BIOS-Fehlermel-
dungen zurückgibt. Die BIOS-Fehlermeldungen finden Sie am Ende des näch-
sten Abschnitts.

Das BIOS

BIOS steht für "Basic Input/Output System". Diese Routinensammlung stellt
zusammen mit dem XBIOS die Schnittstelle zwischen dem GEMDOS und der

Hardware dar.

Wie der Name schon sagt, ist es Aufgabe des BIOS, sich um grundlegende Ein-
und Ausgabefunktionen zu kümmern. Dazu gehört das Schreiben von Zeichen
auf den Bildschirm und deren Übertragung zum Drucker, das Einlesen von
Zeichen von der Tastatur und der Zugriff auf Diskettendateien.

Das BIOS ist aber nicht nur "Sklave des GEMDOS für niedere Tätigkeiten”,
sondern kann auch vom Programmierer aufgerufen werden. Der Aufruf er-
folgt wie beim GEMDOS: Zuerst werden die Parameter der Reihe nach auf
dem Stack abgelegt, dann folgt ein Wort mit der Funktionsnummer, und der

Einsprung ins Betriebssystem wird schließlich mit TRAP #13 ausgeführt. Es
folgt noch die unvermeidliche Stackkorrektur, und der Rückgabewert des
Aufrufs befindet sich im Register DO.

Einen Unterschied zu den GEMDOS-Aufrufen gibt es: Beim BIOS können die
Register DO - D2 und AO - A2 verändert werden.

Es ist vielleicht manchmal von Bedeutung, daß die Funktionsnummer auf dem
Stack vom BIOS auf null gesetzt wird; Sie sollten also nicht versuchen, diese in
einem darauffolgenden BIOS-Aufruf zu "recyclen". (Durch diese Maßnahme
werden bei jedem BIOS-Aufruf einige Taktzyklen gespart).

Für besonders trickreiche Programmierung kann es von Bedeutung sein, daß
das BIOS bis zu dreifach reentrant ist; das heißt, daß man etwa aus einem In-
terrupt heraus problemlos eine BIOS-Funktion ausführen kann, während das
Vordergrundprogramm gleichzeitig ebenfalls einen BIOS-Aufruf ablaufen
läßt. Diese Eigenschaft erlaubt es auch, aus eigenen BIOS-Routinen heraus
weitere BIOS-Aufrufe auszuführen.

Als Beispiel soll hier ein Programmteil dienen, der ein Zeichen von der Tasta-
tur einliest — eine Alternative zur GEMDOS-Funktion CNECIN (Nummer 8).
Dazu dient die BIOS-Funktion BCONIN (Nummer 2), nicht zu verwechseln
mit der GEMDOS-Funktion CONIN. BCONIN erhält als Parameter einen
Code für das Gerät, von dem ein Zeichen gelesen werden soll. Dabei steht 2
für Eingabe von der Tastatur.

242 ATARI ST - Programmieren in Maschinensprache

CON EQU 2 * Code flir Console=Tastatur

BCONIN EQU 2 * Funktionscode . . . liestaste

*

x

*

MOVE.W #CON,- (SP) * Gerätenummer
MOVE.W #BCONIN,-(SP)* Funktionscode

TRAP #13 * BIOS-Aufruf
ADDQ.L #4,SP * Stack korrigieren

Jetzt steht der ASCII-Wert des gelesenen Zeichens
im untersten Byte von DO

Nun zu den einzelnen BIOS-Aufrufen:

$00

$01

$02

$03

getmpb(p_mpb) [6]
p_mpb: Langwort
Fullt einen Puffer mit Informationen tiber die Speicheraufteilung des Sy-
stems. MPB steht fur "Memory Parameter Block”.

Bconstat(dev) [4]
dev: Wort
Liefert den Eingabestatus eines zeichenorientierten Geräts. Rückgabe-
wert ist 0, wenn gerade kein Zeichen verfügbar ist und -1 ($FFFF),
wenn mindestens ein Zeichen ansteht. Die Werte von "dev" haben folgen-
de Bedeutungen:

QO PRT: (Drucker; Parallelport)
1 AUX: (RS232-Schnittstelle)
2 CON: (Tastatur)
3 MIDI (Midi-Schnittstelle)
4 KBD: (Tastaturprozessor)

Bconin(dev) [4]
dev: Wort
Liest ein Zeichen von dem angegebenen Gerät (Bedeutung von "dev" sie-
he Bconstat). Die Funktion wartet so lange, bis ein Zeichen eintrifft, und
gibt das Zeichen dann in DO zurück, wobei das obere Wort von DO null
ist.

Bei der Console-Eingabe (Gerätenummer 2) wird zusätzlich der Tasta-
tur-Scancode im unteren Byte des oberen Wortes von DO zurückgege-
ben.

Bconout(dev, c) [6]
dev: Wort
G Byte
Gibt das Zeichen c auf dem angegebenen Gerät aus. Die Funktion kehrt
nicht zurück, bevor das Zeichen ausgegeben wurde, also unter Umstän-
den nie, wenn das entsprechende Gerät nicht bereit war.

Zusammenarbeit mit dem Betriebssystem 243

$04

$05

$07

Rwabs(rwflag, buf, count, recno, dev) [12]
rwflag: Wort
buf: Langwort
count: Wort
recno: Wort
dev: Wort
Liest oder schreibt logische Sektoren auf ein Laufwerk. "rwflag" darf
folgende Werte annehmen:

0 lesen
1 schreiben
2 lesen, Diskettenwechsel ignorieren
3 schreiben, Diskettenwechsel ignorieren

"buf" zeigt auf einen Puffer, aus dem gelesen bzw. in den geschrieben
werden soll. Ungerade Werte von "buf" sind zwar erlaubt, verlangsa-
men aber die Übertragung. "count" gibt an, wie viele Sektoren übertra-
gen werden sollen. "recno” ist die logische Sektornummer, bei der die
Übertragung beginnt. "dev" ist die Gerätenummer des Laufwerks:

0 Diskettenlaufwerk A:
1 Diskettenlaufwerk B:
2 und größer: Festplatten, RAM-Disks, ...

Rückgabewert 0 signalisiert eine erfolgreiche Operation; negative Werte
zeigen einen Fehler an.

Setexc(vecnum, vec) [8]
vecnum: Wort
vec: Langwort
Setzt den Exception-Vektor mit der Nummer "vecnum" auf den Wert
"vec". Wenn "vec" allerdings den Wert —1 hat, wird lediglich der mo-
mentane Inhalt des Vektors zurückgegeben.

tickcal() [2]
Liefert die zwischen zwei Aufrufen des System-Timers verstrichene
Zeit auf Millisekunden gerundet.

getbpb(dev) [4]
dev: Wort
"dev" ist eine Laufwerksnummer (0 = A:, 1 = B:, ...). Die Funktion gibt
einen Zeiger auf den BIOS-Parameter-Block des Geräts zurück (siehe
Abschnitt Kapitel 6 unter "Eine RAM-Disk").

244 ATARI ST - Programmieren in Maschinensprache

$08 Bcostat(dev) [4]
dev: Wort
"dev" ist eine Gerätenummer wie in Bconstat. Die Funktion liefert 0 zu-
rück, wenn das Gerät bereit ist, Zeichen zu empfangen, andernfalls —1.

$09 mediach(dev) [4]
dev: Wort
"dev" ist eine Laufwerksnummer. Rückgabewert ist einer der folgenden:

0 mit Sicherheit kein Diskettenwechsel
1 _ Diskettenwechsel könnte stattgefunden haben
2 Diskettenwechsel hat stattgefunden.

$0A Drvmap([2]
Liefert einen Bitvektor, in dem ein gesetztes Bit signalisiert, daß ein ent-
sprechendes Laufwerk angeschlossen ist (0..31). Der Aufruf liefert den
Inhalt der Systemvariable _drvbits. Für das Eintragen der Bits in dieser
Variablen sind die Laufwerkstreiber selbst verantwortlich.

$0B Kbshift(mode) [4]
mode: Wort
Setzt die Shift-Bits der Tastatur auf den Wert "mode". Wenn allerdings
"mode" negativ ist, werden nur die aktuellen Shift-Bits zurückgegeben.
Die einzelnen Bits haben folgende Bedeutung:

0 rechte Shift-Taste
1 linke Shift-Taste
2 Control-Taste
3 Alternate-Taste
4 Caps-Lock-Taste
5 rechter Mausknopf (CLR/HOME)
6 linker Mausknopf (INSERT)
7 (momentan nicht benutzt; enthält 0)

Fehlermeldungen

Das BIOS kann eine der folgenden Fehlernummern zurückgeben:

— Kein Fehler; alles in Ordnung
— Laufwerk spricht nicht an (Timeout)
3 Unbekannter Befehl
4 CRC Fehler; Prüfsumme falsch
-5 Ungültiger Befehl

Zusammenarbeit mit dem Betriebssystem 245

6 Track nicht gefunden
—] Falscher Bootsektor
8 Sektor nicht gefunden
-9 Kein Papier im Drucker
—10 Schreibfehler

—]1 Lesefehler

—12 Allgemeiner Fehler
—13 Diskette schreibgeschiitzt
—14 Diskette wurde gewechselt
15 Unbekanntes Gerät
-16 _ __ Defekter Sektor (Verify)
17 Andere Diskette einlegen

Das XBIOS

XBIOS steht für "extended BIOS", eine Routinensammlung, die Funktionen
zur Ausnutzung der speziellen Hardwaremöglichkeiten des ATARI ST bietet.
GEMDOS und BIOS bieten Routinen, die in ähnlicher Form auf allen Compu-
tern verfügbar sein müssen; XBIOS ist dagegen speziell auf den ST zugeschnit-
ten.

Das XBIOS bietet zunächst einmal Funktionen zur Ansteuerung der Chips des
ATARI ST: Grafikchip, Soundchip, Tastaturprozessor, Schnittstellen-Con-
troller und Floppy-Controller. Darüber hinaus gibt es noch Funktionen für
Zufallszahlen, Einstellung des Druckertreibers und Ausführung einer Bild-
schirm-Hardcopy.

Der dem XBIOS zugeordnete TRAP-Vektor ist Nummer 14. Ansonsten er-
folgt der Aufruf einer XBIOS-Funktion genau wie beim BIOS. Auch in
XBIOS-Aufrufen können die Register DO — D2 und AO — A2 verändert wer-
den.

Als Beispiel soll unser Programmausschnitt eine Einstellung am Tastaturpro-
zessor vornehmen: Die Tastenwiederholrate soll verringert werden. Dazu
wird der XBIOS-Aufruf KBRATE (35) verwendet, der zwei Parameter er-
hält: Der erste ist die Verzögerung zwischen dem Niederdrücken einer Taste
und dem Einsetzen der Wiederholfunktion, der zweite gibt die Zeitspanne zwi-
schen zwei Wiederholungen bei gedrückter Taste an. Beide Werte werden in
Vielfachen einer fünfzigstel Sekunde angegeben. Wenn einer der beiden Werte
nicht verändert werden soll, wird statt der Zeitspanne —1 ($FFFF) übergeben.
Wenn wir die Wiederholrate auf fünf Wiederholungen pro Sekunde, also
10/50 Sekunden für eine Wiederholung setzen wollen, sieht das folgender-
maßen aus:

ATARI ST - Programmieren in Maschinensprache

KBRATE EQU 35 * XBIOS-Funktionsnummer

MOVE.W #10,-(SP) * Wiederholung alle 10/50 s
MOVE .W #-1,-(SP) * Verzögerung nicht ändern
MOVE.W #KBRATE,-(SP) * XBIOS-Funktionsnummer
TRAP #14 * XBIOS-Aufruf

ADDQ.L #6,SP * Stack korrigieren

Hier wieder eine Beschreibung sämtlicher Aufrufe:

$00

$01

$02

$03

$05

Initmous(type, param, vec) [12]
type: Wort
param: Langwort
vec: Langwort
Intitialisiert den Maus-Handler. Dieser Aufruf ist in erster Linie von be-

triebssysteminterner Bedeutung und wird deshalb hier nicht näher be-
schrieben.

Ssbrk(amount) [4]
amount: Wort

Reserviert "amount" Bytes am oberen Ende des Speichers. Zurückgege-
ben wird die Anfangsadresse des reservierten Speicherbereiches. Leider
funktioniert diese Funktion nur, bevor das Betriebssystem initialisiert
ist. Deshalb ist sie kaum von praktischer Bedeutung.

_physBase() [2]
Liefert die physikalische Bildschirmadresse (wartet bis zum nächsten
VBI).

_logBaseQ [2] .
Liefert die logische Bildschirmadresse.

_getRezQ) [2]
Liefert die momentane Bildschirmauflésung. 0 steht fiir niedrige Aufl6-
sung, 1 für mittlere, 2 fiir hohe.

_set Screen(logLoc, physLoc, rez) [12]
logLoc: Langwort
physLoc: Langwort
rez: Wort
Legt die logische Bildschirmadresse, die physikalische Bildschirmadres-
se und die Auflösung fest. Negative Parameter werden ignoriert; so
braucht man nicht alle drei Dinge auf einmal festzulegen. Die logische
Bildschirmadresse wird sofort geändert; die physikalische erst nach dem
nächsten VBI. Wenn die Auflösung geändert wird, wird der Bildschirm

Zusammenarbeit mit dem Betriebssystem 247

$07

gelöscht, der Cursor in die linke obere Ecke gesetzt und der VT52-Emu-
lator neu initialisiert.

_setPallete(palettePtr) [6]
palettePtr: Langwort
Belegt alle 16 Farbregister des Grafikchips von den 16 Worten, auf die
palettePtr zeigt, neu. Die Farben werden erst im nächsten VBI geändert.

_setColor(colorNum, color) [6]
colorNum: Wort

color: Wort

Setzt die Farbe "colorNum" (0..15) auf den angegebenen Wert. Wenn
der Farbwert negativ ist, wird er ignoriert. In DO wird der alte Farb-
wert zurückgegeben.

_floprd(buf, filler, devno, sectno, trackno, sideno, count) [20]
buf: Langwort
filler: Langwort
devno: Wort

sectno: Wort

trackno: Wort
sideno: Wort
count: Wort

Liest einen oder mehrere Sektoren von einer Diskette. "buf" zeigt auf ei-
nen Puffer an Wortadresse, in den die Daten geschrieben werden.
"filler" ist ein unbenutztes Langwort. "devno" ist die Laufwerksnummer
(0 oder 1), "sectno" die sektornummer (normalerweise 1 — 9), "trackno"
die Tracknummer, "sideno" die Diskettenseite (0 oder 1). "count" gibt
an, wie viele Sektoren gelesen werden sollen (nicht mehr, als sich auf ei-
nem Track befinden). Ein negativer Rückgabewert in DO zeigt einen
Fehler an.

_flopwr(buf, filler, devno, sectno, trackno, sideno, count) [20]
Langwort

filler: Langwort
devno: Wort
sectno: Wort
trackno: Wort
sideno: Wort
count: Wort
Schreibt einen oder mehrere Sektoren auf eine Diskette. "buf" zeigt auf
einen Puffer an gerader Adresse, der die zu schreibenden Daten enthält.
"filler" ist ein unbenutztes Langwort. "devno" ist die Laufwerksnummer
(0 oder 1), "sectno" die Sektornummer (normalerweise 1 — 9), "trackno"

ATARI ST - Programmieren in Maschinensprache

0A

$0B

$0D

die Tracknummer (normalerweise 0 - 79), "sideno" die Diskettenseite (0
oder 1). "count" gibt an, wie viele Sektoren geschrieben werden sollen
(nicht mehr, als sich auf einem Track befinden). Ein negativer Rückga-
bewert in DO zeigt einen Fehler an.

_flopfmt(buf, filler, devno, spt, trackno, sideno, interlv, magic, virgin)

[26]
buf: Langwort
filler: Langwort
devno: Wort

spt: Wort
trackno: Wort

sideno: Wort
interlv: Wort
magic: Langwort
virgin: Wort
Formatiert einen Track auf einer Diskette. "buf" zeigt auf einen Puffer
an gerader Adresse, der die gesamten Trackdaten aufnehmen kann (8K
fiir 9 Sektoren pro Track). "filler" ist ein ungenutztes Langwort. "dev-
no" gibt die Laufwerksnummer an (0 oder 1), "spt" die Anzahl der Sek-
toren pro Track (1 - 11, üblicherweise 9), "trackno" die Tracknummer
(normalerweise 0 — 79), "sideno" die Diskettenseite (0 oder 1). "magic"
ist eine magische Zahl, die den Wert $37654321 haben muß. "virgin" ist
ein Wort Füllwert, mit dem die neuen Sektoren beschrieben werden (üb-
licherweise $E5SES). Wenn defekte Sektoren auftreten, wird eine Liste
im Puffer "buf" abgelegt, die von einer Null beendet wird. Gab es keine
defekten Sektoren, so ist gleich das erste Wort null. Durch das Formatie-
ren eines Tracks wird der Diskettenwechselstatus auf "Wechsel hat statt-
gefunden" gesetzt.

used-by-BIOSQ
interne Funktion

midiws(cnt,ptr) [8]
cnt: Wort
ptr: Langwort
Schreibt eine Zeichenkette zur MIDI-Schnittstelle. "cnt" gibt die Anzahl
der zu ubertragenden Zeichen minus 1 an, "ptr" die Adresse der Zei-
chenkette.

_mfpint(interno, vector) [8]
interno: Wort
vector: | Langwort
Setzt den MFP-Interrupt-Vektor Nummer’ "interno" (0-15) auf den
Wert "vektor".

Zusammenarbeit mit dem Betriebssystem 249

$0E

SOF

$16

$11

$12

iorec(devno) [4]
devno: Wort
Gibt einen Zeiger auf einen "input buffer record" eines seriellen Geräts.
Diese Funktion ist hauptsächlich von interner Bedeutung und wird des-
halb nicht weiter erklärt.

rsconf(speed, flowctl, ucr, rsr, tsr, scr) [14]
speed: Wort
flowctl: Wort

ucr: Wort

rsr: Wort

tsr: Wort

ser: Wort
Konfiguriert die RS232-Schnittstelle. Jeder Parameter, der den Wert —1

($FFFF) hat, wird ignoriert. "speed" legt die Übertragungsrate fest, et-
wa 9 für 300 bps oder 7 für 1200 bps. "flow" bestimmt das Übertra-
gungsprotokoll, “ucr", "rsr", "tsr" und "scr" werden in die entsprechen-
den Register des MFP 68901 geschrieben.

keytbl(unshift, shift, capslock) [14]
unshift; Langwort
shift: Langwort
capslock: Langwort
Setzt Zeiger auf die Tabellen, mit denen der Tastatur-Scancode in ASCII
umgewandelt wird. "unshift", "shift" und "capslock" setzen Zeiger für
Tasten ohne Shift, Tasten mit Shift und Tasten im Caps-Lock-Modus. Je-
de der Tabellen ist 128 Bytes lang. Zurückgegeben wird ein Zeiger auf
die Struktur "keytab": keytab: unshift, keytab+4: shift, keytab+8: caps-
lock

random() [2]

Gibt eine 24-Bit-Zufallszahl zurück. Bits 24..31 sind null. Bei jedem Sy-
stemstart wird eine neue Sequenz von Zufallszahlen geliefert.

_protobt(buf, seralno, disktype, execflag) [14]
buf: Langwort
serialno: Langwort
disktype: Wort
execflag: Wort
Erzeugt einen Bootsektor im Speicher, der dann auf eine Diskette ge-
schrieben werden kann. "buf" zeigt auf einen:512-Byte-Puffer mit belie-
bigem Inhalt. "serialno" ist die Seriennummer, die der Bootsektor erhal-
ten soll. Wenn "serialno" größer oder gleich $01000000 ist, wird eine
zufällige Seriennummer erzeugt. "disktype" gibt die Art der Diskette an:

250 ATARI ST — Programmieren in Maschinensprache

$13

$14

$15

0 40 Tracks, einseitig (180K)
1 40 Tracks, zweiseitig (360K)
2 80 Tracks, einseitig (360K)

80 Tracks, zweiseitig (720K)
Wenn "disktype" —1 ist, werden die in "buf" vorhandenen Informationen
nicht iiberschrieben. Wenn "execflag" den Wert 1 hat, wird der Bootsek-
tor ausfiihrbar gemacht, bei O nicht. Bei —1 wird er so gelassen, wie er
ist.

Uo

_flopver(buf, filler, devno, sectno, trackno, sideno, count) [20]
buf: Langwort
filler: Langwort
devno: Wort
sectno: Wort
trackno: Wort
sideno: Wort
count: Wort
Uberpriift den Zustand von Sektoren, indem sie einfach gelesen werden.
"buf" zeigt auf einen 1024 Bytes langen Puffer an Wortadresse, in den
die Daten geschrieben werden. "filler" ist ein unbenutztes Langwort.
"devno" ist die Laufwerksnummer (0 oder 1), "sectno" die Sektornum-
mer (normalerweise 1 — 9), "trackno" die Tracknummer, "sideno" die
Diskettenseite (0 oder 1). "count" gibt an, wie viele Sektoren überprüft
werden sollen (nicht mehr, als sich auf einem Track befinden). Ein nega-
tiver Rückgabewert in DO zeigt einen Fehler an. Nach der Ausführung
befindet sich in "buf" eine Liste der zerstörten Sektoren, die mit einer

Null abgeschlossen wird.

scrdmp() [2]
Druckt eine Bildschirm-Hardcopy aus.

cursconf(function, operand) [6]
function: Wort
operand: Wort
Stellt den Cursor ein. Zulässige Werte für "function" sind:

Q Cursor abschalten
1 Cursor einschalten
2 Cursor blinkend
3 Cursor nicht blinkend
4 _Cursor-Blink-Intervall auf "operand" setzen
5 Cursor-Blink-Intervall zuriickgeben

Das Cursor-Blink-Intervall wird von der Bildschirmfrequenz abgeleitet
(50, 60 oder 70 Hz).

Zusammenarbeit mit dem Betriebssystem 251

$16

$17

$18

$19

settime(datetime) [6]
datetime: Langwort
Setzt Datum und Zeit im Tastaturprozessor. In "datetime" wird die Zeit
im unteren, das Datum im oberen Wort angegeben. Das Format ent-
spricht dem der GEMDOS-Funktionen Tsetdate() und Tsettime().

gettime() [2]
Liefert Zeit und Datum aus dem Tastaturprozessor zurück (Zeit im unte-
ren Wort, Datum im oberen Wort).

bioskeys() [2]
Stellt die Standardtabellen zur Umrechnung von Tastaturcodes in ASCIH
wieder her.

ikbdws(cnt,ptr) [8]
cnt: Wort
ptr: Langwort
Ubertragt eine Zeichenkette zum Tastaturprozessor. "cnt" gibt die An-
zahl der zu übertragenden Zeichen minus 1 an, "ptr" die Adresse der

| Zeichenkette.

$1A

$1B

$1C

$1D

$IE

jdisint(intno) [4]
intno: Wort
Schaltet Interrupt Nummer "intno" auf dem MFP 68901 ab.

jenabint(intno) [4]
intno: Wort
Schaltet Interrupt Nummer "intno" auf dem MFP 68901 ein.

giaccess(data, regno) [6]
data: Byte
regno: Wort
Liest oder schreibt in Register des Soundchips. "regno" ist die Register-
nummer (0 — 15). Normalerweise wird gelesen; Wenn der Wert ge-
schrieben werden soll, mu8 zusatzlich Bit 7 in "regno” gesetzt sein. "da-

ta" ist der hineinzuschreibende Wert.

offgibit(bitno) [4]
bitno: Wort
Setzt das Bit "bitno" im PORT A-Register auf null.

ongibit(bitno) [4]
bitno: Wort |
Setzt das Bit "bitno" im PORT A-Register auf eins.

252 ATARI ST - Programmieren in Maschinensprache

$1F xbtimer(timer, control, data, vec) [12]

$20

$21

timer: Wort
control: Wort
data: Wort

vec: Langwort
Schreibt in die Register der Timer A, B, C oder D. "timer" ist die Ti-
mer-Nummer (entsprechend 0, 1, 2 oder 3), "control" der Wert fiir das
Kontrollregister, "data" der Wert fiir das Datenregister des Timers.
"vec" ist der Vektor für den Timer-Interrupt.

dosound(ptr) [6]
ptr: Langwort
Spielt im Hintergrund Töne ab; der Programmzähler des Sound-Pro-
gramms wird auf "ptr" gesetzt. "ptr" zeigt auf eine Reihe von Tonbefeh-
len, die byteweise organisiert sind.

Befehle $00 bis $0F erhalten ein Byte-Argument, das entsprechend in
das Soundchip-Register 0 — 15 geschrieben wird. $80 erhält ein Byte-
Argument, das in ein internes Register gespeichert wird. $81 hat drei
Byte-Argumente. Das erste Byte steht fiir ein Soundchip-Register, in das
der Wert des internen Registers geladen wird. Das zweite Byte ist eine
vorzeichenbehaftete Zahl, die zum Inhalt des internen Registers addiert
wird, und der dritte Wert ist der Endwert des internen Registers. Die
Anweisung wird ausgefiihrt, bis das interne Register den Endwert an-
nimmt. $82 — $FF erhalten Ein-Byte-Parameter. Ist der Parameter null,
dann ist die Tonausgabe beendet. Andernfalls wird der Parameter als
Anzahl von 1/50 Sekunden interpretiert, die gewartet werden, bis die
nächsten Werte interpretiert werden.

setprt(config) [4]
config: Wort
Setzt oder liest das Drucker-Konfigurationsbyte. Wenn "config" den
Wert -1 hat, wird der aktuelle Wert zurückgegeben, sonst wird das Byte
gesetzt. Die einzelnen Bits haben folgende Bedeutung:

Bit Wert 0 Wert 1

0 Matrix Typenrad
1 Farbdrucker nur schwarz/weiß
2 ATARI-Drucker Epson-kompatibler Drucker
3 Entwurfsschrift NLQ
4 Centronics RS232
5 Endlospapier Einzelblatt

Zusammenarbeit mit dem Betriebssystem 253

$22 kbdvbase() [2]

$25

Gibt einen Zeiger auf eine Struktur zurück, die Vektoren für verschie-
dene Routinen enthält, die für die Zusammenarbeit mit dem Tastatur-
prozessor sorgen. Die Tabelle ist folgendermaßen aufgebaut:

tab: midivec MIDI-Eingabe
tab+4: vkbderr Tastatur-Fehler
tab+8: vmiderr MIDI-Fehler
tab+12: statvec Tastaturprozessor Status
tab+16: mousevec Maus-Routinen
tab+20: clockvec Uhrzeit-Routine
tab+24: joyvec Joystick-Routine

Jeder dieser Vektoren ist mit der Adresse einer Betriebssystemroutine
vorbelegt. "midivec" zeigt auf eine Routine, die die über die MIDI-
Schnittstelle empfangenen Daten (Byte in DO) in den MIDI-Puffer
schreibt. | |

"vkbderr" und "vmiderr" werden aufgerufen, wenn bei der Tastatur-
oder MIDI-Eingabe der Puffer überläuft.

tn en

"statvec”, "mousevec", "clockvec" und "joyvec" zeigen auf Routinen, die
die vom Tastaturprozessor abgeschickten Datenpakete verarbeiten,
wenn ein Tastatur-Status-, Maus-, Uhrzeit- oder Joystick-Event auftritt.
Diesen Routinen wird in AO ein Zeiger auf das empfangene Paket über-
reicht. Wenn Sie hier eigene Routinen installieren wollen, so müssen die-
se mit einem RTS abgeschlossen sein und dürfen nicht länger als eine
Millisekunde Ausführungszeit benötigen.

kbrate(initial, repeat) [6]
initial: Wort
repeat; Wort
Setzt oder liest die Tasten-Wiederholrate. Parameter mit dem Wert -1
werden ignoriert. Wenn eine Taste gedrückt wird, so wird zuerst die
Zeit "initial" gewartet, bevor die Wiederholfunktion einsetzt; dann wird
mit dem Intervall "repeat" wiederholt. Die Intervalle werden von der
50-Hz-Frequenz abgeleitet.

_prtbIkO [2]
Betriebssysteminterne Funktion.

vsync() [2]
Wartet bis zum nächsten Vertical Blank Interrupt und kehrt dann zu-

254 ATARI ST - Programmieren in Maschinensprache

rück. Diese Funktion ist nützlich, um etwa Grafikoperationen mit der
Bildschirmfrequenz zu synchronisieren.

$26 supexec(codeptr) [6]
codeptr: Langwort
Führt ein Unterprogramm an der Adresse "codeptr" im Supervisormo-
dus aus. Beendet wird der Code mit RTS. Im Unterprogramm dürfen
keine GEMDOS-, BIOS- oder XBIOS-Aufrufe ausgeführt werden.

$27 puntaes() [2]
Wenn die AES-Routinen im RAM stehen, werden sie mit dieser Funk-
tion entfernt, und der dadurch freigewordene Speicherplatz steht frei
zur Verfügung. Wenn das AES sich nicht im Speicher befindet, kehrt die
Funktion zurück. Wenn das AES allerdings entfernt werden kann, führt
diese Funktion einen Neustart des Systems durch, nachdem das AES ent-
fernt worden ist.

Die GEM-Aufrufe

Zweifellos ist die Programmierung einer GEM-Anwendung in Maschinen-
sprache eine heikle Sache, zumal die Effizienz der Maschinensprache sich bei
den doch recht zeitaufwendigen GEM-Routinen kaum auswirkt. Für den Fall,
daß Sie Ihre Assemblerprogramme unter GEM laufen lassen wollen, rate ich
Ihnen deshalb dazu, Maschinensprache in eine Hochsprache einzubinden und
die GEM-Aufrufe in einer Sprache wie C, Pascal oder Modula II zu program-
mieren. Wenn Sie nicht die Absicht haben, GEM-Routinen in Assembler auf-
zurufen, können Sie dieses Kapitel überspringen. Ohnehin ist es nur im Zu-
sammenhang mit einer umfassenderen GEM-Dokumentation verständlich.

Da es aber auch einmal sinnvoll sein kann, die GEM-Funktionen direkt von
Maschinensprache aus aufzurufen, soll an dieser Stelle der Parameterüber-
gabemechanismus erklärt werden. Natürlich ist es nicht Ziel dieses Buches,
eine Einführung in die GEM-Programmierung zu geben; hier soll nur auf die
speziellen Bedürfnisse des Assemblerprogrammierers eingegangen werden,
die in der Literatur zu GEM oft nicht beachtet werden.

Es gibt einige geringe Unterschiede zwischen den Aufrufkonventionen von
VDI und AES. Das Prinzip ist jedoch das gleiche: Die Parameter werden in
globalen Feldern übergeben. Diese Felder werden vom Programm selbst an-
gelegt; deshalb werden den GEM-Routinen beim Aufruf die Adressen dieser
Felder übergeben.

Zusammenarbeit mit dem Betriebssystem 255

Wichtig ist, daß ein GEM-Programm am Anfang den nicht benötigten Spei-
cherplatz freigibt, da GEM einigen Platz zum Manövrieren braucht. Wie dies
im einzelnen funktioniert, wird in Kapitel 2, Abschnitt "Organisation von
ATARI ST-Programmen" beschrieben.

AES-Aufrufe (Application Environment Services)

Zu jedem AES-Aufruf gehören insgesamt 7 Felder:

— Der Control-Block (control array)
Für den Kontrollblock sollten 12 Bytes reserviert werden. Er enthält fol-
gende Informationen (jeweils 16-Bit-Werte):

Contrl op_code, Funktionsnummer der gewünschten AES-
Routine

Contrl+2 Anzahl der Worte, die im Intin-Feld übergeben werden
Contr+4 Anzahl der Worte, die die Funktion im Intout-Feld zu-

rückliefert
Contrl+6 Anzahl der Langworte, die im Addrin-Feld tibergeben

werden

Contrl+8 Anzahl der Langworte, die die Funktion im Addrout-

Feld zurückliefert

— Das Global-Feld
Jede unter GEM laufende Anwendung sollte genau ein GLOBAL-Feld ha-
ben. Hier befinden sich Verwaltungsinformationen der GEM-Routinen, die
teilweise von der GEM-Implementierung abhängen, teilweise beim
appl_init-Aufruf initialisiert werden. Es ist für den Programmierer kaum
von Bedeutung. Reservieren Sie aber 30 Bytes für dieses Feld.

— Das Int_in-Feld

In diesem Feld werden jene Eingabeparameter abgelegt, die Wortlänge ha-
ben (Integer). Deren Anzahl wird in control+2 vermerkt.

— Das Int_out-Feld
Hier legt die AES-Funktion ihre Ausgabeparameter ab. Deren Anzahl
schreibt sie in Contrl+4.

— Das Addr_in-Feld
Hier werden Eingabeparameter abgelegt, die Langwort-Format haben
(Adressen). Die Anzahl steht in Contrl+6.

256 | ATARI ST - Programmieren in Maschinensprache

— Das Addr_out-Feld
Hier werden Adressen abgelegt, die die AES-Funktion an das aufrufende
Programm zurückgibt. Die Anzahl kann man Contrl+8 entnehmen.

— Der Parameterblock
Dieses Feld dient nur dazu, die anderen Felder dem AES zugänglich zu ma-
chen. Zu jedem Feld ist die Adresse als Langwort angegeben. Die Belegung
ist folgendermaßen:

params Adresse des Contrl-Feldes
params + 4 Adresse des Global-Feldes
params + 8 Adresse des Int_in-Feldes
params + 12 Adresse des Int_out-Feldes
params + 16 Adresse des Addr_in-Feldes
params + 20 Adresse des Addr_out-Feldes

Wenn die VDI-Routinen von Assembler aus aufgerufen werden sollen, muß

zunächst einmal Platz für die sieben Felder reserviert werden. Nehmen Sie da-
bei 12 Worte für den Control-Block und 15 Worte für das Global-Feld. Die
Länge der Int_in-, Int_out-, Addr_in- und Addr_out-Felder ist nicht festge-
legt, sie hängt von den Funktionen ab, die aufgerufen werden sollen. 256 Bytes
für jedes der vier Felder sollten aber in allen Fällen reichen.

Der Control-Block muß vom aufrufenden Programm jedesmal vollständig be-
legt werden. In einer ausführlichen Dokumentation zu GEM sollten Sie für je-
de Funktion den "Opcode" (Funktionsnummer) und die Anzahl der Ein- und
Ausgabeparameter finden.

Natürlich müssen der Int_in- und Addr_in-Block entsprechend den Erforder-
nissen der gewünschten Funktion belegt werden. Die Int_out- und Addr_out-
Felder brauchen hingegen nicht speziell initialisiert zu werden.

Nun zum eingentlichen GEM-Aufruf: Alle GEM-Funktionen werden mit
TRAP #2 aufgerufen; vorher muß sich jedoch die Adresse des Parameter-
blocks im Register D1 befinden. Mit dieser Angabe kann sich die GEM-Routi-
ne über mehrere Zeiger zu den eigentlichen Parametern "durchhangeln".

Im unteren Wort von D1 wird ein spezieller Code verlangt, der das VDI oder
AES anspricht. Für AES ist es $C8 (dezimal 200). Eine Stack-Korrektur ist
nicht erforderlich, da ja keine Parameter auf dem Stack abgelegt werden.
Nachdem Control-, Int_in- und Addr_in-Felder belegt worden sind, sähe also
die Aufrufsequenz so aus: |

Zusammenarbeit mit dem Betriebssystem 257

MOVE.L #Aespara,Dl * Adresse des Parameterblocks

MOVE.W #5C8,DO * wir wollen AES
TRAP #2 * Einsprung ins GEM

Die dazugehörigen Felder werden etwa so reserviert:

DATA * jetzt initialisierte Daten
Aespara

DC.L Control * Adresse des Control-Blocks
DC.L Global x oN " Global-Feldes
DC.L Int in x" " Int_in-Feldes
DC.L Int_out x oN " Int_out-Feldes
DC.L Addr_ in x" " Addr_in-Feldes
DC.L Addr out x oN " Addr out-Feldes

BSS * im BSS Platz reservieren
Control DS.W 12
Global DS.W 15
Int in DS.W 128
Int _out DS.W 128
Addr_in DS.W 128
Addr out DS.W 128

Nach diesem Aufruf können etwaige Ausgabewerte im Int_out- und Addr out
-Feld ausgelesen werden.

Wie in allen Programmiersprachen gilt, daß der erste AES-Aufruf ein
appl_init() sein muß.

Das VDI (Virtual Device Interface)

Zu einem VDI-Aufruf gehören 6 Felder:

— Die Int_in- und Int_out-Felder haben die gleiche Funktion wie beim AES

— Pts_in ersetzt das Addr_in-Feld des AES. Statt einer Adresse wird hier ein
Punktkoordinaten-Paar für grafische Operationen hineingeschrieben. Da je-
de Koordinate ein Wort beansprucht, ist ein Eintrag immer noch 2 Worte,
also 4 Bytes lang.

— Pts_out ersetzt entsprechend Addr_out; hier werden Punktekoordinaten
vom VDI zurückgegeben.

— Contrl entspricht dem Control-Feld beim AES. Es ist folgendermaßen be-
legt:

258 ATARI ST — Programmieren in Maschinensprache

Contrl Opcode (Funktionsnummer des VDI-Aufrufs)
Contrl+2 Anzahl der Punkte in Pts_in
Contrl+4 Anzahl der Punkte in Pts_out (Ausgabewert)
Contrl+6 Anzahl der Worte in Int_in |
Contrl+8 Anzahl der Worte in Int_out (Ausgabewert)
Contrl+ 10 Subfunktionsnummer (wird selten verwendet, nur z.B. bei

Escapes) |
Contrl+12 "“Device-Handle", Geräte-Identifikation. Sie wird beim er-

sten VDI-Aufruf "v_openwk" zuriickgegeben.
ab Contrl+14 = Ausgabewerte je nach Funktion

— Parameterblock
Hier sind die Adressen der oben genannten Felder verzeichnet, und zwar in
folgender Reihenfolge:

Params Adresse des Contrl-Blocks
Params+4 Adresse des Int_in-Feldes
Params+8 Adresse des Int_out-Feldes
Params+12 Adresse des Pts in-Feldes
Params +16 Adresse des Pts out-Feldes

Da die maximal gebrauchte Größe der einzelnen Felder wieder von den aufge-
rufenen Funktionen abhängt, dimensionieren Sie am besten alle Felder mit 256
Bytes (für alle Fälle).

Der Aufruf erfolgt ähnlich wie beim AES: Zuerst müssen Contrl-Int_in- und
Pts_in-Feld entsprechend der Funktion vorbelegt werden. Die als Ausgabe-
werte im Contrl-Block gekennzeichneten Worte brauchen Sie natürlich nicht
vorzubelegen. | |

Dann erfolgt der eigentliche Aufruf: Die Adresse des Parameterblocks wird
ins Register D1 geladen, und in das untere Wort von DO kommt die Identifika-
tionsnummer des VDI: $73 oder dezimal 115. Der Einsprung erfolgt wieder
mit TRAP #2. Danach können etwa auftretende Ausgabewerte in den entspre-
chenden Feldern ausgelesen werden.

Hier also die Aufrufsequenz, nachdem die Eingabe-Felder vorbelegt wurden,
und gleich dazu die Dimensionierung der Felder:

MOVE .L #Vdipara,D1 * Adresse des Parameterblocks

MOVE .W #$73,D0 * ein VDI-Aufruf, bitte
*

x

TRAP #2 Einsprung ins GEM
BSS im BSS Platz reservieren

Contrl DS.W 128

Int in DS.W 128

Zusammenarbeit mit dem Betriebssystem 259

Int_out DS.W 128
Pts in DS.W 128
Pts out DS.W 128

DATA * jetzt initialisierte Daten
Vdipara

DC.L Contrl * Adresse des Contrl-Blocks
DC.L Int_in a. Int_in-Feldes
DC.L Pts in x Pts_in-Feldes
DC.L Int_out x Int_out-Feldes
DC.L Pts out vn “Pts out-Feldes

Bei den VDI-Aufrufen gilt zu beachten, daß als erstes immer mit v_openwk
oder v_openvwk ein "handle" reserviert wird.

Das folgende Programmbeispiel zeigt ein minimales GEM-Programm, das
eine Alert-Box auf den Bildschirm bringt. Für Beispielprogramme sind Alert-
Boxen nun einmal besonders beliebt, da GEM die Verwaltung einer Alert- Box
völlig eigenständig ausführt.

Zunächst wird der vom Programm nicht unmittelbar benötigte Speicherplatz
freigegeben. Bis zum Label "init" entspricht der Programmcode genau dem in
Kapitel 2, Abschnitt „Organisation von ATARI ST-Programmen" angegebe-
nen. Dann folgt ein "appl_init"-Aufruf, der das Programm bei GEM anmel-
det. Als nächstes wird die AES-Funktion "graf handle" ausgeführt, die dem
Programm eine handle-Nummer zurückgibt, die für viele weitere AES-Auf-
rufe gebraucht wird und deshalb vom Programm an einer sicheren Stelle ab-
gelegt wird. Nun wird der virtuelle Bildschirm geöffnet. Dazu dient der VDI-
Aufruf "v_opnvwk".

Nun ist endlich die Initialisierung abgeschlossen, und das eigentliche Pro-
gramm kann starten. Mit dem AES-Opcode für "alert box" wird eine Alert
Box auf den Bildschirm gebracht. Nach der Rückkehr dieser Routine wird je
nach dem Rückgabewert verzweigt: Wurde Knopf 1 (Ja) angewählt, dann wird
der Vorgang wiederholt, andernfalls wird das Programm einfach mittels
TERM beendet.

KAKKKAÄKKKAKKKKKKKKKKKKKHKK KHK KK KK IK KK KK IK KH KK KH IK TH KH IK KH TH HK KK AK KK AK A KK A KK A KH KH A KU

* GEM.S *

* Ein Beispiel für den Aufruf von GEM-Routinen in Assembler *
* Bringt eine Alert-Box auf den Bildschirm *
KKEKEKKKKKKEKKKKKKKKKKKKKKKKKKKKKEKKKEKKKEKKKKK KKK KK KK KKKKKKEKKKKKKKK

x

* zuerst die Speicherfreigabe, damit GEM genügend Platz hat
start:

move.l 4(sp),a5 * Basepageadresse in A5
move.l 12(a5),d0O * Länge des Textsegments...
add.ıl 20(a5),dO * + Länge des Datensegments...
add.1- 28(a5),d0O * + Lange des BSS-Segments...

x

* hier geht es
loop move

move
move
move
clr
move
move.

jsr
move
cmp

‘beq.s

richtig los
#52, contrl
#1,contrl+2
#1,contrl+4
#1,contrl+6
contr1+8
#1,intin

1 #alert,addrin
aes
intout,dO

#1,d0

loop,

260 ATARI ST - Programmieren in Maschinensprache

add.l #51100,40 * + 4K (=$1000) Für den Stack
* * + 256 (=$100) Bytes für die

* Basepage
move.l ao,dl * neuer SP = Basepageadresse...
add.l dO, dl * + berechnete Lange...
and.l #-2,dl * auf gerade Adresse abrunden
move.l dl,sp * in den Stackpointer damit
move.l d0,-(sp) * Lange des reservierten Bereichs
move.l a5,-(sp) * Anfangsadresse des Bereichs
clr - (sp) * überflüssiger Parameter (Dummy)
move.w #$4a,-(sp) * GEMDOS-Funktion Setblock
trap #1 * Aufruf des GEMDOS
add.1 #12,sp * Stack wiederherstellen

* :

init: move #10,contrl * appl init ()
clr contrl+2 * keine Eingabeworte
move #1,contr1+4 * ein Ausgabewort
clr contrl+6 * keine Eingabeadressen
clr contr1+8 * keine Ausgabeadressen
bsr aes * AES-Aufruf

*

move #77,contrl * graf handle ()
clr contrl+2 * keine Eingabeworte
move #5,contrl+4 * 5 Ausgabeworte
clr contr1l+6 * keine Eingabeadressen
clr contr1+8 * keine Ausgabeadressen
bsr aes * AES-Aufruf
move intout,handle * handle-Nummer merken

x

move #100,contrl * v_opnvwk ()
clr contrl+2 * keine Eingabepunkte
clr contrl+4 * keine Ausgabepunkte
move #11,contrl+6 * 11 Eingabeworte
clr contr1+8 * keine Ausgabeworte
move handle,contrl+12 * handle-Nummer angeben
‚lea intin,a0 * Im INTIN-Feld...
move #9,d0 * 10 Worte mit 1 füllen

initloop move #1, (a0) + *

dbra dO, loop *
move #2, (a0) * elftes Wort mit 2
bsr vdi * VDI-Aufruf |

alert_box()

ein Eingabewort
ein Ausgabewort
eine Eingabeadresse
keine Ausgabeadresse
1. Knopf als Standard
Text der Alert-Box
ins AES
Feldnummer holen
noch einmal?

ja! +
+

+
F
F

F
F

H
F

F

Zusammenarbeit mit dem Betriebssystem 261

clr - (sp) * TERM
trap #1 * Schluß!

*

* Hier wird ein AES-Aufruf durchgeführt

aes move.l #Aespara,dl * Adresse des Parameterblocks
move #$c8,d0 * wir wollen AES
trap #2 * Einsprung ins GEM
rts *

x

* Hier wird ein VDI-Aufruf durchgeführt
vdi move.l #Vdipara,dl * Adresse des Parameterblocks

move #$73,a0 * wir wollen AES
trap #2 * Einsprung ins GEM
rts *

DATA
*

* Hier wird der Text für die Alert Box definiert

alert DC.B "[2] [Wollen Sie diese Alert-Box|"
DC.B "noch einmal sehen ?]"

DC.B "[Ja|l Nein]",O

* Jetzt kommen die Parameterblöcke
Aespara DC.L contrl

DC.L global
DC.L intin
DC.L intout

DC.L addrin

DC.L addrout

Vdipara DC.L contrl
DC.L intin
DC.L ptsin
DC.L intout
DC.L ptsout

BSS
handle DS.W 1
*

* nur noch Platz fiir die Felder reservieren
contrl DS.W 12

global DS.W 15
intin DS.W 128

intout DS.W 128
addrin DS.W 128
addrout DS.W 128
ptsin DS.W 128
ptsout DS.W 128

END

Die Line-A-Routinen

Die Line-A-Routinen stellen eine fiir Assemblerprogrammierer recht interes-
sante Gruppe von Funktionen dar. Sie bilden das Grundgerüst der GEM-Rou-

262 ATARI ST — Programmieren in Maschinensprache

tinen und bieten in der Hauptsache grundlegende Grafikroutinen wie Punkt
setzen, Punkt abfragen, Linien ziehen und Sprite-Operationen.

Die Line-A-Routinen bilden einen Kurzschluß um die GEM-Routinen herum,
denn durch den Aufruf dieser Routinen kann man sich die aufwendigen Initia-
lisierungen und Parameterübergabemechanismen des GEM sparen, erreicht
aber trotzdem ohne viel Aufwand Grafikoperationen. Außerdem sind die
Line-A-Routinen merklich schneller als der Umweg über entsprechende VDI-
Routinen.

Angesprochen werden die Line-A-Routinen mit den Opcodes $A00x, wobei x
eine Hexadezimalziffer zwischen 0 und E ist. Jeder dieser Opcodes löst eine
Exception aus, die mit einem Sprung durch den Vektor ab $28 bearbeitet wird.

Zunächst zur Parameterübergabe: Die Parameter für Line-A-Routinen wer-
den teilweise in Int_in und Pts_in-Feldern des VDI übergeben (Beschreibung
siehe Kapitel 4, "GEM-Aufrufe"), teilweise in einem globalen Variablen-Be-
reich. Die Adresse dieses Bereichs steht nicht fest; man kann allerdings mit der
Funktion $A000 (Initialisierung) einen Zeiger darauf erhalten. Da sich unter
den Line-A-Variablen auch Zeiger auf die 5 VDI-Felder befinden, sollte es
kein Problem sein, die Parameter an die richtigen Stellen zu schreiben.

Wie beim BIOS gilt, daß die Line-A-Aufrufe die Register DO — D2 und AO -
A2 verändern können.

Hier nun die einzelnen Line-A-Routinen:

$A000 Adressen der Datenbereiche holen

Dieser Opcode muß als erster ausgeführt werden, wenn die Line-A-Routinen
benutzt werden sollen. Es werden verschiedene Adressen in den Registern DO
— D2 und AO - A2 übergeben. Von Interesse ist hauptsächlich der Inhalt von
DO und AO, der die Anfangsadresse der Line-A-Variablen darstellt. Al zeigt
auf eine Struktur von drei Adressen, die ihrerseits Zeiger auf die Startadressen
der Systemzeichensätze sind; in A2 steht die Startadresse einer Tabelle der
Adressen sämtlicher Line-A-Routinen.

$A001 Put_pixel

Ein Pixel wird an die Koordinaten gesetzt, die durch Pts_in (X-Wert) und
Pts_in+2 (Y-Wert) festgelegt werden. Die Nummer der Farbe wird in Int_in
übergeben. Der Farbindex kann je nach Auflösung 0 - 1,0 -3 oder 0 - 15
sein. Im Y-Bereich werden unzulässige Koordinaten ignoriert, im X-Bereich

Zusammenarbeit mit dem Betriebssystem 263

wird jedoch keine Uberpriifung vorgenommen und der Punkt entsprechend an
eine falsche Position gesetzt.

$A002 Get_pixel

Der Farbwert eines Pixels, dessen Koordinaten in Pts_in und Pts in + 2 abge-
legt werden, wird im Register DO zurückgegeben.

$A003 Line

Diesmal befinden sich die Parameter ausschließlich in den Line-A-Variablen.
Es wird eine Linie von den Koordinaten x1, yl nach x2, y2 gezogen. Die Far-
be wird je nach Auflösung nur durch _fg_bpl, durch fg bpl und fg bp2
oder durch fg bpl- fg _bp4 bestimmt (siehe Beschreibung der Line-A-Va-
riablen). Beim Linienziehen richtet sich diese Funktion außerdem nach dem
Muster der Linie _In mask und dem Schreibmodus _wrt_mod. Bereichsüber-
schreitungen werden genauso behandelt wie bei Put _pixel.

$A004 Horizontal Line

Diese Funktion zieht eine horizontale Linie von x1, yl nach x2, yl. Es werden
die gleichen Parameter wie bei Line ($A003) berücksichtigt, nur daß anstatt
des Linienmusters _In_mask das durch die Variablen patptr und _patmsk be-
stimmte Füllmuster benutzt wird. patptr zeigt auf eine bestimmte Anzahl
Worte, in denen das Muster codiert ist; _patmsk gibt die Anzahl der Worte des
Füllmusters minus eins an. Jeder Bildschirmzeile wird eines dieser Worte zu-
geordnet; so wird in Zeile n eine Linie mit dem Muster des Wortes n modulo
(_patmsk + 1) gezogen. Werden mehrere dieser Linien untereinandergesetzt,
dann läßt sich das vollständige Füllmuster erkennen.

$A005 Filled Rectangle

Diese Funktion erzeugt ein gefülltes Rechteck. Die Koordinaten der linken
oberen und rechten unteren Ecke werden in x1, yl und x2, y2 angegeben. Das
Fillmuster wird wieder durch _patmsk und die Werte, auf die _patptr zeigt,
bestimmt. Ansonsten finden die gleichen Variablen Verwendung wie bei Line
oder Horizontal Line. Hinzugekommen ist allerdings die Möglichkeit des
Clipping: Man kann in XMN CLIP, YMN CLIP, XMX CLIP und
_YMX_CLIP zwei Koordinatenpaare eintragen, die einen rechteckigen Aus-
schnitt des Bildschirms festlegen, auf den die Grafikoperation beschränkt ist.

264 ATARI ST - Programmieren in Maschinensprache

Zusätzlich muß noch die Variable CLIP auf 1 gesetzt werden, womit ange-
zeigt wird, daß Clipping angewandt werden soll.

$A006 Filled Polygon

Mit dieser Funktion können beliebig geformte Flächen gefüllt werden. Die
Eckpunkte des Polygons werden im PTSIN-Array eingetragen, wobei das letz-
te Koordinatenpaar dem ersten entsprechen sollte, damit eine geschlossene
Fläche entsteht. Die Anzahl der Koordinatenpaare wird in CONTRL(1) ange-
geben. Es gelten die üblichen Variablen für Schreibmodus, Farbe, Muster und
Clipping. Zu beachten ist, daß dieser Opcode nur eine Zeile füllt; die zu füllen-
de Y-Coordinate wird in _yl angegeben. Um also eine Fläche vollständig zu
füllen, muß die Funktion in einer Schleife mit allen Y-Werten vom kleinsten
zum größten aufgerufen werden.

$A007 Bitblt

Nur von interner Bedeutung.

$A008 Textblt

Mit diesem Opcode können Texte in allen Variationen auf den Bildschirm ge-
bracht werden. Da der Aufruf jedoch sehr kompliziert ist, würde die Be-
schreibung hier zu weit führen.

$A009 Show Mouse

Dieser Opcode schaltet den Mauszeiger ein. Dabei hat der Wert in INTIN(0)
eine spezielle Bedeutung: Normalerweise unterhält die Routine zur Verwal-
tung des Mauszeigers einen Zähler, der bei jedem Aufruf von Show Mouse um
eins erhöht, bei jedem Aufruf von Hide Mouse ($A00A, nächste Funktion) um
eins verringert wird. Der Mauszeiger wird nur eingeschaltet, wenn der Zähler
größer als null ist; wenn man den Mauszeiger also zweimal einschaltet, muß
man ihn auch zweimal abschalten. Mit INTIN(0) kann dieses Verhalten über-
gangen werden; ist dieser Wert null, dann wird der Mauszeiger auf jeden Fall
eingeschaltet bzw. bei Hide Mouse abgeschaltet.

$AO0A Hide Mouse

Schaltet den Mauszeiger ab. Siehe $A009, Show Mouse.

Zusammenarbeit mit dem Betriebssystem 265

$AOOB Transform Mouse

Mit dieser Funktion können Sie sich ihren eigenen Mauszeiger programmie-
ren. Sämtliche Parameter werden als Worte im INTIN-Array abgelegt:

INTIN+6 Maskenfarbindex, normalerweise 0
INTIN+8 Datenfarbindex, normalerweise 1
INTIN+10 bis INTIN+40 16 Worte Maskenform
INTIN+42 bis INTIN+72 16 Worte Mauszeigerdaten

An jeder Stelle, an der in den Mauszeigerdaten ein Bit gesetzt ist, erscheint ein
schwarzer Punkt auf dem Bildschirm (wie bei allen Grafikoperationen er-
scheint das niederwertigste Bit rechts, das höchstwertige links). Wenn ein Bit
in den Maskendaten gesetzt ist, dann erscheint statt des Hintergrunds ein wei-
Ber Punkt. Auf diese Art wird der weiße Rahmen um den normalen Mauszei-
ger erzeugt.

$A00C Undraw Sprite

Dieser Opcode dient dazu, ein mit $A00D, Draw Sprite, gezeichnetes Sprite
wieder zu löschen. Dazu wird in A2 die Adresse des Puffers angegeben, in den
der Hintergrund von der Funktion Draw Sprite gerettet wurde.

$A00D Draw Sprite

Mit dieser Funktion wird eine 16 x 16 Pixel große Figur auf dem Bildschirm
gezeichnet. DO und D1 enthalten die X- und Y-Position eines ausgezeichneten
Punktes des Sprites auf dem Bildschirm, Hot Spot genannt. AO mu8 auf den
Sprite Definition Block zeigen, in dem sämtliche Informationen über das
Sprite stehen:

Wort 1 X-Offset von der linken oberen Ecke zum Hot Spot
Wort 2 Y-Offset von der linken oberen Ecke zum Hot Spot
Wort 3 Format-Flag
Wort 4 _ Hintergrund-Farbnummer des Sprites
Wort 5 Vordergrund-Farbnummer des Sprites
Wort 6-37 32 Worte Sprite-Daten

Bei den Sprite-Daten erscheint beginnend mit der obersten Zeile immer ab-
wechselnd zuerst ein Wort Vordergrundmuster, dann ein Wort Hintergrund-
muster. Das Format-Flag bestimmt nun, wie Vordergrund- und Hintergrund-
daten zu interpretieren sind. Ist es null, dann wird im sogenannten VDI-For-
mat gearbeitet:

266 ATARI ST — Programmieren in Maschinensprache

Vg. Hg. Ergebnis

Der Hintergrund erscheint
Die Farbe aus Wort 4 erscheint

Die Farbe aus Wort 5 erscheint

0

0

1

1 Die Farbe aus Wort 5 erscheint -e
O
r
 ©

Hat das Format-Flag hingegen den Wert 1, dann wird das XOR-Format ver-
wendet:

Vg. Hg. Ergebnis

0 0 Der Hintergrund erscheint
0 1 Die Farbe aus Wort 4 erscheint
1 0 Hintergrundpixel wird mit Vg.-Bit EXKLUSIV-ODER-

verkniipft
1 1 Die Farbe aus Wort 5 erscheint

Das Register A2 muß die Adresse eines Puffers enthalten, in dem der Hinter-
grund abgespeichert wird. Der Puffer braucht für jede Bitebene 64 Bytes; zu-
sätzlich werden in jedem Fall 10 Bytes für Verwaltungsinformationen benutzt.
Man braucht also für hohe Auflösung 74 Bytes, für mittlere 138 und für nied-
rige 266.

$AOOE Copy Raster Form

Dieser Opcode kann Bildschirmausschnitte kopieren. Er ist jedoch in erster
Linie von GEM-interner Bedeutung, etwa für die Fensterverwaltung.

Die Line-A-Variablen

Da die Lage der Line-A-Variablen im Speicher nicht festliegt, wird zu jeder
Variable nur die Adreßdistanz zum Anfang des Variablenblocks angegeben.
Mit dem Opcode $A000 kann man die Anfangsadresse der Variablen erhalten.
Sofern es sich nicht um Adressen handelt, haben alle Variablen Wortlänge (16
Bit).

Dist. Name Beschreibung

0 v_planes Anzahl der Bitebenen des Grafikmodus
(1 fiir 640x400, 2 fiir 640x200, 4 fiir 320x200)

4 contrl Zeiger auf das Contrl-Feld (Langwort)
8 intin Zeiger auf das Int_in-Feld.(Langwort)

12 ptsin Zeiger auf das Pts_in-Feld (Langwort)

Zusammenarbeit mit dem Betriebssystem 267

S
R
R
R
B
G

£
B
S
B
R

L
S
E
E
S
S
S
K

intout
ptsout

fg bpl
fg bp2
_fg bp3
_fg bp4

_In mask

_wrt_mod

Zeiger auf das Int_out-Feld (Langwort)
Zeiger auf das Pts out-Feld (Langwort)
Farbwert der Bitebene 0 (alle drei Auflésungen)
Farbwert der Bitebene 1 (620x200, 320x200)
Farbwert der Bitebene 2 (nur 320x200)
Farbwert der Bitebene 3 (nur 320x200)
_fg_bpl bis fg bp4 werden vom Opcode Line
($A003) benutzt. Sie sollten nur 1 oder 0 sein.
Linienmuster bei Line ($A003) etwa %1111 1111
1111 1111: durchgezogene Linie. %1111 0000 1111
0000: unterbrochene Linie Beachten Sie, daß das
oberste Bit von In mask sich immer oben links bei
der Linie auswirkt.
Schreibmodus für Linienziehen und Musterzeichnen
0: Überschreiben
Der Hintergrund wird vom gezeichneten Muster (Li-
nie) einfach ersetzt.
1: Transparent
Nur gesetzte Bits des gezeichneten Musters werden
überschrieben; sind Bits im Schreibmuster gelöscht,
so bleibt dort der Hintergrund erhalten (ODER-Ver-
knüpfung).
2: XOR-Modus
Das einzuzeichnende Muster wird mit dem Hinter-
grund durch EXKLUSIV-ODER verknüpft.
3: Invers Transparent
Sind Bits im zu schreibenden Muster gelöscht, so
überschreiben sie den Hintergrund; sind sie gesetzt, so
bleibt der Hintergrund erhalten.
x-Koordinate des ersten Punktes, etwa bei Line
erste y-Koordinate
zweite x-Koordinate
zweite y-Koordinate
Zeiger auf die Füllmuster-Daten
Anzahl der Worte des Füllmusters minus 1
0: Clipping abgeschaltet
Ungleich 0: Clipping eingeschaltet
linker Rand des sichtbaren Bereiches
oberer Rand des sichtbaren Bereiches
unterer Rand des sichtbaren Bereiches
rechter Rand des sichtbaren Bereiches

269

Kapitel 5

Einige nützliche Routinen

In diesem Kapitel sollen einige Routinen zur Ein- und Ausgabe von Zahlen und
Zeichenketten vorgestellt werden. Die eigentlichen Routinen sind zum Einbin-
den in Ihre Assemblerprogramme mit Hilfe eines Editors durchaus geeignet;
sie können natürlich Ihren eigenen Bedürfnissen beliebig angepaßt werden (et-
wa an eine Bildschirmmasken-Eingabe). Experimentieren Sie ruhig mit eini-
gen Veränderungen, schließlich lernt man die Assemblerprogrammierung in
erster Linie durch Praxis. Außerdem könnte die eine oder andere Routine
noch einige Verbesserungen gebrauchen.

Um die Routinen austesten zu können, werden sie in den meisten Fällen in
Form eines vollständigen Programms abgedruckt. Beim Einbinden in eigene
Programme werden Sie natürlich nur die eigentliche Routine verwenden.

Wenn Sie einen Macroassembler benutzen, ist sicher auch eine Implementie-
rung dieser Routinen als Macros interessant.

Ausgabe von Zeichenketten

Die Ausgabe von Zeichenketten (Strings) auf den Bildschirm wird man in
praktisch jedem Programm brauchen, etwa für Menüs oder Hinweise. Glückli-
cherweise gibt es dafür schon eine Betriebssystemfunktion, nämlich PRINT-
LINE, GEMDOS-Funktion Nummer 9. Als Parameter erhält sie die Adresse

der Zeichenkette, die ausgegeben werden soll. Die Zeichenkette wird durch
ein Null-Byte beendet. Die Ausgabe funktioniert so, als ob jedes Zeichen des
Strings bis zum Nullbyte mit der Funktion CONOUT (Nummer 2) ausgegeben
würde. Das heißt, daß auch sämtliche Kontrollzeichen und Escape-Sequenzen
richtig verarbeitet werden. So können Sie mit dieser Routine auch den Cursor
positionieren, an- und abschalten, den Bildschirm löschen und noch einige an-
dere nützliche Dinge tun.

Die hier vorgestellte Routine tut eigentlich nichts anderes, als die Parameter-
übergabe etwas zu vereinfachen. Es wird einfach die Adresse des auszugeben-
den Strings in DO übergeben. Wie üblich werden durch den GEMDOS-Aufruf
DO und AO verändert.

270 ATARI ST - Programmierung in Maschinensprache

KRAEKEKKKKEKEKKEKKKEKKKKKEKKEKKRKKKKKKKKEKEKKKEKKKKKKKKKKKKKEKKKKKKKKKKKKK

* PRINT.S *
* Routine zur Ausgabe von Strings *

* Die Adresse des Strings wird in DO tibergeben *
KKEKKKKKEKKKKKKEKKKKKKE KK IK HK HE KK HK KK KK KK KK TH KK TH TH AH KK A KH A a KK a a a a

start move.l #botschaft,d0 * Adresse laden

bsr print * und aufrufen

move #8,-(sp) * GEMDOS CNECIN

trap #1 *

addq.l #2,sp *

clr - (sp) * GEMDOS-TERM

trap #1 *

print move.l d0,-(sp) * Adresse des Strings

* ist Parameter

move #9,-(sp) * GEMDOS Funktion PRINTLINE

trap #1 * Aufruf

addq.1 #6,sp *

rts * das war's schon

DATA

botschaft DC.B "CPU MC68000 damaged. Please contact Motorola.",13,10,0
x

* 13 ist der ASCII-Code für Carriage Return, 10 für Newline

* beides zusammen gibt das, was sonst immer das Ergebnis der

* Return-Taste ist.

END

Der Testaufruf gibt eine "wichtige" Botschaft aus und wartet dann noch auf
einen Tastendruck, damit man die Botschaft auch dann mitbekommt, wenn
man das Programm vom Desktop aus startet.

Übrigens müssen Sie hier darauf achten, daß unter TOS immer zwei ASCII-
Zeichen notwendig sind, einen vollständigen Zeilenrücklauf durchzuführen:
Carriage Return (ASCII 13) setzt den Cursor an den Anfang der aktuellen Zei-
le, und Linefeed (ASCII 10) fiihrt einen Zeilenvorschub aus. Die Reihenfolge,
in der diese Steuerzeichen ausgegeben werden, spielt dabei keine Rolle. Dieses
Verhalten gilt für den Bildschirm genauso wie für den Drucker.

Das nächste Programmbeispiel gibt eine Zeichenkette auf dem Drucker aus.
Für diese Aufgabe gibt es keine so freundliche Betriebssystemroutine. Statt
dessen kann der Aufruf WRITE verwendet werden, der normalerweise eine
beliebige Anzahl von Bytes in eine Datei schreibt. Um die Datei zu identifizie-
ren, gibt man einen sogenannten Datei-Handle (wörtlich: Griff) an, der beim
Öffnen der Datei vom Betriebssystem geliefert wird. Das Besondere daran ist
nun folgendes: Überall, wo das Betriebssystem einen Datei-Handle erwartet,

Einige nützliche Routinen 271

kann man auch die Konsole, den Drucker oder die RS232-Schnittstelle anspre-
chen, indem man eine bestimmte Handle-Nummer im Bereich 0-5 angibt. Die
Zuordnung ist folgende:

Hande Name Gerät

0 CON: Console-Eingabe
(Tastatur mit Echo auf dem Bildschirm)

1 CON: Console-Ausgabe (Bildschirm)
2 AUX: RS-232-Schnittstelle
3 PRN: Drucker

Wie Sie sehen, findet diese Möglichkeit in den Gerätebezeichnungen ihre Ent-
sprechung. Tatsächlich kann man in vielen Fällen, wo ein Dateiname verlangt
wird, auch eines dieser Geräte ansprechen.

Der WRITE-Systemaufruf bekommt als Parameter zunächst den Datei-Handle
(in unserem Fall 3 für den Drucker)und danach die Anzahl der auszugebenden
Bytes und die Adresse des ersten Bytes. Letzteres ist bei uns einfach die Adres-
se der Zeichenkette, doch die Anzahl der auszugebenden Zeichen, also die
Länge der Zeichenkette, muß erst festgestellt werden. Dabei geht unsere Rou-
tine davon aus, daß die Zeichenkette wie üblich mit einem Nullbyte beendet
wird. Ein Zähler in DO wird so lange erhöht, bis ein Nullbyte erreicht ist.
Dann erst erfolgt der WRITE-Aufruf.

Leider gibt der WRITE-Aufruf bei der Ausgabe auf den Drucker keine
Meldung, ob er erfolgreich ist. Tatsächlich wird DO durch diesen Aufruf gar
nicht verändert. So hat man also keine Möglichkeit, festzustellen, ob der Druk-
ker überhaupt empfangsbereit ist -— wenn er es nicht ist, gibt es nach etwa 30
Sekunden einen Timeout, und WRITE kehrt unverrichteter Dinge zurück. Aus
diesem Grund sollte man vor dem ersten Ansprechen des Druckers immer mit
der Funktion PRTOUT STAT (GEMDOS $11) testen, ob der Drucker über-
haupt existiert und zur Zusammenarbeit bereit ist.

KRKAKKKKKKAÄKKKKKKKKKÄKKKHK KK KK KK KH KK KK IK KK KK KK KK KK KK IK KK KK KK KA KH AD

* PRINTER.S *

* Routine zur Ausgabe von Strings *

* Die Adresse des Strings wird in DO iibergeben *
KRKEKKE KKK KKK KKK KKK KKK KEK KEK KK IKE KEKE KKK KKK KEK KKK KKK KKKKKKKKEKKERK

start move.l #botschaft,d0 * Adresse laden

bsr printer * und aufrufen

clr -(sp) * GEMDOS TERM

trap #1 *

272 ATARI ST - Programmierung in Maschinensprache

printer move.l d0,a0 * Adresse der Zeichenkette

clr.l do * DO: Lange der Zeichenkette

p_loop tst.b 0 (a0,d0.w) * Testen auf Nullbyte

beq.s print2 * gefunden -> weiter

addq #1,d0 * nächstes Byte testen

bra.s p_loop * und nächster Schleifendurchlauf

print2 move.l a0,-(sp) * 3. Parameter: Adresse des Strings

move.l d0,-(sp) * 2. Parameter: Länge in Bytes

move #3,-(sp) * handle für Drucker

move #540,-(sp) * GEMDOS-Funktion WRITE

trap #1 * Aufruf

lea 12 (sp),sp * Stack korrigieren
rts * das war's

DATA

botschaft DC.B
x

* 13 ist der ASCII-Code fiir Carriage Return, 10 der von Line Feed
- END

"Hallo Drucker!",13,10,13,10,0

Eingabe von Zeichenketten

Irgendwann wird Ihr Programm den Benutzer auch nach irgend etwas fragen
wollen. Dazu ist eine Routine zur Eingabe von Zeichenketten notwendig.

Zunächst einmal gibt es auch dafür eine GEMDOS-Funktion: READLINE
(Nummer 10) bekommt als Parameter die Adresse eines Eingabepuffers. Die
eingegebenen Zeichen werden erst ab dem dritten Byte des Eingabepuffers ab-
gelegt, während den ersten beiden Bytes (0 und 1) eine besondere Bedeutung
zukommt: Das erste Byte enthält die maximale Anzahl der Zeichen, die einge-
geben werden darf, das zweite gibt nach der Ausführung die tatsächliche An-
zahl der eingegebenen Zeichen an. Diese Zahl findet sich auch in DO. READ-
LINE bietet die folgenden einfachen Editiermöglichkeiten:

<Ctrl>/<Backspace> letztes Zeichen löschen
<Ctrl><I>/<Tab> Tabulator
<Ctrl><J>/<Ctrl><M>/
<Return>/<Enter> Eingabe beenden
<Ctrl><R> Eingabe in neuer Zeile ausgeben
<Ctrl><U> ungiiltig, in neuer Zeile beginnen
<Ctrl><X> Zeile löschen, Cursor an Zeilenanfang
<Ctrl><C> Programm beenden (!)

Das Zeichen fiir Carriage Return ist nicht Teil der eingegebenen Zeichenkette.

Einige nützliche Routinen 273

Bevor ich diese Routine kritisiere, sollten Sie sich erst einmal das Beispiel-
Listing ansehen. Die Routine "input" vereinfacht die Aufrufsequenz: Die
Adresse des Puffers wird in DO übergeben, die maximale Anzahl der Zeichen
in D1; sie braucht nicht noch extra im ersten Byte des Puffers zu stehen - dafür
sorgt "input" selbst. Nach der Ausführung wird die Anzahl der tatsächlich ge-
lesenen Zeichen in DO zurückgegeben. Wie üblich wird durch den GEMDOS-
Aufruf in "input" AO in Mitleidenschaft gezogen.

"input" übernimmt es auch, an den eingegebenen String ein Nullbyte anzuhän-
gen, damit die Eingabe wie alle Strings behandelt werden kann. Man muß nur
darauf achten, daß die Anfangsadresse des Strings um 2 größer ist als die An-
fangsadresse des Puffers.

Um zu zeigen, wie man mit "input" umgeht, ist ein vollständiges Programm
abgedruckt, das auch die "print"-Routine aus dem vorigen Programmbeispiel
verwendet.

KAKKKKAKKKAKKKKKKKKKKKKTK KK KK KK KK KH KH KH K KK AK KK KH IK KK TH KH KK TH KH KK AK KK KK KK KH KH KH KH KU X

* STRINGIN.S *

* input - Routine zur Eingabe von Strings *
* Die Adresse des Strings wird in DO tibergeben *
KKKKEKKKKKKKKKKKKKKKKK KKK KKK KRKKKKKKKKRKKKEKK KKK KE KKKKKEKKKKEKKEKKK

start move.l #prompt,d0 * Adresse der Meldung laden
bsr.s print * und aufrufen
move.l #antwort,d0 * Eingabe einlesen
move #30,d1 * höchstens 30 Zeichen
bsr.s input *
move.l #hallo,dO * ersten Text ausgeben
bsr.s print *
move.1l #antwort+2,d0 * Eingegebenen Text ausgeben
bsr.s print *

move.l #hallo2,d0 * und noch etwas anhängen

bsr.s print *
move #8,-(Sp) * GEMDOS CNECIN: auf Taste

* warten
trap #1 *
addq.l #2,sp *
clr - (sp) * GEMDOS TERM
trap #1 *

print move.l1 d0,-(sp) * Adresse des Strings ist
* Parameter

move #9,-(sp) * GEMDOS-Funktion PRINTLINE

trap #1 * Aufruf
addq.l #6,sp *
rts * das war's schon

input move.l d0,a0 * in ein Adreßregister

*

move.b dl, (a0) maximale Zeichenanzahl
eintragen +

274 ATARI ST - Programmierung in Maschinensprache

move.l d0,-(sp) * Adresse des reservierten
* Bereichs

move #10,-(sp) * GEMDOS-Funktion READLINE
trap #1 * Aufruf
addq.l #2,sp * Nur Funktionsnummer weg

* vom Stack
move.l (sp)+,a0 * alten DO-Wert wiederholen
clr.b 2(a0,d0.w) * Nullbyte anhängen

rts *

DATA

prompt DC.B "Hallo, mein Name ist Jack.",10,13
DC.B "Was ist Ihrer?",10,13,0

hallo DC.B 10,13,"Hallo, ",0
hallo2 DC.B "1",10,13,0
antwort DS.B 33

END

Die Funktion READLINE können Sie auch ausprobieren, indem Sie den Kom-
mandointerpreter COMMAND.TOS laden. Dort ist genau diese Eingaberouti-
ne verwendet worden..

COMMAND.TOS ist unseres Wissens das einzige größere Programm, das
READLINE für die Zeicheneingabe benutzt — und das aus gutem Grund. Denn
READLINE hat einige Nachteile:

— Durch Tastenkombinationen wie <Ctrl><R> und <Ctrl><U> kann der gan-
ze Bildschirm durcheinandergebracht werden

— Andere Ctrl-Kombinationen werden nicht korrekt behandelt.

— Es besteht jederzeit die Gefahr eines Programmabbruchs mit<Ctrl><C>,
was besonders unangenehm ist, wenn das Programm Routinen installiert
hat, die es bei der Beendigung wieder rückgängig machen sollte (etwa Inter-
ruptroutinen).

— READLINE akzeptiert keine Umlaute und kein "ß".

Zusammenfassen kann man das Ganze so: Sie werden kaum umhinkommen,
sich für größere Anwendungen selbst eine Eingaberoutine zu schreiben. Des-
halb will ich Ihnen hier eine mögliche Eingaberoutine vorstellen.

"input?" wird genauso aufgerufen wie "input": Die Adresse des Puffers wird
in DO tibergeben, die maximale Anzahl der Zeichen in D1. Im Puffer gibt es
jedoch keine reservierten Werte, die eingegebenen Zeichen werden direkt ab
dem Anfang des Puffers hineingeschrieben. Abgeschlosssen wird der eingege-

Einige nützliche Routinen 275

bene String mit einem Nullbyte. Sie sollten also immer für ein Byte mehr Platz
vorsehen, als tatsächlich eingegeben werden kann.

Beim Aufruf von "input2” wird zunächst die Länge des Puffers auf 0 gesetzt,
da noch keine Zeichen eingelesen worden sind. Die eigentliche Eingabe wird
mit der GEMDOS-Funktion CNECIN vorgenommen, die ein Zeichen von der
Tastatur liest, aber nichts auf dem Bildschirm ausgibt. Als erstes wird unter-
sucht, ob die Return-Taste gedriickt wurde (ASCII 13). In diesem Fall ist die
Eingabe beendet, und es wird nur noch ein Null-Byte an die eingegebene Zei-
chenkette angehängt. Dann wird überprüft, ob es sich um die Backspace-Taste
(ASCH 8) handelt. Wenn dies der Fall ist, wird die Länge des Puffers um eins
verringert, sofern überhaupt noch Zeichen im Puffer sind. Um das Zeichen
auch auf dem Bildschirm zu löschen, muß Backspace in die Zeichenfolge
"Backspace, Leerzeichen, Backspace" übersetzt werden, da das ASCII-Zeichen
Backspace zwar den Cursor zurückbewegt, aber kein Zeichen löscht. Bei allen
anderen ankommenden ASCII-Zeichen wird zunächst beim Label "in normal"
noch ein Filter dazwischengeschaltet, der alle Steuerzeichen aussondert. Erst
wenn das Zeichen diese Tests bestanden hat, wird es ausgegeben, in den Puffer
eingetragen und die Pufferlänge um eins erhöht - es sei denn, die maximal zu-
lässige Anzahl von Zeichen war schon erreicht. An diesem Punkt wird wieder
zum Anfang der Eingabeschleife verzweigt.

Natürlich können Sie den Filter, der hier nur alle Steuerzeichen hinauswirft,
beliebig für eigene Verwendungen erweitern. So ist es etwa bei der Eingabe
von Zahlen sinnvoll, nur Ziffern zu akzeptieren und alles andere zu ignorie-
ren.

KAKKKAKKAÄKKKKKAÄKKAKKAKKKKKK KK TH KK KK KK KK KH IK KH IK AK KK AK KK A KK TK KK KK TK AK KH K KK A KH AK A Ro

* STRINGI2.S *

* input2 - konfortablere Routine zur Eingabe von Strings *
* Die Adresse des Strings wird in DO tibergeben *
KKK KK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKEKKKKEKK

Adresse der Meldung laden start: move.l #prompt,d0 *
bsr.s print * und aufrufen
move.l #antwort,d0 * Eingabe einlesen
move #30,d1 * höchstens 30 Zeichen
bsr.s input2 *
move.l #hallo,dO * ersten Text ausgeben
bsr.s print *
move.l #antwort,d0 * Eingegebenen Text ausgeben
bsr.s print *

move.l #hallo2,d0 * und noch etwas anhängen

bsr.s print *
move #8,-(sp) * GEMDOS CNECIN: auf Taste

* warten

276 ATARI ST — Programmierung in Maschinensprache

print

trap

addq
clr
trap

move
move
trap

addq
rts

#1
-l #2,sp

- (sp)
#1

.l do,-(sp)
#9,- (sp)
#1

-l #6,sp

+
+

+

+
+

+
+

*

GEMDOS TERM

Adresse des Strings ist Parameter
GEMDOS-Funktion PRINTLINE

Aufruf

das war's schon

KAKKKKKKKAKKKKÄAKKKKK KK HK HK KH KH KK TH H KH KH KH KH KH KH KH KK KH KH AH KK KH TH KK AH KH KH KH KH KH A

* Registerbelegung *
* DO.L nur Ubergabewert *
* D1.W maximale Anzahl der Zeichen (inklusive) *
* D2.W aktuelle Anzahl der Zeichen im Puffer *
* Al Adresse des Puffers *
KKKKEKKKKKKKKKKKKKKEKKKK KKK KKK KKK KKK KKK KK KK KKK KEKE KK KKK KKKEKKKEKKK

input2 move.l d0,al * in ein Adreßregister
clr d2 * Anzahl der gelesenen Zeichen = 0

in loop move #8,-(sp) * CNECIN Funktionscode
trap #1 * zum GEMDOS
addq.1 #2,sp *
cmp #13,d0 * Return-Taste?
beq.s in end * ja, Ende der Eingabe
cmp #8,d0 * Backspace?
bne.s in normal * nein, weiter
tst d2 * sind überhaupt Zeichen da?
beq.s in loop * nein, also ignorieren
pea bs * sonst Backspace-String ausgeben
move #9,-(sp) * PRINTLINE
trap #1 *
addq.1 #6,sp *
subq #1,d2 * ein Zeichen weniger
bra.s in_loop *

in normal cmp #32,d0 * Steuerzeichen (ASCII<32)?
bes.s in loop * Ja, ignorieren
cmp dl,d2 * Zeichenanzahl erreicht?
beq.s in loop * ja, ignorieren
move.b d0,0(al,d2)

* Zeichen ablegen
addq #1,d2 * Zeichenzähler erhöhen
move d0,-(s) * Zeichen ausgeben
move #2,-(sp) °* CONOUT
trap #1 *
addq.1 #4,sp *
bra.s in_loop * nachstes Zeichen

in end clr.b O(al,d2.w)* Nullbyte anhängen
. rts *

bs dc.b 8,' ',8,0
* Statt Backspace wird Backspace,
* ausgegeben,
* Zeichen löscht

da Backspace nur den Cursor bewegt,

Leerzeichen und Backspace
aber kein

Einige nützliche Routinen 277

prompt DC. "Hallo, mein Name ist Jack.",10,13 B

B "Was ist Ihrer?",10,13,0
hallo DC.B 10,13,"Hallo, ",0
hallo2 DC.B "1",10,13,0
antwort DS.B 33

Ausgabe von hexadezimalen Zahlen

Das folgende Programm gibt ein in DO übergebenes Langwort als Hexadezi-
malzahl auf dem Bildschirm aus.

Die Ausgabe einer hexadezimalen Zahl ist eigentlich recht einfach. Es geht nur
darum, sich die Bits von oben bis unten jeweils in Vierergruppen vorzuneh-
men und das entsprechende Zeichen auszugeben. Die Vierergruppen erhält
man jeweils dadurch, daß man den ursprünglichen Wert des Operanden um
28, 24, 20 ... 0 Stellen nach rechts schiebt und alle Bits außer den vier unter-
sten ausmaskiert. Die Umrechnung der Werte 0 - 15 (oder 0 - F) in die ent-
sprechenden ASCII-Werte erfolgt am einfachsten mit einer Tabelle. Dann
müssen die einzelnen Zeichen nur noch ausgegeben werden. Es sollte nicht
schwierig sein, diese Routine für die Ausgabe eines Wortes umzuschreiben,
falls Sie so etwas brauchen.

KAAKKKKAKKKAKKKKKKKKKKKKKKKK KK KK KK KK KH KH KH KK KK KK TK AK A K KK AK KH TK AK HK A KK AK AK KH AK KH KH A AI A

PRHEX.S

Routine zum Ausgeben eines Langwortes als Hexazimalzahl

Die auszugebende Zahl wird im Register DO übergeben

DO.L nur Übergabewert, wird sonst von CONIN verändert
D1.L noch auszugebender Restwert
D2.W zum Berechnen des auszugebenden Zeichens
D3.W Stellenzähler
KKKKEKKKKKKKKKKKKKKKKK KK KKK KKK KKK KKK KKK KKK KK KK KKKKKKKKKKKEKKKEKE

* Hauptprogramm

+
+

+
+

+

HF
KF

+

x

*

*

*

*

Registerbelegung: *
*

x

*

x

x

start move.l #SAFFE1987,d0 * beliebige Zahl zum Testen
bsr printhex * und Routine aufrufen
move #8,-(sp) * CONOUT-Funktionscode
trap #1 * ins GEMDOS
addq.l #2,sp * Stack aufräumen
clr -(sp) * TERM-Funktionscode

trap #1 * Schluß jetzt!

printhex move #28,d3 * Stellenzähler initialisieren
move.l d0,dl * Wert in D1 retten

h_ loop move.l dl,d2 * Ziffer wird in d2 berechnet
lsr.l a3,da2 * um 4*n Stellen nach links

278 ATARI ST — Programmierung in Maschinensprache

* schieben
and #SF,da2 * nur die unteren 4 Bits

* bleiben
lea ziffern,a0 * Adresse der Ziffern-Tabelle
move.b 0O(a0,d2.w),d2 * ASCII-Wert laden
move d2,-(sp) * auf den Stack damit
move #2,-(sp) * CONOUT-Funktionscode
trap #1 *
addq.l #4,sp *
subq #4,d3 * jetzt um 4 Bits weniger

* verschieben
bpl h_ loop * nachste Ziffer
rts * fertig, wenn Stellen-

* zahler < 0

ziffern DC.B "0123456789ABCDEF"
END

Eingabe von hexadezimalen Zahlen

Die hier vorgestellte Routine liest nicht selbst Zeichen von der Tastatur, son-
dern erwartet als Parameter in DO die Adresse einer Zeichenkette, aus der eine
Hexadezimalzahl gelesen werden soll. Diese Maßnahme läßt Ihnen die Mög-
lichkeit offen, jede beliebige Routine für die Eingabe der Zeichenkette zu ver-
wenden. Die Zahl wird als beendet betrachtet, sobald ein Zeichen gefunden
wird, das nicht in eine Hexadezimalzahl gehört. Nach der Ausführung steht in
DO die gelesene Zahl und in D1 die Anzahl der verarbeiteten Zeichen.

Und so arbeitet die Routine: Zunächst werden die Zahl (DO) und der Zeichen-
Index (D1) auf Null gesetzt. Dann folgt der Anfang der Schleife: Es wird im-
mer ein Zeichen eingelesen und der ASCII-Wert in den Wert der Hexadezi-
malziffer umgewandelt, wobei auch Kleinbuchstaben berücksichtigt werden.
Hier wird die Eigenschaft des ASCH-Codes benutzt, daß alle Ziffern von O bis
9 in aufsteigender Reihenfolge hintereinanderliegen; um das Zeichen für eine
der Ziffern also in ihren Wert umzurechnen, braucht man nur den ASCII-
Wert des Zeichens für 0 abzuziehen.

Genauso liegen auch alle Buchstaben des Alphabets in der üblichen Reihenfol-
ge hintereinander; um die Großbuchstaben A - F in die Ziffernwerte 10 — 15
umzurechnen, zieht man den um 10 verringerten ASCII-Wert des Zeichens A
ab. Wenn das gelesene Zeichen keine gültige Hexadezimalziffer ist, dann wird
die Ziffernfolge als beendet betrachtet und die bisher gelesene Zahl zurückge-
geben. Ist es jedoch eine gültige Ziffer, dann wird die bisher gelesene Zahl um
eine Hexadezimalstelle nach links verschoben, was einer Multiplikation mit 16

Einige nützliche Routinen 279

oder einem Verschieben um 4 Bits nach links entspricht, und der Wert der neu
gelesenen Ziffer wird addiert. Dann wird nur noch der Zeichenindex erhöht
und zum Anfang der Schleife zurückgesprungen.

Aus der Struktur des Programms kann man leicht ablesen, daß eine Null zu-
rückgeliefert wird, wenn schon das erste gelesene Zeichen keine gültige Ziffer
darstellt.

Übrigens handelt es sich diesmal nicht um ein vollständiges Programm, es
wird nur eine Routine abgedruckt.

“

AAKKKKAKKAKKKKKHKKAKKKKKTK TH KK KK KK KK KH KH KH KH A KK KK KK AK AK TK TH KK KH KK KK AK KK AK AK KA KH AK A KH A KU

INPHEX.S *

Einlesen einer Hexadezimalzahl (kein vollständiges Programm) *
Die Adresse einer Zeichenkette wird in DO überrreicht; *

nach der Ausführung steht in DO.L die Zahl und in D1.W
die Anzahl der gelesenen Zeichen

*

x

x

Registerbelegung *
DO bisher gelesene Zahl *
D1 Anzahl der gelesenen Zeichen *
D2 aktuzelles Zeichen *

x

*

AO Adresse der Zeichenkette

x

*

*

X

*

*

*

*

x

x

*

KEKKKKKKKKEKKKKKKKKKKKEKKKKKKKKKKKKEKKKKKKKKKKKKKKKKKEKKKKKKKKKKK

inphex move.l d0,a0 * Adresse der Zeichenkette in
* AO

clr.l a0 * Bisher gelesene Zahl = 0
clr al * Anzahl der gelesenen

* Zeichen = 0
ih_loop move.b 0O(a0,dl.w),d2 * aktuelles Zeichen einlesen

cmp .b #'0',d2 * größer/gleich '0'?
bces.s ih_end * Nein, Ende
cmp.b #'9',d2 * kleiner/gleich '9'?
bhi.s ih af * nein, noch auf A-F testen
sub.b #'0',d2 * ASCII '0'-'9' auf Zahl

* umrechnen
bra.s ih _mull6 * Test auf A-F überspringen

ih af cmp.b #'A',d2 * größer gleich 'A'?
bes.s ih_end * Nein, keine Ziffer
cmp.b #'F',d2 * kleiner/gleich 'F'?
bhi.s ih_aflow * nein, noch auf 'a'-'f'

* testen

sub.b #'A'-10,d2 * ASCII 'A'-'F' auf
* 10-15 umrechnen

bra.s ih_mull6 * Test auf a-f überspringen
ih aflow cmp.b #'a',d2 * größer gleich 'a'?

bcs.s ih_end * Nein, keine Ziffer
cmp.b #'£f',d2 * kleiner/gleich 'F'?
bhi.s ih end * nein, keine Ziffer

280 ATARI ST — Programmierung in Maschinensprache

sub.b #'a'-10,d2 * ASCII 'a'-'f' auf 10-15
* umrechnen

ih _mull6 1sl.l #4,d0 * DO.L=D0.L*16 ->

* DO.L=DO.L >>.4
ext.w d2 * d2 von Byte- auf

* Langwortbreite
ext.1 d2 *

add.l d2,da0 * DO.L = DO.L + neue
* Ziffer

addq #1,dl * ein Zeichen mehr
* gelesen

bra.s ih loop x
ih_end rts * fertig!

Ausgabe von Dezimalzahlen

Bei Dezimalzahlen muß man etwas anders vorgehen als bei Hexadezimalzah-
len. Die Methode, die der Computer hier verwendet, entspricht der, die Sie
verwenden würden, wenn Sie mit Bleistift und Papier eine Dezimalzahl in ein
fremdes Zahlensystem verwandeln sollten. Für den Computer ist dabei das De-
zimalsystem das "fremde" System, er ist ja im Binärsystem zu Hause. Sehen
wir uns dazu beispielsweise einmal an, wie man die Dezimalzahl 1000 in eine
Hexadezimalzahl umwandeln kann:

Die höchste Potenz von 16, die nicht größer als 1000 ist, ist 16 hoch 2, also
256. Wir fangen deshalb mit 256 an:

256 geht 3 malin 1000 Rest 1000 -3*256
16 geht 14 malin 232 Rest 232- 14*16

1 geht 8 malin 8 Rest 8-8*1

232 Ziffer 3

8 ZifferE

0 Ziffer 8

Wir erhalten 1000 = $3E8.

Die folgende Routine zur Ausgabe einer Dezimalzahl bekommt den auszuge-
benden Wert in DO übergeben. Es werden die Register DO - D5 und AO verän-
dert.

Um festzustellen, wie oft eine Zehnerpotenz in die noch zu verarbeitende Zahl
hineingeht, wird jedesmal getestet, ob die Zehnerpotenz noch kleiner ist als die
restliche Zahl. Ist dies der Fall, dann wird die Zehnerpotenz von der Restzahl
abgezogen und dafür die aktuelle Ziffer um eins erhöht. Das geschieht so lan-
ge, bis die Restzahl tatsächlich kleiner ist als die Zehnerpotenz. Dann wird die
errechnete Ziffer ausgegeben und der Rest mit der nächst niedrigeren Zehner-
potenz weiterbearbeitet.

Einige nützliche Routinen 281

Die einfachste Methode, die verschiedenen Zehnerpotenzen zu erhalten, ist
eine Liste. Bei der Ausgabe eines Langwortes muß mit 10° = 1.000.000.000
begonnen werden, da die höchste in einem Langwort darstellbare Zahl etwa
4,29 Milliarden entspricht.

Einem Problem muß man noch Beachtung schenken: dem Entfernen von füh-
renden Nullen. Hier wird das so gelöst, daß in D5 ein Flag eingerichtet wird,
das angibt, ob schon eine andere Ziffer als O vorkam. Solange Nullen errech-
net werden und dieses Flag noch nicht gesetzt ist, erfolgt keine Ausgabe, da es
sich mit Sicherheit um führende Nullen handelt. Leider muß man hier noch
auf einen Sonderfall eingehen, denn bei dieser Behandlung würde bei einer
Null in DO überhaupt nichts ausgegeben werden. Deshalb wird das Kriterium,
daß nach dem Berechnen aller Ziffern das fragliche Flag noch immer nicht ge-
setzt ist, als Anzeichen dafür betrachtet, daß es sich um die Null handelt, und
das ASCII-Zeichen "0" wird noch einmal extra ausgegeben.

AAKKKKAKAKKKAÄKKKAKKKKKKKKKK KK KK KK KK KK KT KK AH KH AK KH AK KH KH AK AK AK AK TK IK IK FH HK HK AK KH AK A KH KH A A

PRDECP.S

Routine zum Ausgeben eines Langwortes als Dezimalzahl
(nur positiv)

Die auszugebende Zahl wird im Register DO übergeben

Registerbelegung:

*

*

*

*

*

x

*

* DO.L nur Ubergabewert, wird sonst von CONIN verdndert
* noch auszugebender Restwert
*

*

*

*

*

x

x

K
T

L

W Index in der Zehnerpotenzen-Tabelle
D3.L Zehnerpotenz mit dem Stellenwert der aktuellen Ziffer*

W Wert der aktuellen Ziffer *
B Flag; 1 wenn schon eine andere Ziffer als 0 *

vorkam ,sonst 0 *
Al Adresse der Zehnerpotenzentabelle *

KREKEKKKKK KKK KKK KK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKKKKK KKK KKKKKKKKK

* Hauptprogramm

start move.l #123456789,d0 * beliebige Zahl zum Testen
bsr printdec * und Routine aufrufen
move #8,-(sp) * CONOUT-Funktionscode
trap #1 * ins GEMDOS
addq.1 #2,sp * Stack aufräumen
clr - (sp) * TERM-Funktionscode
trap #1 * Schluß jetzt!

printdec clr.b d5
move.l #4%*9,d2

lea zehner,al .

Nullen-Flag löschen
Index von 1.000.000.000
Adresse der Zehnerpoten-
zen-Tabelle
Wert in D1l retten +

%

OF

move.l d0,dl

d_ loop move.l 0O0(al,d2.w),d3 * Zehnerpotenz nach D3

282 ATARI ST - Programmierung in Maschinensprache

d_verglei

d_ ausgabe

d_aus

d_next

d_end

d_rts
* Tabelle

zehner

moveq
cmp.l

bcs.s

sub.1

addq
bra.s

cmp.
bne.
tst.

beq.
st

move
move
trap

addq.1l
subq
bpl.s
tst.b

n
o
n

oO

bne.s

move

move
trap

addq.l
rts

#48,d4
a3,dl

d_ausgabe
d3,d1
#1,d4
d_verglei

#48,d4
d_aus
d5
d_next
d5

d4,-(sp)

#2,- (sp)
#1
#4,sp
#4,d2
ad _ loop
a5

d_ rts
#'0',-(sp)

#2,-(sp)
1 #

#4,sp

a
F
F
I
R

I
R

R
R

FF

K
F

+
+

+
F
F

HF
KF

O
H

O
F

Ziffer=ASCII(0)=48
Rest schon kleiner

als Zehnerpotenz?
ja, zur Ausgabe
Rest=Rest-Zehnerpotenz
Ziffer um eins erhöhen
und noch einmal

Ziffer='0'
nein, normal ausgeben
Null schon ausgeben?
nein, nachste Ziffer
ab jetzt Nullen ausgeben
Ziffer ausgeben
CONOUT Funktionsnummer
und hinein ins GEMDOS
immer schön aufräumen
Index verringern
noch mehr Ziffern ausgeben
Wurde schon eine Ziffer
ausgegeben?
ja, alles ok
nein, es muß sich um die 0
handeln
CONOUT-Funktionsnummer
ins GEMDOS

Fertig wenn Index<0
der Zehnerpotenzen von 1 bis eine Milliarde

1,10,100,1000,10000, 100000, 1000000
10000000, 100000000, 1000000000

DC.L
DC.L

END

Diese Routine gibt Zahlen immer positiv aus. Die folgende Routine hingegen
trägt dem Umstand Rechnung, daß man ein Langwort auch als Zweierkomple-
mentzahl betrachten kann. Es handelt sich nur um eine kleine Abwandlung des
vorherigen Programms: Zum Anfang der Routine wird getestet, ob die Zahl
negativ ist. Ist das der Fall, dann wird das Minus-Zeichen (-) ausgegeben und
die Zahl negiert, also in eine positive verwandelt. Der Rest entspricht der vor-
herigen Routine.

KAKKKKKAKKKKKKKKKKKAKKKKAKKKK KK KK KK TH KH KH KH KK IK IK KH KH AK HK TH IK KH A KH A KH AK A KK KH A KH A AK AK AH I X

PRDECN.S

DO.L
D1.L
D2.W +

+
+

+
F
F

H
H

Registerbelegung:
nur Übergabewert, wird sonst von CONIN verändert
noch auszugebender Restwert
Index in der Zehnerpotenzen-Tabelle

Routine zum Ausgeben eines Langworts als Dezimalzahl (+/-)

Die auszugebende Zahl wird im Register DO übergeben.

+
+

+
+

+
F

HF
HX

F

Einige nützliche Routinen 283

* D3.L

* D4.W
* D5.B
*

*

*

Al

Zehnerpotenz mit dem Stellenwert der aktuellen Ziffer *

Wert der aktuellen Ziffer *

Flag; 1 wenn schon eine andere Ziffer als 0 vorkam, *
sonst 0 *

Adresse der Zehnerpotenzentabelle *
KKKKKEKKKEKKKKK

* Hauptprogramm
start move.l #-123456789,d0

bsr.s printdecn
move #8,-(sp)
trap #1
addq.1 #2,sp
clr - (sp)

trap #1

printdecn clr.b d5
move.l #4*9,d2
lea zehner,a

move.l d0O,dl
bpl.s d_loop

move #$2d,- (sp)
move #2,-(sp)
trap #1
addq.l #4,sp
neg.l al

d_loop move.l 0O(al,d2.w),d3

moveq #48,d4
d_verglei cmp.l. d3,dl

bes.s d_ausgabe
sub.1 d3,dl
addq #1,d4
bra.s d_verglei

d ausgabe cmp.b #48,d4

bne.s d aus
tst.b d5
beq.s d_ next

d_aus st as
move d4,-(sp)

move #2,-(sp)
trap #1
addq.l #4,sp

d_next subg #4,d2
bpl.s d_loop

d_end tst.b a5

bne.s d_rts
move #'0',-(sp)

+
+

+
*

%

*
+

+
+

*
+

+
F
F

+
HF

HK
OF

F
OF

OF

O
F

OK

O
K

O
F

+
+

+
+

+
F
H

*
 HF

H
H

HF
H
H

OH

OF

negative Zahl zum Testen
und Routine aufrufen
CONOUT-Funktionscode
ins GEMDOS

Stack aufräumen

TERM-Funktionscode
Schluß jetzt!

Null-Flag löschen
Index von 1.000.000.000
Adresse der Zehner-
potenzen-Tabelle
Wert in Dl retten
Wert positiv -> nichts
weiter
negativ, ausgeben
CONOUT-Funktionsnummer
ins GEMDOS damit

Operand positiv machen
Zehnerpotenz nach D3
Ziffer=ASCII (0) =48
Rest schon kleiner als
Zehnerpotenz?
ja, zur Ausgabe
Rest = Rest-Zehnerpotenz
Ziffer um eins erhöhen
und noch einmal

Ziffer="0"
nein, normal ausgeben
Null schon ausgeben?
nein, nachste Ziffer

ab jetzt Nullen ausgeben
Ziffer ausgeben

CONOUT-Funktionsnummer
und hinein ins GEMDOS
immer schön aufräumen
Index verringern
noch mehr Ziffern aus-
geben
Wurde schon eine Ziffer
ausgegeben?
ja, alles ok
nein, es muß sich um die
O0 handeln

284 ATARI ST - Programmierung in Maschinensprache

move #2,-(sp) * CONOUT-Funktionsnummer
trap #1 * ins GEMDOS
addq.1 #4,sp *

d rts rts * Fertig wenn Index<0
* Tabelle der Zehnerpotenzen von 1 bis eine Milliarde
zehner DC.L 1,10,100,1000,10000,100000,1000000

DC.L 10000000, 100000000, 1000000000
END

Es sollte keinen großen Aufwand machen, diese Routinen für die Ausgabe ei-
nes Wortes umzuschreiben. In diesem Fall müßte man mit der Zehnerpotenz
10000 beginnen, da in einem Wort Zahlen bis 65535 dargestellt werden kön-
nen.

Eingabe von Dezimalzahlen

Um das Prinzip des Einlesens einer Dezimalzahl zu verstehen, erinnern wir
uns, wie das bei einer Hexadezimalzahl funktioniert. Dort haben wir immer
eine Ziffer eingelesen und ihren Wert berechnet, sofern es eine gültige Ziffer
war. Daraufhin wurde der bisher gelesene Wert um eine Ziffer nach links ver-
schoben, was in diesem Fall gerade einer Multiplikation mit 16 entsprach -
eben weil 16 die Basis des Zahlensystems war. Zum Schluß wurde die neue
Ziffer zum Ergebnis dieser Multiplikation (oder Verschiebung, wie man es
eben betrachtet) addiert. Genau aus dem gleichen Grund werden wir bei Dezi-
malzahlen das bisherige Ergebnis jedesmal mit 10 multiplizieren.

Bei der folgenden Routine wird beim Aufruf in DO die Adresse einer Zeichen-
kette übergeben, aus der die Zahl gelesen werden soll. Bei der Rückkehr steht
in DO die gelesene Zahl (Langwort) und in D1 die Anzahl der verarbeiteten
Zeichen. Zwischendurch werden noch die Register D2 - D4 und AO verän-
dert.

Für die Multiplikation mit 10 muß man sich einen kleinen Trick einfallen las-
sen, da der MC68000 ja nur Worte mittels MULU multiplizieren kann, wir je-
doch eine Langwortmultiplikation brauchen. Deshalb setzt man die Multipli-
kation mit 10 aus einer Multiplikation mit 8 und einer mit 2 zusammen — die
sich ja direkt aus Verschiebeoperationen ergeben. Übrigens ist diese Methode
mitunter auch bei Wort-Multiplikationen sinnvoll, da sie noch immer schnel- |
ler ist als ein einziger MULU-Befehl. Logischerweise ist dieser Trick nur an-
wendbar, wenn einer der Operatoren eine Konstante ist.

Die Routine berücksichtigt auch ein führendes Minuszeichen, so daß der Be-
nutzer bei großen Zahlen die Wahl hat, ob er sie lieber als positive oder negati-

Einige nützliche Routinen 285

ve Zahlen eingibt. So wird am Anfang der Routine getestet, ob das erste Zei-
chen ein Minus-Zeichen ist und ein Flag entsprechend gesetzt. Erst nach dem
Einlesen der Ziffern wird darauf noch einmal zugegriffen: Ist es gesetzt, dann
wird das Ergebnis negiert.

Diese Routine achtet nicht darauf, ob zu große Zahlen eingegeben werden; in
diesem Fall stimmt das Ergebnis nur noch modulo 2.

KKK KK KKK KKK IK KK KKK KKK I I KK KK KKK I KH KH KH AH A KH KH KR KK A I

INPDEC.S

Einlesen einer Dezimalzahl (kein vollständiges Programm)
Die Adresse einer Zeichenkette wird in DO überreicht;
nach der Ausführung steht in DO.L die Zahl und in D1.W
die Anzahl der gelesenen Zeichen

x

x

*

x

x

*

* Registerbelegung
*

x

x

x

x

*

x

bisher gelesene Zahl
Anzahl der gelesenen Zeichen
aktuelles Zeichen

zum Rechnen

Minus-Flag; gesetzt: Zahl ist negativ
Adresse der Zeichenkette

KAKKKAKKKKAKKKKAKKKKKKKKK KK KK KK KK I KK KH KH IK KH IK IK AK KK AK KH A K AK KH A KH KH A KK A I

inpdec

id_loop

move.l d0,a0

clr.l do
clr al

clr.b d4
move.b (a0),d2

cmp.b #'-',da2
bne.s id_loop
st d4
addq #1,d1
move.b 0Q(a0,dl.w),d2

sub.b #'0',d2

cmp.b #9,d2
bhi.s id_end

move.l d0,d3

1sl.l #1,d3
lsl.l #3,d0
add.l a3,d0
ext .w d2

ext.l a2 F
r

I
r

I
R
R
E

HF
+

HF
HF

HF
HF

KF
F
F

F
O
F

HK
O
F

F
O
F

O
F
 Adresse der Zeichenkette

in AO
bisher gelesene Zahl = 0
Anzahl der gelesenen
Zeichen = 0
Minus-Flag löschen
erstes Zeichen auf
testen

kein "-", weiter
Minus-Flag setzen
ein gelesenes Zeichen
aktuelles Zeichen einle-
sen

ASCII auf Ziffernwert
umrechnen

größer als 9?
keine Ziffer
(ASCII 0-47 / 58-255)
DO.L = DO.L * 10 berech-
nen

DO.L*8 + DO.L*2

d2 von Byte- auf Lang-
wortbreite

*

x

*

*

x

x

x

x

x

*

*

*
x

x

ATARIST - Programmierung in Maschinensprache

add.1
addq
bra.s

id_end tst
beq.s
neg.1

id rts rts

d2,d0
#1,d1
id_ loop

id rts
do

Die Langwortdivision

+
+

+
+

HF
HF

DO.L = DO.L + neue Ziffer
ein Zeichen mehr gelesen

negative Zahl?
nein, Rückkehr
zahl = -Zahl
fertig!

Bekanntlich sind Multiplikation und Division auf dem MC68000 nur für Wor-
te implementiert. Bei der Multiplikation stellt das kein großes Problem dar, da
man diese Operation mit größeren Einheiten auf die Wortmultiplikation zu-
riickfiihren kann. Leider ist das bei der Division nicht so einfach — dort muß
ein ganz anderer Algorithmus her, wenn man mit größeren Einheiten als der
Division eines Langwortes durch ein Wort operieren will.

Die folgende Routine führt die Division eines Langwortes durch ein Langwort
aus; sie kann auch leicht für noch längere Operanden erweitert werden.

Um den Algorithmus zu verstehen, betrachten wir zunächst einmal, eine
schriftliche Division zweier Dezimalzahlen:

52325 : 17 = 3077 Rest 16
51 - 51

| br rm

tO

| Pr ay
 oO

16

3 * 17 =

O * 17

7 * 17 =

7 * 17

In diesem Fall wird 5325 als Dividend bezeichnet, 17 als Divisor.

Die binäre Division geht ganz ähnlich vor sich:

10101010 :

- 0000

10101010
- 1101

1101 = 01011 Rest 1

0*1101

1*1101

Einige nützliche Routinen 287

1000010
- 0000 0*1101

1000010
- 1101 1*1101

1110
- 1101 1*1101

1

Wieder einmal ist die binäre Operation wesentlich einfacher durchzuführen
als die dezimale: Der Divisor wird mit der höchsten Stelle des Operanden ver-
glichen; ist der obere Teil des Dividenden größer als der Divisor, dann wird

der Divisor an dieser Stelle vom Dividenden abgezogen und eine Eins im Er-
gebnis angerechnet. Andernfalls geschieht nichts weiter, und im Ergebnis er-
scheint eine Null. Das Ganze wird so lange wiederholt, bis die niederwertigste
Stelle des Dividenden erreicht ist.

Der folgende Algorithmus geht im Prinzip genauso vor. Allerdings wurde ein
kleiner Trick verwendet, der Befehle und Rechenzeit spart: Der Dividend teilt
sich mit dem Ergebnis das gleiche Register, da beide Werte in jedem Durch-
lauf nach links verschoben werden müssen. Wenn alle 32 Bit abgearbeitet sind,
ist der Dividend ganz aus dem Register herausgeschoben, und nur noch das Er-
gebnis steht dort. |

Der Dividend wird in DO überreicht, der Divisor in D1. Zurückgegeben wird
in DO das Ergebnis der Division (wie üblich abgerundet) und der Rest in D2.
Der Divisor in D1 wird nicht verändert.

KAAKKKKKAÄKKKKAKKKKKK KK KK KK KK KH KH KK KH HK TH KK AK KH KK KK KH KK KH KH KK KH KK KK KH KK KH KH KK U

* DIVI.S *

* Langwortdivision in Maschinensprache *
* Die Operanden werden in DO.L (Divisor) und D1.L (Dividend) *
* überreicht; Nach dem Aufruf steht in DO das Ergebnis DO/D1 *
* und in D2 der Rest DO mod D1 *
* *

* Registerbelegung: *
* DO: Operand 1 (Divisor) und Ergebnis *
* Dl: Operand 2 (Dividend) *
* D2: Teil des aktuellen Divisors bzw. Rest *
* D3: Zähler für 32 Bitstellen *
KREEKKKKKKKKKKKRKRKRKKKKKKKKKKR KK KEKE KKK KKK KKK KKK KKK KE K A KH A KH K AH IK AK AK A A A a

divi moveq #0,d2 * Rest auf Null setzen
moveg #31,d3 * Stellenzähler

divil asl.l #1,d0 * Operand und Rest

 288 ATARI ST - Programmierung in Maschinensprache

roxl.1 #1,d2 * nach links schieben
cmp.1 d2,dl * Rest > Dividend?
bhi.s divi2 * ja, nichts weiter tun
sub.1 di, d2 * Rest=Rest-Dividend
addq #1,d0 * Ergebnis 1 erhöhen

divi2 dbf D3,divil * 32mal wiederholen
rts * fertig

289

Kapitel 6

Maschinennahe Programmierung

In diesem Kapitel stürzen wir uns Hals über Kopf in die Praxis. Es werden ei-
nige Beispiele gezeigt, wie Programme mit der Hardware des ATARI ST um-
gehen können - so ziemlich das einzige Gebiet, das allein der Assemblerpro-
grammierung vorbehalten bleibt. Natürlich ist dieses Kapitel weit davon ent-
fernt, einen vollständigen Überblick über die Hardwaremöglichkeiten des
ATARIST zu vermitteln — dafür sind sie einfach zu umfangreich. Die folgen-
den Beispiele sollen nur mit einigen Grundlagen der maschinennahen Pro-
grammierung vertraut machen und Anregungen zu eigenen Experimenten bie-
ten.

Setzen eines Punktes in hoher Auflösung

Eine elementare Grafikroutine ist die zum Setzen oder Löschen eines Pixels.
Natürlich gibt es im Betriebssystem schon Routinen für diesen Zweck (etwa
die Line-A-Routinen). Es ist jedoch in vielen Fällen nützlich, selbst auf den
Grafikspeicher zugreifen zu können, da man so Routinen entwickeln kann, die
schneller sind als die Betriebssystemroutinen, da sie nicht so flexibel sein müs-
sen. Außerdem kann man auch Grafikoperationen implementieren, die nicht
im Betriebssystem vorgesehen sind.

Bevor wir eine Routine zum Setzen oder Löschen eines Punktes entwickeln
können, müssen wir zunächst einiges über den Aufbau des Bildschirmspei-
chers wissen.

Der Grafikspeicher des ATARI ST liegt direkt im Hauptspeicher und umfaßt
in jeder Auflösungsstufe 32000 Bytes. Normalerweise wird der Bildschirm-
speicher direkt vor dem Ende des physikalischen RAMs liegen, also bei einer
512K-Maschine von $78000 bis $78FFF, bei einer Megabyte-Maschine von
$F8000 bis $FFFFF. Es ist allerdings kein guter Programmierstil, direkt eine
dieser Adressen zu benutzen, da die Bildschirmadresse von einigen residenten
Programmen - wie beispielsweise einer RAM-Disk - verschoben werden
kann. Zu diesem Zweck gibt es zwei XBIOS-Funktionen mit den Namen
PHYSBASE (Nummer 2) und LOGBASE (Nummer 3). Beide haben keine Pa-
rameter und liefern in DO eine Adresse zurück. Erstere liefert dabei die An-
fangsadresse des Bildschirmspeichers, den man in diesem Moment tatsächlich
sieht, also die physikalische Bildschirmadresse. LOGBASE gibt die logische
Bildschirmadresse an, auf der alle Grafikoperationen wie Zeichenausgabe und

290 | ATARI ST - Programmieren in Maschinensprache

Line-A-Routinen arbeiten. Im Normalfall sind beide identisch. Da jedoch bei-
de Adressen getrennt verändert werden können, hat ein Programm die Mög-
lichkeit, einen Bildschirm zu zeigen, während ein anderer für den Benutzer
unsichtbar gerade aufgebaut wird.

Nun zunächst zur Organisation des Bildschirmspeichers für den höchstauflö-
senden Modus (640 x 400). Da in dieser Auflösung jeder Punkt nur zwei Far-
ben, nämlich Schwarz oder Weiß, annehmen kann, entspricht jeder Pixel ge-
nau einem Bit. Dabei steht normalerweise 0 für einen weißen, 1 für einen
schwarzen Punkt. 80 aufeinanderfolgende Bytes oder besser gesagt 40 Worte
entsprechen einer Bildschirmzeile. Das Wort mit der niedrigsten Adresse wird
am linken Bildschirmrand abgebildet, das mit der.höchsten rechts. Innerhalb
eines Wortes wird das höchstwertigste Bit links abgebildet, das niederwertig-
ste rechts. Die Bildschirmzeilen werden nacheinander von oben nach unten ab-
gespeichert. Somit werden die Worte genau in der Reihenfolge abgespeichert,
in der sie für den Bildschirmaufbau synchron zur Bewegung des Elektronen-
strahls abgetastet werden müssen. Abb. 6.1 verdeutlicht diese Zusammenhän-
ge. Um also den Punkt links oben in der Ecke zu setzen, müßte Bit 15 des er-
sten Wortes des Bildschirmspeichers auf 1 gesetzt werden.

O12 re eeyrececuereceyr, 689
PL pcre ies |

Tats |
|: |

a Bildschirm !

goo: \i\

15 0

COUT TT) ee

Bildschirmspeicher

Abb. 6.1: Organisation des Bildschirmspeichers in hoher Auslésung

Maschinennahe Programmierung 291

Für die Programmierung von Grafikroutinen ist es von Bedeutung, daß man
den hochauflösenden Modus sowohl byteweise als auch als wortweise organi-
siert betrachten kann. Die Linearität bleibt in beiden Fällen erhalten, da etwa
Bit 15 des ersten Worts das gleiche physikalische Bit anspricht wie Bit 7 des
ersten Bytes. Erinnern wir uns, daß beim MC68000 immer die hochwertigen
vor den niederwertigen Einheiten abgespeichert werden.) Sinnvoll ist das be-
sonders deshalb, da für die Pixeloperationen die Bit-Befehle wie BSET oder
BCLR gut anwendbar sind, diese jedoch die Eigenheit haben, daß im Speicher
nur Bytes angesprochen werden können.

Überlegen wir uns nun, wie man aus gegebenen X- und Y-Koordinaten die
Adresse und das zu setzende Bit berechnen kann. Dabei soll, wie auf Compu-
tern allgemein üblich, die linke obere Ecke des Bildschirms als Koordinaten-
ursprung dienen. Beginnen wir mit der Adresse des Bildschirmspeichers. Um
nun zur Anfangsadresse der gewünschten Bildschirmzeile zu kommen, addie-
ren wir das 80-fache der Y-Koordinate (schließlich entspricht eine Bild-
schirmzeile 80 Bytes). Um nun auf die Adresse des Bytes zu kommen, addiert

man X/8, da ein Byte 8 Punkten in der Horizontalen entspricht. (Die Division
ist hier als die abrundende ganzzahlige Division aufzufassen, wie sie von
DIVU realisiert wird). Somit kommen wir also auf die Formel:

adr = Bildschirmadresse + Y*80 + X/8

Nun geht es nur noch darum, die Bitposition in diesem Byte zu bestimmen.
Wir erhalten sie einfach, indem wir X modulo 8 berechnen, also die unteren 3
Bits der X-Koordinate herausgreifen. Allerdings müssen diese Bits noch in-
vertiert werden, da das Bit 7 links dargestellt wird, während dieses Bit bei X
modulo 8 rechts steht.

Nun sind wir auch schon so weit, daß wir ein Programm zum Setzen oder Lö-
schen eines Punktes schreiben könnten. "plothi" erwartet in DO die X-Koordi-
nate, in D1 die Y-Koordinate und in D2 den Farbwert, 0 oder 1. Vor dem er-
sten Aufruf dieser Routine muß allerdings die logische Bildschirmadresse fest-
gestellt werden, die hier der Einfachheit halber im Register D6 aufbewahrt
wird. Übrigens werden keine Bereichsüberprüfungen vorgenommen; dafür ist
das aufrufende Programm selbst verantwortlich.

ARKKKKAKKAKKKKKKKKKKKKKKKKHH KK KK KK KK HK KH KK KH AK TH TH IK KH IK KH AK KH K A AK HK A KK AK K A KHK A AK A

* PLOTHI.S *

* Routine zum Plotten eines Punktes in hoher Auflösung *

* Die X-Koordinate wird in DO.W iibergeben, *
* Y in D1.W und die Farbe in D2.B (O:löschen, 1: setzen). *
* In A6 wird die Anfangsadresse des Bildschirmspeichers *
* erwartet. *
* *

* x

* *

Registerbelegung:
KAAKKKAKKKKKKAKKKKKKKK KH KKK KKKKKKK KKK KR KKK KK KKK KEKKKEKKKKKEKKKKKKKK

 292 ATARI ST - Programmieren in Maschinensprache

CNECIN EQU 8 * GEMDOS-Funktion

LOGBASE EQU 3 * XBIOS-Funktion

start bsr initscr * Bildschirmadresse fest-
* stellen

move #100,d0 * X-Koordinate
move #50,d1 * Y-Koordinate
moveg #1,d2 * Pixel setzen
bsr plothi * in die Routine
move #CNECIN,- (sp) * auf Taste warten
trap #1 * ins GEMDOS
addq. #2,sp *
clr -(sp) * TERM

trap #1 * Ende

initscr move #LOGBASE,-(sp) * logische Bildschirmadresse
holen

trap #14 * ins XBIOS
addq. #2,sp *
move. d0,a6 * Bildschirmadresse in A6

* merken
rts

plothi move. a6,a0 * Bildschirmadresse
move a0,d3 * berechne scradr+X/8+Y*80
lsr #3,d3 x X/8
add a3,a0 * zum Ergebnis
move d1,d3 * berechne
mulu #80,d3 x Y¥*80
add d3,a0 * zum Ergebnis
move ad0,d3 * berechne Bitstelle
and #SFFF8,d3 * nur Bits 0-2 von X
eor #7,d3 * berechne 7-Bitstelle
tst d2 * Setzen oder löschen?
bne.s setzen * Pixel setzen

loeschen bclr a3, (a0) * Bit löschen
rts * fertig

setzen bset d3, (a0) * Bit setzen
ph_end rts * fertig

END

Setzen eines Punktes in niedriger Auflösung

Nachdem wir nun den hochauflösenden Grafikmodus gemeistert haben, wen-
den wir uns dem niedrigauflösenden (320 x 200) zu. Dort ist die Darstellung
des Bildschirmrasters im Speicher etwas komplizierter, da jeder Pixel eine
von 16 Farben annehmen kann. Somit müssen für jeden Bildschirmpunkt 4
Bits gespeichert werden. Diese sind allerdings nicht, wie man vielleicht erwar-
ten könnte, einfach hintereinander abgelegt. Vielmehr werden die Pixel einer

Maschinennahe Programmierung 293

Bildschirmzeile in Gruppen zu 16 aufgeteilt, deren Farbwerte von insgesamt 4
Worten bestimmt werden. Bezeichnen wir die Adresse des Bildschirmspei-
chers mit "scr" für engl. "screen". Um die Farbe des Punktes in der oberen lin-
ken Ecke bestimmen zu können, müssen also die obersten Bits der Worte scr,
scr + 2, scr + 4 und scr + 6 herhalten; die Farbe des Punktes rechts daneben
wird von den Bits 14 der entsprechenden Worte bestimmt, und so weiter (Abb.
6.2). Wenn man für einen Pixel diese Bits zusammenfügt, und zwar das Bit aus
scr als unterstes, das aus scr + 2 als nächsthöheres und so fort, erhält man einen
Index von 0 bis 15 in die Farbregister des Videochips, wo die tatsächliche Far-
be des Bildschirmpunkts in Rot-, Griin- und Blauanteil festgelegt ist.

in 319
0 IIIITIIIIIIIIIIIII Lr

1

Bildschirm

9) | \

Farbindex

“ALYY Ny oe IL a

SEI
(HET ULE TEE 1 LTT

Bildschirmspeicher

Abb. 6.2: Organisation des Bildschirmspeichers im Lo-Res-Modus

294 ATARI ST - Programmieren in Maschinensprache

Bei der Berechnung der Adresse eines Pixels gilt es noch zu beachten, daß nun
eine Bildschirmzeile 160 Bytes umfaßt (man könnte auch sagen: 20 16-Pixel-
Gruppen zu je 4 Worten). Dafür ist die Anzahl der Zeilen in der Vertikalen im
Vergleich zum hochauflösenden Modus von 400 auf 200 gesunken, wodurch
sich wieder die gleiche Länge des Bildschirmspeichers von 32K ergibt.

Versuchen wir nun, eine Formel für die Berechnung der Adresse eines Pixels
mit den Koordinaten X, Y zu finden. Zur Anfangsadresse des Bildschirmspei-
chers addieren wir zunächst Y * 160, um die Anfangsadresse unserer Zeile zu
finden. Die Nummer der vier-Wort-Gruppe in dieser Zeile ergibt sich, wenn
man X / 16 berechnet (wieder ganzzahlig), da ja 16 Pixel in einer solchen
Gruppe dargestellt werden. Die Distanz zum Anfang der Zeile erhält man,
wenn man diesen Wert mit 8 multipliziert, weil eine solche Gruppe jeweils 8
Bytes umfaßt. Somit kommen wir auf die Formel

adr = Bildschirmadresse + Y*160 + (X/16) * 8

Das Bit, das in den vier Worten ab "adr" gesetzt werden muß, errechnet sich
einfach nach X modulo 16, das heißt, nur die unteren 4 Bits werden übrigge-
lassen. An dieser Stelle plagt es den Programmierer, daß die Bit-Befehle im
Speicher nur Bytes adressieren können. Sicher wäre es eine Möglichkeit, die
vier fraglichen Worte nacheinander in ein Register zu holen, dort das Bit zu
setzen und sie wieder zurückzuschreiben (erinnern wir uns, daß Register von
den Bit-Befehlen auf voller Länge angesprochen werden). Effizienter ist aller-
dings ein kleiner Trick: Er beruht darauf, daß es aufs gleiche herauskommt,
ob man im Wort "adr" Bit n + 8 setzt oder im Byte "adr" Bit n. In unserer
Routine wird diese Tatsache indirekt so verwendet: Wenn das Ergebnis von X
modulo 16 kleiner oder gleich 7 ist, wird das untere Byte des Wortes ange-
sprochen, das eine um eins größere Adresse hat. Ein "Abschneiden" des Bits 3
ist beim Bereich 8 — 15 nicht nötig, da bei BSET und BCLR ohnehin nur die
Bits 0 — 2 beachtet werden.

KKK KK KEK KKK KKK KKK KKK KI KKK KKK KKK KKK KEKE KKEKKKKKKKKIKKKKKKKAKKKKK

* PLOTLO.S *

* Routine zum Plotten eines Punktes in niedriger Auflösung *
* Die X-Koordinate wird in DO.W tibergeben, Y in D1.W und *
* die Farbe in D2.B (0-15). *
* In A6 wird die Anfangsadresse des *
* Bildschirmspeichers erwartet. *
x *

* Registerbelegung: x
KAAKKKAKKKAKKAKKKKKKKKKTKK KK KH KK KT KK IK TI KT K IK KK KH TK TH IK KK K TH IK TH IK AK KA AK HK A KK AK KH KH KH AK A

CNECIN EQU 8 * GEMDOS-Funktion
LOGBASE EQU 3 * XBIOS-Funktion

start bsr initscr * Bildschirmadresse feststellen
move #100,d0 * X-Koordinate
move #50,dl * Y-Koordinate

Maschinennahe Programmierung 295

moveq #15,d2
bsr plotlo
move #CNECIN,- (sp)
trap #1
addq.l #2,sp
clr - (sp)
trap #1

initscr move #LOGBASE, - (sp)

trap #14
addq.l #2,sp
move.l d0,a6

rts

plotlo move.l a6,a0
move ad0,d3

lsr #1,d3
and #SFFF8,d3
add d3,a0
move dl,d3
mulu #160,d3
add d3,a0
move do, d3
and #SFFFO,d3
cmp #7,d3
bls.s plo
and #7,d3
addq.1 #1,a0

plo eor #7,d3
btst #0,da2

bne.s pl0set
bcelr d3, (a0)
bra.s pli

plOset bset d3, (a0)
pli btst #1,d2

bne.s pliset
belr d3,2(a0)
bra.s pl2

pllset bset d3,2 (a0)
p12 btst #2,d2

bne.s pl2set
belr d3,4(a0)
bra.s p13

pl2set bset d3,4(a0)
p13 btst #3,d2

bne.s pl3set
bclr d3,6(a0)
rts

pl3set bset d3,6(a0)
rts

END

+
+

+

+
HF

+
F

HF
+

+
F
H
F

HF
F

F
F

HF
K
F

HF
FF

HF
KF

F
HF

HF
F
F

F
F

HF
HF

HF
HK

KF

Pixel in Farbe 15 (schwarz)
in die Routine
auf Taste warten

ins GEMDOS

TERM

Ende

logische Bildschirmadresse
holen
ins XBIOS

Bildschirmadresse in A6

merken

Bildschirmadresse
berechne

scradr+(X DIV 16) *8+Y*160

X/2
(X DIV 16) * 8

zum Ergebnis

Y*160
zum Ergebnis
berechne Bitstelle

nur Bits 0-3 von X
Bitstelle kleiner gleich 7?
nein, bleibt so
8-15 auf 0-7 abbilden
Adresse um eins erhöhen

berechne 7-Bitstelle
Farbe Bit 0 setzen

oder löschen?

Bit löschen
nächstes Bit
Bit setzen
Bit 1 setzen oder löschen?

Bit löschen
nächstes Bit
Bit setzen
Bit 2 setzen oder löschen?

Bit löschen

nächstes Bit
Bit setzen
Bit 3 setzen oder löschen?

Bit löschen
fertig
Bit setzen
fertig:

296 ATARI ST - Programmieren in Maschinensprache

Obwohl die mittlere Auflösung (640 x 200) hier keine Verwendung findet,
soll sie auch noch beschrieben werden. Bei dieser Auflösung wird jedes Pixel
durch 2 Bits dargestellt, da es ja 4 mögliche Farben gibt. Die Abspeicherung
erfolgt ähnlich wie die der niedrigen Auflösung: Auch hier werden die Pixel
in horizontale Gruppen von 16 aufgeteilt, deren Farbe aber nur durch 2 Worte
bestimmt ist. Die Farbe der oberen linken Ecke wird also durch Bit 15 der
Speicherstellen scr und scr+2 bestimmt. Versuchen Sie ruhig einmal, obigen
Algorithmus für die mittlere Auflösung umzuschreiben.

Linien ziehen in hoher und niedriger Auflösung

Besonders bei Programmen mit viel Grafik, ist ein schneller Algorithmus zum
Linien ziehen erwünscht. Hier soll deshalb eine von vielen möglichen Metho-
den vorgestellt werden, die immerhin um einiges schneller als der Line-A-Al-
gorithmus ist.

Y-Achse

Yan =
| DX

Y,}------ a A | V |
| DY |

0 X 1 X 2 X— Achse

Abb. 6.3: Linie mit positiver Steigung

Das Problem ist also folgendes: Es soll eine möglichst gut angenäherte Linie
von X1, Yl nach X2, Y2 gezogen werden. Versuchen wir zunächst, das etwas
einfachere Problem zu knacken, wie eine solche Linie im ersten Quadranten
des Koordinatensystems zu zeichnen wäre (Abb. 6.3). Es handelt sich dabei um

Maschinennahe Programmierung 297

eine Linie mit positiver Steigung, bei der X1<X2 gilt. Eine recht einleuchten-
de Lösung wäre, die Steigung der Gerade nach der Formel

(Y2-Y1)
S- —

(X2 — X1)

zu berechnen. Dann setzt man zwei Variablen, die die momentanen Koordina-
ten verkörpern (nennen wir sie X und Y) auf die Anfangswerte X1 und Y1.
Nun zählt man X1 in Einerschritten hoch und addiert zu Y jedesmal die Stei-
gung, wobei bei jedem Schritt ein Punkt gesetzt wird. Sobald X den Wert von
X2 erreicht hat, ist man fertig.

Das klingt recht plausibel, hat aber leider einen Haken: Man kann für jede X-
Koordinate nur einen Punkt setzen. Bei sehr steil ansteigenden Linien werden
deshalb die Punkte recht dünn gesät sein, bis zum grotesken Extremfall der
vertikalen Linie, die nur durch einen kümmerlichen Punkt in Erscheinung
tritt. Deshalb muß man hier eine Fallunterscheidung einführen: Ist der Ab-
stand der beiden Y-Koordinaten größer als der der X-Koordinaten, also die
Steigung größer als 1, dann werden die Rollen von X und Y vertauscht. Das
heißt, daß in diesem Fall Y bei jedem Schritt um eins erhöht wird, während zu
X der Kehrwert von S addiert wird. Die X-zu-Y-Steigung errechnet sich also
folgendermaßen:

X2-X1)
SXY = ——

(Y2-Y1)

Vorteilhaft ist auch, daß die Steigung S bzw. SXY in jedem Fall kleiner oder
gleich 1 ist, da immer die kleinere Differenz durch die größere geteilt wird.
Diese Tatsache werden wir uns noch zu Nutze machen.

Nun haben wir eine Lösung, die wohlgemerkt nur für Geraden im ersten
Quadranten gilt. Jetzt geht es darum, alle anderen Fälle mit diesem in Bezie-
hung zu bringen.

Zuerst wird geprüft, ob Y1 kleiner als Y2 ist. Ist das der Fall, geschieht nichts
weiter. Andernfalls werden die beiden Endpunkte der Gerade ausgetauscht, so
daß die Relation Y1 <= Y2 auf jeden Fall gewahrt ist. Als nächstes wird die X-
und Y-Differenz berechnet. Die Y-Differenz (DY) muß ja aufgrund obigen
Verhältnisses in jedem Fall positiv sein, während die X-Differenz (DX) auch
negativ sein kann. Ist sie es, so wird sie positiv gemacht und statt dessen ein
Flag gesetzt. Immer wenn nun X verändert wird, muß der Wert dieses Flags
beachtet werden. Ist es gesetzt, so wird nicht addiert, sondern subtrahiert. Ein
Flußdiagramm dieses Algorithmus finden Sie in Abbildung 6.4.

298 ATARI ST — Programmieren in Maschinensprache

Y:=Y1

X:=X1

Fehler :=0,5

DX:=X2-X1

DY:=Y2-Y1

| Punke vertauschen | ja

nein

| Steigung :-Dvrox | | Steigung: -Dxov |

jung |

Punkt X,Y setzen Punkt X,Y setzen

DX negativ ?

| x=x-1 | | X=xet | Fehler + Steigung
Fehler : =

L——I

Fehler : =
Fehler + Stelgung

(Fehler > 1)

 nein Uebertrag ?

(Fehler > 1)

Abb. 6.4: Flußdiagramm des Line-Algorithmus

Maschinennahe Programmierung 299

Soweit die Beschreibung des Algorithmus auf höherer Ebene; wenden wir uns
nun der Umsetzung in Assembler zu. Zunächst wäre es vielleicht naheliegend,
nach diesem Algorithmus die Koordinaten der Punkte, die zu einer Linie ge-
hören, zu berechnen und diese dann mit einer der obigen Routinen plotten zu
lassen. Bei genauerer Betrachtung erweist sich diese Methode allerdings als
recht ineffizient, da für jeden Punkt von neuem dessen Adresse berechnet wer-
den muß. Geschickter wäre es, sich von den X- und Y-Koordinaten zu lösen

und direkt mit Bildschirmadressen zu arbeiten, zumal bei der Methode, die
hier vorgestellt wird, immer nur Schritte von einem Pixel nach rechts, links,
oben oder unten auftreten können.

Bei der folgenden Implementierung wurde die Sache so angegangen: Es gibt
zwei Zahlen, die die Position auf dem Bildschirm festlegen: die Adresse (steht
in AO) und das dort angesprochene Bit (D6). Diese beiden Werte werden nur
für den Anfangspunkt der Linie genau wie bei PLOTHI errechnet; danach
werden sie nur noch um Pixeleinheiten nach rechts, links, unten oder oben
verschoben. Ein Pixelschritt nach links entspricht der Addition von 1 zu D6;
wird dabei 7 überschritten, dann wird D6 auf 0 gesetzt und dafür AO um eins
verringert. Ein Schritt nach rechts verläuft umgekehrt. Ein Schritt nach unten
kommt der Addition von 80 zu AO gleich; ein Schritt nach oben der Subtrakti-
on von 80.

Es wird Ihnen wahrscheinlich aufgefallen sein, daß wir eigentlich für den oben
beschriebenen Algorithmus Kommazahlen brauchen. Da aber die Werte der
Steigung nur zwischen O und 1 liegen können, nehmen wir dafür einfach ein
Langwort, dessen Bits nur als Nachkommastellen betrachtet werden. Deshalb
wird auch bei der Berechnung der Steigung nur deren Nachkommateil be-
trachtet bzw. der Zähler wird vorher um 16 Stellen nach links verschoben.
Entsprechend gibt es auch ein Nachkomma-Langwort für X und Y. Um nun
etwa festzustellen, ob beim Hochzählen von X ein Schritt in Y-Richtung erfol-
gen muß, wird die Steigung zum Nachkomma-Langwort addiert. Tritt dabei
ein Übertrag auf, so müßte Y um eins erhöht werden, und der entsprechende
Schritt in Y-Richtung wird ausgeführt.

Man kann diesen Nachkommawert als Fehler-Wert betrachten, denn er stellt
die Differenz zwischen dem tatsächlichen Y-Wert und dem durch den Raster-
bildschirm auf ganze Zahlen beschränkten dargestellten Y-Wert dar.

Man könnte einwenden, daß die 1 in dieser Form nicht dargestellt werden
kann, obwohl ja die Steigung sicher eins sein kann. Tatsächlich muß dieser Fall
eine Sonderbehandlung erfahren, da er bei unserer (mathematisch nicht sehr
exakten, aber schnellen) Berechnung sonst eine Steigung von 0 liefern würde.
Die 1 wird durch $FFFF angenähert, was für unsere Zwecke hinreichend ge-
nau ist. Die folgende Line-Routine arbeitet nur im EXKLUSIV-ODER-Mo-

300 | ATARI ST — Programmieren in Maschinensprache

dus; es sollte jedoch ein leichtes sein, sie für andere Schreibmodi abzuändern.
Die Koordinaten X1, Y1, X2, Y2 werden in den Registern DO, D1, D2 und D4
übergeben. Im Gegensatz zu den anderen bisher vorgeführten Routinen wer-
den hier alle Registerinhalte bewahrt. Die folgende Routine arbeitet im hoch-
auflösenden Modus:

KAKKKKKKKKAKKKKKKKKKKKKKKK KK KK KK IK KT IK KH KK IK IK IK KH KK KK AK KH AK TK AK AK KK KH KH A KH KH KH A KH AK I U

* *

* LINEHI.S *

* Linie ziehen in 640x400; *
* alle Registerinhalte bleiben erhalten *
* Parameter: x
* a0 X-Wert Anfangspunkt *
* dl Y-Wert Anfangspunkt *
* d2 X-Wert Endpunkt x
* d3 Y-Wert Endpunkt x
* *

* interne Belegung: *
* d4 Niederwertiges Register fiir *
* X- bzw. Y-Schritt *
x d5,da7 zum Rechnen *
* dé Bit-Position für den nächsten Punkt *
* x

AAKKKKKKKAKKKÄKKKKKKKKKKKTK KK KT KK KH IK KK KK TH KH TK AK KH HK AH TH KH AH KH AK AH TH AH TH AK KH AK KH AH KH A KH KA

draw

movem d0-d7/a0,-(sp) * Register retten
clr minus * Initialisierung
move #$8000,d4 * Fehler auf 1/2

* initialisieren
cmp d1,da3 * yl<y2?
bhi.s noexch * scheint so, also nicht

* austauschen
exg dd, d2 * xl <-> x2
exg d1,d3 * vl <-> y2

noexch sub d0,d2 * d2: X-Differenz
bpl.s notneg * Ist X-Different positiv?
neg d2 * X-Differenz negativ!
st minus * Minus-Flag setzen

notneg sub dl,d3 * d3: Y-Differenz
move d0,d6 * berechne erste Bitposition
and #7,d6 * nur untere 4 Bits übrig-

* lassen
eor #7,d6 * und invertieren
move a0,d7 * berechne Adresse
lsr #3,qd7 * des ersten Punktes:

move d1,d5 * adr = screenadr + X/8 + Y*80

mulu #80,d5 *
add a5,q7 *
ext.1 a7 *
add.1 screenadr,d7 *

move.l d7,a0 * Adresse nach AO
cmp d2,d3 * Y-Differenz > X-Differenz?
bhi.s county * ja, verzweige

Maschinennahe Programmierung 301

countx

x loop

x_ add

x

* hierher

x_sub

x

countx_1

countx_2

*

county

y_ loop

y_add

y_ sub

county 2
draw_exit

bne.s countx *
move #Sffff,d3 *

*

bra.s x loop *
move #16,d5 *
1sl.1l d5,d3 *

x

divu d2,d3 *
bchg d6, (a0) *
tst.b minus *
bne.s x sub *
subq #1,d6 *
bpl.s countx_1 *

*

move #7,d6 *
*

addq.l #1,a0 *
bra.s countx_1 *

wenn X-Increment negativ

addq #1,da6 *
cmpi #8,d6 *
bne.s countx_1 *
clr dé *
subq.1 #1,a0 *

add d3,d4 *
bcec.s countx_2 *
add.l #80,a0 *
dbra d2,x loop *
bra.s draw exit *

move #16,d5 x
1sl.1 d5,d2 *
divu d3,d2 *
bchg a6, (a0) *
add.l #80,a0 *
add d2,d4 *
bec.s county 2 *
tst.b minus *
bne.s y sub *
subq #1,d6 *
bpl.s county 2 *

move #7,d6 *
addq.1 #1,a0 x
bra.s county 2 *

addq #1,d6 x
cmpi #8,d6 *
bne.s county 2 *
clr dé *

x

subq.1 #1,a0 *
dbra d3,y_ loop x
movem (sp)+,d0-d7/a0 *

Fall DX=DY kann mit DIVU

nicht

korrekt behandelt werden

verschiebe Y-Differenz um
16 Bits
d3 = (DY << 16) / DX
Punkt setzen

X-Increment negativ?
ja...

einen Pixel nach rechts
OK, wenn Bitzähler posi-
tiv ist,
sonst Bitzähler auf 7
verringern
und 1 addieren
und weiter geht's

ein Pixel nach links
7 überschritten?
nein, weiter

Bitzähler auf Null setzen
und Adresse herunterzählen

low:= low + Y-Steigung
kein Carry: kein Y-Schritt
Y-Schritt

wiederhole DX+1 mal
Fertig!

Diesmal wird Y gezählt

d2: (DX << 16) / DY
Punkt setzen

ein Pixel nach unten
low:=low+tIncrement

kein X-Schritt
rechts oder links?
links!

ein Pixel nach rechts
Bitzähler OK

Bitzähler auf 7 setzen
und Adresse um 1 erhöhen

und weiter

ein Pixel nach links
Bitzähler > 7?
nein, weiter
ja, Bitzähler auf 0
setzen...

und Adresse um 1 erhöhen

DY mal wiederholen
Register wiederherstellen

ATARI ST - Programmieren in Maschinensprache

*

minus

rts

DS.W

screenadr DS.L

* Ruckkehr

* Flag für Richtung oben/links

* logische Bildschirm-Adresse

Es folgt noch eine Abwandlung für die niedrige Auflösung. Beim eigentlichen
Algorithmus gibt es keine Unterschiede; nur der Teil zum Setzen eines Punktes
ist etwas abgewandelt worden. Er funktioniert so ähnlich wie die PLOTLO-
Routine, nur daß hier aus Effizienzgründen zwei verschiedene Befehlssequen-
zen für die Fälle Bitnummer > 7 und Bitnummer <= 7 vorhanden sind.

KAKKAKKKKAKKKKKKKKKKKKKKKTK KH KK KK KH KK KH TK KH HK AK AK IK KH AK KK A KK A TH AK HK AK KH K A KH HK AH KH KH KH A RT

+

KKKKEKEKKKKKKKKKKKK KKK KKK KKK KK KKK KK KKK KKK KKK KKKKEKKKKKKKKKKEKRKKK

draw

noexch

notneg

da
d5,d7

dé

* LINELO.S
x

x

* Parameter:

* do

* al

* a2

* d3
x

+

*

*

*

movem

clr

move

cmp
bhi.s

exg

exg

sub

bpl.s
neg

st

sub

move

and

eor

move

lsr

and

move

mulu

Linie ziehen in 320 x 200;
alle Registerinhalte bleiben erhalten

X-Wert Anfangspunkt
Y-Wert Anfangspunkt
X-Wert Endpunkt
Y-Wert Endpunkt

interne Belegung:

Niederwertiges Register für X- bzw. Y-Schritt
zum Rechnen

Bit-Position für den nächsten Punkt

d0-d7/a0,-(sp)
minus

#58000,d4

d1,d3

noexch

d0,d2
d1,d3
d0,d2
notneg

d2
minus

d1,d3
d0,d6
#15,d6

#15,d6
d0,d7
#1,d7
#SFFF8,d7
d1,d5

#160,d5

x

x

x

*

*

x

*

x

*

*

x

x

x

x

x

*

x

*

x

x

x

x

x

x

*

x

*

*

*

x

x

x

*

x

x

x

x

x

*

Register retten
Initialisierung
Fehler auf 1/2 initia-
lisieren
yl<y2 ?
scheint so,
austauschen

xl <-> x2

yl <-> y2
d2: X-Differenz
Ist X-Different positiv?
X-Differenz negativ!
Minus-Flag setzen
d3: Y-Differenz
berechne erste Bitposition
nur untere 4 Bits übrig-

Jassen

und invertieren
berechne Adresse

des ersten Punktes:

Bits 0-2 löschen
adr = screenadr + (X DIV 16)
8 + Y * 160

also nicht

Maschinennahe Programmierung 303

countx

x loop

x gerade

x ungerad

x test

x add

x

* hierher

x sub

*

countx_1

countx_2

*

x

county

add

ext.1

add.l

move.]l

cmp
bhi.s
bne.s

move

bra.s

move

lsl.l

divu
cmp.b
bls.s
move.b
and.b
bchg
bchg
bchg
bchg
bra.s
bchg
bchg
bchg
bchg
tst.b
bne.s
subg
bpl.s

move

addq.1l
bra.s

wenn X-Increment negativ
addq
cmpi
bne.s

clr

subq.1

add

bcc.s

add.l

dbra

bra.s

move

lsl.l

divu

d5,da7
a7
screenadr,d7
d7,a0
d2,d3
county

countx

#Sfff£,d3

x loop

#16,d5
d5,d3

d2,d3
#7,d6
x ungerad
d6,d5
#7,d5
a5, (a0)
d5,2 (a0)
d5,4(a0)

d5, 6 (a0)
x test
d6,1(a0)
d6, 3 (a0)
d6,5(a0)
d6,7(a0)
minus
x_sub
#1,d6
countx_ 1

#15,d6

#8, a0
countx_1

#1,d6
#16,d6
countx_1

d6
#8, a0

d3,d4
countx_2
#160, a0
d2,x_loop
draw exit

#16,d5
d5,d2
d3,d2

+
+

H
H

F
F

F
H

H
H

H
F

F
H

HF
HF
H
H

F
H

F
H

HF
H
F

F
H
F
 H

F
HF

HF
HF

HF
OH

OK

+
+

+
HF

+
+

*
*

x
+

+

Adresse nach AO

Y-Differenz > X-Differenz?

ja, verzweige

Fall DX = DY kann mit DIVU

nicht

korrekt behandelt werden

verschiebe Y-Differenz um
16 Bits
a3 = (DY << 16) / DX
welches Byte ansprechen?

Gerade Adresse

8-15 auf 0-7 abbilden

Punkt setzen

weiter

Punkt setzen

X-Increment negativ?
ja...
ein Pixel nach rechts
OK, wenn Bitzähler posi-
tiv ist,
sonst Bitzähler auf 15
verringern
und 8 zur Adresse addieren

und weiter geht's

ein Pixel nach links
15 überschritten?
nein, weiter

Bitzähler auf Null setzen

und Adresse herunterzählen

low:= low + Y-steigung
kein Carry: kein Y-Schritt
Y-Schritt
wiederhole DX+1 mal
Fertig!

Diesmal wird Y gezählt

d2: (DX << 16) / DY

304 ATARI ST — Programmieren in Maschinensprache

y_loop cmp.b #7, a6
bis.s y_ungerad

y gerade move.b d6,d5
and.b #7,d5
bchg a5, (a0)

bchg d5,2 (a0)

bchg d5,4(a0)
bchg d5,6 (a0)
bra.s y_ schritt

y ungerad bchg d6,1(a0)
bchg d6,3 (a0)
bchg ad6,5(a0)
bchg d6,7 (a0)

y_schritt add.l #160, a0

welches Byte ansprechen?

Gerade Adresse
8-15 auf 0-7 abbilden

Punkt setzen

weiter

Punkt setzen

ein Pixel nach unten

+
+

*
+

+
F

F
F

F
F

OF

OF

+
FF

OF

O
K

FF

OF

OF

O
F

OK

O
K

O
F

add d2,d4 low:=low+tIncrement
bec.s county_2 kein X-Schritt
tst.b minus rechts oder links?
bne.s y_sub links!

y_add subq #1,d6 ein Pixel nach rechts
bpl.s county 2 Bitzähler OK
move #15,d6 Bitzähler auf 15 setzen
addq.1 #8,a0 und Adresse um 1 erhöhen
bra.s county_2 und weiter

%

y_sub addq #1,d6 * ein Pixel nach links
cmpi #16,d6 * Bitzähler > 7?
bne.s county_2 * nein, weiter
clr d6 * ja, Bitzähler auf 0 setzen
subq.1 #8,a0 * und Adresse um 1 erhöhen

county 2 dbra d3,y loop * DY mal wiederholen
draw exit movem (sp)+,d0-d7/a0 * Register wiederherstellen

rts * Rückkehr
*

minus DS.W 1 * Flag für Zählrichrung
* oben/links

screenadr DS.L 1 * Logische Bildschirm-Adresse

Um die Line-Algorithmen zu demonstrieren, zeigen wir eine kleine Grafik-
Spielerei, die auf den speziellen Eigenschaften der XOR-Verknüpfung beruht
und einen recht interessanten visuellen Effekt erzeugt. Stellen Sie sich zwei
Punkte vor, die gleichzeitig in schrägen Sprüngen von einigen Pixeln über den
Bildschirm wandern. Wenn sie an eine Grenze des Bildschirms stoßen, werden
sie reflektiert wie ein Lichtstrahl an einem Spiegel. Nun zieht man zwischen
zwei Sprüngen immer die Verbindungslinie zwischen den beiden Punkten. Da-
mit der Bildschirm nicht irgendwann zugemalt ist, werden früher gezeichnete
Linien wieder entfernt, wenn inzwischen, sagen wir, 50 neue Linien gezeich-
net worden sind. Hier kommt die interessante Eigenschaft der XOR-Verknüp-
fung ins Spiel: Wenn man die gleiche Linie zweimal hintereinander im XOR-
Modus zeichnet, ist alles so, wie es vorher war. Das funktioniert auch dann,
wenn nacheinander zwei sich schneidende Linien zweifach gezeichnet werden.

Maschinennahe Programmierung 305

So brauchen wir uns keine aufwendigen Operationen auszudenken, um Linien
wieder vom Bildschirm zu entfernen. Durch das kontinuierliche Zeichnen und
Löschen von Linien entsteht der Effekt einer dreidimensionalen linierten Flä-
che, die sich in den wildesten Verzerrungen über den Bildschirm bewegt.

Nun stellt sich die Frage, wie man das realisiert. Die Geschichte mit den zwei
Punkten, die sich geradlinig über den Bildschirm bewegen und am Rand abge-
stoßen werden, stellt sicher kein großes Problem dar. Doch wir müssen uns die
Koordinaten von früher gezeichneten Linien, die noch nicht gelöscht worden
sind, irgendwie merken, da man wohl kaum die Koordinaten 50 Schritte zu-
rückverfolgen könnte. Dazu nimmt man am besten eine sogenannte Schlange
(engl. queue). Eine Schlange ist ein FIFO- Stapel ("first in, first out" — was zu-
erst hineinkommt, wird auch zuerst wieder herausgelesen). In Assembler be-
steht eine Schlange einfach aus einem reservierten Speicherbereich und zwei
Zeigern, die auf Werte in diesem Bereich weisen. Der erste zeigt auf die Stelle,
an die der nächste Eintrag in die Schlange geschrieben wird, der zweite auf
die, an der etwas herausgelesen werden kann. Wichtig ist, daß die Zeiger beim
Schreiben und Lesen innerhalb des zulässigen Bereichs bleiben. Wird etwas in
den physisch obersten Teil der Schlange geschrieben, so weist der entspre-
chende Zeiger danach nicht auf den Eintrag dahinter, sondern auf den ersten
physischen Eintrag.

Jedesmal, wenn eine neue Gerade gezeichnet wird, werden deren Koordinaten
in einer solchen Schlange vermerkt. Wenn insgesamt schon mehr als 50 Gera-
den gezeichnet worden sind, werden die letzten Koordinaten (also die der Ge-
raden, die vor 50 Schritten gezeichnet wurde) wieder herausgelesen und aus
der Schlange entfernt, und die Gerade wird vom Bildschirm gelöscht, indem
sie noch einmal mit XOR gezeichnet wird.

Damit das Programm lauffähig wird, kopieren Sie mit einem Editor je nach
der Auflösung, in der das Programm laufen soll, an der angegebenen Stelle
den Line-Algorithmus in den Quelltext. Die Voreinstellung der Parameter des
folgenden Listings ist für die hohe Auflösung gedacht; ändern Sie für die hohe
Auflösung die Konstanten XMAX auf 319 und YMAX auf 199. Wenn Sie wol-
len, können Sie zusätzlich den Wert des Symbols ANZ ändern, der die Anzahl
der gleichzeitig auf dem Bildschirm sichtbaren Geraden angibt. Natürlich
steht es Ihnen auch frei, die Additionswerte für die beiden Koordinatenpaare
in den Registern D4 — D7 zu verändern.

KAKKKKKKKKKKKKKKK KK II HK KH HK KK KT IT KK KK IK IT KK AK KT KA KK U KH A KA &S&

* LINES.S *

* Grafikspielerei mit einer Gruppe von Linien, die über den Bildschirm *

* wandert. Damit es lauffähig ist, muß noch eine Line-Routine *

* * eingefügt werden, je nach Auflösung entweder LINESHI.S oder

ATARI ST — Programmieren in Maschinensprache

* LINESLO.S *
* Für niedrige Auflösung noch XMAX und YMAX ändern! *
KKK IK KKK KK KK KKK KKK IK IK KKK KI KKK KKK KI KK IK KKK RK KKK KKK RK KE KKK KRKKEEKKKK KKK KKK

CONSTAT EQU 11 * GEMDOS-Funktionsnummer

LOGBASE EQU 3 * XBIOS-Funktionsnummer

CURSCONF EQU 21 * XBIOS-Funktionsnummer

ANZ EQU 50 * Anzahl der Linien

XMAX EQU 639 * maximale X-Koordinate

YMAX EQU 399 * maximale Y-Koordinate

RAKKEKKEKREKKEKEKKKEKKEKKKKEKKKKKKKKKKEKKKKKEKKKKEKKKKKKKKKEKKEKKKEKKEKKKKK KKK KKK KKKKKEK

Registerbelegung der Hauptschleife

1. X-Koordinate Xi

1. Y-Koordinate Yl

2. X-Koordinate X2

2. Y-Koordinate Y2

*

* DO

* D1

* D2

* D3

* D4

* DS

* D6

* D7

start

drawloop

drawline

godraw

xladd

Additionswert für X1

Additionswert für Yl

Additionswert für X2

Additionswert fiir Y1
KKKKEKKEKKKEKKKKKEKE KEKE KKK KKK KKK KKKKKKRKKKR KEKE KKKK KKK KKK KKKKKEKKKKKRK KKK KKEKK

bsr

lea

lea

move

move

move

move

move

move

move

move

movem

tst.b

beq.s

movem

bsr

cmp.1

bne.s

lea

movem

addq.1

cmp. 1

bne.s

lea

bsr

add

cmp

bcs.s

neg

add

add

(DX1)

(DY1)

(DX2)

(DY2)

initscreen

schlange, a2

schlange, a3

#20,d0

#50,d1

#100,d2

#150,d3

#3,d4

#4,d5

#-5,d6

#2,d7

d0-d3, (a2)

undraw

drawline

(a3) +,d0-d3
draw

#schlange+8*ANZ, a3

drawline

schlange, a3

(a2) ,d0-d3

#8,a2

#schlange+8*ANZ, a2
godraw

schlange, a2

draw

a4,40

#XMAX,dO0

yladd

a4

d4,d0

a4,d0

*

~*~
H
H
H

H
H
H

Bildschirm löschen etc.

Anfangs-Zeiger der Schlange

Ende-Zeiger der Schlange

Beliebiger Anfangswert für X1

Y1

X2

Y2

X1-Additionswert

Yi-Additionswert

x2-Additionswert

Y2-Additionswert

neue Werte in Schlange ablegen

alte Gerade löschen?

Nein, weiter

alte werte aus Schlange holen

und Linie zeichnen (löschen)

am Ende der Schlange?

Nein, weiter

auf Anfang der Schlange setzen

neue Werte wiederholen

und Zeiger erhöhen

Ende der Schlange erreicht?

Nein, weiter

auf Anfang der Schlange setzen

und neue Linie zeichnen

x1=X1+DX1

X1 > XMAX oder X1 < 0 ?

nein, weiter

ja, DX1=-DX1
x1=X1+2*DX1

x

x

x

*

x

x

*

x

x

*

Maschinennahe Programmierung 307

yladd

x2add

y2add

loopend

exit

x

* Bildschirm löschen,

add

cmp

bes.s

neg

add

add

add

cmp

bces.s

neg

add

add

add

cmp

bces.s

neg

add

add

movem

move

trap

addq.1

tst

bne.s

movem

tst.b

bne

add

cmp

bes

st

bra

movem

clr

trap

initscreen

clr_loop

*

move

move

trap

addq.1

move

trap

addq.l

move.l

move.l

move

celr.l

dbra

rts

d5,dl

#YMAX, dl
x2add

d5

d5,dl

d5,d1

d6,d2

#XMAX,d2

y2add

a6

d6,d2

d6,d2

d7,d3

#YMAX, d3

loopend

a7

a7,d3

a7,d3

d0/a0,-(sp)

#CONSTAT, - (sp)

#1

#2,sp

do

exit

(sp) +,da0/a0

undraw

drawloop

#1,zaehler

#ANZ-1, zaehler

drawloop

undraw

drawloop

(sp) +,d0/a0

- (sp)
#1

#0,-(sp)

#CURSCONF, - (sp)

#14

#4,sp ,

#LOGBASE, - (sp)

#14

#2,sp

d0,screenadr

d0,a0

#7999,d0

(a0) +

d0,clr_ loop

* Hier die Line-Routine einfügen
k

+
+

~*~
F
F

O
H
H
H

Cursor abschalten

+
+

+
+

FF

F
F

FF

+

HF
HF

Yl entsprechend

X2 entsprechend

Y2 entsprechend

Register sichern

GEMDOS-Funktionsnummer

Einsprung ins GEMDOS

Stack aufräumen

Zeichen Eingegeben?

Ja, Programmende

Register wiederholen

Flag schon gesetzt?

Ja, nächster Durchlauf

Eine Gerade mehr

bis ANZ-1 geraden gezeichnet sind

zaehler<ANZ-1 -> Schleife

Zaehler=ANZ-1, ab jetzt...

Geraden wieder löschen

Programmende; Register wiederholen

GEMDOS TERM, Funktionsnummer 0

Das war's!

und Bildschirmadresse feststellen

Cursor aus

XBIOS Funktionscode

zum XBIOS

logische Bildschirmadresse holen

zum XBIOS

logische Bildschirmadr. speichern

und nach AO

32000/4 = 8000 Langworte löschen

308 ATARI ST — Programmieren in Maschinensprache

DATA

zaehler DC.W 0 * Zähler für gezeichnete Geraden

undraw DC.W 0 * Löschen von Geraden

BSS

schlange DS.W ANZ*4 * für die Koordinaten von ANZ Geraden

END

Programmierung von Interrupts

Bevor es losgeht, zunächst eine Warnung: Wenn Sie noch nicht viel Erfahrung
mit Assembler haben, empfehle ich Ihnen, sich zuvor durch praktische Pro-
grammierung einige Übung zu verschaffen.

Erinnern wir uns, daß Interrupts Unterbrechungen der normalen Programm-
abarbeitung des Prozessors sind, der seine Aufmerksamkeit kurzzeitig ande-
ren, meist systemspezifischen Aufgaben widmet, um danach genau an der Stel-
le fortzufahren, an der er unterbrochen worden ist.

Der von Programmen wohl am häufigsten benutzte Interrupt ist der Vertical-
Blank-Interrupt, abgekürzt VBI. Er wird vom Grafikchip jedesmal dann aus-
gelöst, wenn der Elektronenstrahl gerade die unterste Bildzeile beendet hat
und sich unsichtbar auf den Weg von der rechten unteren zur linken oberen
Ecke macht, um das nächste Bild zu zeichnen. Aus der Sicht des Computers ist
das eine ziemlich lange Zeitspanne; er kann in der Zwischenzeit bequem einige
tausend Befehle ausführen. Wenn man noch die Zeit hinzunimmt, die der
Elektronenstrahl für das Zeichnen der Zeilen über der ersten Zeile mit Pixel-
informationen braucht, kann man sich sogar eine ganze Menge Zeit lassen. Die
wichtigste Aufgabe des VBI ist die Synchronisation von Grafikoperationen
zum Bildschirmaufbau. Nur wenn Operationen wie Änderung der physikali-
schen Bildschirmadresse, Änderung der Farbregister oder das Neuzeichnen
von Figuren während der Vertical-Blank-Phase ausgeführt werden, läßt sich
das Flackern verhindern. Deshalb wird etwa die Änderung einer Bildschirm-
farbe vom Betriebssystem nicht sofort ausgeführt, sondern erst während des
nachsten VBI.

Die zweite wichtige Aufgabe des VBI ist das Timing, also die zeitliche Abstim-
mung von Programmen. So wird etwa die Zeit fiir ein Drucker-Timeout mit
Hilfe des VBI gemessen.

Der VBI wird zunächst von einer Betriebssystemroutine behandelt, doch es ist
auch eine Möglichkeit vorgesehen, daß ein Programm mehrere Routinen an

Maschinennahe Programmierung 309

diese anhängen kann. Dafür wird ein Feld von Vektoren (Zeiger auf Routinen)
zur Verfügung gestellt, in denen Programme die Adressen von Unterpro-
grammen eintragen können. Diese Unterprogramme werden dann bei jedem
VBI ausgeführt.

Bevor wir weiter in die Interrupts einsteigen, befassen wir uns zunächst einge-
hender mit dem Grafikchip "Shifter". Wie Sie wissen, kann man auf einem
Farbmonitor je nach Auflésung 4 oder 16 Farben gleichzeitig aus einer Palette
von 512 Farben darstellen. Wie wird diese Palette nun festgelegt?

Jedem Bitmuster eines Pixels entspricht ein Farbregister. So spricht etwa bei
der mittleren Auflösung die Kombination 00 das erste Farbregister an, 01 das
zweite, 10 das dritte und 11 schlieBlich das vierte. Erst in den Farbregistern
steht nun die eigentliche Farbe des Punktes. Auf dem ST wird sie nach Rot-,
Grün-, und Blauanteil getrennt festgelegt. Für jeden der drei Anteile stehen
drei Bits zur Verfügung, mit denen man Werte von 0 bis 7 darstellen kann. 0
bedeutet, daß die entsprechende Grundfarbe überhaupt nicht zur Geltung
kommt, 7 steht für volle Helligkeit einer Grundfarbe. Die drei Farbwerte mi-
schen sich additiv.

Jedes der Farbregister belegt ein Wort. Bitweise sind die Register so aufge-
teilt: |

In Worten: Bits 0 - 2 enthalten den Blauanteil, Bits 4 - 6 den Grünanteil und
Bits 8 — 10 den Rotanteil. Alle anderen Bits sind nicht belegt. Diese Darstel-
lung hat den Vorteil, daß man Farbwerte anschaulich als Hexadezimalzahlen
mit drei Ziffern darstellen kann; $777 etwa ergibt ein sattes Weiß.

Die Farbregister können nicht nur beschrieben, sondern auch gelesen werden
(bei Hardware-Registern ist das nicht selbstverständlich). Es gilt allerdings zu
beachten, daß die oben durch Striche gekennzeichneten Bits keine Informati-
onen speichern können und beim Auslesen immer Null liefern.

Ein für die Grafikprogrammierung auch sehr interessanter Interrupt ist der
Horizontal-Blank-Interrupt (HBI). Er wird auch vom Grafikchip ausgelöst,
und zwar nach jeder beendeten Bildschirmzeile. Das ist der Moment, wenn der
Elektronenstrahl sich vom rechten zum linken Rand des Bildschirms auf den
Weg macht, um den Anfang der nachsten Zeile zu zeichnen. Allerdings geht
das so schnell, daß diese Zeitspanne sogar für den Prozessor relativ kurz ist.
Während des wirklichen HBI's können nicht mehr als etwa 3 oder 4 Befehle

310 ATARI ST - Programmieren in Maschinensprache

ausgeführt werden. Je nachdem, was diese Befehle tun, können sie allerdings
auch nach der echten Horizontal-Blank-Phase ausgeführt werden, während
eine neue Zeile schon gezeichnet wird.

Ein HBl ist in erster Linie dazu gedacht, die Farbregister synchron zum Bild-
schirmaufbau zu ändern. Mit diesem Trick ist man nicht mehr auf 4 oder 16
Farben beschränkt, sondern es lassen sich praktisch beliebig viele Farben
gleichzeitig darstellen — nur nicht auf einer Zeile.

Um so etwas zu programmieren, betrachten wir erst einmal die Organisation
der Interrupts im ST. Der Prozessor bietet sieben Interruptebenen, wobei ein
Interrupt mit höherer Ebene immer Proirität vor einem mit niedrigerer Ebe-
ne hat. Mit den ersten 3 Bits des Systembytes kann man bestimmen, ab welcher
Ebene Interrupts erlaubt werden. Auf dem ST werden aber nur drei der sieben
möglichen Interrupts benutzt. Die folgende Aufstellung zeigt die Zuordnung
zu den Interruptebenen:

Ebenel nicht belegt
Ebene2 HbBl, Horizontal-Blank-Interrupt
Ebene3 nicht belegt
Ebene4 VBI, Vertical-Blank-Interrupt
Ebene5 __ nicht belegt
Ebene6 MFP 68901 — Interrupts
Ebene 7 nicht belegt

Jeder Interruptebene ist ein Vektor zugeordnet, über den beim Auftreten eines
Interrupts automatisch gesprungen wird:

Ebene Vektornummer Vektoradresse

1 25 $64
2 26 $68
3 27 $6C
4 28 $70
5 29 $74
6 30 $78
7 31 $7C

Normalerweise ist die Interruptmaske im Systembyte auf 3 gesetzt, damit die
HBls gesperrt sind, denn sie würden einen beachtlichen Teil der Rechenzeit
verbrauchen.

Sobald ein Interrupt auftritt, wird die Interruptmaske im Systembyte automa-
tisch auf die Nummer des Interrupts gesetzt, damit die Ausführung des Inter-

Maschinennahe Programmierung 311

rupts nicht von Interrupts gleicher oder niedrigerer Priorität unterbrochen
werden kann. Um das Zurücksetzen der Interruptmaske braucht sich aber die
Interrupt-Routine nicht zu kümmern, da ja beim Auftreten eines Interrupts au-
tomatisch das Statusregister auf dem Stack abgelegt wird. Somit wird bei der
Beendigung eines Interrupts mit RTE automatisch die alte Interruptmaske
wiederhergestellt.

Die oben genannten MFP-Interrupts sind eine genauere Betrachtung wert.
MFP steht fiir "Multifunction Peripheral". Es handelt sich dabei um einen
Chip, der im ST eine Art "Madchen fiir alles" darstellt: Er ist u. a. fiir den
größten Teil der Interrupterzeugung und die Steuerung der Centronics-
Schnittstelle verantwortlich. Uns sollen hier nur seine Interruptmöglichkeiten
interessieren.

Zunächst einmal verfügt der MFP 68901 über vier Timer mit den Bezeichnun-
gen A, B, C und D. Sie sind in erster Linie dazu gedacht, immer nach bestimm-
ten Zeitspannen Interrupts auszulösen. So gehört zu jedem Timer ein Zähler
und ein Datenregister. Der Zähler wird mit einer in Schritten einstellbaren
Frequenz (bis ca. 250 kHz) heruntergezahlt. Sobald er Null erreicht, kann der
MFP einen Interrupt auslésen. Im gleichen Moment wird der Zähler mit dem
Wert des Datenregisters initialisiert und fängt wieder an, herunterzuzählen. Es
handelt sich dabei um den Delay-Modus (engl. delay: Verzögerung). Auf diese
Art wird immer nach einer bestimmten Zeitspanne ein Interrupt ausgelöst.
Nach diesem Prinzip wird etwa mit Timer A ein 200 Hz-Systemtakt und mit
Timer D die Baudrate für die RS-232-Schnittstelle erzeugt. Jeder der vier Ti-
mer kann auf diese Art zur Erzeugung eines regelmäßig auftretenden Signals
benutzt werden. Mit Timer B hat es jedoch etwas besonderes auf sich: Er kann
wahlweise auch im sogenannten Event-Count-Mode verwendet werden. Das
bedeutet, daß der Timer nicht mit einer vom Taktsignal abgeleiteten Frequenz
verringert wird, sondern immer dann um eins heruntergezählt wird, wenn
eine bestimmte Eingangsleitung des MFP auf High geht. Geschickterweise ist
nun der MFP im ST so verdrahtet, daß diese Eingangsleitung für den Timer B
mit dem Zeilen-Synchronisations-Signal des Shifters verbunden ist. Daraus er-
gibt sich folgendes: Immer wenn eine Bildschirmzeile beendet ist (also immer
dann, wenn ein HBI auftreten kann), wird der Zähler des Timers B um eins
verringert, sofern sich dieser im Event-Count-Mode befindet. So bietet sich
also eine Alternative, wie man HBls in jeder soundsovielten Zeile erzeugen
kann. Klarer wird das, wenn wir uns die Register des Timers B ansehen:

$FFFA1B Timer B Control (8 Bit)
Hier wird der Betriebsmodus des Timers B festgelegt. Nur
die ersten fünf Bits dieses Registers sind belegt. Für uns sind
dabei nur die ersten drei Bits von Bedeutung:

312 ATARI ST — Programmieren in Maschinensprache

Bit 2 1 0

0 0 0 Timer Stop, nichts ausführen
0 0 1. Delay-Modus, Taktsignal durch 4 teilen
0 1 0 Delay-Modus, Taktsignal durch 10 teilen
0 1 1. Delay-Modus, Taktsignal durch 16 teilen
1 0 0 Delay-Modus, Taktsignal durch 50 teilen
1 0 1. Delay-Modus, Taktsignal durch 100 teilen
1 10 Delay-Modus, Taktsignal durch 200 teilen
1 1. 1. Event-Count-Mode

Bei den Einstellungen 1 - 6 gilt es zu beachten, daß der MFP nicht mit der nor-
malen Systemfrequenz von 8 MHz getaktet ist, sondern nur mit 1 MHz. Daraus
ergibt sich, daß die höchste erzeugbare Signalfrequenz bei 250 kHz liegt (Ein-
stellung 1).

$FFFA21 Timer B Data (8 Bit): Hier wird der Wert eingetragen, mit
dem der Zähler des Timers B beim Erreichen von O0 wieder
initialisiert wird. Es können Werte von 1 bis 255 eingetragen
werden. Im Delay-Modus wird also die Taktfrequenz von 1
MHz zunächst durch den im Control-Register festgelegten
Wert geteilt, um dann noch einmal durch die hier eingetrage-
ne Zahl geteilt zu werden. Das Ergebnis ist die Frequenz, mit
der der MFP einen Interrupt auslösen kann. Beim Event-
Count-Mode wird die Anzahl der eintreffenden Events direkt
durch die hier angegebene Zahl geteilt.

Wie löst nun der MFP einen Interrupt aus? Tatsächlich ist ja dem MFP nicht
nur ein einziger Interrupt zugeordnet, sondern bis zu 16, davon 4 alleine für
die Timer. Die Behandlung eines MFP-Interrupts geht so vor sich: Der MFP
löst einen Interrupt der Ebene 6 aus. Daraufhin springt der MC68000 in eine
Routine, die in einem bestimmten Register des MFP die Ursache des Interrupts
abfragt und durch einen Vektor in die wirkliche Interrupt-Routine verzweigt.
Dort werden als Ursache des Interrupts die entsprechenden Aktionen ausge-
führt, und der Vorgang wird schließlich mit einem RTE abgeschlossen.

Die Vektoren der MFP-Interrupts stehen ab Adresse $100 im Speicher, was
der Vektornummer 64 entspricht. Die für uns interessanten Vektoren sind fol-
gende:

Nummer Adrese Beschreibung

4 $110 Timer D, RS232 Baudraten-Generator
5 $114 Timer C, 200Hz Systemtakt-Generator

Maschinennahe Programmierung 313

6 $118 Tastatur- und Midi-Interrupt
8 $120 Timer B, HBI-Zähler

13 $134 Timer A, vom System nicht benutzt

Die obige Nummer gibt die Nummer des MFP-Interrupts an, die von 0 bis 15
reichen kann. Auch diese Interrupts sind untereinander priorisiert: Um so
größer die Nummer desto größer die Priorität. Im MFP gibt es vier Gruppen
von Registern, mit denen diese Interrupts kontrolliert werden können:

$FFFA07 Interrupt-Enable-Register A (IERA): Mit diesem Register
lassen sich Interruptquellen des MFP gesondert an- oder ab-
schalten. Bit O steht dabei für Timer B: Ist es gesetzt, so ist
ein Timer-B-Interrupt erlaubt, sonst nicht. Im gleichen Sinne
steht Bit 5 für Timer A.

$FFFA09 Interrupt-Enable-Register B (IERB): Dieses Register enthält
die Fortsetzung des eben beschriebenen Registers. Bit 4 er-
laubt Timer-D-Interrupts, Bit 5 Timer-C-Interrupts. Die an-
deren Bits dieser Register sind für uns nicht von Bedeutung,
da sie für die Steuerung des Centronics-Ports verwendet
werden.

Übrigens haben die Bezeichnungen A und B dieser Register
nichts mit den Timern A und B zu tun; sie sollen nur die Auf-
teilung von Bits auf zwei 8-Bit-Register verdeutlichen.

$FFFAOB Interrupt-Pending-Register A (IPRA): Sobald ein Interrupt
auftritt, wird das zugeordnete Bit im Interrupt-Pending-Re-
gister auf 1 gesetzt. Es gilt die gleiche Zuordnung der Bits
wie bei IERA.

$FFFAOD Interrupt-Pending-Register B (IPRB): siehe IPRA

$FFFAOF Interrupt-In-Service-Register A (ISRA): Auch in diesem Re-
gister wird beim Auftreten eines Interrupts das zugehörige
Bit gesetzt. Solange hier ein Bit gesetzt ist, sind alle MFP-In-
terrupts gleicher und niedrigerer Priorität gesperrt. Deshalb
sollte am Ende einer Interrupt-Routine das entsprechende Bit
in ISRA gelöscht werden.

$FFFA11 Interrupt-In-Service-Register B (ISRB): siehe ISRA

$FFFA13 Interrupt-Mask-Register A (IMRA): Wenn ein bestimmtes
Bit in IERA gesetzt ist, aber nicht im Mask-Register, so wird

314 | ATARI ST — Programmieren in Maschinensprache

die Interrupt-Ursache nur im Interrupt Pending Register an-
gezeigt, aber kein Interrupt ausgefiihrt. Erst wenn Bits in
beiden Registern gesetzt sind, wird der Interrupt tatsächlich
ausgeführt.

$FFFA15 Interrupt-Mask-Register B (IMRB): siehe IMRA

Soviel zur Benutzung des MFP: Inzwischen werden Sie sich sicher fragen, wo-
zu ich Ihnen all das erzähle, denn um HBls zu verwenden, braucht man doch
eingentlich nur eine Routine zu schreiben, die die Bildschirmfarben ändert,
deren Adresse im Interruptvektor der Ebene 2 einzutragen und die Prozessor-
Interruptmaske auf 1 zu verringern — und schon hätte man HBls. Leider wer-
den bei der direkten Benutzung des HBI-Vektors die Interrupts erst ausgelöst,
nachdem etwa ein Viertel der neuen Bildschirmzeile bereits gezeichnet ist, was
bei einer Farbänderung zu einem flackern des Bildschirms führt. Außerdem
ergeben sich Probleme dadurch, daß die HBls die niedrigste Priorität haben
und deshalb von sämtlichen anderen Interrupts durcheinandergebracht wer-
den. So führt also nichts am Umweg über den MFP vorbei.

Jetzt sind wir so weit, daß Sie sich das folgende Listing ansehen können. Das
Programm erzeugt in jeder Bildschirmzeile zwei neue Farben, wobei die
Farbstreifen einer Farbe nach oben, die der anderen nach unten rollen.

KAKKKKKAKKAÄKKKKKÄKKKÄAKKKKÄKKKKKKKTK KK KK KK KK KK KH KK KK KH KK KK KH KK KK KK A KK AK A AK XÜU

* COLORS .S *
* Demonstration von Horizontal-Blank-Interrupts *
* läuft mit Farbmonitor, in mittlerer oder niedriger *
* Auflösung. Am besten als GEM-Programm starten! *
KAKKKAKAKKAKKKKKKKKKKKKTK KK KK KK KK KA KK KK KH KK AK KK IK TK AK IK KH AK KK KK TK KK AK KK AK KA KK TA KK KK A KK A KK

ZEILEN EQU 1 * in jeder Zeile Interrupt
*

* System-Vektoren
hbivec EQU $120 * Vektor zur HBI-Routine
vbivec EQU $70 Vektor zur VBI-Routine
mkbvec EQU $118 Maus- u. Tastatur-Interrupt
x

*
+

* MFP-Register
iera EQU SFFFAO7 * Interrupt-Enable-Register A

ierb EQU SFFFAO9 * Interrupt-Enable-Register B
isra- EQU SFFFAOF * Interrupt-Service-Regi-

* ster A |
imra EQU SFFFA13 * Interrupt-Mask-Register A
tber EQU SFFFAIB * Timer B Control-Register
tbdr EQU SFFFA21 * Timer B Data-Register
*

* Shifter-Register
color 0 EQU SFF8240 * Register für Hintergrund-

Maschinennahe Programmierung 315

+

x

farbe
2. Vordergrundfarbregister

Routine im SUPER-Modus

ausführen

die die Farbwerte von O bis 511 auf

Adresse der Farbliste
nach a0
mit Farbe O anfangen
Farbe nach D1,D2 und D3
kopieren

B-Bits aussondern
G-Bits aussondern
R-Bits aussondern
eine Stelle frei vor G-Bits
noch eine Stelle frei von
R-Bits
und wieder alles zusam-
menfügen

Farbwert in Tabelle

abspeichern
nächster Farbwert

Ende erreicht?

color 2 EQU SFF8244
x

* XBIOS-Funktionscode
SUPEXEC EQU 38

*

* Programmstart
* zunachst eine Routine,

* die Shifter-Darstellung 00000rrr0ggg0bbb umrechnet
start lea farbtab, a0

clr a0
ci _ loop move a0,dl

move d0,d2
move ad0,d3
and #3°000000111,d1
and #%000111000,d2
and #3111000000,d3
l1sl #1,d2
lsl #2,d3

or d2,di

or ad3,dl
move dl, (a0) +

addq #1,d0
cmp #512,d0
bcs.s ci_loop

x

+
+

+
+

YF
+

+
FF
F
F

+
F

FF

OF

R
O
H

nein, nachster Durchlauf

* Jetzt wird die "gefährliche" supinit-Routine im
* Supervisor-Modus gestartet

a

x

* zunächst muß

pea supinit

move #SUPEXEC, - (sp)
trap #14
addq.l #6,sp
clr - (sp)
trap #1

supinit move.l vbivec,oldvbit2
move.l mkbvec,oldmkb+2

move.l #hbi,hbivec
move.l #vbi,vbivec
move.l #mkb,mkbvec
and.b #SDF,ierb

or.b #1,iera
or.b #1,imra

x

* OK, das war die Initialisierung.

+
+

+
+

+
+

Hr

x

*

*

*

*

x

*

*

x

x

x

Adresse der Routine auf

Stack

Funktionscode
ins XBIOS

Programm beenden
GEMDOS TERM

allerhand initialisiert werden

alten VBI-Vektor merken
alter Maus- und Tastatur-
Vektor
neuen HBI-Vektor eintragen
neuen VBI-Vektor eintragen
neuen MKB-Vektor eintragen
Timer C Interrupt ab-
schalten
HBI-Interrupt erlauben
HBI-Interrupt erlauben

Jetzt wird einige Sekunden

316 ATARI ST — Programmieren in Maschinensprache

gewartet...

move.l #2000000, d0 *
wait subq.1 #1,d0 *

bne.s wait *
x

warte ein Weilchen

* So. Damit das System zu normalen Zuständen zurückkehren
* kann, muß alles wiederhergestellt

move.l oldvbi+t2,vbivec *
x

werden.

alten VBI-Vektor wieder-

herstellen

move.l oldmkb+t2,mkbvec * alten MKB-Vektor wieder-
* herstellen

and.b #SFE,iera * HBI-Interrupt ausschalten
or.b #520, ierb * Timer C Interrupt ein-

* schalten
move #$777,color_0 * Standard-Hintergrund-

* farbe
move #35070,color 2_ * Standard-Vordergrund-

* farbe
rts * Fertig!

x .

* Hier muß die Routine zur Behandlung von Maus- und Tastatur-
* interrupts durch. Es wird dafür gesorgt, daß HBIs auch
* während dieses Interrupts erlaubt sind, damit die Farben
* nicht durcheinandergeraten.

mkb move.w #$2500,SR * HBIs erlauben
oldmkb jmp SFFFFFFFF * zur alten Routine

* springen
x

* Diese Routine wird vor die Systemroutine für VBI geschaltet.
* Es werden neue Farbwerte berechnet und danach HBIs
* ermöglicht.

vbi movem.1 d0/a0,savereg AO und DO sichern
move.b #0,tbcr

lea farbtab, a0

move colind0,dO0

move d0O,colindO0a

move 0(a0,d0.w),color_O

move 0(a0,d0.w) ,nextcol

addq #2,d0
and #1023,d0

move d0,colindO
move colind2,d0

move dQ, colind2a

move 0(a0,d0.w),color 2

Timer B anhalten,
keine HBIs
Adresse der Farbwert-

Tabelle

Anfangsindex der Hin-

tergrundfarbe
in HBI-Farbindex
schreiben
Farbwert ins Shifter-
Register
...und als nächster

HBI-Farbwert

Index erhöhen (Wort)

zwischen O0 und 1023
(= 2 * 512 -])
Index zurückschreiben
Anfangsfarbindex für
Vordergrund
in HBI-Farbindex
schreiben
Farbwert ins Shifter-
Register

0

+
e

+

*

+
*

+
X

+
+

*
+
 +

F
H

FH
+

F
F

+
FF

OF

Maschinennahe Programmierung 317

oldvbi
*

move

addgq
and

move

move .b

move .b

movem.1

jmp

O0(a0,dO.w),nextcol2 * ...und als nächster
* HBI-Farbwert

#2,d0 * Index erhöhen (Wort)
#1023,d0 * zwischen 0 und 1023
dO, colind2 * Index zurtickschreiben
#ZEILEN, tbdr * alle n Zeilen HBI
#8,tbcr * Timer B im Event-

* Count-Mode
savereg,d0/a0 * Register wiederher-

* stellen
SFFFFFFFF * zur alten VBI-Routine

* Hier endlich die eigentliche HBI-Routine
hbi

* Das Eilige ist erledigt.

move

move

nextcol0,color 0 *
*

nextcol2,color_2 *
*

* nächsten Farbwerte errechnen.

colindO

colind2

colind0a

colind2a

nextcol0

nextcol2

savereg

movem. 1

lea

move

addq
and

move

move

move
subq
and
move
move

and.b

movem. 1

rte

DATA

dc.w

dc.w

dc.w

dc.w

dc.w

dc.w

BSS

as.l

d0/a0,savereg
farbtab,a0
colind0a,d0

#2,d0
#1023,d0
dd, colindda
0O(a0,d0.w) ,nextcol0d

colind2a,d0
#2,a0
#1023,d0
dO, colind2a
0(a0,d0O.w) ,nextcol2

#SFE,isra
savereg,d0/a0

7
ee
e
e

I
N
D

OF

+
+

+
HF

HF
O
F

+
+

+
+

+
+

FF
F
H

FH
OF

vorher errechnete

Farbwerte...

in Shifter-Register
schreiben

Jetzt können wir in Ruhe die

Register sichern
Adresse der Farbtabelle
Hintergrund-Farbindex
Index erhöhen (Wort)

zwischen O0 und 1023
zurückschreiben
neuer Farbwert für

nächsten HBI

Vordergrund-Farbindex
Index erhöhen (Wort)

zwischen O und 1023
zurückschreiben
neuer Farbwert für

nächsten HBI

ISRA Bit O0 löschen
Register wiederher-
stellen

Rückkehr

Anfangsfarbindex Hin-
tergrund
Anfangsfarbindex Vor-
dergrund
HBI-Farbindex Hinter-
grund
HBI-Farbindex Vorder-
grund

Farbwert für nächsten
ABI

Farbwert für nächsten
HBI

Platz für gesicherte
Register

318 ATARI ST — Programmieren in Maschinensprache

farbtab ds.w 512 * Farbtabelle

END

Nun die Beschreibung:

Damit sämtliche 512 Farben des ST gleichzeitig angezeigt werden können,
wird zunächst eine Tabelle angelegt, die zu jeder Zahl von O bis 511 die
Shifter-Darstellung liefert. Man erhält sie, indem man in der binären Darstel-
lung an den Stellen 3 und 7 ein Nullbit dazwischenschiebt. Als nächstes werden
— natürlich im Supervisor-Modus — sämtliche Interruptvektoren eingetragen.
Außer dem HBI-Vektor brauchen wir noch folgende Vektoren:

— Den VBI-Vektor: Der VBI wird dazu benutzt, die Farbwerte auf einen An-
fangswert zurückzusetzen und außerdem für das Rollen der Farben zu sor-
gen. Damit dies rechtzeitig vorgenommen wird, wird diese Routine nicht
wie üblich in die oben erwähnte Vektoren-Tabelle eingetragen, sondern vor
die System-Routine gehängt. Das heißt, daß bei Initialisierung die Adresse
der System-Routine direkt in den AdreBteil eines JMP-Befehls am Ende die-
ser Routine geschrieben wird. Dadurch wird sichergestellt, daß nach unse-
ren Befehlen die Routine ausgeführt wird, die vorher für diesen Interrupt
zuständig war. Dieses Verfahren nennt sich "vector stealing", auf deutsch
auch "Vektoren verbiegen" genannt.

— Der MFP-Vektor für Maus- und Tastaturinterrupts: Auch dieser Interrupt
muß umgelenkt werden, da während seiner Abarbeitung normalerweise kei-
ne HBlIs möglich wären. Das Ergebnis ist ein Flackern, das jedesmal auftritt,
wenn eine Taste gedrückt oder die Maus bewegt wird. Der vorgeschaltete
Befehl verringert die Interruptmaske auf 5, so daß HBls weiterhin auftreten
können.

Außerdem muß noch der vom Timer C erzeugte 200Hz-Systemtakt abgeschal-
tet werden, da er die HBls stören würde.

Nun zu den Interrupts selbst: Die VBI-Routine sorgt dafür, die ersten Farb-
werte zu berechnen und in den Variablen nextcolO und nextcol2 abzulegen. Es
werden die Hintergrundfarbe (Farbe 0) und die zweite Vordergrundfarbe ver-
ändert. Außerdem werden die den Farben zugeordneten Indizes jeweils um
eins hochgezählt, um den Rollo-Effekt zu erreichen. Es wird hier das Timer-

B-Datenregister mit 1 initialisiert, damit in jeder Zeile ein Interrupt auftritt.
Wenn dieser Wert verändert wird, können Interrupts mit einem beliebigen
Abstand auftreten.

Maschinennahe Programmierung 319

Im HBI werden erst die zuvor berechneten Farbwerte in die Shifter-Register
iibertragen, dann erst werden mit Hilfe der Indizes die neuen Farbwerte be-
rechnet und in nextcol0 und nextcol2 abgelegt. Dies wird deshalb so gemacht,
damit schon die ersten beiden Befehle der HBI-Routine die Farben ändern. Ge-
schieht dies erst später, so ist inzwischen schon ein Teil der Zeile in den alten
Farben gezeichnet worden, wodurch die Farbe erst mitten in der Zeile verän-
dert würde. Sie sehen also, daß die Farbänderung recht zeitkritisch ist.

Im Vordergrundprogramm wird während des Zeigens der Grafik einfach eine
Warteschleife ausgeführt. Wenn sie beendet ist, ist es Zeit, alles wieder so her-
zustellen, wie es war: Die alten Interruptvektoren werden wiederhergestellt,
HBIs werden abgeschaltet, und der 200Hz-Interrupt wird wieder gestattet.
Dann ist das Programm fertig und kann wieder zum Desktop zurückkehren.

Es ist wichtig, bei der Beendigung eines Programms alle selbstinstallierten In-
terruptroutinen wieder zu entfernen, da das nächste Programm, das geladen
wird, sicherlich den Speicherbereich überschreibt, in dem die Interruptrouti-
ne steht. Falls nicht sämtliche Interruptroutinen wieder "abgehängt" werden,
führt dies wahrscheinlich zu einem Systemabsturz, wenn der fragliche Inter-
rupt zum nächsten Mal auftritt.

Es ist wohl überflüssig, zu betonen, daß das Programm nur mit dem Farbmo-
nitor vernünftig läuft. Sie sollten es am besten als GEM-Programm (Endung
PRG) ausführen, da so der größte Teil des Bildschirms mit der Farbe 2 gefüllt

ist. An den Rändern sieht man außerdem die Hintergrundfarbe 0.

Leider tritt bei dem Programm noch eine kleine ungewollte Nebenerscheinung
auf, denn wenn eine Taste betätigt oder die Maus bewegt wird, entsteht ein
leichtes Flackern. Es kommt dadurch zustande, daß eine geringe Zeitspanne
zwischen der Auslösung des Maus- und Tastatur-Interrupts und dem Zurück-
setzen der Interruptmaske auf 5 vergeht. Ein HBI, der in diesem Moment auf-
treten will, kommt nicht zum Zuge. Die Lösung dieses Problems ist möglich,
aber alles andere als einfach, wenn man Tastatur und Maus nicht ganz abschal-
ten will: Man müßte Maus- und Tastaturvorkommnisse nicht durch Interrupts,
sondern durch kontinuierliche Abfrage des Interrupt-Pending-Registers selbst
ausführen (polling). Dieser Aufwand lohnt sich nur bei umfangreichen Pro-
grammen, die von HBlIs Gebrauch machen, etwa bei Spielen.

Klangerzeugung durch direkte Amplitudensteuerung

Der Soundchip des ST bietet einige interessante Möglichkeiten. Der normale
Weg besteht darin, daß man dem Soundchip eine Frequenz und eventuell noch

320 ATARI ST - Programmieren in Maschinensprache

einen Lautstärkeverlauf (Hüllkurve) mitteilt und dann erwartet, daß er den
Rest alleine tut. Hier soll statt dessen die Möglichkeit beschrieben werden,
einen Klang "zu Fuß" zu erzeugen. Damit ist gemeint, daß die CPU selbst die
einzelnen Amplitudenwerte eines Klangs berechnet und über den Soundchip
ausgibt. Dieses Prinzip findet man auch bei der Wiedergabe von digitalisierten
Klängen; Nachteil der Methode ist, daß die CPU damit voll oder zumindest zu
einem beachtlichen Teil ausgelastet ist.

Der Soundchip YM-2149 bietet drei unabhängige Tonkanäle A, B und C. Für
jeden Tonkanal gibt eine 12-Bit-Zahl die Periodendauer an, also den Kehrwert
der Frequenz. Dabei wird eine Frequenz von 500 KHz durch diese 12-Bit-Zahl
geteilt, um die Frequenz des Tons zu liefern.

Natürlich ist es unumgänglich, zuerst die Register des Soundchips YM-2149
kennenzulernen. Von außen betrachtet verfügt der Soundchip über nur zwei
Register, die jedoch zu nichts anderem da sind, als den Durchgriff auf die
wirklichen 16 Register des Soundchips zu ermöglichen. Die beiden äußeren
Register haben folgende Bedeutung:

$FF8800 Read Data/Register select (8 Bit)
In diese Adresse wird die Nummer eines der Datenregister des
Soundchips (0 — 15) geschrieben. Erst dann hat man Zugriff auf
das so angewählte Datenregister. Wenn man dieses Register aller-
dings ausliest, erhält man den Inhalt des zuletzt angewählten Daten-
registers. So greift man beim Lesen auf ein anderes Register zu als
beim Schreiben. Bei Hardware-Registern ist dieses Verhalten gar
nicht so ungewöhnlich. Tatsächlich kann man dadurch den einen
oder anderen Transistor einsparen.

Von Bedeutung ist auch die Tatsache, das der hier hineingeschrie-
bene Wert so lange erhalten bleibt, bis er überschrieben wird; er
wird also nicht durch einen Zugriff auf eines der Datenregister ge-
ändert. Wenn man mehrmals hintereinander auf das gleiche Daten-
register zugreifen möchte, braucht man "Register Select" nicht je-
desmal neu zu schreiben.

$FF8802 Write Data (8 Bit)
Hier wird der Wert hingeschrieben, der in das zuletzt ausgewählte
Datenregister gelangen soll.

Übrigens bietet der Soundchip nebenbei noch Möglichkeiten zur Steuerung
von Ports, die aber in diesem Zusammenhang nicht weiter von Interesse sind.
Für uns sind deshalb nur folgende Register von Bedeutung:

Maschinennahe Programmierung 321

0,1

2,3

4,5

9

10

Diese Register bestimmen die Periodendauer und somit den Kehr-
wert der Frequenz des Tonkanals A. Dabei werden nur die ersten 4
Bits von Register 0 benutzt. Die 8 Bits des Registers O0 bilden die
unteren 8 Bits der 12-Bit-Periodendauer, die 4 Bits des Registers 1
rücken an die Stellen 8 - 11.

Entsprechend 0, 1 für Tonkanal B

Entsprechend 0, 1 für Tonkanal C

Hier bestimmen die Bits 0 — 4 die Periodendauer des Rauschgene-
rators

Mit diesem Register werden alle Tonkanäle kontrolliert. Die ein-
zelnen Bits haben folgende Bedeutung:

Tonkanal A O:ein/l:aus

Tonkanal B O:ein/l:aus

Tonkanal C Q:ein/1:aus

Rauschen zu KanalA O:ein/l:aus

Rauschen zu KanalB _0O:ein/l:aus

Rauschen zu KanalC 0O:ein/l:aus M
B
P

W
N
e

©

Die Lautstärke eines Tonkanals kann Werte von O bis 15 annehmen.
O bedeutet abgeschaltet, 15 steht für maximale Lautstärke. Dieser
Wert wird in die Bits 0 — 3 geschrieben. Bit 4 hat eine besondere
Bedeutung: Ist es gesetzt, dann wird nicht dieser Lautstärkewert
benutzt, sondern der Lautstärkeverlauf des Tons wird vom (hier
nicht beschriebenen) Hüllkurvenregister bestimmt.

entsprechend 8 für Tonkanal B

entsprechend 8 für Tonkanal C

Normalerweise erzeugt der YM-2149 also ein Rechtecksignal mit einer ange-
gebenen Frequenz; bestenfalls kann noch über die Hüllkurven eine Dreiecks-

oder Sägezahnschwingung erzeugt werden. Was muß man nun tun, um eine
Amplitude direkt auszugeben?

— Nur ein Tonkanal wird eingeschaltet (natürlich ohne Rauschen), alle ande-
ren werden abgeschaltet.

— Die Periodendauer des Tonkanals wird auf 0 gesetzt. Dadurch wird eine
Schwingung erzeugt, die nicht nur jenseits der menschlichen Wahrneh-
mung, sondern auch jenseits der Bandbreiten sämtlicher Lautsprecher liegt.

322 ATARI ST — Programmieren in Maschinensprache

Deshalb wirkt sich diese Schwingung nicht aus, und nur die Lautstärke er-
scheint am Ausgang.

— Der Amplitudenwert wird in das Lautstärkeregister des Tonkanals geschrie-
ben, wobei das Hüllkurven-Bit nicht gesetzt wird.

Durch diese Maßnahmen wird der Soundchip zum Digital/analog-Wandler de-
gradiert, der nur die hineingeschriebenen Lautstärkewerte in Spannungen am
Lautsprecher des Monitors umzuwandeln hat.

15 - 4.
14 - a I
13 - a --
12] -
114 a
104 - -
9-- >

17 =: - 64 7 E

5 = -

4- | = --
3 - u. —

2- -. _

1 - Ion. _

Abb. 6.5: Umsetzung einer Sinusschwingung in digitale Daten

Um das Prinzip zu demonstrieren, muß man allerdings auch noch irgend etwas
haben, was man ausgeben kann. Als Beispiel soll hier eine angenäherte Sinus-
schwingung dienen (Abb. 6.5). Das dort gezeigte Diagramm wird für das fol-
gende Programm einfach in eine Werteliste von 64 Bytes umgewandelt — Digi-
talisierung per Hand.

Eines gilt es bei dieser Art der Tonerzeugung zu beachten, wenn man eine an-
nehmbare Klangqualität erreichen will: Es müssen alle Interrupts radikal ab-

Maschinennahe Programmierung 323

geschaltet werden, da sonst die Tonerzeugung ständig unterbrochen würde,
besonders vom VBI. Deshalb wird am Anfang die Interruptmaske auf 7 ge-
setzt. Probieren Sie ruhig einmal aus, wie es sich auswirkt, wenn man die

Interrupts nicht abschaltet.

Zunächst wird in den Supervisor-Modus geschaltet, und die Register des
Soundchips werden initialisiert. Dabei achtet das Programm darauf, die Bits 6
und 7 des Soundchip-Registers 7 nicht zu verändern, da sie wichtigen Portsteu-
erungszwecken dienen.

Nun zur eigentlichen Tonschleife: Um die momentane Stelle in der Werteliste
festzuhalten, bewahrt das Programm in DO einen Index auf. Dieser wird mit
der Anweisung "AND #63,D0" nach Additionen immer im richtigen Wertebe-
reich gehalten, wodurch die Sinusschwingung zyklisch ausgegeben wird.
Wollte man nun in jedem Schleifendurchlauf ganze Zahlen zu DO addieren, so
erhielte man eine sehr hohe und auch nur in großen Schritten änderbare Fre-
quenz — was übrigens die Geschwindigkeit zeigt, mit der die einzelnen Werte
ausgegeben werden. Deshalb findet hier wieder das schon beim Line-Algo-
rithmus benutzte Festkomma-Prinzip Verwendung: Der Nachkommateil des
Index (16 Bit) wird in D1 gespeichert. So hat man auch die Möglichkeit, den
Index jedesmal um kleinere Werte als 1 zu erhöhen. In der Schleife wird
gleichzeitig noch ein Zähler mitgeführt, damit das Programm auch irgend-
wann endet.

KKKKKKEKKKKKEKKEKKKKKKEKKEKEKKKKKKEKKKEKEKEKEKKKKEKKKEKEKKEKRKEKKKKEKKKKKKKKKKKKK

* SOUND.S *

*- Demo fur Sounderzeugung durch direkte Amplitudensteuerung *
* erzeugt eine "weiche" Schwingung *
* Registerbelegung *
* DO.W Index in Wertetabelle (0-63) *

* D1.W Nachkommateil des Index D2.W *

* D2.W Additionswert des Index DO *

* D3.W Nachkommateil des Additionswertes D2 *

* D4.L Zahler der Schleifendurchläufe, damit das Programmm *

* auch terminiert *
KEKKKKKKEKKKEAEKKEKKKEKRKEKEKREKKKKEKKKEKKKKKKKEKKKEKEKKKKKKKKKKKKRK KKK KK KK KKK

nreg EQU SFFFF8800 * Soundchip-Registernummer
value EQU SFFFF8802 * hier Wert des Registers schreiben

SUPER EQU $20

start clr.1 - (sp) * Userstack als Supervisorstack
move.w #SUPER, - (sp) * GEMDOS-Funktionsnummer

trap #1 * Sprung ins GEMDOS
addg.1 #6,sp *
move.l ‘dQ,save ssp * SUPER-Stack merken

bsr.s reginit * Register des Soundchips init.

324 ATARI ST — Programmieren in Maschinensprache

or

lea

move .b

move

move

move

move.l

outloop move.b

add

addx

and

subq.1

bne.s

loopend move.b
and

move.l

move

trap

addq.1

clr

trap
*

#$700,SR

Sintab, a0

#8 ,nreg

#0, a0

inch, d2

incl,d3

#1000000,d4

0 (a0,d0.w) , value

a3,dl

d2,d0

#63,d0

#1,d4

outloop‘
#0, value

#SFBFF,SR

Save_ssp,-—(sp)
#SUPER, - (sp)
#1
#6,sp
- (sp)
#1 +

+
+

+
F

+
+

F
F

HF
F

F
F

OF

F
F

HF
KF
O
F

OF

HF
O
F
 alle Interrupts abschalten

Adresse der Werteliste

Registernummer 8: Lautstärke A
Index auf 0

Additionswert unteres Wort

Additionswert oberes Wort

1.000.000mal durch die Schleife

Lautstarkewert ausgeben

dl: niederwertiger Teil des Index“
dO: hochwertiger Teil des Index
immer in der Liste bleiben

Schleifendurchläufe herunter-

zählen

bis Null erreicht ist

Lautstärke auf 0

Maske 3 (Bit 10 des SR auf 0)

alten SUPERVISOR-Stack holen

Funktionscode

ins GEMDOS

TERM Funktionscode 0

zurück zum Desktop!

* hier werden die Register des Soundchips initialisiert
reginit move.

move.
move.
move.
move.
move.
and.b
or.b

move .b

rts

T
O
O

O
O
O

DATA
incl dc.w
inch dc.w
save_ssp dc.l

#0,nreg

#0, value
#0,nreg

#0, value

#7,nreg
nreg,dO
#311000000,d0
#300111110,d0

dd, value

20000
0
0

* und die Wertetabelle

08,09,10,11,11,12,12,13,13,14,14,14,15,15,15,15

15,15,15,15,14,14,14,13,13,12,12,11,11,10,09,08

07,06,05,04,04,03,03,02,02,01,01,01,00,00,00,00

00,00,00,00,01,01,01,02,02,03,03,04,05,06,07,08

sintab dc.b

dc.b

dc.b

dc.b

END

+
+

+
+

+
+

+
+

HF
OF

*

*

*

Frequenz A Low auf 0

Frequenz A High auf 0

Multifunktionsregister Nummer 7
Wert auslesen

Bits 6 und 7 erhalten
Nur Kanal A ein, Rauschen aus

und zurtickschreiben

Inkrement Low: 20000/65536
Increment Hi: 0/1
zum Speichern des SSP

Wenn Sie mit diesem Prinzip etwas herumexperimentieren wollen, so ändern
Sie doch einmal die Frequenz, oder fügen Sie in der Tonschleife irgendwo fol-
genden Befehl ein:

ADDQ #1,D0

Tatsächlich erzeugt der Soundchip mit diesen Klangdaten keine echte Sinus-
schwingung; in Wirklichkeit ergibt sich eine etwas komplexere Schwingungs-

Maschinennahe Programmierung 325

form, da die Lautstärkestufen des Soundchips nicht einfach linear gestuft sind,
sondern logarithmisch. Das heißt, daß etwa der tatsächliche Lautstärkeabstand
zwischen den Lautstärken 14 und 15 viel größer ist als der zwischen 1 und 2.
Die Grundidee dabei ist, daß das menschliche Gehör die Lautstärken auch lo-
garithmisch wahrnimmt; Ihnen werden also — rein subjektiv — diese Lautstär-
kenunterschiede gleich vorkommen. In unserem Beispiel wirkt sich das kaum
störend aus, da trotzdem noch ein recht weich klingender Ton entsteht. Für die
Wiedergabe von digitalisierten Klängen ist es allerdings empfehlenswert, eine
Liste für die Übersetzung der linear angegebenen Lautstärkewerte in die loga-
rithmischen Werte des Soundchips zu verwenden. Somit wäre für eine größere
Klangtreue gesorgt.

Natürlich könnte man an diesem Beispiel noch einige Verbesserungen vorneh-
men:

— Statt nur eines Tonkanals könnten drei für ein einziges Signal verwendet
werden, um die Wiedergabetreue zu verbessern. Besonders für das Abspie-
len von digitalisierten Klängen empfiehlt sich diese Methode. Es ist sinnvoll,
beim Ansteuern der drei Kanäle die schon genannte Tatsache zu berücksich-
tigen, daß die Lautstärkewerte des Soundchips logarithmisch gestuft sind.

— Statt einer Schleife könnte man den Timer-A-Interrupt verwenden (Be-
schreibung siehe in diesem Kapitel unter "Programmierung von Inter-
rupts"). So wäre die CPU nicht restlos damit ausgelastet, ein paar Amplitu-
denwerte auszugeben, sondern könnte im Vordergrund andere sinnvolle

Dinge tun. Für diesen Zweck könnte die Klangausgaberoutine auch noch et-
was auf Geschwindigkeit optimiert werden. Probleme würden allerdings
mit anderen Interrupts auftreten, die eine höhere Priorität als der Timer-A-
Interrupt haben.

Eine RAM-Disk

Dieser Abschnitt soll das Interessante mit dem Nützlichen verbinden, denn

eine RAM-Disk kann den Umgang mit einem Assembler sehr erleichtern, so-
fern man genug Speicherplatz hat. Das Beispiel liefert gleichzeitig einen An-
haltspunkt dafür, wie man dem Betriebssystem Gerätetreiber zugänglich ma-
chen kann.

Um eine RAM-Disk installieren zu können, muß man zunächst einmal wissen,
wie der Zugriff auf Laufwerke im Betriebssystem organisiert ist, denn

326 ATARI ST - Programmieren in Maschinensprache

schließlich hat eine RAM-Disk ja den Status eines Laufwerks. Nun, die Datei-
verwaltung bleibt völlig dem GEMDOS überlassen und soll uns deshalb hier
nicht weiter interessieren. Interessant wird es erst in dem Moment, wo das

GEMDOS auf die einzelnen Sektoren des Laufwerks zugreifen will. Auf dem
ATARI ST sind Disketten normalerweise auf jeder Seite in 80 Spuren (Tracks)
zu jeweils 9 Sektoren organisiert; die Diskettenlaufwerke können jeweils nur
einen vollständigen Sektor auf einmal lesen oder schreiben. Die recht kompli-
zierte Aufgabe, diese Sektoren nun so zu verwalten, daß Dateien mit einer be-
liebigen Anzahl von Bytes gespeichert werden können, obliegt dem GEMDOS.
Für den Zugriff auf einzelne Sektoren benutzt das GEMDOS die BIOS-Funk-
tion Nummer 4 mit der Bezeichnung "rwabs" fiir "read/write absolute
sectors’, die direkt auf Sektoren eines Laufwerks zugreift. Aus einer höheren
Programmiersprache wie C würde "rwabs" folgendermaßen aufgerufen:

error=rwabs (rwflag,puffer,anzahl,sektor,dev)

Betrachten wir nun die Parameter, die allesamt außer "puffer" Worte sind:

"rwflag" gibt an, ob Sektoren geschrieben oder gelesen werden sollen. Der Pa-
rameter kann folgende Werte annehmen:

Sektoren lesen
Sektoren schreiben
Sektoren lesen, Diskettenwechsel ignorieren
Sektoren schreiben, Diskettenwechsel ignorieren W

N
r

©

Bekanntlich sind die Diskettenlaufwerke des ATARI ST in der Lage, einen
Diskettenwechsel zu erkennen und ihn dem Computer zu signalisieren. Auf
diese Möglichkeit wurde hier Rücksicht genommen.

Schreiben und lesen werden hier in eine Routine zusammengepackt, da beide
Operationen oft einen großen Teil ihres Codes gemeinsam haben.

"puffer" ist ein Langwort, das die Adresse des Bereiches angibt, aus dem gele-
sen bzw. in den geschrieben wird. Er sollte an einer geraden Adresse begin-
nen, da sonst der Zugriff auf das Laufwerk etwas verlangsamt wird.

"anzahl" gibt an, wie viele Sektoren nacheinander geschrieben oder gelesen
werden sollen.

"sektor" gibt die Nummer des ersten Sektors an, der geschrieben oder gelesen
werden soll.

Maschinennahe Programmierung 327

"dev" schließlich gibt das Laufwerk an, das bei der Operation benutzt werden
soll. Dabei steht 0 für Laufwerk A, 1 für B, 2 für C und so weiter.
Der Rückgabewert ist null, wenn der Zugriff erfolgreich war, andernfalls er-
hält man eine negative Fehlernummer.

Für die Verwaltung eines Laufwerks sind noch zwei weitere BIOS-Funktionen
von Bedeutung: getbpb (Nummer 7) und mediach (Nummer 9).

getbpb (dev)

"dev" hat die gleiche Bedeutung wie der entsprechende Parameter bei rwabs().
Diese Funktion bewirkt nichts anderes, als einen Zeiger auf eine Datenstruktur
zurückzugeben, die alle wichtigen Informationen über das Laufwerk bzw. die
Diskette enthält, den BIOS-Parameter-Block. Unter anderem steht dort, wie
viele Bytes ein Sektor enthält (512), wie viele Sektoren in einen Cluster gehö-
ren (2) und wo die Verwaltungsinformationen auf der Diskette stehen. Das
meiste kann bei der RAM-Disk einfach vom BIOS-Parameter-Block einer
normalen Diskette übernommen werden. Interessant ist für uns in erster Linie
der Eintrag im BIOS-Parameter-Block, der die Anzahl der insgesamt auf dem
Laufwerk verfügbaren Cluster angibt. Ein Cluster ist ein logischer Block, der
auf dem ST 2 Sektoren mit insgesamt 1024 Bytes umfaßt; an dieser Stelle wird
also die Kapazität des Laufwerks in Kilobytes eingetragen.

Die letzte für ein Laufwerk zu realisierende Funktion wird so aufgerufen:

ergebnis=mediach (dev)

"dev" gibt wieder die Laufwerksnummer an. Der Rückgabewert dieser Funk-
tion zeigt an, ob bei dem angegebenen Laufwerk ein Diskettenwechsel stattge-
funden hat. Diese Information ist folgendermaßen codiert:

QO Diskette wurde nicht gewechselt
1 Diskette könnte gewechselt worden sein
2 Diskette wurde gewechselt

Logischerweise kann bei einer RAM-Disk kein Diskettenwechsel auftreten.

Jetzt wissen wir also, welche Funktionen wir für einen Gerätetreiber imple-
mentieren müssen. Es geht nun nur noch darum, dem Betriebssystem mitzutei-
len, wo unsere Routinen zu finden sind.

Unter den Systemvariablen befinden sich drei Vektoren mit den Namen
hdv_bpb, hdv_rw und hdv_mediach, die Vektoren zu den Routinen getbpb(),

328 ATARI ST — Programmieren in Maschinensprache

rwabs() und mediach() enthalten. Man hat also nur noch die Adressen der eige-
nen Routinen dort einzutragen. Doch halt: Natürlich darf man die Routinen
für die normalen Diskettenlaufwerke und eventuell für eine Festplatte nicht
einfach abhängen. Wir benutzen also wieder das Verfahren des "vector
stealing" und verzweigen zu den alten Routinen, wenn ein anderes Laufwerk
als die RAM-Disk angesprochen wird.

Eines gibt es noch zu tun, bevor unser Laufwerk offiziell beim Betriebssystem
angemeldet ist: Das der Laufwerksnummer entsprechende Bit in der System-
variablen "drvbits" muß gesetzt werden, sonst wird die verwendete Lauf-
werkskennung nicht anerkannt.

Um die Verwaltung der Dateien und freien Blocks auf der RAM-Disk brau-
chen wir uns nicht weiter zu kümmern; Eine RAM-Disk zu "formatieren"
heißt lediglich, sämtliche Bytes auf 0 zu setzen.

Das folgende Programm installiert bei seiner Initialisierung zunächst einmal
die drei besprochenen Vektoren und meldet das Laufwerk in "drvbits" an, was
natürlich alles im Supervisor-Modus ablaufen muß. Dann wird die Gesamtlän-
ge des Programms berechnet. Das Programm wird nicht wie üblich mit der
Funktion TERM beendet, sondern mit dem ähnlichen KEEPTERM. Diese
Funktion sorgt zwar auch für eine Rückkehr zum Desktop, reserviert aber ein-
en Speicherbereich ab der Startadresse des Programms, dessen Länge KEEP-
TERM als Parameter überreicht wird. Hier wird dafür einfach die Gesamtlän-
ge des Programms und der RAM-Disk berechnet, indem die Längen der Base-
page, der drei Programmsegmente und des Speicherbereichs für die RAM-
Disk addiert werden.

Allerdings prüft das Programm nicht, ob noch genügend Speicher vorhanden
ist; wenn Sie mehr Kilobytes für die RAM-Disk reservieren wollen, als tat-
sächlich noch frei sind, ist das Resultat ein Busfehler.

Nun zu den drei Routinen selbst: Bei jeder Routine wird zunächst einmal abge-
fragt, ob überhaupt das Laufwerk der RAM-Disk angesprochen wird. Ist das
nicht der Fall, dann wird gleich zu der Adresse gesprungen, die ursprünglich
im entsprechenden Vektor stand. Wenn Sie nichts daran ändern, wird die
RAM-Disk automatisch auf Laufwerk C installiert. Wollen Sie sie unter einer
anderen Laufwerkskennung benutzen, so brauchen sie nur den Wert des Sym-
bols RAMDISK entsprechend abzuändern.

Da die Anordnung der Parameter bei rwabs() vielleicht etwas unübersichtlich
ist, hier eine Aufstellung ihrer Positionen auf dem Stack nach dem Aufruf:

Maschinennahe Programmierung 329

Adresse Länge Name

14(SP) Wort dev, Gerätenummer
12(SP) Wort sektor, Nummer des ersten Sektors
10(SP) Wort anzahl, Anzahl der Sektoren
6(SP) Langwort puffer, Adresse des Datenpuffers
4(SP) Wort rwflag, Flag für lesen/schreiben
0(SP) Langwort Riickkehradresse

Und das hat die rwabs-Funktion zu tun: Sie muß aus der angegebenen Sektor-
nummer die Adresse in der RAM-Disk berechnen, und zwar nach der Formel

adr = Ramdiskadresse + Sektornummer * 512

Dann muß nur noch die Anzahl der zu kopierenden Bytes ausgerechnet wer-
den:

Bytes = anzahl * 512

Um den Zugriff zu beschleunigen, findet der Kopiervorgang langwortweise
statt. In dem Fall gilt die Formel

Langworte = anzahl * 512 / 4 = anzahl * 128

Nur der seltene Fall, daß die Adresse des Datenpuffers ungerade ist, muß wie
oben byteweise gehandhabt werden.

Wenn Sie sich die Routine ansehen, werden Sie feststellen, daß Schreib- und
Lesevorgang weitgehend gleich gehandhabt werden. Tatsächlich besteht der
einzige Unterschied darin, daß für das Schreiben die Inhalte des Quell- und
Zielregisters ausgetauscht werden.

Wie benutzt man die RAM-Disk nun? Zunächst muß die Laufwerkskennung
der RAM-Disk beim Desktop angemeldet werden. Klicken Sie dazu ein belie-
biges Laufwerkssymbol an und fahren Sie auf den Menüpunkt "Floppy anmel-
den". Tippen Sie nun die Laufwerkskennung (C) ein, und klicken Sie das Feld
"anmelden" an. Wenn Sie wollen, können Sie vorher in das Feld mit der Lauf-
werksbezeichnung "RAM-Disk" oder etwas ähnliches eintragen; es schadet
aber auch nichts, wenn Sie es nicht tun.

Natürlich sollten Sie die Größe der RAM-Disk (KBytes) an Ihre eigenen Be-
dürfnisse anpassen (das heißt, eigentlich an die Gegebenheiten Ihres Systems).

330 ATARI ST — Programmieren in Maschinensprache

Wenn das RAM-Disk-Programm in einem AUTO-Ordner abgelegt wird, wird
es bei jedem Systemstart oder Reset automatisch in den Speicher geladen.

Sicherlich kann es ärgerlich sein, daß bei einem schweren Systemabsturz — der
ja bei der Assemblerprogrammierung nicht gerade schwierig zu erzeugen ist —
der Inhalt der RAM-Disk verloren ist. Es gibt eine Lösung für dieses Problem:
Einige aufwendigere RAM-Disk-Programme sind in der Lage, den Inhalt der
RAM-Disk über ein Reset hinwegzuretten. Leider ist der dazu notwendige
Aufwand so groß, daß er den Rahmen dieses Buchs sprengen würde. Wenn Sie
auf die hier abgedruckte RAM-Disk angewiesen sind, kann ich nur empfehlen,
häufiger Sicherheitskopien auf einem weniger flüchtigen Medium anzulegen.

KKK KKK KKK KK KK KK KK KKK KK KK IK KK KKK IKK IK KR KKK KKK KKK RK KKK KK KKK KKK KK KKKKK AKER

* RAMDISK.S *

* Ramdisk-Programm *
KKK KK KKK KKK KK KR KK KKK KKK RR KKK KR KKK IKK KKK I KKK KR KK KKK KK KIRK KKK RK KR KR RK

DRIVE

KBYTES

EQU

EQU

2

512

* Base-Page-Adressen

*

*

2 fiir

Größe

Laufwerk C:

in 1K-Blöcken

textlen EQU 12 * Lange des Textsegments in Bytes

datalen EQU 20 * Länge des Datensegments

bsslen EQU 28 * Länge des BSS-Segments

* absolute Adressen einiger Systemvariablen

hdv_bpb EQU $472 * Vektor fiir BIOS getbpb()

hdv_rw EQU $476 * Vektor fur BIOS rwabs ()
hdv_media EQU S47E * Vektor für BIOS mediach()
drvbits EQU $4c2 * Bits für angeschlossene Laufwerke

* GEMDOS Funktionsnummer

KEEPTERM EQU 49

* XBIOS Funktionsnummer

Programmende mit reservieren

SUPEXEC EQU 38 * Routine im SUPER-Modus ausführen

start move.l 4(sp),a0 * Basepage-Adresse nach AO

moveq #0,dl %* Ramdisk mit Nullen füllen

lea rdstart,a0 * Anfangsadresse

move.l #KBYTES*1024/4,d0 * Zähler für Langworte

clrloop move.l dl, (aQ)+ * Langworte löschen

subq.1 #1,d0 *

bne clrloop *

move.1 #$100,d7 * 256 Bytes für Basepage...

add.l textlen (a0) ,da7 * + Länge des Textsegments...

add.l datalen (a0) ,d7 * + Länge des Datensegments

add.l bsslen (a0) ,d? * + Länge des BSS in D7

add.1 #KBYTES*1024,d7 * + Länge der RAM-Disk
pea supinit * Adresse der Init-Routine auf Stack

Maschinennahe Programmierung 331

supinit

bpb

oldbpb

rw

longs

bytes

move

trap

addq.1

clr

move.1

move

trap

move.

move.

move.

move.

move.

move.

move.

bset

move.l

rts

P
R
R
P
P

R
P
P

cmp

bne.s

move.l

rts

jmp

cmp

bne.s

move.l

lea

clr.l

move

moveq

lsl.1l

add.l

clr.l

move

move.l

btst

bne.s

asl.l

btst

beq.s

exg

move.l

subq.1

bne.s

rts

moveq

lsl.1

btst

beq.s

exg

#SUPEXEC, - (sp)
#14
#6,Sp

- (sp)
d7,-(sp)

#KEEPTERM, - (sp)
#1

hdv_bpb, oldbpb+2

#bpb, hdv_bpb
hdv_rw, oldrwt2
#xrw,hdv_rw

im Supervisor-Modus ausführen

zum BIOS

exit code = 0 (OK)

Gesamtlänge auf Stack

Programmende mit Reservieren des

Speicherbereiches

alten getbpb ()-Vektor merken

eigene Routine dazwischenschalten

alten rwabs ()-Vektor merken

eigene Routine dazwischenschalten

hdv_media,oldmedia+2 * alten mediach()-Vektor merken
#media,hdv_media
drvbits,DO

#DRIVE,DO
DO,drvbits

#DRIVE,4(sp)

oldbpb

#rdbpb, d0

SFFFFFFFF

#DRIVE,14 (sp)

oldrw

6(sp),a0

rdstart,al

do

12 (sp) ,d0

#9,d1

dl1,d0

ad0,al

do

10 (sp) ,d0

a0,dl

#0,dl1

bytes

#9-2,d0

#0,5 (sp)

longs

a0,al

(al)+, (a0)+

#1,d0

longs

#9,dal1

d1,d0

#0,5 (sp)

byteloop

a0,al

x

*

x

23

*

+
+

+
+

+
+

*
+

HF
HF

OF
HF

HF
HF

OF
OF

OF
OF

F
OF

OF
OF

OF
:*OF

OH
OF

+
3

3
+

F

eigene Routine dazwischenschalten

Laufwerk "C:”" anmelden

Bit setzen

und zurückschreiben

ist die RAM-Disk gemeint?

nein, zur alten Routine

Adresse des BIOS Parameter Blocks

Hierhin den alten hd_bpb-Vektor

"C:" angesprochen?

nein, springe durch alten Vektor

zu schreibender/lesender Bereich

Anfang des RAM-Disk-Speichers

DO säubern

erster Block

Bytes=Blocks*512

zur RAM-Disk-Anfangsadr. addieren

d0O noch einmal säubern

Anzahl der Blocks nach DO

test auf ungerade Startadresse

zur langsameren Byte-Schleife

Bytes=Blocks*512; Longs=Bytes/4

schreiben oder lesen?

lesen!

in umgekehrter Richtung

ubertragen

je ein Langwort übertragen...

bis der Zähler...

auf 0 steht

langsameres Byte-übertragen

Bytes=Blocks/512

lesen oder schreiben?

lesen!

in umgekehrter Richtung

332 ATARI ST - Programmieren in Maschinensprache

byteloop move.b (al)+t, (a0)+

subq.1 #1,d0

bne.s byteloop

rts

oldrw jmp SFFFFFFFF

media cmp #DRIVE, 4 (sp)

bne.s oldmedia

moveq #0,d0

rts

oldmedia ‘jmp SFFFFFFFF

DATA

* BIOS-Parameter-Block der Ramdisk

rdbpb DC.W 512

clsiz DC.W 2

clsizb DC.W 1024

rdlen DC.W 7

fsiz DC.W 5

fatrec DC.W 6

datrec DC.W 18

numcl DC .W KBYTES-18/2

flags DC.W 8

rdstart BSS

+
+

+

+

+
+

+
*»

*
+

HF
F

übertragen

byteweise kopieren

zur alten rwabs () -Routine

unsere Drive-Kennung?

nein, zu alten mediach () -Routine

0: die RAM-Disk kann natürlich

nicht gewechselt werden

zur alten mediach () -Routine

Bytes pro Record (Block)

Blocks pro Cluster

Bytes pro Cluster

Blockanzahl der FAT

Blockanzahl des Directory

Gesamtgröße in Clusters

* Mit dem BSS wird Platz für die RAM-Disk reserviert

END

333

Kapitel 7

Tips und Tricks für schnellere Programme

Manchmal kommt es vor, daß Programme oder Programmteile trotz der Im-
plementierung in Assembler nicht schnell genug sind. Wenn der Such- oder
Sortieralgorithmus Minuten braucht, wenn das Grafikprogramm den Bild-
schirm nicht schnell genug aufbaut, oder wenn sich die Figuren für das neue
Computerspiel nur wiederwillig und mit Flackern bewegen, dann ist ein
schnelleres Programm nötig.

Tatsächlich gibt es auch in Assembler noch eine ganze Menge Möglichkeiten,
Programme schneller zu machen. Deshalb sollen hier die wichtigsten und all-
gemein anwendbaren Methoden vorgestellt werden.

Es wird ausschließlich auf die Geschwindigkeitsoptimierung eingegangen, da
Speicherplatz auf einem Computer wie dem ATARI ST zumindest in Assem-
bler wohl kaum ein Problem darstellt. In manchen Fällen wird sogar Speicher-
platz für Geschwindigkeit geopfert.

Die verschiedenen Möglichkeiten werden auf drei Ebenen aufgeteilt:

— Die Befehlsebene
Dies ist die unterste Ebene. Die hier angebotenen Optimierungen betreffen
einzelne Maschinensprachebefehle, denn oft bietet der MC68000 Dank sei-
nes reichhaltigen Befehlssatzes mehr als eine Möglichkeit, eine bestimmte
Aktion durchzuführen. Oft unterscheiden sich diese Möglichkeiten in ihrer
Geschwindigkeit. Hierbei handelt es sich allerdings oft um rein mechanische
Optimierungen, die auch von Compilern vorgenommen werden können.

— Die Implementierungsebene
Jetzt sind wir schon eine Stufe höher. Hier geht es um Gruppen von Befeh-
len, um Schleifen und Programmorganisation. Trotzdem ist es noch eine
sehr maschinenabhängige Optimierung. Allerdings erfordert sie schon eini-
ge menschliche Intelligenz; für Compiler sind diese Methoden oft schon zu
kompliziert darzustellen.

— Die Algorithmenebene
Dies ist die höchste Ebene des Programmierens — wenn man einmal von der
Modellebene absieht, die eher von theoretischer Bedeutung ist. Natürlich

334 ATARI ST - Programmieren in Maschinensprache

kann auf dieser Ebene nur eine Auswahl von allgemein anwendbaren Opti-
mierungsmethoden vorgestellt werden, denn die hier denkbaren Methoden
sind so vielfältig wie die Probleme, die auf Computern gelöst werden.

Bevor man mit dem Optimieren beginnt, ist es das Wichtigste, den Blick für
das Wesentliche zu haben. Natürlich hat es keinen Sinn, Befehlssequenzen zu
optimieren, die während des Programmablaufs nur einige oder auch einige
hundert Male durchlaufen werden. So kommt es zunächst einmal darauf an, zu
wissen, welche Teile des Codes den Hauptanteil der Rechenzeit benötigen. Den
meisten Programmen sieht man das schon von vornherein an; wenn Sie jedoch
ein besonders kompliziertes Programm mit vielen geschachtelten Unterpro-
grammaufrufen geschrieben haben, können Sie in die fraglichen Routinen
Zähler einbauen, die Ihnen Aufschluß darüber geben, wie oft sie in einem Pro-
grammlauf aufgerufen wurden.

Bevor es richtig losgeht, noch ein Wort der Warnung: Die Optimierung von
Programmen bringt auch Nachteile mit sich. Man muß die Verbesserung einer
Eigenschaft fast immer mit Nachteilen auf anderen Gebieten bezahlen — dieses
Gesetz gilt nicht allein für Computerprogramme, sondern auch für fast alle
anderen Bereiche der Technik. Leider verhält es sich nun einmal so, daß
"schnelles Programm” und "strukturiertes Programm" oft Gegensätze sind.
Sie müssen von Fall zu Fall selbst entscheiden, ob der Gewinn an Geschwindig-
keit wirklich den Mehraufwand bei späteren Änderungen des Programms wert
ist.

Tatsächlich ist ein perfekt optimiertes größeres Programm für irgend jemand
anderen außer dem Autor kaum noch verständlich. Deshalb ist die Optimie-
rung besonders dann mit Vorsicht zu genießen, wenn später vielleicht ein an-
derer Programmierer das Programm verstehen soll. Aber auch, wenn Sie das
Programm nur selbst verstehen müssen, empfehle ich Ihnen, ungewöhnliche
Methoden der Optimierung zu dokumentieren, damit Sie Ihre eigenen Tricks
auch einen Monat später noch verstehen.

Optimierungen auf Befehlsebene

Die folgenden Optimierungen sind vom Standpunkt der Klarheit aus noch re-
lativ harmlos, da leicht verstandlich. Es kann nichts schaden, wenn Sie sich mit
der Zeit angewöhnen, diese Optimierungen gleich beim Niederschreiben von
Programmen zu verwenden. Allerdings sind unter den folgenden Methoden
einige schwarze Schafe, die dazu neigen, Programme unübersichtlich zu ma-
chen; auf sie wird gesondert hingewiesen.

Tips und Tricks fiir schnellere Programme 335

Allgemeine Optimierungen

Wenn Sie es mit der Optimierung auf Befehlsebene ernst meinen, sollten Sie
zunächst einmal einen Blick auf die Ausführungszeiten der Befehle im Anhang
F werfen. Alle Ausführungszeiten sind in Taktzyklen angegeben. Beim ST,
der ja mit 8 MHz getaktet ist, dauert der Ablauf eines Taktzyklus 125 Nanose-
kunden. Bald wird Ihnen auffallen, daß es auf dem MC68000 keinen Befehl
gibt, der weniger als 4 Taktzyklen benötigt. Im Vergleich zu einfacheren Pro-
zessoren wie etwa dem 6502 ist das relativ viel. Der Grund liegt in der kom-
plexen Architektur des MC68000.

Ein weiteres Merkmal fällt sofort ins Auge: Sobald sich der Befehl nicht allein
in Prozessorregistern abspielt, erhöht sich die Ausführungszeit drastisch auf
mindestens 8 Taktzyklen. Die CPU kann ihre eigenen Register sehr viel
schneller erreichen als Speicherstellen. Daraus läßt sich gleich eine wichtige
Regel ableiten: Oft benutzte Variablen sollten möglichst in Registern aufbe-
wahrt werden. Es empfiehlt sich schon deshalb, weil die meisten Operationen
verlangen, daß sich mindestens einer der Operanden in einem Datenregister
befindet.

Nachteilig ist, daß es bei der Vielzahl der Register des MC68000 recht unüber-
sichtlich werden kann, was nun eigentlich in welchem Register steht. Deshalb
bieten einige Assembler die nicht vom Motorola-Standard vorgeschriebene
Direktive REG, die ein Label mit einem Register identifiziert:

zaehler REG D5

Wann immer man nun das Label "zaehler" verwendet, wird dafür D5 einge-
setzt. Im Extremfall, wenn Sie sehr viele Registervariablen verwenden, ist das
allerdings auch nicht ganz unproblematisch. Dann verdecken die Label, in
welchem Register sich eine Variable nun wirklich befindet, wann welche Regi-
ster zur Verfügung stehen und ob sich nicht etwa zwei Registervariablen über-
schneiden. Es ist also in jedem Fall Aufmerksamkeit geboten, wenn viele Vari-
ablen gleichzeitig in Registern aufbewahrt werden.

Aus den Ausführungszeiten ergibt sich noch folgendes: Um so komplizierter
die verwendete Adressierungsart ist, desto länger dauert auch die Befehlsaus-
führung. Die einfachste Adressierungsart von Speicherzellen ist " Adreßregi-
ster indirekt". Nur mit dieser Variante läßt sich die minimale Ausführungszeit
von 8 Taktzyklen erreichen. Deshalb werden alle anderen Speicher-Adressie-
rungsarten mit der genannten verglichen. Die zusätzliche Ausführungszeit
wird in Taktzyklen angegeben:

336 ATARI ST - Programmieren in Maschinensprache

Adressierungsart Zusätzliche Taktzyklen

(An)

d16(An)/d16(PC)
d8(An,i)/d8(PC,1)
absolut 16 Bit

absolut 32 Bit C
O
R
N

R
N

O
O

Mit "d16" wird dabei ein 16-Bit-Displacement bezeichnet, mit "d8" ein 8-Bit-
Displacement. "1" steht fur ein Indexregister.

Wenn man Listen bearbeiten will, sollte man sie also besser von unten nach
oben mit der Postinkrement-Adressierungsart durchgehen als umgekehrt mit
Predekrement. Ersteres ist ohnehin naheliegender.

Aus dieser Tabelle kann man auch ablesen, daß es günstiger ist, ein Feld mit
Hilfe eines Zeigers durchzugehen als mit einem Index unter Verwendung der
Adressierungsart " Adreßregister indirekt mit Index und Displacement".

Noch ein Wort zur Verarbeitungsbreite: Byte- und Wort-Befehle nehmen sich
in der Ausführungsgeschwindigkeit nichts. Das rührt daher, daß der Daten-
transport seine Zeit braucht, egal ob der 16 Bit breite Datenbus vollständig
oder nur zur Hälfte genutzt wird. Nur die Langwortoperationen fallen aus der
Reihe, denn für sie muß der Datenbus zweimal bemüht werden. Eine Lang-
wortoperation ist allerdings immer schneller als zwei gleichwertige Wortope-
rationen. Deshalb sollte man für Berechnungen und Datentransporte immer
die höchste anwendbare Verarbeitungsbreite wählen.

Optimierung von MOVE-Befehlen

Betrachten wir zunächst, wie man am schnellsten einen konstanten Wert in ein

Register bringt. Die mit Abstand effizienteste Methode bietet der MOVEQ-
Befehl. Er benötigt nur 4 Taktzyklen, um die vollen 32 Bit eines Datenregi-
sters mit einem vorzeichenerweiterten 8-Bit-Wert zu füllen. Natürlich ist sei-
ne Verwendung begrenzt, denn MOVEQ läßt als Ziel nur ein Datenregister zu.

Es kommt oft vor, daß eine Adresse in ein Adreßregister gebracht werden
soll. Häufig geschieht das in dieser Form:

MOVE.L #adr,An

Tips und Tricks für schnellere Programme 337

Genau die gleiche Zeit benötigt folgende Form (Beachten Sie das fehlende
Doppelkreuz):

LEA adr,An

Nach der zuvor gezeigten Tabelle werden jedoch 4 Taktzyklen gespart, wenn
das Label PC-relativ adressiert wird (Voraussetzung ist natürlich, daß die
Adreßdistanz in 16 Bit darstellbar ist):

LEA adr(PC),An

Manche Assembler verwenden allerdings (zumindest optional) automatisch die
PC-relative Adressierungsart, wenn sie anwendbar ist.

Der häufigste unmittelbare Wert, den man in ein Register bringen will, ist si-
cherlich 0. Naheliegenderweise würde man dafür den CLR-Befehl verwenden:

CLR.L Dn

Tatsächlich ist aber hier MOVEOQ um zwei Taktzyklen schneller:

MOVEQ #0,Dn

Dies gilt allerdings nur für Langworte; bei Worten und Bytes nehmen sich die
beiden Varianten nichts.

Genauso häufig dürfte es vorkommen, daß man Speicherzellen auf 0 setzen
will. Will man ganze Speicherbereiche "ausnullen", so ist der CLR-Befehl
auch nicht optimal. Man spart bei Wortbreite 4 und bei Langwortbreite sogar
8 Taktzyklen pro Speicherzugriff, wenn man vorher ein Datenregister löscht
und die Null aus dem Register in den Speicher schreibt. Unerwarteterweise ist
also der Befehl

CLR.L (a0)

um vier Taktzyklen langsamer als die beiden folgenden Befehle zusammen:

MOVEQ #0,D0
MOVE.L DO, (a0)

Wenn es haufiger vorkommt, da8 man mehrere Variablen auf einmal vom
Speicher in Register laden will, um mit ihnen zu rechnen, dann kann man sich
des MOVEM-Befehls bedienen: Die Variablen bekommen aufeinanderfolgen-
de Speicheradressen, und mit einem MOVEM werden sie auf einmal in mehre-

338 “ATARI ST — Programmieren in Maschinensprache

re Prozessorregister geladen, wobei als Quelloperand die Adresse der ersten
Variablen angegeben wird. Dazu ein Beispiel:

MOVEM.L varl,DO-D2

BSS
varl DS.L 1

var2 DS.L 1

var3 DS.L 1

Nach der Ausführung des MOVEM-Befehls steht varl in DO, var2 in D1 und
var3 in D2. (Vorsicht! Beachten Sie die Reihenfolge, in der die Register bei
MOVEM behandelt werden). Genauso schnell können die Variablen nach der
Berechnung wieder zurückgeschrieben werden:

MOVEM.L DO-D2,varl

Zum Vergleich: Der erste MOVEM-Befehl benötigt 44 Taktzyklen, während
drei einfache MOVE-Befehle zusammen 60 brauchen; bei Verwendung der
PC-relativen Adressierungsart würde sich der Vorteil auf 40 zu 48 verrin-
gern. Natürlich ist dies kein optimaler Trick, denn er beeinträchtigt die Les-
barkeit des Programms.

Optimierung von arithmetischen Befehlen

Zunächst einmal ist es empfehlenswert, Berechnungen in Datenregistern aus-
zuführen, nicht in Adreßregistern. Dies bietet sich ja schon deshalb an, weil
arithmetische Operationen auf Adreßregister sehr eingeschränkt sind und lo-
gische überhaupt nicht vorhanden sind. Bei Addition und Subtraktion bieten
Datenregister einen leichten Geschwindigkeitsvorteil. Dieser tritt allerdings
nur dann in Erscheinung, wenn der Quelloperand in einem Register steht und
in Wortbreite verarbeitet wird. Diese Aufgabe wird bei einem Datenregister
um 4 Taktzyklen schneller erledigt. Bedenken Sie aber, daß ja beim Datenregi-
ster der Wert auf Langwortbreite vorzeichenerweitert werden muß und so in
Wirklichkeit eine Langwortoperation durchgeführt wird.

Klar, daß man immer ADDQ bzw. SUBOQO verwenden sollte, wenn ein unmit-
telbarer Operand verwendet werden soll und dieser genügend klein ist (1-8).
Was aber, wenn der Wert größer ist? Bei einem Adreßregister könnte das
dann so aussehen:

ADD.W #300,A0

Tips und Tricks für schnellere Programme 339

Beachten Sie, daß man bei einer in 16 Bit darstellbaren Konstanten auch Wort-
breite verwenden kann, da ja der Operand vor der Addition auf Langwort-
breite vergrößert wird. Um 4 Taktzyklen schneller ist allerdings folgender
Befehl:

LEA 300 (AO) , AO

Zur Addition einer 16-Bit-Konstanten zu einem AdreBregister ist also immer
die Adreßberechnung mittels LEA sinnvoll.

Wie schon an anderer Stelle erwähnt, kann man die Multiplikation mit einer
Konstanten in einigen Fällen durch Verschiebeoperationen ersetzen. Im einfa-
chen Fall, wo mit einer Zweierpotenz multipliziert werden soll, wäre es viel
aufwendiger, dafür MULU/MULS zu bemühen, wo man doch den Operanden

nur um eine bestimmte Anzahl von Bits mittels LSL zu verschieben braucht.
Das gleiche Prinzip läßt sich natürlich auch auf eine Division durch Zweierpo-
tenzen anwenden.

Betrachten wir die Multiplikationsbefehle einmal genauer. Aus der Tabelle im
Anhang G kann man ablesen, daß eine Multiplikation von zwei Datenregistern,
unabhängig davon, ob mit MULU oder MULS, höchstens 70 Taktzyklen benö-
tigt werden. Was heißt das nun genau? Die Multiplikation wird vom MC68000
nicht so geradlinig ausgeführt wie die anderen Befehle; vielmehr durchläuft
der Prozessor im Mikrocode ein kleines Programm, das die Multiplikation auf
Additionen und Subtraktionen zurückführt. Da in diesem Mikroprogramm
auch bedingte Verzweigungen enthalten sind, hängt die Ausführungszeit von
den zu multiplizierenden Werten ab. Tatsächlich kann man feststellen, daß sich
je nach den Werten beträchtliche Unterschiede in der Ausführungszeit erge-
ben.

Bei MULU hängt die Ausführungszeit nur vom Quelloperanden ab und steigt
linear mit der Anzahl der gesetzten Bits in diesem Operanden. Ist die Quelle 0,
dann ergeben sich ca. 45 Taktzyklen, beim "worst case" $FFFF (lauter binäre
Einsen) sind es hingegen 76 Taktzyklen (alle Werte wurden durch Versuche
ermittelt). Letzterer Wert zeigt, daß die vom Hersteller angegebenen maximal
70 Taktzyklen eigentlich ein wenig untertrieben sind. Im Durchschnitt, bei der
Verwendung von Zufallszahlen ergeben sich etwa 59 Taktzyklen für MULU.
Bis auf eine kleine Ungenauigkeit kann man also sagen, daß für jedes im Quell-
operanden gesetzte Bit MULU 2 Taktzyklen länger braucht. Somit kann man
MULU etwas beschleunigen, indem man den Wert, der voraussichtlich weni-
ger binäre Einsen enthält, als Quelloperanden benutzt.

Bei MULS ist der Zusammenhang zwischen Einsen im Quelloperanden und
der Ausführungszeit nicht so einfach. Hier läßt sich nur sagen, daß die durch-
schnittliche Ausführungszeit von MULS auch bei 59 Taktzyklen liegt.

340 ATARI ST — Programmieren in Maschinensprache

In manchen Fällen ist es möglich, eine Multiplikation durch eine Addition zu
ersetzen. Nehmen wir als Beispiel eine Routine, die in hoher Auflösung eine
vertikale Linie über den Bildschirm ziehen will. Ihre Aufgabe ist es also, im
Bildschirmspeicher alle 80 Bytes ein Bit zu setzen (siehe in Kapitel 6 unter
"Setzen eines Punktes in hoher Auflösung"). Wenn beim Eintritt in die Routine
die Bildschirmadresse in AO steht, könnte man dies so programmieren:

linie

CLR DO * Zeile:=0
loop MOVE DO,D1 * Zeile*80 berechnen

MULU #80,D1 * in D1
BSET #0,40(A0,D1.L) * Punkt setzen
ADDO #1,D0 * Zeile erhöhen
CMP #400,D0 * Ende erreicht?
BNE loop * nein, weiter
RTS * Fertig

Hier wird also für jeden Punkt der Ausdruck

Bildschirmadresse + 40 + Zeile * 80

berechnet. Bei so regelmäßig aufgebauten Schleifen läßt sich jedoch leicht die
Multiplikation durch die Addition ersetzen, wie das folgende Beispiel zeigt:

linie2

MOVE.L AO,A1l * Adresse in Al
ADD #40,Al * Mitte einer Zeile
CLR DO * Zeile:=0

loop BSET #0, (Al) * Punkt setzen
ADD #80,Al * eine Zeile weiter
ADDO #1,D0 * und mitzählen
CMP #400,D0 * Ende erreicht?
BNE loop * nein, weiter
RTS

In dieser Version wird der Zeilenzähler DO nur noch zum Mitzählen benutzt;
die eigentliche Berechnung der Pixeladressen wird nur noch ausgeführt, in-
dem Al bei jedem Durchlauf um 80 erhöht wird. Natürlich könnte man obige
Schleife durch die Verwendung des DBF-Befehls etwas beschleunigen.

Durch die Verwendung eines Zeigers auf die aktuelle Pixeladresse wird hier
einige Rechenzeit gespart. Nach dem gleichen Prinzip wird man auch Zeichen-
ketten oder Felder allgemein durchgehen; nicht, indem man die Adresse jedes
neuen Elements einzeln berechnet, sondern mit Hilfe eines Zeigers, der nur
durch die Addition einer Konstanten über das gesamte Feld bewegt wird.

Die Verschiebebefehle sollen hier auch als arithmetische Operationen behan-
delt werden. So kann man sie möglichst effizient einsetzen:

Tips und Tricks fiir schnellere Programme 341

Oft ärgert man sich darüber, daß zwei Befehle nötig sind, um einen Operanden
um mehr als 8 Stellen zu verschieben. Wenn die Anzahl der Stellen zwischen 8
und 16 liegt, gibt es zwei Möglichkeiten: Man kann das Verschieben auf zwei
Befehle aufteilen, etwa

ASL.L #8,DO

ASL.L #8,DO

oder man kann die Anzahl der Verschiebungen vorher in ein Register laden:

MOVEQ #16,D1
ASL.L D1,D0

Dabei ist die letztere Variante zu empfehlen, da sie um 4 Taktzyklen schneller
ist.

Beim Programmieren von Verschiebungen sollten Sie beachten, daß die Be-
fehlsausführungszeit linear mit der Anzahl der Verschiebungen steigt. So be-
rechnet sich die Anzahl der Taktzyklen eines Verschiebebefehls nach einer
Formel wie etwa

8 +2n

wobei n die Anzahl der Verschiebungen ist. Die erste Konstante (hier 8) vari-
iert mit der Verarbeitungsbreite und Adressierungsart.

Achtung! Wenn man ein Wort um mehr als 8 Stellen nach links verschieben
will, Kann man auch so vorgehen: Statt das Register um n Stellen nach links zu
verschieben, tauscht man zuerst die obere und untere Registerhälfte mit dem
SWAP-Befehl aus und schiebt dann um 16-n Stellen nach rechts. Vorausset-
zung für diese Methode ist allerdings, daß der obere Teil des Registers vorher
auf Null stand. Da diese Methode selten anwendbar und auch recht zweifelhaft
ist, soll hier kein Beispiel gebracht werden. |

Optimierung von Verzweigungsbefehlen

Die wohl auffälligste Optimierung der Verzweigungsbefehle der Form "Bcc"
ist es, die kurze Form "Bcc.S" zu verwenden, wann immer sie anwendbar ist.
Allerdings bietet die’ 8-Bit-Variante tatsächlich nur dann einen Vorteil, wenn
die Verzweigung nicht stattfindet. In diesem Fall werden 4 Taktzyklen ge-
spart.

342 ATARI ST — Programmieren in Maschinensprache

Wie sonst auch ist die PC-relative Adressierung schneller als die absolute; bei
JMP und JSR macht der Unterschied 2 Taktzyklen aus. Wenn man bei JMP die
PC-relative Adressierung benutzt, dauert die Ausfiihrung genauso lange wie
bei BRA. Für Unterprogrammaufrufe gilt hingegen, daß JSR bei dieser
Adressierungsart sogar um zwei Taktzyklen schneller ist als das entsprechende
BSR (nur 18 statt 20 Taktzyklen).

Alle hier genannten Optimierungen werden von einigen Assemblern automa-
tisch vorgenommen. Dazu kann ich nur auf das Handbuch Ihres Assemblers
verweisen.

Selbstmodifizierender Code

Am Schluß dieses Abschnitts soll noch auf eine besonders unsaubere, aber
manchmal recht nützliche Art der Optimierung eingegangen werden: selbst-
modifizierender Code. Als selbstmodifizierend bezeichnet man Programme,
die ihren eigenen Programmcode verändern. Damit müssen nicht unbedingt
Befehlscodes gemeint sein; es können auch unmittelbar angegebene Operanden
verändert werden. Klar, daß diese Methode zu besonders unübersichtlichen
Programmen führt.

Ein gutes Beispiel für selbstmodifizierenden Code liefert das Programm, wel-
ches die Horizontal Blank Interrupts erzeugte. Dort wurde sogar an zwei Stel-
len eine Adresse in den Operandenteil eines JMP-Befehls geschrieben. In As-
sembler sieht das so aus:

MOVE .L adr, jump+2

jump: JMP SFFFFFF

Die wirkliche Zieladresse des JMP-Befehls wird also erst zur Laufzeit des
Programms bekannt. Beim Hineinschreiben der Adresse wird beriicksichtigt,
daß der JMP-Befehl aus einem Befehlswort besteht, dem 2 Worte Adresse fol-
gen. Natürlich muß zur Assemblierzeit des Programms schon irgendein Wert
als Operand des JMP-Befehls eingetragen werden; hier wurde willkürlich
$FFFFFF gewählt. Achten Sie aber darauf, dort nicht etwa 0 einzutragen, da
menche optimierenden Assembler auf die Idee kommen könnten,.die 16-Bit-
Variante von JMP zu verwenden — womit wieder einmal ein Systemabsturz
fällig wäre.

Tips und Tricks für schnellere Programme 343

Natürlich hätte man das auch so lösen können:

MOVE .L adr, jumpadr

jump: MOVE.L jumpadr,AO0

JMP (AQ)

DATA

jumpadr DS.L 1

Diese Variante wäre allerdings um einiges langsamer als die erste.

Das gleiche Prinzip läßt sich auch auf Direktoperanden von arithmetischen
oder MOVE-Operationen anwenden. Stellen Sie sich vor, in einem besonders
zeitkritischen Programmteil wird eine bestimmte Variable nur an einer Stelle
benutzt, um sie an eine bestimmte Stelle zu schreiben oder mit einem anderen
Wert zu verknüpfen. In diesem Fall könnte ein weniger zeitkritischer Pro-
grammteil den Wert vorher berechnen und in den Quelloperandenteil eines
Befehls der kritischen Routine schreiben.

Sinnvoll ist das zum Beispiel, wenn man das HBI-Programm dahingehend ver-
ändern möchte, daß in einem Interrupt alle Farbregister auf einmal verändert
werden. Das würde dann etwa so aussehen:

hbi: MOVE.W #0,color 0
cl: MOVE .W #0,color 1

MOVE .W x, hbi+2
MOVE .W y,clt2

(color_0, color_1,x und y sind woanders definiert.)

Durch diese Befehlssequenz wird sichergestellt, daß am Anfang der Routine,
so schnell es geht, neue Werte in die Farbregister geschrieben werden. Erst
wenn das erledigt ist, können neue Werte für den nächsten Durchlauf der Rou-
tine berechnet werden.

Hier wurde die Tatsache benutzt, daß Erweiterungswerte für den Quellope-
randen immer direkt hinter dem Opcode abgespeichert werden. Der Befehl

hbi: MOVE .W #0,color 0

344 ATARI ST - Programmieren in Maschinensprache

hat also im Speicher folgenden Aufbau:

— ein Wort Opcode fiir "Bewege einen unmittelbaren 16-Bit-Operanden an
eine absolute Adresse"

— ein Wort für den unmittelbaren Quelloperanden, also Null

— zwei Worte für die Adresse "color_0"

Also liegt man richtig, wenn man den neuen Quelloperanden an die Adresse
hbi + 2 schreibt.

Es gibt Situationen, in denen selbstmodifizierender Code nicht nur sinnvoll,
sondern sogar notwendig ist. Außerdem kann man diese Methode damit ent-
schuldigen, daß sie auf einigen — heute veralteten — Prozessoren aufgrund de-
ren sehr beschränkten Befehlssatzes sogar notwendig war. Eines sollte man
noch bedenken: Logischerweise kann selbstmodifizierender Code nicht in
ROM Ss untergebracht werden.

Optimierung auf der Realisierungsebene

Die Tricks, die Programme auf der Realisierungsebene schneller machen, sind
schon problematischer als die des vorhergehenden Abschnitts: Sie können Pro-
grammteile ziemlich unlesbar machen. Deshalb sollten Sie die im folgenden
beschriebenen Methoden am besten erst dann anwenden, wenn ein Programm
schon weitgehend fertiggestellt ist und nur noch das Laufzeitverhalten verbes-
sert werden soll. So ersparen Sie sich zusätzliche Schwierigkeiten beim Än-
dern des unübersichtlichen optimierten Codes.

Alle Programme verbrauchen einen gewissen Teil ihrer Rechenzeit damit,
sich mit Organisationsaufgaben zu beschäftigen. Diese Aktivitäten tragen zur
tatsächlichen Lösung des Problems nichts bei und sind deshalb eigentlich un-
produktiv. Konkreter geht es dabei um Programmsprünge, Unterpro-
grammaufrufe, die Übergabe von Parametern und die Organisation von Pro-
grammschleifen. In diesem Abschnitt werden deshalb einige Möglichkeiten
gezeigt, wie man diesen Organisationsaufwand verringern kann.

Wenden wir uns zunächst einmal dem Befehl JSR und seinem Verwandten BSR
zu. Tatsache ist, daß Unterprogrammaufrufe in manchen Fällen die Pro-
grammabarbeitung merklich verlangsamen können. In zeitkritischen oder be-
sonders häufig durchlaufenen Codesequenzen ist es deshalb empfehlenswert,
Unterprogrammaufrufe durch den tatsächlichen Code zu ersetzen. Immerhin

Tips und Tricks fiir schnellere Programme 345

betragt der zeitliche Aufwand fiir einen Unterprogrammaufruf im Bestfall 26
Taktzyklen - die Summe aus der Ausführungszeit eines BSR und RTS. Hinzu
kommen vielleicht noch Befehle für die Übergabe von Parametern.

Eine gute Möglichkeit, Unterprogrammaufrufe zu vermeiden, bieten Makros.
Wenn Ihr Assembler Makros beherrscht, sollten Sie von dieser Möglichkeit
Gebrauch machen. Makros haben gegenüber Unterprogrammen auch oft den
Vorteil, daß Parameter direkt in den Code des Makros eingebaut werden und
deshalb keine Befehle für eine Parameterübergabe erforderlich sind.

In manchen Fällen lassen sich jedoch Unterprogramme nicht vermeiden. Falls
die Unterprogramme Parameter erhalten, sollten Sie diese am besten in Pro-
zessortegistern übergeben. Im Vergleich zur Übergabe über den Stack spart
das nicht nur Zeit, sondern auch den einen oder anderen Befehl für einen

Stackzugriff. Eine Ausnahme ist es natürlich, wenn Unterprogramme sich
mehrfach verschachtelt oder sogar rekursiv aufrufen sollen. In diesem Fall
gibt es keine Alternative zum Stack.

Nun zu den verschiedenen Schleifenarten. Betrachten wir zunächst, wie man
eine Zählschleife (entsprechend der FOR-NEXT-Schleife in BASIC) in As-
sembler implementieren würde. Ein Wert in DO soll von einem Anfangswert
bis zu einem Endwert hochgezählt werden, wobei für jeden der Werte die
Schleife durchlaufen wird:

MOVE anfangswert,DO
loop: .

[hier steht der Rumpf der Schleife]

ADDQ #1,D0
CMP endwert,D0O
BLE loop

Wenn der Zahler DO ebensogut von einem Anfangswert bis null hinunterge-
zählt werden kann, ist natürlich die Verwendung des DBF-Befehls angebracht,
der sinngemäß die letzten drei Befehle des obigen Beispiels ersetzt:

MOVE anfangswert,DO

loop: .

[hier steht der Rumpf der Schleife]

DBF DQ, loop

Beachten Sie aber, daß die Anzahl der Durchläufe der Schleife um eins höher
ist als der Wert in "anfangswert", da DO in der Schleife auch den Wert Null an-
nimmt.

346 ATARI ST - Programmieren in Maschinensprache

Gemeinsam ist den beiden gezeigten Schleifen der Nachteil, daß sie nicht ab-
weisend sind. Sie müssen also mindestens einmal durchlaufen werden. Wenn
beim ersten Beispiel der Anfangswert gleich dem Endwert ist, geschehen so-
gar recht unerwünschte Dinge. Für abweisende Schleifen, die auch diesen Fall
richtig behandeln, wird deshalb oft folgende Form gewählt, die die Abfrage,
ob die Schleife beendet werden soll, an den Anfang stellt:

MOVE anfangswert, DO
loop: CMP endwert, DO

BGT loopend

[hier wieder der Rumpf der Schleife]

BRA loop
loopend:

Diese Methode hat jedoch den kleinen Mangel, daß sie am Ende der Schleife
einen zusätzlichen Verzweigungsbefehl benötigt. Eleganter ist es deshalb, die
Abfrage wieder ans Ende der Schleife zu stellen, aber genau an diesem Punkt
in die Schleife hineinzuspringen:

MOVE anfangswert, DO

BRA entry

loop:

entry: ADDQ #1,D0
CMP endwert,DO
BLE loop

Sehen Sie, wie dadurch ein Verzweigungsbefehl eingespart wird? Das heift,
genaugenommen sind es immer noch genauso viele Verzweigungsbefehle, nur
wird "BRA entry" nur einmal ausgeführt und nicht in jedem Schleifendurch-
lauf.

Natürlich kann man auch hier den DBF-Befehl einsetzen:

MOVE anfangswert, DO
ADDQ #1,anfangswert
BRA entry

loop:

entry: DBF DO, loop

Tips und Tricks für schnellere Programme 347

Vorsicht! Damit sich diese Schleife genauso verhält wie die oben gezeigte
DBF-Schleife, muß man den Anfangswert um eins erhöhen, da sonst die
Schleife nur mit den Werten von anfangswert-1 bis 0 durchlaufen würde.

Es kommt recht oft vor, daß man Speicherbereiche kopieren oder auf einen
Anfangswert setzen möchte. Um etwa den Bildschirm zu löschen, wird mei-
stens eine Schleife wie die folgende verwendet:

MOVE .L scradr,A0

MOVE #7999,D0
loop CLR.L (AQ) +

DBF DO, loop

In der Variablen scradr soll die Anfangsadresse des Bildschirmspeichers ste-
hen. Der Anfangswert 7999 für den Schleifenzähler errechnet sich daraus, daß
der Bildschirmspeicher 32000 Bytes lang ist, also aus 32000 / 4 = 8000 Lang-
worten besteht. Davon wird wegen der schon beschriebenen Eigenschaften
von DBF noch eins abgezogen. Die Langwortbreite wird benutzt, da ein byte-
weises Löschen fast dreimal so lange dauern würde.

In dieser Form benötigt ein Schleifendurchlauf 30 Taktzyklen. Wie jedoch im
vorigen Abschnitt beschrieben, ist es praktisch, CLR zu ersetzen:

MOVE .L scradr, AO
MOVE #7999,D0

MOVEQ .L #0,D1

loop MOVE .L D1, (AQ) +

DBF DO, loop

In dieser Form braucht ein Schleifendurchlauf nur noch 22 Taktzyklen — im-
merhin eine Zeitersparnis von mehr als einem Viertel. Doch eins ist an dieser
Schleife immer noch nicht perfekt: Von den 22 Taktzyklen entfallen 10 allein
auf den DBRA-Befehl, der ja zur eigentlichen Aufgabe nichts beiträgt, son-
dern nur der Programmorganisation dient. Ein teilweise vermeidbarer Auf-
wand, wie das folgende Programmbeispiel zeigt:

MOVE .L scradr,A0

MOVE #3999,D0
CLR.L D1

loop MOVE .L D1, (AO) +
MOVE .L D1, (AO) +
DBF DO,1loop

Die gezeigte Methode ist eine direkte Anwendung des Prinzips "Platz opfern,
um Zeit zu sparen". Hier werden bei einem Schleifendurchlauf immer zwei
Langworte auf einmal gelöscht. Die Anzahl der Schleifendurchläufe errechnet
sich nach 32000 / (4 * 2) — 1 = 3999. So entfallen auf ein Langwort nur noch

348 ATARI ST — Programmieren in Maschinensprache

17 Taktzyklen. Natürlich kann man diese Vergrößerung der Schleife beliebig
fortsetzen, auf 4, 8, 16, ja bis zu 8000 Langworte. Zum Vergleich ist es viel-
leicht interessant, daß bei 32 Langworten, die in einer Schleife behandelt wer-
den, nur noch durchschnittlich 12,31 Taktzyklen auf ein Langwort entfallen,
wobei der Organisationsaufwand in Form des DBRA-Befehls nur noch 2,6%
der Rechenzeit ausmacht — ein akzeptabler Kompromiß.

Beachten Sie, daß die zuletzt vorgeschlagene Implementierung des Algo-
rithmus fast 2,5 mal schneller als die erste Version ist — bei einem Programm,
daß etwa für bewegte Grafik mehrmals in der Sekunde den Bildschirm löschen
muß, kann das eine ganze Menge ausmachen.

Natürlich läßt sich dieses Prinzip auch auf andere Schleifen anwenden. Zum
Beispiel lohnt es sich, die Kopierschleife des RAM-Disk-Programms aus
Kapitel 6 auf diese Weise zu optimieren. Logischerweise ist der Nutzen dieser
Methode bei Schleifen mit einem größeren Rumpf sehr begrenzt, denn wel-
chen Sinn hat es, den Verwaltungsaufwand zu verringern, wenn dieser von
Anfang an ohnehin nur einen geringen Anteil der Rechenzeit verbraucht?

Eine Voraussetzung für die bisher gezeigte Art der Optimierung ist es, daß die
Anzahl der Schleifendurchläufe von vornherein bekannt ist. Wir wollen jetzt
das Prinzip auf eine beliebige Anzahl von Schleifendurchläufen erweitern.
Einfach ist die Behandlung dann, wenn man von vornherein weiß, daß die An-
zahl der Schleifendurchläufe in jedem Fall das Vielfache einer bestimmten
Zahl sein muß. Doch was kann man tun, wenn diese Anzahl völlig beliebig ist,

wenn etwa Speicherbereiche kopiert werden müssen, deren Länge jede belie-
bige Anzahl von Bytes annehmen kann? Solange die Anzahl der Schleifen-
durchläufe ziemlich gering ist, ist sicherlich die konventionelle Methode ange-
bracht, immer nur die kleinste Einheit auf einmal zu behandeln, also etwa ein
Byte. Wenn allerdings mehrere hundert oder sogar Tausende von Einheiten
(etwa Bytes) behandelt werden müssen, lohnt es sich, darüber nachzudenken,

ob das nicht etwas schneller ginge.

Es gibt tatsächlich eine Möglichkeit, die Sache zu beschleunigen: Man teilt da-
zu die Anzahl der Schleifendurchläufe in zwei Teile auf. Nennen wir der Ein-
fachheit halber die Anzahl der Einheiten (Bytes oder was immer), die in einem
Schleifendurchlauf behandelt werden, "n". Dann ist der eine Teil das größte
Vielfache von n, das gerade noch kleiner oder gleich der gewünschten Anzahl
Schleifendurchläufe ist; der zweite Teil bildet den Rest. Anders ausgedrückt,
wenn man mit a die gewünschte Anzahl der Einheiten bezeichnet, wird eine
große Schleife, in der je n Einheiten behandelt werden, a /n (ganzzahlige Divi-
sion) mal durchlaufen, während eine kleine Schleife, in der jeweils nur eine
Einheit behandelt wird, a modulo n mal durchlaufen wird.

Tips und Tricks fiir schnellere Programme 349

Ein Beispiel verdeutlicht das Prinzip: Die folgende Routine kopiert einen Spei-
cherbereich, dessen Länge jede beliebige Bytezahl annehmen kann. Die An-
fangsadresse, von der kopiert werden soll, wird in AO übergeben, jene, auf die
kopiert werden soll in Al. Die Anzahl der zu kopierenden Bytes wird in DO
übergeben (Langwort). In der großen Schleife werden immer 8 Langworte,
also 32 Bytes, in einem Durchlauf kopiert. In der Praxis wären vielleicht etwas
mehr sinnvoll, aber schließlich würde es Ihnen ja auch nicht viel nützen, wenn
hier Seite um Seite mit dem Befehl "MOVE.L (AO)+,(Al)+" gefüllt würde.
Damit auch der Fall Länge = O richtig behandelt wird, wurden alle Schleifen

abweisend gemacht.

fastcop
MOVE.L DO,D1 * DO nicht andern
LSR.L #5,D1 * durch 32
BRA.S entryl * abweisende Schleife

loopl
MOVE .L (AO) +, (Al) + * 32 Bytes kopieren

MOVE. L (AO)+, (Al)+ *
MOVE .L (AO)+,(Al)+ *
MOVE .L (AO) +, (Al) + *

MOVE. L (AQ) +, (Al) + *

' MOVE.L (AO) +, (A1l)+ *
MOVE. L (AQ) +, (Al) + *

MOVE. L (AO) +, (Al)+ *
entryl .

DBF D1,loop1 * a / 32 mal wiederholen
MOVE DO,D1 * DO nicht ändern
AND #31,D1 * a modulo 32
BRA.S entry2 * abweisende Schleife

loop2
MOVE .B (AO)+, (Al)+ * einzelne Bytes kopieren

entry2
DBF D1,1oop2 * a modulo 32 mal
RTS * Ende

Bei dieser Schleife sind tibrigens bis zu 16 + 5 = 21 Bits für die Anzahl der zu
‘kopierenden Bytes erlaubt. Wenn volle Langwortbreite verarbeitet werden
soll, müßte der erste DBF-Befehl durch folgende Sequenz ersetzt werden (die
natürlich langsamer ist):

SUBQ.L #1,D1
BCC.S loopl

Übrigens erwartet obige Routine, daß beide Adressen an einer Wortgrenze lie-
gen. Man könnte sie noch dahingehend abändern, daß der Fall, daß Quell- und
Zieladresse ungerade sind, gesondert behandelt wird. Für den Fall jedoch, daß
eine der Adressen gerade und die andere ungerade ist, gibt es auf dem
MC68000 keine elegante Möglichkeit, den Vorgang zu beschleunigen: Da
bleibt nur die altbewährte Möglichkeit, jedes Byte einzeln zu kopieren.

350 ATARI ST - Programmieren in Maschinensprache

Optimierung auf der Algorithmenebene

In diesem Abschnitt zeigen wir einige allgemein anwendbare Methoden, wie
man Programmabläufe beschleunigen kann. Auf der Algorithmenebene sind
wir allerdings schon so weit von der Hardware entfernt, daß die Methoden die-
ses Abschnitts auch in höheren Programmiersprachen und auf gänzlich ande-
ren Prozessoren als dem MC68000 anwendbar sind. Natürlich kann hier nur
ein kleiner Ausschnitt der möglichen Optimierungen auf dieser Ebene vorge-
stellt werden, denn die meisten Möglichkeiten lassen sich nicht schematisieren.

Das erste Prinzip kann man so formulieren: Entscheidungen zu einem mög-
lichst frühen Zeitpunkt treffen. Gemeint ist damit folgendes: Wenn in einer
zeitintensiven Schleife in jedem Durchlauf eine Abfrage stattfindet, deren Er-

_ gebnis schon vor dem Eintritt in die Schleife feststeht und sich nicht mehr än-
dert, dann ist es effizienter, die Abfrage nur einmal durchzuführen, woraufhin
dann für jeden Fall in eine spezielle Schleife verzweigt wird. Ein Diagramm
drückt dies besser aus als viele Worte; betrachten Sie deshalb Abb. 7.1.

Denken Sie an den bereits vorgestellten Line-Algorithmus. Dort treten zwei
Schleifen auf, die die Fälle DX >= DY und DX < DY gesondert behandeln. In
jeder der Schleifen findet bei jedem Durchlauf eine Abfrage statt, ob DX nega-
tiv ist oder nicht, obwohl dies ja von vornherein feststeht. Statt dessen könnte
zunächst eine Abfrage erfolgen, ob DX negativ ist und für jede der beiden
Möglichkeiten — DX negativ oder DX positiv- eine eigene Schleife eingerich-
tet werden. Auf diese Weise läßt sich immerhin ein Geschwindigkeitsgewinn
von rund 18 % erreichen; die Quellcode-Dateien LINESHOP.S (für hohe Auf-
lösung) und LINESLOP.S (für niedrige Auflösung) auf der beiliegenden Dis-
kette zeigen, wie man diese Idee anwenden kann.

Das Prinzip läßt sich natürlich auch dann anwenden, wenn mehr als nur zwei
Möglichkeiten unterschieden werden. So hätte man beim Line-Algorithmus et-
wa noch die Möglichkeit einsetzen können, Linien wahlweise zu zeichnen oder
zu löschen, wobei dann schon vier verschiedene Schleifen für jeden der beiden
oben beschriebenen Fälle nötig gewesen wären. Das läßt sich beliebig fortset-
zen. Natürlich hängt die gewonnene Rechenzeit von der Anzahl der Befehle in
der Schleife ab; bei mehreren Dutzend Befehlen ist die sehr geringe Beschleu-
nigung kaum den Aufwand wert.

Um es noch einmal ganz deutlich zu sagen: Das Prinzip funktioniert nur, wenn
das Ergebnis der Abfrage(n) schon vor dem Eintritt in die Schleife bekannt ist.
Sobald auf Ergebnisse Bezug genommen wird, die erst während eines Schlei-
fendurchlaufs anfallen, ist es nicht mehr anwendbar.

Tips und Tricks fiir schnellere Programme 351

TT

Fall B Gemeinsamer

Teil der Schleife Bedingung
erfuellt ?

Bedingun
ortuclt Ke Gemeinsamer Gemeinsamer

Tell der Schleife Teil der Schleife

Programmteil Programmteil |

fuer Fall A fuor Fall B ’ Programmtell Programmtell
fuer Fall A fuer Fall B

 Ende der

Schleife ?
Ende der

Schleife ?

Ende der
Schleife ?

ja

Abb. 7.1: Implementierung einer Schleife mit Fallunterscheidung —
links die normale I rechts die optimierte Version

Das zweite wichtige Prinzip lautet folgendermaßen: Ergebnisse, die mehrmals
hintereinander benötigt werden, brauchen nur einmal berechnet zu werden.

Dazu ein Beispiel: Bei Stringoperationen, bei denen die Länge eines bestimm-
ten Strings mehrmals benötigt wird, reicht es natürlich, wenn diese Länge nur
einmal festgestellt und an einem sicheren Platz zwischengespeichert wird. So
gesehen bringt dieses Prinzip nichts neues, denn in Assembler würden es ohne-
hin die meisten Programmierer so machen. Interessanter ist aber folgendes
Prinzip, das eine Erweiterung des vorangegangenen darstellt:

Wenn in einem Programm häufig eine bestimmte Funktion von Werten benö-
tigt wird, Kann eine Wertetabelle die ständige Berechnung von Funktionswer-
ten ersparen.

352 ATARI ST - Programmieren in Maschinensprache

Mit Funktion ist hier irgendeine Operation gemeint, die man auf einen be-
grenzten Bereich von Werten anwenden will. Erinnern wir uns an den Plot-
Algorithmus zum Setzen eines Punktes in hoher Auflösung. Seine Aufgabe be-
stand hauptsächlich darin, folgende Formel zu berechnen:

adr = Bildschirmadresse + Y*80 + X/8

Man könnte diese Berechnung nun im mathematischen Sinne als eine Funktion
zweier beliebiger Werte x und y auffassen:

f (x, y) = Bildschirmadresse + y * 80+x/8

Das Prinzip besagt nun, daß man ein Feld von Funktionswerten für x von O bis
639 und y von O bis 399 berechnen könnte, aus dem der Funktionswert direkt
hervorgeht. Leider scheitert das in diesem Fall an technischen Gegebenheiten,
denn mit einem 640 x 400-Feld von Langworten wäre fast ein Megabyte be-
legt. Realistischer ist folgende Betrachtungsweise:

g(y) = Bildschirmadresse + y * 80

Die Adresse errechnet sich dann aus

adr = g(y)+x/8

In diesem Fall brauchen nur 640 Langworte für eine Tabelle aller Werte von
g(y) abgespeichert zu werden. Wie baut man diese Tabelle nun auf? Eine Mög-
lichkeit wäre es sicherlich, alle Funktionswerte mit einem Taschenrechner
selbst auszurechnen und in den Quellcode des Assemblerprogramms zu schrei-
ben. Doch wozu ist ein Computer schließlich programmierbar? Einfacher ist
es, die Tabelle der Funktionswerte bei der Initialisierung des Programms zu
füllen. In unserem Beispiel könnte das so aussehen:

CLR DO * Wert auf 0

LEA tabelle,A0 * Adresse der Wertetabelle
tabinit

MOVE DO,D1 * DO nicht andern
MULU #80,D1 * erzeugt Langwort
ADD.L scradr,D1 * plus Bildschirmadresse
MOVE .L D1, (AO) + * in die Tabelle
ADDQ #1,D0 * nächster Wert
CMP #400,DO * fertig?
BNE.S tabinit * nein, nächster Durchlauf

BSS
tabelle

DS.L 400

Tips und Tricks fiir schnellere Programme 353

Diese Routine setzt voraus, daß in der Variablen "scradr" die Bildschirm-
adresse steht. Zugreifen würde man auf einen Wert der Tabelle folgenderma-
ßen, wenn Y in D1 steht:

LEA tabelle, AO * Wertetabelle

LSL #2,D1 * Langworte -> Bytes
MOVE. L O0(A0O,D1.W) ,Al * Funktionswert lesen

Diese Befehlssequenz ersetzt folgende:

MULU #80,D1
ADD.L scradr,D1
MOVE. L D1,Al

In diesem Fall ist die Listenadressierung jedoch wesentlich schneller, da be-
sonders die Bearbeitung des MULU-Befehls einige Zeit braucht. Im Prinzip
könnte man ja auch den Ausdruck x / 8 mit einer Tabelle berechnen, doch in
diesem Fall lohnt sich der Aufwand ganz gewiß nicht, da ja schon der Zugriff
auf einen Tabelleneintrag zwei bis drei Befehle erfordert, während obiger
Ausdruck mit einem simplen LSR #3,DO zu berechnen ist. Eine Tabelle lohnt
sich also nur bei hinreichend komplizierten Berechnungen. Ziehen Sie im
Zweifelsfalle die Taktzyklentabelle in Anhang G zu Rate.

In diesem Buch ist das Prinzip sogar schon einmal angewandt worden: Bei dem
HBlI-Programm aus Kapitel 6. Dort wurde am Anfang des Programms eine
Tabelle sämtlicher Shifter-Farben aufgebaut. Theoretisch könnte man ja auch
aus jeder Zahl von 0 bis 511 die entsprechende Shifter-Darstellung (mit dazwi-
schengeschobenen Nullbits an Stellen 3 und 7) errechnen, sobald sie gebraucht
wird. Nur ist das leider relativ aufwendig, wie Sie in der Initialisierungsrouti-
ne sehen können, und daher in der begrenzten Zeit in einem HBI nicht durch-
zuführen. Deshalb mußte eine Tabelle her.

Als besonders nützlich erweist sich das Prinzip, wenn die Berechnung von
Werten sehr kompliziert ist, wie etwa bei der Sinusfunktion, die ja von vielen
Grafikprogrammen benötigt wird. Dort kann man eine Tabelle von Sinuswer-
ten mit nur vom Speicherplatz begrenzter Genauigkeit errechnen, was kompli-
zierte Grafikberechnungen sicherlich auf ein Vielfaches der ursprünglichen
Geschwindigkeit beschleunigt.

. Soviel zur Verwendung von Tabellen. Man kann das Prinzip aber noch mehr
erweitern, auf die "mundgerechte" Vorberechnung von beliebigen Objekten,
nicht nur von Funktionswerten. Kommen wir noch einmal auf das anfangs in
diesem Kapitel erwähnte Spiel mit bewegten Objekten zurück: Um dort Objek-
te an jedem beliebigen Punkt im Bildschirmspeicher kopieren zu können, sind
recht aufwendige Berechnungen erforderlich, denn die Bitmap-Daten der Ob-

354 ATARI ST — Programmieren in Maschinensprache

jekte müssen erst an die Pixeldarstellung des Bildschirmspeichers angepaßt
werden, das heißt, eventuell um eine bestimmte Anzahl von Bits verschoben
werden. Man kann dies nun wesentlich beschleunigen, wenn man die Daten für
jedes Objekt nicht nur einmal abspeichert, sondern sechzehnfach, wobei jedes
Abbild gegenüber seinem Vorgänger um ein Bit verschoben ist. Die Routine
zum Darstellen der Objekte braucht nur noch zu berechnen, welches Objekt
gerade benutzt werden muß, und kann dann die Daten direkt in den Bild-
schirmspeicher hineinkopieren. Einige professionell programmierte Spiele
machen von dieser Möglichkeit Gebrauch.

Eine weitere interessante Möglichkeit besteht darin, bestimmten Sonderfällen
auch eine besondere Behandlung zukommen zu lassen, wenn sie häufig genug
auftreten. Wenn etwa in einem Programm häufig vertikale oder horizontale
Linien auftreten, ist es sinnvoll, im Line-Algorithmus zu überprüfen, ob es
sich um eine solche Linie handelt. Ist das der Fall, dann wird zu einem speziali-
sierten Algorithmus für eine vertikale oder horizontale Linie verzweigt, der
sicher um ein Mehrfaches schneller sein kann als eine allgemeine Funktion
zum Linienziehen. Dies kann man auf folgendes Prinzip zurückführen: Ein
Algorithmus ist gewöhnlich um so langsamer, je flexibler er ist; ein speziali-
sierter Algorithmus kann wesentlich schneller sein.

Es gibt zweifellos noch eine Vielzahl von Möglichkeiten, wie man Abwandlun-
gen dieses Prinzips nutzen kann. Zum Schluß wünschen wir Ihnen viel Spaß
beim Experimentieren mit den Programmen dieses Buches.

355

Anhang A

Darstellung von Zahlen im Rechner

Ein Zahlensystem hat die Aufgabe, Zahlen auf eine möglichst überschaubare
Weise darzustellen. Jedermann ist es gewohnt, mit dem dezimalen Zahlensy-
stem umzugehen. Dabei ist unser Zehnersystem nur eines unter vielen; seine
Entstehung erklärt sich bekanntlich hauptsächlich daraus, daß ein Mensch an
jeder Hand fünf Finger hat. Aber es hätte nicht so kommen müssen, denn in
vielen Kulturen waren Zahlensysteme zu allen möglichen Basen verbreitet,
wobei sich besonders das Zwanziger- und Fünfersystem hervortaten. Selbst
heute begegnet man gelegentlich noch den Auswirkungen anderer Zahlensy-
steme. So etwa bei der Einteilung der Stunden in Minuten und Sekunden, die
auf dem Sechzigersystem der alten Ägypter beruht, oder dem französichen
Wort für achtzig, quatre-vingt, was wörtlich "vier mal zwanzig" bedeutet. Be-
trachten wir zunächst einmal, wie die Zahlendarstellung in unserem Dezimal-
system eigentlich funktioniert:

3277 =300+ 20+7
=3*100+2*10+7*1

=3*107+2*10!4+7* 10°

Der Wert, mit dem eine Ziffer in obigem Beispiel multipliziert wird, ist der
Stellenwert der Ziffer. Der Stellenwert der am weitesten rechts stehenden Zif-
fer ist 1; um so weiter eine Ziffer links steht, desto größer ist ihr Stellenwert.
In diesem Beispiel ist 100 der Stellenwert der Ziffer 3, 10 der der Ziffer 2,

und der Stellenwert der 7 ist 1. Im Dezimalsystem bilden die Potenzen der
Zahl 10 die Stellenwerte. Deshalb wird 10 als Basis des dezimalen Zahlensy-
stems bezeichnet.

Allerdings ist diese Methode, bei der jeder Ziffer eine Potenz der Basis als
Stellenwert zugewiesen wird, nicht die einzig mögliche. Die römischen Zahlen
beispielsweise zeigen, daß es auch anders geht. Wie wir noch sehen werden,
hat unsere Darstellung beträchtliche Vorteile, wenn es darum geht, mit Zahlen
zu rechnen. Wie gesagt, man kann genauso gut statt der 10 eine beliebige na-
türliche Zahl als Basis des Zahlensystems wählen. Da der Computer nur zwei
Ziffern (oder genauer gesagt, 2 Zustände eines Bits) darstellen kann, wählt
man praktischerweise das binäre Zahlensystem. Dort stehen nicht mehr Zif-
fern von 0 bis 9, sondern nur noch die Ziffern O und 1 zur Verfügung. Be-

356 ATARI ST - Programmieren in Maschinensprache

trachten wir einige natürliche Zahlen im Binärsystem und im Dezimalsystem:

binär dezimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8

Im Prinzip funktioniert das Zählen im Binärsystem genauso wie im Dezimal-
‚system: Will man eine Zahl um eins erhöhen, so wird zuerst die letzte Ziffer
erhöht. Wird dabei der Bereich der erlaubten Ziffern (Wert 0 bis Basis-1)
überschritten, dann wird diese Ziffer auf null gesetzt und dafür die nächste
Ziffer genau auf die gleiche Art um eins erhöht.

! .

Sehen wir uns nun an, wie man eine binäre Zahl in eine dezimale umrechnen
kann:

1010 = 1*23 + 0*22 + 1*21 4.0*20
= 1*8 + 0*4 + 1*2 + 0*2
= 10

Halt, da kann doch etwas nicht stimmen! Letztendlich steht dort

1010 =10

Natürlich ist hier gemeint, daß die binäre Zahl 1010 der dezimalen Zahl 10

entspricht. Wie Sie sehen, können Zahlen verschiedener Systeme leicht mitein-
ander verwechselt werden. In der mathematischen Schreibweise kann man
deshalb das Zahlensystem einer Ziffernfolge dadurch festlegen, daß man die
Basis rechts heranschreibt. Praktischerweise schreibt man die Basis immer als
Dezimalzahl. Korrekter wäre also

Aus diesem Beispiel kann man mit etwas Überlegung folgendermaßen verall-
gemeinern: Um so kleiner die Basis eines Zahlensystems ist, desto mehr Zif-
fern braucht man für die Darstellung einer bestimmten Zahl. Eine Folge die-
ser Tatsache ist, daß die binäre Schreibweise für größere Zahlen praktisch un-

Anhang A 357

lesbar ist. So entspricht etwa der dezimalen Zahl 1000 folgende Binärdarstel-
lung: Ä

Zweifellos ist die Binärdarstellung recht unpraktisch, wenn ein Mensch mit
den Zahlen umgehen soll. Andererseits hat das Dezimalsystem bei Computern
den Nachteil, daß die Umrechnung in Binärzahlen und zurück recht aufwendig
ist. Deshalb wurde das Hexadezimalsystem eingeführt, das Zahlensystem zur
Basis 16 (gelegentlich auch als Sedezimalsystem bezeichnet). Hier mußte man
sich etwas einfallen lassen, um 16 verschiedene Ziffern für die Werte O bis 15
zusammenzubekommen, da ja bekanntlich nur 10 Ziffern vorgesehen sind.
Man behilft sich einfach damit, daß die Ziffern O bis 9 ihre Werte behalten,
während für die Werte 10 bis 15 die ersten 6 Buchstaben des Alphabets, also A
bis F verwendet werden. Der Vorteil dieses Zahlensystems besteht darin, daß
einer Hexadezimalziffer genau 4 Bits entsprechen, wodurch die Umwandlung
binär nach hexadezimal oder umgekehrt zu einer Textersetzung vereinfacht
wird. Darüber hinaus paßt die hexadezimale Darstellung immer zur Wortbrei-
te eines Rechners, seien es 8, 16 oder 32 Bits.

Die folgende Tabelle zeigt die binären und dezimalen Entsprechungen der he-
xadezimalen Ziffern:

hexadezimal binär dezimal

0 0000 0
1 0001
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 1
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

Noch einmal zuriick zur Schreibweise der Zahlen anderer Systeme: Da die
mathematische Schreibweise auf Computern nun einmal schlecht zu verwirkli-

358 ATARI ST - Programmieren in Maschinensprache

chen ist, werden statt dessen bestimmte Sonderzeichen benutzt, die vor einer
Ziffernfolge das Zahlensystem kennzeichnen. So werden binäre Zahlen mei-
stens durch ein vorangestelltes Prozent-Zeichen (%) gekennzeichnet, hexade-
zimale durch das Dollar-Zeichen ($). Dezimale Zahlen werden nicht beson-
ders hervorgehoben. Natürlich gibt es beliebig viele andere Möglichkeiten der
Bezeichnung, die genannte ist jedoch am häufigsten anzutreffen. Will man nun
etwa die Hexadezimalzahl $BAFF in eine binäre Zahl umwandeln, so braucht
man nur die Binärcodes der einzelnen Ziffern nach obiger Liste hintereinan-
derzuschreiben:

$BAFF = %1011 1010 1111 1111

Die Umwandlung binär nach hexadezimal ist genauso einfach.

Es stellt auch kein großes Problem dar, eine hexadezimale oder binäre Zahlen-
darstellung in die dezimale umzurechnen. Das allgemeine Prinzip für eine be-
liebige Basis B ist folgendes:

— Jede Ziffer bekommt als Stellenwert B hoch s zugewiesen, wobei s die Stelle
der Ziffer von rechts aus gezählt ist. Die rechte Ziffer erhält die Stelle 0, die
davorstehende 1 und so weiter.

Nun wird jede Ziffer mit ihrem Stellenwert multipliziert, und alle sich so er-
gebenden Werte werden addiert. Das Ergebnis ist die dezimale Darstellung
der Zahl. |

Bei der Umwandlung von $BAFF sieht das etwa so aus:

$B * 162+ $A * 162 + $F * 16! + $F * 16°
11*4096 + 10*256 + 15*16 + 15*1
47871

$BAFF

Die Umwandlung einer dezimalen Zahl in ein anderes Zahlensystem ist schon
schwieriger. Eigentlich wiederspricht das der Tatsache, daß alle Zahlensyste-
me gleichwertig sind, denn demzufolge sollte es keinen Unterschied machen,
ob man von einem Zahlensystem A in ein System B konvertiert oder umge-
kehrt. Tatsächlich besteht der Unterschied nur in den menschlichen Gewohn-
heiten. Der eben angegebene Algorithmus erscheint nur deshalb recht einfach,
da Berechnungen nur im Dezimalsystem ausgeführt werden müssen, was nun
einmal jedem geläufig ist. Er ließe sich sinngemäß genauso bei der Umwand-
lung vom dezimalen in ein fremdes System verwenden, nur würde das verlan-

Anhang A | 359

gen, daß Berechnungen im fremden Zahlensystem durchgeführt werden — was
schon deshalb schwierig ist, da man das Einmaleins nur in der dezimalen
Schreibweise beherrscht. Deshalb wird hierfür eine etwas andere Methode
verwendet:

— Zunächst wird die zu konvertierende Dezimalzahl durch die Basis des neuen

Zahlensystems ganzzahlig geteilt.

— Der entstehende Rest ergibt die letzte Ziffer der Zahl im neuen Zahlensy-
stem.

— Auf das Ergebnis der Division wird nun das gleiche Verfahren angewandt.
Als nächstes ergibt sich die Ziffer, die links von der eben erzeugten liegt.
Das Verfahren wird solange wiederholt, bis das Ergebnis der Division null
ist.

Gehen wir das einmal an einem Beispiel durch: Wir wollen die Zahl 44 in eine
Binärzahl umwandeln:

4 :2=22 Res 0

2:2 = 11 Res 0
11:2 = 5. Rest 1
5:2 = 2. Rest 1
2:2 = 1 Rest O
1:1= 0 Res]

Das Ergebnis ist also %101100

Um zu zeigen, daß das Verfahren auch mit anderen Systemen als dem Binärsy-
stem funktioniert, überprüfen wir einmal das Ergebnis der oben durchgeführ-
ten Umwandlung von $BAFF in 47871:

47871 :16 = 2991 Rest 15 = $F
2991 :16 = 186 Rest 15 = $F
186 :16= 11 Rest 10 =$A

11 :16 = O Rest 11 = $B

Das Ergebnis ist tatsächlich 47871 = $BAFF

Konzentrieren wir uns nun ganz auf das Binärsystem und die Operationen, die
man darin ausführen kann.

360 ATARI ST — Programmieren in Maschinensprache

Die binäre Addition

Die binäre Addition wird genauso durchgeführt wie die schriftliche Addition
unter Beachtung der Überträge. Für die Addition einer Stelle gelten dabei fol-
gende Regeln:

0 +0 ergibt 0

0O+1 ergibt 1
1+0 ergibt 1
1+1 ergibt O und 1 Übertrag
1 +1+1 ergibt 1 und 1 Übertrag

Als ein Beispiel mag folgende Addition dienen:

1101101110
+ 0011000111
1 0000110101

Die Subtraktion

Auch die Subtraktion von Binärzahlen entspricht dem üblichen Vorgehen mit
Bleistift und Papier. Wenn die abzuziehende Ziffer größer ist als jene, von der
sie abgezogen werden soll, so wird zum tatsächlichen negativen Ergebnis die
Basis addiert und dafür eins mehr von der nächsten Stelle abgezogen (ge-
borgt). Folgende Regeln sind gültig:

0-0 ergibt 0

0-1 ergibt 1 und 1 geborgt
1-0 ergibt 1
1-1 ergibt O0
0- 1-1 ergibt O und 1 geborgt
1- 1-1 ergibt 1 und 1 geborgt

Hierzu wieder ein Beispiel:

1101101110
— 0011000111
1010100111

Anhang A 361

Die Darstellung von negativen Zahlen

Es gibt mehrere Möglichkeiten, negative Zahlen darzustellen. Hier soll aller-
dings nur die am häufigsten verwendete behandelt werden: die sogenannte
Zweierkomplementdarstellung. Normalerweise lassen sich mit einem Wort
von n Bits genau 2" verschiedene Zahlen darstellen, nämlich von 0 bis 2"-1, Bei
8 Bits beispielsweise ergibt sich ein Bereich von 0 bis 255, was 28 = 256 dar-
stellbaren Zahlen entspricht. Wenn dieser Bereich — etwa durch eine Addition
— überschritten wird, reichen die verfügbaren Stellen nicht mehr aus, um die
Zahl korrekt darzustellen: Bei 8 Bit ist das Ergebnis nur noch modulo 256
richtig. Die Grundidee der Zweierkomplementdarstellung ist nun folgende:
Man zieht die Grenze nicht mehr bei 0 bzw. 2", sondern betrachtet die 0 als
Mitte des darstellbaren Zahlenbereichs. Die "Uberlaufsgrenze" wird bei der
positiven Zahl 2"! gezogen, bei 8 Bit also bei 128; alle Zahlen, die kleiner
sind, werden als positiv betrachtet, alle die größer oder gleich sind, als nega-
tiv. Um -a darzustellen, benutzt man das Bitmuster der positiven Zahl 2” -a.
In unserem Beispiel hieße das, daß man Zahlen von -128 bis +127 darstellen
könnte, wobei der Bereich -128 bis —1 bei der Betrachtung als positive Zahlen
in dieser Reihenfolge +128 bis 255 entspricht, während 0 bis 127 sich selbst
entspricht.

Die Operation 2”-a wird als Komplementbildung bezeichnet. Bei binären Zah-
len ist die Komplementbildung auch ohne eine wirkliche Subtraktion auszu-
führen. Und so geht sie vor sich:

— Jedes Bit der zu komplementierenden Zahl wird invertiert; d.h. jede O0 wird
in eine 1 verwandelt und umgekehrt.

— Zum Ergebnis der Invertierung wird eins addiert.

Probieren wir das einmal mit der binären Darstellung von 36 in 8 Bit aus:

36= % 00100100
invertieren 11011011

1 addieren 11011100

Der besondere Vorteil der Zweierkomplementdarstellung ist nun der, daß die
Addition genauso vorgenommen werden kann, als wären beide Zahlen positiv.
Der einzige Unterschied ist der, daß bei Zweierkomplementzahlen ein Über-
trag auftreten kann, der nicht die gleiche Bedeutung hat wie ein Übertrag bei
positiven Zahlen. Wenn das stimmt, müßte also die Summe einer Zahl und ih-
res Komplements immer 0 ergeben. Zurück zu unserem Beispiel:

362 ATARI ST — Programmieren in Maschinensprache

00100100 36
+ 11011100 +C 36)
(1) 00000000 0

Nehmen wir noch einmal zwei andere Zahlen:

00011110 30
+ 11111011 +65)
(1)00011001 25

Dieses Beispiel zeigt auch, daß es keinen Unterschied macht, ob man eine
Zahl B von einer Zahl A abzieht oder das Komplement von B zu A addiert.
Der MC68000 nimmt Subtraktionen nach diesem Prinzip vor, nicht nach der
früher besprochenen direkten Subtraktionsmethode. Tatsächlich braucht man
sich also bei Subtraktionen und Additionen überhaupt nicht darum zu küm-
mern, ob man mit positiven oder Zweierkomplementzahlen umgeht; es ist nur
eine Frage der Interpretation.

Bei der Multiplikation und Division ist das leider nicht so unproblematisch:
Dort müssen ganz verschiedene Algorithmen benutzt werden, je nachdem, ob
die Zahlen als vorzeichenlos oder vorzeichenbehaftet betrachtet werden. Übri-
gens kann man das Vorzeichen einer Zweierkomplementzahl leicht erkennen:
Ist das höchstwertigste Bit gesetzt, dann ist die Zahl negativ, andernfalls ist sie
positiv.

Da der MC68000 Befehle zum Umgang mit BCD-Zahlen bietet, soll hier kurz
darauf eingegangen werden.

BCD steht fiir "Binary Coded Decimal", also binär codierte Dezimalzahl. Bei
einer BCD-Zahl wird eine Folge von Dezimalziffern abgespeichert, bei der je-
de Ziffer vier Bits belegt. Dabei wird der O die Bitfolge 0000 zugeordnet, der
1 0001, und so fort bis zur 9, die durch 1001 dargestellt wird. Die Bitfolgen
1010 bis 1111 werden nicht benutzt; einige von ihnen werden gelegentlich zur
Darstellung eines Vorzeichens verwendet. Ein Beispiel:

4321 = %0100 0011 0010 0001

Der MC68000 bietet nun Möglichkeiten, BCD-Zahlen zu addieren, zu subtra-
hieren und zu negieren. Wann ist nun die Verwendung einer BCD-Zahl ange-
bracht?

BCD-Zahlen haben den Vorteil, daß die Umwandlung vom und ins Dezimalsy-
stem besonders einfach ist. Außerdem garantieren sie im Gegensatz zu binären

Anhang A 363

Zahlen Genauigkeit bis auf die letzte Dezimalstelle, da keine Umwandlungs-
fehler auftreten können. Aus diesen Gründen werden BCD-Zahlen gelegent-
lich für kaufmännische Anwendungen eingesetzt, wenn auch nicht gerade auf
dem ATARISST. Nachteilig ist, daß das Rechnen mit BCD-Zahlen sehr auf-
wendig sein kann. Addition und Subtraktion stellen zumindest auf dem
MC68000 kein Problem dar, da sie schon als Maschinenbefehle implementiert
sind. Multiplikaton, Division und noch kompliziertere Operationen verlangen
hingegen einen viel größeren Programmieraufwand als die gleichen Operati-
onen mit Binärzahlen und brauchen dementsprechend auch ein Vielfaches an
Rechenzeit. Bei großen Zahlenmengen macht es sich auch bemerkbar, daß
BCD-Zahlen mehr Speicherplatz verbrauchen als Binärzahlen mit gleicher
Genauigkeit. Deshalb spielen BCD-Zahlen eine sehr untergeordnete Rolle ge-
genüber den üblichen Binärzahlen.

365

Anhang B

Unterschiede verschiedener Assembler

Ziel dieses Anhangs ist es in erster Linie, Ihnen zu ermöglichen, die Program-
me aus diesem Buch auch mit anderen Assemblern als dem aus dem ATARI-
Entwicklungspaket zu verwenden. Nebenbei gibt es noch den einen oder ande-
ren nützlichen Tip zum Umgang mit den angesprochenen Assemblern.

Bekanntlich führt es meistens zu Problemen, wenn ein Programm für einen
Assembler an einen anderen angepaßt werden soll. Oftmals handelt es sich nur
um kleine Details wie etwa die Verwendung von Semikolons statt Sternchen
zur Einleitung einer Bemerkung, doch ist ihre Beseitigung oftmals zeitrau-
bend. Damit Sie sich mit diesen Problemen so wenig wie möglich herum-
ärgern müssen, liegen die angepaßten Quellcodes für die gängigsten Assem-
bler auf einer beim SYBEX-Verlag erhältlichen Programmdiskette vor. Lei-
der führten einige Programme bei manchen Assemblern zu grundsätzlichen
Problemen, so daß diese oftmals aus ungeklärten Gründen überhaupt nicht an-
gepaßt werden konnten. Für diese Fälle befinden sich im Ordner "PRO-
GRAMS" die assemblierten ausführbaren Programme, die mit dem ATARI-
Assembler AS68 erzeugt wurden.

Die eine oder andere Schwäche der Assembler, die hier angesprochen wird,
kann natürlich in neueren Versionen schon längst behoben sein. Deshalb wird
immer die Versionsnummer der getesteten Programme angegeben. Bei Pro-
grammen, die keine Versionsnummer vorzeigen, ist die Länge in Bytes ange-
geben. Man kann davon ausgehen, daß spätere Versionen meistens länger sind.

Der Metacomco-Assembler (Version 10.203)

Um die Programme auf der Diskette mit dem Metacomco-Assembler zu ver-
wenden, brauchen Sie nur sämtliche "xxxxxxxx.S"-Dateien in "xxxxxxxx.
ASM" umzunennen. Weitere Anpassungen sind nicht notwendig.

Beim Metacomco-Assembler handelt es sich um einen Assembler der konven-
tionellen Sorte. Er besteht aus unabhängigem Editor, eigentlichem Assembler
und Linker. Die Syntax entspricht praktisch vollständig der des Assemblers
aus dem ATARI-Entwicklungspaket, der im folgenden als ATARI-Assembler
bezeichnet wird; es wurden allerdings noch einige Erweiterungen aufgenom-

366 | ATARI ST - Programmieren in Maschinensprache

men, insbesondere Makros. Einige Besonderheiten gibt es trotzdem:

— Die etwas merkwürdige Art des ATARI-Assemblers, mit Zeichenkonstan-
ten umzugehen, wurde nicht kopiert. Nehmen wir folgende Anweisung:

MOVE .W #'A',DO

Der ATARI-Assembler macht daraus folgendes:

MOVE .W #$4100,D0

($41 ist der ASCO-Wert des Zeichens A)

Der Metacomco-Assembler verhält sich hingegen so, wie man es erwarten
würde und erzeugt folgenden Code:

MOVE .W #50041,DO

Bei den Programmen dieses Buches wurde diese Operandenart allerdings
nicht benutzt.

— Die Standard-Endung für Assembler-Quellcode ist ASM. Leider ist der Me-
tacomco-Assembler in dieser Beziehung genauso starrköpfig wie der
ATARI-Assembler. Will man ihm Dateien mit anderen Endungen unterju-
beln, dann ist das Resultat eine ruinierte Quellcodedatei und eine mitleidlose
Fehlermeldung. Also nur ASM-Dateien verwenden!

— Dieser Assembler beachtet bei Symbolnamen bis zu 32 Zeichen, nicht nur
die ersten 8. Natürlich führt das bei der Verwendung von mit dem ATARI-
Assembler entwickelten Programmen nicht zu Problemen; man sollte es
nur beachten, wenn man Programme auf diesem Assembler schreibt und sie
irgendwann auf einen anderen Assembler übertragen will.

— Der Metacomco-Assember kennt die Direktive EVEN nicht; statt dessen ga-

rantiert er, daß nach Byte-Daten in jedem Fal auf die nächste gerade Adres-
se gerundet wird, sofern die folgenden Daten nicht ebenfalls Byte-Daten
sind. Lassen Sie die Direktive EVEN also einfach weg. >

— Ungewöhnlich ist die Behandlung des BSS-Segments: Der Metacomco-As-
sembler speichert es zusammen mit den restlichen Daten auf der Diskette ab.
Auch vom Linker wird das BSS nicht aus der ausfiihrbaren Datei getilgt,
weshalb die Programme etwas länger werden, als sie eigentlich sein sollten.
Insbesondere kann man keine riesigen Felder von mehreren 100K im BSS
anlegen, da sonst das Programm auf der Diskette auch entsprechend vergrö-

Anhang B 367

Bert wird, sofern der Platz überhaupt zum Assemblieren ausreicht. Arbei-
ten Sie statt dessen mit dem MALLOC-Mechanismus.

Die Anleitung bietet zwar im Prinzip genügend Informationen, scheint aber
für einen etwas anderen Assembler geschrieben worden zu sein. Der Haupt-
unterschied ist, daß der Assembler nicht wie angegeben Objekt-Dateien produ-
ziert, die von LINK68 weiterverarbeitet werden können, sondern solche für
den GST- Linker. Leider funktioniert die Assembler-Option OPT S nicht - sie
soll normalerweise in der Objektdatei eine vollständige Symboltabelle erzeu-
gen, wird jedoch ignoriert. Ein symbolischer Debugger bringt also mit diesem
Assembler nicht viel.

Der Metacomco-Assembler verwendet übrigens den Linker von GST. Daraus
ergibt sich, daß die vom Assembler erzeugten Objektdateien (Endung BIN)
zusammen mit sämtlichen von GST angebotenen Compilersprachen problem-
los genutzt werden können, etwa GST C. Außerdem kann Code mit Lattice C
(auch von Metacomco) zusammengebunden werden.

Für die RAM-Disk werden folgende Dateien benötigt:

ASSEM.TTP der eigentliche Assembler
LINK.TTP der GST-Linker
MENU+PRG die Benutzeroberfläche
MENU.INF editierbare Einstellung von MENU+

Dazu kommt noch ein beliebiger Editor.

Die Programme aus diesem Buch brauchen mit keiner anderen Datei zusam-
mengebunden zu werden.

Der GST-Assembler (die Angaben gelten fiir Version A 246 V 040)

Auch der GST-Assembler besteht aus den drei Teilen Editor, Assembler und
Linker. Leider weist seine Syntax besonders bei den Assembler-Direktiven
eine ganze Reihe von Unterschieden zum Motorola-Standard und zur Syntax
des ATARI-Assemblers auf, obwohl er ansonsten ein leistungsfahiger Makro-
assembler ist. Auf der im SYBEX-Verlag erhältlichen Diskette zum Buch be-
finden sich im Ordner GSTASM die Programme dieses Buches in an den GST-
Assembler angepaßter Syntax. Leider werden die Programme COLORS aus
Abschnitt 6.4 und RAMDISK aus 6.6 vom GST-Assembler nicht korrekt über-
setzt und stiirzen ab; wenn Sie diese beiden Programme laufen sehen wollen,
können Sie jedoch die mit dem ATARI-Assembler erzeugten ausführbaren

38 7 ATARI ST — Programmieren in Maschinensprache

Programme COLORS.PRG und RAMDISK.PRG aufrufen. Hier nun die Un-
terschiede des GST-Assemblers zum ATARI-Assembler:

— Der GST-Assembler kennt die Direktiven TEXT, DATA und BSS nicht.
Statt dessen benutzt man die SECTION-Direktive folgendermaßen:

SECTION TEXT
SECTION DATA
SECTION BSS

Der GST-Assembler verlangt auch, daß vor dem ersten Befehl die Direktive
SECTION TEXT benutzt wird; er steht also nicht standardmäßig am An-
fang im TEXT-Section-Modus.

— Zeichenketten werden nicht in Anführungszeichen, sondern in Hochkom-
mas eingeschlossen. Also statt

DS.B "Hallo Welt",O

heißt es beim GST-Assembler

 DS.B 'Hallo Welt',O

— Wird der Assembler ohne spezielle Optionen aufgerufen, so erzeugt er beim
 Assemblieren der Programme dieses Buches Massen von Warnungen. Dabei
handelt es sich eigentlich nur um zwei Arten von Warnungen:

x*x*x*x WARNING 51 -- size missing, W assumed

Das heißt nur, daß der Assembler standardmäßig Wortbreite angenommen
hat, da hinter dem Mnemonik nichts weiter angegeben war. Eigentlich sollte
ein Assembler sich darüber nicht weiter aufregen. Wenn die vielen War-
nungen Sie stören, schreiben Sie die Endung ".W" hinter alle arithmetischen
und logischen Befehle, die keine Endung haben.

*xx*x*k* WARNING 5F -- run-time-relocation is required for this expression

Nur der dezente Hinweis, daß eine Speicherstelle in die Relozierungsliste
aufgenommen wurde. Zum Glück verhindern selbst Hunderte von Warnun-
gen nicht, daß das Programm assembliert wird. Also kümmern Sie sich am
besten nicht weiter um diese Marotte des GST-Assemblers.

— Der GST-Assembler hat etwas gegen Symbolnamen, die mit einem Unter-
strich beginnen. Da solche Namen in einigen der Programme vorkommen,
ersetzen Sie sie durch andere.

Anhang B 369

— Im Gegensatz zu anderen Assemblern haben die eckigen Klammern [] auch
innerhalb von Zeichenketten für den Assembler eine besondere Bedeutung
im Zusammenhang mit Makros. Dies sollte man bei der Definition von Zei-
chenketten beachten.

Der GST-Assembler arbeitet mit dem GST-Linker (Version R132 V039) zu-
sammen. Wie schon beim Metacomco-Assembler erwähnt, hat dieser Linker
die Eigenheit, das BSS-Segment mit dem ausführbaren Programm zusammen
abzuspeichern.

Die vom GST-Assembler erzeugten BIN-Dateien können in sämtlichen Com-
pilersprachen von GST, in Lattice C und dem Metacomco-Assembler einge-
bunden werden. Wenn Sie den GST-Assembler in einer RAM-Disk benutzen
wollen, werden folgende Dateien gebraucht:

GSTC.LNK editierbare Anweisung fiir den Linker
LINKASM.OVR gehört zu Assembler + Linker
ASM.PRG der eigentliche Assembler
GSTASM.PRG die Benutzeroberfläche
LINK.PRG der GST-Linker
GSTASM.RSC gehört zu GSTASM.PRG

Dazu kommt natürlich noch ein beliebiger Editor, der den Namen EDIT.PRG
haben sollte, damit er von der Benutzeroberfläche angesprochen werden kann.
Die Programme dieses Buches brauchen auch beim GST-Assembler mit nichts
anderem zusammengebunden zu werden.

Der Seka-Assembler (Version 1.1)

Der Seka-Assembler ist ein integriertes Assembler-Editor-Debugger-Paket.
Zu bemängeln ist nur, daß die Direktiven des Assemblers nicht so reichlich
wie bei den anderen Assemblern angeboten werden; der eingebaute Editor ist
ein Zeileneditor nach alter Machart und für mehr als kleine Änderungen äu-
Berst unhandlich. Ich empfehle deshalb, zum Schreiben des Quelltextes einen
unabhängigen Editor zu verwenden und nur zum Assemblieren und Austesten
den Seka-Assembler zu laden. Praktisch ist dabei, daß der Seka-Assembler äu-
Berst schnell assembliert. Als ein Nachteil muß es allerdings aufgefaßt werden,
daß der Seka-Assembler über keinen Linker verfügt.

Es erwies sich als unpraktisch, daß die Programme aus diesem Buch mit der
GEMDOS-Funktion TERM beendet werden, weshalb sich nach einem Testlauf
jedesmal der Seka-Assembler verabschiedet. Deshalb ist in jeder Quellcodeda-
tei für den Seka-Assembler auf der beim SYBEX-Verlag erhältlichen
Programmdiskette zu diesem Buch das Programmende mit dem Label "bp:"

370 | ATARI ST — Programmieren in Maschinensprache

gekennzeichnet. Wenn Sie beim Starten des Programms 'bp' als Breakpoint
angeben, erhält der Assembler nach dem Ablauf wieder die Kontrolle.

In der Syntax weist der Seka-Assembler eine ganze Reihe von Unterschieden
zum ATARI-Assembler auf:

— Labels müssen immer in Spalte Null beginnen und mit einem Doppelpunkt
abgeschlossen werden. Bemerkungen dürfen nur mit einem Semikolon (5)
eingeleitet werden; das gilt auch dann, wenn es sich um Bemerkungen nach
einem Assemblerbefehl handelt. Der Stern (*) wird nicht anerkannt.

— Der Assembler kennt die Direktiven TEXT, DATA und BSS nicht, da er
normalerweise direkt in den Speicher assembliert.

— Der Seka-Assembler verarbeitet keine Abwandlungen wie ADDA oder
CMPI. Benutzen Sie statt dessen die Grundform ADD bzw. CMP. Die
Quick-Varianten werden allerdings erkannt.

— Statt EQU wird für das Zuweisen eines Wertes an ein Symbol das Gleich-
heitszeichen verwendet:

SYMBOL = 42

— Die Direktive DS (define Storage) muß durch BLK (Block) ersetzt werden.
Die Anhängsel ".B", ".W" und ".L" werden allerdings genauso verwendet.

— Auch dieser Assembler verabscheut Symbolnamen, die mit einem Unter-
strich (_) beginnen.

Die an die Syntax des Seka-Assemblers angepaßten Programme befinden sich
auf der beiliegenden Diskette im Ordner "SEKA". Aus undurchsichtigen
Gründen verarbeitet dieser Assembler die Programme zum Linienziehen für
hohe und niedrige Auflösung (LINEHLS und LINELO.S) nicht korrekt; eben-

so das GEM-Beispiel GEM.S. Hier bleibt Ihnen nur, direkt die mit dem

ATARI-Assembler erzeugten ausführbaren Programme LINESL.TOS,
LINESH.TOS und GEM.PRG zu starten. Überhaupt benahm sich die mir vor-
liegende Version etwas merkwürdig; es kam öfter zu unmotivierten Abstür-
zen.

Die Verwendung eines separaten Editors kann die Arbeit mit dem SEKA-As-
sembler sehr erleichtern. Für den Fall, daß Sie das anpassungsfähige MENU+
von Metacomco besitzen, liegt im Ordner SEKA die Datei MENU.INF bei, die
für den SEKA-Assembler und den Editor EDIT.TTP gedacht ist. Wenn Sie
einen anderen Editor verwenden, so ändern sie den Editoraufruf in
MENU.INF entsprechend.

Anhang B 371

Data Becker Profimat ST (Lange 126674 Bytes)

Beim Profimat handelt es sich um ein integriertes Paket aus Editor, Assembler
und Debugger mit durchgehend sehr anwenderfreundlicher GEM-Benutzer-
oberfläche. Leider gilt auch für den Profimat, daß kein linkbarer Code er-
zeugt wird. Mit den Direktiven ILABEL/IBYTES ist zwar prinzipiell ein Ein-
fügen von fertig assemblierten Programmen möglich, doch ist die Benutzung
unhandlich, und die Einschränkung auf PC-relativen Code macht diese Mög-
lichkeit oft unbrauchbar. Wenden wir uns zunächst einmal dem erzeugten
Code zu: Wenn Sie die Programme aus diesem Buch verwenden wollen, soll-
ten Sie die Option "PC-relativ" (im Assembler-Menue) abschalten und "relo-
zierbar" einschalten. Damit verhält sich der Profimat genauso wie etwa der
ATARI-Assembler: Es werden nicht automatisch PC-relative Adressierungs-
arten erzeugt, aber die üblichen Relozierungs-Daten angelegt. Wollen sie die
Option "PC-relativ" verwenden, so müssen Sie sich bei den Adressierungsar-
ten etwas einschränken, denn bei den meisten Befehlen kann nur der Quellope-
rand PC-relativ adressiert werden. Natürlich kann man sich beim Zieloperan-
den mit LEA behelfen, aber das Programm wird dadurch ineffizienter.

Bei der Anpassung des Quellcodes aus diesem Buch gibt es folgendes zu beach-
ten: |

— Der Profimat akzeptiert keine Sternchen als Einleitung einer Bemerkung.
Statt dessen muß das Semikolon verwendet werden, und zwar nicht nur am
Anfang von Bemerkungszeilen, sondern auch dann, wenn einem Assembler-
befehl eine Bemerkung folgt.

— Der Profimat unterscheidet im Gegensatz zu allen anderen Assemblern zwi-
schen Symbolen und Konstanten. Einem Symbol kann man jeden beliebigen
Text zuweisen; An der Stelle der Verwendung dieses Symbols wird dann
dieser Text eingesetzt — was übrigens auch die erwähnte Direktive REG des
ATARI-Assemblers ersetzt. Eine Konstante kann hingegen nur einen nume-
rischen Wert erhalten. Eine Konstante ist also genau das, was bei anderen
Assemblern als Symbol bezeichnet wird. Symbole werden mit der Direktive
EQU initialisiert, Konstanten mit dem Gleichheitszeichen (=). Da nun im
Quellcode für den ATARI-Assembler immer EQU verwendet wird, werden
somit nur Symbole verwendet. Natürlich funktioniert das auch, nur muß
der Assembler durch die textuelle Ersetzung unnötigen Aufwand treiben,
was die Assemblierzeit erhöht. Deshalb sollte "EQU" durch "=" ersetzt
werden.

— Nach der Reservierung von Platz für Byte-Daten muß unbedingt der Pro-
grammzähler begradigt werden, da dies nicht automatisch geschieht. Dazu

372 | ATARI ST — Programmieren in Maschinensprache

dient nicht EVEN wie beim ATARI-Assembler, sondern die Direktive
ALIGN.

— Der Profimat akzeptiert keine Labels oder Makro-Namen, die reservierten
Namen wie Opcodes oder Direktiven gleichen (etwa INPUT, START).
Benennen Sie solche Labels um.

— Die mit Vorliebe benutzte Endung für Quellcode ist .Q (für Quellcode,
schließlich kommt der Profimat aus Deutschland). Andere Endungen wer-
den aber beim Laden und Speichern auch akzeptiert.

— Der Makro-Mechanismus funktioniert etwas anders als etwa beim Meta-

comco-Assembler. Hier kann ich nur auf das sehr ausführliche Handbuch

verweisen.

Assembler von Eckhard Kruse (Public Domain Software)

Wenn Sie dem Buch ausgerechnet mit diesem Assembler folgen wollen, kann
ich Ihnen nur einen Rat geben: Lassen Sie die Finger davon. Die Assembler-
programme dieses Buches an diesen Assembler anpassen zu wollen, ist so gut
wie aussichtslos. Die Probleme fangen schon damit an, daß der Assembler kei-
ne Zuweisung von Werten an Symbole zuläßt (Labels hat er immerhin). Au-
Berdem fehlt die eine oder andere nützliche Direktive.

Omicron IDEAL

IDEAL steht für "Integrierter Debugger-Editor-Assembler-Linker", also
handelt es sich auch hier um ein einziges Programm, das alle Funktionen ver-
einigt. Leider ist der Assembler äußerst dürftig; viele wichtige Direktiven feh-
len, und nicht einmal Zuweisungen von Werten an Symbole werden zugelas-
sen. Deshalb scheidet der IDEAL-Assembler für die Benutzung mit den Pro-
grammen aus diesem Buch aus. Empfehlenswert ist hingegen der integrierte
Debugger, der viele nützliche Funktionen zur Fehlersuche bietet.

373

Anhang C

Tips für Umsteiger

Dieser Anhang richtet sich speziell an jene, die mit der Maschinensprache ei-
nes 8-Bit-Prozessors wie 6502/6510 oder der 8086-Serie vertraut sind, aber
jetzt zum MC68000 "aufsteigen". Die folgenden kleinen Tips sollen helfen,
Fehler zu vermeiden, die dadurch entstehen, daß man — vielleicht unbewußt —
Konzepte vom einen zum anderen Prozessor übertragen will. Zunächst die
Unterschiede zum 6502/6510:

— Worte und Langworte dürfen auf dem MC68000 nur an geraden Adressen
angesprochen werden, Bytes an jeder beliebigen Adresse.

— Wird ein Byte oder ein Wort in einem Datenregister manipuliert, so bleiben
die nicht zum Byte bzw. Wort gehörenden Bits unverändert.

— Die Adreßregister arbeiten nur mit Wort- oder Langwortoperationen zu-
sammen

— Wird ein Wort in ein Adreßregister geschrieben oder mit dessen Inhalt ver-
knüpft, so wird das Wort vorher auf Langwortbreite erweitert.

— Der Stack wächst auf dem MC68000 nach unten, nicht nach oben. Der

Stackpointer zeigt immer auf das unterste beschriebene Byte des Stacks.

— Denken Sie immer an den Unterschied zwischen User- und Supervisormo-
dus. Im Usermodus diirfen nicht alle Befehle ausgefiihrt werden, und es
diirfen nicht alle Speicherbereiche benutzt werden. Jeder der Modi hat sei-
nen eigenen Stackpointer.

— Das Statusregister wird in Systembyte und Userbyte unterteilt. Im Usermo-
dus darf nur auf das Userbyte zugegriffen werden, in dem die Flags stehen.
Es gibt keine Befehle, um Flags direkt einzeln zu setzen oder zu löschen;
statt dessen wird MOVE to CCR, ANDI to CCR oder ORI to CCR verwen-
det.

— Adressen sind im Normalfall 32 Bit lang.

— Den 6502-Befehlen ROL und ROR entsprechen nicht die gleichnamigen
68000-Befehle, sondern ROXL und ROXR.

374 ATARI ST — Programmieren in Maschinensprache

Einige dieser Tips gelten ebenfalls fiir Umsteiger von der Intel-8086-Serie.
Hinzu kommt noch folgendes:

— Bei den Assemblern des 8086/88 und der Prozessoren der 80xxx-Serie wer-
den Quelle und Ziel in umgekehrter Reihenfolge angegeben wie beim
68000, also zuerst das Ziel, dann die Quelle.

— Beachten Sie, daß bei den Intel-Prozessoren genau wie beim 6502 immer
zuerst niederwertige, dann höherwertige Einheiten (Bytes oder Worte) im
Speicher liegen. Beim 68000 ist es umgekehrt.

— Die gesamte aufwendige Speicherverwaltung der Intel-Prozessoren fällt auf
dem 68000 weg. Es gibt keine Segmente, sondern absolute Adressen.

375

Anhang D

Tips zum Einbinden von Assembler
in höhere Programmiersprachen

Nur selten werden umfangreiche Programme auf einem System wie dem
ATARIST noch vollständig in Assembler implementiert, denn ein schneller
Prozessor kann so mancher müden Programmiersprache Beine machen, und
mit dem Speicherplatz braucht man auch nicht zu sparen. So entschließt man
sich oft zu einem Kompromiß: Nur die Prozeduren, bei denen es wirklich
nicht anders geht oder die viel Rechenzeit erfordern, werden in Assembler
programmiert. Nun ist eine gute Verbindung gefragt, denn natürlich müssen
die Assemblerroutinen mit dem restlichen Programm Informationen austau-
schen können. Wie das gemacht wird, zeigt Ihnen dieser Anhang.

Wenn Sie Ihre Assemblerprogramme zusammen mit einer Compilersprache
verwenden wollen, gibt es zunächst einmal zwei Möglichkeiten: Assembler
und Compiler verwenden das gleiche Format für ihren Objektcode, oder eben
nicht. Im ersten Fall können Sie den vom Compiler erzeugten Code einfach
mit dem Assemblercode zusammenbinden und erhalten so eine einzige aus-
führbare Datei. Wenn Assembler und Compiler nicht den gleichen Linker ver-
wenden oder Sie gar Assemblercode in einer Interpretersprache aufrufen wol-
len, ist das nicht ganz so einfach, aber auch machbar. Nun stellt sich für Sie die
Frage, welche Teile dieses Anhangs für Sie überhaupt interessant sind. Nun,
wenn Sie auf Zusammenarbeit mit C aus sind, sollten Sie in jedem Fall den Ab-
schnitt über Digital Research C lesen, egal, welchen Compiler Sie verwenden.
Das gleiche gilt für Pascal-Anhänger, da die Prozedurkonventionen von C und
Pascal sich weitgehend gleichen. Sogar für die Anwender von GFA-BASIC ist
der Abschnitt interessant, da dieser BASIC-Interpreter die C-Konvention be-
herrscht. Am Ende dieses Anhangs finden Sie Tips für den Fall, daß Ihre Pro-
grammiersprache hier nicht aufgeführt sein sollte.

1. Verwendung eines gemeinsamen Linkers

Digital Research C aus dem ATARI-Entwicklungspaket

Dieser C-Compiler verwendet nicht nur den gleichen Linker LINK68 wie der
ATARI-Assembler, sondern auch den ATARI-Assembler selbst, denn der C-

376 ATARI ST — Programmieren in Maschinensprache

Compiler erzeugt aus dem C-Quellcode zunächst reinen mnemonischen
Assemblercode, der dann von AS68 assembliert werden kann. Wer will und
genügend Zeit hat, kann vorher etwas am Assemblercode ändern, etwa um das
fertige Programm zu beschleunigen. Nehmen wir nun an, man wollte von C
aus auf die Line-A-Routinen zugreifen. Man kommt nicht darum herum, den
eigentlichen Line-A-Aufruf in Assembler zu formulieren, da es keine Mög-
lichkeit gibt, den Compiler dazu zu bringen, die notwendigen Befehlscodes
$A00x zu erzeugen. In unserem Beispiel sollen der Einfachheit halber nur
zwei Aufrufe implementiert werden: "line" und "put pixel", im Beispiel "plot"
genannt (siehe Dokumentation der Line-A-Aufrufe im Abschnitt 4.5). Damit
die Aufrufe von C aus einfach einzusetzen sind, sollen die Assemblerroutinen
genau wie C-Prozeduren aufgerufen werden, speziell in der Form

line (x1,y1,x2,y2)

und

plot (x, y, farbe)

wobei es sich bei sämtlichen übergebenen Werten um Integer-Werte handelt,
also um 16-Bit-Worte.

Zu diesem Zweck muß man zunächst über die C-Prozedurkonvention auf dem
MC68000 Bescheid wissen. Wenn eine C-Prozedur eine andere aufruft, wer-
den zuerst die Parameter in umgekehrter Reihenfolge auf dem Stack abgelegt.
Der im C-Quellcode am weitesten rechts stehende Wert wird zuerst abgelegt,
der links stehende zuletzt. Dann erfolgt der eigentliche Unterprogrammaufruf
mittels JSR oder BSR. Danach ist die aufrufende Prozedur noch für das Zu-
rücksetzen des Stackpointers verantwortlich. Genauer finden Sie diesen Vor-
gang in Kapitel 2 erklärt.

Auf dem Stack belegt ein "int" 2 Bytes und ein "long" 4 Bytes, wobei es egal
ist, ob es sich um vorzeichenlose oder vorzeichenbehaftete Zahlen handelt. Da
auf dem Stack nur Einheiten von mindestens Wortgröße abgelegt werden dür-
fen, wird ein "char" auf Wortgröße erweitert; der eigentliche Wert befindet
sich dann im niederwertigen Byte des abgelegten Wortes. Ein "float" belegt
den gleichen Platz wie ein Langwort, ein "double" erstreckt sich über zwei
aufeinanderfolgende Langworte. Bei Pointertypen werden immer die absolu-
ten Adressen der Objekte, auf die sie zeigen, in Langwortbreite übergeben.
Bedenken Sie, daß niemals Zeichenketten selbst, sondern immer nur Zeiger
auf mit einem Nullbyte abgeschlossene Zeichenketten übergeben werden.

Beim Eintritt in die aufgerufene Routine geschieht jedoch etwas anderes als bei
der früher vorgestellten Aufrufkonvention: Am Anfang der Routine steht ein

Anhang D 377

Befehl der Form

LINK A6,#n

Damit wird ein Bereich auf dem Stack, ein sogenannter Stackframe, angelegt.
Rufen wir uns noch einmal ins Gedächtnis, was der LINK-Befehl tut:

— Der Inhalt des angegebene Adreßregisters wird auf dem Stack abgelegt.

— Der alte Wert des Stackpointers wird in das Adreßregister übertragen.

— Zum Stackpointer wird der angegebenen Wert (16 Bit) addiert. Normaler-
weise ist n ein kleiner negativer Wert. So sorgt dieser Befehl dafür, daß am
unteren Ende des Stacks ein Bereich von n Bytes angelegt wird, der in C für
die Aufbewahrung von lokalen Variablen dient. Damit der vorherige Wert
des Stackpointers noch erreichbar ist (etwa zur einfacheren Adressierung
der Parameter) wird er in A6, dem sogenannten Frame Pointer, erhalten.

Damit dieser Wert bei mehreren geschachtelten Aufrufen nach dieser Kon-
vention nicht verlorengeht, wird vorher der alte Wert von A6 auf dem
Stack gesichert. Abbildung 24 zeigt das untere Ende des Stacks, nachdem
der LINK-Befehl ausgeführt wurde.

Parameter

Rückkehradresse

alter Wert A6
+ Frame Pointer (A6)

Stackframe

4 Stackpointer (A7)

2.

u
m

m

m

a
n
n
o

Abb. A.l: Daten auf dem Stack nach Ausführung des LINK-Befehls

378 ATARI ST — Programmieren in Maschinensprache

Am Ende der Prozedur miissen die Auswirkungen des LINK-Befehls wieder
rückgängig gemacht werden. Dies geschieht mit dem Befehl

UNLK A6

Damit wird der alte Wert des Stackpointers wieder aus A6 in den Stackpointer
kopiert und dann der friihere Wert aus A6 vom Stack geholt. Damit ist das
Stackframe gelöscht.

Nach diesem Befehl erfolgt mit RTS der Rücksprung in die aufrufende Proze-
dur. Vorher werden allerdings noch etwa auftretende Rückgabewerte ins Re-
gister DO geladen. Dabei spielt es keine Rolle, ob ein Rückgabewert 8, 16 oder
32 Bit lang ist. Die einzige Ausnahme muß bei "double"-Werten gemacht wer-
den: Sie werden in den Registern DO und D1 zurückgegeben.

Für den Assemblerprogrammierer ist die Geschichte mit den Stackframes
nicht von so großer Bedeutung — außer wenn es darum geht, rekursiv aufruf-
bare Assembler-Prozeduren zu schreiben, die lokale Variablen verwenden.
Wichtig ist nur, daß das Register A6 — und natürlich der Stackpointer — inner-
halb der Prozedur nicht verändert werden dürfen. Das gleiche gilt für die Da-
tenregister D3 bis D7 und die AdreBregister A2 bis A5, die möglicherweise
Registervariablen enthalten. Sollten Sie nicht ohne diese Register auskommen,
so können Sie die Inhalte der benötigten Register am Anfang der Routine mit
einer MOVEM-Anweisung sichern und vor dem RTS entsprechend zurückho-
len. Nun wissen wir genug, um die Assemblerroutinen zu formulieren. Be-
trachten wir das folgende Listing. Zunächst werden die Symbole "_line" und
"_plot", die später nach außen hin sichtbar sein sollen, mit XDEF global be-
kannt gemacht. Im Gegensatz zum C-Aufruf müssen die Funkionsnamen mit
einem Unterstrich versehen werden, da der C-Comiler alle externen Lables
mit einem Unterstrich versieht. Darauf folgt eine Reihe von Konstantendefini-
tionen, die die relativen Adressen einiger Line-A-Variablen bekanntmachen.
Die Funktion dieser Variablen ist hier nicht weiter von Bedeutung, wird aber
im Kapitel 4 eingehend erläutert.

KAKKKKAKKKAKKKAÄKKKKKKK KK KK KK KK KK KH KK IK KK IK IK KH KH AK IK IK IK AK AK KH KK KK KK AK KK KK KK Ä KH AK KH KK AK A

* AS68C.S *

* Beispielprogramm zum Einbinden von Assembler *
* in Hochsprachen *
* für Metacomco-Assembler oder ATARI-Assembler mit *
* Digital Research C, *
* Megamax C oder GST c mittels exec() *
* ermöglicht Zugriff auf Line-A-Routinen line und *
* put pixel (plot) *
* * KRKKEKKKKKKKKK KKK KK KK KAKKKK KKK KKKEKKKKKKKAKKKKKKKKAKKKKKKKKKKKK

Anhang D 379

* zuerst die von außen erreichbaren Symbole

der benutzten Line-A Variablen

XDEF _line
XDEF _plot

*

* relative Adressen
intin EQU 8
ptsin EQU 12
fg bp 1 EQU 24

fg bp 2 EQU 26
fg bp 3 EQU 28
fg bp 4 EQU 30
wrt mod EQU 36
x1 EQU 38
yl EQU 40
x2 EQU 42

y2 EQU 44
*

* Line-A-Opcodes
A INIT EQU $A000
A PUT PIX EQU SA001
A LINE EQU $A003
*

* Aufruf: line(x1,y1,x2,y2)
_line link a6, #0

DC.W A_INIT
move 8(a6),x1(a0)
move 10 (a6) ,y1 (a0)
move 12 (a6) , x2 (a0)
move 14 (a6) ,y2 (a0)
move #1,fg bp 1(a0)
clr fg bp_2(a0)
clr fg_bp_3(a0)
clr fg_ bp 4(a0)
move #2,wrt_mod (a0)
DC.W A_LINE
unlk A6
rts

*

* Aufruf: plot (x,y,color)
_plot link a6, #0

DC.W A_INIT
move .l ptsin(a0),al

move 8 (a6), (al)
move 10 (a6) ,2 (al)

move.1 intin(a0),al

move 12 (a6), (al)

DC.W A PUT PIX
unlk ao
rts

END

+
+

+
+

HF
FF

FE
HF

HF
HF

F
HF

KF
HK

+
+

F
t

+
F

HF
F
F

F
F

HF
HK

F

SP nach a6

Variablenadressen holen

Parameter in die
Line-A-Variablen

schreiben

Farbe 1

Schreibmodus: XOR

Line-A-Aufruf

SP wiederherstellen

Variablenadressen holen
Adresse des ptsin-
Feldes holen
Koordinaten ins
ptsin-Feld schreiben
Adresse des intin-
Feldes holen
Farbe ins intin-
Feld schreiben
Line-A-Aufruf

380 ATARIST — Programmieren in Maschinensprache

Interessant wird es ab dem Label _"line", dem Einsprungpunkt. Zunächst wird
der Befehl LINK A6,#0 ausgeführt, der ein Stackframe der Länge O anlegt.
Eigentlich könnte man darauf verzichten; LINK und UNLK werden hier nur
verwendet, um ein Beispiel für ihre Verwendung zu geben und außerdem des-
halb, weil es nun einmal Konvention ist. Beachten Sie jedoch, daß alle relativen
Stackadressen um 4 verringert werden müssen, wenn Sie diesen Befehl weg-
lassen. Der erste Parameter würde in diesem Fall nicht mehr mit 8(SP), son-
dern mit 4(SP) erreicht. Nun weiter im Programm: Als nächstes holt sich die
Routine mit dem Opcode A_INIT die Anfangsadresse der Line-A-Variablen
ins Register AO. Daraufhin werden die Parameter 1 bis 4 der Reihe nach in die
entsprechenden Line-A-Variablen kopiert. Es wird nur noch der Farbindex
auf 1 und der Schreibmodus auf XOR gesetzt, und der Einsprung in die Line-
A-Routinen kann erfolgen. Schließlich wird noch der UNLK-Befehl ausge-
führt, und das war's dann auch schon. Ein Aufruf von "plot" läuft ähnlich ab;
eine zweite Prozedur wurde hier nur aufgenommen, um zu zeigen, daß die

Methoden des Einbindens auch mit anderen Einsprungadressen als der logi-
schen Adresse Null funktionieren. Dies wird hauptsächlich bei späteren Bei-
spielen von Bedeutung sein.

Natürlich sind diese beiden Prozeduren noch nicht perfekt; man könnte sich
noch mehr sinnvolle Parameter vorstellen, bei "line" etwa den Schreibmodus
oder die Farbe. Die Routinen sind natürlich nur als Beispiele gedacht; wenn
Sie sie allerdings nützlich finden, können Sie sie natürlich noch verbessern und

erweitern.

Sehen wir uns nun an, wie man diese Prozeduren von C aus aufruft:

/* AUFRUF1.C
erster Beispielaufruf von AS68 LC aus C heraus
fiir jeden C-Compiler, der den gleichen Linker wie der

verwendete Assembler benutzt */

main ()

{ int i; /* Zählvariable * /
for (i=0;1<320;it+) /* ein paar Linien ziehen * /

line (i,0,319-i,199);
gemdos (8) ; /* auf Taste warten * /

}

Wie Sie sehen, braucht eine Assemblerprozedur einfach nur aufgerufen zu
werden. Der C-Compiler nimmt automatisch an, daß in einem Modul nicht de-
finierte Prozeduren sich in einem anderen befinden. Aber Vorsicht: Wenn die
Prozeduren einen anderen Rückgabewert als "int" haben, etwa "long", dann
müssen sie als extern deklariert werden. Nehmen wir an, "line" gäbe ein Lang-
wort zurück. In diesem Fall müßte man an den Anfang des C-Codes schreiben:

extern long line();

Anhang D 381

oder, völlig gleichwertig

long line();

So weiß der C-Compiler, daß diese Prozedur in einem anderen Modul defi-
niert ist und ein Langwort zuriickgibt.

Natürlich können nicht nur Prozeduren, sondern auch Variablen aus Assem-
blerprozeduren global zugänglich gemacht werden, einfach indem ihr Name
mittels XDEF exportiert wird. Um vom C-Programm darauf zugreifen zu
können, müssen diese Variablen allerdings als extern deklariert werden, etwa
in der Form

extern int asmvar;

Um umgekehrt von Assembler aus auf globale C-Variablen zugreifen zu kön-
nen, müssen ihre Namen im Assemblerprogramm nur mittels XREF bekannt-
gemacht werden. Sie können dann damit arbeiten, als wären sie in Ihrem As-
semblerprogramm definiert, denn globale Variablen werden vom C-Compiler
automatisch exportiert. Ze

Es ist auch möglich, C-Prozeduren von Assembler aus aufzurufen. Auch hier
müssen sie nur die Prozedurnamen mit XDEF bekanntmachen. Legen Sie ein-
fach die Parameter in der rechts- nach-links-Reihenfolge auf dem Stack ab,
und rufen Sie die C-Prozedur mit "JSR name" auf. Nicht vergessen, den Stack
zu korrigieren!

Wie wird das Ganze nun compiliert und gebunden? Um von den beiden Quell-
codedateien AUFRUFI1.C und AS68C.S zum fertigen Programm AUFRUFI.
TOS zu gelangen, sind im einzelnen folgende Kommandos nötig (der rechts
abgesetzte Teil gehört natürlich nicht dazu, sondern dient der Dokumentati-
on):

as68 -1 as68c.s assemblieren
cp68 aufrufl.c aufrufl.i C-Preprozessor

c068 aufrufl.i aufrufl.1l aufrufl.2 aufrufl.3 -£

C Pass 1
168 aufrufl.1 aufrufl.2 aufrufl.s

C Pass 2
as68 -1 -u aufrufl.s Compiler-Output assemblie-

ren

link68 aufruf1.68k=gems, apstart, aufrufl,as68c, osbind, gemlib

der groBe Linker-Aufruf
relmod aufruf1.68k aufrufl.tos das unvermeidliche Relmod

382 ATARI ST — Programmieren in Maschinensprache

Danach können natürlich die Zwischendateien AUFRUF1.I, AUFRUF1.1,
AUFRUF1.2, AUFRUF1.3, AUFRUF1.S, AUFRUF1.68K und eventuell
AUFRUF1.O und AS68C.O gelöscht werden. Dies nur für den Fall, daß Sie
keine Batch-Datei zur Bedienung des Compilers haben.

Die gesamte hier vorgestellte Prozedurkonvention gilt nicht nur für den C-
Compiler aus dem ATARI-Entwicklungspaket, sondern für alle C-Compiler
auf dem ATARI ST. SchlieBlich gibt es für C nicht nur einen Standard, son-
dern auch Leute, die sich daran halten. Geringfügige Abweichungen treten na-
türlich trotzdem auf. Betrachten wir deshalb andere C-Compiler.

Lattice C (von Metacomco)

Lattice C fällt unter den C-Compilern für den ST etwas aus der Reihe, denn bei
ihm ist ein "int" nicht 16, sondern 32 Bit lang und somit gleichbedeutend mit
"long". 16 Bit lange Variablen gibt es allerdings auch: Sie werden mit "short"
bezeichnet. (Bei den anderen Compilern ist "short" gleichbedeutend mit "int",
also 16 Bit.) Ungewöhnlich ist das Verfahren, alle Parameter auf dem Stack
auf 32 Bit zu erweitern, egal, ob es sich um "long", "int", "short" oder "char"
handelt. Kürzere Einheiten als 32 Bit befinden sich in den unteren Bytes des
tibergebenen Langwortes. Dies gilt es bei der Adressierung der Parameter zu
beachten. Auf "int"-Parameter wird also (nach Verwendung des LINK-Be-
fehls) nicht mehr mit den Adressen 8(sp), 10(sp), 12(sp) usw. zugegriffen,
sondern mit 10(sp), 14(sp), 18(sp) usw. Beachten Sie, daß das erste Langwort
zwar bei 8(sp) beginnt, der uns interessierende 16-Bit-Wert jedoch erst bei
10(sp). Es folgt das entsprechend abgeänderte Listing:

AKKKAKKAKKKKKKKKAKKKKKKKKKHKK KK KK KK KH KH KH KH KH KK KH KH IK KH IK A KH T A TH A AK AK A KK A A A AK KK A A a

* AS68LC.S *
* Beispielprogramm zum Einbinden von Assembler in *
* Hochsprachen *
* für Metacomco-Assembler oder ATARI-Assembler *
* mit Lattice C Compiler *
x x

* ermöglicht Zugriff auf Line-A-Routinen line und *
* put_pixel (plot) *
KEKKKKKKKKRKREKEKKKKK KKK KKK KKK KK KKK KKKKKKRKEKKKKKEKKKKKKEKKEKEKKKEKKKKKKSE

* zuerst die von außen erreichbaren Symbole
XDEF line
XDEF plot

*

* relative Adressen der benutzten Line-A-Variablen
intin EQU 8

ptsin EQU 12

383

fg_bp 1 EQU 24
fg_bp_2 EQU 26
fg_bp_3 EQU 28
fg_bp_4 EQU 30
wrt_mod EQU 36
x1 EQU 38
yl EQU 40
x2 EQU 42
y2 EQU 44
*

* Line-A-Opcodes
A INIT EQU $A000
A PUT PIX EQU SA001
A LINE EQU $A003
*

* Aufruf: line(x1,yl,x2,y2)
line link a6, #0

DC.W A_INIT

move 10 (a6) ,x1(a0)
move 14 (a6),y1 (a0)
move 18 (a6) , x2 (a0)
move 22 (a6) ,y2 (a0)
move #1,fg bp 1(a0)
clr fg bp_2(a0)
clr fg _ bp_3(a0)
clr fg bp 4(a0)
move #2,wrt_mod (a0)
DC.W A LINE
unlk A6
rts

* Aufruf: plot (x,y,color)
plot link

DC.W

move.

move

move

move.

move

DC.W

unlk

rts

END

a6, #0
A INIT

ptsin(a0),al

10(a6), (al)

14(a6),2(al)
intin(a0),al

18 (a6), (al)

A PUT PIX
a6

+
+

+
+
F
H
F

F
F

F
F

F
F

F
F

+
+

+
+

+
+

+
F
F

F
F

HF
HF

FH
OF

SP nach a6
Variablenadressen
holen

Parameter in die
Line-A-Variablen

schreiben

Farbe 1

Schreibmodus: XOR

Line-A-Aufruf

SP wiederherstellen

Variablenadressen
holen

Adresse des ptsin-
Feldes holen

Koordinaten ins
ptsin-Feld schreiben
Adresse des intin-
Feldes holen

Farbe ins intin-Feld
schreiben
Line-A-Aufruf

In allen anderen Punkten gleicht die Prozedurkonvention von Lattice C genau
der des C-Compilers aus dem Entwicklungspaket. Für den Aufruf können Sie
obiges C-Beispielprogramm verwenden.

384 ATARI ST — Programmieren in Maschinensprache

Um ein Programm aus Metacomco-Assembler und Lattice C zusammenzubin-
den, gehen Sie am besten so vor:

— Assemblieren Sie zunichst AS68LC.ASM. Es wird die Datei AS68LC.BIN

erzeugt.

— Sofern es noch nicht dort steht, kopieren Sie AS68LC.BIN in das Verzeich-
nis, in dem Lattice C arbeitet.

— Editieren Sie die Datei C.LNK. Schreiben Sie unter die Zeile "INPUT *"

folgendes:

INPUT AS68LC.BIN

Dadurch wird der Linker dazu veranlaßt, dieses Modul mit zu linken.

— Compilieren Sie nun AUFRUFI1.C und binden Sie es. Damit wird ein lauffä-
higes Programm AUFRUF1.TOS oder AUFRUFI.PRG erzeugt, je nach-
dem, welche Linker-Optionen eingestellt sind.

Im Prinzip bietet der Lattice C Compiler auch die Möglichkeit, Objektcode im
LINK68-Format zu erzeugen. Man braucht dazu nur die Option "-t" anzuge-
ben. Und es funktioniert tatsächlich: Sie können dann Objektcode von AS68
dazu linken. Leider gibt es dabei ein Problem: Die C-Bibliotheken von Lattice
C liegen nur im Format des (von Lattice C verwendeten) GST-Linkers vor,
und ohne die C-Standardbibliothek wird man nicht weit kommen. Deshalb
bringt diese Option nicht viel, es sei denn, Sie finden eine Möglichkeit, die Bi-
bliotheken ins LINK68-Format zu konvertieren.

Megamax C

Die Prozedurkonvention gleicht der des Compilers aus dem ATARI-Entwick-
lungssystem aufs Haar. Leider benutzt dieser Compiler einen Linker eigener
Bauart (der Extender ".O" hat nichts zu sagen), so daß sie ohne weitere Tricks
nur vom Inline-Assembler Gebrauch machen können. Leider läßt dieser nur
PC-relativen Code zu und ist auch sonst kein vollwertiger Assembler, läßt sich
aber für kleine Prozeduren mitunter gut gebrauchen.

Sollten Sie größere Dinge vorhaben, so wird Ihnen im zweiten Teil dieses An-
hangs eine Möglichkeit vorgestellt.

Anhang D 385

CCD ST Pascal pius (Version 1.10)

Die Prozedurkonvention dieses Pascal-Compilers gleicht der C-Konvention
bis auf ein Detail: Die Parameter werden anders herum auf dem Stack abge-
legt, also diesmal in der Reihenfolge, wie man sie beim Aufruf hinschreibt, so
daß der rechts stehende Parameter beim Aufruf unten auf dem Stack liegt.
Ansonsten gilt, daß ein INTEGER 2 Bytes auf dem Stack belegt, ein
LONG_INTEGER 4 Bytes. Eine Eigenheit des Compilers gilt es noch zu be-
achten: Alle von Pascal erzeugten Symbole werden in Großschrift verwandelt.
Da Assembler und Linker hingegen zwischen Klein- und Großbuchstaben un-
terscheiden, kommt es zu Problemen, wenn das Pascal-Programm eine Proze-
dur "LINE" aufrufen will, jedoch nur "line" vorfindet. Deshalb müssen alle
vom Assemblercode exportierten Symbole ebenfalls groß geschrieben wer-
den. Das ist auch schon alles, was es an Abweichungen gibt. Nun das entspre-
chend angepaßte Listing:

KAKKKKKKKKKKKKKKKKKK KK KK KK KK KH TK HK KK IK KK TH TH IK KK KK KKKKKEKKKEKKKKEKKKKKKEKKK

AS68PAS.S *
Beispielprogramm zum Einbinden von Assembler in *
Hochsprachen *

fur ATARI-Assembler mit CCD ST Pascal plus *
*

*

*

+

HR

ermöglicht Zugriff auf Line-A-Routinen line und
* put pixel (plot)
KRKKKKKAKKKAHKK KK HH KK HH HH HH TH TH KH KH KK TH HK KK KH KH HK KH KH HK AH KH AH AH KH KH KH KH HH AH KH KH KH

* zuerst die von außen erreichbaren Symbole
XDEF LINE

XDEF PLOT
*

* relative Adressen der benutzten Line-A Variablen
intin EQU 8
ptsin EQU 12
fg bp 1 EQU 24
fg_bp_2 EQU 26
fg_bp_3 EQU 28
fg bp 4 EQU 30
wrt_mod EQU 36
x1 EQU 38
yl EQU 40

x2 EQU 42
y2 EQU 44
x

* Line-A-Opcodes
A INIT EQU $A000
A PUT PIX EQU SA001
A LINE EQU $A003
*

* Aufruf: line(x1,y1l,x2,y2)

LINE link a6, #0 * SP nach a6

DC.W A_INIT * Variablenadressen
* holen

ATARI ST - Programmieren in Maschinensprache

move 14 (a6) ,x1(a0) * Parameter in die
move 12(a6),yl(a0) * Line-A-Variablen
move 10 (a6) , x2 (a0) * schreiben
move 8 (a6) ,y2 (a0) *
move #1,fg bp _ 1(a0) * Farbe 1
clr fg_ bp 2(a0) *
clr fg_bp_3(a0) *
clr fg _ bp 4(a0) *
move #2, wrt_mod (a0) * Schreibmodus: XOR
DC.W A LINE * Line-A-Aufruf
unlk A6 * SP wiederherstellen
rts *

*

* Aufruf: plot(x,y,color) *

PLOT link a6, #0 *
DC.W A INIT * Variablenadressen

* holen
move. ptsin(a0),al * Adresse des ptsin-

* Feldes holen
move 12 (a6), (al) * Koordinaten ins
move 10 (a6) ,2 (al) * ptsin-Feld schreiben
move. intin(a0),al * Adresse des intin-

* Feldes holen
move 8 (a6), (al) * Farbe ins intin-Feld

* schreiben
DC.W A PUT PIX * Line-A-Aufruf
unlk ao *
rts *

*

END

ST Pascal plus verfügt über einen zu LINK68 kompatiblen Linker. Kopieren
Sie deshalb die von AS68 erzeugte Datei AS68PAS.O in das Arbeitsverzeich-
nis des Pascal-Compilers, und geben Sie beim Formular der Linkeroptionen
als zusätzlich zu linkende Datei eben jenes AS68PAS.O an. Nur noch Compiler
und Linker durchlaufen lassen, und schon haben Sie die ausführbare Datei.

Es kann übrigens durchaus nützlich sein, den Pascal-Linker an Stelle von
LINK68 zu benutzen, denn ersterer ist kürzer, schneller und benötigt kein
RELMOD. Parameter werden ihm genauso übergeben wie LINK68. Aller-
dings beinhaltet er nicht alle Optionen von LINK68, doch meistens soll ein
Linker ja ohnehin nichts anderes tun als eben linken.

2. Einbinden ohne Linker

Bei den meisten Kombinationen Compiler/Assembler gibt es keinen gemeinsa-
men Linker, bei Interpretern natürlich erst recht nicht. Nun, es gibt zwei Me-
thoden, den Assemblercode der gewünschten Programmiersprache zugänglich

Anhang D 387

zu machen. Beide verlangen, daß der Code assembliert und durch den Linker
geschickt wird, so daß er den Status eines ausführbaren Programms hat. Wenn
es sich um Routinensammlungen handelt, wird der Code natürlich nicht tat-
sächlich ausführbar sein, aber es kommt ja nur darauf an, daß es für das Be-
triebssystem so aussieht. Noch eines ist wichtig: Wenn Sie mehrere Routinen
einbinden wollen, ist es unerläßlich, ihre Startadressen relativ zum Pro-
grammanfang zu kennen, denn in irgendeiner Form müssen Sie die Aufgaben
des Linkers nun von Hand ausführen. Benutzen Sie dazu am besten ein Assem-
blerlisting, bei dem eine Symboltabelle vorhanden sein sollte. Dort finden Sie
die Adressen relativ zum Programmanfang, der auf die logische Adresse Null
festgelegt ist. Diese Informationen finden Sie wahlweise auch im Linkerpro-
trokoll. Problematisch ist dabei folgendes: Die relativen Adressen verschieben
sich, sobald Sie auch nur einen einzigen Befehl zu ihrer Routinensammlung
hinzufügen. Da diese Adressen im aufrufenden Programm verwendet werden,
müßten Sie bei jeder Erweiterung ihrer Assemblerroutinen dieses verändern.
Es geht natürlich auch anders: Zu diesem Zweck gibt es bei den meisten As-
semblern die Direktive ORG oder etwas Vergleichbares. Als Parameter be-
kommt ORG einen absoluten Wert, der in den "location counter" des Assem-
blers geladen wird, das heißt, der nächste Befehl wird an die dort angegebene
logische Adresse assembliert. Dies gibt Ihnen die Möglichkeit, hinter jeder
Routine genügend Platz für Erweiterungen zu lassen. Wenn Sie nun Befehle
hinzufügen, ändern sich die logischen Adressen der Einsprungpunkte nicht;
die Lücken zwischen den Routinen werden nur kleiner. So könnte man bei-
spielsweise vor die Routine "plot" die Anweisung

ORG 100

setzen. So wissen Sie, daß diese Routine an der logischen Adresse 100 beginnt,
und es sind noch genügend Bytes für Erweiterungen der "line"-Routine frei.
Mit ORG sind sinnvollerweise nur Verschiebungen des "location counters"
nach oben erlaubt; wenn also die "line"-Routine mehr als 100 Bytes lang wird,
gibt es eine Fehlermeldung. Die erste Möglichkeit besteht nun darin, das As-
semblerprogramm von vornherein PC-relativ zu schreiben. Um keine Be-
griffsverwirrung aufkommen zu lassen: Ein Programm ist PC-relativ, wenn
jede Variable und jedes Label PC-relativ adressiert wird. PC-relativer Code
braucht also nicht reloziert zu werden. Ein relozierbares Programm hingegen
darf mit absoluten Adressierungsarten auf seine Variablen und Label zugrei-
fen; die Programmdatei ist jedoch mit einer Relozierungstabelle versehen, die
das Programm trotzdem an jeder Stelle im Speicher lauffähig macht. Wenn Sie
also ein Programm PC-relativ schreiben, brauchen Sie den Code nur an eine
beliebige Stelle im Speicher zu laden und können ihn dann aufrufen. Nachteil
dieser Methode ist, daß bei den meisten Maschinensprachebefehlen nur die
Quelle PC-relativ adressiert werden kann; wollen Sie auf den Zieloperanden

388 ATARI ST - Programmieren in Maschinensprache

PC-relativ zugreifen, so hilft oft nur ein vorheriges Ermitteln der absoluten
Adresse mittels LEA, etwa in der Form

LEA label(pc)

Natürlich ist dies etwas umständlich und verlangsamt das Programm auch ge-
ringfügig. Deshalb zur zweiten Methode, die diese Nachteile nicht aufweist:

Sehen wir uns die GEMDOS-Prozedur PEXEC ($4B) einmal etwas genauer
an. Normalerweise übergibt man ihr den Namen einer Programmdatei zusam-
men mit einigen anderen Parametern, wodurch die Programmdatei geladen,
reloziert und gestartet wird. Erst wenn das so gestartete Programm termi-
niert, kehrt der PEXEC-Aufruf zurück, und das aufrufende Programm macht
dort weiter, wo es aufgehört hat. Rückgabewert von PEXEC ist der vom auf-
gerufenen Programm beim Aufruf von PTERM (GEMDOS $4C) angegebene
Wert; wurde das Programm mit TERM (GEMDOS Nummer 0) beendet, so
wird O0 zurückgegeben. Tief versteckt im ATARI findet sich jedoch eine inter-
essante Option: Wenn der erste Parameter, "load" genannt, den Wert 3 hat,
wird das Programm nicht gestartet, sondern nur geladen und reloziert. Rück-
gabewert von PEXEC ist dann die Adresse der Basepage des geladenen Pro-
gramms oder eine negative Fehlermeldung, falls etwas schiefgegangen ist. Zu
dieser Adresse brauchen Sie nun nur noch 256 hinzuzuzählen, um auf die
Adresse des ersten Bytes des Programmcodes zu kommen - in unserem Bei-
spiel ist das der Einsprungpunkt in die "line"-Routine. Um auf die Adressen
der anderen Routinen zu kommen, zählt man deren logische Adressen zur An-

fangsadresse des Codes hinzu.

Übrigens brauchen Sie sich keine Sorgen darum zu machen, daß der vom Code
belegte Speicherplatz überschrieben werden kann, denn dieser Bereich wird
vom Betriebssystem als belegt vermerkt und kann vorerst nicht zu anderen
Zwecken vergeben werden. Diese Methode erfordert also von der benutzten
Programmiersprache zwei Fähigkeiten:

— Zugriff auf die GEMDOS-Aufrufe, speziell auf PEXEC.

— Die Möglichkeit, zu einer absoluten Adresse einen Unterprogrammaufruf
durchzuführen.

Leider bieten nicht alle Programmiersprachen diese beiden Möglichkeiten. Se-
hen wir uns nun Anwendungen der beiden Methoden in den wichtigsten Pro-
grammiersprachen an: |

Anhang D 389

Samtliche C-Compiler

Die Sprache C erfiillt die beiden oben genannten Voraussetzungen, auch wenn
fiir die zweite einige Pointerakrobatik notwendig ist. Der Assemblercode
bleibt der gleiche wie der weiter oben verwendete, also die Datei AS68LC.S,
falls Sie Lattice C verwenden, in allen anderen Fällen AS68C.S. Assemblieren
und linken Sie diese Dateien mit dem Assembler ihrer Wahl. (Es macht natür-
lich auch nichts, wenn Ihr Assembler ohne Linker arbeitet, es geht nur darum,

eine ausführbare Datei zu erzeugen.) Damit niemand auf die Idee kommt, eine

solche Routinensammlung ausführen zu wollen, sollten nicht die Endungen
PRG oder TOS verwendet werden, sondern etwas Neutrales wie OVR (für
"overlay"). Benennen Sie deshalb die ausführbare Datei in AS68C.OVR um
(auch dann, wenn sie vorher AS68LC.PRG hieß). Der Aufruf sieht für alle C-
Compiler gleich aus:

/* AUFRUF2.C

zweiter Beispielaufruf von AS68C aus C heraus

Laden des Codes mittels PEXEC

für jeden beliebigen Compiler! */

#define pexec (a,b,c,d) gemdos (0x4b,a,b,c,d)

long gemdos (); /* gemdos() ist externer Funktionsaufruf */

main()

{ int i; /* Zählvariable x /

long prog_adr; /* Riickgabewert von exec * /

int (*line) (); /* Pointer auf Funktion * /

int (*plot) (); /* Pointer auf Funktion */

prog_adr=pexec (3, "as68c.ovr","",""); /* nur laden * /

if (prog _adr<0) /* Fehler! */
{ printf ("grausamer Fehler!\nas68c.ovr läßt sich nicht laden!\n");

gemdos (8) ; /* auf Taste warten * /
exit (); /* Programm beenden *

}

line= (int (*) ()) (prog_adr+256) ; /* Anfangsadresse des Codes */

plot=(int (*) ()) (prog_adr+256+60) ; /* plus Offset fiir 'plot' x /

for (i=0;i<200; i++) /* ein paar Punkte setzen *

{ (*plot) (i,i,1);
(*plot) (199-1i,i,1);

}

gemdos (8) ; /* auf Taste warten */

Zunächst wird dem Compiler mitgeteilt, daß die Prozedur gemdos() ein Lang-
wort zurückgibt ("long gemdos()" ist gleichbedeutend mit "extern long gem-
dos()"). Innerhalb von main() erfolgen zunächst die Variablendeklarationen,
wobei zwei Pointer auf Funktionen "line" und "plot" vereinbart werden. Nun

3% ATARIST - Programmieren in Maschinensprache

folgt der PEXEC-Aufruf mit dem Flag load=3. Ist der Rückgabewert negativ,
dann wird das Programm mit einer Fehlermeldung beendet — zur Vermeidung
von Bomben. Was folgt, ist ein Stück interessanter Pointerakrobatik: Die
Adresse der Line-Routine errechnet sich aus der Adresse der Basepage plus
256. Da dieser Wert jedoch immer noch vom Typ "long" ist, muß ein Cast an-
gewandt werden: (int(*)O)) verwandelt das Ergebnis in den Typ "Pointer auf
Funktion, die int zurückgibt" (ja, das funktioniert tatsächlich!). Eigentlich gibt
unsere Prozedur "line" ja gar keinen Wert zurück, doch eine entsprechende
Konstruktion mit "void" anstelle von "int" wird von einigen Compilern nicht
verdaut. Man braucht ja den Rückgabewert nicht auszuwerten.

Die Adresse der Routine "plot" liegt noch 60 Bytes höher, da das Label "plot"
die logische Adresse 60 hat, wie aus dem Assemblerlisting hervorging. Nun
endlich können die Assemblerroutinen aufgerufen werden, indem die Pointer
auf Funktion dereferenziert und mit den Parametern versehen werden. Hier
werden beispielhaft einige Punkte mit "plot" gesetzt.

GFA-BASIC (Version 2.0)

Auch GFA-BASIC erfüllt beide oben genannten Bedingungen — sogar auf
recht komfortable Weise. Es gestattet den Aufruf nach der üblichen C-Kon-
vention. Deshalb kann auch hier der Code aus AS68C.S verwendet werden.
Erzeugen Sie daraus eine Programmdatei, und nennen Sie sie in AS68C.OVR
um. Beim GFA-BASIC gilt es noch eine Besonderheit zu beachten: Da der In-
terpreter normalerweise den gesamten verfügbaren Speicher bis auf einige Ki-
lobytes für den Stack belegt, ist es notwendig, einen Speicherbereich freizuge-
ben, in den das Assemblerprogramm geladen werden kann. Mit der Anwei-
sung

Reserve Fre (0)-10000

werden 10000 Bytes am oberen Ende des Speichers freigegeben.

Der vollständige Aufruf sieht so aus:

' GFA_AUFR.BAS
' Beispielaufruf von AS68_C.S aus GFA-BASIC 2.0
' Laden der Programmdatei mittels EXEC (GEMDOS S$4B)
t

Reserve Fre (0)-10000
Adr%=Exec (3, "as68c.ovr","™", "™")
If Adr%<0

Print "Fataler Fehler!"

Print "Datei as68c.ovr läßt sich nicht öffnen!"

Anhang D 391

End

Endif
Let Line%=Adr%+256
Let Plot%=Adr%+256+60

For I%=0 To 320
Dummy=C : Line’ (1%,0,320-1%,199)

Next 1%

GFA-BASIC 2.0 stellt PEXEC als Funktion mit dem Namen "Exec" zur Ver-
fügung. Nach dem Aufruf wird überprüft, ob der Rückgabewert negativ ist;
wenn ja, wird das Programm mit einer Fehlermeldung abgebrochen. Andern-
falls werden die Adressen der Routinen Line und Plot berechnet. Nun kann der
Aufruf erfolgen: Die Funktion "C:" führt einen Aufruf nach der C-Konventi-
on durch. Alle Parameter werden als Worte übergeben, es sei denn, man stellt
ihnen ein "L:" für Längwort voran. GFA-BASIC verlangt, daß der Rückgabe-
wert einer Variablen zugewiesen wird, deshalb wird hier die Variable "Dum-
my" verwendet, die natürlich nicht ausgewertet wird.

Nun zur zweiten Möglichkeit: Da bei unseren Routinen keine Zugriffe auf Va-
riablen erfolgen, ist der Code ohnehin PC-relativ, braucht also nicht reloziert
zu werden. Nun macht man sich die Tatsache zu nutze, daß eine ausführbare

Datei einen Header von 28 Bytes Länge hat, auf den sofort das Textsegment
folgt. Der Zugriff auf PC-relative Routinen läuft also so ab: Die gesamte Datei
wird en bloc in einen reservierten Speicherbereich geladen, etwa in eine Zei-
chenkette. Die Anfangsadresse des Textsegments errechnet sich aus der Adres-
se dieses Bereichs plus 28; die einzelnen Routinen erreicht man, indem man

wiederum zu jenem Wert ihre logischen Adressen addiert. Ein Aufruf sieht al-
so folgendermaßen aus (es wird wieder die Datei AS68C.OVR benötigt):

' GFA _AUF2.BAS
' Beispielaufruf von AS68 C.S aus GFA-BASIC 2.0
" Binares Laden des PC-relativen Programmcodes mittels BLOAD
1

Code$=Space$ (1000)
Start%=Varptr (Code$)
Bload “as68c.ovr",Start%
Let Line%=Start%+28
Let Plot%s=Start%+28+60
For I%=0 To 320

Dummy=C :Line% (I%,0,320-1%,199)

Next I%

In diesem Beispiel wird eine Zeichenkette der Länge 1000 benutzt, um den
Programmcode aufzunehmen. Es ist wichtig, daß die Zeichenkette vorher tat-
sächlich lang genug ist, da der Speicherplatz für Zeichenketten in GFA-BASIC
dynamisch verteilt wird.

392 ATARI ST — Programmieren in Maschinensprache

ST BASIC (Lange 138 944 Bytes)

Leider scheidet beim ST BASIC die komfortablere Möglichkeit des Ladens
mit PEXEC aus, da es keinen Weg gibt, die GEMDOS-Routinen zu erreichen.
ST BASIC verwendet auch eine eigene Aufrufkonvention für Assemblerrouti-
nen. Diese ist im Handbuch leider nicht vollständig beschrieben; als Ausgleich
dafür sind aber die wenigen Informationen, die darüber zu finden sind,
schlichtweg falsch. Die tatsächliche Konvention beim Aufruf mit CALL sieht
so aus: Auf dem Stack wird als erster Wert über der Riickkehradresse ein
Wort abgelegt, das die Anzahl der Parameter angibt, die der CALL-Funktion
mitgegeben worden sind. Das folgende Langwort gibt die Adresse eines Ar-
rays an, indem die Parameter abgelegt sind. Dort belegt jeder Parameter 4 By-
tes (nicht 8, ATARI!). Alle Parameter werden als Langworte abgelegt; für uns
sind jedoch wieder nur die niederwertigen Worte interessant. Eines wird im
Handbuch leider verschwiegen: Die Prozedur des BASIC-Interpreters, die den
Aufruf mittels CALL durchführt, arbeitet mit dem Frame-Pointer A6 (Be-
kanntlich wurde ATARI-BASIC in einer Compilersprache geschrieben, was
einen der Gründe für die eher gemächliche Geschwindigkeit darstellt). Des-
halb darf dieses Register in unserer Prozedur nicht verändert werden, da sonst
wieder einmal Bomben angesagt sind. Aus mysteriösen Gründen schien der
Aufruf der Routine A_INIT plötzlich genau dieses Register zu verändern,
weshalb im folgenden Listing am Anfang der Routinen der Inhalt von A6 gesi-
chert wird.

AKKAKKKAKKKKKAKKAKKKKKKKK KK KK KK KH KK KK IK KK KH KK KK KK KK KK KK K Ä TK KK KK KK KK KA KH KA KUN

AS68BAS.S *

Beispielprogramm zum Einbinden von Assembler in *

ATARI-BASIC *

fur Metacomco-Assembler oder ATARI-Assembler *
*

*

x

+
+

+

ermöglicht Zugriff auf Line-A-Routinen line und
* put_pixel (plot)
KAKKKKAKKAKKKAKKKKKKK KK KK KK. KK KT KK KH KK KK AK KK KH AK AK KH KK AK KK A KK KK KA KH IK KK KA KA KU

*

* relative Adressen der benutzten Line-A Variablen

intin EQU 8
ptsin EQU 12
fg bp 1 EQU 24
fg bp 2 EQU 26
fg bp 3 EQU 28
fg _ bp 4 EQU 30
wrt_ mod EQU 36
x1 EQU 38
yl EQU 40

x2 EQU 42

y2 EQU 44
*

* Line-A-Opcodes M

A_INIT EQU $A000
A_PUT PIX EQU SA001

Anhang D 393

A_LINE EQU $A003
x

* Aufruf: line(x1,y1,x2,Yy2)
line move .1 a6,-(sp)

DC.W A INIT

move.l 10 (sp) ,a6

move 2(a6),x1(a0)
move 6(a6),yl(a0)
move 10 (a6) , x2 (a0)
move 14 (a6) ,y2 (a0)
move #1,fg bp 1(a0)
clr fg bp 2(a0)
clr fg_ bp 3(a0)
clr fg bp 4(a0)
move #2,wrt_mod (a0)
DC.W A_LINE
move.l (sp)+,a6
rts

*

* Aufruf: plot(x,y,color)

plot move.l a6,-(sp)
DC.W A_INIT

move.l 10 (sp) ,a6

move .1 ptsin(a0),al

move 2(a6), (al)
move 6 (a6) ,2(al)
move.l intin(a0),al

move 10(a6), (al)

DC.W A PUT PIX
move .1 (sp)+,a6
rts

*

END

+
+

+
+

+
+
F
F
 HF

HF
HF

HF
+

F
H

F
OF

+
+

+
+

FF

F
+

F
HF

OF

+
F

HF
F
O
F

OF

Register a6 sichern
Variablenadressen
holen

Zeiger auf
Parametertabelle

Parameter in die
Line-A-Variablen
schreiben

Farbe 1

Schreibmodus: XOR
Line-A-Aufruf

a6 wiederherstellen

A6 sichern
Variablenadressen
holen

Adresse der

Parametertabelle

Adresse des ptsin-
Feldes holen

Koordinaten ins
ptsin-Feld schreiben
Adresse des intin-
Feldes holen

Farbe ins intin-Feld
schreiben
Line-A-Aufruf

Der Aufruf erfolgt ähnlich wie bei obigem GFA-BASIC-Programm: Eine
initialisierte Zeichenkette stellt den notwendigen Platz zur Verfügung, in den
die gesamte ausführbare Datei mittels BLOAD geladen wird. Nun brauchen
nur noch die Einsprungadressen berechnet zu werden. Diesmal ist die logische
Adresse der Plot-Routine 62, da der Code der Line-Routine durch die Ände-
rungen 2 Bytes länger geworden ist.

Falls die Programmiersprache Ihrer Wahl sich nicht unter den hier aufgeführ-
ten befinden sollte, so hoffe ich dennoch, daß die vorgeführten Methoden und
Prozedurkonventionen Ihnen weiterhelfen. Die Methoden des Einbindens soll-

394 | ATARI ST — Programmieren in Maschinensprache

ten sich recht einfach auf andere Programmiersprachen oder neue Versionen
übertragen lassen. Problematischer ist es schon mit der Prozedurkonvention.
Leider dokumentieren nicht alle Softwarefirmen ihre Compiler oder Interpre-
ter in diesem Punkt so ausführlich, wie es wünschenswert ist. Doch es gibt ei-
nen Weg, mit Hilfe eines Debuggers Ihrer Programmiersprache auf die Schli-
che zu kommen:

— Schreiben Sie eine Testprozedur in Asssembler, die nur aus einem Befehl zu
bestehen braucht, aber etwas illegales tut, damit eine Exception auftritt, et-
wa folgendes:

test: MOVE 1,D0

— Schreiben Sie ein Programm in Ihrer Programmiersprache, das einen Test-
aufruf der Assemblerprozedur ausführt, etwa in der Art

test (1,2,3, 4)

Wenn Sie einen Compiler verwenden und dieser Code erzeugt, der Excep-
tions abfängt, so sollten Sie dies abschalten. Ist das nicht möglich, so wird
die Prozedurkonvention dieses Compilers wohl ein ewiges Geheimnis blei-
ben.

— Laden Sie nun zunächst den Debugger. Von diesem aus laden und starten Sie
nun das lauffähige Programm, den Interpreter, das Laufzeitsystem oder was
immer Sie zuerst laden, wenn Sie Ihre Programmiersprache benutzen wol-
len. Starten Sie Ihr Programm. Sollte es sich bei dem Programm, das Sie
vom Debugger aus starten, um eine GEM-Anwendung handeln, so rufen Sie
auch den Debugger als GEM-Anwendung auf. Dadurch gerät der Bild-
schirmaufbau zwar etwas durcheinander, aber das Ganze funktioniert.
Wollten Sie etwa von SID aus ST-BASIC starten, so nennen Sie SID.TTP in
SID.PRG um und starten den Debugger. Dann geben Sie folgendes ein:

e basic.prg

g

Damit wird der Interpreter gestartet.

— Sobald der Testaufruf erfolgt, gibt es einen Adreßfehler. Nun kommt die
große Stunde des Debuggers: Er meldet sich mit der Ausgabe der Register-
werte und der Adresse, an der die Exception aufgetreten ist. Jetzt können
Sie in aller Ruhe untersuchen, wo Ihre Parameter gelandet sind. Sehen Sie
zuerst in den Registern und auf dem Stack nach. Sollten Sie da noch nicht
fündig werden, so untersuchen Sie, ob man Langworte auf dem Stack oder
Registerinhalte als Zeiger auf Parametertabellen interpretieren kann. So
sollten Sie eigentlich jede Prozedurkonvention knacken können.

395

Anhang E

Tips zur Fehlersuche

Nun ist es geschehen. Das Programm benimmt sich aus äußerst mysteriösen
Gründen völlig anders, als es soll. Sie sollten von diesem Anhang keine Wun-
derdinge erwarten, denn die Anzahl der möglichen Fehler in einem Pro-
gramm ist unüberschaubar. Hier wird nur auf die Fehler der Befehlsebene ein-
gegangen — für die Logik Ihrer Algorithmen sind Sie natürlich selbst verant-
wortlich. Die Erfahrung lehrt aber, daß die meisten Programmfehler in As-
sembler auf der falschen Verwendung einzelner Maschinensprachebefehle be-
ruhen — so etwas passiert dem Profi ebenso wie dem Anfänger.

Im folgenden werden wir die erfahrungsgemäß häufigsten Fehler aufführen,
in der Hoffnung, Ihren Blick für die bekanntesten Patzer zu schärfen und Ih-
nen so vielleicht die eine oder andere frustrierende Stunde der Fehlersuche zu
ersparen. Einige Vorschläge mögen vielleicht recht trivial erscheinen, doch
meist sind es Trivialitäten, die einen recht lange aufhalten. Die meisten der
hier aufgeführten Fehler sind mir schon einmal selbst zugestoßen.

Zunächst noch ein Wort zur Fehlersuche allgemein: Wenn Sie überhaupt keine
Vorstellung davon haben, was die Ursache eines Absturzes oder eines merk-
würdigen Verhaltens sein könnte, so geht es zunächst einmal darum, den Feh-
ler einzukreisen. Wie in Kapitel 2 beschrieben, kann zu diesem Zweck ein De-
bugger von großem Nutzen sein, um etwa die Abarbeitung eines Programms
zu verfolgen oder die genauen Umstände eines Absturzes zu untersuchen.

In manchen Fällen kann es hingegen nützlicher sein, sich nur vom Programm
an bestimmten Stellen die Werte der einen oder anderen Variablen ausgeben
zu lassen. Zu diesem Zweck könnten Sie etwa die Routinen zur Ausgabe von
dezimalen und hexadezimalen Zahlen aus Kapitel 5 als Makros implementie-
ren. Wichtig ist dabei, daß diese Routinen nichts am Zustand des Prozessors
ändern; legen Sie deshalb am besten vor der Ausführung alle Prozessorregi-
ster auf dem Stack ab, um sie nach der Abarbeitung der Routine wiederherzu- -
stellen. Wenn es nötig sein sollte, tun Sie das auch mit dem Userbyte. f

Nun zu den eigentlichen Fehlern. Betrachten wir zunächst einmal die verschie-
denen Arten von Exceptions und Ihre Ursachen.

396 | ATARI ST — Programmieren in Maschinensprache

Busfehler — 2 Bomben

Wenn Sie nicht gerade vergessen haben, fiir einen Zugriff auf die Systemva-
riablen oder die Hardwareregister den Supervisormodus einzuschalten, so be-
deutet die Exception, daß das Programm auf einen Speicherbereich zugreift,
auf den es eigentlich gar nicht zugreifen will. Einige mögliche Ursachen:

— Bei einer Adreßberechnung wurde versehentlich eine Operation nur in
Wort- statt in Langwortbreite durchgeführt.

— Beim Ansprechen des Bildschirms wurde eine etwas zu hohe Adresse ver-
wendet. Bedenken Sie, daß meist direkt hinter dem Bildschirmspeicher das
physikalische RAM endet.

— In einem Unterprogramm wird der Stackpointer verändert, wodurch nach
der nächsten Ausführung eines RTS der Programmzähler plötzlich ins Nir-
wana zeigt.

Adreßfehler - 3 Bomben

Dies ist das Anzeichen dafür, daß in einer Wort- oder Langwortoperation auf
eine ungerade Adresse zugegriffen wird. Mögliche Ursachen:

— Aus irgendeinem Grund hat der Assembler Wort- oder Langwortvariablen
an einer ungeraden Adresse abgelegt. Verwenden Sie nach der Angabe von
Byte-Daten sicherheitshalber die EVEN-Direktive.

— Bei Adreßberechnungen wurde nicht beachtet, daß Indizes in Felder von
Worten mit 2 multipliziert werden müssen, bei Feldern von Langworten
mit 4.

— Es kann auch ein Folgefehler sein, wenn vorher an irgendeiner Stelle auf ei-
nem Stack - sei es ein eigener oder der Systemstack — Bytes abgelegt werden
und später Worte oder Langworte darauf abgelegt werden.

Illegaler Befehl - 4 Bomben

Mögliche Ursachen:

— Durch eine falsche Zieladresse bei einem Sprungbefehl landete der Prozes-
sor an einer falschen Stelle im Speicher.

Anhang E 397

— Durch eine falsche Adreßberechnung oder die Angabe eines falschen Labels
schreibt das Programm — möglicherweise an einer völlig anderen Stelle — in
seinen eigenen Code. Das fällt natürlich erst auf, wenn der überschriebene
Code ausgeführt wird.

— In einem Unterprogramm wird der Stackpointer verändert, wodurch das
RTS den Programmzähler auf einen völlig falschen Wert setzt.

Andere Fehlerquellen

Bei der Division durch null geschieht normalerweise nichts weiter; die CHK-
und TRAPV-Exception dürften in einem in Assembler geschriebenen Pro-
gramm wohl kaum auftauchen, da man dafür die Befehle CHK bzw. TRAPV
einsetzen muß. Die Privilegverletzung (8 Bomben) kann gelegentlich auftre-
ten. Ihre Ursache ist klar: Vor der Benutzung eines privilegierten Befehls
wurde nicht in den Supervisormodus geschaltet.

Die Ursache einer Exception der oben beschriebenen Arten ist im allgemeinen
recht leicht einzukreisen, zumal ein Debugger Auskunft geben kann über die
Speicherstelle, an der die Exception aufgetreten ist und den Zustand der Pro-
zessorregister. Schwieriger zu identifizieren sind dagegen die folgenden allge-
meinen Fehler, die zumindest nicht sofort zu einer Exception, sondern eher zu
einem merkwürdigen Verhalten des Programms führen:

— Der OR-Befehl zum Setzen von Bits wurde mit AND verwechselt, etwa
nach folgendem Gedankengang: Ich will die im Zielregister gesetzten Bits
erhalten und die Bits zusätzlich auf 1 setzen, also benutze ich den AND-Be-
fehl. Das ist natürlich falsch; hier muß der OR-Befehl verwendet werden.

— Es kann leicht vergessen werden, daß bei Adreßberechnungen Werte, die
kürzer sind als ein Langwort, als vorzeichenbehaftet betrachtet werden.
Nehmen wir etwa folgenden Befehl:

MOVE DO,0(A0,D1)

Damit kann man kein 64 KByte langes Feld verwalten! Wenn etwa D1 den
Wert 40000 hat, so greift man damit tatsächlich auf Speicherplatz
—25536(AO) zu! Entsprechendes gilt auch für die Adressierungsart "Adreß-
register indirekt mit Displacement":

MOVE DO, 40000 (AO)

398 ATARI ST - Programmieren in Maschinensprache

Auch dieser Befehl greift tatsächlich auf -25536(A0) zu.

— Ein verbreiteter Fehler besteht darin, das Doppelkreuz vor einem unmittel-
baren Operanden zu vergessen. Da der Prozessor dann natürlich auf die ent-
sprechende Adresse zugreift und unmittelbare Operanden größtenteils recht
klein sind, ist das Resultat meistens ein Busfehler, es sei denn, das Pro-
gramm läuft gerade im Supervisormodus. Achten Sie also auch auf verges-
sene Doppelkreuze, wenn sich ein Programm merkwürdig benimmit.

399

Anhang F

Befehlstabelle mit Adressierungsarten und
Ausführungszeiten

Zur folgenden Tabelle:

Spalte "Breite":

B Bytelänge, 8 Bit
W Wortlänge, 16 Bit
L Langwortlänge, 32 Bit

Spalte "Adressierungsart"

q Quelle
Z Ziel

Bei Befehlen mit 2 Operanden wird in dieser Spalte die Adressierungsart des
einen festgelegt; die folgenden 12 Spalten geben die verschiedenen
Adressierungsarten des anderen Operanden an.

1 Indexregister
Abs. W absolut kurz
Abs. L absolut lang
unm. unmittelbar
unm.3 bei ADDQ/SUBQ unmittelbar 1-8

Ausführungszeiten:

Alle Ausführungszeiten sind in Taktzyklen angegeben;

1 Taktzyklus entspricht 125 Nanosekunden

< Maximalwert
n bei Verschiebefehlen die Anzahl der Stellen, um die verscho-

ben wird, bei MOVEM die Anzahl der Register.

ATARI ST - Programmieren in Maschinensprache

Mne- Breite| Adressie- Dn An| (An) | (An)+
monic rungsart

ABCD |B q=Dn Z 6
g=(An) 2z

ADD B/W | q=Dn z ADDA 12 12
z=Dn q 4 4 8 8

L q=Dn Z ADDA 20 20
z=Dn q 8 8 14 14

ADDA |W _ | zAn q 8 8 12 12
L z=An q 8 8 14 14

ADDI B/W | q=unm. z 8} ADDA 16 16
L q=unm. Z 16 | ADDA 28 28

ADDQ IB/W |gq=unm3 z 4 4 12 12
L q=unm.3 z 8 8 20 20

ADDX = | B/W | q=Dn Z 4
q=(An) z | 18

L q=Dn Zz 8
a=(An) z 30

AND B/W | q=Dn Zz 12 12
z=Dn q 4 8 8

L q=Dn Z 20 20
z=Dn q 8 14 14

ANDI B/W | q=unm. z 8 16 16
L g=unm. Z 16 28 28

ASL, B/W | q=Dn z 6+2n
ASR q=#1-8 z 6+2n

L q=Dn z 8+2n
q=#1-8 z 8+2n

Speicher | W Z 12 12

Bec B(S) | entfällt verzweigt 10
L verzweigt nicht 8
W |entfällt verzweigt 10

verzweigt nicht 14
BCHG, IB g= z 12 12
BCLR, q=unm. Z 16 16
BSET L q=Dn Z <10

gq=unm. Z <12
BIST B q= Z 8 8

q=unm. Z 12 12
L q=Dn z 6

q=unm. Z 10
BSR BS) | entfällt 20

W | entfällt 20
CHK W | z=Dn trap 9 <40 <44 <44

kein trap 9 8 12 12
CLR B/W z 4 12 12

Anhang F 401

-(An) |d(An) | d(An) Abs.W | Abs.L D(PC) | D(P) Igq=unm.| Bedin-
z=SR/| gungs-
CCR | codes

XNZVC

* u * u *

18
14 16 18 16 20 aK KK
10 12 14 12 16 12 14 8
22 2A 26 2A 28
16 18 20 18 2| 18 20 14
14 16 18 16 20 16 18 12 | -----
16 18 20 18 22 18 20 14
18 20 22 20 2A aK aK
30 32 34 32 36
14 16 18 16 20 KKK
22 24 26 24 28

r KkKKKkK

14 16 18 16 20 -—*X*00
10 12 14 12 16 12 14 8
2 24 26 2A 28
16 18 20 18 2 18 20 14
18 20 2 20 24. 20 | -**00
30 32 2A 32 36

kKkekk

14 16 18 16 20

14 16 18 17 20 --*--
18 20 22 20 24

10 12 14 12 16 12 14 --*--
14 16 18 16 20 16 18

<46 | <48/} <SO;} <48} SS A SO <44| -*uuu
14 16 18 16 20 16 18 12
14 16 18 16 20 -0100

ATARI ST - Programmieren in Maschinensprache

Mre- Breite| Adressie- Dn An (An) (An)+
monic rungsart |

L z _6 DD 20
CMP B/W | z=Dn q 4 4 8 8

L z=Dn q 6 6 14 14

CMPA |W | zAn q 6 6 10 10
L z=An q 6 6 14 14

CMPI B/W | g=unm. z 8| CMPA 12 12
L q=unm. Z 14 | CMPA 20 20

CMPM_ | B/W | qg=(An}+ z 12
L q=(An}+ z 20
W z=Dn- 10 wenn cc=false, Zähler #-1

12 wenn cc=true, Zähler #-1
14 wenn cc=false, Zähler =-]

DIVS W z=Dn q <158 <162 <162
DIVU W z=Dn q <140 |. <144 <144
EOR B/W | q=Dn Z 4 12 12

L q=Dn Z 8 20 20
EORI B/W | q=unm. z 8 16 16

L q=unm. Zz 16 28 28
EXG L q=Dn 6

q=An 6 6
EXT W Z 4

L Z 4
JMP Z 8
JSR Zz 16
LEA L z=An q 4
LINK z=unm. q 16
LSL, B/W | g=Dn Z 6+2n
LSR q=#18 z 6+2n

L q=Dn z 8+2n
q=#1-8 z 8+2n

Speicher | W Z 12 12
MOVE | B/W | g=Dn Z 4 |MOVEA 8 8

q=An z 4 |MOVEA 8 8
q=(An) z 8 | MOVEA 12 12
g=(An)+ z 8 |MOVEA 12 12
q=+An) z 10 |MOVEA 14 14
q=d(An) z 12 |MOVEA 16 16
=d(An,i) z 14 |MOVEA 18 18

q=Abs.w z 12 |MOVEA 16 16
q=Abs.L z 16 | MOVEA 20 20
q=d(PC) z 12 |MOVEA 16 16
q=d(PC,i) z 14 |MOVEA 18 18
g=unm. Z 8 |MOVEA 12 12

L q=Dn z 4 |MOVEA 12 12

Anhang F 403

-(An) |d(An) | d(An) Abs.W | Abs.L D(PC)} D(P) \q=unm.| Bedin-
z=SR/| gungs-
CCR | codes

XNZVC

|
2 2A 26 24 28
10 12 14 12 16 12 14 8 | —* xxx
16 18 20 18 22 18 20 14
12 14 16 12 18 14 16 10 | -****
16 18 20 18 22 18 20 14
14 16 18 16 20 kK KK
22 2A 26 2A 28

— KAKxX

<164 | <166 | <168 | <166| <170 | <166 | <168 | <162 | -***O
<146 | <148 | <150 | <148| <152 | <148 | <150| <144 | -***0

14 16 18 16 20 -**00
2 2A 26 24 28
18 20 22 20 24 -**00
30 32 34 32 36

~*x* 0 0

10 14 10 12 10 14| | -----
18 22 18 20 18 22; |-----

8 12 8 12 8 12; 3 | -----

kkk 0 *

14 16 18 16 20
8 12 14 12 16
8 12 14 12 16

12 16 18 16 20
12 16 18 16 20
14 18 20 18 22
16 20 22 20 24
18 22 24 22 26
16 20 22 2 24
20 24 26 24 28
16 20. 22 20 24
18 22 2A 22 26
12 16 18 16 20
12 16 18 16 20

ATARI ST — Programmieren in Maschinensprache

Mne- Breite| Adressie- Dn An (An) (An)+
monic rungsart

MOVE |L q=An z 4 |MOVEA 12 12
| q=(An) z 12 |MOVEA 20 20

q=(An}+ z 12 |MOVEA 20 20
q=+An) z 14 |MOVEA 22 22
q=d(An) z 16 |MOVEA 24 24
q=d(An,i) z 18 |MOVEA 26 26
q=Abs.W z 16 |MOVEA 2A 24
q=Abs.L z 20 |MOVEA 28 28
q=d(PC) z 16 |MOVEA 2A 24
q=d(PC,i) z 18 |MOVEA 26 26
q=unm. zZ 12 |MOVEA 20 20

MOVE
toCCR |W |zCCR_ q 12 16 16
MOVE |W_ |zSR q 12 16 16
SR g=SR Z 6 12 12
MOVE |L q=USP z 4
USP z=USP_ q 4
MOVEA ‚W |z=An q 4 4 8 8

L z=An q 4 4 12 12
MOVEM | W__ | g= z 8+4n

z=Rn q 12+4n | 12+4n
L q= z 8+8n

z=Rn q 12+8n 12+8n

MOVEP |W | qg=Dn Zz
=d(An) z 16

L = z
q=d(An) z 24

MOVEQ |L q=unm. Z 4
MULS !W |z-Dn q <70 <74 <74
MULU |W_|zDn q <70 <74 <74
NBCD |B Zz 6 12 12
NEG B/W z 4 12 12

L Z 6 20 20
NEGX | B/W Zz 4 12 12

L Z 6 20 20
NOP 4
NOT B/W z 4 12 12

L Zz 6 20 20
OR B/W | g=Dn Z 12 12

z=Dn q 4 8 8
L q=Dn Z 20 20

z=Dn q 8 14 14
ORI B/W | q=unm. z 8 16 16

L q=unm. z 16 30 30

Anhang F 405

-(An) !d(An) | d(An) Abs.W | Abs.L DPC) D(P) Ig=unm.| Bedin-
z=SR/| gungs-
CCR | “codes

| XNZVC

12 16 18 16 20
20 24 26 2A 28
20 24 26 2A 28
2 26 28 26 30
2A 28 3 28 32
26 30 32 30 34
2A 28 30 28 32
28 32 34 32 36
2A 28 30 28 32
26 30 32 30 34
20 24 26 2A 28

KKKKK

18 20) 22 20 24 20 22 16 | ****x
18 20 2 20 2A 20 22 16
14 16 18 16 20

10 12 14 12 16 12 14 8| -----
14 16 18 16 20 16 18 12

8+4n [12+4n | 1444n 112+4n 1164+4n | 32 isd Cr
16+4n | 18+4n [16+4n |20+4n |16H4n | 18+4n

+8n |12+8n |144+8n |12+8n |16+8n |
16+8n |18+8n |16+8n 1?0+8n !16+8n | 18+8n

16 | | ---

24

- ix 0 0

<76 <78 <80 | </8| <82| <78 <80| <84 | -**00
<76 | <78 BO i </8| <82}; <78 <80| <84 | -**00

14 16 18 16 20 xu*u*
14 16 18 16 20 KK KK
22 24 26 24 28
14 16 18 16 20 aK KK
22 24 26 24 28

14 16 18 16 20
22 24 26 24 28
14 16 18 16 20 -**O0
10 12 14 12 16 12 14 8
22 24 26 24 28
16 18 20 18 22 18 20 14
18 20 2 20 24 —~**00

321 34 36 34 38

ATARI ST - Programmieren in Maschinensprache

Mre- Breite | Adressie- Dn An (An) (An)+

monic rungsart

PFA L 14
RESET | 132
ROR, B/W | g=Dn Zz 6+2n
ROL q=#1-8 z 6+2n

L = z 8+2n
q=Al-8 z 8+2n

Speicher | W z 12 12

ROXR, | B/W | g= z 6+2n
ROXL q=#1-8 z 6+2n

L = z 8+2n
q=#1-8 z 8+2n

Speicher | W zZ 12 12
RTE 20
RTR 20
RTS 16
SBCD B = Zz 6

q=(An)___Z
STOP 4
SUB B/W | q=Dn Z SUBA 12 12

z=Dn q 4 4 8 8 |
L q=Dn z SUBA 20 20

z=Dn 8 8 14 14
SUBA W | zAn q 8 8 12 12

L z=An q 8 8 14 14
SUBI B/W | q=unm. z 8{ SUBA 16 16

L g=unm. zZ 16 | SUBA 28 28
SUBQ B/W | q=unm.3 z 4 4 12 12

L =unm.3 zZ 8 8 16 16
SUBX B/W | g= z 4

=(An) Zz 18

L = z 8
g=(An) 2 30

SWAP Z 4
TAS B z 4 14 14
TRAP 34
TRAPV 34 wenn TRAP ausgeführt

4 wenn TRAPnicht ausgeführt
TST B/W z 4 8 8

L Zz 4 12 12
UNLK 12

Anhang F 407

-(An) |Id(An) | d(An) Abs.W | Abs.L D(PC) | D(P) Iq=unm.| Bedin-
Z=SR/| gungs-
CCR | codes

XNZVC

18 22 18 22 18 2| =| -----

-*x00

14
16 18 16 20 —**00

14 16 18 16 20
KAKKK

kKkKaEKK

Fur

aAıkrkK

14 16 18 16 20 KKK
10 12 14 12 16 12 14 8
22 24 26 2A 28
16 18 20 18 22 18 20 14
14 16 18 16 21 | 1.0... |=----
16 18 20 18 22
18 20 22 20 24 kkk
30 32 34 32 36
14 16 18 16 20 km
22 20 26 2A 28

KKKKK

—_-*x 6) 0

16 18 20 18 22 -**00

10 12 14 12 16 -**00
14 16 18 16 20

409

Anhang G

Glossar

Adreßbus
Der Teil des Bussystems, auf dem die CPU signalisiert, auf welche Adresse des
Speichers sie zugreifen will. Die eigentlichen Daten werden gleichzeitig auf
dem Datenbus transportiert. Siehe auch Bus, Datenbus.

Adreßdistanz

Differenz zwischen zwei Adressen.

Adreßregister
Register des MC68000, die in erster Linie Adressen enthalten. Sie werden mit
AO bis AT bezeichnet. A7 nimmt eine Sonderstellung ein; es handelt sich dabei
um den sogennannten Stackpointer.

ASCII
American Standard Code for Information Interchange, ein allgemein aner-
kannter Code fiir Buchstaben, Ziffern, Sonder- und Steuerzeichen. ASCII exi-

stiert in vielen verschiedenen systemspezifischen Abwandlungen.

Assembler
Ein Programm, das vom Menschen geschriebene Mnemoniks in Maschinen-
sprache übersetzt. Zudem bietet ein Assembler oft noch viele weitere Möglich-
keiten, wie etwa Symbole oder Adreßberechnungen. Andererseits wird mit
Assembler auch die Programmiersprache bezeichnet, die von einem Assem-
bler-Programm übersetzt wird.

Ausnahmebedingung siehe Exception.

BASIC
Abkürzung für "Beginners All Purpose Symbolic Instruction Code", eine sehr
verbreitete Interpretersprache, die ursprünglich als Lernsprache Konzipiert
war, doch in stark erweiterter Form heute auch in den professionellen Bereich
vordringt. BASIC existiert in einer unüberschaubaren Anzahl von Dialekten.
Vorherrschende Eigenschaften dieser Sprache sind Einfachheit der Bedie-
nung, besonders bei älteren Versionen leider auch Unstrukturiertheit und ge-
ringe Geschwindigkeit.

Batchdatei
Eine Textdatei, die mehrere Systemkommandos enthält, die bei einem Aufruf

410 ATARI ST — Programmieren in Maschinensprache

von einem soganannten Batchprogramm nacheinander abgearbeitet werden,
als wären sie über die Tastatur eingegeben worden.

Betriebssystem
Ein oft fest in den Computer eingebautes Programm, das systemnahe Aufga-
ben wie Ansteuerung der Hardware, Ein/Ausgabe, Initialisierung des Systems
und Starten von Anwendungsprogrammen tibernimmt.

BIOS
Abkürzung für "Basic Input/Output System”. Das BIOS ist in erster Linie für
Ein- und Ausgabe auf Laufwerke und sonstige Peripheriegeräte zuständig.

Bitmap
Ein anderes Wort für einen Bildschirmspeicher, in dem für jeden Punkt auf
dem Bildschirm einige Bits stehen.

Byte
Eine Einheit von 8 Bits. Ein Byte kann positive Zahlen von 0 bis 255 enthalten.

Bug
(engl. Wanze) Bezeichnung für einen Programmfehler.

Bus
Ein System von Leitungen und dazugehöriger Verwaltungseinheit, die für den
korrekten Datenaustausch zwischen den Komponenten eines Computers sorgt,
etwa CPU, Hauptspeicher und sonstigen Bausteinen.

C .

Eine strukturierte Compilersprache, die sich besonders durch die Möglichkei-
ten zur maschinennahen Programmierung auszeichnet. C ist auf dem ATARI
ST zu Hause, da große Teile des Betriebssystems in C geschrieben wurden.

Cluster
Logische Organisationsform von Blöcken auf einem Laufwerk. Auf dem ST
umfaßt ein Cluster zwei physikalische Sektoren, also 1024 Bytes.

CPU |
Central Processing Unit, Zentraleinheit eines Computers, die gewöhnlich
sämtliche Berechnungen ausführt und Kontrolle über das gesamte System hat.

Carry

(engl. Übertrag) Beim MC68000 ist damit eines der Flags aus dem User-Byte
gemeint, das einen Übertrag bei Addition, Subtraktion und Schiebeoperati-
onen anzeigt.

AnhangG 411

Condition code
(engl. Bedingungscode) Auf dem MC68000 eine Gruppe von 1 oder 2 Buch-
staben, die eine Bedingung ausdriicken, die sich aus dem Zustand der 4 Flags
N, Z, V und C ergeben. Die Bedingung kann nur wahr oder falsch sein.

Datenbus
Der Teil des Bussystems, auf dem Daten zwischen Speicher, CPU und anderen
Bausteinen ausgetauscht werden können. Siehe auch Bus, Adreßbus.

Datenregister
Register des MC68000, mit denen Rechenoperationen durchgeführt werden
können. Sie werden mit DO bis D7 bezeichnet.

Debugger
(engl. "Entwanzer") Ein Hilfsmittel zur Fehlersuche in ausführbaren Pro-
grammen.

Dekrementieren
(engl. to decrement) Einen Wert um eins verringern.

Directory
Englisch für Disketteninhaltsverzeichnis. Eine Liste, in der Name, Länge,
Entstehungsdatum und etliche andere Verwaltungsinformationen zu 1 sämtli-
chen Dateien eines Laufwerks aufgeführt werden.

Direktive
In diesem Zusammenhang eine Anweisung im Quellcode, die den Assembler
direkt anspricht, aber im allgemeinen nicht direkt Code erzeugt.

Disassembler |
Ein Programm, das Maschinensprache in den lesbaren mnemonischen Assem-
blercode zurtickverwandelt.

Displacement
Bei einigen Adressierungsarten ein konstanter Wert, der zu einer indirekt er-

mittelten Adresse addiert wird, um die tatsächliche Adresse zu liefern.

dummy
(engl. Atrappe) Diese Bezeichnung wird oft für Variablen oder Prozeduren
gewählt, die keine Bedeutung haben, aber vorhanden sein müssen.

Extender
Bei den Mnemoniks der MC68000-Maschinensprache bezeichnet man die An-
hängsel an Befehle, die die Verarbeitungsbreite oder eine Abwandlung eines

412 ATARIST - Programmieren in Maschinensprache

Befehls anzeigen, "BN ".W" und ".L” sind als Extender fiir arithmetische und
logische Befehle, die die Verarbeitungsbreiten Byte, Wort und Langwort an-
geben; bei den Branch-Befehlen zeigt ".S" die 8-Bit-Variante an.

Exception
Eine Ausnahmebedingung des Prozessors MC68000. Unter Exceptions fallen
Interrupts, vom MC68000 aufgespiirte Programmfehler und vom Programm
absichtlich ausgelöste Ausnahmebedingungen.

Eine Variable, die nur zwei Werte annehmen kann (Boolesche Variable). Ein
Flag zeigt einem Programm an, ob eine bestimmte Bedingung zutrifft oder
nicht zutrifft.

frame pointer
Ein Zeiger auf einen auf dem Stack angelegten lokalen Adreßbereich eines Un-
terprogramms.

GEMDOS
Ein Teil des Betriebssystems des ATARI ST. GEMDOS iibernimmt die weni-
ger hardwarenahen Aufgaben wie Dateiverwaltung und Programmkontrolle.

High
(engl. hoch) Einerseits bezeichnet man damit den Zustand einer Leitung; High
heißt, daß die Leitung Strom führt. Andererseits wird High oft im Zusammen-
hang mit der Wertigkeit von Bytes, Worten oder Bits benutzt: Mit "High Byte"
bezeichnet man etwa das hochwertige Byte eines Wortes.

HBI
Abkürzung für "Horizontal Blank Interrupt", ein vom Grafikchip ausgelöster
Interrupt, der jedesmal auftreten kann, nachdem der Elektronenstrahl auf dem
Monitor eine Zeile fertiggezeichnet hat.

Index

Eine Zahl, die für die Nummer eines Elementes aus einem Feld von Elementen
steht.

Integer
Eine vorzeichenbehaftete ganze Zahl; auf dem ATARI ST umfassen Integers
gewöhnlich 16 Bits, womit ein Zahlenbereich von —32768 bis +32767 darstell-
bar ist.

Interrupt
Eine Unterbrechung der normalen Programmabarbeitung. Auf ein Signal der

~

Anhang G 413

restlichen Hardware hin tut die CPU kurzzeitig etwas anderes, wobei es sich
meist um systemnahe Aufgaben handelt. Danach fährt sie an dem Punkt fort,
an dem das laufende Programm unterbrochen wurde, als wäre nichts gesche-
hen.

-- Inkrementieren
(engl. to increment) Einen Wert um eins erhöhen.

Kaltstart
Komplettes Initialisieren des Systems. Nichts von dem, was vorher im Spei-
cher des Computers installiert war, wird bewahrt. Wird gewöhnlich nur beim
Einschalten des Systems ausgeführt.

Kilobyte
Einheit von 2 hoch 10 = 1024 Bytes. Abgekürzt K.

Konsole

Einheit von Tastatur und Bildschirm.

Langwort
Eine Einheit von 32 Bits. Ein Langwort entspricht 2 Worten oder 4 Bytes. Es
kann positive Werte von 0 bis 4.294.967.295 enthalten.

LISP
LISP steht für LISt Processing. LISP ist eine Programmiersprache mit recht
ungewöhnlichem Konzept, die in erster Linie im Gebiet der künstlichen Intel-
ligenz eingesetzt wird. Meistens wird LISP als Interpreter verwirklicht; es
gibt jedoch auch LISP-Compiler.

Logo |
Von LISP abgeleitete Interpretersprache, die etwas einfacher zu bedienen ist
und oft als Lernsprache dient. Logo eignet sich jedoch durchaus auch fiir die
Programmierung von Kiinstlicher Intelligenz.

Low
(engl. niedrig) Einerseits bezeichnet man damit den Zustand einer Leitung;
Low heißt, daß die Leitung keinen Strom führt. Andererseits wird Low oft im
Zusammenhang mit der Wertigkeit von Bytes, Worten oder Bits benutzt: Mit
"Low Byte" bezeichnet man etwa das niederwertige Byte eines Wortes.

Maschinensprache |
Befehle, die von der CPU eines Rechners direkt ausgeführt werden können.

Maske
Auf Bitgruppen bezogen: Ein Bitmuster, das nur ausgewählte Bits eines Wer-

414 | ATARI ST — Programmieren in Maschinensprache

tes erhält, andere hingegen auf 0 oder 1 setzt, also ausmaskiert. Beispiel: Neh-
men wir die Binärzahl %10101010. Nun wenden wir darauf die Maske
%00001111 an, indem wir die AND-Verknüpfung benutzen:

%10101010
AND %00001111

%00001010

Man sagt, daß Bits 4 -7 ausmaskiert worden sind.

Megabyte
Einheit von 1024 Kilobyte oder 1.048.576 Bytes. Abgekürzt MB.

Mikrocode
In der CPU befindet sich Code, der genau angibt, wie die einzelnen Maschi-
nensprachebefehle aus kleineren Operationen zusammengesetzt werden sollen.
Der Mikrocode stellt also die Ebene unter der Maschinenspracheebene dar.
Für den Assembler ist dies aber kaum von Belang, da zumindest beim
MC68000 der Mikrocode nicht modifizierbar ist.

Mnemonic
Bezeichnung, die hinsichtlich der Assoziation mit bekannten Dingen gewählt
wurde. Meistens handelt es sich dabei um Abkürzungen.

Modul
In irgendeiner Form abgegrenzter Teil eines Programms.

monadisch |
Eine Operation ist monadisch, wenn sie nur einen Operanden hat.

Motorola

Herstellerfirma des Prozessors MC68000.

Objektcode
Aus dem Quellcode vom Compiler oder Assembler erzeugter Maschinenspra-
checode. Der Objektcode muß allerdings noch nicht unbedingt ausführbar
sein. |

Overflow
Siehe Uberlauf.

Overlay |
(engl. Überlagerung) Ein Programmteil, der nur dann geladen wird, wenn er

AnhangG 415

gebraucht wird, und nach der Benutzung von einem anderen Overlay tiber-
schrieben werden kann.

Pascal
Verbreitete strukturierte Compilersprache, benannt nach dem französichen
Mathematiker Blaise Pascal.

PC-relativ
Kurz für Programmzähler-relativ. Code ist Programmzähler-relativ, wenn er
bei der Adressierung von Variablen oder Labels auf absolute Adressierungs-
arten verzichtet und somit ohne weitere Vorkehrungen an jeder Stelle im Spei-
cher lauffähig ist. Siehe auch relozierbar.

physikalisch
Real vorhanden.

pointer
Siehe Zeiger.

Quellcode
Programmtext für einen Compiler oder Assembler, wie er direkt vom Pro-
grammierer geschrieben wird.

RAM
Ramdom Access Memory, Speicherbausteine mit beliebigem Zugriff. Damit
ist Speicher gemeint, den man sowohl beschreiben also auch auslesen kann.

Register
Eine Speicherzelle, die sich in der CPU oder einem anderen Chip befindet. Re-
gister dienen zum Ausführen von Rechenoperationen oder enthalten Informa-
tionen über den Zustand und die Funktionsweise des Chips, in dem sie sich be-
finden.

relokatibel
Von englisch relocatable. Siehe relozierbar.

relozierbar |
Ein Programm ist relozierbar, wenn es an jeder beliebigen Adresse im Spei-
cher laufen kann. Es ist also frei verschiebbar. Auf dem ATARI ST hat dieses
Wort eine spezielle Bedeutung: Eine ausfiihrbare Datei im TOS-Format ent-
hält gewöhnlich eine Relozierungs-Tabelle. Mit Hilfe dieser Informationen
kann das Betriebssystem Programme an jeder Stelle im Speicher lauffähig ma-
chen, ohne daß das Programm sich in irgendeiner Form in den Adressierungs-
arten einschränken müßte.

416 | ATARI ST — Programmieren in Maschinensprache

ROM
Read Only Memory, Nur-Lese-Speicher. Speicher, den man nur auslesen
kann, aber dessen Inhalt nicht beliebig verändert werden kann.

Routine
Anderes Wort für Unterprogramm.

Schlange
(engl. queue) Eine Datenstruktur, die nach dem LIFO-Prinzip funktioniert
(Last In — First Out), etwa entsprechend dem Verhalten einer Menschenschlan-
ge vor einer Theaterkasse. Werte können immer nur an einem Ende an eine
Schlange angehängt werden und am anderen wieder herausgeholt.

Sektor
Organisationseinheit einer Diskette oder Festplatte. In der Regel kann ein
Laufwerk immer nur Operationen mit vollständigen Sektoren durchführen.
Auf dem ATARI ST umfaßt ein Sektor gewöhnlich 512 Bytes.

Shell
(engl. wörtlich Schale) Benutzeroberfläche für ein Betriebssystem oder ein
anderes Programm.

Shifter
(wörtlich Verschieber) Grafik-Chip des ATARI ST, der dafür sorgt, daß die
Informationen aus dem Bildschirmspeicher zu Signalen für den Monitor "ver-
schoben" werden.

Sprite
(engl. Kobold) Bezeichnung fiir ein kleines Objekt, das beliebig auf dem Bild-
schirm umherbewegt werden kann.

Symbol
Im Zusammenhang mit Assemblern ist mit einem Symbol eine Zeichenkette
gemeint, die für eine bestimmte Speicherzelle oder eine Konstante steht.

Taktzyklus.
Um alle Komponenten eines Computers miteinander zu synchronisieren, wird
das gesamte System einem bestimmten Takt unterworfen. Ein Taktzyklus ist
die kleinste Zeiteinheit, innerhalb der sich der abstrakte Zustand des Systems
sich in irgendeiner Form ändern kann.

Timing
Zeitgebundene Ausführung bestimmter Operationen.

AnhangG- 417

TOS
Betriebssystem der ATARI ST. TOS steht für "Tramiel Operating System",
nach Jack Tramiel, dem Chef der Firma ATARI. TOS setzt sich zusammen aus
GEMDOS, BIOS und XBIOS.

Uberlauf
(engl. Overflow) Ein Uberlauf tritt auf, wenn bei Berechnungen der darstell-
bare Zahlenbereich verlassen wird. Bei Prozessoren bezieht sich der Uberlauf
gewohnlich nur auf vorzeichenbehaftete Zahlen.

Variante
Beim MC68000 Abwandlung eines Befehls hinsichtlich der Adressierungsar-
ten. Etwa bilden ADDQ, ADDA und ADDI Varianten von ADD.

VBI
Abkürzung für "Vertical Blank Interrupt", ein vom Grafikchip ausgelöster In-
terrupt, der jedesmal auftritt, nachdem der Elektronenstrahl auf dem Monitor

ein Bild fertiggezeichnet hat.

Vektor
Ein Zeiger auf eine bestimmte Routine, meist auf eine Betriebssystemroutine,
deren Position im Speicher feststeht.

Warmstart
Ein Zuriicksetzen des Systems in einen definierten Zustand. Im Gegensatz zum
Kaltstart muß das System jedoch nicht völlig neu initialisiert werden. Das vor-
her laufende Programm wird aber auf jeden Fall radikal abgebrochen. Ein
Warmstart tritt auf, wenn die Reset-Taste gedrückt wird.

Wort
Auf dem ATARIST eine Einheit von 16 Bits. Ein Wort entspricht zwei Bytes;
es kann positive Zahlen von O bis 65535 enthalten.

XBIOS
Abkiirzung fiir "eXtended Basic Input/Output System". Eine Sammlung von
Routinen fiir die Nutzung der speziellen Hardwareeigenschaften des ATARI
ST.

Zeiger
Eine Variable oder ein Speicherplatz, der die Adresse eines beliebigen Daten-
objekts enthält.

_ Zweierkomplement
Das Zweierkomplement einer binären Zahl erhält man, wenn man jedes Bit in-
vertiert und zum Ergebnis 1 hinzuzählt.

418 | ATARI ST — Programmieren in Maschinensprache

Zweierkomplementzahl
Eine bestimmte Art, eine vorzeichenbehaftete Zahl darzustellen.

419

35 f., 67
$ 31
% 31
* 94
.B 30
LL 30f.
.W 31
@ 93

A.BAT 108 f.
A_Init 262
ABCD 171
AD.BAT 118 f.
ADD 32 ff., 166
ADDA 168
ADDI 169
Addition 32 ff.
ADDQ 37, 170
ADDX 36 f., 167
Adresse 15, 25 f.

Adressierung
_ absolute 68
absolut lang 68
absolut kurz
implizite 72
indirekte 68 ff.
Register-indirekt 68

Adreßfehler 127
Adreßregister 28

indirekt 68 f.
Adreßzähler 99
AES 255 ff.
AND 53 f., 192
ANDI 193
ANDITOSR 193
Application User Area 86
AS 68 105 ff.

Stichwortverzeichnis

ASL 47 ff., 136
ASR 46 ff., 137
Assemblerlisting 106, 109 f.
Assembler 18

-Optionen 106 f.
ATARI-Assembler 105 ff.
Auflösung

hohe 290 ff.
mittlere 296
niedrige 292 ff.

Ausgabeumleitung 106
Ausnahmebehandlung 126 f.

Basepage 86 ff.
BASIC 20
BATCH.TTP 108 f.
Batchdatei 108 £.
Bcc 57 ff., 202
BCD-Zahlen 146
BCHG 199
BCL 58, 61
BCLR 198.
Bconin 242
Bconout 242
Bconstat 242
Bcostat 244

BCS 58, 61
Bedingungscodes 201
Befehle

privilegiert 123
Befehlsfeld 92
Bemerkungen 94
BEQ 58
BF 62
BGE 61
BGT 61
BHI 60
Bildschirmadresse 289 f.

420 ATARI ST — Programmieren in Maschinensprache

Bildschirmspeicher 289 ff.
Binärzahlen 31
BIOS 241 f.

Fehlernummern 244
Parameter-Block 327

bioskeys 251
Bit 13 f.
bitblt 264
BLE 61
BLI 61
BLS 61
BMI 58
BNE 58
Bomben 126 f.
BPL 58
Branch-Befehle 57 ff.
Breakpoint 120 f.
BSET 197
BSR 77 f., 209
BSS 85, 99
BT 62.
BTST 200
Busfehler 126

Bussystem 16 f.
BVC 58
BVS 58
Byte 14

C-Flag 34 f.
Carry 34 f.
Cauxin 232
Cauxis 234
Cauxos 234
Cauxout 233
Cconin 232
Cconis 233
Cconos 234
Cconout 232
Cconrs 233
Cconws 233
CCR 27, 34 f.
CHK 127, 219
CLR 40, 147
CMP 57 f., 59 f., 178 f.

CMPA 180
CMPI 181
CMPM 182
Cnecin 233
Code

selbstmodifizierender 324 ff.
Compiler 20 f.
Condition Code 201

Register 27, 34 f.

Copy Raster Form 266
COLORS.S 314 ff.
CP/M 68K 107
Cprnos 234
Cprnout 233
CPU 15f.
Crawin 233
Crawio 233
cursconf 250

Data 99
Datei

ausfiihrbar 86 ff.
Datenregister 28
Datensegment 85
DBcc 62 ff., 336
DC 97 f.
Dcreate 236
Ddelete 236
Debugger 118 ff.
Dezimalzahlen 280 ff.
Dfree 235
Dgetdrv 234
Dgetpath 238
digitalisierte Klänge 325
Direkt-Assembler 18
Direktiven 95 ff.
disassemblieren 118
DIVLS 287 f.
Division 43 ff., 286 ff.
DIVS 44f., 187 f.
DIVU 43 ff., 185 f.
Doppelkreuz 35 f., 67
dosound 252
Draw Sprite 265 f.

Stichwortverzeichnis 421

Druckerausgabe 271 f.
drumap 244
DS 98
Dsetdrv 234
Dsetpath 236

Editor 103
END 99
ENOM 112
Entwicklungspaket 105
EOR 55 f., 194
EORI 195
EQU 95
EVEN 98
Exception 126 f.

-Vektor 126 f.
EXG 164
EXKLUSIV-ODER 55 f.
EXT 40, 151
Extend-Flag 35
Extender 31

Farbpalette 309
Farbregister 309
Fattrib 238
Fclose 237
Fcreate 236
Fdatime 240
Fdelete 237
Fdup 238
Fehlernummern 240 f., 244 f.

Fforce 238
Fgetdta 235
Filled

Polygon 264
Rectangle 263 ff.

Flags 34 f.
flopfmt 248
floprd 247
flopver 250
flopwr 247 f.
Fopen 236 f.
FOR-Schleife 83 f., 345 ff.
Fread 237

Frename 240
Fseek 237 f.
Fsfirst 240
Fsnext 240
Fwrite 237

GEM 227, 254 ff.
GEM-Beispiel 259 ff.
GEM-Programme

debuggen 122
GEM.S 259 ff.
GEMDOS 102 f., 228 ff.

Beispiel 101 ff.
-Fehlernummern 240 f.

getbpb 243, 327
getmpb 242
Get_pixel 263
gettime 251
get Rez 246
giaccess 251
Grafikspeicher 289 ff.

HALLOM.ASM 117f.
HALLO.S 101 ff.
Hauptspeicher 15
HBI 309 f.
Header 86
Hexadezimalzahlen 31, 277 ff.
Hide Mouse 264
HIRES 290 ff
Hochsprache 19 ff.
Höhere Programmiersprache 19 ff.
Horizontal Blank 309 f.

IF-THEN-ELSE 81 f.
ikbdws 251
illegaler Befehl 127
Index 71, 73 f.
Initmous 246
INPDEC.S 285 f.
INPHEX.S 279 f.
integrierte Assembler 105
Interpreter 20

422 | ATARIST - Programmieren in Maschinensprache

Interrupt 308
Interruptebenen 310
Interruptmaske 124 f.
Interrupts

debuggen 122
invertieren 55
lorec 249
Ishrink 239

jdisint 251
jenabint 251
JSR 77f., 208

kbdrbase 253
kbrate 253
kbshift 244
keytbl 249
Konstanten-Adressierung 67
Kontrollstrukturen 81 ff.

Labelfeld 91 f.
Langwortdivision 286 ff.
LEA 220 f, 230, 337
Line 263

Horizontal 263
Line-A 261 ff.

-Emulator 226
-Variablen 266 f.

Line-F

-Emulator 226
LINEHLS 300 ff.
LINELO.S 302 ff.
LINES.S 305 ff.
Linien ziehen 296 ff.
LINK 215 f.
Linker 22 ff.

-68 107
LISP 20
Location Counter 99
log Base 246
Logo 20
Lo-RES 292 ff.
LSL 46 ff., 133f.

LSR 46 ff., 135

MACRO 112
Makro 112 ff.
Makrobibliothek 117
Malloc 239
Maschinenbefehl 15 ff.
Maschinensprache 13
Maschinensprachebefehl 15 ff.
mediach 244, 327
MEMINIT.S 88 ff.
MENU+ 111
MENU.INF 111
MFP |

68901 311 ff.
Interrupts 311 ff.

mfpint 248
Mfree 239
midiws 248
Mnemoniks 17 f.
Modul 22 f., 100
MOVE 29 ff., 154
MOVEA 155
MOVEM 75 f., 156 f., 337 f.
MOVEP 158
MOVEQ 159
MOVE from SR 123 f., 162
MOVE to CCR 160
MOVE to SR 161
MOVE USP 163
MULS 39 f., 184, 339
MULU 39 f., 183, 339
Multiplikation 38 ff.

N-Flag 35
NBCD 146
NEG 57 f., 143
Negative-Flag 35
NEGX 145
NICHT 56f.
NOP 225
NOT 56 f., 143
Nulldivision 127

Stichwortverzeichnis 423

Objektcode 103
ODER 54 f.
offgibit 251
ongibit 251
Operanden 29

-feld 92 ff.
Operatoren 93
Operationen

logische 52 ff.
Optimierung 333 ff.
OR 54 f., 190
ORI 191
ORI TO SR 191
Overflow-Flag 35

Parameterstring 88
Parameterübergabe 78 ff.
Passpoint 121 f.
PC 25 ff.

relativ 72 ff.
PEA 222
Pexic 239
phys Base 246
Pixel setzen 289 ff.
PLOTHLS 291

. PLOTLO.S 294 ff.
plotten 289 ff.
Postinkrement 69 f.
PRDECN.S 282 ff.
PRDECP.S 281 f.
Predecrement 70
PRHEX.S 277 f.
PRINTER.S 271 f.
PRINT.S 270
Privilegverletzung 127
Programmierzyklus 21, 103 ff.
Programmstruktur 84 ff.
Programmzähler 25 ff.

relativ 72 ff. |
protobt 249 f.
priblk 253
Pseudobefehle (Direktiven) 95 ff.
Pterm 239

Pterm 0 232

Ptermres 235

puntdes 254
Put_pixel 262 f.

Quelle 17 f., 29
queue 305

RAM 15
Disk 111 f., 325 ff.

RAMDISK.S 330
random 249
READLINE (Cconrs) 233, 272
REG 335
Register 15 f., 25 ff., 92

direkt 67
Registerliste 156 f.
relativ 72 ff.
RELMOD 107
Relozierungs-Daten 86 f.
REPEAT-UNTIL 82 f.
RESET 224
ROL 51 f., 138
ROM 15
ROR 51 f., 139
Rotate-Befehle 51 f.
ROXL 48 ff., 140
ROXR 48 ff., 141
rsconf 249
RTE 126, 213
RTR 78, 212
RTS 77 f., 211
Rwabs 243, 326 f.

S-Flag 125
SBCD 177
Scc 205 |
Schiebefehle 45 ff., 340
Schlange 305
Schleifen 82 ff.
scrdmp 250
Segmente 84 f.
Setblock 89 f.
set Color 247
setexc 243

424 ATARI ST — Programmieren in Maschinensprache

set Palette 247
setprt 252
set Screen 246 f.
settime 251
Shell 111
Shift-Befehle 45 ff.
Shifter 309 f.
Show Mouse 264
SID68 119 ff.
Sinusschwingung 322
SOUND.S 323 f.
Soundchip 319 ff.
SP 27 f.
Speicher 13 f.
Speicheradresse 15
Speicherfreigabe 89 f.
SR 27
Ssbrk 246
Stack . 28, 74 ff.
Stackpointer 27 f.
Standardbibliothek 24
Stapel 28, 74 ff.
Stapelzeiger 27 f.

 Statusflags 34 f.
Statusregister 27
STOP 223
STRING12.S 275 ff.
STRINGIN.S 273 f.
Strings 97 f., 269 ff.
SUB 37 f., 172
SUBA 174
SUBI 175
SUBQ 38, 176
Subroutine 76 ff.
Subtraktion 37 f.
SUBX 38, 176
Super 230 f., 234
Supervisor-Flag 125
Supervisormodus 27 f., 123 f., 230 f.
supexec 254
Sversion 235
SWAP 45, 152
Symbole 18 f., 39

absolute 96 f.

relative 96 f.
Symboltabelle 87, 109 f.
Systembyte 27, 34 f.
Systemflags 34 f.

T-Flag 125 f.
TAS 149
TEXT 98 f.
Textblt 264
Textsegment 85
Tgetdate 234
Tgettime 235
tickcal 243
Timer 311 ff.
Tonerzeugung 320 ff.
TOS 227
TPA 88
Trace-Flag 125 f.
tracen 120, 125 f.
Transform mouse 265
TRAP 210
TRAPV 127, 218
TST 148
TTP 88

Uberlauf 35
Übertrag 34 f.
UND 53 f.
Undraw Sprite 265
unmittelbar 35 f., 67
Unterbrechung 308
Unterprogramme 76 ff.
used-by-BIOS 248
Usermodus 27 f., 123 f.
UNLK 217

V-Flag 35
VBI 308 f.
VDI 257 ff.
Verarbeitungsbreite 29 f.
Vertical Blank 308 f.
Verzweigungen 57 ff.

bedingte 57 ff.
vsync 253f.

Stichwortverzeichnis

WHILE-Schleife 83

X-Flag 35
XBIOS 245 ff.
xbtimer 252
XDEF 99 f.
XOR 55 f.
XREF 99 f.

YM-2149 319 ff.

Z-Flag 35
Zahlendarstellung 33
Zählschleife 83f, 345 ff.
Zeichenketten 97 f., 269 ff.
Zeichenkonstanten 94
Zeilenformat 91 f.
Zentraleinheit 15 f.
Zero-Flag 35
Ziel 17 f., 29
Zweierkomplementzahlen 33

425

von Frank Aumann, Peter Maier, Ralf Stöpper

mit Programm-Diskette — Wichtige Hintergrund-Informationen über die
Floppy-Laufwerke und deren Funktionen. Die Power-Disk enthält eine
Fülle nützlicher unter GEM ablauffähiger Programme. Die wichtigsten
Module der Programme sind als Quell-Listings (in C oder Assembler) im

Buch enthalten.

168 Seiten, ca. 24 Abb., plus Diskette, Best.-Nr. 3642 (1986)

von Michael Kofler

Der Autor erläutert die grafischen Fähigkeiten der ATARI ST-Computer

und führt anhand einer Vielzahl von BASIC-Programmen in die Program-

mierung zwei- und dreidimensionaler Grafiken sowie bewegier grafi-

scher Objekte ein. Alle Programmbeispiele werden durch Original-Bild-

schirmkopien dokumentiert.

272 Seiten, ca. 120 Abb.,+ 8 Vierfarb-Seiten, mit integrierter

Programm-Diskette, Best.-Nr. 3673 (1987)

von Michael Kofler

In diesem umfangreichen Arbeits- und Nachschlagewerk finden Sie wirklich alle.
zum Programmieren notwendigen Informationen gebündelt. Dabei ist die
logisch geordnete Befehlsliste nur ein Bestandteil des Buches; zusätzlich wer-
den schwer bedienbare Befehle und Funktionen sehr ausführlich beschrieben,

wobei der Autor sinnvolle Beispiele hinzugefügt hat. Außerdem gibt er zusätzli-
che Informationen über Programmiertechniken; damit Probleme bei der GEM-
Programmierung (die auch beschrieben werden) Ihre Arbeit nicht unnötig verzö-
gern, bietet Michael Kofler Ihnen direkt die zur Lösung erforderlichen Kenntnisse

über das Betriebssystem. Highlights sind u. a. die Verwendung der RSC-Datei-
en und eine Fensterverwaltung mit Beispielprogramm. Erfahren Sie, was Ihr

Rechner mit GFA-BASIC tatsächlich leisten kann!

536 Seiten, zahlr. Abb. Best.-Nr. 3555 (1987).

Die SYBEX-Bibliothek

Atari

ARBEITEN MIT DEM ATARIST
von Karl-Heinz Hauer vermittelt Ihnen notwendige Kenntnisse zum Umgang mit den
ATARI ST-Computern, z. B. System-Hardware, Betriebssystem-Adressen, TOS,
Kernel-Routinen, ATARI-BASIC, ATARI-Logo. 432 Seiten, 172 Abb. Best.-Nr.
3623 (1986)

ATARI ST — ARBEITEN MIT GEM, Bd. 1: DIE AES-BIBLIOTHEK
von Gerd Sender — Anhand einer Vielzahl von Beispielen wird gezeigt, wie der unter
der Sprache C programmierende ATARI-Besitzer sich die AES-Bibliothek eröffnen
und zunutze machen kann. 320 Seiten, 36 Abb., Best.-Nr. 3626 (1987). Eine Pro-
gramm-Diskette ist im Buch integriert und enthält die vorgestellten Programme und
Unterroutinen.

ATARIST — ARBEITEN MIT GEM, Bad. 2: DIE VDI-BIBLIOTHEK
von Holger Danielsson/Andreas Volkmann — Der ATARI-ST-Nutzer wird anhand
einer Vielzahl kleiner C-Routinen mit dem Aufruf der VDI-Bibliothek von GEM und
der Einbindung in eigene Programme bekannt gemacht. 240 Seiten, ca. 48 Abb.,
Best.-Nr. 3627 (1986), Mit integrierter Programm-Diskette, die Programme und Un-
terroutinen enthält.

ATARIST — ARBEITEN MIT CP/M
von Bernhard Bachmann — Für ATARI ST-Nutzer, die auf ihrem Rechner Standard-
software (z.B. WordStar) unter dem Betriebssystem CP/M nutzen möchten. Mit allen
notwendigen Hinweisen für die Arbeit mit CP/M und die Übertragung für andere Sy-
steme vorliegender CP/M-Programme auf den ST: CP/M-Emulatoren, CP/M-Dienst-
programme, CP/M-Controlcodes u.v.m. 256 Seiten, ca. 50 Abb., Best.-Nr. 3665
(1987)

ATARIST — EINFÜHRUNG IN WORDSTAR |
von Arthur Naiman — Das Originalwerk „Einführung in WordStar“ ist seit Erschei-
nen 1983 ein SYBEX-Bestseller. Um der Arbeit in der speziellen System-Umgebung
des ATARIST unter Kontrolle der CP/M-2.2-Emulatoren gerecht zu werden, wurde
das Buch für ST-Nutzer überarbeitet und durch Zusatz-Informationen ergänzt.
280 Seiten, mit Abb., Best.-Nr. 3666 (1986)

ATARIST STARFILE
Dateiverwaltung plus Bildverarbeitung von Heino Hansen/Elmar Sonnenschein —
Ein Karteikarten-orientiertes Dateiverwaltungs-Programm für den ATARIST, das
Ihnen etwas ganz Besonderes bietet: die Verarbeitung grafischer Informationen —
selbst digitalisierter Bilder. Egal, ob diese mit einem handelsüblichen ST-Grafikpro-
gramm oder mit dem StarFile-Editor erstellt wurden. Das Programm stellt beliebige
Masken für die Arbeit mit Dateien oder deren Ausgabe zur Verfügung. Weitere Spe-
zialitäten von StarFile: ISAM-Dateiverwaltung nach dem B-Tree-Verfahren voll do-
kumentiert; flexible Drucker-Anpassung für 9/24-Nadeldrucker bzw. Laserdrucker
(soweit lieferbar); Analog-/Digital-Uhr mit Datum; eigenes Snapshot. Das leicht be-
dienbare Programm ist voll unter GEM oder optional über die Tastatur zu steuern.
Diskette + Trainingsbuch, Best.-Nr. 4006 (1987)

ATARI ST STARCOMM
von Arnd Beißner — Das universelle Telekommunikations-Programm zur Übertra-
gung beliebiger Daten zwischen Computern oder über die Netze der Bundespost.
StarComm arbeitet unter GEM, wobei alle Funktionen dialog- und menüunterstützt
sind. Eine Besonderheit für ST-Systeme mit Echtzeit-Uhr: Das zeitgesteuerte Upload
von Dateien mit automatischer Herstellung der Telefonverbindung zu programmier-
ten Sendezeiten (automatische Wiederwahl). Außerdem: Übertragung von Texten,
Programm-Infos und Grafiken; 16 Übertragungsraten zwischen 50 und 19600 Baud:
Softscrolling der Bildschirm- -Ausgabe; Telefonregister zur automatischen Nummern-
wahl; komfortabler Editor; jederzeit abrufbare Hilfstexte u.v.m. Telekommunika-
tionsprogramm mit Handbuch, Best.-Nr. 4039 (1987)

ATARI ST STARPAINTER
von Heino Hansen/Elmar Sonnenschein — Erfahren Sie, was Sie — zusammen mit Ih-
rem ATARI ST — als Grafiker drauf haben. Mit StarPainter ist das einfacher, als Sie
denken. Die Kreation und der Ausdruck von einfachen Strichzeichnungen über Kör-
per wie Prisma und Würfel bis hin zu Polygomen werden Ihnen mit diesem Programm
leicht gemacht. Wenn Ihnen ein bestimmter Bildausschnitt besonders gefällt: Aus-
schneiden, verschieben, vergrößern, abspeichern und drucken — das bereitet Star-
Painter keine Probleme. Weitere Extras: Mehrere Bildschirm-Ebenen; UNDO-
Funktion; Lesen diverser Bildformate; spezielle Anpassung für Grafik-Tableau; Zei-
chen-Editor; Füllmuster-Editor. Grafikprogramm mit Trainingsbuch, Best.-Nr. 3424
(1987)

Andere Programmiersprachen

ERFOLGREICH PROGRAMMIEREN MIT C
von J. A. Illik — ein unentbehrliches Handbuch für jeden, der mit der universellen
Sprache C erfolgreich programmieren will. Aussagekräftige Beispiele, auf verschiede-
nen Mini- und Mikrocomputern getestet. 408 Seiten, Best.-Nr.: 3055 (1984)

C — EINE EINFÜHRUNG
von Bruce H. Hunter — Das ideale Buch für den Einsteiger in die Programmierspra-
che C, speziell für Anwender, die von BASIC auf den leistungsfähigen Compiler um-
steigen wollen. 296 Seiten, ca. 12 Abb., Best.-Nr. 3632 (1986)

Commodore

COMMODORE 64 STARTEXTER
Textverarbeitung mit Diskette und Handbuch — StarTexter ist die Textverarbeitung |
mit Doppelnutzen: das Buch führt Sie in die Textverarbeitung mit Ihrem C64 ein, die
Diskette bietet Ihnen ein exzellentes Programm — komplett zu einem erstaunlichen
Preis! Version 5.0 mit Schnittstelle zum C64 StarPainter. 160 Seiten, Handbuch und
Diskette, Best.-Nr.: 4038 (1987)

COMMODORE 64 STARDATEI
von Toni Schwaiger — Der universelle Karteikasten für den C 64, mit dem sich belie-
bige Daten speichern und wie bei einem Karteikasten bearbeiten lassen. Voll kompa-
tibel zu StarTexter mit echten MailMerge-Funktionen — und ebenso komfortabel wie
auch bedienerfreundlich. Diskette und ausführliches Trainingsbuch (96 Seiten) Best.-
Nr. 3413 (1985) Ä

DAS GROSSE COMMODORE BASIC HANDBUCH
von Michael Orkim — BASIC komplett für alle Commodore-Rechner von VC 20 bis
C128. BASIC-Versionen 2.0, 3.5, 4.0, 7.0. Mit Tips für die Programmübertragung
zwischen den einzelnen Modellen und für Befehls-Simulation sowie BASIC-Erweite-
rungen. 640 Seiten, Best.-Nr. 3615 (1986)

C 128 STARTEXTER
von Toni Schwaiger — Die Textverarbeitung der Spitzenklasse auch fiir professionelle
Anwender mit dem Commodore C 128. Außergewöhnliche features, die den C 128
zum Textverarbeitungs-Star werden lassen — zum kleinen Preis. Diskette + Trai-
ningsbuch (120 Seiten), Best.-Nr. 3415 (1986)

COMMODORE 64 STARPAINTER
von H. Hansen/E. Sonnenschein — Das Grafikprogramm (plus Trainingsbuch) der
Spitzenklasse, mit dem Sie sogar professionell arbeiten können. Und das komforta-
bel, gut verständlich und zum kleinen Preis. Diskette mit ausführlichem Handbuch,
Best.-Nr. 3421 (1986)

DAS C 128 BUCH
von Larry Greenly u. a. — Commodores Originalbuch-Handbuch für Programmierer.
Mehr brauchen Sie nicht, um den leistungsfähigen Commodore PC 128 schnell kennen
zu lernen und direkt sicher für Ihre Aufgabenstellungen nutzen zu können. 880 Seiten,
Best.-Nr. 3618 (1986)

COMMODORE 128 STARDATEI
von Toni Schwaiger, dem Autor des Textverarbeitungs-Pakets Commodore 128 Star-
Texter. Ein leistungsfahiges und komfortables Dateiverwaltungs-Programm der Pro-
fiklasse mit Trainingsbuch, natürlich voll kompatibel zu StarTexter. Diskette + Trai-
ningsbuch, Best.-Nr. 3420 (1987)

COMMODORE 128 STARPAINTER
von Heino Hansen und Elmar Sonnenschein. Das bedienerfreundliche Grafikpro-
gramm der vielen Möglichkeiten, mit dem Sie professionelle Grafiken auf Ihrem C 128
erstellen. Den reibungslosen Einstieg ermöglicht das ausführliche Trainingsbuch. Dis-
kette + Trainingsbuch, Best.-Nr. 3422 (1987)

Fordern Sie ein Gesamtverzeichnis

& unserer Verlagsproduktion an:

SYBEX-VERLAG GmbH SYBEXINC. SYBEX
Vogelsanger Weg 111 2021 Challenger drive, NBR100 6-8, Impasse du Curé

4000 Düsseldorf 30 Alameda, CA 94501, USA 75018 Paris
Tel.: (02 11) 61802-0 Tel.: (4 15) 523-8233 Tel.: 1/203-95-95
Telex: 8588 163 Telex: 287 639SYBEXUR Telex: 211.801 f

a aka

in Maschinensprache

 456788

