

.
D
M

D
O
O
R

T
O
T
E
N

UCH EIN DATA BECKER B

C
H
R
K
H
C
W
E
R
S
C
H
N

tate
«

ISBN 3-89011-132-7

Copyright © 1986 DATA BECKER GmbH

Merowingerstraße 30

4000 Düsseldorf

Alle Rechte vorbehalten. Kein Teil dieses Buches darf in irgendeiner Form

(Druck, Fotokopie oder einem anderen Verfahren) ohne schriftliche Genehmi-

gung der DATA BECKER GmbH reproduziert oder unter Verwendung elektro-

nischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Wichtiger Hinweis:

Die in diesem Buch wiedergegebenen Schaltungen, Verfahren und Pro-

gramme werden ohne Rücksicht auf die Patentlage mitgeteilt. Sie sind aus-

schließlich für Amateur- und Lehrzwecke bestimmt und dürfen nicht gewerb-

lich genutzt werden.

Alle Schaltungen, technischen Angaben und Programme in diesem Buch

wurden von dem Autoren mit größter Sorgfalt erarbeitet bzw. zusammenge-

stellt und unter Einschaltung wirksamer Kontrollmaßnahmen reproduziert.

Trotzdem sind Fehler nicht ganz auszuschließen. DATA BECKER sieht sich

deshalb gezwungen, darauf hinzuweisen, daß weder eine Garantie noch die

juristische Verantwortung oder irgendeine Haftung für Folgen, die auf fehler-

hafte Angaben zurückgehen, übernommen werden kann. Für die Mitteilung

eventueller Fehler ist der Autor jederzeit dankbar.

Inhaltsverzeichnis

2.1

2.1.1
2.2
2.2.1
2.2.2
2.3.
2.3.1
2.3.2
2.4
2.4.1
2.4.2
2.5
2.5.1
2.5.2
2.6

3.1
3.2
3.2.1
3.2.2
3.3
3.4
3.5
3.5.1
3.5.2
3.6

Einleitungccccccccccccccccsccccccccccccscssccccccccccscssseeees 11

Files, Programme und Dateienccccsscscscccesscece 13

Filestrukturén und Zugriff verschiedener
Hochsprachen...................u0u202s se eensnssnsennnonnennnnennnnennenennn 17

Die Funktionen des GEMDOS im Überblick 17
Filezugriff von BASICceessceessseeenessennnsnennnanennenernnen 21
Die sequentielle Datei in BASICcunsnseeeseeseeeenn 22
Die RANDOM - Datei in BASICcnenen. 24
Das Filehandling in PASCAL uu... cccceeceesceceeseeees 27

Die sequentielle Datei in PASCAL o.oo ee eee ee cee 28

Random-Dateien in PASCAL... ccceeceecece eee eceseees 32

Der Dateizugriff von C oo... cece cecsescsecenccsesencerecenscuecs 34

Die sequentielle Datei in Cui... cecceccsscsscsscescscesseecees 38

Die Random-Datei in Cui... cccceccescscceeccevecesessceeseeeses 40

Das Filehandling in FORTRAN oo... cece cece eeeeeee ees 43

Die sequentielle Datei in FORTRAN 44
Die RANDOM-Datei in FORTRAN.cncnnee. 45
Eine einfache Datenbank......::........ becsccccecsccscsccscscsscsceeees 47

Datenstrukturen...........ccccccccccccscesscccccccvccseccsseccceeeess 57

Diskettenformät........eeeeeseesesneennnnnnnnnnnnnnennen nennen wenns 58
Der Boot-Sektor ou... cece eeceeeeees Voveucceccecssceseuceeceseeens 60

Ein Formatierungsprogrammccccscceecceeseesessceeseesees 64

Der BIOS-Parameter-Block BPB................... “adausevaveensasee 75

Das Inhaltsverzeichnis............. ceca eeccaascceasccceueecceuseseuesensees 83
Die FAT...............cesceeseesseessensennnnnnnonsnnennnnnnennnnnnnnnnensensenenn 87
Programmaufbauceceneseen- eesnssessssnssnensssnsssessnenen 89
Der Programm-Header......................... Leuceecesceseneesccecassecs 90

Die Relocation-Tabelleucncserseseeseeneeneenesnneereen 93

Festplattenformat................ccccssessenseseeennenenee nn eunnansusnsenen 94

4.1
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4
4.2.2
4.3

mn

n
n

A
a
n

an

aA

nn

N
N

mB

W
N

—

U
I

A
Q

e
e
t

e
t
t

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4

Die Diskettenlaufwerkeccccccccccssccccccccccccsscscs 97

Funktion.......cessessessessesensensonnennnennnennn sececaeeecscesescessecusevescess 98

Der DMA-Chipccccccsccsccscecscsscuccscescscesesceseesescases 100

Der Disk-Controller ccc cccccccescsscscescsscecsscsessccecess 101

Anschlußbelegung.............ceseeeeeenennnnnnnnnnnenenenenenennnnennenn 105
Organisationcesseeeseessenesnsensnsnnsnnnnnnnnnnnnsnennensnnssnnenennnnenn 114

Kommando-Beschreibung.................unsssssenesnnnneenenneenen 127

Status-InterpretatiOn...........ccccccssccssssscsccescessescescesesssseeess 167

Die Floppy-Schnittstelle oo... ceeceeccscceeceeseeseeseeeces 173

Anschluß der Diskettenlaufwerkecceceecesseceee 178

Die Festplatte SH204cs00ssscesosnnenononnnnnssenennene 181

Funktion und Aufbauesessesseesenssesenennnennnanennnnennnn 182

Der Harddisk-Controller.............ccccccessscceecsscnccssceseesees 184

Befehlsstruktur...........ccsseersessessensnensonsennsnnsennnnnennnnnnnenenn 187

Liste der Befehlecesscssseensensensennnnnsnennnsensneneneeenn 195

HDC-Tools ccc... ceccecsscescsccecsscecesccsceseussecescseeseecssnessess 203

PartitionS-AnalySator..........cccccccescsscsscsscsscsscssceseescseesenss 208

Anschluß der Festplatteuncccesesseseseneeseseneneenenenenn 219

Komplettes Inhaltsverzeichnis ausdrucken. 222

Die RAM-Diskccccccscccccecccvcccccscccccceccscceecees 231

Ein komfortables RAM-Disk-Programm. 234

Disk-t0-RAM-Disk Copy .cnseessesneessnensnnsnnnsnnsnnennnnnn nenne 248

Programmieren in Maschinensprache am Beispiel

eines Disk-Monitorscccccsscsscsscsscescescsscsccscesces 255

Die TOS-Funktionen zum Floppy-Zueriff 256

Das Listing und die Bedienung des Disk-Editors....... 267
Das Hauptmenüeceseessssesssssssesseneenenensennnennnnnnnnnnnn 385
Das Track-Menü...........ercescessenseseeneensnneesnennnnnnnnenennennnnen 386

Das Track with Syncs-Menücessessessessennenennenenenenenn 387

Das Sektor-Menü.......eenseressossnensnsnnnunennnnnnsonnnnnnensnnnnnn nn 387

7.2.5
7.2.6
7.2.7
7.2.8
7.3
7.3.1
1.3.2
7.3.3
7.4

8.1
8.2
8.2.1
8.2.2 «
8.2.3
8.2.4
8.2.5

8.2.6
8.2.7
8.3
8.3.1
8.3.2
8.3.3
8.3.4

8.3.5
8.4

Anhang

I
Ul

Das Cluster-Menücccccsscessccnsccnsccesscnsccesscesseuesees 388
Das Format-Menüccccsscesccseccescseceeceesccessseseeseees 389
Das GAP-Menüe.scssssessssnsnnsessennensonsnsnnennennnanensnnnnnn 390

Das Options-Menüecseesseseessessensnnsnennnnnennonnnnnnnenenn 391

Beispiele zur Benutzung des Disk-Editors 391
File-Allocation Tableccccccscscssssecsccececsceesceesesens ..397
Subdirectories und Ordner auf Diskette 399
Formatieren im Nicht-ATARI-Form&t 401

Das Assemblieren mit verschiedenen Assemblern 404

Maschinen-Hilfsprogramme für BASIC 407

Aufruf und Parameterübergabecnncesseesseeneseneeenenn 407
Einige Beispielprogrammeccceccsecescceccescecessseecs 409

Schnittstelle BASIC/TOS........uuesensessesensennenssennennnnn 409
Directory auslesenn.ccccscccescccesecceesccesssecesccsesceessceeses 411

Sektoren lesen/schreiben..........useeseessssnnneneesensnnnnennneenn 416
Beliebige Diskettenformatierungcccceecceeceeseees 418
Daten suchen................ PRPPFPPPPFEFFERRRRRRER Kensssnsensssneosssrenennene 424
Daten sortierencccccccccceeeeeeeeseee kennnnssssenssnsnnnnennnnnsensenn 426
Datum und Uhrzeit formatiert auslesen0. 428
Die Programmierung des FDC von Basic aus 432
Das BASIC/FDC-Interface-Programmaaaaa.. 433
Demo 1 - Alle FDC-Kommandos im Griff................ 457
Demo 2 - Disketten kopieren.....unesesesensneenenennenn 407
Demo 3 - Erzeugung von Standard- und .

Fremd-Formaten.......... seeeeeceeceeeceeeesseceeseeeeeeeeeuaeeeeeeaeeneees 472
Demo 4 - Konvertieren von Ein- nach Zweiseitig 480

Erstellung von BASIC-Ladernzcss2sessseeeeseeenenn 485

File-Maker für editOr.t0s............cccccesccsesscsecceecceeceeseees 491
ASCTI-Tabelle......... cc ccccecseccnscsscecccscesccesescecsecceceeseses 519

Stich wortverzZeicChS............c.cccccscoscscecescccecscaccscecsceceeeecs 521

Einleitung 11

1. Einleitung

Die Rechner der ATARI ST-Serie sind mit ihrem schnellen

16/32-Bit-Prozessor und ihrer hohen Speicherkapazität für pro-

fessionelle Anwendungen wie geschaffen. Doch wichtiger als der
interne Speicher ist die Möglichkeit der externen Datenspeiche-

rung. Die hierfür verwendeten Floppy-Disks und die Harddisk
sind sehr interessante und vielseitige Speichermedien, die mehr
können als man im Handbuch findet.

Für die optimale Anwendung eines solchen Computer-Systems

ist es wichtig, die Fähigkeiten der Komponenten zu über-

schauen. Hierfür ıst dieses Buch ideal geeignet. Es gibt zunächst

einen Einblick in die Welt der Massenspeicher und beschreibt

die Vorgehensweise bei der Programmierung von Anwendungs-
programmen. Dann wird immer tiefer in die Geheimnisse der
ATARI-Floppys sowie der Harddisk und auch RAM-Disks ein-

gegangen.

All diese Kenntnisse der Soft- und Hardware versetzen Sie in
die Lage, die interessantesten Dinge mit diesen Speichern anzu-

fangen. Sie können die Kapazität der Disketten erhöhen, einen

eigenen Kopierschutz für Ihre Programme entwerfen, eine ei-
gene RAM-Disk nach Ihren Bedürfnissen erstellen und mit den
in diesem Buch enthaltenen Beispiel- und Hilfsprogrammen Ihre
Programme wesentlich schneller und effektiver auf Disketten
und/oder eine Harddisk zugreifen lassen.

Weiterhin finden Sie sehr nützliche Programme, die z. B. ein
komlettes Inhaltsverzeichnis inclusive Ordnerinhalte übersichtlich

auf dem Drucker ausgeben oder Disketten bzw. die Festplatte

analysieren.

Als besonderes Bonbon finden Sie ebenfalls einen kompletten

und sehr vielseitigen Diskettenmonitor, ein Programm, mit dem
Sie direkt auf die Disketten zugreifen und somit alle erworbenen
Kenntnisse direkt anwenden können. So können gelöschte Da-
teien wieder gerettet, Fremd-Disketten gelesen werden usw.

12 ATARI ST Floppy_ und Harddisk

Sie werden in diesem Buch einige Dinge finden, die in keinem

Handbuch auftauchen. Diese Kommandos oder Zusammenhänge
sind in langwieriger Kleinarbeit zusammengetragen worden, so

daß das Buch etwas später, aber auch mit sehr vielen Informa-

tionen erschienen ist. Sie werden feststellen, daß die Floppies

und Harddisk wesentlich mehr kann, als Sie gedacht hatten!

Wir hoffen, daß Sie mit Hilfe dieses Buches alle Fragen bezüg-
lich der Massenspeicher umfassend beantwortet bekommen. Und

nun, viel Spaß mit der Lektüre des Buches!

Files, Programme und Dateien 13

2. Files, Programme und Dateien

Die drei Begriffe der Kapitelüberschrift stehen im Grunde für

einen: Computerdaten jeglicher Art auf einem externen Spei-

chermedium. Trotz größer werdender Hauptspeicher der Rech-

ner, der ATARI ST+ hat immerhin 1 Megabyte RAM, müssen

vom Rechner momentan nicht benötigte Daten, z.b. das Text-

verarbeitungs-Programm, die Einwohner der Stadt Köln oder die

Kakaopreise der letzten 50 Jahre, auf einem externen Speicher-

medium untergebracht werden, da sie sonst ja beim Ausschalten

des Rechners verloren gingen.

Als externes Speichermedium benutzt man heute Magnetbänder,

Disketten, Harddisks und neuerdings auch CD-ROMs. Bei allen
diesen sogenannten Massenspeichern werden die Daten erst in

irgendeiner Form auf das Medium übertragen und anschließend
durch eine geeignete Leseelektronik wieder in den Hauptspei-

cher eingelesen. Unabhängig von der Art des Massenspeichers

bezeichnet man die Gesamtheit der gespeicherten Daten unter

einem Namen auf der Diskette (0.4.) als Datei oder File (engl.
Akte).

Ob als Daten nun Adressen, Brief- und Programmtexte oder

ausführbarer Programmcode gespeichert wird, ist für den An-
wender nebensächlich, für den Rechner jedoch von fundmenta-

ler Bedeutung.

Bei der Speicherung von Programmcode darf kein Trennzeichen

zwischen einzelnen Daten vorhanden sein. Anders sieht dies bei
abgespeicherten Texten aus, wo zwischen den einzelnen Sätzen

oft entsprechende Trennzeichen, z.B. einfach der der Return-

Taste entsprechende Code, eingesetzt werden.

Der Anwender erkennt den Typ einer Diskettendatei meist schon

an den drei zusätzlichen Buchstaben des Namens, dem Extender.

Das Betriebssystem des ATARI ST unterscheidet Programme

oder Dateien nur an diesem Extender. Benennt man also ein

Programm (.PRG) um und hängt statt PRG den Anhang DAT
an, so wird nach Anklicken dieses Programmes nur das bekannte

14 ATARI ST Floppy und Harddisk

Auswahlfenster zum Ausdruck oder Ansehen der Datei erschei-

nen.

Die vom ATARI ST direkt unterschiedenen Extender sind:

.PRG kennzeichnet ein lauffahiges Maschinen-Programm,
welches mit GEM-Unterstützung laufen kann.

TOS bedeutet ebenfalls, daß dies ein Maschinen-Programm
ist, beim Ablauf dieses Programmes ist das GEM je-
doch abgeschaltet.

TTP gleicht .TOS, vor dem Aufruf des Programmes selbst

| erscheint jedoch ein kleines Fenster, in dem man Para-

meter (z.B. Dateinamen für Editoren) eingeben kann.

‚ACC sind spezielle Maschinenprogramme, die nach dem

Einschalten des Rechners geladen werden. Diese Pro-

gramme bleiben ständig im Speicher und sind als Ac-
cessories aus dem DESK-Menü des Desktop aufrufbar.

INF ist als DESKTOP.INF für das Desktop wichtig. Hierin
sind die Informationen über die Positionen und Größen
der Fenster, die im Kontrollfeld eingestellten Werte
usw. eingetragen. Diese Datei wird durch Anwahl des.
Menüpunktes ’Arbeit sichern’ im EXTRAS-Menü er-
stellt.

Die anderen Dateien wie z.B. BASIC-Programme mit dem Ex-
tender .BAS sind zwar standardmäßig mit diesem Extender aus-
gestattet, sind jedoch für das Betriebssystem des ST uninteres-
sant. Außerdem kann man auch z.B. eine .TXT-Datei in den
BASIC-Interpreter laden, wenn sie den Text eines BASIC-Pro-

grammes enthält. Die weiteren Extender sind also nicht ent-
scheidend, sind jedoch für den Anwender eine große Hilfe, um
seine Dateien zu unterscheiden.

Die eigentlichen Unterschiede zwischen den einzelnen Datei-
typen liegen in dem inneren Aufbau der Datei selbst. Die mei-

sten Hochsprachen unterscheiden bei der Dateibehandlung zwi-

Files, Programme_und Dateien 15

schen verschieden Dateiformen, z.B. mit oder ohne Trennzeichen
zwischen Texten oder Zahlen, spezielle Textarten usw. Betrach-

ten wir nun erst einmal die reinen Daten-Files, die nur Texte

und Zahlen enthalten. Hier gibt es verschiedene Methoden, be-
stimmte Daten aus der Datei herauszufinden und zu bearbeiten.

Die Geschwindigkeit des Zugriffs auf bestimmte Daten von Dis-
kette oder Festplatte hängt hauptsächlich von der "Intelligenz"

des Dateiverwaltungssystems ab. Dies läßt sich am besten an ei-

nem konkreten Beispiel verdeutlichen:

In einer Datei seien z.B. die Adressen aller Einwohner Kölns
gespeichert. Die gesamten zu einer Adresse gehörende Informa-

tion wie Name, Vorname, Postleitzahl, Wehnort, Straße und

Hausnummer bezeichnet man als Datensatz, die einzelne Infor-

mation wie z.B. der Name ist ein Datenfeld des Datensatzes. Die

einfachste Form der Dateiverwaltung ist die einer sequentiellen
Datei, bei der die Daten einfach der Reihe nach hintereinander

geschrieben werden. Das Programm, welches solche Daten aus

der Datei liest, muß das Ende eines Datensatzes selbst erkennen,

da ein Trennkennzeichen nur zwischen den einzelnen Daten-

feldern eingefügt wird.

Jeder Datensatz hat meist eine unterschiedliche Länge. Möchte
man nun z.B. auf den 10. Datensatz zugreifen, muß man die

Datei von Anfang an bis zum 10. Datensatz durchlesen. Nun ist

dieses Verfahren für kleinere Datensätze noch akzeptabel, doch

stellen Sie sich einmal vor man sucht in einer solchen sequenti-

ellen Datei mit den Adressen aller Bundesbürger nach der von
Harry Hirsch aus Buxtehude.

Müssen große Datenmengen verwaltet werden, arbeitet man
meist mit festen Datensatzlängen und sogenannten RANDOM-
ACCESS Dateien (random= beliebig, access= Zugriff) mit wahl-
freiem Zugriff. In diesen Dateien steht jedem Datenfeld eines
Datensatzes eine bestimmte, vorher festgelegte Größe zur Verfü-
gung, z.B. 13 Zeichen für den Namen, 13 für den Vornamen, 4
für die Postleitzahl, 15 für den Ortsnamen, 15 für den Straßen-

namen und 4 für die Hausnummer, zusammen 64 Zeichen pro
Datensatz.

16 ATARI ST Floppy und Harddisk

Möchte man nun auf den 10. Datensatz zugreifen, kann man den
Anfang des 10. Datensatzes relativ zum Anfang der Datei durch
einfaches Multiplizieren berechnen. Man braucht dann nur am

10*64=640sten Byte der Datei zu lesen beginnen und hat direkt
die gewünschten Daten parat. Die Rechnung gilt natürlich nur,

wenn es auch einen nullten Datensatz gibt.

Dieser Trick funktioniert allerdings nur, wenn man auch direkt

an eine beliebige Stelle des Massenspeichers zugreifen kann, was

z.B. bei der Verwendung eines normalen Tonbandes nicht mög-
lich ist. Bei Disketten oder der Harddisk ist dies möglich, da
diese in einzelne Abschnitte (Sektoren) unterteilt sind, die
durchgehend nummeriert sind.

Zurück zu unserem Beispiel der Adreßverwaltung. Wenn wir
wissen, auf welchem Sektor der nullte Datensatz beginnt, können
wir auch ausrechnen, wo sich das 640. Byte der Datei befindet.

Nehmen wir als Beispiel an, unsere Datei beginnt in Sektor

Nummer 10. Beim ATARI ST enthält jeder Sektor 512 Bytes,

also werden wir unseren 10. Datensatz bzw. das 640. Byte wohl

auf dem 11. Sektor finden, und zwar an der 640-512 =

128.Stelle.

Diese Rechnerei wird dem Programmierer allerdings erspart,

wenn er in einer Hochsprache arbeitet. Eine Hochsprache ist ei-

gentlich jede Programmiersprache außer der Maschinensprache,

auch Assembler genannt. Assemblerprogrammierer können je-

doch auch diese Berechnungen von Sektoren dem Betriebssystem

des ATARI ST auftragen, da dieses solche Funktionen zur Ver-

fügung stellt. Doch dazu mehr in Kapitel 7.

Auf dieses einfache Prinzip des Direktzugriffes aufbauend exi-

stieren noch einige Variationen von Dateiorganisations-
Techniken. So kann man z.B. die ganze Datei nach einem wich-

tigen Datenfeld, z.B. dem Namen, sortieren, die sortierten Na-

men in eine eigene Datei mit der jeweiligen Nummer des ent-

sprechenden Datensatzes schreiben. Eine solche Hilfs-Datei

nennt man Index-Datei. So entsteht eine aus zwei Dateien beste-

hende index-sequentielle Datei (Index-Datei mit sequentieller

Datei), für die es einige recht raffinierte Suchverfahren gibt.

Files, Programme und Dateien 17

Dadurch kann man sehr schnell einen bestimmten Datensatz fin-
den und auf ihn zugreifen.

2.1 Filestrukturen und Zugriff verschiedener Hochsprachen

Das Betriebssystem eines jeden Rechners stellt die Grundopera-

tionen zum Umgang mit Dateien (Files) zur Verfügung, auf die
dann die verschiedenen Hochsprachen ihre Dateiformen auf-

bauen. Wie erwähnt unterstützt das Betriebssystem des ATARI
ST, TOS oder GEMDOS genannt, den Umgang mit RANDOM-

ACCESS-Dateien. Diese Dateifunktionen des GEMDOS sollen

nun kurz vorgestellt und im Anschluß die Umsetztung in die
einzelnen Hochsprachen erläutert werden. Die Beispielpro-

gramme für die verschiedenen Hochsprachen, BASIC, PASCAL,

C und FORTRAN, machen alle exakt das gleiche: Anlegen und
Lesen einer sequentiellen sowie einer RANDOM-ACCESS- Datei.

2.1.1 Die Funktionen des GEMDOS im Überblick

Jede Datei wird vom Anwender durch einen Namen gekenn-
zeichnet. Die maximale Länge des Dateinamens kann 11 Zeichen

betragen, wovon die ersten acht vor dem als Trennzeichen fun-

gierenden Punkt den eigentlichen Namen und die letzten 3 eine
Zusatzinformation zu dieser Datei (Extender) repräsentieren. Bei

der Anwendung von Hochsprache-Compilern, Programmen, die

den geschriebenen Programmtext in ein lauffähiges Programm
übersetzen, ist die Verwendung von Extendern notwendig. Auf
dem Weg vom Programmtext zum fertigen Programm entstehen
nämlich bis zu vier verschiedene Files mit gleichem Namen,
aber zur Unterscheidung verschiedenen Extendern. Man schreibt
z.B. ein C-Programm mit einem Textverarbeitungs-Programm
und bennennt das Textfile ’testl.c’. Beim Übersetzen des Pro-
grammes entstehen dann Dateien mit den Namen ’testl.o’ und

’testl.prg’.

Zum Anlegen einer neuen Dateı stellt das GEMDOS die Funk-

tion CREATE (Funktions-Nummer $3C) zur Verfügung. Man
übergibt dieser Funktion den gewünschten Dateinamen und ein

18 | ATARI ST Floppy und Harddisk

sogenanntes Modus-Wort, welches Informationen über die Art
der anzulegenden Datei enthält. Hat das Anlegen der Datei ge-
klappt (Diskette nicht schreibgeschützt 0.4.), erhält man vom
GEMDOS eine Dateinummer zurück, über die nun alle folgen-

den Dateizugriffe ablaufen. Diese Nummer nennt man handle.

Die CREATE-Funktion muß nur beim allerersten Zugriff auf
eine Datei aufgerufen werden, spätere Zugriffe auf eine schon

bestehende Datei können durch Aufruf der Funktion OPEN
($3D) vorbereitet werden. Beim Aufruf von CREATE wird also
auf dem aktuellen Laufwerk eine leere Datei mit dem übergebe-
nen Dateinamen angelegt, die anschließend beschrieben werden
kann. Viele Hochsprachen übernehmen die CREATE-Funktion

in ihre OPEN-Funktion, Beim Aufruf von OPEN, wenn in die

Datei geschrieben werden soll, wird dann die Datei neu ange-
legt, falls noch keine mit dem angegebenen Namen existiert.

Zum Schreiben in eine Datei übergibt man der GEMDOS-Funk-

tion WRITE ($40) die bei CREATE oder OPEN erhaltene Datei-
nummer (handle), die Anzahl der zu schreibenden Zeichen und
natürlich die zu schreibenden Zeichen selbst. Sind alle Daten in
die Datei geschrieben und soll in irgendeiner Form wieder auf
die Daten zugegriffen werden, muß die Datei vorher geschlossen
werden. Die Funktion CLOSE ($3E) übernimmt diese Aufgabe.
Wird diese Funktion nicht aufgerufen, gehen meist Daten der
Datei verloren, da die Struktur bzw. die Aufteilung der Datei

auf der Diskette nicht richtig auf der Diskette vermerkt ist.

Nachdem die Datei durch CREATE angelegt, mittels WRITE
beschrieben und schließlich durch CLOSE wieder geschlossen
wurde muß diese Datei zum Lesen wieder durch OPEN geöffnet
werden. Der OPEN Funktion ($3D) wird ebenso wie bei

CREATE der Filename übergeben und zusätzlich noch ein Mo-

dus-Wort zwischen 0 und 2.

Eine als Modus übergebene 0 öffnet die Datei nur zum Lesezu-

griff, d.h. die beim Aufruf erhaltene Dateinummer (handle) er-
möglicht nur ein Lesen aus der Datei, versuchte Schreibzugriffe
werden mit Fehler abgebrochen. Ein Modus von 1 öffnet die
Datei für Nur-Schreib-Zugriff und eine übergebene 2 erlaubt

Files, Programme und Dateien 19

sowohl Schreib- als auch Lese-Zugriff. Gelesen wird nun mit
der Funktion READ ($3F),. der analog zu WRITE die Datei-
nummer aus dem OPEN Aufruf und die Anzahl der zu lesenden
Zeichen übergeben werden.

Der Datei-Zugriff mittels READ und WRITE erfolgt rein se-
quentiell, d.h. beim Öffnen der Datei durch CREATE erzeugt
das Betriebssystem einen Zeiger in die Datei, der bei jedem
Öffnen und natürlich auch beim Anlegen der Datei wieder auf
Null gesetzt wird. Dieser Zeiger weist immer auf die momentan
bearbeitete bzw. aktuelle Position innerhalb der Datei, damit
man sich leichter zurechtfindet.

Schreibt man nun mittels WRITE z.B. 14 Zeichen in diese Datei,
bewegt das Betriebssystem diesen internen Zeiger um 14 Positio-
nen weiter, so daß bei dem nächsten Schreibzugriff die neuen
Zeichen an das letzte geschriebene Zeichen angehängt werden.
Der Anwender muß also entweder pro Datenfeld eine bestimmte

Anzahl von Zeichen zulassen oder ein bestimmtes Zeichen zwi-
schen zwei Datenfelder einfügen, damit beim Lesen das Ende
eines Datenfeldes erkannt werden kann.

Für eine Adreßdatei, die ja eine reine Textdatei darstellt, wer-

den nicht alle 256 durch 8-Bit darstelibaren Zeichen (siehe An-
hang) benötigt, sondern nur die Klein- und Groß-Buchstaben,
die Zahlen sowie die Satzzeichen. Daher existieren im soge-
nannten ASCII-Zeichensatz (ASCH= American Standard Code of

Information Interchange) einige Steuerzeichen, die z.B. das Ende
einer Datei oder das Ende eines Datenfeldes markieren.

Genau wie beim Schreiben wird auch beim Lesen von Zeichen

aus einer Datei der interne Dateizeiger um die Anzahl der gele-
senen Zeichen weiterbewegt. Man kann so zwar jedes Zeichen
lesen, muß aber zum Lesen des letzten Zeichens einer Datei alle

vorherigen Zeichen durchlesen. Die GEMDOS-Funktion LSEEK
($42) ermöglicht nun die Positionierung des internen Dateizei-
gers auf ein beliebiges Zeichen relativ zu Dateianfang, Datei-
ende oder momentanem Dateizeiger. Als Übergabeparameter

muß wieder die Dateinummer (handle) sowie ein Modus-Wort

20 ATARI ST Floppy und Harddisk

und natürlich die gewünschte Veränderung der Zeigerposition

übergeben werden.

Hat dieses Modus-Wort einen Wert von 0, so wird die Position

relativ zum Dateianfang berechnet, bei einem Wert von | er-
rechnet sich die neue Position des Dateizeigers relativ zum jetz-
tigen Zeiger, d.h. es sind auch negative Werte erlaubt, damit
man auch den Zeiger um einige Zeichen zurückbewegen kann.

Übergibt man als Modus-Wort eine 2, zählt die Position relativ
zum Dateiende, es sind folglich nur negative Werte erlaubt. Mit

dieser LSEEK-Funktion wird es möglich, eine RANDOM-AC-
CESS-Datei mit wahlfreiem Zugriff zu programmieren, indem

man feste Datenfeldlängen nimmt, z.B. 13 für den Namen und
64 Zeichen für einen gesamten Datensatz. Dadurch weiß man,
um wieviele Zeichen man den internen Dateizeiger bewegen
muß, um zum nächtsten oder vorherigen Datenfeld bzw. Daten-

satz zu gelangen.

Bei der bisherigen Beschreibung der GEMDOS-Funktione fehlen
noch drei für Dateihandling wichtige Funktionen:

SETDTA ($1A) legt einen Puffer für die beiden Funktionen
SFIRST ($4E) und SNEXT ($4F) fest, mit denen man alle Da-
teien einer Diskette aus dem Inhaltsverzeichnis lesen und die
jeweilige Lange dieser Dateien bestimmen kann.

Nach diesem globalen Einblick in das Betriebssystem des ATARI
ST können wir uns nun den einzelnen Hochsprachen zuwenden

und die Möglichkeiten des Dateihandlings der jeweiligen Spra-

chen unter die Lupe nehmen. Diese Beispiele können keine

Einführung in die jeweilige Sprache sein und auch keine kom-
plette Dateiverwaltung bieten. Sie sollen nur anhand eines kon-

kreten Beispieles zeigen, wie einach das Anlegen und der Zu-

griff auf eine Diskettendatei ist. Zum Erlernen der Sprache und

auch der Dateiorganisation findet man in der Literatur bereits

etliche gute Bücher.

Nach der halb theoretischen Betrachtung der Zugriffstechniken

finden Sie dann schließlich im Kapitel 2.6 ein einfaches, aber

doch komplettes Datenbank-Programm ın BASIC, an dem Sie

Files, Programme und Dateien 21

die praktische Anwendung der eben erworbenen Kenntnisse se-

hen können.

2.2 Filezugriff von BASIC

Das beim ATARI ST mitgelieferte ATARI-BASIC bietet sowohl
den sequentiellen Zugriff auf Dateien als auch den wahlfreien
Zugriff. Nach dem Entfernen der Zeilennummern evt. mit dem
von GfA mitgelieferten ST-KILL-Programm funktionieren die
BASIC-Programme ohne Änderung auch mit dem BASIC-Inter-

preter von GfA.

BASIC-Befehlsübersicht

Zum Anlegen einer Diskettendatei verwendet man die Funktion

OPEN, die drei verschiedene Optionen einer Datei bietet. Die

Syntax des Befehls:

OPEN "Modus",#Dateinummer,"Dateinamen",Datensatzlange

Für Modus (unbedingt in Großbuchstaben) existieren folgende
Optionen:

T Datei soll zum sequentiellen Lesen geöffnet werden.

"©" Datei soll zum sequentiellen Schreiben geöffnet werden.

"R" Datei soll zum wahlfreien Zugriff geöffnet werden.

Die Dateinummer ist eine willkürliche Zahl zwischen 1 und 15,
ebenso wie der Dateiname, der acht Buchstaben gefolgt von ei-
nem Punkt und drei weiteren Extension-Buchstaben enthalten
kann. Die Datensatzlänge spielt nur beim Öffnen einer RAN-
DOM-Datei eine Rolle (Modus = "R") und gibt die Größe jedes
Datensatzes in Bytes an. Im Gegensatz zu der Betriebssystem-

funktion muß man hier schon beim Öffnen angegeben, ob eine

22 ATARI ST Floppy und Harddisk

sequentielle Datei oder eine solche mit wahlfreiem Zugriff an-
gelegt werden soll.

Die Verwendung von sequentiellen Dateien ist in diesem BASIC
allerdings stark eingeschränkt, da keine Möglichkeit besteht,

Daten an eine schon vorhandene Datei anzuhängen. Dies geht
nur mit einem recht unschönen Trick: Hat man z.B. eine se-
quentielle Adreßdatei mit 100 Adressen gespeichert und möchte
nun die von Tante Frieda noch hinzufügen, muß man alle 100
Adressen lesen und zwischenspeichern, anschließend die neue

Adresse hinzufügen und alle 101 Adressen wieder in die Datei
schreiben.

Jedes OPEN "O" löscht eine schon vorhandene Datei mit glei-
chem Namen und legt somit eine völlig neue, leere Datei auf der
Diskette an. Wegen dieser doch sehr eingeschränkten Handha-
bung und da die maximale Größe einer sequentiellen Datei von
der Größe des Hauptspeichers des ATARI abhängig ist (was für

kleinere Datenbanken natürlich kein Hindernis ist), möchte ich
nur kurz auf sequentielle Dateien im ATARI-BASIC eingehen.

2.2.1 Die sequentielle Datei in BASIC

In eine sequentielle Datei können Zeichenketten (ASCII-Strings)
oder auch Zahlen geschrieben werden. Das Schreiben von ir-
gendwelchen Sonderzeichen kann Probleme geben, da dann evtl.
das Ende eines Datenfeldes nicht mehr zu finden wäre. Eine
solche Datei wird z.B. durch folgenden Befehl zum Beschreiben
geöffnet:

OPEN "0",#1,"TEST1.DAT"

Das Schreiben in diese neu angelegte Datei mit dem Namen
TEST1.DAT übernehmen die beiden Befehle WRITE#I] und
PRINT#1, wobei WRITE zwischen die zu schreibenden Daten
ein Komma ausgibt, PRINT dagegen die gleichen Formatierzei-
chen wie bei der Ausgabe auf den Bildschirm (z.B. Leerzeichen
nach einem Komma) benutzt.

Files, Proeramme und Dateien 23

PRINT# und WRITE# besitzen die gleiche Schreibweise, und
zwar:

PRINT#Dateinummer,Daten[,Daten....]

WRITE#Dateinummer,Daten[,Daten.,...]

Die Datei "TEST1.DAT" könnte man durch folgende Befehls-
folge zum Beschreiben öffnen und Testdaten hineinschreiben:

10 open "0", #1,"A:TEST1.DAT"

20 aS = "Harry"

30 b$ = "Hirsch"

40 for 1 = 1 to 10

50 write#1,a$

60 write#1,b$

70 next i

80 close #1

Dieses kleine Programm legt die Datei "TEST1.DAT" auf der
Diskette in Laufwerk A an und schreibt 10 mal "Harry" bzw.

"Hirsch" in die Diskettendate1.

Die WRITE-Funktion schreibt einen Text (String) in Anfüh-
rungszeichen und den Zeichen $0D (CR= Carriage Return) und
$0A (LF= Line Feed) als Ende einer Ausgabe auf die Diskette.
Das Zeichen $1A dient dem BASIC-Interpreter als Ende-der-

Datei Zeichen EOF (End of File) und bietet somit dem Pro-
grammierer eine Möglichkeit zur Erkennung des Datei-Endes.

Zum Lesen einer sequentiellen Datei existieren im ATARI-BA-

SIC zwei Befehle, die sich nur hinsichtlich der Behandlung von
Steuerzeichen im zu lesenden Text unterscheiden:

Die /NPUT#-Funktion überliest vorangestellte Leerzeichen CRs,

LFs und Sonderzeichen und liest ab dem ersten ASCII-Zeichen

bis zu einem Leerzeichen, dem Ende-der-Zeile Zeichen (EOL =

End of Line, besteht aus $0A und $0D, LF und CR), einem
Komma, dem EOF-Zeichen oder maximal 255 Zeichen. Die

LINE INPUT#-Funktion liest alle Zeichen vom ersten bis zum

24 ATARI ST Floppy und Harddisk

Ende-der-Zeile Zeichen oder bis zu 254 Zeichen. Beiden Be-
fehlen muß eine Variable, in die gelesen werden soll, sowie die
Dateinummer der Datei übergeben werden. INPUT #1,a$ liest
einen String aus der Datei mit der Nummer | in die Variable a$.

Das folgende kurze Programmfragment öffnet die eben angelegte
Datei "TEST1.DAT" zum Lesen und liest alle Strings bis zum
Ende der Datei Zeichen (EOF = $1A). Die Funktion
EOF(Dateinummer) dient zur Erkennung dieses Endes. Sie lie-
fert einen Wahrheitswert: TRUE (wahr), wenn das Dateiende
erreicht wurde und FALSE (unwahr), falls dies nicht der Fall

ist.

10 open "I" #1,"A:TEST1.DAT"

20 if eof(1) goto 100

30 input #1,a%

40 print a$

50 goto 20

100 close #1

2.2.2 Die RANDOM-Datei in BASIC

Die Handhabung von RANDOM-Dateien mit wahlfreiem Zu-
griff ist im ATARI-BASIC wesentlich besser implementiert als
der sequentielle Zugriff. Allerdings müssen Sie erst einmal

mehrere Befehle kennenlernen, da das Anlegen und Bearbeiten

einer RANDOM-Datei auch wesentlich komplexer ist. .

Das Öffnen und Anlegen der Datei geschieht noch ohne wesent-

lichen Unterschied. OPEN #1,"R","TEST2.DAT",64 öffnet die

Datei "TEST2.DAT" als Datei mit wahlfreiem Zugriff und ver-
einbart für diese Datei eine Datensatzlänge von 64 Zeichen bzw.
Bytes. Wenn Sie nachher mit GET# und PUT# auf die Datei zu-
greifen, geschehen diese Zugriffe immer in "Portionen" zu 64
Zeichen.

Die einzig erlaubten Zeichen dieser Dateiart sind ASCII-Zei-
chen. Deshalb müssen alle Zahlenwerte, die in eine RANDOM-

Datei geschrieben werden sollen, vor dem Schreiben in Zahl-

Files, Programme und Dateien 25

Zeichen (Ziffern) umgewandelt werden. Beim Lesen muß man
diese Zahl-Zeichen wieder in Zahlen zurückwandeln. Aber keine
Sorge, für diesen Zweck existieren mehrere BASIC-Funktionen.

Meistens sollen ja in einem Datensatz einer RANDOM-AC-
CESS-Datei mehrere Datenfelder angelegt werden, z.B. eines für
den Namen, eines für den Vornamen ect. (s.o.). Diese Einteilung
des vorhandenen Platzes, in diesem Fall der 64 Zeichen, über-

nimmt die Funktion FIELD #. Die Anweisung

FIELD #1, 13 AS a$, 13 AS b$, 4 AS c$, 15 AS d$,15 AS e$, 4 AS f$

reserviert im 64 Zeichen großen Datensatz-Feld der Datei
Nummer eins (#1) 13 Zeichen für a$ (Vorname), 13 für b$
(Name), 4 Zeichen für c$ (Postleitzahl), 15 Zeichen für d$
(Ortsname), 15 Zeichen für e$ (Straßennamen) und 4 Zeichen
für f$ (Hausnummer).

Auf diese Stringvariablen sollte nicht direkt, sondern nur über
die Funktionen LSET und RSET zugegriffen werden. LSET a$
= "Harry" überträgt den String "Harry" linksbündig in die String-
variable a$, die laut obiger Definition 13 Zeichen aufnehmen
kann. Die restlichen Zeichen bis zum 13. werden durch Spaces
($20) belegt.

Der Befehl rset a$ = "Harry" füllt die Puffervariable rechtsbün-
dig, d.h der freie Platz pro Datenfeld wird mit führenden Spaces
aufgefüllt.

Möchte man Zahlen in eine Random-Datei schreiben, müssen

diese zuerst in Byte-Strings umgewandelt werden. Die Funktio-

nen MKD$, MKI$ und MKS$ übernehmen diese Aufgabe:

mki$(Zahl) gibt einen 2-Byte String aus (für Integer-Variablen)

mks$(Zahl) gibt einen 4-Byte String aus (für Real-Variablen)

mkd$(Zahl) gibt einen 8-Byte String aus (für doppelt genaue
Reals)

26 ATARI ST Floppy und Harddisk

Zahlen werden also vor der Übertragung in die gewünschte
Puffervariable der RANDOM-ACCESS-Datei durch eine dieser
Funktionen in einen ASCII-String umgewandelt und später beim
Lesen durch eine der Rückverwandlungs-Funktionen
(cvi,cvs,cvd) wieder in normal verarbeitbare Zahlen (Reals und
Integers) umgeformt.

Nachdem nun die gewünschten Puffervariablen des Datensatzes
mittels FIELD angelegt wurden, Strings mit LSET, Zahlen nach
vorheriger Anwendung von MKD$ oder MKS$ ect. auch mit
LSET in diese Puffervariablen eingetragen wurden, kann der
gesamte Datensatz (Name, Vorname ...) mit einem einzigen Be-
fehl in die Datei eingetragen werden: mit PUT. PUT #5, 1 trägt
den in den Puffervariablen der Datei Nummer 5 enthaltenen
Daten als Datensatz Nummer | in die Datei Nummer 5 ein.

Das folgende kleine BASIC-Programm legt eine Random-Datei

mit Namen "TEST3.DAT" auf der in Laufwerk A eingelegten
Diskette an, spezifiziert 6 Datenfelder für die Puffervariable,

belegt diese Puffervariable mit Werten und schreibt diese Werte
schließlich als Datensatz Nummer 1 und 2 in die Random-Datei.

10 open "R",#1,"A:DATEI3 DAT", 64

20 field #1,13 as a$,13 as b$,4 as c$,15 as d$,15 as e$,4 as f$

30 lset a$= "Harry"

40 lset b$= "Hirsch"

50 a = 2222

60 lset c$= mks$(a)

70 lset d$= "Buxtehude"

80 lset e$= "Meerweg"'

90 b = 245

100 lset f$=mks$(b)

110 put #1, 1

120 put #1, 2

130 close #1

In Zeile 60 wird die Zahl 2222 vor der Zuweisung an die Puf-
fervariable c$ durch MKS$ in einen 4-Byte-String umgewandelt.

Files, Programme_und Dateien 27

Möchte man die Daten der Random-Datei schließlich wieder
lesen, geht man analog zum Schreiben vor, indem man die Datei
öffnet, die Puffervariablen definiert und einen kompletten Da-

tensatz mit dem Befehl GET#1 einliest. Auf die einzelnen Da-
tenfelder kann dann direkt über die entsprechende Pufferva-

riable zugegriffen werden.

Bei Zahlen muß man an die Rückwandlung denken, da Zahlen

ja als ASCH-Strings gespeichert sind. Das folgende kleine BA-
SIC-Programm Öffnet die eben angelegte Datei und liest alle
Datensätze dieser Datei, welche dann auf dem Bildschirm ausge-

geben werden.

10 open "R", #1,"A:DATEI3.DAT", 64

20 field #1,13 as a$,13 as b$,4 as c$,15 as d$,15 as e$,4 as f$

30 get #1,1

40 print a$,b$

50 print cvs(c$),d$

60 print e$,cvs(f$)

70 close 1

Die Feldgrößen der Puffervariablen dürfen beim Schreiben und
anschließendem Lesen natürlich nicht voneinander abweichen,

d.h. wenn für a$ vor dem Schreiben 13 Zeichen in der Puffer-

variablen reserviert wurden, müssen beim späteren Lesen auch

13 Zeichen für die Puffervarable a$ reserviert werden.

2.3. Das Filehandling in PASCAL

Die Beschreibung der Dateifunktion für PASCAL bezieht sich
auf den PASCAL Compiler ST-PASCAL+ von CCD, der direkt

von Atari vertrieben wird und eine sehr gute, weit über den
PASCAL-Standard hinausgehende, Implementation der Sprache

PASCAL auf dem Atari ST darstellt. ST-PASCAL+ unterstützt

sowohl sequentielle wie auch RANDOM-ACCESS- Dateien.

28 ATARI ST Floppy und Harddisk

Für Dateien verwendet man den Datentyp ’file of’ oder den
schon vordefinierten Type TEXT, der allerdings nur für se-

quentielle Dateien angewendet werden kann und dem Typ ’pac-

ked array of char’ entspricht. Als Beispiel deklariert

var dat: file of integer

eine Datei, die Integer-Zahlen aufnehmen kann und den dazu-

gehörigen Zeiger als Variable ’dat’, der auf das aktuell zuge-
griffene Zeichen innerhalb der Datei zeigt.

2.3.1 Die sequentielle Datei in PASCAL

Nach der Deklaration einer Dateivariablen vom Typ ’file of’
wird eine neue Datei durch die Funktion rewrite (interner Da-
teiname, ’externer Name’), die dem BASIC-Befehl OPEN "O"

entspricht, angelegt. Durch diesen Befehl wird eine Datei mit

dem übergebenen Dateinamen angelegt und einem externen Na-

men zugeordnet. Der Dateiname muß im Deklarationsteil als

Variable des Typs ’file of’ deklariert werden. Über den Da-
teinamen bzw. die ebenfalls durch rewrite definierte Pufferva-
riable (gleicher Name mit angehängtem Hochpfeil *) kann nun
auf die Datei zugegriffen werden.

Der interne Dateiname repräsentiert die Datei innerhalb des

PASCAL-Programms und der ın Hochkommata stehende externe

Name repräsentiert die gleiche Datei auf einem Massenspeicher
(Diskettendatei). Deklariert man z.B. die Datei ’dat’ durch:

var dat: file of integer ;

und Öffnet sie anschließend zum sequentiellen Beschreiben mit

rewrite (dat, ’a:sdatei.dat’), so wird gleichzeitig eine Pufferva-

riable dat“ definiert, die eine Integerzahl aufnehmen kann und
auf das erste Dateielement zeigt. Außerdem wird auf der Dis-
kettenstation A eine Datei mit Namen "sdatei.dat" angelegt und
zum Beschreiben geöffnet. Alle folgenden Aus- und Eingaben
beziehen sich dann auf diese Diskettendatei.

Files, Programme und Dateien 29

Zum Lesezugriff auf eine schon bestehende Datei muß diese mit
reset (interner Dateiname, ’externer Name’) : wieder geöffnet
werden. Durch diesen Befehl wird eine schon existierende Datei
zum Lesen geöffnet und gleichzeitig der erste Datensatz in die
Puffervariable übertragen. Sollte versucht werden, eine noch

nicht bestehende Datei zu öffnen, wird EOF() wahr.

Die Funktion EOF (interner Dateiname) : gibt einen Wahrheits-
wert vom Typ Boolean (TRUE, FALSE) zurück. TRUE wird

zurückgegeben wenn der Dateizeiger auf das Ende der Datei

zeigt.

EOL (Dateivariable) : ist ebenfalls eine Funktion vom Typ Boo-
lean, die jedoch nur auf Dateien des Typs ’packed file of char’

bzw. TEXT angewendet werden darf und TRUE zurückgibt,
wenn das Ende einer Zeile erreicht wurde.

Der Zugriff auf die Daten einer Datei erfolgt schließlich über
put (interner Dateiname) : zum Schreibzugriff und get (interner
Dateiname) zum Lesezugriff.

put (dat) schreibt den Wert der Puffervariable dat” in die Datei.
Die Puffervariable stellt praktisch einen Zeiger in die Datei dar,
der bei jedem rewrite oder reset auf Null gesetzt und bei jedem
Zugriff mit get oder put um eins erhöht wird und somit auf das
nächste Element der Datei zeigt. Nach dem Öffnen der Datei

zum Lesen durch reset (dat,’name’) wird schon das erste Dateie-
lement in die Puffervariable dat* übertragen. Ein nachfolgendes

get (dat) erhöht den Dateizeiger um eins und überträgt den

Wert, auf den der Zeiger dann zeigt, in die Puffervariable dat”.
Zum Erkennen des Dateiendes dient die Funktion eof (Dateiva-
riable), die einen +Wert vom Typ Boolean (TRUE,FALSE) lie-
fert. |

Im Beispiel muß vor dem Zugriff mit get auf Dateiende getestet
werden, da get den Dateizeiger erhöht und das nächste Dateie-
lement ın die Puffervarable übertragen will. Bei Dateien vom
Typ TEXT besteht zusätzlich die Möglichkeit, das Zeilenende

30 ATARI ST Floppy _ und Harddisk

durch die Funktion eol (Dateivarıable) zu erkennen, die ebenso
wie EOF einen Wert vom Typ Boolean zurückgibt.

Als mögliche Dateielemente können sämtliche in PASCAL ver-
fügbaren Datentypen dienen, selbstverständlich auch RECORDS.

Nachdem eine Datei also mit rewrite geöffnet wurde, kann der
Puffervariablen ein Wert zugeordnet werden, der anschließend
durch put in die Datei geschrieben wird. Für reine Textdateien,
also solche vom Typ packed ’file of char’ (TEXT), kann die zum
Schreiben eines Dateielementes eigentlich nötige Befehlsfolge
(Zuweisung eines Wertes an die Puffervariable) durch dat* :=
wert; und Schreiben dieses Wertes in die Datei durch put(dat);
durch den einzelnen Befehl write (dat, wert); abgekürzt werden.
Analog hierzu liest der Befehl read (dat, wert) aus einer TEXT-
Datei und ersetzt die Befehle wert := dat” und get (dat).

Das nun folgende kleine PASCAL-Programm legt eine Datei auf
der Diskette in Laufwerk A an und beschreibt diese mit 20
Strings. In CCD-PASCAL definiert string[20] eine Variable vom
Typ ’packed array of char’, die 21 Zeichen aufnehmen kann.
Der PASCAL-Compiler merkt sich die Länge jedes Strings, in-
dem er diesen Wert an den Anfang des Strings, also ins nullte
Zeichen einsetzt.

(* Schreiben einer sequentiellen Datei in PASCAL. U.B. 9.86 *)

program sdatei ;

var dati: file of string[20] ;

t1,t2 : string[20] ;

i : integer ;

begin

rewrite (dati, 'a:seqdatei.dat');

t1 := 'Harry';

t2 := 'Hirsch':

for i:= 1 to 10 do
begin

Files, Programme und Dateien 31

dati* := t1;

put (dat1);

dati* := t2;

put (dati);

end; (* for Schleife *)

end. (* Programm *)

Wenn Sie sich mit dem in Kapitel 7 vorgestellten Disk-Monitor
die angelegte Datei "seqdatei.dat" ansehen, so erkennen Sie deut-

lich das Organisationsschema einer sequentiellen PASCAL-Datei
mit Stringvariablen (21 Zeichen pro String reserviert, Lange des
Strings am Anfang des Strings). Zum Lesen der soeben angeleg-
ten Datei dient folgendes kleine Programm:

(* Lesen einer sequentiellen Datei in PASCAL. U.B. 9.86 *)

program liesdatei ;

var dati: file of string[20] ;

t1,t2 : string[20] ;

i : integer ;

begin

writeln (' Datei lesen ');

reset (dat1,'a:seqdatei.dat');

while not eof(dat1) do

begin

ti := dat1”;

get (dat);

writeln (t1);

end; (* while Schleife *)

writeln;

32 ATARI ST Floppy und Harddisk

writeln (' Return- Taste betätigen ');

readin (t2);

end. (* Programm *)

Nach dem Öffnen der Datei mit reset(datl,’A:psequtl.dat’) wird
das erste Dateielement schon der Puffervariablen datl* zugeord-
net, so daß die Puffervariable schon direkt nach dem Öffnen
der Datei einer Variablen verarbeitet werden kann. Diese Va-
riable muß natürlich vom gleichen Typ wie die durch die De-
klaration der Dateivariable mitdefinierte Puffervariable sein,
sonst können Fehler auftreten. Außerdem darf kein Versuch

unternommen werden, Daten hinter dem Dateiende zu lesen, die

Funktion eof (datl) fragt ab, ob das Dateiende schon erreicht
ist; die Leseschleife wird in diesem Fall verlassen.

In PASCAL existiert ebenso wie in BASIC keine Möglichkeit,

Daten ans Ende einer bestehenden sequentiellen Datei anzuhän-

gen. Möchten Sie eine schon existierende Datei erweitern, bleibt
Ihnen nichts anderes übrig, als die gesamte Datei zu lesen und

mit dem neuen Dateielement in eine neu anzulegende Datei zu

schreiben.

Das Anlegen und der Zugriff auf Dateien anderer Datentypen

(file of integer, file of real) geschieht analog zu obigem Beispiel.

2.3.2 Random-Dateien in PASCAL

Das Anlegen und Öffnen zum Lesen von RANDOM-ACCESS
Dateien geschieht mit den gleichen Befehlen wie bei den se-
quentiellen Dateien (rewrite, reset), auch der Zugriff auf die

einzelnen Daten ist ähnlich. Es gibt nur einen zusätzlichen Pa-
rameter bei get und put, nämlich die Nummer des Datensatzes,

der geschrieben oder gelesen werden soll. Die Nummerierung

der Datensätze beginnt bei 0, wobei alle Datensätze zwischen 0
und der größten Nummer erst angelegt werden müssen.

Wenn also z.B. der letzte Datensatz die Nummer 8 trägt, kann
danach kein Datensatz mit der Nummer 10 angelegt werden,

Files, Programme und Dateien 33

sondern es muß zuerst der Datensatz Nummer 9 geschrieben

werden. An einem kleinen Beispielprogramm kann man die Fle-

xibilitat dieses Dateityps deutlich erkennen. Es wird hier eine

kleine Adreßdatei angelegt, ın die 10 mal die gleiche Adresse
eingetragen wird.

(* Schreiben einer Random-Datei in PASCAL. U.B. 9.86 *)

program randatei ;

type adres =

record

vorname : string[12];

name : string[12];

plz : integer;

ort : string[14];

strasse : string[14];

nummer : integer;

end; (* record *)

var dati : file of adres ;

t1,t2 : adres ;

1 : Integer ;

begin

rewrite (dat1,'a:random1.dat');

ti.vorname := 'Harry':

ti.name := 'Hirsch’;

ti.plz := 2222 ;

ti.ort := 'Buxtehude';

tl.strasse := 'Meerweg';

ti.nummer := 245;

for i:= 0 to 9 do

“begin

dat1* := t1;

34 ATARI ST Floppy und Harddisk

put (dat1,1);

end; (* for Schleife *)

end. (* Programm *)

Mit dem Befehl datl* := tl wird also im CCD-PASCAL die ge-
samte Adreßstruktur mit Vorname, Name ect an die Pufferva-

riable übergeben und anschließend mit put (datl,i) als jeweiliger
Datensatz Nummer i in die Datei geschrieben.

Wie Sie erkennen können, werden wieder die Anzahl der Zei-
chen der einzelnen Strings vor dem ersten Zeichen des jeweili-
gen Strings gespeichert, einfache Ingegerzahlen werden als 2-
Byte Sedezimalzahlen gespeichert. Als Ende-der-Datei-Zeichen
verwendet PASCAL schließlich die Zahl $F5.

2.4 Der Dateizugriff von C

Die Sprache C ist sozusagen die Muttersprache des Atarı ST.

Große Teile seines Betriebssystems sind in dieser Sprache ge-
schrieben worden. So ist es nicht verwunderlich, die ın der

Einführung zu diesem Kapitel beschriebenen GEMDOS-Funk-
tionen zur Dateiverwaltung in der Sprachbeschreibung von C,
teils in abgewandelter Form, wiederzufinden.

C ist die aus Anwendersicht unvollkommenste Sprache, da viele

Funktionen selbst gebaut werden müssen. So auch die Funktio-

nen für die Dateiverwaltung. Alle C-Compiler Anbieter liefern
jedoch den im C-Standardbuch von Kernighan & Ritchie be-
schriebenen Dateistandard als Include-Datei "STDIO.H" mit.

Zur Benutzung der Dateifunktionen muß diese Datei daher
durch den am Anfang eines C-Programmes stehenden Befehl
#include <stdio.h> ins eigene Programm integriert werden.

Als Hürde für einen C-Anfänger, neben den total chaotisch
ausschauenden Kurzzeichen (&,!=,~,||), ist beim Atari ST der C-

Compiler von Digital-Research anzusehen, jedenfalls die ersten

Files, Programme und Dateien 35

Versionen. Ein unerfahrener und somit unsicherer C-Anfanger
fragt sich immer wieder "Ist das jetzt mein eigener Fehler oder
ein Fehler im Compiler?", wenn wieder mal ein selbstgeschrie-

benes Programm während oder auch nach dem Compilieren den

Rechner zum Absturz bringt. Aus diesem Grunde sind alle hier
vorgestellten kleinen C-Programme mit dem LATTICE-C-Com-

piler von Metacomco compiliert worden.

Die Anpassung an andere C-Compiler dürfte keine Schwierig-
keiten bereiten, da nur die Standard-Funktionen der STDIO.H

Bibliothek verwendet wurden (Programme funktionieren ohne

Änderung mit Megamax).

Die Kommunikation mit Dateien geht in C über eine Daten-
struktur vom Typ FILE, die, wie auch die Zugriffsfunktionen
auf diese Datenstruktur, in der STDIO.H Bibliothek definiert ist.
Hier sind ebenfalls die verschiedene Parameter der Datei wie
z.B. die Adresse des Dateipuffers oder den momentanen Zeiger
in diesen Puffer enthalten. Hier nun ein Überblick über die
einzelnen Zugriffsfunktionen mit dem Datentyp ihrer Parameter:

pointer = fopen (name, modus)

FILE *fopen()
FILE *pointer
char *name
char *modus

Die möglichen Modusworte :

"w" : anlegen einer Datei und öffnen zum Schreiben
"a" : öffnen einer vorhandenen Datei zum Anfügen von Daten
"r" : Offnen einer vorhandenen Datei zum Lesen von Daten

Außer diesen existieren noch andere Modus-Worte, die je nach
Compiler verschiedene Funktionen erfüllen und für unsere

Zwecke nicht weiter wichtig sind.

36 ATARI ST Floppy und Harddisk

Die Funktion öffnet eine Datei zum nachfolgenden Zugriff je
nach Moduswort. Bei einem auftretenden Fehler ist pointer =

NULL, andernfalls wird in pointer der Zeiger auf die Datei
zurückgegeben.

code = fclose (pointer)

int code

FILE *pointer

Schließt die Datei, auf die pointer zeigt.

fprintf (pointer, format,argumente)

FILE *pointer
char *format
char *argumente

Schreibt beliebig viele, durch Kommata abgetrennte Argumente

(Strings) mit dem durch den’format’ Parameter beschriebenen

Format in eine Datei. Die Format-Parameter entsprechen denen

des normalen printf-Befehls.

code = fscanf (pointer, format, chpointer)

FILE *pointer
char *format

char *chpointer
int code

Liest Zeichenketten aus der durch pointer spezifizierten Datei in

dem durch format angegebenem Format in die Variable chpoin-

ter. Die Format-Optionen sind identisch mit denen des scanf-

Befehls.

Files, Programme und Dateien 37

code = fputs (buf fer, pointer)

FILE *pointer
char *buffer

int code

Schreibt den Character-String, auf den buffer zeigt, bis zum
Nullbyte in die Datei, auf die pointer zeigt. Bei einem Fehler ist
code = EOF. Das Nullbyte, mit dem jeder C-String endet, wird

nicht mitgeschrieben, sondern ein NEWLINE-Zeichen.

code = fgets (buffer, anzahl, pointer)

FILE *pointer
char *chpoint
char *buffer
int anzahl

int code

Liest anzahl Zeichen aus der Datei, auf die pointer zeigt, in den

Puffer, auf den buffer zeigt. Das Lesen wird auch bei einem

auftretenden End of Line Zeichen (EOL) beendet. An die ein-

gelesene Zeichenkette wird eine Null-Byte angehängt und der

Zeiger auf den Puffer in chpoint tibergeben. Nach einem feh-
lerfreien Zugriff zeigt demzufolge chpoint auf buffer, andern-

falls enthält chpoint eine 0, was in C durch NULL ausgedrückt

wird.

code = fputc (chpoint, pointer)

FILE *pointer
char *chpoint
int code

Schreibt ein einzelnes Zeichen, auf das chpoint zeigt, in die

Datei, auf die pointer zeigt. Nach einem Fehler ist code = EOF,

sonst der Code des geschriebenen Zeichens.

38 ATARI ST Floppy_und Harddisk

code = fgetc (pointer)

FILE *pointer
int code

Liest ein einzelnes Zeichen aus der Datei, auf die pointer zeigt.

Der Code des gelesenen Zeichens wird in code übergeben oder
EOF, wenn das Dateiende erreicht wurde.

code = fseek (pointer,position,mode)

FILE *pointer
long position
int mode

int code

Stellt den Dateizeiger der Datei, auf die pointer zeigt, auf einen

neuen Wert ein. Der Mode-Parameter spezifiziert die neue Posi-

tion des Zeigers und kann folgende Werte annehmen:

0 : neue Position relativ zum Dateianfang einstellen.
1 : neue Position relativ zur jetzigen Position einstellen.
2 : neue Position relativ zum Dateiende einstellen.

2.4.1 Die sequentielle Datei in C

Das nachfolgende C-Programm öffnet die Datei ’SEQDA-
TEI.DAT’ zum Schreiben und schreibt 10 mal "Harry Hirsch" in
diese Datei.

/* Schreiben einer sequentiellen Datei in C. U.B. 9.86 */

#include <math.h>

#include <stdio.h>

Files, Programme und Dateien 39

main ()

{

int i, k ;

FILE *dat1, *fopen() ;

char *ti = "Harry" ;

char *t2 = "Hirsch" ;

dat1 = fopen("a:seqdatei.dat","w") ;

for (k=1; k < 11; k++)

{

fprintf (dat1,"%13s",t1);

fprintf (dat1,"%13s",t2);

>} /* Ende for-Schleife */

1 = fclose (dati);

printf (" Taste betaetigen\n ");

getchar();

> /* Ende main */

Zum Lesen der eben geschriebenen Datei dient das folgende Programm, das

den Inhalt der gesamten Datei auf den Bildschirm schreibt.

/* Lesen einer sequentiellen Datei in C. U.B. 9.86 */

#include <stdio.h>

main ()

{

int i, k;

FILE *dat1, *fopen() ;

char platz1 [14] ;

char *p ;

40 ATARI ST Floppy und Harddisk

dat1 = fopen("a:segdatei.dat","r") ;

while (p = fgets (platz1, 14, dat1) != NULL)

{

printf ("%s\n",platz1);

> /* Ende while-Schleife */

i = fclose (dat1);

printf¢c"\n\n");

printf (" Taste betaetigen\n ");

getchar();

> /* Ende main */

2.4.2 Die Random-Datei in C

Um den wahlfreien Zugriff auf eine C-Datei zu ermöglichen,
benötigt man die Funktion fseek(), die das Positionieren des

Dateizeigers auf ein bestimmtes Zeichen innerhalb der Datei er-

möglicht. Durch das formatierte Schreiben in die Datei mit
fprintf() erhält jedes Datenfeld eine festgelegte Länge z.B. 13
Zeichen für den Vornamen usw. Somit hat natürlich auch jeder

komplette Datensatz, z.B. eine Adresse, eine genau festgelegte

Länge (in dieser Datei 64 Zeichen). Zum Lesen des zehnten Da-
tensatzes muß man nur die Länge eines Datensatzes mit der

Nummer des gewünschten Datensatzes multiplizieren, den Da-

teizeiger auf den errechneten Wert einstellen und kann dann den
gewünschten Datensatz bearbeiten. In C beginnt die Nummerie-

rung der Datensätze mit null.

/* Schreiben einer RANDOM-Datei in C. U.B. 9.86 */

#include <math.h>

#include <stdio.h>

Files, Programme und Dateien 41

char *vorname = "Harry";

char *name = "Hirsch";

char *ort = "Buxtehude" ;

char *strasse = "Meerweg";

int plz = 2222 ;

int nummer = 264 ;

main ()

£{

int i, k;

FILE *dat1, *fopen() ;

dati = fopen("A:random2.dat","w"') ;

for (k=1; k < 11; k++)

{

fprintf (dat1,"%13s",vorname);

fprintf (dat1,"%13s",name);

fprintf (dat1,"%4d",plz);

fprintf (dat1,"%15s",ort);

fprintf (dat1,"%15s",strasse);

fprintf (dat1,'"%4d", nummer);

> /* Ende for-Schleife */

i.= fclose (dat1);

printf (" Taste betaetigen\n ");

getchar();

> /* Ende main */

Das folgende Programm liest alle Daten der Datei und zeigt sie
auf dem Bildschirm an, inclusive Datensatznummer und relative

Position innerhalb der Datei.

42 ATARI ST Floppy und Harddisk

/* Lesen einer Random-Datei in C. U.B. 9.86 */

#include <math.h>

#include <stdio.h>

#define LAENGE 64L

main ()

{

int k, i1, 1;

FILE *dat1, *fopen() ;

long pos ;

char platz1[80], *p ;

dati = fopen("a:random2.dat","r") ;

k = 0:

pos = k*LAENGE;

while (Ci = fgetc(dat1)) != EOF)

{

i = fseek(dat1,pos,0);

printf(" Datensatznummer = %8d\n",k);

printf(" Bytepos. in Datei = Z%8d\n",pos);

printf("\n");

p = fgets(platz1,14,dat1);

printf(" Vorname = %s\n",platz1);

p = fgets(platz1,14,dat1);

printf¢(" Name = %s\n",platz1);

p = fgets(platz1,5,dat1);

11 = atoi(platz1);

printf(" Postleitzahl = %8d\n",11);

Files, Programme und Dateien 43

p = fgets(platz1,16,dat1);

printf(™ Wohnort = %s\n",platz1);

= fgets(platz1,16,dat1);

printf(" Strasse = %s\n",platz1);

p = fgets(platz1,5,dat1);

11 = atoi(platz1);

printf(" Hausnummer. = %8d\n",11);

k+=1;

pos=k*LAENGE;

pr j ntf (IKK \ yl) ;

> /* Ende WHILE-Schleife */

1 = fclose (dat1);

printf¢("\n\n");

printf (" Taste betaetigen\n ");

getchar();

>} /* Ende main */

2.5 Das Filehandling in FORTRAN

Alle Ausführungen über die Sprache FORTRAN beziehen sich

auf den PRO FORTRAN-77-Compiler von PROSPERO, der

über die Firma FOCUS vertrieben wird. Dieses FORTRAN er-
möglicht, ebenso wie CCD-PASCAL, das Arbeiten mit sequen-

tiellen und auch mit RANDOM-ACCESS-Dateien. Die Imple-

mentation auf den Atarı ST kann man als sehr gelungen be-

zeichnen, da alle Sprachdefinitionen des 77’er FORTRAN Stan-

44 ATARI ST Floppy und Harddisk

dards einbezogen wurden. Aber auch in Punkto Rechenge-
schwindigkeit läßt dieser Compiler, zumindest bei mathemati-

schen Berechnungen, die verschieden C-Compiler und auch den

CCD-PASCAL-Compiler hinter sich.

2.5.1 Die sequentielle Datei in FORTRAN

Zum Öffnen und auch Anlegen einer sequentiellen Diskettenda-

tei bedient man sich der open-Funktion, die viele meist optio-

nale Parameter hat. open (5, file = ’a:fdatl.dat’) öffnet eine Da-

tei mit Zugriffs-kanal Nummer 5 und Namen "fdatl.dat" auf

dem Laufwerk A. Sollte diese Datei noch nicht existieren, wird

sie neu angelegt.

Zum Schreiben in diese Datei können die normalen Ein-Aus-

gabe-Befehle read und write mit optionalen Parametern verwen-
det werden. write (5) ’Harry’ schreibt in die Datei Nummer 5.
Die Ausgabe mit write unterliegt den üblichen FORTRAN-For-
mat Möglichkeiten, deren eingehende Beschreibungen wohl den

Rahmen dieses Buches sprengen würden.

Hier nun unser Beispielprogramm, welches eine sequentielle

Datei anlegt und 10 mal den Namen "Harry Hirsch" hinein-
schreibt, in FORTRAN:

program seq1

character*13 name , vornam

vornam = ‘Harry!

name = 'Hirsch'

open (2, file = 'a:fsequel.dat', form='unformatted')

do 100 n = 1,10

write (2) vornam

write (2) name

Files, Programme und Dateien 45

100 continue

close (2)

end

Zum Lesen dieser sequentiellen Datei bedient man sich des fol-

genden Programms:

program seq2

character*2 t1

character*13 text

open (2,file=s!a:fsequei.dat' ,form='unformatted' ‚status=!old'!)

100 continue

read (2,end=200) text

write (*,*) text

goto 100

200 continue

close (2)

end

2.5.2 Die RANDOM-Datei in FORTRAN

Und nun wieder unser Standard-Programm für RANDOM-AC-
CESS-Dateien, diesmal in FORTRAN:

C Schreiben einer Random-Datei in FORTRAN. U.B. 9.86

program rand1

integer*4 plz, nummer

character*13 name , vornam

character*15 strass, ort

vornam = 'Harry'

46 ATARI ST Floppy und Harddisk

name = 'Hirsch!

plz = 2222

ort = "Buxtehude!

strass = 'Meerweg'

nummer = 264

open (2, file = 'a:\frandi.dat', recl = 64, access='direct')

do 100 n = 1,10

write (2,rec= n) vornam, name, plz, ort, strass, nummer

100 continue

close (2)

end

Zum Lesen dieser Daten aus der Datei dient das nächste kleine

Programm:

C Lesen einer Random-Datei in FORTRAN. U.B. 9.86

program rand1

integer*4 plz, nummer, stat

character*13 name , vornam

character*15 strass, ort

open (2, file = 'a:\frandi.dat', recl = 64, access='direct',

- status = 'old')

n= 1

10 continue

read (2,rec=n, iostat = stat) vornam, name, plz,

- ort, strass, nummer

if (stat .eq. 0) then

write (*,*) ' Datensatz Nummer: ',n

write (*,*)

write (*,*) ' Vorname = ' „ vornam

Files, Programme und Dateien 47

write (*,*) ' Name = ' , name

write (*,'(€a,16)') ' Postlz. = ' , plz

write (*,*) ' Wohnort = ' , ort

write (*,*) ' Strasse = ' , strass

write (*,'(a,i6)') ' Hausnr. = ' , nummer

write (*,*) |

write (*,*)

n = n+1

goto 10

else

write (*,*)

write (*,*)

. write (*,*) ' Taste betaetigen !

close (2)

endif

end

2.6 Eine einfache Datenbank

Im Anschluß an all diese Theorie wollen wir nun einmal die
eben erworbenen Kenntnisse anhand einer kleinen Datenbank
erproben. Dieses Programm ist nicht unbedingt für die Lager-
verwaltung eines Warenhauses anwendbar, reicht aber für die

Verwaltung von Telefon-Nummern oder einer Schallplatten-
Sammlung völlig aus.

Das Programm ist in BASIC geschrieben, und zwar für den beim
ATARI ST mitgelieferten Interpreter. Dieses BASIC ist bekann-
termaßen voller Fehler (Stand 10/86), so daß es empfehlenswert
ist, das Programm z.B. für Gfa-BASIC umzuschreiben. Es läuft
jedoch in dieser Form auch vollständig in dem ATARI-BASIC.

Bei der Erstellung eines solchen Programmes ist zuerst zu über-
legen, was ein Datenbank-Programm alles können soll. Die
wichtigsten Funktionen sind in dem vorgestellten Programm ent-
halten, und zwar: |

48 ATARI ST Floppy und Harddisk

- Erstellung einer neuen Datenbank

- Eingabe von neuen Daten bzw. Korrektur alter Ein-
träge

- Einladen einer bereits angelegten Datenbank von
Diskette

- Ausgabe der Daten auf dem Bildschirm oder dem
Drucker

- Suchen nach bestimmten Schlüsselworten

- Sortieren der Daten nach einem beliebigen Datenfeld

- Beendigung des Programmes

Diese Funktionen sind über ein einfaches Menü aufrufbar,

welches auf dem Bildschirm dargestellt wird. Hierfür wird nur
die Funktions-Ziffer eingegeben mit nachfolgendem Return.

Bevor wir die Bedienung der einzelnen Funktionen näher be-
trachten, wäre es sinnvoll, erst einmal das folgende Programm

abzutippen: |

10 '*** Mini-Datenbank S.D. ***

20 dim d$(5),1$(5),1(5),p$(500), r¢500)

30 for i=1 to 500: r(i)=i: next 1

40 for i=1 to 5: d$Ci)=space$(100)

50 i$slci)=ttt Ss next i

60 start:

70 fullw 2: clearw 2: gotoxy 0,0

80 27 "**** Mini-Datenbank aus: Floppy-Buch zum ST S.D. ****

90 ?: ? d;" Datensätze vorhanden in Datei ";f$

100 for i=1 to 5

110 gotoxy 22,1+i: ?i;") "2i$¢1)

120 next i

130 if so then gotoxy 21,1+so: ?">"

Files, Programme und Dateien 49

140 gotoxy 0,5

150 ?: ? "1) Anlegen einer Datenbank''

160 ? "2) Eingabe von Daten!

170 ? "3) Laden einer Datenbank"

180 ? "4) Sortieren der Daten"

190 ? 5) Suchen!"

200 ? "6) Ausgabe von Daten"

210 ? 7) Ende"

220 ?: input "Ihre Wahl "sw

230 on w gosub anlegen, eingabe, laden,sortieren,

suchen, ausgabe, ende240 goto start

250 !

260 '** Anlegen einer Datenbank **

270 anlegen:

280 ? " ** Datenbank anlegen: 500 Einträge mit 5 Feldern frei **"

290 sum=O |

300 ?: for i=1 to 5

310 ? i;". Feldname, Länge ";

320 input i$Ci),lci)

330 sum=-sum+l(i)

340 next i

350 ?: input "OK ":0$

360 if o$="n" or o$="N" then anlegen

370 gosub getfn

380 open "0",#1,f1$

390 for i=1 to 5

400 print#1,1%Ci)

410 print#1,l¢i)

420 d$Ci)=space$(l(i))

430 next i

440 close #1

450 open "R",#1,fd$,sum

460 field #1, LC1) as d$(1), L(2) as d$(2), L(3) as d$(3), L(4)

as d$(4), L(5) as d$(5)470 d=0

480 return

490 =!

500 '** Eingabe von Daten **

510 eingabe:

ATARI ST Floppy_ und Harddisk

520 clearw 2: gotoxy 0,0: ? " *** Dateneingabe ***

530 ? d;" Datensätze vorhanden"

540 gotoxy 0,3:? "Nummer ";d+1

550 gotoxy 0,3: input "Nummer ";d$

560 if len(d$)>0 then di=val(d$) else di=d+1

570 if d1=0 then return

580 if di>d+1 then eingabe

590 if di<d+i1 then gotoxy 0,5: o$="b"": gosub ausgabe1

600 for i=1 to 5

610 gotoxy 0,4+1

620 ?i$li);: gotoxy 20,4+1

630 input d$

640 if len(d$)>0 then lset d$Ci)=d$

650 next i |

660 ?: input "OK (j/n) ";0$

670 if o$="n" or o$="N" then eingabe

680 if di=d+1 then d=d+1

690 put #1,r(d1)

700 goto eingabe

710

720 '** Datenbank laden **

730 Laden:

740 gosub getfn

750 close #1

760 = sum=0

770 open "1",#1,fi$

780 for i=1 to 5

790 input#1,i$Ci)

800 input#1,l(i)

810 sum=sum+l(1) |

820 d$Ci)=space$(l(i))

830 next 1

840 close #1

850 open "R",#1, fd$,sum

860 field #1, (1) as d$(1), L(2) as d$(2), L(3) as d$(3), (4)

as d$(4), I(5) as d$(5)870 d=0

880 while not eof(1)

890 d=d+1

900 get #1,d

Files, Programme und Dateien 51

910

920

930

940

950

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

1080.

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240

1250

1260

wend

return

I*% Datenausgabe **

ausgabe:

if d=0 then ? "Keine Daten vorhanden !": goto waitkey

? " ** Datenausgabe **"

input "B)ildschirm oder D)rucker ";0$

for di=1 tod

gosub ausgabe

if oS="d" or o$="D" then lprint else ?

next di

waitkey:

?: input "-Bitte 'Return' drücken-",w$

return

ausgabe1:

get #1,r(d1)

for j=1 to 5

if o$="d" or o$="D" then lprint i$(j),d$(j) else ?

1$€j),d$(j)

next j

return

'** Suchen **

suchen:

if d=0 then ? "Keine Daten vorhanden !": goto waitkey

?: input "Feldnummer, Text ";f,t$

for di=1 tod

get #1,d1

if instr(d$(f),t$) then gosub ausgabe1: ?

next di

goto waitkey

'** Sortieren **

sortieren: |

if d=0 then ? "Keine Daten vorhanden !": goto waitkey

?: input " Nach welchem Feld sortieren ";so

52 ATARI ST Floppy und Harddisk

1270 if so=0 or so>5 then return

1280 for i=1 tod

1290 get #1,i

1300 p$Ci)=d$(so)

1310 next i

1320 for i=1 to d

1330 for j=i tod

1340 if p$(r¢Ci))>p$(r¢j)) then swap r(i),r(j)

1350 next j

1360 next i

1370 return

1380 !

1390 '** Ende **

1400 ende:

1410 close #1

1420 7: 72 "**** Ende. Tschüs! ****"

1430 end

1440 !

1450 '** Unterprogramme **

1460 getfn:

1470 ?: input "Dateiname ";f$

1480 fi$=f$+". idx"

1490 fd$=f$+".dat"

1500 return

Nun zu den einzelnen Funktionen:

1. Anlegen einer Datenbank

Nach Aufruf dieser Funktion wird fiinfmal zur Eingabe zweier

Daten aufgefordert: Feldname und Lange. Hier wird jeweils der

Name des Datenfeldes und, durch Komma getrennt, die maxi-

male Länge dieser Einträge in Zeichen eingegeben. Für eine
Adreßverwaltung könnte z.B. eingegeben werden:

Name,15

Vorname,l2

Files, Programme und Dateien 53

Ort,16

Strasse, 16

Telefon,10

Hat man diese Daten eingegeben, so wird sicherheitshalber noch

einmal gefragt “OK ?°. Sind die eingegebenen Daten in Ordnung,
so geben Sie hier einfach J ein (Groß- oder Kleinschreibung

spielt dabei keine Rolle).

Als nächstes wird nach dem Dateinamen gefragt, unter dem die
Datenbank auf der Diskette abgespeichert werden soll. Erlaubt

ist hier die Eingabe des Laufwerks mit dem Namen, z.B.
A:TEST. Ein Extender (z.B. .DAT) darf nicht eingegeben wer-
den, da das Programm zweı Dateien unter dem selben Namen

mit unterschiedlichen Extendern anlegt. Sie finden daher nach-
her auf der Diskette eine Datei mit dem Extender .IDX, in der

die soeben eingegebenen Namen und Längen der Datenfelder

abgespeichert sind sowie eine mit .DAT, welche die Datensätze

selbst enthält.

Sind die Daten eingegeben und die Dateien auf Diskette ange-

lest, wird wieder das Hauptmenü angezeigt.

2. Eingabe von Daten

Nach Anwahl dieser Funktion erhält man die Information, wie

viele Datensätze bisher vorhanden sind, und wird nun aufgefor-
dert, die zu ändernde bzw. einzugebende Datensatznummer

einzugeben. Die Nummer des nächsten freien Datensatzes steht

bereits direkt hinter dem Fragezeichen, so daß Sie für die Ein-

gabe eines neuen Datensatzes nur Return drücken brauchen.

Wollen Sie einen Datensatz ändern, so geben Sie hier dessen
Nummer ein. Sie erhalten nun sowohl den alten Inhalt des Da-

tensatzes sowie ein Fragezeichen, welches zur Eingabe der neuen

Daten auffordert. Wollen Sie den alten Inhalt eines Datenfeldes

übernehmen, so drücken Sıe nur Return.

54 ATARI ST Floppy und Harddisk

Die Eingabe aller weiteren Daten läuft genau so ab. Wollen Sie
die Eingabe beenden, so brauchen Sie nur bei der Frage nach
der Datensatz-Nummer eine 0 einzugeben: Sie finden sich sofort
wieder im Hauptmenü wieder.

3. Laden einer Datenbank

Hier wird lediglich zur Eingabe des Namens der Datenbank auf-
gefordert. Auch hier sind nur die Angabe des Laufwerks und
der Name selbst erlaubt. Ist die Datenbank geladen, so wird
wieder das Hauptmenü angezeigt, in dem nun auch der Da-

teiname, die Anzahl der vorhandenen Einträge sowie die Feld-
namen mit ihren Nummern aufgelistet werden.

4, Sortieren der Daten

Wollen Sie die Datensätze nach einem bestimmten Feld sortiert
ausgeben lassen, so wählen Sie diese Funktion. Es wird nun nach
der Feldnummer gefragt, nach der sortiert werden soll. So kön-

nen Sie z.B. Ihre Adressenliste nach Namen sortieren, ausdruk-

ken und dann noch einmal nach Orten sortieren und ebenfalls

ausgeben.

Die Sortierfunktion enthält keine Ausgabefunktion. Wollen Sie
wissen, wonach Sie zuletzt sortiert haben, so finden Sie diese

Information im Hauptmenü, wo vor dem gewählten Feldnamen

ein ’>’-Symbol steht.

5. Suchen

Diese Funktion fordert Sie auf, die Feldnummer und den Such-

string einzugeben. Wollen Sie also z.B. alle Adressen aus Buxte-
hude ausgeben, so geben Sie bei obigem Beispiel der Datenbank
3,Buxtehude ein. Nun werden alle Datensätze, deren Ortsangabe

Files, Programme und Dateien 55

(Feld Nummer 3) den Text ’Buxtehude’ enthält, angezeigt. Sie
können hier auch nur Bux als Suchstring eingeben, da es wohl
kaum noch andere Ortsnamen mit diesem Anfang gibt.

6. Ausgabe von Daten

Diese Funktion ermöglicht die Ausgabe aller Datensätze auf dem
Bildschirm oder dem Drucker. Die Abfrage, wohin ausgegeben
werden soll, wird für das Drucken mit D oder d beantwortet,

alle anderen Eingaben bewirken die Bildschirmausgabe.

Die Ausgabe erfolgt in der Reihenfolge, in der die Datensätze
eingegeben wurden, es sei denn, Sie haben vorher die Sortier-

funktion aufgerufen. .

T. Ende

Hier wird nur der geöffnete Datenkanal geschlossen (CLOSE #1)
und nach einer Abschiedsmeldung das Programm beendet.

Wie Sie sehen, wird in diesem Programm sowohl die sequentielle

als auch die wahlfreie Dateiform verwendet. Die Feldnamen und
die Länge der Felder wird sequentiell abgespeichert bzw. gela-

den (name.IDX), die Datensätze selbst in eine RANDOM-AC-
CESS-Datei gelegt (name.DAT). Man könnte natürlıch auch bei
kleinen Datenbanken und einem so großen Arbeits-Speicher wie
beim ATARI ST alle Daten sequentiell in ein entsprechendes

Datenfeld (String-Array) einladen und direkt im Speicher ver-
walten. Ä

Dies kostet aber Ladezeit und funktioniert nur, wenn nach der

Manipulation der Daten auch alles wieder abgespeichert wird
(was man ja vergessen könnte...).. Außerdem wurde diese Form
gewählt, um die Anwendung der wahlfreien Dateiform zu de-

monstrieren. Ich hoffe, Sie können mit diesem Programm durch
Verändern und Erweitern genau das Datenbank-Programm er-
stellen, welches Ihre speziellen Anforderungen erfüllt!

56 ATARI ST Floppy und Harddisk

Datenstrukturen 57

3. Datenstrukturen

Man nehme eine große Menge Daten und bringe sie auf Dis-
kette. Das klingt sehr einfach, aber schon beim genaueren Be-

trachten dieses Vorhabens fallen einige Dinge auf, die dabei

problematisch sind.

Erst einmal muß die Verteilung auf der Diskette so erfolgen,
daß man die Daten jederzeit wiederfinden kann. Dazu sind ei-
nige Vorbereitungen erforderlich, um die sich der Computerbe-
nutzer zwar kaum kümmern muß, die aber das Betriebssystem
und die Hardware des Rechners bzw. der Diskettenstationen und

Festplatte übernehmen muß.

Die Diskette muß vor der Benutzung erst einmal formatiert wer-
den. Dabei wird die Fläche der Disketten in einzelne Sektoren
unterteilt, deren Position durch das verwendete Format festge-
legt werden.

Dieses Format muß nun auch für den Rechner feststellbar sein,

da er ja mit verschiedenen Formaten arbeiten können muß. Da-

bei sind die Anzahl der verwendeten Seiten der Diskette ebenso
wichtig wie die Anzahl der Sektoren und deren Länge. Diese

Informationen enthalt der sogenannte Boot-Sektor, den wir
gleich unter die Lupe nehmen werden.

Danach müssen für jede Datei bzw. Programm, welches auf der
Diskette gespeichert werden soll, die verwendeten Sektoren zu-

gewiesen und markiert werden. Diese Informationen sind im In-

haltsverzeichnis der Diskette und im sogenannten FAT, der

’File-Allocation-Table’ verborgen. Diese werden ebenfalls in

diesem Kapitel besprochen. |

Fangen wir also am Anfang an: bei der Formatierung.

58 ATARI ST Floppy und Harddisk

3.1 Diskettenformat

Beim Formatieren einer Diskette wird diese, wie bereits er-
wähnt, in einzelne Abschnitte aufgeteilt. Die grobe Unterteilung ~

ist die Spureinteilung. Diese Spuren liegen wie konzentrische

Ringe auf der Scheibe und werden von außen nach innen ge-
zählt. Auf einer normal formatierten Diskette befinden sich 80
solche Spuren, auch Tracks genannt, die von 0 bis 79 numme-

riert sind. Es ist zwar möglich, bis zu 82 Tracks zu formatieren,
jedoch nimmt die Datensicherheit zur Mitte hin wegen der im-
mer geringeren verfügbaren Fläche dermaßen ab, daß die Tracks

80 bis 82 nicht mehr verwendet werden. Dennoch können sie
verwendet werden, wenn man entsprechend formatiert.

Die einzelnen Tracks werden nun ihrerseits in Sektoren unter-
teilt, die je einen Abschnitt des Ringes darstellen. Diese Sekto-

ren werden wiederum zu sogenannten Clustern zusammengefaßt,

üblicherweise 2 Sektoren pro Cluster. Die Bedeutung dieser Clu-

ster ist jedoch nicht so wichtig, so daß wir nur die Sektoren be-
trachten.

Im normalen Format befinden sich 9 Sektoren auf jedem Track,

die 512 Bytes fassen. Somit ergibt sich bei einer einseitigen Dis-
kette eine Speicherkapazität von 80*9*512=368640 Bytes.

Dies ist allerdings nicht die wirkliche Anzahl der auf der Dis-
kette gespeicherten Daten. Pro Track und nochmals pro Sektor

werden beim Formatieren einige zusätzliche Daten geschrieben.

Diese Daten werden vom Disk-Controller, dem die Floppy
steuernden Chip im ST, benötigt, um aus dem Track den richti-

gen Sektor herauszufinden. Betrachten wir nun den vollständigen
Aufbau eines normalen Tracks.

Datenstrukturen 59

Anzahl Bytes Bemerkungen

60 $4E Track-Anfang

pro Sektor:

12 $00

3 $F5 werden als $A1 geschrieben

1 $FE ID Adress Mark

1 Track# Tracknummer 0 bis 79

1 Seiten# Seitennummer O oder 1

1 Sektor# | Sektornummer 1 bis 9

1 $02 *$100=512 Bytes pro Sektor

1 $F7 CRC-Prüfsumme schreiben (werden 2 Bytes)

22 $4E Füllbytes

12 $00 "

3 $F5 werden zu $A1

1 $FB Markierung (Data-Adress-Mark)

512 Daten hier liegen die eigentlichen Daten

1 $F7 CRC-Prüfsumme schreiben

40 — $4E Füllbytes

USW.

Trackende:

1401 $4E Füllbytes

Zählt man all diese Bytes zusammen, so kommt man auf 6969

Bytes pro Track, was einer (unformatierten) Diskettenkapazität
von 557520 Bytes entspricht. Leider kann man diese Kapazität

nicht für seine Daten nutzen, da der Controller sie dann nicht

mehr finden könnte (wie könnte er Anfang und Ende eines
Sektors erkennen?). Möglich ist es jedoch, die letzten 1401 Bytes
jedes Tracks für einen zusätzlichen Sektor zu benutzen. Das
würde die benutzbare Kapazität auf 409600 Bytes erhöhen.

Nimmt man zusätzlich noch drei weitere Tracks (80 bis 82)

dazu, kommt man sogar auf 424960 Bytes. Aber wie gesagt, die

Datensicherheit ıst nicht mehr so besonders, wenn auch vertret-

bar.

60 ATARI ST Floppy und Harddisk

Um ein solches eigenes Format zu erstellen, ist ein kleines Pro-

gramm nötig. Bevor wir uns ein solches Programm ansehen,
müssen wir jedoch die einzelnen Schritte, in denen das Forma-
tieren abläuft, genauer ansehen. Mit dem bloßen Formatieren
der Tracks ist es nämlich nicht getan. Die verwendeten Parame-
ter wie Anzahl der Tracks und Sektoren müssen ebenfalls auf
die Diskette geschrieben werden, da der Rechner sonst nicht
feststellen kann, wie die Diskette formatiert ist. Dazu dient der

Boot-Sektor.

3.2 Der Boot-Sektor

Der Boot-Sektor liegt immer ganz am Anfang einer Diskette

bzw. Festplatte, d.h. auf Track 0, Seite 0, Sektor 1 einer Dis-

kette oder Sektor 0 der Harddisk. Er ist, wie alle anderen Sek-

toren auch, 512 Bytes lang und wird nach jedem Disketten-

wechsel vom Betriebssystem überprüft. Außerdem ist er für das
’Booten’ der Diskette entscheidend. Booten bedeutet hier das La-

den des Betriebssystems von Diskette nach dem Einschalten. Da-

bei wird zuerst von der Diskette ın Laufwerk A der Boot-Sektor

geladen und geprüft, ob die Diskette ein Betriebssystem enthält.

Außerdem enthält der Boot-Sektor noch weitere Informationen.

Insgesamt enthält der Boot-Sektor eine Seriennummer der Dis-
kette, einen Parameterblock für das BIOS des Rechners und evtl.
ein Boot-Programm mit Bootparametern. Sollte ein solches Pro-

gramm enthalten sein, so muß die Summe aller enthaltenen Bytes
des Sektors (Checksumme) die ’magische’ Zahl $1234 ergeben.
Stimmt diese Zahl, so wird das Programm ab dem Anfang des
Sektors ausgeführt, wo dann üblicherweise ein BRA (Branch al-

ways)-Befehl steht. Das Programm muß dabei so gestaltet sein,

daß es an jeder beliebigen Speicherstelle laufen kann, da der
Sektor ja irgendwohin geladen wurde.

Solch ein Boot-Programm ist normalerweise nıcht im Boot-Sek-

tor enthalten. Wichtiger sind die verschiedenen Parameter, die

sich ebenfalls auf dem Sektor befinden. Diese Parameter werden
bei einem ’Get BPB’-Aufruf des Betriebssystems geladen und in
den sogenannten BPB (BIOS-Parameter-Block) geladen. Sınd

Datenstrukturen

diese Parameter unglaubwürdig, so wird aus der ’Get BPB’-

Funktion nicht die Adresse des BPB übergeben, sondern eine 0.

Die weitere Information im Boot-Sektor ist die Seriennummer

der Diskette. Es handelt sich dabei um eine 24Bit-Zahl, die

beim Formatieren ermittelt und auf die Diskette geschrieben
wurde. Diese Nummer dient zur Erkennung eines Disketten-

wechsels.

Hier nun der gesamte Aufbau des Boot-Sektors:

Byte Nr. Name Bedeutung (normal 1/2-seitig)

$00 BRA Sprungbefehl in das Boot-Programm (evtl.)

$02 Füller reservierte Füllbytes oder "Loader!

$08 Serien# Seriennummer

* $0B BPS Anzahl Bytes pro Sektor (512)

* $0D SPC " Sektoren pro Cluster (2)

* $0E RES " reservierte Sektoren (1)

* $10 NFATS " FATS (File Allocation Tables) (2)
* $11 NDIRS " mögliche Directory-Einträge (112)

= * $13 NSECTS " Sektoren auf Diskette (720/1440)

* $15 MEDIA Medium-Beschreibung (unbenutzt)

* $16 SPF Anzahl Sektoren der FAT (5)

* $18 SPT " Sektoren pro Track (9)

* SIA _ NSIDES " Seiten der Diskette (1/2)

* $1C NHID " versteckte Sektoren (0)

$1E EXECFLG Flag für COMMAND.PRG

$20 LDMODE Flag für File- oder Sektorboot

$22 SSECT erster zu ladender Sektor

$24 SECTCNT Anzahl der zu ladenden Sektoren

$26 LDADDR Ladeadresse

$2A FATBUF FAT-Adresse

$2E FNAME Filename (meist TOS.IMG)

$39 RES reserviert

$3A BOOTIT Boot-Programm

-$1FD |

$1FE Ausgleichswort fur die Checksumme

62 ATARI ST Floppy und Harddisk

Die mit einem Sternchen (*) gekennzeichneten Einträge ent-
sprechen dem BPB der Diskette. Diese: Tabelle ist identisch mit
derjenigen des MS-DOS, des Betriebssystems der IBM-PCs. Da-
durch ist auch zu beachten, daß ein 16Bit-Wort hier in der By-
tes-Reihenfolge low-high vorliegt (z.B. BPS= $00 $02 ergibt
$200 Bytes pro Sektor). Somit ist der ATARI ST in der Lage,
IBM-Disketten zu lesen. Er kann sie jedoch nicht ohne weiteres

auswerten, da die Datenverteilung auf der Diskette anders orga-

nisiert ist als beim ATARI ST.

Hier noch einige Anmerkungen zu den Einträgen im Boot-Sek-

tor:

Die Zahlen in Klammern, die hinter einigen Einträ-
gen stehen, stellen den üblichen Inhalt dieser Ein-

träge bei einer einseitig formatierten Diskette dar.

NHID, die Anzahl der versteckten Sektoren, wird

vom BIOS des ATARI ST bei Disketten nicht ver-

wendet.

Die ab $1E liegenden Daten sind nur interessant, wenn es sich

bei der Diskette um eine Boot-fähige Diskette handelt. Eine
solche Diskette enthält normalerweise das Betriebssystem in
Form eines Datenfiles, Imagefile (.IMG) genannt. Man erkennt
einen ausführbaren Boot-Sektor auch daran, daß in ihm ab dem

3.Byte der Text ’Loader’ steht. Das Boot-Programm, welches in

den älteren ATARI STs in den zwei ROMS steckt, erkennt einen

solchen Boot-Sektor auBerdem an der Priifsumme, welche fiir

einen ausführbaren Boot-Sektor $1234 betragen muß. Liest also
ein solcher Fall vor, bekommen die weiteren Daten im Boot-

Sektor folgende Bedeutungen:

EXECFLG wird ın die Systemvariable ’cmdload’ kopiert. Dieses

Flag entscheidet, ob nach dem Laden des Betriebssystems das
Programm COMMAND.PRG geladen werden soll oder nicht.

LDMODE bestimmt den Lademodus. Ist dieses Flag Null, wird
das mit FNAME benannte File gesucht und geladen. Dieses File

Datenstrukturen 63

ist üblicherweise TOS.IMG. Ist LDMODE ungleich null, so wer-
den Sektoren in Abhängigkeit von SECTCNT und SSECT direkt
geladen.

SSECT ist der logische Sektor, ab dem gebootet wird. Diese
Variable ist nur gültig, wenn LDMODE ungleich null ist.

SECTCNT gibt die Anzahl der zu bootenden Sektoren an. Dies
ist ebenfalls nur bei LDMODE ungleich null gültig.

LDADDR ist die Speicheradresse, ab der das File oder die Sek-

toren geladen werden.

FATBUF gibt die Adresse an, an die die FAT- und die Direc-
tory-Sektoren geladen werden sollen.

FNAME ist der Filename des ’Image-Files’, welches geladen
werden soll (LDMODE = 0). Es ist genauso aufgebaut wie ein
normaler Filename, also 8 Zeichen als Name und 3 Zeichen als

Extender.

BOOTIT ist ein eventuelles Boot-Programm, welches nach dem
Laden des Boot-Sektors ausgeführt wird.

So ıst also der Boot-Sektor aufgebaut. Zusammen mit den
Kenntnissen des Diskettenformates ist nun genug Theorie vor-
handen, um einen Schritt in die Praxis zu tun. Wir wollen diesen

Schritt mit einem Programm vornehmen, mit dem wir unsere
Disketten formatieren können. |

Mit Hilfe des ’File’-Meniis sind wir bereits in der Lage, Disket-
ten zu formatieren. Wie jedoch bereits anfangs erwähnt, ist das
vom ATARI-Betriebssystem TOS verwendete Format auf 80
Tracks und 9 Sektoren pro Tracks festgelegt. Physikalisch passen
aber wesentlich mehr Tracks und Sektoren auf eine Diskette.

64 ATARI ST Floppy und Harddisk

3.2.1 Ein Formatierungsprogramm

Das nun folgende Programm bietet einige Möglichkeiten, die
Kapazität einer normalen Diskette zu erhöhen. Es wird über ein

kleines Menü gesteuert, in dem man einige Parameter für die
Formatierung einstellen kann. Die Auswahl der gewünschten

Einstellungen erfolgt dabei über die Funktionstasten.

Das Menü, welches nach dem Aufruf des Programmes erscheint,
sieht folgendermaßen aus:

*** Formatierungs-Programm S.D. ***

[F1] Seite(n): 2

[F2] Tracks : 80

[F3] Sektoren/Track ..: 9

(F4] Laufwerk: A

[F8] Formatieren ...

[F10] Quit !

Durch Druck einer der angegebenen Funktionstasten wird nun
entweder eine Einstellung verändert oder eine Funktion ausge-
löst. Folgende Einstellungen sind möglich:

Fl: Mit dieser Taste wird zwischen ein und zwei Seiten
umgeschaltet. Bei Verwendung eines einseitigen Lauf-
werks sollte auch nur eine Seite eingestellt werden.

F2: Hier wird zwischen 80 (Normaleinstellung) und 82
Tracks ausgewählt. Die Verwendung von 83 Tracks
wäre auch möglich, aus Gründen der zu geringen Da-
tensicherheit habe ich jedoch auf diese Auswahlmög-
lichkeit verzichtet. Sie können natürlich dennoch durch
geringfügige Änderungen im Programm mit 83 Tracks
arbeiten.

F3: Mit der Funktionstaste F3 wird zwischen 9 und 10

Sektoren pro Track hin- und hergeschaltet.

Datenstrukturen 65

F4: Hiermit können Sie zwischen Laufwerk A und B aus-

wählen. Dieser Punkt ist vor dem Starten der Forma-

tierung besonders zu kontrollieren, damit nicht verse-

hentlich Ihre im anderen Laufwerk steckende System-

diskette formatiert wird...

F8: Diese Taste löst die Formatierung selbst aus. Dieser
Vorgang beginnt unmittelbar auf Tastendruck und wird
durch die Meldung "Formatierung läuft. Bitte warten..."
angezeigt. Sollte ein Fehler auftauchen, erscheint die
Meldung "** Es ist ein Fehler aufgetreten !! **", Sie
sollten daraufhin die Diskette überprüfen, ob nicht z.B.

der Schreibschutz zurückgeschoben ist. Die Fehlermel-
dung bleibt solange auf dem Bildschirm, bis irgendeine
Taste gedrückt wird. Somit braucht der Formatierungs-

Vorgang nicht ständig beobachtet zu werden.

F10: Wenn Sie alle Disketten formatiert haben, können Sie

durch die Betätigung der Fl10-Taste das Programm ver-
lassen.

Durch die flexible Auswahlmöglichkeit dieses Programmes sind
verschiedene Kapazitäten der formatierten Disketten einstellbar.

Hier einige Werte für einseitige Formate:

Tracks Sektoren pro Track Kapazität in Bytes

80 9 (normal) 357376

82 9 366592

80 10 398336

8 10 408576

Wie Sie an obiger Tabelle erkennen können, ist ein Gewinn an
Kapazität schon bei einseitigen Disketten bis zu 51200 Bytes
möglich. Bei doppelseitigen Disketten verdoppelt sich diese Aus-

beute noch, so daß über 100 KByte dazukommt.

Hier nun das Programm. Erstellt wurde es mit dem Programm
SEKA, welches geringe Abweichungen zum DRI-Assembler

66 ATARI ST Floppy_ und Harddisk

zeigt. Sollten Sie das Programm mit dem DRI-Assembler über-
setzen wollen, so müssen lediglich die Kommentarzeilen mit ei-
nem Sternchen (*) beginnen und die ’blk.b’-Anweisung in ’ds.b’
geändert werden.

‚** Formatierungs-Programm S.D. **

run:

move. #menue,d0

bsr print ‚Menü ausgeben

bsr getkey

cmp.b #%3b,d0

blt run ‚falsche Taste

cmp.b #844,d0

bgt run ‚falsche Taste

cmp.b #%$3b,d0 ;F1 ?

bne notf1

eor #3 ,sds 21/2 Seiten

eor #1,sdsf

bra run

notf1:

cmp.b #$3c,d0 ;F2 ?

bne notf2

eor #2,trs :80/82 Tracks

eor #2,trsf

bra run

notf2:

cmp.b #$35d,d0 ;‚F3 ?

bne not f3

eor #3, sptf

eor #$1109,spt ‚9/10 Sektoren pro Track

bra run

notf3:

cmp.b #$3e,d0 ;F4 ?

bne notf4

Datenstrukturen 67

eor

eor

bra

notf4:

cmp.b

bne

bsr

bra

notf8:

cmp.b

bne

clr

trap

format:

move. l

bsr

move

subq

floop:

move

floop1:

bsr

bne

subq

bpl

subq

bpl

setboot:

clr

moveq

or

move

move. l

pea

move

#3, \w

#1, lwf

run

#$42 ,d0

notf8

format

run

#$44 ,d0

run

-(sp)

#1

#wait,d0

print

trsf,trsf1

#1,trsf1

sdsf,seite

fmttr

error

#1,seite

floop1

#1,trsf1

floop

-(sp)

#2,d0

sdsf,dO

d0,- (sp)

#1000000, - (sp)
puffer

#$12,-(sp)

sLaufwerk A/B

;F8 ?

‚=> Formatierung

;F10 ?

;‚Quit, zurück zum Desktop

;* Formatieren *

‚"Formatierung läuft..."

‚Seite bestimmen

;formatiere einen Track

»ggf. noch andere Seite

formatieren

‚nächster Track

;Boot-Sektor erstellen

‚Execute-Flag: nicht ausführbar

;‚Disktyp- und Seitenauswahl

‚Seriennr. erstellen

»Puffer-Adresse

ATARI ST Floppy und Harddisk

trap #14 ;Boot-Sektor erstellen

add.l #14,sp

lea puffer, a0 ‚Zeiger auf Boot-Sektor-Puffer

clr.l do

cmp #9 ,sptf ‚9 Sektoren pro Track ?

beq sok ‚ja

move.b #10,24(a0,d0) ‚sonst 10 SPT einsetzen

move trsf,d1 ‚Anzahl der Tracks in D1

tst sdsf ‚1 Seite ?

beq sd11 ‚ja

isl #1,d1 ‚sonst doppelter Zuwachs

sd11:

bsr addsec sSEC + Anzahl der Tracks (D1)

sok:

cmp #80, trsf :80 Tracks ?

beq trok ‚ja

move #18,d1

tst sds f 1 Seite ?

beq sd12 ‚ja

isl #1 ,d1 ‚sonst doppelter Zuwachs

sd12:

bsr addsec »SEC + 2*9 oder 4*9

trok:

move #1,-(sp) :1 Sektor

clr.l -(sp) ‚Seite 0, Track 0

move #1,-(sp) ‚Sektor 1

move Inf,-(sp) ‚Laufwerk

cir.l -(sp)

pea puffer Puffer

move #9,-(sp)

trap #14 ;flopwr, Boot-Sektor schreiben

add. #20,sp

tst do ;Fehler aufgetreten ?

bne error ‚ja: Fehlermeldung

bra run ‚Neustart

Datenstrukturen 69

addsec:

move.b

Lsl

move .b

add

move.b

(sr

move.b

rts

error:

move. l

bsr

bsr

bra

fmttr:

clr

move. l

_ move

move

move

move

move

clr.l

pea

move

trap

add. l

tst

rts

print:

move. |

move

trap

addq. l

rts

getkey:.

20(a0,d0),d2

#8, d2

19(a0,d0),d2

d1,d2

d2,19(a0,d0)

#8,d2

d2,20(a0,d0)

#errtxt,d0

print

getkey

run

-(sp)

#587654321,-(sp)

#1,-(sp)

seite,-(sp)

trsf1,-(sp)

sptf,-(sp)

lwf,-(sp)

-(sp)

puffer

#10,-(sp)

#14

#26,Sp

do

d0,-(sp)

#9,-(sp)

#1

#6,Sp

‚SEC = SEC + D1

HI

:LO

‚set LO

‚set HI

‚Fehlermeldung ausgeben

‚auf Taste warten

‚und Neustart

‚seinen Track formatieren

‚Virgin-Daten

;Magic-Zahl

‘interleave

‚Seite

‚Track

‚Sektoren/Track

Laufwerk

»Track-Puffer

;flopfmt, Track formatieren

sTest auf Error

sText ab (DO) ausgeben

‚auf Tastendruck warten,

70 ATARI ST Floppy und Harddisk

move.

trap

addq.

swap

rts

W

l

#1,-(sp)

#1

#2,Sp

do sTastencode in DO.b

; Texte und Variablen:

menue: dc.b $1b,"E*** Formatierungs-Programm S.D. ***"

dc.b 10,13,10,13

dc.b " [F1] Seite(n) sh

sds: dc.b " 2",10,13

dc.b ™ [F2] Tracks 7

trs: dc.b "80",10,13

dc.b " [F3] Sektoren/Track ..: "

spt: dce.b " 910,13

dce.b ! [F4] Laufwerk: "

Lw: dc.b " A",10,13

dc.b " [F8] Formatieren ...",10,13

de.b "[F10] Quit !",10,13,10,13,0

wait: dc.b "Formatierung läuft. Bitte warten...",10,13,0

errtxt: dc.b "** Es ist ein Fehler aufgetreten !! **u,10,13,0

even

sdsf: de.w 1

trsf: de.w 80

trsf1: dc.w 80

sptf: dc.w 9

lwf: dc.w 0

seite: dc.w 0

data

puffer: blk.b 8000

Das Programm ist in folgende Abschnitte eingeteilt:

1. Menüsteuerung: Das Menü wird ausgegeben (es

löscht dabei den Bildschirm) und auf einen Tasten-

Datenstrukturen 71

druck gewartet. Nach einer Eingabe wird der Ta-
stencode, welcher in DO übergeben wurde, ausge-

wertet. Trifft einer der CMP.B #$xx,D0-Vergleiche
zu, so wird die gewählte Funktion ausgelöst. Bei ei-

ner Umschalt-Funktion (FI-F4) wird durch den
EOR-Befehl diese Umschaltung sowohl im Menütext

als auch in der entsprechenden Parameterzelle vorge-

nommen. Nach einer erfolgten Umschaltung wird

wieder zum Start (run) gesprungen, außer bei der
Taste F10, die mittels der TERM-Funktion des

GEMDOS das Programm beendet.

2. Formatierung: Nach Ausgabe der Meldung "Forma-
tierung läuft..." wird die Diskette ab dem eingestell-
ten maximalen Track-1 bis Track 0 formatiert. Ist
zweiseitige Formatierung gewählt, so wird jeder
Track erst auf Seite 1 (Rückseite) und dann auf Seite
0 formatiert.

3. Erstellung des Boot-Sektors: Zuerst wird ein norma-

ler Boot-Sektor über die ’protobt’-Funktion des

XBIOS erzeugt. Dabeı wird lediglich die Anzahl der
Seiten berücksichtigt.

4. Korrektur des Boot-Sektors: Sind von der Norm ab-

weichende Einstellungen vorhanden (10 Sektoren pro
Track, 82 Tracks), so wird der erstellte Boot-Sektor

entsprechend korrigiert. Dazu wird zunächst die
Anzahl der Sektoren pro Track getestet. Ist sie 10, so

wird dies zuerst in die SPT-Zelle des Boot-Sektors

eingesetzt und dann die Anzahl der Tracks zur An-

zahl der Sektoren auf der Diskette addiert. Danach

wird die gewählte Track-Anzahl getestet und bei

Bedarf die zusätzliche Sektorenanzahl aufaddiert.

5. Abspeichern des Boot-Sektors: Mit Hilfe der
’flopwr’-Funktion des XBIOS wird der aufbereitete

neue Boot-Sektor auf Seite 0, Track 0, Sektor 1 ge-

schrieben. Sollte ein Fehler auftreten, so wird dieser

angezeigt.

72 ATARI ST Floppy und Harddisk

Datenbereich: Hier sind die Texte des Menüs bzw.
der Meldungen und die Variablen untergebracht. Der

Puffer wird zwar in der Länge eingestellt, jedoch
nicht auf die Diskette geschrieben, da er im ’.bss’-

Bereich liegt. Bei Verwendung des DRI-Assemblers
muß daher hier statt ’data’ ein ’.bss’ eingesetzt wer-

den.

Hier nun ein BASIC-Programm, welches das Formatierungs-Pro-
gramm mit dem Namen ’Bigformat.prg’ auf der Diskette erstellt:

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

101

102

103

104

105

106

107

108

1kKk* Erstellung des BIGFORMAT-Programms ***

?:fullw 2:clearw 2:gotoxy 0,0

? "File >> bigformat.prg << wird erzeugt":?:27:?

dim c%(441):cs#=0

for 1=0 to 441

read a$:c%(1)=val C"&H"+a$)

check#=check#+(c%(i))

next 1

if check#= 4376703 then 70

?"Geht leider noch nicht, da etwas mit den DATA's nicht stimmt."

goto 80

bsave "bigformat.prg", varptr(c%(0)), 883

? "Das Programm >> bigformat.prg << ist nun geschrieben."

?:7:2:?"Bitte Taste drucken":a=inp(2):end

IKKKKKKKKK DATA für bigformat.prg KEKRKKKKKK

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

601A,0000,0332,0000,0000,0000,0000 ,0000
0000,0000,0000,0000,0000,0000,203c ‚0000
020A,6100,01EA,6100,01F2, 0C00, 003B, 6D00
FFEC,0C00,0044,6E00,FFE4,0C00,003B ‚6600
0016, 0A79, 0003, 0000, 024E, 0A79, 0001, 0000
0326 6000, FFC8,0C00,003C , 6600, 0016, 0A79
0002 , 0000, 026C, 0A79, 0002, 0000, 0328, 6000
FFAC,0C00, 003D , 6600, 0016, 0A79, 0003 , 0000
032C, 0A79, 1109, 0000, 028A, 6000, FF90, OCO0

Datenstrukturen 73

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

003E , 6600, 0016, 0A79, 0003 , 0000, 02A8, 0A79
0001, 0000, 032E , 6000, FF74, 0C00, 0042, 6600
000A,6100,0012, 6000, FF64,0C00, 0044, 6600
FF5C,4267,4E41,203C, 0000, 02D6,6100,0140
33F9, 0000, 0328, 0000, 032A, 5379, 0000, 032A
33F9, 0000, 0326, 0000, 0330, 6100, 00E6, 6600
00D0, 5379, 0000, 0330, 6A00, FFFO,5379, 0000
032A, 6A00, FFDC, 4267, 7002, 8079, 0000, 0326
3F00, 2F3C, 0100, 0000, 4879, 0000, 0332, 3F3C
0012 ,4E4E ,DFFC, 0000, O00E , 41F9, 0000 , 0332
4280, 0C79, 0009, 0000, 032C,6700, 001E, 11BC
000A, 0818, 3239, 0000, 0328, 4479, 0000 , 0326
6700 , 0004, E349, 6100, 0050, 0C79, 0050, 0000
0328, 6700, 0016, 323C, 0012,4A79, 0000, 0326
6700, 0004,E349, 6100, 0030, 3F3C, 0001, 42A7
3F3C, 0001, 3F39, 0000, 032E , 42A7, 4879, 0000
0332, 3F3C, 0009, 4E4E ,DFFC, 0000, 0014, 4A40
6600, 001E , 6000, FE76, 1430,0814,E14A, 1430
0813 ,D441,1182,0813,E04A, 1182, 0814, 4E75
203C, 0000, 02FC, 6100, 0046,6100, 004E , 6000
FEGC, 4267, 2F3C, 8765 , 4321, 3F3C, 0001, 3F39
0000 , 0330, 3F39, 0000, 032A, 3F39, 0000, 032C
3F39, 0000, 032E ,42A7, 4879, 0000, 0332, 3F3C
000A, 4E4E ,DFFC, 0000, 001A, 4A40, 4E75, 2F00
3F3C, 0009, 4E41, 5C8F ‚4E75 ‚3F3C ‚0001 ,4E41
548F ,4840,4E75, 1B45, 2A2A, 2020, 466F, 726D
6174, 6965, 7275, 6E67, 732D , 5072, 6F 67, 7261
6D6D ‚2020 ,532E , 442E , 202A, 2A2A, OAOD , OAOD
205B, 4631, 5D20, 2053, 6569, 7465, 286E ‚2920
2E2E, 2E2E, 2E2E, 2E2E, 3A20, 2032, OAOD, 205B
4632 ‚5020 ,2054 ‚7261 , 636B, 7320, 2E2E, 2E2E
2E2E , 2E2E, 2E2E , 3A20, 3830, OAOD ‚2058 ‚4633
5D20, 2053, 656B, 746F, 7265, 6E2F, 5472, 6163
6B20, 2E2E , 3A20, 2039, OAOD, 205B ‚4634 ,5D20
204C, 6175 ,6677, 6572, 6B20, 2E2E , 2E2E, 2E2E
2E2E ,3A20, 2041, 0A0D , 205B 4638, 5D20, 2046
6F72,6D61, 7469, 6572, 656E, 202E, 2E2E , OAOD
5B46,3130,5D20, 2051, 7569, 7420, 210A, ODOA
0D00 ,466F ‚726D ,6174, 6965, 7275, 6E67, 206C
8475 , 6674, 2E20, 4269, 7474 , 6520, 7761, 7274

74 ATARI ST Floppy und Harddisk

149 DATA 656E, 2E2E, 2E0A, 0D00, 2A2A, 2045, 7320, 6973
150 DATA 7420, 6569, 6E20, 4665, 686C, 6572, 2061, 7566
151 DATA 6765, 7472, 6574, 656E, 2021,2120, 2A2A, OAOD
152 DATA 0000,0001,0050, 0050, 0009, 0000, 0000, 0000
153 DATA 0002, 2808, 1408, 1408, 1408, 260A, 0406, 0604
154 DATA OEOA, OEOE, 120A, 1006, 120E, 1A08, 341E, 0606
155 DATA 0608, 0006

Nun noch einige Bemerkungen zum Programm:

- Das Kopieren einer normalen auf eine erweiterte

Diskette ist nur File für File möglich, da das Be-
triebssystem wegen der unterschiedlichen Disketten-
formate nicht die Disketten direkt kopiert.

- Die Verwendung einer erweiterten Diskette als TOS-

Systemdiskette ist nicht ohne weiteres möglich, da

der Loader im Boot-Sektor fehlt. Daher muß für das

Booten dieser Diskette der Boot-Sektor einer anderen
Systemdiskette kopiert werden und danach die Ein-
stellungen der erweiterten Diskette mit einem ge-

eigneten Disketten-Monitor wieder eingegeben wer-
den.

- Verwenden Sie die erweiterten Disketten nicht unbe-

dingt als Trager von sehr wichtigen und einmaligen
Daten. Sollte die von Ihnen verwendete Diskette-

marke nämlich nicht allzuviel taugen, so kann schon

mal der eine oder andere Sektor ın den obersten

Tracks ausfallen...

Doch nun zurück zur leidigen Theorie. Wie bereits erwähnt,
wird aus den diversen Informationen der BIOS-Parameter-Block,

kurz BPB, erstellt. Sehen wir uns jetzt diesen BPB etwas genauer
an.

Datenstrukturen 75

3.2.2 Der BIOS-Parameter-Block BPB

Einige Einträge dieses Parameterblocks sind uns ja schon be-
kannt, da sie auch im Boot-Sektor auftauchen. Der BPB wird

beim Aufruf des BIOS-Kommandos ’Get BPB’ (Nr. 7) erstellt,
wenn: die Diskette zwischenzeitlich gewechselt wurde. Der BPB
enthält im Gegensatz zum Boot-Sektor seine Daten im normalen
16 Bit-Format, und zwar in folgender Reihenfolge:

recsize Sektorgröße in Bytes (512)

clziz Clustergröße in Sektoren (2)

clsizb Clustergröße in Bytes (1024)

rdlen Anzahl der Directorysektoren (7)

fsiz FAT-Größe in Sektoren (5)

fatrec Startsektor des zweiten FATs (6)

datrec erster Datensektor (rdlen+fsiz+fatrec=18)

numcl Anzahl der Datencluster (711)

bflags FAT-Eintragsgröße in Bit 0:

0=12 Bit, 1=16 Bit (0)

Die Zahlen in Klammern geben den typischen Inhalt der Ein-
träge bei einer doppelseitig formatierten Diskette an.

Nun wollen wir wieder ein Programm betrachten, mit dem die-

ser BIOS-Parameter-Block BPB eingelesen und analysiert werden

kann. Das Programm ist recht einfach aufgebaut. Zuerst wird
ein Prompt ausgegeben, welches auch die Uberschrift beinhaltet.

Dieses Prompt fordert nun zur Eingabe eines Buchstabens in die
Tastatur auf. Dabei ist entweder eine Laufwerksbezeichnung
(a,b,c oder d) oder der Buchstabe ’q’ gültig. ’q’ beendet das Pro-

gramm und führt wieder zum Desktop zurück.

Nach der Eingabe testet das Programm, ob ein gültiger Buch-
stabe eingegeben wurde. Wenn nicht, so wird erneut gestartet,

76 ATARI ST Floppy _ und Harddisk

wenn ein ’q’ eingegeben wurde, so wird das Programm abge-

brochen.

Der Buchstabe wird dann durch Subtraktion von ’a’ in die für

den GETBPB-Aufruf nötigen Wert (0-3) umgewandelt. Damit

wird nun die GETBPB-Funktion aufgerufen. Man erhält die

Adresse des BPB im Register DO zurück.

Die Einträge des BPB werden nun nacheinander ausgelesen, se-

dezimal (= hexadezimal) ausgegeben und mit dem entsprechen-

den Text versehen. Damit werden alle wichtigen Informationen

über die Diskette auf einen Blick überschaubar.

Hier das Programm, welches wiederum mit dem SEKA seschrie-
ben wurde:

:** BPB-Analysator S.D. **

run:

move.l #prompt,d0 |

bsr pmsg ;Prompt ausgeben

bsr getkey ‚Eingabe des Laufwerks A-D

cmp #'q',dO ‚Quit ?

beq quit ‚ja => Desktop

move do, dé Zeichen retten

bsr perl f ‚CR ausgeben

sub #'a! dé sWert umwandeln

bmi run ‚falsche Eingabe

cmp #3 ,d6

bgt run ‚falsche Eingabe

move d6,-(sp) ;Device-Nr.

move #7,-(sp)

trap #13 ;GETBPB- Funktion

addq.l #4,sp

tst.l do

beq run ‚Error !

Datenstrukturen 17

move.

bsr

move.

bsr

bsr

move.

bsr

bsr

move.

bsr

bsr

move.

bsr

bsr

move.

bsr

bsr

move.

bsr

bsr

move.

bsr

bsr

move.

bsr

move

bsr

move

btst

beq

move

l

~
_

d0,a5

pnext

#bps , d0

pline

pnext

#spc ,d0

pline

pnext

#bpc , d0

pline

pnext _

#dirsec,d0

pline

pnext

#fatsec,d0

pline

pnext

#fat2s,d0
pline

pnext

#datsec ,d0

pline

pnext

#datc, dO
pline

#'$' dO

pchar

#12,d0

#0,(a5)

bits12

#16,d0

»BPB-Adresse retten

"Bytes pro Sektor"!

:"Sektoren pro Cluster"

‚ıBytes pro Cluster"!

;"Directory-Sektoren"

-"FAT-Sektoren"

‚"Start-Sektor des 2. FAT"

;"Start-Sektor der Daten"

‚"Datencluster"!!

‚ug ausgeben

»12 Bit annehmen

‚richtig ?

‚ja

‚sonst 16 Bit

ATARI ST Floppy und Harddisk

bits12:

bsr phexbyt

move.l #fatbit,d0

bsr pline :"Bits pro FAT-Eintrag!

bra run ‚fertig => Neustart

quit: ; Exit zum Desktop

clr -(sp)

trap #1

getkey: Get Key -> DO

move #1,-(Sp)

trap #1

and.t #$ff,d0

addq.l #2,sp

rts

pline: ‚Print Line/CR

bsr pmsg

perlf: Print CR,LF

move #10,d0

bsr pchar

move #13,d0

pchar: ‚Print Character DO

move d0,- (sp)

move #2,-(sp)

trap #1

addq.| #4,sp

rts

pmsg: ‚Print Line (DO)

move.l d0,-(sp)

move #9,-(sp)

trap #1

addq #6,Sp

rts

pnext: snachstes Wort holen und ausgeben

move #'$' dO

Datenstrukturen

bsr

move

phexword:

moveq

bra

phexbyt:

-‘moveq

rol.l

phexi:

rol.l

move.

move.

bsr

move.

move.

dbra

rts

phexnib:

and. |

swap

and. l

add.b

cmp.b

bes

add.b

phexn:

bra

prompt:

bps:

spc:

bpc:

dirsec:

fatsec:

fat2s:

datsec:

lL

l

79

pchar ‚gt ausgeben

(a5)+,d0

‚Print Hex-Word DO

#3 ,d1 |

phex1

Print Hex-Byte

#1,d1

#8 , dO

#4 ,d0

d0,-(sp)

d1,-(sp)

phexnib ‚ein Nibble (0-F) ausgeben

(sp)+,d1

(sp)+,d0

d1,phex1

#$7f ,d6

do

#S0f , dO

#$30,d0

#$3a,d0

phexn

#7, d0

_ pchar sNibble ausgeben

dc.b '"*** BPB-Analysator S.D. ***" 10,13

dc.b "Bitte Laufwerk eingeben (a-d) oder",10,13

dc.b "!q! für Quit : ",0

dc.b " Bytes pro Sektor",0

dc.b " Sektoren pro Cluster",0

dc.b " Bytes pro Cluster",0

dc.b " Directory-Sektoren",0

dc.b " FAT-Sektoren",0

dc.b ": Start-Sektor 2.FAT",O

dc.b "2 Start-Sektor der Daten",0

80 ATARI ST Floppy_ und Harddisk

datc: dc.b " Daten-Cluster",0

fatbit: dc.b " Bits pro FAT-Eintrag",10,13,0

Hier auch gleich den BASIC-Lader, welcher das BPB-Analy-

seprogramm als BPBANA.TOS auf der Diskette erstellt:

10 '*** Erstellung des BPB-Analysators ***

15!

20 ?:fullw 2:clearw 2:gotoxy 0,0

25 ? "File >> BPBANA.TOS << wird erzeugt":?:?:?

30 dim c%(331):cs#=0

35 for i=0 to 331

40 read a$:c%(i)=val ("&H"+a$)

45 check#=check#+(c%(1))

50 next 1

55 if check#= 4548987 then 70

60 ?"Geht leider noch nicht, etwas mit den DATAs stimmt nicht."

65 goto 80

70 bsave "BPBANA.TOS",varptr(c%(0)), 664

75 ? "Das Programm >> BPBANA.TOS << ist nun geschrieben."

80 27:7:7:?"Bitte Taste drücken" :a=inp(2):end

85 I

90 1RRRKRKKRR DATAS für BPBANA.TOS *****xk#%

95 1

100 DATA 601A,0000, 026E ,0000,0000,0000,0000,0000

101 DATA 0000,0000,0000,0000,0000 ,0000, 203c ,0000

102 DATA 015E,6100,0100,6100, 00D0,0C40,0071,6700

103 DATA 00C4,3C00,6100,0006,0446,0061,6B00, FFDE

104 DATA 0C46,0003,6E00,FFD6,3F06,3F3C,0007 ,4E4D

105 DATA 588F ,4A80,6700, FFC6, 2A40,6100,00D4, 203C

106 DATA 0000,01B2,6100,00A2,6100,00C6, 203C ,0000

107 DATA 01C€5,6100,0094,6100,00B8, 203C ,0000,01DC

108 DATA 6100,0086,6100,00AA, 203C ,0000,01F0,6100

109 DATA 0078,6100,009C ,203C ,0000,0205 ,6100, 006A

110 DATA 6100, 008E,203C,0000,0214,6100,005C, 6100

111 DATA 0080,203C,0000,0229,6100,004E,6100,0072

112 DATA 203C,0000,0242,6100,0040,303C ,0024 ,6100

113 DATA 0048,303C,000C,0815,0000,6700,0006,303C

Datenstrukturen 81

114 DATA 0012,6100,005C,203C ‚0000 ,0252,6100,001A
115 DATA 6000, FF2A,4267 ,4E41 ,3F3C ‚0001 ,4E41 ‚0280
116 DATA 0000,00FF ,548F ‚4E75 ,6100,001A ,303C ,000A
117 DATA 6100,0006,303C, 000D , 3F00, 3F3C, 0002, 4E41
118 DATA 588F,4E75,2F00,3F3C, 0009, 4E41,5C4F, 4E75
119 DATA 303C,0024,6100, FFE2,301D, 7203, 6000, 0006
120 DATA 7201,E198,E998, 2F00, 2F01,6100, 000C, 221F
121 DATA 201F,51C9, FFFO,4E75, 0286, 0000, 007F ‚4840
122 DATA 0280, 0000, 000F ,0600, 0030, 0C00, 003A, 6500
123 DATA 0006,0600,0007,6000, FFAO, 2A2A, 2A20, 2042
124 DATA 5042,2D41,6E61,6C79, 7361, 746F, 7220, 2053
125 DATA 2E44,2E20, 202A, 2A2A, OAOD , 4269, 7474, 6520
126 DATA 4C61, 7566, 7765, 726B, 2065 , 696E ,6765 , 6265
127 DATA 6E20, 2861, 2D64, 2920, 6F64, 6572, OAOD ‚2771
128 DATA 2720,6681,7220,5175,6974, 203A, 2000, 2020
129 DATA 4279, 7465, 7320, 7072, 6F20, 5365, 6B74, 6F72
130 DATA 0020, 2053, 6568, 746F, 7265, 6E20, 7072, 6F20
131 DATA 436C, 7573, 7465 , 7200, 2020, 4279, 7465, 7320
132 DATA 7072, 6F20,436C, 7573, 7465, 7200, 2020, 4469
133 DATA 7265 ‚6374 ,6F72,7920 ‚5365 ‚6B74 ‚6F72 ,656E
134 DATA 0020,2046,4154 ,2053 ,656B ‚746F ‚7265 ,6E00
135 DATA 3A20 ,5374 ,6172,7420 ‚5365 ‚6874 ,6F72 ,2032
136 DATA 2E46,4154,003A, 2053, 7461, 7274, 2053 ‚656B
137 DATA 746F ‚7220 ‚6465 ‚7220 ‚4461 ‚7465 ‚6E00 ‚2020
138 DATA 4461, 7465, 6E2D ,436C, 7573, 7465, 7200, 2020
139 DATA 2020,4269, 7473, 2070, 726F , 2046, 4154, 2D45
140 DATA 696E, 7472,6167, OAOD , 0000, 0000, 0002, 420E
141 DATA OEOE, OEOE, OE0E, 2600

Beim Einschalten des Rechners sind die Daten des BPB nicht
vorhanden. Das Betriebssystem erstellt die BPB erst nach dem
Booten, wenn es die Anzahl und Kennung der angeschlossenen

Laufwerke feststellt. Doch dazu muß erst einmal ein Betriebssy-
stem vorhanden sein.

Ist das TOS nicht im Rechner eingebaut, so muß es erst gebootet

werden. Ebenso wird gebootet, wenn zwar ein Betriebssystem

eingebaut ist, die Diskette jedoch ein bootbares Betriebssystem

82 ATARI ST Floppy_ und Harddisk

(TOS.IMG) enthält und der Boot-Sektor ausführbar ist. Der

Vorgang des Bootens läuft in folgenden 4 Schritten ab:

1.

4.

Der Boot-Sektor wird geladen und das auf ihm be-
findliche Boot-Programm wird ausgeführt.

Die FAT und das Directory wird von der aktuellen
Diskette geladen. Der Lader sucht nun nach dem an-

gegebenen Filenamen (meist TOS.IMG). Findet er es
nicht, so gibt er eine Fehlermeldung zurück.

TOS.IMG wird ab der Speicheradresse $40000 gela-
den.

Das geladene Programm wird am Anfang gestartet.

Das TOS.IMG besteht nun seinerseits aus drei Teilen:

ein Relocator, ein Programm, welches das Betriebs-

system an die eigentlich vorgesehene Adresse ($6100)

schiebt. Dieses Programm löscht den Bildschirm,

schiebt den TOS- Imageblock an seine Heimatadresse
und startet es dort.

die Daten des Betriebssystems (BIOS, XBIOS)

die Daten des GEM und des Desktop-Programms

Wie man also sieht, ist der Aufbau des Betriebssystems im File

TOS.IMG recht kompliziert. Das eingebaute TOS, welches in den
6 PROMs (Programmable Read Only Memory) liegt, ist natürlich

etwas kürzer, da es nur das Betriebssystem mit GEM enthält und

keinen Relocator.

Gehen wir nun über in den nächsten Abschnitt der Datenstruk-

turen auf Disketten, und zwar dem Aufbau und der Verwaltung
des Inhaltsverzeichnisses.

Datenstrukturen 83

3.3 Das Inhaltsverzeichnis

Das Inhaltsverzeichnis beginnt auf einseitig formatierten Dis-
ketten auf Track 1, Sektor 3, und belegt 7 Sektoren einer ein-

seitigen Diskette. Es enthält pro Eintrag außer dem Filenamen
und der Extension noch eine Reihe weitere Daten, die für die

Verwaltung der Diskette mehr oder weniger wichtig sind.

Jeder Eintrag im Inhaltsverzeichnis besteht aus 32 Bytes, die alle

Informationen über das File enthalten, die das Betriebssystem

benötigt. Diese 32 Bytes unterteilen sich in 8 Datenfelder, die
folgendermaßen aufgebaut sind:

1 - Filename 8 Bytes

2 - Filetyp (Extender) 3 Bytes

3 - Attribut 1 Bytes

4 - Reserviert 10 Bytes

5 - Uhrzeit 2 Bytes

6 - Datum 2 Bytes

7 - erster Cluster 2 Bytes

8 - File-Größe 4 Bytes

Das erste Feld enthält also den Filenamen. Dieser Name besteht

aus ASCII-Zeichen, also nur Buchstaben und Ziffern. Dabeı

werden auch nur Großbuchstaben verwendet. Der Name ist auf

8 Zeichen begrenzt; hat er weniger als 8 Zeichen, so wird der

Rest mit Leerzeichen (Blanks) aufgefüllt.

Ist das erste Byte des Namens eine Null, so bedeutet dies, daß
der Eintrag bisher nie benutzt wurde. Wurde das File bereits
verwendet und wieder gelöscht, so findet sich hier eine 229

(SE5).

Ist das erste Zeichen des Namens ein Punkt (.), so steht dieser

Eintrag fiir ein spezielles Unterverzeichnis, einen Ordner.

84 ATARI ST Floppy und Harddisk

Das darauffolgende Feld enthält den Filetyp, auch Extender ge-

nannt. Dieser Typ ist auf 3 Buchstaben begrenzt (z.B. PRG,
TOS, BAS usw.) und wird ebenfalls bei Bedarf mit Leerzeichen
aufgefüllt. Auch hier werden nur Großbuchstaben verwendet.

Nun folgt das Byte des File-Attributes. Es enthält bitweise ko-

diert den Status dieses Eintrages bzw. des Files. Die Bedeutung

dieser Bits ıst folgende:

Bit Bedeutung wenn gesetzt (1)

0 nur lesen erlaubt

1 verstecktes File

2 System-File
3 Eintrag ist Disketten-Name

4 Eintrag ist ein Ordner
5 File wurde geändert

Nach diesem Byte folgen 10 Bytes, welche keine Bedeutung ha-
ben. Sie gelten lediglich als Reservebytes, die vielleicht für spä-

tere Anwendungen verwendet werden sollen.

Nun folgen zwei Bytes, welche die Uhrzeit der letzten Modifi-
katıon des Files enthalten. Hierbei wurde zur Platzeinsparung
eine spezielle Kodierung der Zeit verwendet.

Die 16 Bit des Uhrzeiteintrages teilen sich in 3 Sektionen, Stun-
den, Minuten und Sekunden. Diese Aufteilung sieht folgender-
maßen aus:

Beispiel: 19:21:34 Uhr

Stunde Minuten Sekunden/2

10011 010101 10001

Die Sekunden werden nur in Zweierschritten gewertet, daher

steht in den unteren 5 Bits der Uhrzeit eine 17.

Datenstrukturen 85

Das nächste Feld im Directory enthält das Datum der letzten

Änderung der Datei. Die Aufteilung in Jahr, Monat und Tag
geschieht hier auf ähnliche Weise wie bei der Uhrzeit. Dabei
sind für das Jahr nur 7 Bits reserviert, weshalb grundsätzlich zu
der hier enthaltenen Zahl 1980 addiert werden muß. Somit er-
gibt sich folgender Eintrag:

Beispiel: 12.05.1986

Jahr Monat Tag

0000110 0101 01100

Das siebente Feld im Directory enthält die Nummer des ersten
Clusters auf der Diskette, der von dem File belegt wird. In die-

sem üblicherweise aus zwei Sektoren bestehenden Cluster be-

sinnt somit die Speicherung des Files. Wie es ab dort weitergeht,

erfahren Sie im nächsten Kapitel über die FAT.

Das letzte Feld enthält schließlich die Länge des Files in Bytes.

Hierbei ist zu beachten, daß eventuell weniger Bytes gelesen
werden als hier steht, was auch von der FAT abhängt. Die File-

länge ist somit nur als maximale Länge anzusehen.

Anhand dieser Kenntnisse über den Aufbau des Inhaltsverzeich-

nisses auf den Disketten sind Sie nun in der Lage, mit Hilfe ei-
nes Diskettenmonitors die Aufteilung der Diskette zu analysie-
ren. Durch Änderungen der Werte können vielfältige Manipula-
tionen vorgenommen werden, deren Wirkung jedoch manchmal

unangenehm sein können. Aus diesem Grunde empfiehlt es sich,

vor solchen Manipulationen eine Kopie der Diskette anzuferti-

gen.

Will man nun ein Programm schreiben, in dem das Inhaltsver-
zeichnis einer Diskette ausgelesen werden soll, so muß man vor

dem Aufruf der entsprechenden Funktion des Betriebssystems

einen Puffer für die erwarteten Daten bereitstellen. Der Anfang
dieses Puffers wird als die ’Disk Transfer Adress (DTA)’ be-
zeichnet.

86 ATARI ST Floppy und Harddisk

Dieser Puffer ist 44 Bytes lang und muß dem Betriebssystem
durch den Aufruf einer besonderen Funktion angegeben werden.
Danach kann die Suche nach Directory-Einträgen beginnen.
Dafür wird mit der Funktion SFIRST (search first) der erste
passende Eintrag, mit SNEXT (search next) die weiteren Ein-
träge gesucht und in den Puffer an der DTA geladen werden.

Der Puffer enthält nach dem Aufruf alle Informationen, die

auch im Directory-Fenster des Desktop erscheinen. Die Auftei-
lung der Daten ist folgende:

Byte(s) Inhalt

0...20 reserviert

21 File-Attribut

22,23 Uhrzeit

24,25 Datum

26...29 Filegröße in Bytes (LO,HI)
30...43 Filename und Extender

Nun zum Programm. Diese Maschinenroutine setzt zuerst die

DTA und sucht dann nach dem angegebenen Filenamen im Di-

rectory. Ist der angegebene Name nur ’*.*’, so wird der erste
Eintrag, der dem vorgegebenen Attribut entspricht, geliefert. Ist
überhaupt kein passender Eintrag vorhanden, so liefert die

Funktion im Datenregister DO die Fehlernummer -33, File nicht

gefunden, zurück. Andernfalls ist dieses Register null.

MOVE .L #PUFFER,-(SP) * DTA Ubergeben

MOVE #$1A,~-(SP) * SETDTA- Funktionsnummer

TRAP #1 * Betriebssystem aufrufen

ADDQ.L #6,SP * Stack reparieren

MOVE #%11001,-(SP) * Dateityp: alle Dateien

MOVE .L #NAME , - (SP) * Adresse des Filenamens

MOVE #$4E , - (SP) * SFIRST-Funktionsnummer

TRAP’ #1 * Betriebssystem aufrufen

ADDQ.L #8,SP * Stack reparieren

TST DO * gefunden

BNE WARNIX * nein

Datenstrukturen 87

USW.

PUFFER: .ds.b 44 * Platz für die Daten

NAME: .dce.b "*_*" QO * alle Namen erlaubt

Um danach den nächsten Eintrag zu suchen, genügt einfach der

Programmteil:

MOVE #S4GF,- (SP) * SNEXT-Funktionsnummer

TRAP #1 * Betriebsystem aufrufen

ADDQ.L #2,SP * Stack reparieren

TST DO * gefunden

BNE WARNIX * nein, das war's wohl

Auf diese Weise läßt sich also leicht ein Programm schreiben,
welches z.B. das Inhaltsverzeichnis einer Diskette auf dem Druc-

ker ausgibt. Ein solches Programm, das ein komplettes Inhalts-

verzeichnis inklusive der Ordner-Inhalte tibersichtlich ausdruckt,

finden Sie auch im Kapitel 5.3.

LaBt man sich nun im Desktop das Inhaltsverzeichnis der Dis-

kette anzeigen, so werden Name, Extender, Datum, Uhrzeit und

Lange der Files ausgegeben. Wenn Sie dann ein Programm an-
klicken, so muß das Betriebssystem nicht nur wissen, wo auf der

Diskette das File beginnt, sondern auch, wo die weiteren Daten

des Files stehen. Diese Informationen beinhaltet die FAT, die

wir nun betrachten wollen.

3.4 Die FAT

Die FAT (File Allocation Table) belegt normalerweise 5 Sekto-
ren auf einer (einseitigen) Diskette und beginnt normalerweise
auf Track 0, Sektor 2 der Seite 0. Die Größe dieser Tabelle va-

riiert je nach verwendetem Format. Sie wird verwendet, um die

Verteilung jedes Files auf der Diskette zu speichern.

88 ATARI ST Floppy und Harddisk

Der Grund dafür liegt darin, daß ein File nicht unbedingt Sek-
toren belegt, die direkt hintereinander liegen. SchlieBlich werden
diejenigen Sektoren, die ein gelöschtes File beinhaltet hatten,

wieder zur Speicherung neuer Daten freigegeben. Ein neues File,
welches auf die Diskette geschrieben wird, wird auf solche
freien Sektoren verteilt. Dabei werden belegte Sektoren einfach

übersprungen.

Jeder Sektor muß also einen eigenen Eintrag in der FAT besit-

zen, um als frei oder belegt erkannt werden zu können. Um den

Umfang der FAT geringer zu halten, werden immer zwei Sek-
toren zusammengefaßt und als Cluster bezeichnet, die von 2 bis

zum Diskettenende durchnummeriert sind. Die FAT enthält so-
mit nur noch einen Eintrag für zwei Sektoren.

Jeder Eintrag der FAT ist normalerweise 12 Bytes lang. Einige
Formate verwenden 16Bit-Einträge, was wir jedoch hier ver-

nachlässigen können. Durch die Aufteilung in 12 Bit ergibt sich,

daß je zwei FAT-Einträge 3 Bytes einnehmen.

Die ersten zwei Einträge der FAT enthalten Format-Informatio-

nen, weshalb die Nummerierung auch erst bei 2 beginnt.

Jeder weitere Eintrag repräsentiert nun einen Cluster. Eine Null

ın einem Eintrag bedeutet, daß der entsprechende Cluster frei

ist. Dies bedeutet natürlich nicht, daß die Sektoren keine Daten

enthalten, da ein gelöschtes File nicht wirklich von der Diskette
gelöscht wird. Das Löschen eines Files geschieht lediglich da-
durch, daß im Inhaltsverzeichnis der erste Buchstabe des Na-

mens durch eine $ES5 ersetzt wird und die freiwerdenden Cluster
durch eine Null in der FAT freigegeben werden. Die Daten

selbst sind dennoch vorhanden, aber schwer zu finden.

Enthält ein FAT-Eintrag eine $FF7, so bedeutet dies einen un-
brauchbaren Cluster. Solche Cluster werden beim Formatierener-

kannt und markiert. Wenn solche Fehler auf der Diskette vor-
kommen, z.B. durch einen kleinen Kratzer auf der Diskette, er-
kennt man dies an der verminderten Kapazität, die nach dem

Formatieren gemeldet wird. Sollte ein solcher Fehler jedoch in

Datenstrukturen 89

Track 0 oder 1 auftauchen, so ist die Diskette unbrauchbar, da
dort der Boot-Sektor, die FAT und das Directory liegen müssen.

Soll nun ein File geladen werden, so entnimmt das Betriebssy-

stem dem Directory die Nummer des ersten Clusters, der die
gewünschten Daten enthält. Der FAT-Eintrag dieses Clusters
enthält nun seinerseits die Nummer des nächsten Clusters des
Files. Dessen FAT-Eintrag enthält dann wieder die nächste

Nummer und so weiter, bis ein Eintrag eine $FFF enthält. Dies
bedeutet, daß der Cluster der letzte des Files ist.

Auch in der FAT können mittels eines Diskettenmonitors Än-
derungen vorgenommen werden. Hierbei ist die Wahrscheinlich-

keit eines Datenverlustes jedoch so hoch, daß man unbedingt

vorher eine Kopie der Diskette anfertigen sollte.

3.5 Programmaufbau

Der ATARI ST besitzt einen recht großen Speicher, in den

mehrere Programme passen. In der Tat ist es möglich, mehrere

Programme gleichzeitig in den Speicher zu legen und ablaufen
zu lassen. Ein einfaches Beispiel hierfür sind die Accessories, die

ja ım Hintergrund laufen.

Diese offene Speicherzuteilung wirft allerdings ein Problem auf.
Von den 8 Bit-Rechnern ist man gewöhnt, daß ein Programm
(Maschinenprogramm) an einer ganz bestimmten Stelle im Spei-
cher liegen muß, damit es auch läuft. Das liegt daran, daß Ma-

schinenprogramme den Speicher direkt adressieren bzw. zu be-

stimmten Adressen verzweigen, an denen dann das entspre-

chende Teilprogramm liegen müßte.

Beim ATARI ST ist das jedoch nicht möglich. Woher sollte ein
Programmierer auch im voraus wissen, wohin sein Programm
geladen wird und ob dort nicht schon ein anderes Programm
liegt?

Ein anderes Problem ist es, daß das Betriebssystem wissen muß,

wie groß das geladene Programm ist und wieviel Speicher es

90 ATARI ST Floppy und Harddisk

zum Laufen benötigt. Braucht das Programm nämlich einen zu-

sätzlichen Speicher zum Abspeichern von z.B. eingegebenen
Texten, so darf dieser Speicher nicht beim dazuladen eines an-

deren Programmes überschrieben werden.

Wie man sieht, reicht es nicht aus, wenn eine Programmdatei auf

Diskette nur die Programmdaten selbst enthält. Der Aufbau ei-
ner solchen Datei soll in diesem Kapitel erläutert werden.

Ein lauffähiges Programm auf Diskette, also .PRG-, .TOS- und

.TTP-Dateien, ist in 4 Abschnitte unterteilt. Diese Abschnitte

sind die folgenden:

Anfang der Datei: File-Header
Programm mit Datenfeld
Symbol-Tabelle (wenn eine existiert)
Relocation-Daten (wenn vorhanden)

Ende der Dateı:

Betrachten wir zunächst den ersten Teil: den Header.

3.5.1 Der Programm-Header

Der Header ıst ein 14 Worte langer Programmvorspann, der die
Längen der einzelnen Segmente enthält. Der Aufbau des Headers

ist folgender:

Byte Nr. Inhalt

$00,$01 $601A, der Maschinenbefehl BRA *+$1A
$02-$05 Länge des Programm-Segmentes (text)
$06-$09 Länge des Daten-Segmentes (data)
$0A-$0D Länge des Zusatzspeicher-Segmentes (bss)
SOE-$11 Länge der Symboltabelle
$12-$1B 00, reserviert

Datenstrukturen 91

Der erste Eintrag ist ein Maschinenbefehl, der den Program-
mablauf zum Anfang des Programm-Segmentes verzweigt.

Es folgt die Länge des Programm-Segmentes. Dieses Segment,
allgemein ’text’-Segment genannt, enthält das Programm selbst.

Alle Adressen, die das Programm verwendet, sind darin so ab-

gelegt, daß der Programmanfang als Adresse 0 angenommen

wird. Daten, die dieses Segment erhält, sind unverändert.

Der nächste Eintrag enthält die Länge des Daten-Segmentes,

’data’-Segment genannt. Dieses Segment muß unmittelbar im
Anschluß an das Programm liegen. In einem Maschinenpro-
gramm wird mit einer ’data’-Anweisung die Trennung zwischen
text- und data-Segment vorgenommen. Es handelt sich bei den
Daten um initialisierte Daten, wie z.B. Texte oder Tabellen.

Uninitialisierte Daten wie Datenpuffer für Diskettenoperationen

oder Zwischenspeicher enthält das nächste Segment.

Die Länge dieses Zusatzspeichers enthält der vierte Eintrag des
Headers. Diesen Speicherbereich nennt man ’bss’. Nach dem La-

den des Programms wird dieser Speicherbereich dem Programm
zur Verfügung gestellt und gleichzeitig für andere Anwendungen
gesperrt. Sein Inhalt ist allerdings nicht definiert - er muß erst

vom Programm beschrieben werden. Der Vorteil des bss-Seg-

mentes gegenüber dem data-Segment ist der, daß dieser Bereich
nicht in dem Diskettenfile enthalten sein braucht. Dadurch wird
ein Programmfile nicht länger als nötig.

Eintrag Nummer fünf enthält die Länge der Symbol-Tabelle.
Eine solche Tabelle ist selten vorhanden, da sie für die Funktion

des Programms keine Rolle spielt. Eine Symbol-Tabelle wird,
wenn vom Programmierer gewünscht, von einem Compiler bzw.
einem Assembler an das compilierte bzw. assemblierte Programm
angehängt. Die Symbole entsprechen dabei den in dem Quellpro-
gramm verwendeten Labels von Routinen oder Daten. Der Vor-
teil einer solchen Tabelle ist z.B. für die Fehlersuche nicht zu
verachten, da ein symbolischer Debugger wıe der SID beim Di-

sassembler-Listing zu jeder vom Programm verwendeten Adresse
den symbolischen Namen anhängt. Ist die Test- und Fehlerphase

92 ATARI ST Floppy und Harddisk

in der Programmentwicklung jedoch abgeschlossen, so empfiehlt

es sich, die Symbol-Tabelle wegzulassen, da sie das Programm-

file unnötig lang macht.

Jeder Eintrag in der Symbol-Tabelle ist 7 Worte lang und enthält
den Namen, Typ und Wert des Labels:

Byte Inhalt

$0-$7 Symbol-Name, endet mit einer Null
$8-$9 Symbol-Typ, wie relocatible, global oder extern
$A-$C Wert, wie Adresse, Register-Nr., Direktwert usw.

Die gesamte Symboltabelle eines Programmfiles kann mit dem
Programm NM68 ausgelesen und ggf. ausgedruckt werden. Dazu

wird vom Command-Prompt aus eingegeben:

NM68 Filename

Durch Anhängen von >prn: kann die Ausgabe des NM68-Pro-
gramms auch auf den Drucker umgeleitet werden, andernfalls
erscheint das Ergebnis auf dem Bildschirm.

Zurück zum Aufbau des Programm-Headers. Die verbleibenden

Bytes von $12 bis $1B sind reserviert für spätere Anwendungen,
müssen jedoch null sein.

Auf den Header folgt nun direkt das Programm selbst, welches

wie gesagt eigentlich nur an der Adresse $0000 funktionieren
kann. Um es an der jeweiligen Adresse lauffähig zu machen, an
die es geladen wurde, müssen nun alle absoluten Adressen, die
in dem Programm auftauchen, geändert werden. Dazu braucht
nur die wirkliche Startadresse zu den im Programm enthaltenen

Adressen addiert werden. Aber woher weıß das Betriebssystem,
das diese Änderungen ja vornehmen muß, wo die absoluten
Adressen im Programm stehen? Die Antwort heißt Relocation-

Tabelle. |

Datenstrukturen 93

3.5.2 Die Relocation-Tabelle

Hinter der Symboltabelle folgt die Relocation-Tabelle in der
Programmdatei. Diese Tabelle enthält die Abstände zwischen den
Langworten, die reloziert werden miissen. Das erste Langwort in
dieser Tabelle gibt das erste zu ändernde Langwort ab dem Pro-
grammanfang an. Danach werden Bytes verwendet, deren Wert

wiederum den Abstand zwischen dem gefundenen und dem

nächsten zu ändernden Langwort angibt. Ist der Abstand zwi-

schen zwei solchen Langworten größer als 254, so wird ein Byte

mit dem Wert 1 eingesetzt und das so oft, bis wieder mit einem
Wert kleiner als 255 das nächste betroffene Langwort gefunden

werden kann.

Das erste Byte, das eine Null enthält, zeigt das Ende der Re-

location-Tabelle an. An dieser Stelle endet auch die gesamte

Programmdatei auf der Diskette.

Wird ein Programm nun geladen, so legt das Betriebssystem

dieses Programm an eine freie Stelle im Speicher ab und re-
loziert es. Die Aufteilung des Programms im Speicher ist danach
etwas anders als es vorher auf der Diskette war. Vor dem ei-
gentlichen Programm, dem das data- und das bss-Segment folgt,

liegt nämlich noch die sogenannte Basepage. Diese 256 Bytes

lange Basepage stellt wieder einen Vorspann dar, der Informa-
tionen über die aktuelle wirkliche Aufteilung des Programms im
Speicher enthält.

Die Basepage ist folgendermaßen organisiert:

Byte Länge Inhalt

00 4 Startadresse des Arbeitsspeichers

04 4 HI-Adresse des Arbeitsspeichers +1
08 4 Startadresse des Programms _

OC 4 Lange des Programm-Segmentes in Bytes

10 4 Startadresse des data-Segmentes

14 4 Lange des data-Segmentes in Bytes

18 4 Startadresse des bss-Segmentes

94 ATARI ST Floppy und Harddisk

1C 4 Lange des bss-Segmentes in Bytes

2C 4 Zeiger auf den ’Environment-String’
80 80 Text der Kommandozeile (z.B. bei .TTP)

Alle ungenannten Einträge der Basepage sind reserviert. Nicht

nur der Rechner benötigt die Daten aus dieser Tabelle. Ein Pro-

gramm kann sie ebenfalls sehr gut brauchen. Das beste Beispiel
dafür ist die Kommandozeile. Nimmt man für sein Programm
den Typ .TTP, so gibt das Betriebssystem beim Aufruf des Pro-

gramms ein Dialogfenster aus, in dem man Eintragungen machen
kann. Diese Zeile kann das Programm nun auswerten.

Um an die Adresse der Kommandozeile heranzukommen, muß

man in seinem Programm am Anfang etwa folgende Programm-

sequenz stehen haben:

run: MOVE.L 4¢(SP),A0 ‚Adresse der Basepage

LEA $80(A0) , A0

AO enthält nun die Adresse der Kommandozeile. Damit kann

nun weitergearbeitet werden.

3.6 Festplattenformat

Wenden wir uns nun der Festplatte zu. Hier ist es wegen der
enormen Speicherkapazität nicht so einfach gestaltet wie auf ei-

ner Diskette. Eine Festplatte ist nämlich in bis zu vier Bereiche

aufgeteilt, von denen jeder einen Boot-Sektor enthält. Diese

Bereiche werden ’Partitions’ genannt.

Der erste Sektor auf der Harddisk (logischer Sektor 0) enthält

die Informationen über die Aufteilung der Festplatte. Diese In-

formationen liegen wie folgt:

Datenstrukturen 95

Byte Name Bedeutung

$1C2 hd_ siz Gesamtgröße der Harddisk in logischen
Vektoren

$1C6 p0_flg Partition 0 existiert, wenn p0_flg >0
Ist Bit 7 gesetzt, wird hier gebootet

$1C7 p0_id Bezeichnung der Partition (GEM)
$1CA pO st logische Sektornummer des ersten Sektors

in der Partition
$1CE pO_ siz Größe der Partition in Sektoren

$1D2 pl_ fig
$1D3 pl_id s.0., Partition |
$1D6 pl_ st
$1DA pl_ siz

$1DE p2_ fig
$1 DF p2_id 5.0., Partition 2
$1E2 p2_st
$1E6 p2_ siz

$1EA p3_ fig
$1EB p3_id s.0., Partition 3
$1EE p3_st
$1F2 p3_ siz

$1F6 bsl_ st Start-Sektor der ’bad sector list’
$1FA bsl_ cnt Anzahl der defekten Sektoren

Die ’bad sector list’ wird beim Formatieren der Festplatte ange-
legt. Sie enthält eine Liste der defekten Sektoren, die sich nicht
formatieren ließen. Die Tabelle liegt meist am Ende der Fest-
platte.

96 ATARI ST Floppy und Harddisk

An der Variablen p* flg erkennt das Betriebssystem, ob die
Partition existiert (p* flg ungleich Null). Der erste Sektor einer
jeden Partition enthält einen Boot-Sektor, in dem die BPB liegt.
Das Betriebssystem bootet von dem ersten Boot-Sektor, dessen

p* flg das Bit 7 gesetzt hat. |

Ein Hinweis: Ein Programm zur Analyse und Anzeige der Parti-
tions-Parameter finden Sie im Kapitel 5.1.1.4: Partitions-Analy-
sator.

Die Diskettenlaufwerke 97

4. Die Diskettenlaufwerke

Die wohl bekannteste Art der Datenspeicherung ist die Verwen-

dung von Disketten. Diese Speicherscheiben von 3% oder 5; Zoll
Durchmesser (3 und 8 Zoll gibt es auch, sind aber für ATARI-
Besitzer nicht wichtig) haben etliche Vorteile.

Da wäre erst einmal der Preis. Kostet eine 33-Zoll-Diskette z.B.

5 DM, entspricht das bei einer Kapazität von 360 KByte unge-

fähr 1,4 Pfennig pro Kbyte. Bei 54-Zoll-Disketten liegt dieses
Verhältnis sogar noch günstiger. Da die Verwendung von 5:-
Zoll-Disketten technisch kein Problem fiir den ATARI ST be-

deutet, ist dieser Preisvorteil ein Kriterium, welches für die

Auswahl des zu verwendenden Diskettenformates eine Rolle

spielt. Einige ATARI-Besitzer haben daher eine 33-Zoll- und
eine 54-Zoll-Diskettenstation an ihren ST angeschlossen.

Ein weiterer Vorteil von Disketten gegenüber Festplatten ist die
Wechselbarkeit. Somit kann auch mit nur einem Diskettenlauf-
werk eine unbegrenzte Datenmenge verwaltet werden. Außerdem
können Disketten zum Programm- und Datenaustausch hervorra-
gend verwendet werden.

Doch nun muß auch der Haken bei der Sache erwähnt werden.

Sieht man von der Speicherung auf Tonband-Kassetten einmal

ab, sind Disketten die langsamsten Datenspeicher aus der heuti-

gen Palette. Die Laufwerke der ATARI ST-Serie brauchen aller-
dings keinen Vergleich mit denen der Konkurrenz zu scheuen,
da sie durch verschiedene technische Tricks im ATARI ST einen

recht schnellen Datenaustausch ermöglichen.

Lassen Sie uns nun etwas tiefer in die Welt der Disketten ein-

dringen.

98 | ATARI ST Floppy und Harddisk

4.1 Funktion

Werden vom Rechner Daten von der Diskette benötigt, so wer-
den einige Funktionen innerhalb des Diskettenlaufwerks ausge-
löst.

Als erstes wird der Motor des Laufwerks eingeschaltet. Hierbei

fällt mehr oder weniger auf, daß bei zwei angeschlossenen Dis-
kettenstationen beide Motoren anlaufen. Der Grund dafür ist
der, daß die verantwortliche Signalleitung vom Computer an

beiden Laufwerken gleichzeitig anliegt. Dies hat auch den Vor-
teil, daß bei Kopiervorgängen von einem Laufwerk auf das an-
dere ständig beide Motoren mit Nenndrehzahl laufen, so daß

viel Zeit für das Starten der Motoren gespart wird.

Nun muß daher als nächster Schritt ein einzelnes Laufwerk an-
gesprochen werden. Dies geschieht über die Drive-Select-Lei-
tung. Fühlt sich ein Laufwerk also angesprochen, so leuchtet die

BUSY-Lampe auf und zeigt den Betrieb dieses Gerätes an.

Es folgt nun die Entscheidung, welche Daten von der Diskette
gelesen werden sollen. Hierfür muß der Rechner genau angeben,
auf welcher Spur diese Daten liegen. Diese Spuren, auch Tracks

genannt, sind ımaginäre Ringe, die konzentrisch auf der Ma-
gnetscheibe angeordnet sind. Der Schreib-/Lesekopf, der mit ei-
nem Ärmchen auf eine bestimmte Stelle der Diskette geschoben
wird, gleitet somit auf der rotierenden Scheibe genau über diese
Spur.

Auf diesen Spuren sind nun nach einem bestimmten System die

gespeicherten Daten als winzige magnetische Punkte verteilt. Um

die Verteilung der Daten innerhalb der Spur noch etwas hand-

licher zu machen, werden die Tracks wiederum unterteilt. diese

Unterteilung nennt man Sektoren. Jede Spur trägt 9 solcher

Sektoren, von denen jeder Sektor 512 Bytes wirkliche Daten
enthält. Die Bezeichnung ’wirkliche Daten’ deutet nun darauf

hin, daß ein Sektor eigentlich noch mehr Daten enthält, die
nicht unmittelbar verfügbar sind. Lassen Sie uns jedoch die Be-
schreibung dieser speziellen Bytes auf ein späteres Kapitel ver-

schieben.

Die Diskettenlaufwerke 99

Innerhalb des Schreib-/Lesekopfes, der über die rotierende Ma-
gnetscheibe gleitet, liegt eine kleine Spule. Diese Spule dient als

magnetischer Empfänger und kann somit die als magnetische

Informationen vorhandenen Datenbits als Impulse erkennen.

Dieses Prinzip erinnert an normale Tonbandgeräte, nur daß bei

Disketten eine wesentlich höhere Präzision nötig ist. Schließlich

ist es möglich, auf einer Fläche von ca. 30 cm (bei 34-Zoll-
Disketten) jedes einzelne von fast 3 Millionen Bits, also Ja-
Nein-Informationen, genau wiederzufinden! Somit benötigt ein
Byte, das ja aus 8 Bits besteht, nur eine Fläche von 0,008 mm !

Braucht der Rechner nun Daten von der Diskette, so fordert er

im allgemeinen einen einzelnen Sektor von der Diskette an.
Durch einen recht komplizierten Vorgang entscheidet der im
Rechner eingebaute Disketten-Controller, welche der Unmengen

Bits, die vom Schreib/Lesekopf kommen, diesen Sektor darstel-

len. Diese Datenbits werden dann herausgepickt und die erhalte-

nen 512 Bytes an den Computer geliefert.

Alle diese Vorgänge sind in der Praxis ein großes Problem für
die Hersteller von Diskettenlaufwerken. Die Mechanik, die den

Kopf positioniert, muß den gewünschten Track (etwa 0,2 mm

breit) genau einstellen. Dann müssen die magnetischen Impulse,
die von der rotierenden Scheibe kommen, genau als Ja oder
Nein erkannt werden, wofür bei 300 Umdrehungen pro Minute

nur etwa 0.5 Microsekunden pro Bit Zeit ist.

Aus all diesen Bits nun die gewünschten Daten herauszufinden
ist nun die weitere Aufgabe der Elektronik. Dies wird durch so-
genannte Synchronisationsbytes erreicht, die am Anfang eines
jeden Sektors auf der Diskette stehen. Doch verschieben wir die
Betrachtung der Datenstrukturen auf das gleichnamige Kapitel
und bleiben vorerst bei der Hardware.

Ein Diskettenlaufwerk ist also, wie wir gesehen haben, eine
recht komplizierte Angelegenheit. Wir wollen uns daher nur mit
dem prinzipiellen Aufbau des gesamten Systems befassen, wel-

ches für die Anwendung von Disketten nötig ist.

100 ATARI ST Floppy und Harddisk

4.2 Der DMA-Chip

Beginnen wir im Rechner selbst. Die Diskettenstation sendet die
angeforderten Daten durch das Kabel, die nach der Aufberei-
tung als eine Flut von Bytes ankommen. Diese Daten müssen

nun irgendwo im Speicher abgelegt werden, um sie weiterzuver-

wenden. Die meisten Computer gehen dabei so vor, daß die
zentrale Recheneinheit (Central-Processor-Unit = CPU) die Da-
ten in Empfang nimmt und im Speicher ablegt. Das bedeutet je-
doch, daß für die Dauer der Datenübertragung nichts anderes
stattfinden kann.

Der ATARI ST dagegen arbeitet anders. Den Empfang und die
Verteilung der Daten im Speicher übernimmt ein spezieller Bau-

stein, der ebenso wie die CPU einen direkten Zugriff zum Ar-

beitsspeicher hat. Dieser Baustein heißt DMA-Chip (DMA =
Direct Memory Access). Er arbeitet, natürlich nur auf einen

entsprechenden Befehl der CPU hin, völlig selbstständig, so daß

die CPU während der Datenübertragung an anderen Aufgaben

arbeiten kann. Außerdem kann der DMA-Chip die Datenüber-

tragung wesentlich schneller abwickeln, als es die CPU könnte.

Durch diesen hardwaremäßigen Kunstgriff der ATARI-Kon-
strukteure ist die erreichbare Übertragungsgeschwindigkeit sehr
hoch, was sich bei Diskettenoperationen und in noch größerem

Maße bei Festplatten angenehm auswirkt.

Der DMA-Chip belegt im Speicher des ATARI ST folgende

Speicherzellen:

3FF8604 FDC-Access/Sector Count. Hier wird auf das
Register des DMA- oder FDC-Chips zuge-
griffen, welches ausgewählt wird mit

$FF8606 DMA-Mode/ Status. Die Bits 0-2 ergeben
beim Lesen den Status des DMA- und FDC-

Chips. Schreiben in dieses 16-Bit-Register setzt
den Modus des DMA-Chips.

Die Diskettenlau fwerke 101

SFF8609 DMA-Speichervektor HI-Byte
$FF860B MID-Byte

$FF860D LO -Byte

Diese 3 Bytes ergeben die 24-Bit-Adresse, an die bzw. von der
die Daten von der DMA übertragen werden sollen. Diese Bytes

miissen unbedingt in der Reihenfolge LO,MID,HI eingetragen
werden. |

Der im ATARI ST verwendete DMA-Chip liegt direkt an der
linken Schnittstelle des ST, an die die Festplatte angeschlossen

werden kann. Der Anschluß der Diskettenlaufwerke ist nicht

direkt mit ihm verbunden. Zwischen dieser Buchse und dem
DMA-Chip liegt das Bauteil, welches die seriell ankommenden
Daten aufbereitet bzw. die zur Diskette zu sendenden Daten se-
riell abschickt. Dieser Baustein ist der sogenannte Floppy-Disk-

Controller, der auch die Funktionen des Laufwerks steuert. Die

Programmierung dieser beiden Bausteine ist so vernetzt, daß wir

sie im nächsten Abschnitt verdeutlichen wollen.

4.2.1 Der Disk-Controller

Dieses zugegebenermaßen große Kapitel handelt von dem

Floppy-Disk-Controller WD1772 (im weiteren nur noch FDC
oder Controller genannt), der im ATARI ST verwendet wird.

Doch in welchem anderen Buch, als dem Floppy-Buch, hätte eın

derart umfangreiches Kapitel, zumal es nur einen einzigen Bau-
stein beschreibt, seine Berechtigung? Wir haben alle uns erhält-
lichen Informationen und Datenblätter über diesen Chip zusam-

mengetragen. Diese allein reichten für eine umfassende Be-
schreibung natürlich nicht aus, da sich Theorie und Praxis oft
voneinander unterscheiden. So war es nötig eigene Erfahrungen
über den WD1772 zu sammeln, die die Richtigkeit der vorhan-
denen Informationen bestätigen bzw. Abweichungen von ihnen

 aufdecken sollten.

Das daraus entstandene Kapitel enthält für denjenigen, der sich

nur einen globalen Überblick über den Controller verschaffen
möchte, ein Übermaß an Informationen. Dem Anwender, der
über ausreichende Programmiererfahrung verfügt, um den FDC

102 ATARI ST Floppy und Harddisk

direkt anzusteuern zu können und sich nur aus mangelnder
Kenntnis nicht an ihn heranwagt, wird hierdurch allerdings das
nötige Wissen über diesen Chip vermittelt.

Für den normalen Datenaustausch zwischen Diskettenlaufwerk
und ATARI ST ist es nicht erforderlich, den FDC in Eigenregie
zu programmieren. Diese Aufgabe kann, durch entsprechende
Aufrufe des BIOS bzw. XBIOS, dem Betriebssystem übergeben
werden.

Von Seiten des Betriebssystems werden jedoch nicht alle Mög-

lichkeiten, die der FDC bietet, unterstützt. Für den Anwender,

der z.B. ein schnelles Kopierprogramm oder einen Kopierschutz

entwickeln möchte, sind die fehlenden Funktionen allerdings
von großer Bedeutung. Wer besondere Diskettenformate erstellen
möchte, kann nicht die vorhandene Betriebssystemroutine zur

Spur-Formatierung benutzen, sondern muß hier selbst aktiv

werden.Um all diese Funktionen in ein Anwenderprogramm
einzubinden, muß man sich der direkten Programmierung des
Controllers bedienen. Dies ist jedoch nur bei genauer Kenntnis
der FDC-Kommandos und deren Abläufe möglich. Diese
Kenntnis erspart ferner ein unnötiges Experimentieren, um nach

stundenlangem programmieren feststellen zu müssen, daß man

seine Idee doch nicht verwirklichen kann.

Ein Beispiel einer solchen Idee wäre: "Wenn ich alle Spuren einer

Diskette, mittels des READ-TRACK-Kommandos, in den
Rechner einlese und danach alle Spuren, durch das WRITE-

TRACK-Kommando, auf eine andere Diskette schreibe, so habe

ich das schnellste Kopierprogramm das man sich vorstellen kann.

Obendrein habe ich damit sogar die Möglichkeit, ein ’Back Up’

von meinen kopiergeschützten Programmdisketten zu fertigen.
Durch den READ-TRACK-Befehl werden ja alle Informationen
der Spur (also auch der Kopierschutz) gelesen und durch das

WRITE-TRACK-Kommando werden diese wieder vollständig

geschrieben!" |

Wenn Sie nun ein Programm schreiben, das nach diesem Schema

arbeitet, so werden Sie feststellen, daß die Kopien schlichtweg

Die Diskettenlaufwerke 103

unbrauchbar sind. Es funktioniert noch nicht mal die Kopie ei-

ner ungeschützten Diskette.

Wenn Sie dieses Kapitel durchgearbeitet haben und danach wis-

sen, was die Kommandos des FDC bewirken und wie sie im

einzelnen ablaufen, so werden Sie erkennen, weshalb der Ver-

such des beschriebenen "Kopierprogramms" zum scheitern ver-
urteilt ist. Wir sind der Überzeugung, daß die Beschreibung des
Controllers umfassend genug ist, um "Ideen" dieser Art zu ver-

hindern.

Doch nun endlich zur Beschreibung des WD1772. Dieser von
WESTERN DIGITAL entwickelte Chip vereint in sich alle

Funktionen, die zur Steuerung eines 54-Zoll-Laufwerks notwen-
dig sind. Natürlich lassen sich auch 33-Zoll-Laufwerke, wie ja
von ATARI demonstriert, problemlos mit diesem Chip steuern.

Diese Möglichkeit ist jedoch nicht besonderen Fähigkeiten des
WD1772 zu verdanken, sondern dem Entwickler der 33-Zoll-
Laufwerke, der Firma SONY. Dort kam man zu dem Schluß,

daß es einer schnellen Markteinführung zuträglich wäre, wenn
man den 34-Zoll-Laufwerken, eine zu den 5+-Zoll-Laufwerken
kompatible Schnittstelle spendieren würde. Aus der Sicht des

ATARI ST Besitzers heißt das natürlich, daß er auch 5#-Zoll-

Laufwerke anschließen kann.

Doch Vorsicht bei älteren Laufwerken, die Sie vielleicht noch
besitzen oder ihnen als Industrie-Restposten günstig angeboten
werden. Wenn Sie ein solches Modell als Fremdlaufwerk an-
schließen möchten, kann es aus folgendem Grund Probleme ge-

ben:

Der WD1772, dessen Standardversion WD1770, mit den älteren

FDC-Serien WD179x und WD279x softwarekompatibel ist, ver-

fügt über kürzere "Stepping Rates", das sind die Zeiten, die der
Controller dem Laufwerk zur Verfügung stellt, um den
Schreib/Lese-Kopf eine Spur nach innen oder außen zu bewe-

gen.

Beim WD1772 liegen die vier programmierbaren Zeiten bei 2, 3,
5 und 6 ms, während beim WD1770 die Zeiten 6, 12, 20 und 30

104 ATARI ST Floppy und Harddisk

ms betragen. Dies bedeutet, daß die Laufwerke in der Lage sein

müssen, einen Spurwechsel in max. 6ms zu vollziehen. Schauen
Sie in das Datenblatt des betreffenden Laufwerks. Dort finden
Sie unter "TRACK TO TRACK" die Zeit die das Laufwerk
benötigt.

Doch das nur als Hinweis nebenher. Wenden wir uns nun wieder
dem FDC zu und beginnen mit einer kurzen Zusammenfassung
der einzelnen Leistungsmerkmale dieses Chips.

Die "Features" des WD1772 sind:

- 28 Pin Dual-in-line Gehäuse
- Einfache 5V Stromversorgung

- eingebauter digitaler Datenseparator
- eingebaute Schreib-Vorkompensation

- einfache und doppelte Schreibdichte

- eingebaute Motorkontrolle

- Sektorlange 128, 256, 512 oder 1024 Byte

- schnelle "Stepping Rates" (2, 3, 5 und 6ms)

Wie gesagt, dies sind nur die Besonderheiten im Überblick. Zwei
dieser Punkte möchten wir direkt erläutern, die übrigen werden
in den folgenden Kapiteln, im Zusammenhang mit den einzelnen
Funktionen des FDC, ausführlich erklärt.

1. Das der WD 1772 in einem 28-Pin-Gehäuse unterge-
bracht ist, ist wohl nur für die Entwicklung eines
Systems, in welchem ein FDC benötigt wird, inter-
essant. Da bei einem Platinen-Layout ein 28-poliger

Chip weniger Aufwand als z.B. ein 40-poliger Chip
verursacht, wird einem System-Entwickler hierdurch

eine Entscheidungshilfe (sofern die Leistungsmerk-
male überzeugen) geliefert.

2. Auf die Möglichkeit, den WD 1772 ın einfacher oder
doppelter Schreibdichte (single Density/double Den-
sity) betreiben zu können, wird im Verlauf der
Controller-Beschreibung nicht weiter eingegangen.
Der Grund dafür ist einleuchtend. Der FDC wird im

Die Diskettenlaufwerke 105

ATARI ST mit doppelter Schreibdichte betrieben.

Um den Controller mit einfacher Schreibdichte zu

betreiben, müßte der Rechner geöffnet und die Be-

schaltung des FDC geändert werden. Der Erfolg

dieses Unternehmens wäre, daß man auf einer Dis-

kette nur noch 50% der üblichen Speicherkapazität

erreicht. Was auf den ersten Blick als unsinnig er-
scheint (wer verzichtet schon freiwillig auf die
Hälfte des Speichervermögens), kann ın der Praxis

den Vorteil bringen, ein zum Computer XYZ kom-

patibles Diskettenformat zu erzeugen. Doch solche
speziellen Anwendungsfälle sind sicherlich nicht von
allgemeinem Interesse. Da die Thematik des FDC

auch so schon komplex genug ist, möchten wir Sıe

nicht mit den Möglichkeiten des FDC belasten, die

im ATARI ST wahrscheinlich nie angewendet wer-
den.

4.2.1.1 Anschlußbelegung

Nach den globalen Vorbetrachtungen zum WD 1772 starten wir

die ausführliche Beschreibung - wie sollte es anders sein - mit

der Anschlußbelegung des FDC.

106 ATARI ST Floppy_und Harddisk

DAL 0

DAL 1

DAL 2

DAL 3

DAL 4

DAL 5

DAL 6

DAL 7

MR

GND

S
E
E
R
A

AP

A
P
P
R

WE

VN

= w

1772

INTRQ

DRQ

A
A
N

E
R

el
ey

el

ey

By

Die Diskettenlaufwerke 107

PIN 1

PIN 2

PIN 3,4

CS (CHIP SELECT)

Ein LOW an diesem Eingang selektiert den Chip und
ermöglicht dadurch den Zugriff auf seine Register.
Den CHIP-SELECT-Anschluß finden Sie an allen

Peripheriebausteinen (wozu natürlich auch die Spei-
cher-IC’s zählen). Da diese allesamt an dem Daten-
bus des Prozessors angeschlossen sind, würde es dort

zu einem wilden Durcheinander kommen wenn alle

gleichzeitig an dem Datenverkehr teilnähmen. Des-
halb wird über den CHIP SELECT Eingang nur der
Baustein eingeschaltet, mit dem ein Datenaustausch
stattfinden soll. Im ATARI ST wird der FDC über
den DMA-Controller selektiert.

R/W (READ/WRITE)

Der Pegel an diesem Eingang steuert die Datenrich-
tung. Bei einem HIGH wird der Inhalt des selektier-

ten Registers auf DALO-DAL7 ausgegeben, während

bei einem LOW die Daten auf DALO-DAL7 in das
selektierte Register übernommen werden.

A0,A1 (ADDRESS 0,1)

Mit diesen beiden Eingängen werden die Register
des FDC selektiert. Der WD1772 besitzt 5, vom
Computer- System, adressierbare Register. Da mit
zwei Adressen-Leitungen jedoch nur 4 Register aus-
gewählt können, wurde eine Adresse (A0=0 und
Al=0) mit zwei Registern belegt. Zur Unterschei-
dung dieser Register wird der Pegel an dem R/W-

PIN ausgewertet.

108 ATARI ST Floppy und Harddisk

PIN 5-12

PIN 13

CS Al AO R/W = 1 R/W = 0

0 0 0 Status Reg. Command Reg.

0 0 1 Track Reg. Track Reg.

0 1 0 Sector Reg. Sector Reg.

0 1 1 Data Reg. Data Reg.

Daraus resultiert, daß das Command-Reg. nicht ge-
lesen, bzw. das Status-Reg. nicht beschrieben werden

kann. Diese Anschlüsse sind nicht direkt mit dem
Adressbus des Prozessors verbunden, sondern sind an

den DMA-Controller angeschlossen. Die Register des
FDC werden über ein Steuer-Register im DMA-

Controller selektiert.

DALO-DAL7 (DATA-ACCESS-LINE 0-7)

Diese 8 Leitungen bilden den bidirektionalen Daten-
bus. Uber diesen Bus werden die Daten zwischen
Computersystem und den FDC-Registern übertragen.

Diese Leitungen sind, genau wie die Adressen- lei-

tungen, mit dem DMA-Controller verbunden. Über
dessen Datenregister wird indirekt auf jenes Register

des FDC zugegriffen, welches über das Steuerregister

des DMA-Controllers selektiert wurde.

MR (MASTER RESET)

Da nach dem Anlegen der Versorgungspannung an

den FDC der Inhalt seiner Register rein zufällig ist,
müssen diese in einen definierten Grundzustand
versetzt werden. Dies erreicht man durch einen
LOW- Impuls (von mindestens 50us) an diesem Ein-
gang. Dies geschieht üblicherweise nach dem Ein-
schalten des ATARI ST. Durch den RESET-Befehl
des 68000 Prozessors besteht natürlich jederzeit die
Möglichkeit, den FDC zurückzusetzen. Hierbei sollte
jedoch beachtet werden, daß auch alle anderen Bau-

Die Diskettenlaufwerke 109

PIN 14

PIN 15

PIN 16

PIN 17

PIN 18

steine, die mit der gemeinsamen Resetleitung ver-

bunden sind, zurückgesetzt werden und eventuell mit

bestimmten Startwerten initialisiert werden müssen.

GND (GROUND)

Masseanschluß

Vcc (POWER SUPPLY)

Eingang der +5V Stromversorgung

STEP (STEP)

Über diesen Ausgang wird dem Laufwerk für jeden

Schritt, den der Schreib/Lese-Kopf bewegt werden
soll, ein Impuls geliefert.

DIRC (DIRECTION)

Über den Pegel an diesem Ausgang zeigt der FDC
dem angeschlossenen Laufwerk an, in welche Rich-

tung es den Schreib/Lese-Kopf bei Eintreffen eines

STEP- Impulses bewegen soll. Liegt dieser An-

schluB auf HIGH-Pegel, so bewirkt ein STEP-Impuls

einen Schritt zur Diskettenmitte, während durch

einen LOW-Pegel der STEP-Impuls einen Schritt
nach außen veranlaßt.

CLK (CLOCK)

Durch die Übergabe eines Befehls gestartet, laufen
im FDC, ähnlich wie in einem Mikroprozessor, Mi-

kroprogramme ab. Aus diesem Grunde ist der FDC,
genau wie ein Mikroprozessor, auf einen Takt ange-

110 ATARI ST Floppy_ und Harddisk

PIN 19

PIN 20

PIN 21

wiesen, der dessen Ausführung steuert. Auch benö-

tigt er diesen Takt für das Timing des seriellen Da-
tenstroms. Der Takt wird nicht im FDC selbst er-

zeugt, sondern diesem von außen, über den CLK-
Eingang, zugeführt. Die Taktfrequenz liegt bei 8
MHz.

RD (READ DATA)

Das Signal, das der Schreib/Lese-Kopf des Lauf-

werks liefert, wird an diesen Eingang des FDC an-
gelegt. Im Datenseparator des FDC werden Takt-

und Daten-Impulse, die beide im Signal enthalten

sind, voneinander getrennt.

MO (MOTOR ON)

Dieser Ausgang wird zur Motorsteuerung benutzt.

Durch einen HIGH-Pegel werden die Antriebsmoto-

ren der Laufwerke, bei Schreib-, Lese- und Such-

Operationen, vom FDC automatisch gestartet.

WG (WRITE GATE)

Die Daten-Impulse, die der FDC zum Laufwerk

überträgt, erreichen dort nicht direkt den

Schreib/Lese-K.opf, sondern zunächst einen Schreib-

verstärker. Werden keine Daten vom FDC übertra-

gen, so ıst der Eingang dieses Verstärkers offen.

Verstärker mit offenen Eingänge haben aber die

unangenehme Eigenschaft, für Fremdspannungen,

die z.B ın das Verbindungskabel eingestreut werden,

empfänglich zu sein. Um zu verhindern, daß solche

unerwünschten Spannungen den Schreib/Lese-Kopf

erreichen und dadurch auf der Diskette Daten zer-

stört werden, besitzen die Laufwerke eine Schaltung,

die den Schreibverstärker verriegelt. Bei Schreibo-

Die Diskettenlaufwerke 111

PIN 22

PIN 23

PIN 24

perationen, also nur wenn Daten geschrieben werden

sollen, wird WRITE GATE vom FDC auf HIGH-

Pegel gelegt. Dadurch wird die Verriegelung des
Schreibverstärkers aufgehoben und die, über WRITE
DATA eintreffenden Datenimpulse, können von

diesem verarbeitet werden.

WD (WRITE DATA)

Über diesen Ausgang wird die zu schreibende In-
formation, bestehend aus Daten- und Taktimpulsen,

zum Laufwerk übertragen.

TROO (TRACK 00)

Die Laufwerke verfügen über eine Lichtschranke,
die durch den Schlitten, auf dem sich der

Schreib/Lese-Kopf befindet, unterbrochen wird, so-

bald sich der Kopf über der Spur Null befindet. In

diesem Fall wird der TROO-Eingang des FDC vom
Laufwerk auf LOW gelegt.

IP (INDEX PULSE)

Das Laufwerk liefert bei jeder Umdrehung des An-
triebmotors über diesen Anschluß einen Impuls, der

von dem Controller bei seinen Operationen ausge-
wertet wird. So erkennt er z.B. beim Lesen oder
Schreiben einer Spur hierüber deren Anfang (Der
Index-Impuls ist praktisch die Antwort auf die

Frage: Wo beginnt ein Kreis ?).

Auch kann er durch Zählen der Index-Impulse die
Hochlaufzeit des Motors berücksichtigen und auf
diese Weise etwas warten, bis er seine Solldrehzahl

erreicht hat.

112 ATARI ST Floppy und Harddisk

PIN 25

PIN 26

PIN 27

Der Index-Impuls wird bei den 33-Zoll Laufwerken

unabhängig von der Diskette erzeugt. Es wird hier
also kein Indexloch in der Diskette (wie beim 5+-
Zoll Format) durch eine Lichtschranke abgetastet.

WPRT (WRITE PROTECT)

Soll der FDC eine Schreib-Operation ausführen, so

wird zunächst dieser Eingang vom FDC abgefragt.
Falls dieser Eingang vom Laufwerk auf LOW gelegt
wurde (schreibgeschützte Diskette), so bricht der
Controller die Schreib-Operation ab.

DDEN (DOUBLE DENSITY ENABLE)

Der Pegel an diesem Eingang bestimmt das Auf-
zeich-nungsformat, mit dem der FDC arbeitet.

Durch ein LOW wird der Controller im DOUBLE

DENSITY Modus (doppelte Aufzeichnungsdichte)
betrieben, während durch ein HIGH der SINGLE

DENSITY Modus eingeschaltet ist. Im ATARI ST
wird der WD1772 grundsätzlich im Double Density
Modus betrieben, da DDEN mit Masse beschaltet ist

und somit auf LOW liegt.

DRO (DATA REQUEST)

Dieser Ausgang, dessen Zustand auch durch ein Bit

im Status-Register angezeigt wird, hat, wenn er vom
FDC auf HIGH gelegt wird, folgende Bedeutung:

Bei einer Leseoperation befindet sich ein Byte im

Datenregister, das nun ausgelesen werden muß (Da-
tenregister voll).

Die Diskettenlaufwerke 113

b.

PIN 28

Bei einer Schreiboperation ıst das Datenregister leer

und muß nun mit dem nächsten zu schreibenden

Byte geladen werden.

Ein Lesen oder Schreiben des Datenregisters setzt

den DRQ-Ausgang und das DRQ-Statusbit wieder
zurück.

Die DMA-Fähigkeit des WD1772 beruht auf dem
Vorhan-densein dieses Ausgangs. Im ATARI ST ist

dieser mit dem DMA-Controller verbunden. Wäh-
rend man sonst, bei Lese- und Schreib-Operationen,

das DRQ-Statusbit abfragen muß, um zu erkennen
wann ein Datentransfer stattfindet, wird diese Auf-

gabe vom DMA-Controller, durch den DRQ-Aus-
gang gesteuert, selbstständig erledigt.

INTRQ (INTERRUPT REQUEST)

Nach jedem beendeten Kommando wird dieser Aus-
gang vom FDC auf HIGH gelegt. Durch ein Lesen

des Status-Registers wird der Ausgang wieder zu-
rückgesetzt. Dieser Anschluß ist mit dem I/O-Port
(Bit 5) des MFP 68901 verbunden. Um zu erkennen
wann der FDC sein Kommando beendet hat, wird

dieses Port-Bit in einer Schleife abgefragt. Zu be-
achten ist dabei, daß dieses Bit invertiert ist. Das

Kommando ist also beendet, wenn das Port-Bit ge-

löscht ist.

Es besteht die Möglichkeit den MFP so zu program-
mieren, daß er, bei einem HIGH des INTRQ-Aus-

gangs, einen Interrupt auslöst. Dadurch spart man
die ständige Abfrage des Port-Bits und kann statt-
dessen schon andere Aufgaben erledigen. Die Inter-
ruptsteuerung wird vom Betriebssystem nicht be-

nutzt.

114 ATARI ST Floppy und Harddisk

4.2.1.2 Organisation

Um die Programmierung des FDC, die später ausführlich erklärt

wird, besser zu verstehen, wäre es günstig, sich zunächst einmal
ein Blockschaltbild des WD1772 anzuschauen und danach die
einzelnen Funktionsblöcke zu erklären.

115 Die Diskettenlaufwerke

t
o
u
”

“
N
d

LUdM
|

419
di

Ä
IV

-0V
5

I
gerne

Bunianays
—_

wayshs
“BN

yi
NO

Y
O
L
O
N

3
A
}

1
—
j
n
e
l
q
y

~
J
a
y
n
d
w
o
g

$
2

Bi
Yyld

wunz
wunz

A
n

«
d3ls

|
OuINI

<—
5A

BI9}SHUYIS
Ä

llalsy}}uy4aS
s
u
a

x

vejsten
B
T
"

- gelys
y1607

yayul
989

IDO
Bin

YOU
LLY

S
r

- $80JDp

|
i
y

Joyesedes
R
e
y

|

a
y

-usjeg
-
u
s
e
Q

|
i

.
J0)8)6ay

108|bey
H
L
“

joisjboy
——«

seqsbey
—

snyeis
-ınds

— J
o
e
s

o
p
u
e
w
w
o
y

- ueleG

t
T

T

£-0
Wd

y

116 ATARI ST Floppy und Harddisk

Data-Shift-Register (DSR)

In diesem 8-Bit-Schiebe-Register werden während einer Lese-

Operation die seriellen Daten, die über den READ-DATA-Ein-

gang (RD) eintreffen, gesammelt. Bei Schreiboperationen wird
der Inhalt dieses Registers über den WRITE-DATA Ausgang
(WD) seriell ausgegeben. Bei einigen Operationen wird das Data-
Shift-Register auch als Zwischenspeicher benutzt.

Data-Register (DR)

Bei Schreib/Lese-Operationen wird dieses Register als Zwi-
schenspeicher benutzt. Wenn bei einer Lese-Operation das DSR

8 Daten-Bits empfangen hat, so wird diese Information in das

Daten-Register übertragen. Bei Schreib-Operationen wird, nach-

dem das DSR ein Byte ausgesendet hat, das nachste Byte vom

Daten-Register in das DSR transferiert. Bei einer Such-Opera-
tion (siehe ’SEEK-Kommando’) enthält das Daten-Register die

Nummer der gewünschten Spur.

Track-Register (TR)

Dieses Register enthält normalerweise die Spur-Nummer, über
der sich der Schreib/Lese-Kopf befindet. Wie das "normaler-

weise" schon vermuten läßt, gibt es hier auch Ausnahmen. Um
nämlich das Track-Register auf dem aktuellen Stand zu halten,

wird es bei einem Schritt nach innen um | erhöht bzw. bei ei-
nem Schritt nach außen um | vermindert.

Während dies bei den Befehlen RESTORE und SEEK in jedem
Fall geschieht, ist es bei den Befehlen STEP, STEP-IN und
STEP-OUT nur dann der Fall, wenn in den Befehlsworten das

Update-Flag (u-Bit) gesetzt ist. Bei Schreib, Lese und Verify

Operationen wird der Inhalt des Spurregisters mit der aufge-

zeichneten Spurnummer im ID-Feld verglichen.

Das Spurregister kann gelesen und beschrieben werden, sollte

während einer Operation jedoch nicht geladen werden.

Die Diskettenlaufwerke 117

Sector-Register (SR)

Bei Schreib und Leseoperationen enthält dieses Register die

Nummer des gewünschten Sektors, welche mit der ım ID-Feld

aufgezeichneten Sektornummer verglichen wird. Nach einem
READ ADDRESS Befehl befindet sich die Spurnummer aus dem

ID-Feld in diesem Register.

Das Sektor-Register kann gelesen und beschrieben werden.

Während einer Operation sollte das Spurregister jedoch nicht
geladen werden.

Command-Register (CR) |

Dieses Register enthält das gerade ın der Ausführung befindli-

che Kommando. Es kann nur beschrieben werden, da ein Lesen

automatisch das Status-Register selektiert. Das Kommando-Re-

gister sollte während der Ausführung einer Operation nicht ge-
laden werden, außer wenn es sich bei dem neuen Kommando

um den FORCE-INTERRUPT-Befehl handelt.

Status-Register (STR)

Die in diesem Register befindliche Information gibt Aufschluß
über Zustand des FDC bzw. des Laufwerks. Die einzelnen Bits

dieses Registers werden teilweise abhängig vom bearbeiteten

Befehl gesetzt. Das Status-Register kann nur gelesen werden,

wobei das gelesene Byte folgende Bedeutung(en) hat:

Bit 7 MOTOR ON

Dieses Bit reflektiert den Zustand des MOTOR-ON-
Aus-gangs. Es ist nach einem Kommando, also wenn

das Busy-Bit schon gelöscht ist, noch für ca. 1 bis 2s
gesetzt.

118 ATARI ST Floppy und Harddisk

 Bit6

Bit 5

Bit 4

WRITE PROTECT

Dieses Bit zeigt nach Schreib-Operationen an, ob
sich ım Laufwerk eine schreibgeschützte Diskette
befindet. Ist es gesetzt, so bedeutet das gleichzeitig,

daß die gewünschte Schreib-Operation nicht ausge-

führt wurde. Das WPRT-Bit wird ebenfalls (im Falle

einer schreibgeschützten Diskette) nach einem Typ-
1-Kommando gesetzt.

Zurückgesetzt wird dieses Bit, wenn eine Operation

mit einer, nicht schreibgeschützten, Diskette statt-

gefunden hat.

SPIN UP/RECORD TYPE

SPIN UP: Bei Typ-1-Kommandos wird dieses Bit

nach Abschluß der Spin-Up-Sequenz gesetzt. Damit

soll angezeigt werden, daß der Laufwerksmotor seine

Nenndrehzahl (wahrscheinlich) erreicht hat.

RECORD TYPE: Nach einem READ-SECTOR-Be-
fehl läßt sich hieran erkennen, ob das Daten-Feld

mit einem ’normalen’ oder ’gelöschtem’ Data-Mark
beginnt.

Bit 5 = 0, ’normales’ Data-Mark ($FB)
Bit 5 = 1, ’geléschtes’ Data-Mark ($F8)

RECORD NOT FOUND (RNF)

Wird kein korrektes ID-Feld gefunden, so wird die-
ses Bit gesetzt. Dies kann nach einem READ-SEC-

TOR-, WRITE-SECTOR- oder READ-ADDRESS-
Kommando der Fall sein.

Nach einen READ SECTOR Befehl kann das RNF-
Bit aber auch trotz eines korrekten ID-Feldes gesetzt

Die Diskettenlaufwerke 119

Bit 3

Bit 2

Bit 1

sein. Dies ist dann der Fall, wenn innerhalb der 43

Bytes, die dem letzten CRC-Byte des ID-Feldes fol-
gen, kein Data-Mark gefunden wurde.

CRC ERROR

Dieses Bit wird gesetzt, wenn der Inhalt des CRC-

Feldes (im Daten- oder ID-Feld) nicht mit dem In-
halt des CRC-Registers übereinstimmt.

LOST DATA / TRACK 00

LOST DATA: Wird bei Typ-2- und Typ-3-Kom-
mandos nicht innerhalb der erforderlichen Zeit auf

eine Datenanforderung (angezeigt durch DRQ-Aus-

gang bzw. DRQ-Statusbit) reagiert, so wird dieses

Bit gesetzt.

TRACK 00: Bei Typ-1-Kommandos ist dieses Bit
gesetzt, wenn sich der Schreib/Lese-Kopf über der

Spur Null befindet.

DATA REQUEST / INDEX

DATA REQUEST: Bei Typ-2 und Typ-3 Komman-

dos wird dieses Bit gesetzt wenn Daten bereitstehen

bzw. benötigt werden. Es wird durch Lesen oder
Schreiben des Daten-Registers zurückgesetzt.

INDEX: Bei Typ-1 Kommandos ist dieses Bit wäh-
rend eines eintreffenden Index-Impulses gesetzt.

120 ATARI ST Floppy und Harddisk

Bit 0 BUSY

Während der Ausführung eines Kommandos ist die-

ses Bit gesetzt.

CRC-Logic

Um Lesefehler zu vermeiden, muß man sich eines Verfahrens

bedienen, das eine hohe Datensicherheit gewährleistet. Das hier
angewandte Verfahren funktioniert so, daß aus den geschriebe-

nen Daten, nach einem bestimmten Algorithmus eine 16-Bit
Prüfsumme gebildet wird, welche zusätzlich, im Anschluß an die

Daten, auf die Diskette geschrieben wird.

Werden nun diese Daten wieder gelesen, so wird nach dem
gleichen Algorithmus erneut die Prüfsumme gebildet. Stimmt
diese mit der aufgezeichneten überein, so hat man eine fast 100

prozentige Sicherheit, daß die Daten richtig gelesen wurden.
Durch den relativ komplizierten Algorithmus ist es nämlich sehr
unwahrscheinlich, daß sich trotz Lesefehler die gleiche Prüf-
summe ergibt.

Diese 16-Bit Prüfsumme wird "Cyclic Redundancy Check
(CRC)" genannt. Für die Erzeugung und Kontrolle der Prüf-
summe ist die CRC-Logik zuständig. Die Berechnung erfolgt aus
Geschwindigkeitsgründen durch eine Hardware, die dıe Summe

nach dem Polynom : CRC(x)= x16 + x12 + x5 + 1 berechnet.

ARITHMETIC/LOGIC UNIT (ALU)

Die ALU wird einerseits zur Registermodifikation (erhöhen,
vermindern), andererseits für Vergleiche zwischen Register und
den auf der Diskette enthaltenen Informationen in den ID-Fel-
dern benutzt.

Die Diskettenlaufwerke 121

ADDRESS-MARK-DETECTOR

Das wahrscheinlich wichtigste Teil im FDC ist dieser Detektor.

Wie der Name schon verrät, besitzt dieses Teil die Fähigkeit, ein
Address Mark zu erkennen. Eine solche Markierung kennzeich-
net den Anfang eines ID-Feldes (Index- Address-Mark) bzw.

den Anfang eines Datenfeldes (Data- Address-Mark).

Doch wozu braucht man einen speziellen Detektor? Nehmen wir

als Beispiel einmal den Wert ’$FE’, den der Controller als ein

Index-Address-Mark interpretiert. Auch ohne besonderen De-

tektor ist es keine Schwierigkeit dieses ’$FE’ zu finden.

Das Problem wird allerdings dann deutlich, wenn man bedenkt,

daß dieser Wert aber auch durchaus in einem Daten-Feld vor-
kommen kann. An dieser Stelle darf er jedoch nicht als Index-
Address-Mark gewertet werden. Wie ist es also möglich ein
’SFE’ von einem anderen ’$FE’ zu unterscheiden? Nun, genau

diese Funktion erfüllt der Address-Mark-Detector.

Wie zuvor schon erwähnt, besteht die geschriebene Information
nicht nur aus Daten-Impulsen. Es sind gleichermaßen auch

Takt-Impulse darin enthalten. Diese werden bei Lese-Operatio-

nen vom Datenseparator aus dem Signal herausgefiltert und dem

Address-Mark-Detector zugeführt.

Bei einem WRITE-TRACK-Kommando werden Werte, die

größer als als ’$F4’ sind, in besonderer Weise behandelt. Ge-
meinsam gilt für diese Werte jedoch, daß sie ohne Takt-Impulse

geschrieben werden. Die so geschriebenen Werte bestehen also
nur aus Daten-Impulsen. _

Wird nun diese Information gelesen, so werden keine Takt-Im-

pulse vom Datenseparator geliefert, da ja keine in dem Signal

vorhanden sind. Erst durch das Fehlen der Takt-Impulse wird

der Address-Mark-Detector aktiviert. Er kann also ein Address-

Mark nur dann erkennen, wenn es ohne Takt-Impulse geschrie-

ben wurde. |

122 ATARI ST Floppy und Harddisk

Es existiert aber noch ein weiteres Problem, das ihnen wahr-

scheinlich noch gar nicht bewußt wurde, weil bisher nur von
"vollständigen" Daten-Bytes die Rede war. Diese werden aller-
dings seriell aufgezeichnet, wobei jedoch der Anfang eines Bytes
in keiner Weise gekennzeichnet ist.

Wenn nun bei einer Lese-Operation 8 Bit im DSR gesammelt
wurden, so kann man nicht davon ausgehen, daß diese tatsäch-

lich zu einem einzigen Daten-Byte gehören. Es könnten genau-
sogut jeweils 4 Bit, aus 2 verschiedenen Daten-Bytes, darin ent-

halten sein.

Der Address-Mark-Detector würde ein Address-Mark nur dann
erkennen, wenn das Sammeln der Daten-Bits zufällig Byte-

Synchron verläuft. Daß hier nichts dem Zufall überlassen wer-
den darf, ist leicht einzusehen. Man muß also eine Möglichkeit
haben, den Anfang eines Bytes zu erkennen. Dies geschieht
durch Synchronisations-Bytes. Diese (jeweils 3) werden beim
Formatieren einer Spur vor jedes Address-Mark geschrieben.

Die ’°SYNC-Bytes’ enthalten, genau wie die Address-Marks,

keine Takt-Impulse und aktivieren dadurch den Address-Mark-

Detector.

Der Controller, der natürlich ständig über den Zustand des Ad-

dress-Mark-Detectors unterrichtet ist, liest nun solange die seri-

ellen Datenbits, bis der Inhalt im DSR einem SYNC-Byte, des-

sen Wert er ja kennt, entspricht. Ab diesem Punkt muß zwangs-

läufig das nächste eintreffende Bit, das erste Bit des folgenden

Bytes sein. |

Eines ist aber noch zu bemerken: Während der Detektor einge-
schaltet ist, können die gelesenen Bytes verfälscht werden (siehe

’READ-TRACK-Kommando’). Weshalb und wann? Wenn der

Detektor durch die fehlenden Takt-Impulse aktiviert wird, so

geht der FDC davon aus, daß SYNC-Bytes mit einem an-

schließendem Address-Mark folgen. In der Synchronisations-
phase, also während der Rekonstruktion eines SYNC-Bytes,

werden einige der gelesenen Daten-Bits verworfen. Sollte sich
der Detektor ’aus Versehen’ in einem Daten-Feld auf die Suche

Die Diskettenlaufwerke _ 123

nach einem Address-Mark begeben, so werden die Daten bis
zum Erkennen des ’falschen Alarms’ natürlich verändert.

Da der Address-Mark-Detector, empfindlich wie er nun mal ist

(und auch sein muß), dazu neigt übersensibel auf fehlende Takt-
Impulse zu reagieren, wird er vorsorglich (während ID- bzw.

Daten-Felder gelesen werden) ausgeschaltet.

DATA SEPARATOR

Der Datenseparator ist eigentlich schon bei den Ausführungen
zum Address-Mark-Detector beschrieben worden. Deshalb sei

hier nur kurz erwähnt, daß er die Aufgabe hat, aus dem gelese-

nen Signal die Takt-Impulse zu entfernen, die, sozusagen als
Abfallprodukt, zur Steuerung des Address-Mark- Detectors be-

nutzt werden.

Die Schnittstelle zum Computer-System

Das Prozessor-Interface besteht aus den 8 bidirektionalen Daten-
Leitungen (DALO-DAL7), den beiden Adressen-Leitungen
(A0,Al), der Datenanforderung (DRQ), der Interruptanforde-

rung (INTRQ), dem Chip Select (CS), der Schreib/Lese-Leitung
(R/W), dem Clock-Eingang (CLK) und dem Master-Reset-Ein-
gang (MR). Über diese Anschlüsse wird der Austausch von Da-

ten und Steuersignalen zwischen Prozessor und FDC abgewickelt.

Die Schnittstelle zum Laufwerk

Die Informationen die der Controller vom Laufwerk erhält sind:

a. ob eine schreibgeschützte Diskette eingelegt ist

(WPRT=1)

b. ob sich der Schreib/Lese-Kopf über der Spur 0 be-

findet (TRO0=0)

124 ATARI ST Floppy und Harddisk

c. ob die Diskette eine vollständige Umdrehung been-
det hat (IP=0)

und

d. ob die seriellen Daten die gelesen wurden (RD)

Die Signale die der Controller zum Laufwerk über-
trägt sind:

a. einschalten des Laufwerksmotor (MOTOR ONE=!1)

b. ausführen eines Schrittes des Schreib/Lese-Kopfes

(STEP=1)

Cc. die Richtung des Schrittes (DIRC=0 oder 1)

d. einschalten der Schreiblogik (WG=1)

und

e. die seriellen Daten die geschrieben werden sollen

(WD)

Die Ablaufsteuerung

Wird ein Kommando vom FDC ausgeführt, so müssen natürlich
die einzelnen Funktionsteile in einer bestimmten Reihenfolge
ein- bzw. ausgeschaltet werden. Ferner werden auch Daten zwi-

schen den einzelnen Registern des FDC transferiert, Berechnun-

gen ausgeführt, Eingangsleitungen abgefragt und die Zustände
der Ausgangsleitungen geändert. Der gesamte zeitliche Ablauf,

der ja vom übergebenen Kommando abhängig ist, wird von der
Ablaufsteuerung ausgeführt bzw. überwacht.

Die Diskettenlaufwerke 125

Lese-Operationen

Lese-Operationen finden im allgemeinen nur durch das READ-

SECTOR-Kommando statt. Die anderen Befehle, durch welche

auch Daten von der Diskette gelesen werden können, dienen nur

Diagnosezwecken und haben fiir den normalen Betrieb keine

Bedeutung.

Die Sektorlängen können 128, 256, 512 oder 1024 Byte betragen.

Die Sektor-Länge wird beim Formatieren durch das "Längen-
Feld" (das vierte Byte im ID-Feld) bestimmt. Soll ein Sektor ge-
lesen werden, so erkennt der Controller anhand des Längen-Fel-
des, welche Anzahl von Daten-Bytes, ab dem DATA-AD-

DRESS-MARK gelesen werden müssen. Voraussetzung für ein
fehlerfreies Lesen der Datenbytes ist, daß während dieser Zeit

der ADDRESS-MARK-DETECTOR _ ausgeschaltet wird, da

durch ihn Lesefehler verursacht werden können.

Schreib-Operationen

Bevor auf die Diskette aufgrund eines Schreib-Befehls geschrie-
ben werden kann, muß der WRITE GATE-Ausgang vom FDC

aktiviert werden.

Als Vorsichtsmaßnahme gegen unbeabsichtigtes Schreiben ge-

schieht dies jedoch erst nachdem als Reaktion auf den vom FDC

gesetzten DRQ-Ausgang das Datenregister geladen wird. Sollte

dies nicht geschehen, so wird die Befehlsausführung beendet,

INTRQ gesetzt, das LOST-DATA-Statusbit gesetzt und das
BUSY-Statusbit gelöscht.

Wird auf die erste Datenanforderung reagiert, so wird das

Schreib-Kommando ausgeführt. Sollte dem FDC, auf eine fol-

sende Datenanforderung, kein weiteres Daten-Byte übertragen

werden, so wird der Befehl nicht abgebrochen, sondern statt-

dessen ein "Null-Byte" geschrieben. Auch in diesem Fall ist nach
Beendigung des Befehls das LOST-DATA- Bit gesetzt. Würden

bei einem WRITE-SECTOR-Kommando also nur 112 Byte

126 ATARI ST Floppy und Harddisk

übertragen, so würde der Controller die restlichen 400 Byte (bei
einer Sektorgröße von 512 Byte) mit Nullen füllen.

Man sollte es unterlassen, diesen Sachverhalt dazu auszunutzen,

einen Sektor teilweise zu löschen. Da das LOST-DATA-Bit in

jedem Fall gesetzt ist, läßt sich nicht erkennen, ob nicht viel-

leicht bei der Übertragung der ersten Bytes ein Fehler auftrat.

Das Schreiben wird generell verhindert wenn der WRITE-
PROTECT-Eingang auf LOW liegt. In diesem Fall wird jegli-
cher Schreib-Befehl sofort abgebrochen, INTRQ auf HIGH ge-
legt, das WRITE PROTECT-Statusbit gesetzt und das BUSY-
Statusbit gelöscht.

Um bei einer höheren Schreibdichte, wie sie auf den inneren

Spuren existiert, die Datensicherheit zu erhöhen, gibt es die
Möglichkeit eine Schreib-Vorkompensation einzuschalten. Ist in
den Schreibkommandos das Bit für die Schreib-Vorkompensation

gelöscht, so wird der Datenstrom über WRITE- DATA, abhän-

gig vom zu schreibenden Bitmuster, 125 ns früher oder später
ausgesendet. Die folgende Tabelle zeigt, wann welcher Fall ge-
geben ist:

X 1 1 0 fruher

X 0.719 1 später

0 0 0 1 früher

1 0 0 0 spater

nächstes zu übertragende Bit

das Bit, das gerade gesendet wird

zuvor übertragene Bits

Die Schreib-Vorkompensation wird bei 5+-Zoll-Disketten nor-
malerweise auf den inneren Spuren, auf denen ja eine höhere
Datendichte herrscht, eingeschaltet. Bei dem 33-Zoll- Format,

Die Diskettenlaufwerke 127

auf dem die Datendichte der äußeren Spuren schon die Daten-

dichte der mittleren Spuren des 54-Zoll-Formats erreicht, wird

die Vorkompensation im allgemeinen ständig eingeschaltet.

4.2.1.3 Kommando-Beschreibung

Nachdem nun der interne Aufbau des FDC und auch einige

grundlegende Abläufe bei Schreib- und Leseoperationen erklärt
wurden, kommen wir zu den Kommandos.

Der WD1772 kennt 11 verschiedene Befehle (Kommandos), die
in vier Gruppen bzw. Typen unterteilt sind. Die folgende Ta-

belle zeigt diese im Überblick.

Bit

Typ Kommando 7 6 5 4 3 2 1 0

I Restore 0 0 0 0 h V ri ro

I Seek 0 0 0 1 h V ri ro

I Step 0 0 1 u h V ri ro

I Step-in 0 1 0 u h V ri ro

I Step-out 0 1 1 u h V r1 ro

II Read Sector 1 h E 0 0

Il Write Sector 1 0 1 m h E P a0

III Read Address 1 1 0 0 h E 0 0

Ill Read Track 1 1 1 0 h E 0 0

III Write Track 1 1 1 1 h E pP 0

IV Force Interrupt 1 1 0 1 13 12 11 #=I0

Diese Kommandos haben jeweils mehrere Flag-Bits, die im
einzelnen folgende Bedeutung haben:

128 ATARI ST Floppy und Harddisk

h = Motor On Flag

= 0 Motor On-Test einschalten

1 Motor On-Test ausschalten

Wird der Laufwerksmotor eingeschaltet, so sollte eine Wartezeit

eingelegt werden, bis der Motor seine Nenndrehzahl erreicht hat.
Dies wird vom WD1772 so gehandhabt, daß er nach dem Ein-

schalten des Motors 6 Index-Impulse abwartet. Bei einer Nenn-

drehzahl des Motors von 300 UPM beträgt diese Wartezeit min-
destens eine Sekunde. Dieser Vorgang (Spin-Up- Sequenz ge-

nannt) soll sicherstellen, daß die Motoren ihre Solldrehzahl er-

reicht haben, wenn die Schreib/Lese-Operationen stattfinden.

Nach Beendigung eines Kommandos werden die Laufwerksmo-

toren erst nach 10 weiteren Umdrehungen der Diskette (ca. 2 s)
ausgeschaltet.

Folgt in der Nachlaufphase ein weiteres Kommando, wäre es
natürlich reine Zeitverschwendung erneut eine Spin-Up-Sequenz

einzulegen. Aus diesem Grunde wurde in den Controller ein
Motor-On-Test implementiert.Ist dieser eingeschaltet (h=0), so
wird erst einmal der Motor-On-Ausgang getestet. Nur falls Mo-

tor-On auf LOW liegt, legt der FDC die zuvor beschriebene

Spin-Up-Sequenz ein. Liegt Motor-On jedoch auf High, so

nimmt der Controller an, daß die Motoren mit Solldrehzahl lau-

fen und fährt mit der Abarbeitung seines Kommandos fort.

Wenn der FDC ein Kommando (mit gesetztem h-Bit) empfängt,

schaltet er zunächst die Laufwerksmotoren ein, indem er den

MOTOR-ON-Ausgang auf HIGH legt. Dies ist unabhängig da-

von, ob der MOTOR-ON- Ausgang vielleicht schon auf High
liegt. Danach beginnt er sofort mit der Ausführung des Kom-
mandos. Er wartet also nicht bis 6 Index-Impulse eingetroffen
sind.

Verify Flag V=

V=0 Verify ausschalten

V=1 Verify einschalten

Die Diskettenlaufwerke 129

Dieses Flag-Bit existiert nur in der Gruppe der Typ-I-Kom-

mandos. Ist es gesetzt, so nımmt der Controller, nach einem

Step-Kommando bzw. nach dem letzten Step in einem Restore-

oder Seek-Kommando, eine Spurverifizierung vor. Dies ge-
schieht ın der Form, daß nach dem Step ein korrektes ID-Feld

gesucht wird, dessen Spur-Nummer mit dem Inhalt des Spur-

Registers übereinstimmt.

Ob man nun ein Kommando mit oder ohne Verify ausführt,
sollte von dem nachfolgenden Kommando abhängig gemacht

werden, da ein Verify nicht unbedingt nötig und auch nicht

immer sinnvoll ist.

Folgt ein READ- oder WRITE-SECTOR Befehl und der

Schreib/Lese-Kopf befindet sich nicht über der gewünschten

Spur, so wird keinesfalls ein falscher Sektor gelesen oder ge-

schrieben, da bei diesen Kommandos generell ein Verify ausge-
führt wird, welches außerdem noch etwas ausführlicher ist. Hier

erübrigt sich also ein STEP-Befehl mit Verify.

Völlig unsinnig ist ein Verify beispielweise, wenn eine neue
Diskette formatiert wird. Das Verify nach jedem Step-Befehl
würde sowieso negativ ausfallen. Da der Controller allerdings für
die Zeit von 5 Umdrehungen nach einem korrekten ID-Feld
sucht, werden beim Formatieren von 80 Spuren ca.ls Minuten

kostbarer Zeit sinnlos vergeudet.

Wird auf einer schon mit Daten beschriebenen Diskette nach-

träglich eine einzelne Spur neu formatiert, dann sollte sicher-
heitshalber ein Verify veranlaßt werden. Denn der WRITE-

TRACK-Befehl, der ja zum Formatieren einer Spur verwendet

wird, nimmt vor seiner Ausführung keinerlei Tests an der Spur
vor. Es wird also die Spur formatiert, über der sich der

Schreib/Lese-Kopf gerade befindet.

130 ATARI ST Floppy und Harddisk

rl, r0 = Stepping Rate

] 0 2ms

0 1 3ms

1 0 5ms

1 1 6ms

Mit diesen beiden Bits läßt sich die Stepping-Rate programmie-

ren. Das ist die Verzögerungszeit, die bei einem SEEK- bzw.
RESTORE-Kommando zwischen den einzelnen Step-Impulsen

eingelegt wird. Man hat dadurch die Möglichkeit, den FDC in
gewissen Grenzen an die mechanischen Gegebenheiten des
Laufwerks anzupassen.

Nehmen wir als Beispiel einmal ein Laufwerk, dessen Kopfme-

chanik für einen Schritt 6 ms benötigt. Wenn nun die Stepping-

Rate auf 3 ms programmiert ist und der Kopf durch ein Seek-

Kommando von Spur 0 auf Spur 40 bewegt werden soll (was 39
Step-Impulsen entspricht), so würde der Kopf nur die Spur 20

erreichen, da aufgrund der mechanischen Trägheit, jeder zweite

Impuls "verschluckt" wird.

Mit einzelnen Step-Impulsen (Step, Step-in, Step-out) wird der

Kopf wahrscheinlich korrekt gesteuert, da die Dauer der Step-
Impulse durch die Stepping-Rate nicht beeinflußt wird. Durch

das interne Timing des FDC bestimmt, beträgt diese einheitlich
4 Mikrosekunden.

u = Update Flag

0 kein Update des Spur-Registers

1 Update des Spur-Registers

u

u

Ist bei einem STEP-, STEP-IN- oder STEP-OUT-Kommando

das u-Bit gesetzt, so wird nach der Operation das Spur-Register

um 1 erhöht bzw. um 1 vermindert. Das bedeutet allerdings

Die Diskettenlaufwerke 131

nicht, daß der Inhalt des Spur-Registers mit der tatsächlichen

Spur übereinstimmt. Hierzu müssen zwei Voraussetzungen erfüllt

sein:

1. Die tatsächliche Spur-Nummer muß vor dem Step

mit dem Inhalt des Spur-Registers übereingestimmt

haben.

2. Es darf nicht versucht werden eine Spur-Nummer >

82 anzusteuern. Wenn sich der Schreib/Lese-Kopf
z.B. auf der Spur 82 (die letzte vom Laufwerk er-
reichbare Spur) befindet und auch der Inhalt des

Spur-Registers 82 beträgt, so würde nach 5 STEP-IN

Kommandos das Spur-Register die Spur-Nummer 87

enthalten, während sich der Kopf immer noch auf

Spur 82 befindet.

m = Multiple Sector

m = 0 einen Sektor lesen bzw. schreiben

m= |] mehrere Sektoren lesen bzw. schreiben

Durch dieses Bit hat man die Möglichkeit, mit nur einem
READ- bzw. WRITE-SECTOR-Befehl, maximal alle Sektoren

der Spur zu lesen oder zu schreiben. Voraussetzung dazu ist
aber, daß die Sektor-Nummern eine lückenlose Reihenfolge bil-

den. Die Nummer des ersten zu lesenden bzw. zu schreibenden

Sektors wird zuvor in das Sektor-Register geschrieben. Nachdem
der FDC diesen Sektor gelesen bzw. geschrieben hat, erhöht er
das Sektor-Register und versucht den nächsten Sektor zu lesen
bzw. zu schreiben. Dies setzt sich solange fort, bis kein weiterer

Sektor mehr gefunden wird bzw. das Kommando durch einen
FORCE-INTERRUPT-Befehl beendet wird.

a0 = Data-Address-Mark

a0 = 0 normales Data Mark schreiben ($FB)

132 | ATARI ST Floppy und Harddisk

a0 = | gelöschtes Data Mark schreiben ($F8)

Das Data-Address-Mark kennzeichnet den Beginn des Daten-

feldes. Da durch das a0-Bit (je nachdem ob es gesetzt oder ge-

löscht ist) unterschiedliche Data-Address-Marks geschrieben
werden können, ist man in der Lage, einen Sektor auf einfache

Weise zu kennzeichnen. Nach einem READ SECTOR Kom-

mando wird die Art des Data-Address-Mark’s im RECORD-

TYPE-Statusbit angezeigt.

E = 30ms Settling Delay

E=0 keine Kopfberuhigungszeit
E=1 30ms Kopfberuhigungszeit

Es gibt Laufwerkstypen bei denen der Schreib/Lese-Kopf nicht
ständig das Speichermedium berührt. Bei diesen läßt sich der
Kopf durch einen Hubmagneten anheben bzw. absenken. Diese,

Head Load genannte, Einrichtung soll den Verschleiß der Dis-

kette verringern, indem man den Kopf nur die Diskette absenkt

wenn tatsächlich Lese- oder Schreiboperationen erfolgen. Durch

dieses Absenken treten jedoch Schwingungen in der Kopf-Me-
chanık auf, die einen optimalen Kontakt zwischen Speicherme-

dium und Kopf für eine gewisse Zeit verhindern. Durch Setzen

des E-Bits läßt sich ein Delay einschalten, welches diese Zeit
überbrückt.

P = Write Precompensation

0 Schreib-Vorkompensation einschalten

1

P=

P = Schreib-Vorkompensation ausschalten

10-13 = Interrupt-Bedingungen

Keine Bedeutung

Keine Bedeutung

10
Il =
[2 Interrupt bei jedem Index-Impuls f

h

ju
mn

d
«
f
o
e

Die Diskettenlaufwerke 133

I3 = 1 Sofortiger Interrupt

I0-I3 = 0 Laufendes Kommando ohne Interrupt beenden

Die Typ-I-Kommandos

Die Typ-2- und Typ-3-Kommandos, die für das Lesen und

Schreiben von Daten zuständig sind, beziehen sich immer auf
die Spur, über der sich der Schreib/Lese-Kopf momentan befin-

det. Für dessen Positionierung ist die, aus den Kommandos Re-
store, Seek, Step, Step-ın und Step-out bestehende Gruppe, zu-

ständig.

RESTORE (Spur 0 suchen)

Kommando-Wort: 7 6 5 4 3 2 1 0

0 0 0 0 h V r1 ro

Wird dem FDC dieses Kommando übergeben, so testet er
zunächst den TROO-Eingang. Sollte sich dieser auf LOW befin-

den, da der Schreib/Lese-Kopf bereits über der Spur Null steht,

so wird lediglich das Spur-Register auf Null gesetzt.

Steht der Schreib/Lese-Kopf nicht über der Spur Null, so wer-

den solange STEP-OUT Impulse erzeugt bis der TROO-Eingang
auf LOW ist. Sollte dies nach 255 Step-Impulsen noch nicht der

Fall sein, so wird das Kommando abgebrochen. Die Beendigung
des Kommandos wird durch Setzen des INTRQ-Ausgangs und
Löschen des BUSY-Statusbits angezeigt.

SEEK (Spur suchen)

Kommando-Wort: 7 6 5 4 3 2 1 0

134 ATARI ST Floppy und Harddisk

Mit diesem Befehl kann man den Schreib/Lese-Kopf direkt über
eine bestimmte Spur steuern. Dazu wird die gewünschte Spur-

Nummer ins Daten-Register geladen. Voraussetzung für ein ord-

nungsgemäßes Funktionieren dieses Befehls ist, daß sich die ak-
tuelle Spur-Nummer im Spur-Register befindet. Werden mehrere

Laufwerke betrieben, muß also eventuell auch das Spur-Register

geladen werden, damit in diesem auch tatsächlich die aktuelle
Spurnummer steht. Erhält der FDC ein SEEK-Kommando, so

vergleicht er das Spur-Register mit dem Daten-Register, wo-
durch er feststellt, ob Step-ın oder Step-out Impulse erforderlich

sind. Danach werden Step-Impulse für die entsprechende Rich-

tung ausgegeben. Ein UPDATE des Spur-Registers erfolgt nach
jedem Step-Impuls. Sobald die Inhalte von Spur- und Daten-Re-

gister gleich sind, ist die Ziel-Spur erreicht und das Kommando
beendet. Dies wird durch Setzen des INTRQ-Ausgangs und 16-
schen des BUSY-Statusbits angezeigt.

STEP

Kommando-Wort: 7 6 5 4 3 2 1 0

0 0 1 U h V r1 r0

Dieser Befehl veranlaBt den FDC einen Step-Impuls auszugeben.
Die Richtung ist dabei die gleiche, wie bei einem vorangegange-
nen Step-Impuls, da der Zustand des DIRECTION-Ausgangs

nicht verändert wird. Der INTRQ-Ausgang wird danach auf
HIGH gelegt und das BUSY-Statusbit gelöscht.

STEP-IN

Kommando-Wort: 7 6 5 4 3 2 1 0

0 1 0 u h V ri r0

Bei einem Step-In-Kommando wird der DIRECTION-Ausgang,
unabhängig vom vorherigen Zustand, auf HIGH gelegt und ein
Step-Impuls ausgesendet. Durch diesen wird der Schreib/Lese-

Die Diskettenlaufwerke 135

Kopf einen Schritt in Richtung Diskettenmitte bewegt. Der IN-

TRQ-Ausgang wird auf HIGH gelegt und das BUSY-Statusbit
gelöscht.

STEP-OUT

Kommando-Wort: 7 6 5 4 3 2 1 0

0 1 1 u h V ri ro

Bei diesem Befehl wird der DIRECTION-Ausgang, unabhängig
vom vorherigen Zustand, auf LOW gelegt, bevor der Step-Im-

puls ausgegeben wird. Der Schreib/Lese-Kopf wird durch den

Impuls einen Schritt in Richtung Diskettenrand bewegt. Der IN-
TRQ-Ausgang wird danach auf HIGH gelegt und das BUSY-

Statusbit gelöscht.

Die Verify Sequenz bei den Typ-I-Kommandos

Wurde im Kommandowort das V-Bit gesetzt, so wird, wenn die

gewünschte Spur erreicht ist, folgende Sequenz, nach Einlegen

eines 30ms Delay’s, durchlaufen:

Die Spur-Nummer aus dem ersten gelesenen ID-Feldes wird mit
dem Inhalt des Spur-Registers verglichen. Bei Übereinstimmung
werden die CRC-Bytes des ID-Feldes getestet. Sollten diese mit

den durch die CRC-Logik berechneten übereinstimmen, so ist

die Verify-Sequenz fehlerfrei abgeschlossen. Der INTRQ-Aus-
gang wird auf HIGH gelegt und das BUSY-Statusbit gelöscht.

Ist in dem ID-Feld entweder die Spur-Nummer falsch oder die

CRC-Prüfsumme nicht korrekt, wird das nächste ID-Feld gele-
sen und ein erneuter Test vollzogen.

Wurde nicht innerhalb von 5 Umdrehungen der Diskette ein ID-

Feld mit richtiger Spur-Nummer und gültiger Prüfsumme ge-
funden, so wird das RECORD-NOT-FOUND-Bit im Status-Re-
gister gesetzt. Das Kommando wird abgebrochen, was durch

136 ATARI ST Floppy und Harddisk

setzen des INTRQ-Ausgang und löschen des BUSY-Statusbit an-

gezeigt wird.

Ablaufdiagramm der Typ-I-Kommandos

Um den Ablauf der Typ-I-Kommandos deutlicher zu machen,

liefern wir ihnen hierzu das entsprechende Ablauf-Diagramm.

(START) Ablaufdiagramm
der Typ-I-
Kommandos

BUSY setzen

CRC, RNF, DRQ, INTRQ
loeschen

ist
MOTOR ON

gesetzt
?

Motor ‘on 9 tion
eingeschalte

MOTOR ON setzen und
6 Index - Impulse warten

i"

| MOTOR ON setzen |

STEP IN

KOMMANDO

?

NEIN

STEP OUT

KOMMANDO

?

NEIN

DIRECTION setzen +

DIRECTION loeschen Pr

JA

NEIN

men
JA Updateflag

gesetzt
SEEK

KOMMANDO

?

NEIN ; RESTORE NEIN -

Spur - Register

mit aa laden

Daten - _—
mit $00 laden

od o &

Die Diskettenlaufwerke 137

VY
DR ins DSR

Ablaufdlagramm
der Typ-I-
Kommandos

2 DIRECTION setzen

y

it DIRECTION JA
gesetzt

NEIN

3 Spur - Register Spur - Register

dekrementieren inkrementieren

|

ist der

Kopf auf Spur 00 JA Spur - Register
und DIRECTION mit $00 laden

geloescht

?

NEIN

Step - Impuls ausgeben

‘
Durch ri- und ro - Feld

bestimmte Wartezeit

STEP, STEP-IN
oder STEP —- OUT

Kommando

JA fk NEIN

138 ATARI ST Floppy und Harddisk

Ablaufdiagramm
der Typ-I-
Kommandos

INTRQ setzen Verify Flag
BUSY loeschen gesetzt

9

30 ms Delay
(Kopfberuhigungszelt)

INTRQ setzen JA sind scho
BUSY loeschen 6 Index — Impulse
RNF setzen elngetroffe

?

NEIN

wurde ein
ID - Addressmark NEIN

gefunden
?

JA

ist TR =
Spurnummer ——NEIN
Im ID - Feld

?

JA

war das
CRC - Feld

korrekt
?

NEIN CRC - Error
setzen

CRC - Error | JA
loeschen

INTRQ setzen

BUSY loeschen

Die Diskettenlaufwerke 139

Die Typ-II-Kommandos

Diese Gruppe ist für das Lesen und Schreiben von Sektoren,

welche die logische Dateneinheit darstellen, zuständig. Der Da-

tenaustausch wird deshalb ausschließlich mit diesen Kommandos
abgewickelt. Wie alle Kommandos, die für das Lesen und
Schreiben von Informationen zuständig sind, nehmen auch diese

immer auf die Spur Bezug, über der sich der Schreib/Lese-Kopf

gerade befindet.

Daher ist es Aufgabe des Programmierers, mit Hilfe der Typ-I-

Kommandos dafür zu Sorgen, daß der Kopf vor Anwendung ei-

nes Schreib/Lese-Befehls über der entsprechenden Spur positio-

niert wird.

READ-SECTOR

Kommando-Wort: 14 6 5 4 3 2 1 0

1 0 0 m h E 0 0

Dem FDC wird die Nummer des zu lesenden Sektors im Sektor-
Register übergeben. Wird dann ein READ-SECTOR-Kommando
gestartet, so liest der Controller ein ID-Feld und testet, ob des-

sen Spur- und Sektor-Nummer mit den Inhalten von Spur- und

Sektor-Register übereinstimmen. Ist das nicht der Fall, so wird

das nächste ID-Feld gelesen. |

Waren sie jedoch gleich so wird die Angabe der Sektor-Länge

zwischengespeichert und die CRC-Prüfsumme des ID-Feldes mit
der aus den gelesenen Daten berechneten verglichen. Sollten sich
hier keine Abweichungen ergeben, dann wurde das, zu dem ge-

wünschten Sektor ’passende’, ID-Feld gefunden; andernfalls wird

ein weiteres ID-Feld gelesen.

Bevor nun das Lesen des Daten-Feldes beginnen kann, muß sich
unter den nächsten 43 Byte ein DATA-ADDRESS-MARK
(DAM) befinden. Wenn nicht, so wird (wie sollte es anders sein)

wiederum ein ID-Feld gelesen.

140 ATARI ST Floppy und Harddisk

Wurde nach 5 Umdrehungen kein ’passendes’ ID-Feld gefunden,

dem nicht innerhalb von 43 Byte ein DAM folgt, so wird das
RNF-Statusbit gesetzt und das Kommando abgebrochen.

Wie Sie sehen, müssen schon einige Bedingungen erfüllt sein,
bevor der FDC ein Daten-Feld, in dem sich ja ein Sektor befin-
det, liest. Ist bis hierhin aber alles ordnungsgemäß verlaufen,
dann geht es wie folgt weiter:

Die Art des DATA-ADDRESS-MARK’s (normal’ = 0; ’gelöscht’

= 1) wird in das Status-Bit 5 tibertragen. Der Address-Mark-

Detector wird ausgeschaltet und die entsprechende Anzahl (aus

der Angabe im Sektor-Längen-Feld berechnet) von Daten-Bytes

gelesen. Für jedes gelesene Byte wird ein DRQ ausgelöst. Sollte

auf einen dieser DRQ’s nicht reagiert werden, so setzt der FDC
das LOST-DATA -Statusbit.

Nachdem alle Daten-Bytes gelesen sind, wird auch hier eine

CRC-Prüfsumme getestet. Diese befindet sich in den beiden,

dem Sektor folgenden, Byte und wird mit der, aus den gelesenen

Sektor-Daten, berechneten verglichen. Bei Abweichung wird das
CRC-ERROR-Statusbit gesetzt.

Das Ende der Operation wird durch Setzen des DRQ-Ausgangs
und Löschen des BUSY-Statusbits angezeigt.

READ-SECTOR (mit gesetztem m-Bit)

Wird im Kommandowort des READ-SECTOR-Befehls das m-

Bit gesetzt, so wird der FDC versuchen mehrere Sektoren (ma-
xımal alle der Spur) zu lesen. Die Nummer des Ersten zu lesen-

den Sektors wird dem Controller im Sektor-Register übergeben.
Der Ablauf des Kommandos ist zunächst mit dem zuvor be-
schriebenen identisch. Nachdem jedoch der Sektor gelesen
wurde, erhöht der Controller automatisch das Sektor-Register

und startet ein weiteres READ-SECTOR-Kommando. Dies setzt
sich solange fort, bis kein weiterer Sektor mehr gefunden wird.

Die Diskettenlaufwerke 141

Das heißt mit anderen Worten, daß dieses Kommando immer mit

einem RECORD-NOT-FOUND-ERROR abgebrochen wird.

Da dem Controller nicht die Anzahl der zu lesenden Sektoren

angegeben werden kann, muß es eine andere Möglichkeit geben,
mehrere Sektoren zu lesen. Dieses erreicht man durch das

FORCE-INTERRUPT-Kommando. Es wird also nicht darauf

gewartet bis der FDC das Kommando von alleine abbricht, son-
dern bestimmt diesen Moment selbst.

Wie, das soll dieses Beispiel verdeutlichen:

Voraussetzung: Der Kopf befindet sıch über einer beliebigen,

nach ATARI-FORMAT formatierten Spur.

Die Sektoren dieser Spur sind demnach von 1-9 numeriert und

wir möchten die Sektoren 3-7, also 5 Stück, lesen.

Die Sektor-Nr. 3 wird ins Sektor-Register übertragen und die

Lese-Operation durch Übergabe des Kommandowortes gestartet.

Wird nichts weiter unternommen, so würden jetzt 7 Sektoren

(Sektor 3-9) gelesen und das Kommando nach 5 weiteren Um-

drehungen mit RNF-ERROR abgebrochen (da Sektor-Nr.10

nicht gefunden werden kann).

Es sollen aber nur die Sektoren 3-7 (und zwar ohne Fehlermel-

dung) gelesen werden. Deshalb kommen wir zu folgendem Ab-

lauf:

Da die Datenübertragung durch den DMA-Controller abgewik-

kelt wird, wurde dieser ja vor Start des FDC-Kommandos mit

einer Anfangs-DMA-Adresse initialisiert. Während der FDC die
Daten an den DMA-Controller übergibt, wird diese Adresse
fortlaufend erhöht. Die aktuelle DMA-Adresse kann daher
durch Auslesen des DMA-Adressen-Registers in Erfahrung ge-
bracht werden. Dieses Register wird nun ständig abgefragt, bis
dessen Inhalt gegenüber der Start-Adresse um $A00 (5 * $200)
erhöht ist. Sobald das der Fall ist, wird das READ-SECTOR-

142 ATARI ST Floppy und Harddisk

Kommando durch einen FORCE-INTERRUPT-BEFEHL abge-

brochen.

WRITE-SECTOR

Kommando-Wort: T 6 5 4 3 2 1 0

1 0 1 m h E P a0

Wir möchten hierzu nur die Unterschiede gegenüber dem
READ-SECTOR-Kommando beschreiben, da der größte Teil

des Ablaufs mit diesem Übereinstimmt.

Der FDC testet zu Anfang des Kommandos, ob der WRITE-

PROTECT-Eingang auf LOW liegt. Sollte das der Fall sein
(schreibgeschützte Diskette), so wird das WPRT-Statusbit gesetzt
und das Kommando abgebrochen.

Ist die Diskette nicht schreibgeschützt, dann wird mit der ID-

Feld Suche begonnen. Wurde das ’passende’ ID-Feld gefunden,

wird ein Delay, 23 Byte entsprechend, eingelegt. Danach werden
12 ’Null-Bytes’ und ein DATA-ADDRESS-MARK (die Art ist
vom a0-Bit abhängig) geschrieben. Es folgt die eigentliche Sek-
tor-Information, der sich die CRC-Prüfsumme anschließt. Zu

guter Letzt wird noch ein ’$FF-Byte’ geschrieben. Ob der Sektor

richtig geschrieben wurde, kann nur durch ein READ-SEC-
TOR-Kommando festgestellt werden.

WRITE-SECTOR (mit gesetztem m-Bit)

Es gilt hier analog das gleiche wie bei den Ausführungen zum
READ-SECTOR-Kommando mit gesetztem m-Bit.

Ablaufdiagramm der Typ-2-Kommandos.

Auch für die Typ-2-Kommandos können wir ihnen ein Ablauf-
Diagramm anbieten.

Die Diskettenlaufwerke 143

START | Ablaufdiagramm
C D der TYP I

Kommandos

en

CRC, RNF, DRQ, INTRQ,
RECORD TYPE und
LOST DATA loeschen

ist di e Ist
Motor on Option MOTOR ON

gesetzt
?

JA

MOTOR ON setzen MOTOR ON setzen und
6 Index - Impulse warten

1

et Feo 30 ms Delay
gesetzt (Kopfberuhigungszelt)

JA

Sector

NEIN ist die
Diskette schreib —

geschuetzt

JA

BUSY loeschen
WPRT setzen 1
INTRQ setzen

144 ATARI ST Floppy und Harddisk

Vy

JA sind schon
5 Index — Impulse

INTRQ setzen

Ablaufdiagramm
der Typ-Il-
Kommandos

BUSY loeschen

RNF setzen pingetroffe
?

NEIN

wurde ein NEIN

ID - Addressmark
gefunden

7

JA

Ist TR =
Spurnummer
im ID- Feld

NEIN

JA

ist SR =

Sektornummer>NEIN
im ID — Feld

?

*

Inhalt des Sektor—

laengenfeldes
intern speichern

war das
CRC - Feld CRC - Error

korrekt setzen

?
JA

CRC - Error

loeschen

NEIN

Read
Sector

oO

Die Diskettenlaufwerke 145

wurde ein
DATA - MARK

gelesen
schon 43 Bytes

gelesen
7

JA

Art des DATA - MARK

In das RECORD -

TYPE - Bit bringen

ADDRESS - MARK -

DETECTOR aussch.

komplettes
Byte Im DSR

JA

DSR Ins DR

DRQ setzen

komplettes
Byte im DSR

(Ablautdiagramm
der Typ-Ii-
Kommandos

(Read Sector)

LOST DATA setzen

alle
Daten - Bytes

gelesen
?

NEIN

Ist das
m - Bit

gesetzt

Sektor - Register

Inkrementieren

ADDRESS - MARK -

DETECTOR einsch.

war das
CRC - Feld

korrekt
?

NEIN

[4 | (INTRA setzen)
BUSY loeschen

CRC - ERROR
setzen

146 ATARI ST Floppy und Harddisk

| 2 ayte Daley |

| DRQ setzen |

| 9 Byte Delay |

wurde
auf DRQ
reagiert

?

| 12 Byte Delay |

| WRITE GATE setzen |

[12 mal $0 schreiben!

(die Art Ist durch das

a0 - Feld festgelegt)

Data Mark i

NEIN

| DRins DSR |

[Ablaufdiagramm
der Typ-II-
Kommandos

(Write Sector)

INTRQ setzen

BUSY loeschen

LOST DATA setzen

alle
NEIN Daten - Bytes

[| DRQ setzen |

| DSR schreiben |

Daten - Bytes
geschriebe

geschriebe

DSR mit $00 laden

7
LOST DATA setzen

2 CRC - Bytes
schreiben

[1 Byte $FF schreiben]

[Write GATE loeschen

Die Diskettenlaufwerke 147

Die Typ-III-Kommandos

Der in dieser Gruppe enthaltene WRITE-TRACK-Befehl dient

dem Formatieren einer Spur, während mittels READ-TRACK
und READ-ADDRESS das Format einer Spur analysiert werden

kann.

READ ADDRESS

Kommando-Wort: T 6 5 4 3 2 1 0

1 1 0 0 h E 0 0

Zu diesem Kommando müssen unbedingt ein paar erklärende ©

Worte, die den DMA-Controller betreffen, vorausgeschickt wer-

den. Es könnte sonst leicht passieren, daß Sie bei der Program-

mierung des READ-ADDRESS-Befehls an den Rand des Wahn-

sinns getrieben werden.

Wird das READ-ADDRESS-Kommando gestartet, so stellt man

nach dessen Ausführung nämlich erstaunt fest, daß sich das ID-
Feld nicht im RAM befindet. |

Ein Test der Status-Register (DMA und FDC) wird allerdings

keinen Fehler anzeigen. Wenn man nun die Start-DMA-Adresse
von der End-DMA-Adresse subtrahiert, dann ergibt die Diffe-
renz Null. Es sind also nur 0 Bytes übertragen worden. Das ist

natürlich etwas wenig.

Wo sınd also die 6 Byte des ID-Feldes geblieben? Nun, ganz

einfach, im DMA-Controller! Dieser überträgt nämlich die Bytes
nicht einzeln sondern wartet, bis er 16 Byte erhalten hat. Erst

dann stellt er eine Busanforderung an den 68000-Prozessor, um

diese 16 Byte in das RAM übertragen zu können.

Wie kommt man nun an das gelesene ID-Feld, welches sich ja

noch im DMA-Controller befindet? Hier gibt es nur eine Mög-
lichkeit. Es müssen weitere Daten gelesen werden. Dies wird da-

148 ATARI ST Floppy und Harddisk

durch erreicht, indem mehrere ID-Felder hintereinander gelesen
werden.

Nach z.B. 3 READ-ADDRESS-Befehlen (18 Byte) befinden sich
dann 16 Byte im RAM und 2 Byte im DMA-Controller. Damit
alle gelesenen Bytes ins RAM übertragen werden, muß deren

Anzahl demzufolge ein ganzzahliges Vielfaches von 16 sein.

Es gıbt aber noch einen weiteren Fallstrick. Dieser besteht ım
Löschen des DMA-Statusregisters, welches durch "toggeln", also

dem Ein- und Ausschalten, der Schreib/Lese-Leitung erreicht

wird. Wer, vor jedem DMA-Transfer, "sicherheitshalber" dieses
Register zurücksetzt, erlebt die nächste Überraschung. Hierdurch
wird nämlich nicht nur das Status-Register gelöscht, sondern

auch alle Bytes, die sich noch im DMA-Controller befinden. In
diesem Fall könnten solange ID-Felder gelesen werden, bis die

Diskette durchgeschliffen ist. Der DMA-Controller würde nicht
ein einziges Byte in den Speicher übertragen. Das DMA-Status-

register darf also nur vor dem ersten READ-ADDRESS-Befehl
gelöscht werden.

Doch nun zum READ-ADDRESS-Kommando selbst. Durch

dieses Kommando wird jeweils das nächste ID-Feld, das der

Schreib/Lese-Kopf erreicht, gelesen. Es kann in Verbindung mit
dem READ-TRACK-Kommando dazu benutzt werden, das

Format einer Spur zu analysieren. Ferner ist es auch möglich,

ein Spur-Verify vorzunehmen, ohne die Spur zu verlassen.

Das READ-ADDRESS-Kommando liest ein ID-Feld, ohne zu

testen, ob ein zugehöriges Daten-Feld existiert. Es werden dabei

6 Byte gelesen, die folgende Bedeutung haben:

Byte-Nr. Bedeutung

l Spur-Nummer

Seiten-Nummer

3 Sektor-Nummer

Die Diskettenlaufwerke 149

4 Sektorgröße

5 CRC-Byte 1

6 CRC-Byte 2

Die Spur-Nummer (Byte 1) wird auBerdem in das Sektor-Regi-

ster geschrieben. Man kann dadurch also ein Spur-Verify vor-

nehmen, ohne die gelesenen Daten zu verwenden. Dies erscheint
im ersten Moment als unnötig, da es ja keine Rolle spielt, ob
man fiir ein Spur-Verify den Inhalt des Sektor-Registers oder

das erste tibertragene Byte, mit dem Inhalt des Spur-Registers,

vergleicht. Außerdem ist es einfacher das übertragene Byte zu

verwenden, da in diesem Fall nicht erst das Sektor-Register se-

lektiert werden muß.

Nach einem einzelnen READ-ADDRESS-Befehl wird jedoch
noch keine Information ins RAM übertragen, da, wie zuvor

schon beschrieben, der Speicher-Transfer erst dann beginnt,

wenn der DMA-Controller 16 Byte ’gesammelt’ hat. Doch da-

durch, daß der FDC das erste Byte des ID-Feldes noch zusätz-

lich in das Sektor-Register schreibt, hat man trotzdem eine

Möglichkeit, durch ein einziges READ-ADDRESS-Kommando,

ein Spur-Verify durchzuführen.

Bei dem Lesen des ID-Feldes wird eine Prüfsumme gebildet, die
mit der Aufgezeichneten (CRC-Byte 1 und 2) verglichen wird.
Sollten diese nicht identisch sein, wird das CRC-ERROR-Sta-

tusbit gesetzt.

Ist bis zum Eintreffen von 6 Index-Impulsen (das entspricht

mindestens 5 Umdrehungen), kein ID-Feld gefunden worden, so

wird das RNF-Statusbit (Record not found) gesetzt.

Hat der Controller das Kommando abgearbeitet, so zeigt er dies

durch Setzen des INTRQ-Ausgangs und Löschen des BUSY-

Statusbits an.

150 ATARI ST Floppy und Harddisk

READ TRACK

Kommando -Wort: 7 6 5 4 3 2 1 0

1 1 1 0 h E 0 0

Auch das READ-TRACK-Kommando dient nur der Spur-Dia-

gnose. Es wird eine komplette Spur, inklusive aller GAP-,

SYNC- und Daten-Bytes, gelesen.

Das Lesen beginnt mit der steigenden Flanke des nächsten In-

dex-Impulses, den der Controller vom Laufwerk erhält. Es wer-

den solange Daten gelesen, bis ein weiterer Index-Impuls den

Controller erreicht. Das Ende der Operation wird, wie üblich,

durch Setzen des INTRQ-Ausgangs und Löschen des BUSY-

Statusbits angezeigt.

Für jedes gelesene Byte wird ein DRQ erzeugt. Wie bei allen

Kommandos die Daten transferieren, wird auch hier das LOST-

DATA -Statusbit gesetzt, wenn nicht auf den DRQ reagiert wird.

Bezüglich des LOST-DATA-Bits stellten wir fest, daß es des
öfteren, aus uns unbekannten Gründen, gesetzt wird. Das hat

zur Folge, daß dieses Bit nach einem READ-TRACK-Kom-
mando keinen Aufschluß darüber gibt, ob tatsächlich Daten
verloren gegangen sind. Merkwürdigerweise traten solche Fälle

bei READ-TRACK-Versuchen an einer unformatierten Diskette
nie auf.

Mit jedem empfangenen Addreß-Mark wird das ’Sammeln’ der
Daten-Bits synchronisiert. Der ADDRESS-MARK-DETECTOR,
der hierfür zuständig ist, wird danach aber nicht (wie z.B bei
einem READ-SECTOR-Kommando) ausgeschaltet, sondern

bleibt während des gesamten Lesevorgangs aktiviert. Er ist stän-
dig auf der Suche nach einem Addreß-Mark und verursacht da-
durch Lesefehler.

Nach Herstellerangaben sollen alle Informationen, mit Ausnahme
der GAP-Bytes, korrekt gelesen werden. Unsere Versuche haben

allerdings andere Ergebnisse erbracht. In der Praxis ist es so,

Die Diskettenlaufwerke 151

daß nur die ID-Felder richtig gelesen werden. Aber schon bei

der CRC-Prüfsumme der ID-Felder treten zeitweilig Lesefehler

auf.

Es erhebt sich die Frage, wozu das READ-TRACK-Kommando

eigentlich verwendet werden kann. Die Daten selbst sind ja
durch mögliche Lesefehler nur von zweifelhaftem Wert und
korrekt gelesene ID-Felder erhält man durch das READ-AD-

DRESS-Kommando wesentlich einfacher, denn die Suche nach

einem ID-Feld in der gesamten Spur-Information wirft ein wei-
teres Problem auf. So läßt sich bei einer Bytefolge von FE-Ol-
00-01-02-BC-DB nicht erkennen, ob es sich hier tatsächlich um

ein ID-Feld handelt. Diese Bytefolge könnte ja auch in einem
Daten-Feld vorkommen. Auch wenn kein ID-Feld existiert
könnte Sie zufällig auf der Diskette stehen. Ein ’echtes’ ID-Feld |
ist nur ein solches, welches der Controller als ID-Feld erkennt.

Der READ-TRACK-Befehl ist, alleine angewandt, nicht sehr
sinnvoll. Im Zusammenwirken mit dem READ-ADDRESS-
Kommando läßt sich eine Spur jedoch ziemlich genau analysie-
ren. Wenn die Daten selbst zum größten Teil keine Aussagekraft

besitzen, so ist deren Anzahl jedoch von großer Bedeutung. Man

kann dadurch die Abstände zwischen ’markanten’ Punkten, was

für die Spuranalyse wichtig ist, sehr genau berechnen. Hierdurch
wird der Nachteil des READ-ADDRESS-Kommandos, welches
nur ID-Felder liest, aber nicht testet ob ein zugehöriges Daten-
Feld existiert, ausgeglichen.

Als Beispiel möchten wir im Ansatz den Ablauf einer Spurana-

lyse schildern:

a. Alle ID-Felder der Spur werden durch READ-AD-

DRESS-Kommandos gelesen.

b. Die gesamte Spur-Information wird mit einem
READ-TRACK-Befehl gelesen.

152 ATARI ST Floppy und Harddisk

c. Alle Sektoren der Spur (Spur- und Sektor-Nummer

erhält man aus den gelesenen ID-Feldern) werden
durch READ-SECTOR-Kommandos gelesen.

Sind in der Spur keine ID-Felder enthalten, so ist unsere Ana-

lyse schon beendet, da wir es dann mit einem unlesbaren Format

zu tun haben.

Es wird nun in der Spur-Information nach dem ersten ID-Feld

gesucht. Hier muß man sich an den eben erwähnten ’markanten’

Punkten orientieren.

Der erste dieser Punkte ist eine Bytefolge von $Al,$FE oder
$C2,$FE, also SYNC-Byte und ID-ADDRESS-MARK. Nur ei-
nem solchen Punkt kann ein ID-Feld folgen. Wurde es gefun-
den, so wird der zweite ’markante’ Punkt interessant. Dieser be-

findet sich max. 42 Byte hinter dem ID-Feld. Es muß hier ein

SYNC-Byte, gefolgt von einem DATA-ADDRESS-MARK ge-
funden werden. Falls nicht, so existiert für das ID-Feld, kein

gültiges Daten-Feld.

Ein weiterer Test betrifft die Plausibilität des ID-Feldes. Zeigt
dieses z.B. eine Sektor-Größe von 512 Byte an und das nächste

ID-Feld folgt in einem Abstand von 200 Byte, so ist hier etwas
im Argen.

Das Lesen der Sektoren erfolgt in diesem Zusammenhang aus

zwei Gründen. Zum einen kann die Sektor-Information (wegen
der schon beschriebenen Datenverfälschungen) nicht den, durch

READ-TRACK erhaltenen Daten entnommen werden. Zum an-

deren ist nur durch READ-SECTOR eine Kontrolle der CRC-
Prüfsumme des Datenfeldes möglich.

Auf diese oder ähnliche Weise wird der gesamte Spur-Inhalt

analysiert. Die Auswertung der daraus erhaltenen Informationen
gibt die Möglichkeit, die soeben analysierte Spur zu reproduzie-

ren bzw. die Erkenntnis, daß sich die Spur mit den Möglichkei-
ten des WD 1772 nicht reproduzieren läßt.

Die Diskettenlaufwerke 153

WRITE TRACK (FORMAT TRACK)

Kommando-Wort: T 6 5 4 3 2 1 0

Bevor eine Diskette zur Datenspeicherung benutzt werden kann,

muß diese als erstes formatiert werden. Doch was geschieht da-
bei eigentlich? Die Sache ıst im Grunde genommen sehr leicht
zu erklären.

Die logische Dateneinheit, mit der ein Datentransfer zwischen
Laufwerk und Controller stattfindet, ıst der Sektor. Da sich auf

einer neuen Diskette aber keine Informationen über den Start-

punkt eines Sektors befinden, muß diese erst mit solchen Start-

punkten versehen werden.

Zu jedem Sektor gehört ein Feld, welches Informationen über
diesen beinhaltet. Ferner sind die Daten durch Prüfsummen ge-

sichert. Auch das fehlt auf einer neuen Diskette und muß zuvor
auf diese geschrieben werden. Synchronisations-Bytes sind dort

natürlich auch nicht zu finden. Diese sind jedoch eminent wich-

tig um den Anfang eines Bytes, welcher sich bei späteren Leseo-
perationen irgendwo im seriellen Bit-Strom ’versteckt’, zu er-

kennen.

Ziel des Formatierens ist es nun, alle hier aufgeführten Infor-

mationen bzw. Markierungen, auf die Diskette zu schreiben.

Dies muß jedoch nach bestimmten Regeln geschehen, da später

sonst kein Sektor-Transfer möglich ist.

Hält man sich an diese Regeln, so lassen sich zahlreiche - auch
vom Standard abweichende - einwandfrei funktionierende, For-

mate erzeugen.

Dem FDC wird grundsätzlich ein Datenbyte, also ein Wert zwi-
schen $00 und $FF, übergeben. Um aber die erforderlichen

Markierungen, die sich von ’normalen’ Datenbytes unterschei-
den, auf die Diskette zu schreiben, muß es eine Möglichkeit ge-

154 ATARI ST Floppy und Harddisk

ben, den Controller so zu steuern, daß nicht ein Datenbyte, son-

dern eine Markierung auf die Diskette geschrieben wird.

Wir möchten deshalb zunächst die Steuerbytes behandeln, welche

durch Werte zwischen $F5 und $FF repräsentiert werden. Im

Gegensatz zu den READ-SECTOR- bzw. WRITE-SECTOR-
Kommandos, bei welchen diese als ’normale’ Daten-Bytes ge-

schrieben werden, veranlassen sie den Controller bei einem

WRITE-TRACK-Kommando, die Diskette mit besonderen Mar-
kierungen zu versehen. Gemeinsam für diese gilt, daß sie ohne
Takt-Impulse geschrieben werden und daher, bei späteren Lese-

Operationen von Datenbytes, die eventuell den gleichen Wert

besitzen, unterschieden werden können (siehe ’Address-Mark-
Detector’). Was diese Steuer-Bytes, bei einem WRITE-TRACK-
Befehl im einzelnen bewirken bzw. welche Bedeutung sie da-

durch bei späteren Lese-Operationen erlangen, zeigt die fol-

gende Ubersicht:

an den FDC vom FDC geschrie- Bedeutung

Ubergebenes Byte bene(s) Byte(s)

$F5 $A1 Sync-Byte, CRC-Reg. löschen

$F6 $C2 Sync-Byte

$F7 $XX „5XX 2 CRC-Bytes

$F8 $F8 'geldschtes' Data-Address-Mark

$F9 $F9 Data-Mark

$FA $FA Data-Mark

$FB $FB Inormales' Data-Address-Mark

$FC $FC Data-Mark

$FD $FD Data-Mark

$FE $FE Index-Address -Mark

$FF $FF

Es soll nun erklärt werden, wie mit Hilfe dieser Steuer-Bytes ein
beliebiges Format erzeugt werden kann. Da hierzu einige Bei-

spielwerte erforderlich sınd, werden jeweils solche benutzt, die
zur Erstellung des ATARI-Formates nötig sind. An den ent-

Die Diskettenlaufwerke 155

sprechenden Stellen wird darauf hingewiesen, in welchem Maße

Abweichungen zulässig sind.

Beginnen wir mit einem Puffer, der alle Informationen einer
kompletten Spur, die später durch das WRITE-TRACK-Kom-

mando auf die Diskette geschrieben wird, aufnehmen kann.
Dazu sollte dessen Größe mindestens 6250 Byte betragen. Es gilt

nun, diesen Puffer derart mit Daten zu füllen, das er einem

Format entspricht, welches 9 Sektoren von je 512 Byte Länge
aufnehmen kann.

Teilen wir unseren Puffer in 2 verschiedene Komponenten auf,

so erhalten wir folgendes Schema, welches für alle Formate

Gültigkeit besitzt. Unterschiede in der Anzahl der Records sind
natürlich möglich.

GAP1 RECORD 1 RECORD 2 RECORD 9 GAP5

Eine Spur beginnt und endet mit einem, GAP bezeichneten,

Block. Wie wir später noch sehen werden, sind diese GAP’s auch

in den RECORDs vorhanden. Ein GAP ist ein Zwischenraum,
der die einzelnen Komponenten in der Spur trennt. Es enthält

keine Nutzinformation, sondern nur Füllbytes bzw. wenn ein
GAP vor einem ID- oder Daten-Feld steht auch SYNC-Bytes.

Dem FDC wird dadurch eine, durch die Länge des GAPs be-

stimmte, Zeit eingeräumt, in der er seine Funktionsteile, auf die

Erfordernisse der nachfolgenden Komponente, einstellen kann.

Gap-Länge Gap-Länge

Bezeichnung Wert ATARI - Format Fremd- Format

GAP1 (Spur-Vorspann) $4E 60 Byte min. 32 Byte

GAP5 (Spur-Nachspann) $4E ca.664 Byte min. 16 Byte

Die Lange von GAPS ist im Moment irrelevant. GAP35 ist, ein-
fach formuliert, das, was übrig bleibt. Bei unseren Berechnun-

156 ATARI ST Floppy_ und Harddisk

gen der Puffer-Aufteilung, müssen wir lediglich darauf achten,

daß wenigstens 16 Byte für GAPS vorhanden sind.

Subtrahieren wir von unserem Puffer die Anzahl der Bytes, die
wir für GAPI reservieren, so stehen uns noch 6190 Byte zur
Verfügung um sıe auf die Anzahl der Records aufzuteilen. Diese
Aufteilung läßt sich jetzt noch nicht vornehmen, weil die Länge
eines Records noch nicht bekannt ist.

Wie Sie wahrscheinlich schon richtig vermutet haben, ist in je-
dem Record einer unserer 9 Sektoren enthalten. Deshalb steht
eines fest; die Recordlänge ıst in jedem Fall größer als die Sek-
torlänge. Wenn wir einen Record weiter aufschlüsseln, ergibt
sich folgendes Bild:

GAP2 INDEX -FELD GAP3 DATEN-FELD GAP4

Hier sind zunächst die bereits angekündigten GAPs, die in der

gezeigten Reihenfolge mit Pre-Record-, Inter-Record- und

Post-Record-Gap bezeichnet werden.

Gap-Länge Gap-Länge

Bezeichnung Wert ATARI - Format Fremd- Format

GAP2 $00 12 Byte min. 8 Byte

SYNC $F5 3 Byte 3 Byte

GAP3 $4E 22 Byte 22 Byte

$00 12 Byte 12 Byte

SYNC $F5 3 Byte 3 Byte

GAP4 $4E 40 Byte min. 24 Byte

Summe der GAP-Bytes pro RECORD: 92 Byte min. 72 Byte

Die Diskettenlaufwerke 157

Die Synchronisations-Bytes ($F5) in Gap2 und Gap3 sorgen da-

für, daß das Lesen, der seriell eintreffenden Daten-Bits, mit

dem Byte-Anfang geschieht. Ferner haben sie die Aufgabe, den

FDC auf ein folgendes ADDRESS-MARK aufmerksam zu ma-

chen und dessen CRC-Logik zu initialisieren. Um ein SYNC zu

schreiben wird dem FDC der Wert $F5 übergeben, der darauf-

hin ein ’$A1-Byte’, ohne Takt-Impulse schreibt.

Das Daten-Feld

Die GAPs, die sich in einem RECORD befinden sind nun auf-
seschlüsselt. Sehen wir uns nun das Daten-Feld, in dem sich ja

unser Sektor befindet, genauer an.

DAM Sektor CRC

$FB 512 Datenbyte $F7

Das Daten-Feld beginnt mit einem DATA-ADDRESS-MARK,

welches den Start des Sektors kennzeichnet. Der Wert $FB wird

von einem späteren READ-SECTOR-Kommando als ein ’nor-

males’ DATA-ADDRESS-MARK interpretiert, wogegen der

Wert $F8, der statt $FB eingetragen werden kann, als ein ’ge-
löschtes’ DAM betrachtet wird.

Das Sektor-Feld wird beim Formatieren mit ’Dummy-Bytes’

gefüllt. Die Werte können zwar frei bestimmt werden, sollten

aber keinesfalls größer als $F4 sein. Die Anzahl kann 128, 256,
512 oder 1024 betragen. Wie der FDC die unterschiedlichen
Sektor-Längen erkennt, wird im "ID-Feld" erklärt.

Durch die Übergabe des Wertes ’$F7’ veranlaßt, schreibt der
FDC den Inhalt seines 16-Bit-CRC-Registers, welches eine
Prüfsumme enthält, auf die Diskette. Obwohl nur ein Byte über-
geben wird, werden vom Controller zwei Byte geschrieben. Die

158 ATARI ST Floppy und Harddisk

Gesamtlänge des Datenfeldes beträgt bei einer Sektorgröße von

512 Bytes, wie auch in unserem Beispiel, 515 Bytes.

Das Index-Feld

Das Index-Feld oder kürzer ID-Feld enthält Informationen über

das nachfolgende Datenfeld.

ID-AM Spur Seite Sektor Länge CRC

$FE 00-79 00-01 00-09 00-03 $F7

Das Index-Address-Mark (ID-AM) ist die Startmarkierung des

ID-Feldes. Trifft der Controller, bei späteren Lese-Operationen,

auf ein ID-AM, so wird er die 6 folgenden Bytes, bei ausge-

schaltetem Address-Mark-Detector lesen. Das ID-AM wird

ebenfalls ohne Takt-Impulse geschrieben.

Die drei Byte, die sich dem ID-AM anschließen, beschreiben die

Lage des RECORDS. Hier wird zuerst die Spur-Nummer, auf
der er sich befindet, angegeben. In unserem Fall ein Wert zwi-

schen 0 und 79, abhängig davon, welche Spur formatiert wird.

Das Seiten-Feld gibt an, ob sich der Record auf der Vorder-
oder auf der Rückseite befindet. Dieses Byte wird, vom Con-

troller selbst, in keiner Weise bei irgendwelchen Operationen be-

nutzt. Das Sektor-Feld schließlich enthält die Nummer des Sek-

tors (1-9). Da der FDC unterschiedliche Sektorgrößen unter-
stützt, muß ihm mitgeteilt werden, wieviele Daten-Bytes im fol-

genden Sektor enthalten sind. Dies geschieht durch die Angabe
ım Längen-Feld.

Die Diskettenlaufwerke 159

Tabelle der Sektorlängen

Längen- Feld Byte pro Sektor

00 128

01 256

02 512

03 1024

Für eine Sektorgröße von 512 Bytes steht in diesem Feld also
eine ’02°. Es fehlt nun nur noch die Prüfsumme. Das Schreiben
dieser Summe wird, genau wie im Daten-Feld, durch Übergabe
des Wertes ’$F7’ erreicht.

In der Addition ergibt sich, daß die Länge eines ID-Feldes im-
mer 7 Bytes beträgt. Nachdem jetzt alle Komponenten und de-

ren Anordnung innerhalb der Spur erklärt wurden, sind wir in

der Lage die Record-Länge zu berechnen.

Daten-Feld 515 Bytes

ID-Feld + 7 Bytes

GAP2-GAP4 + 92 Bytes

Record-Länge = 614 Bytes

Dies ist die tatsächliche Größe des Records. In unserem Puffer
beträgt dessen Länge nur 612 Bytes, da für das Schreiben der
beiden Prüfsummem (4 Bytes), jeweils nur ein Byte an den FDC
übergeben wird.

In unserer Berechnung ist jedoch der Platz entscheidend, den ein
Record auf der Spur einnimmt, also 614 Bytes. Für 9 Records

benötigen wir also 9 * 614 Bytes = 5526 Bytes. Subtrahieren wir
diese von den 6190 zur Verfügung stehenden Byte, so bleiben

noch 664 Bytes für den Spur-Nachspann (GAP5) übrig.

160 ATARI ST Floppy und Harddisk

Das ist mehr als ausreichend, wenn man bedenkt, daß hierfür

nur 16 Bytes erforderlich sind. Selbst ein Format, welches 10
Sektoren a’ 512 Bytes benutzt, würde die Lange von GAP5, mit

50 Bytes nicht unter das Mindestmaß sinken lassen.

Sehen wir uns zum Schluß an, mit welchen Daten unser Puffer

aufbereitet wird. Zu der Tabelle, die wir hierfür angelegt haben,
sind noch einige Erläuterungen nötig:

Die Daten von GAP2 bis einschließlich GAP4 (ein vollständiger
Record) wiederholen sıch für jeden Sektor. So muß z.B bei dem
Format mit 29 Sektoren, der entsprechende Block, 29 mal hin-

tereinander in den Puffer geschrieben werden. Die mit ’$XX’

angegebenen Werte müssen von Ihnen selbst bestimmt werden,

was aber nicht sonderlich kompliziert ist. Wird z.B die Spur 54

formatiert, so wird als Wert für die Spur-Nr. jeweils eine ’54’
eingetragen.

Ein Wert für die Seiten-Nr. ist ım allgemeinen ’0’ für die Vor-

derseite und ’1’ für die Rückseite.

Die Sektor-Nr. wird fortlaufend, normalerweise mit ’1’ begin-
nend, vergeben. Die Reihenfolge ist variabel und könnte ‚z.B.

bei. einem Format mit 9 Sektoren, 3,6,9,1,4,7,2,5,8 lauten. Wich-
tig ıst nur, daß die Folge vollständig ist.

Werden die Sektoren z.B. mit 1,2,3,5,6,7,8,9,10 bezeichnet, so

wird ein späterer READ- SECTOR- bzw. WRITE-SECTOR-

Befehl mit gesetztem m-Bit nach dem 3. Sektor mit RECORD-
NOT-FOUND-Error abgebrochen, da der FDC keinen Sektor

mit der Nr.4 finden kann.

Das ATARI-FORMAT ist in der erste Spalte aufgeführt. Wer

einen Blick in ’A Hitchhiker’s Guide to the BIOS’ wirft, wird ın

einem Punkt eine Abweichung zu unserer Tabelle entdecken.

Die Länge des Spur-Nachspanns (GAP5) ist nicht mit 664 Bytes,

sondern mit 1401 Bytes angegeben. Wenn man alle dort angege-

benen Bytes addiert, so hat es den Anschein, daß die Spur-

Länge ca. 7000 Bytes beträgt, was aber nicht der Fall ist. Viel-
mehr wird nur ein Puffer aufbereitet, der eben etwas größer ist

Die Diskettenlaufwerke 161

als die Spur tatsächlich aufnehmen kann. Aber mehr als ca.6250

Bytes passen nicht in eine Spur. Selbst eine Puffer-Größe von 50

kBytes ändert diese Tatsache nicht.

GAP 1

GAP2

SYNC

ID-AM

Spur-Nr.

Seiten-Nr.

Sektor-Nr.

Sektor-Lange

ID-CRC

GAP3

SYNC

DAM

Daten

DATA-CRC

GAP4

GAP5

60

12

a

a

=

=

oa
r

o
r

W
A

+

r

r
€£

$
x

3
FE

FE

FF

+
3

F

22

12

512

40

664

Anzahl der Sektoren / Sektorgröße

/ 512

* $4E

$00

$F5

$FE

SAX

$XX

$XX

$02

$F7

$4E

$00

$F5

$FB

$E5

$F7

‚$AE

* $4E

18 / 256

42 * $4E

11 * $00

3 * $F5

1 * SFE

1 * $XX

1 * $XX

1 * $XX

1 * $01

1 * $F7

22 * $4E

12 * $00

3 * $F5

1 * $FB

256 * $E5

1* $F7

26 * $4E

34 * $4E

29 / 128

40 * $4E

10 * $00

3 * $F5

1 * $FE

1 * $XX

1 * $XX

1 * $XX

1 * $00

1 * $F7

22 * $4E

12 * $00

3 * $F5

1* SFB

128 * $E5

1* $F7

25 * $4E

33 * $4E

Ablauf-Diagramm der Typ-3-Kommandos

5 / 1024

60 * $4E

40 * $00

3 * $F5

1 * $FE

1 * $XX

1 * $XX

1 * $XX

1 * $03

1 * $F7

22 * $4E

12 * $00

3 * $F5

1 * $FB

1024 * $E5

1 * $F7

40 * $4E

420 * $4E

Natürlich haben wir auch für die Typ-3-Kommandos
lauf-Diagramm erstellt.

ein Ab-

162 ATARI ST Floppy und Harddisk

(START)

Ss etze

RECORD TYPE und
LOST DATA loeschen

CRC, RNF, DRQ, INTRQ,

MOTOR ON setzen

Ablaufdiagramm
der Typ-Ili-
Kommandos

MOTOR ON
gesetzt

JA

MOTOR ON setzen und
6 Index - Impulse warten

‘

as Fits JA 30 ms Delay
gesetzt (Kopfberuhigungszeit)

?

NEIN

READ TRACK

[DRQ_ setzen |

| 3 Byte Delay |

wurde
auf DRQ
reagiert

BUSY loeschen

WPRT setzen

INTRQ setzen

BUSY lfoeschen

LOST DATA setzen

INTRQ setzen

Die Diskettenlaufwerke 163

[Ablaufdiagramm
der Typ-Ill-
Kommandos

(Write Track)
Ist

das P-Bit
gesetzt

chreibvorkompen —

sation einschalten

Index - Impuls
eingetroffe

| WRITE GATE setzen |

DSR Ins DR

DRQ setzen

2 CRC - Bytes
schreiben

__| DSR mit $A1 laden |
CRC -Reg. loeschen

DSR mit $C2 laden

DSR mit $00 laden

DSR ohne Clock DSR mit CLOCK LOST DATA setzen

schreiben schreiben ;

ist sin
Index - impuls
eingetroffen

WRITE GATE und

Vorkompensation
ausschalten

I
INTRQ setzen
BUSY loeschen

JA
Daten - Register

geladen
>

164 ATARI ST Floppy und Harddisk

INTRQ setzen

BUSY losschen
RNF setzen

(Ablaufdiagramm
der Typ-Ili-
Kommandos

(Read Address)
JA sind schon

6 Index — Impulse
pingetroffe

D - Addressmark

komplettes
Byte im DSR

JA

DSR ins DR

DRQ setzen

komplettes
Byte im DSR

wurde das
Daten - Register

gelesen
?

LOST DATA setzen

NEIN 6 Byte

?
JA

Spur - Feld In das
Sektor - Register

war das NEIN
CRC - Feld CRC - Error

korrekt setzen

?
JA

W_
INTRQ setzen
BUSY loeschen

Die Diskettenlaufwerke 165

ist sin
Index - Impuls
eingetroffen

komplettes
Byte Im DSR

JA

NEIN

DSR Ins DR

DRQ setzen

komplettes
Byte Im DSR

7

JA

wurde das
Daten - Register

gelesen
?

JA

NEIN|

NEIN

[Ablaufdiagramm
der Typ-Ili-
Kommandos

(Read Track)

LOST DATA setzen

Ist ein
index - Impuls
eingetroffen

NEIN

INTRQ setzen
BUSY loeschen

166 ATARI ST Floppy_ und Harddisk

Das Typ-IV-Kommando

FORCE INTERRUPT

Kommando-Wort: T 6 5 4 3 2 1 0

Dieses Kommando ist das einzige, das an den Controller überge-
ben werden darf, während sich ein anderes Kommando in der

Ausführung befindet. Es wird in der Hauptsache dazu benutzt,

ein READ-SECTOR- oder WRITE-SECTOR-Kommando mit

gesetztem m-Bit zu beenden.

Es gibt 3 verschiedene Möglichkeiten des Interrupts. Diese wer-

den durch die Bedingungsbits (IO-I3) im Kommandowort be-

stimmt. I0 und Il haben keine Bedeutung und sollten gelöscht

sein. Mit den Bits I2 und I3 wird die Art des Interrupts wie

folgt selektiert:

($D4) [2 = 1, Interrupt bei jedem Index-Impuls
($D8) I = 1, Laufendes Kommando mit Interrupt

beenden
($D0) 12-13 = 0, Laufendes Kommando ohne Interrupt

a beenden

Der Interrupt bei jedem Index-Impuls ($D4) kann z.B. dazu

verwendet werden, die Drehzahl des Laufwerks festzustellen.

Eine andere Anwendung wäre das synchronisieren des READ-

ADDRESS-Kommandos mit dem Spur-Anfang. Bei READ-
TRACK oder WRITE-TRACK ist das natürlich nicht nötig, da

sie ohnehin erst mit dem Index-Impuls gestartet werden.

Durch die Interrupts ’$D8’ und ’°$D0’ kann ein in der Ausfüh-

rung befindliches Kommando abgebrochen werden. Es ist zu
beachten, daß der INTRQ-Ausgang nach einem ’$D8’-Interrupt
nicht, wie üblich, durch Lesen oder Schreiben des Kommando-
Registers zurückgesetzt wird. Dies kann nur erreicht werden,

Die Diskettenlaufwerke 167

wenn dem °$D8’- ein ’$D0’-Interrupt folgt und danach das Sta-

tus-Register gelesen wird.

Wird dem FDC ein FORCE-INTERRUPT-Kommando überge-
ben, so muß vor dem nächsten Befehl eine Wartezeit von 16 Mi-

krosekunden eingelegt werden, da sonst das Interrupt-Kom-

mando nicht ausgeführt wird.

4.2.1.4 Status-Interpretation

Es hat sich herausgestellt, daß das Programmieren von Periphe-

riebausteinen, die für einen Daten-Transfer zuständig sind, fast
ausschließlich dem Betriebssystem überlassen wird. Allerdings
bieten diese Bausteine - in den meisten Fällen - erheblich mehr
’Features’, als für den normalen Systembetrieb erforderlich sind.
Dies ist der Grund dafür, daß die weniger gebräuchlichen Fä-
higkeiten nicht vom Betriebssystem ausgenutzt werden.

In Einzelfällen können diese ’schlummernden’ Talente der Peri-

pherie-Chips aber ein Programmierproblem drastisch vereinfa-

chen oder gar erst lösen. Warum trauen sich also nur - ver-

gleichsweise wenige - Programmierer, diese ’Talente’ zu wek-
ken? Nur etwa, weil es keinen passenden Betriebssystem- Aufruf

dafür gibt? Nein - die Scheu eine solche Programmierung selbst
vorzunehmen liegt meist in einer ’Angst vor dem Status’ begrün-
det.

Das äußert sich dann so, daß man zwar weiß wie man den Chip

dazu veranlaßt eine bestimmte Aufgabe zu erledigen, aber den

Status, den man zurückerhält, nicht interpretieren kann.

Oft ist nicht bekannt, welchen Status man nach einer fehler-

freien Ausführung erhält, denn irgendwelche Bits sind im Sta-
tusregister fast immer gesetzt. Ein O.K.-Status kann also
durchaus variieren.

168 ATARI ST Floppy und Harddisk

Wer schon hier nicht weiter weiß - wie soll er dann erst nach
Erhalt eines Fehler-Status, den Programmteil der dem Aufruf

folgt, weiterkodieren?

Es ist zeitraubend, alle Möglichkeiten durchzuspielen und somit

experimentell zu ermitteln, in welchen Fällen man welchen Sta-

tus erhält. Aber das muß auch nicht sein. Diese Aufgabe haben

wir - jedenfalls was den Floppy-Controller betrifft - schon für

Sie erledigt.

Wir zeigen an dieser Stelle nochmals die Bedeutung der einzel-

nen Status-Bits, die bereits in Kapitel 4.2.1.2 eingehend be-

schrieben wurden:

Status-Register des FDC

Bit Benennung

Motor On (MO)

Write Protect (WPRT)

Record Type / Spin Up

bzw. Spin Up

Record not found (RNF)

CRC-Error (CRC)

Spur 0

bzw. Lost Data

Index - Impuls

bzw. Data Request

Busy

Bit=1 bedeutet

Motor läuft

Disk schreibgeschützt

DATA-MARK gelöscht

Drehzahl erreicht

Sektor nicht gefunden

Prüfsummen- Fehler

Kopf auf Track 0

Datenverlust

Index-Puls-Status

Ubertragungsbereit

Kommando aktiv

Es ist wissenswert, daß schon nach einer Positionierung des

Schreib/Lese-Kopfes festgestellt werden kann, ob eine schreib-
geschützte Diskette (oder keine) in das Laufwerk eingelegt
wurde.

Gemeinsam für alle Kommandos (Typ-1 bis Typ-3) gilt, daß im

Statuswort, welches direkt im Anschluß nach einem Kommando

gelesen wird, Bit-7 gesetzt (der Motor wird nicht sofort ausge —

Die Diskettenlaufwerke 169

schaltet) und Bit-O gelöscht ist (der FDC hat das Kommando ja
beendet). Nach einem Typ-1-Kommando ist außerdem noch

Bit-5 (Spin-Up) gesetzt.

Der Status nach einem Typ-1-Kommando

Beginnen wir mit dem korrekten Status nach einem Typ-I-
Kommando. In den verwendeten Kommandoworten sind die
’Stepping-Rate-Bits’ für 3ms ’Track to Track’ gesetzt (r0=1,
r1=0).

RESTORE - Kommando normal schreibgeschützt

01 (mit MO-Option, ohne Verify) Ak E4

01 (siehe (1)) A6 E6

05 (mit MO-Option, mit Verify) A4 E4

09 (ohne MO-Option, ohne Verify) A4 | E4

OD (ohne MO-Option, mit Verify) A4 E4

SEEK-Kommando normal schreibgeschützt

11 (mit MO-Option, ohne Verify) AO EO

11 € siehe (3)) A2 E2

11 € siehe (2)) Ad E4

11 € siehe (1)) A6 E6

15 (mit MO-Option, mit Verify) AO EO

15 (€ siehe (2)) A4 E4

19 (ohne MO-Option, ohne Verify) AD EO

19 (siehe (2)) A4 E4

1D (ohne MO-Option, mit Verify) AO EO

1D (siehe (2)) A4 E4

170 ATARI ST Floppy und Harddisk

STEP, STEP-IN, STEP-OUT normal schreibgeschutzt

x1 (mit MO-Option, ohne Verify) AO EO

x1 (siehe (2)) A4 E4

x5 (mit MO-Option, mit Verify) AD EO

x5 (siehe (2)) A4 E4

x9 (ohne MO-Option, ohne Verify) AO EO

x9 (siehe (2)) A4& E4

xD (ohne MO-Option, mit Verify) AQ EO

xD (siehe (2)) A4 E4

(1) Dieser Wert gilt, wenn sich der Schreib/Lese-Kopf

(2)

(3)

schon vor dem RESTORE- bzw. einem SEEK-
Kommando nach Spur 0, über der Spur 0 befand. Es

ist, neben dem Spur-O-Bit, das IP-Bit gesetzt. Das

liegt daran, daß bei der Motor-On-Option, 6 Index-

Impulse abgewartet werden. D.h., der FDC stellt

während eines Index-Impulses fest, daß die ge-

wünschte Spur erreicht ist, und beendet das Kom-

mando.

Diesen Status trıfft man nach einem SEEK-, STEP-

oder STEP-OUT-Kommando an, wenn der

Schreib/Lese-Kopf über Spur 0 positioniert wird.

Befindet sich der Schreib/Lese-Kopf bei einem

SEEK-Kommando bereits über der gewünschten

Spur (außer Spur 0), so ist im Status-Wort das IP-Bit

gesetzt. Es liegt hier im Prinzip der gleiche Sachver-
halt wie unter (1) beschrieben zugrunde.

Ein Fehler-Status nach einem Typ-1-Kommando kann im all-
gemeinen nur erhalten werden, wenn im Kommandowort das

Verify-Bit gesetzt war. Im Statuswort ist dann noch zusätzlich:

a. falls kein ID-Feld gefunden wurde, das RNF-Bit

gesetzt

Die Diskettenlaufwerke 171

und

b. falls kein korrektes ID-Feld gefunden wurde, das
RNF- und das CRC-Bit gesetzt.

Somit ergibt sich ein Status von ’B2’ oder ’BA’ bzw.’F2’ oder
’FA’ bei einer schreibgeschützten Diskette. Geschieht das ganze
auf Spur 0, so ist natürlich auch noch das Spur-O-Bit gesetzt.

Das Statuswort hat dann den Wert ’B6’ oder ’BE’ bzw. ’F6’ oder
’FE’ bei einer schreibgeschützten Diskette.

Es fällt auf, daß im Fehlerfall immer das IP-Bit gesetzt ıst. Das
hat hier aber nichts mit der Motor-On-Option zu tun, sondern

erklärt sich dadurch, daß die (vergebliche) Suche nach einem
ID-Feld mit dem sechsten Index-Impuls abgebrochen wird.

Der Status nach einem Typ-2-Kommando

Bei den Typ-2-Kommandos gestaltet sich die Status-Interpreta-

tion etwas einfacher.

Nach einem erfolgreichen WRITE-SECTOR-Kommando enthält
das Status-Register immer den Wert ’80°. Nach einem READ-
SECTOR-Kommando kann das Statuswort, falls ein Sektor mit

’selöschtem’ Data-Mark gelesen wurde, auch ’A0’ betragen.

Ansonsten ist hier ebenfalls eine ’80° zu finden.

Wenn das Kommando nicht erfolgreich war, so ıst der Status

nach einem WRITE-SECTOR-Kommando entweder:

a. °C0’, nach dem Versuch eine schreibgeschützte Dis-
kette zu beschreiben, Ä

b. ’90’, wenn das zum gewünschten Sektor gehörende

ID-Feld nicht gefunden wurde,

c. ’88°, falls die Prüfsumme (CRC) des ID-Feldes nicht
korrekt war

172 ATARI ST Floppy und Harddisk

oder

d. ’84°, wenn nicht auf ein ’DATA-REQUEST’ des
FDC reagiert wurde.

Nach einem fehlerhaften READ-SEKTOR-Kommando:

a. °90’, wenn das zum gewünschten Sektor gehörende

ID-Feld oder das DATA-MARK nicht gefunden
wurde,

b. ’98’, falls die Prüfsumme (CRC) des ID-Feldes nicht
in Ordnung war,

c. ’88’, wenn die Prüfsumme (CRC) im Daten-Feld
einen Fehler aufwies |

oder

d. ’84°, wenn nicht auf ein ’DATA-REQUEST’ des
FDC reagiert wurde.

Der Status nach einem Typ-3-Kommando

Noch einfacher ist der Status nach einem Typ-3-Kommando

auszuwerten. Der Wert ’80° zeigt auch hier eine erfolgreiche
Ausführung an.

Für den Fehlerfall nach einem WRITE-TRACK-Kommando er-

gibt sıch:

a. ’C0’, bei einer schreibgeschützten Diskette

oder

b. ’84°, es wurde nicht auf einen DRQ des FDC rea-
giert.

Die Diskettenlaufwerke 173

Eine fehlerhafte Ausführung des READ-TRACK-Kommandos

gibt es eigentlich gar nicht. Der FDC liest einfach nur, zwischen
zwei Index-Impulsen, den RD-Eingang. Ganz gleich, ob eine

Diskette im Laufwerk ist oder nicht.

Der einzige Fehler der vorstellbar ist, nämlich ein LOST-DATA
(Status ’84’), kann aufgrund eines Softwarefehlers in einem Mi-

kroprogramm des FDC, nicht ausgewertet werden. Das LOST-
DATA-Bit wird, außer bei einem Datenverlust, auch noch ab-

hängig vom gelesenen Format gesetzt.

Es kann also nach einem READ-TRACK-Kommando nicht

festgestellt werden, ob ein gesetztes LOST-DATA-Bit tatsächlich

einen Datenverlust anzeigt.

Es bleibt noch das READ-ADDRESS-Kommando übrig. Auch

hier ist ein Status von ’80° als gut zu werten. Ansonsten könnte

sich noch ergeben:

(a) 90’, wenn kein ID-Feld gefunden wurde,

(b) °88’, falls der FDC einen Prüfsumme-Fehler im ID-
Feld erkannt hat

(c) °84’, wenn nicht auf eine Datenanforderung reagiert
wurde.

4.2.2 Die Floppy-Schnittstelle

Der etwas merkwirdige Stecker an der Riickseite des ST hat 14
Pole. Mit diesen 14 Leitungen wird die gesamte Steuerung der
Laufwerke und die Datenübertragung abgewickelt. Der Ablauf

dieser Steuerung ist recht einfach zu beschreiben, da die Dis-
kettenlaufwerke keine Eigenintelligenz besitzen.

Dies hat einen großen Vorteil. Die Schnittstelle zu solchen Dis-
kettenlaufwerken ist nämlich genormt. Es handelt sich dabei um
eine sogenannte SHUGART-Schnittstelle, die sich an vielen

174 ATARI ST Floppy_ und Harddisk

Laufwerken befindet. Nur deshalb ist es ja so einfach, Fremd-
laufwerke an den ATARI ST anzuschließen.

Diese Schnittstelle besitzt einen 34-poligen Anschluß, der mei-

stens für einen Flachbandkabel-Stecker vorgesehen ist. Die
Hälfte dieser 34 Pins sind verbunden und führen den gemeinsa-
men Minuspol, also Masse. Bei einem Flachbandkabel liegen

diese Massedrähte immer abwechselnd, da immer die ungeraden

Steckerpins auf Masse liegen.

Dies hat den einfachen Grund, daß so zwischen zwei Signallei-
tungen immer eine Masseleitung liegt. Dadurch wird eine ge-

wisse Abschirmung zwischen den Signalleitungen erreicht, die

bei den recht hohen Taktraten der Signale wichtig ist.

Von den verbleibenden 18 Leitungen werden 14 mit dem

ATARI verbunden. Betrachten wir nun diese Signale des SHU-
GART-Steckers:

Pin 2 Head Load

Ein Null-Signal auf dieser Leitung bewirkt, daß der
Schreib-/Lesekopf auf die Diskette aufgesetzt wird.
Diese Maßnahme ist zur Schonung der Disketten

vorgesehen, da der Kopf nur dann auf der Diskette

schleift, wenn er wirklich zugreifen soll. Leider ist
dieses Signal nicht aus dem ATARI ST herausge-
führt, da der Floppy-Controller WD1772 nicht über

diesen Anschluß verfügt. Oft wird jedoch diese
Leitung mit ’Motor on’ verbunden.

Pin 3 Masse

Ab hier sınd alle ungeraden Leitungen bis 33 an

Masse angeschlossen. Dieses Minus wird sowohl für
den Betrieb als auch zur Abschirmung verwendet.

Die Diskettenlaufwerke | 175

Pin 4

Pin 6

Pin 8

Pin 10

Pin 12

in Use

Dieses Signal soll dem Laufwerk anzeigen, daß es
angeschlossen ist und benutzt wird. Auch dieser
Anschluß wird nicht an den ATARI angeschlossen.

Drive Select 3

Ein Null-Signal auf dieser Leitung bedeutet, daß das
Laufwerk 3 angesprochen werden soll. Nur das

Laufwerk, welches durch sogenannte Jumper, kleine

Stecker im Laufwerk, als Laufwerk 3 ausgewiesen
ist, reagiert im folgenden auf die weiteren Befehle;
alle anderen verhalten sich neutral. Dieses Signal ist
beim ATARI unbelegt, da maximal zwei Laufwerke
angeschlossen werden können (0 und 1 bzw. A und

B).

Index

Auf dieser Leitung sendet das Laufwerk bei jeder
Umdrehung der Diskette ein Null-Signal. Dieses Sig-

nal bedeutet für den Controller, daß die nun folgen-

den Daten ganz am Anfang des aktuellen Tracks ste- |

hen. Dadurch kann sıch der Controller synchronisie-
ren.

Drive Select 0

Dieses Signal entspricht demjenigen auf Pin 6, nur
daß hier Laufwerk 0 angesprochen wird (Disk A).

Drive Select 1

Wie oben, nur Laufwerk | (Disk B).

176 ATARI ST Floppy und Harddisk

Pin 14

Pin 16

Pin 18

Pin 20

Pin 22

Pin 24

Drive Select 2

Wie oben, nur Laufwerk 2. Nicht am ST ange-
schlossen, da nur zwei Laufwerke möglich sind.

Motor on

Ein 1-Sıgnal an diesem Anschluß startet die Motoren

aller angeschlossenen Laufwerke, eine Null stoppt sie

wieder.

Direction

Dieses Signal gibt an, in welche Richtung der näch-
ste Schritt des Schreib-/Lesekopfes gehen soll. Bei

einer Null ist die Richtung nach innen, also zum
Track 79 gewählt, eine Eins bedeutet nach außen,

zum Track 0 hin.

Step

Ein Null-Impuls veranlaßt den Schrittmotor im

Laufwerk, den Schreib-/Lesekopf einen Schritt in

die durch ’Direction’ angegebene Richtung zu bewe-
gen.

Write Data

Diese Leitung führt die seriell übertragenen Daten,

die auf die Diskette geschrieben werden sollen.

Write Gate

Die Diskettenlaufwerke 177

Pin 26

Pin 28

Pin 30

Pin 32

Pin 34

Dieses Sıgnal wählt die Datenrichtung aus. Liegt hier

eine Null, so wird auf die Diskette geschrieben, bei

einer Eins wird gelesen. Ist der Schreibschutz auf der
Diskette in der entsprechenden Position, so werden

von dem Laufwerk selbst keine Schreibzugriffe zu-
gelassen.

Track 0

Befindet sich der Schreib-/Lesekopf über der Spur

0, so liegt hier ein Null-Signal an.

Write Protect

Eine Null auf dieser Leitung bedeutet, daß die Dis-

kette schreibgeschützt ist.

Read Data

Über diese Leitung werden die gelesenen Daten zum
Rechner geführt.

Side Select

Über diese Leitung wird die gewünschte Seite der
Diskette ausgewählt. Eine Null wählt die Seite 1 aus,
eine Eins die Seite 0. Bei einseitigen Laufwerken ist
diese Leitung unbenutzt.

Ready

Eine Null auf dieser Leitung gibt an, daß eine Dis-
kette im Laufwerk eingelegt ist und sich normal
dreht. Mit Hilfe dieser Leitung kann der Rechner

178 ATARI ST Floppy_ und Harddisk

feststellen, ob die Diskette gewechselt wird. Auch
diese Leitung ist nicht am ATARI ST angeschlossen.

Alle diese Signale entsprechen in ihrem Pegel dem TTL-Stan-
dard, d. h. 0-0.4 Volt bedeutet LO (Null), 2.5-5.25 Volt bedeu-

tet HI (Eins). Um diese Signale zu sichern, sind in den meisten
Diskettenlaufwerken eine Reihe von ’Pull-up-Widerständen’ ein-

gebaut.

Werden mehrere Laufwerke parallel angeschlossen, empfiehlt es

sich, diese Widerstände bis auf die des letzten (beim ATARI des
zweiten) Laufwerkes herauszunehmen, da sonst die Ausgänge

des ATARI überlastet werden. Bei einigen Laufwerkstypen (z.B.
EPSON) sind die Widerstände zusammen als ein Bauteil gesteckt,
so daß man sie leicht herausziehen kann. Bei den Original-
Laufwerken von ATARI, übrigens auch EPSON-Laufwerke, ist

das allerdings nicht erforderlich.

4.3 Anschluß der Diskettenlaufwerke

Die Diskettenlaufwerke, dıe von ATARI für den ST angeboten
werden, sind recht einfach anzuschließen: Kabel einstecken und

fertig.

Komplizierter wird es, wenn man ein anderes Laufwerk an-

schließen möchte. Das erste Problem, welches dabei auftritt, ist

das des Anschlußsteckers, der nicht oder nur schwer erhältlich

ist (Stand 5/86). Dabei kann man sich jedoch zur Not mit Löt-
nägeln behelfen, die man entweder auf eine eigens dafür ange-

fertigte Platine auflötet oder nach Justage auf irgendeinem ge-

eigneten Träger mit Kunstharz bzw. einem anderen Kunststoff
eingießt.

Hat man sich also auf irgendeine Art einen passenden Stecker
besorgt, so wird die Verdrahtung in Angriff genommen. Für die
Leitung zum Laufwerk ist ein abgeschirmtes Kabel sehr emp-
fehlenswert, wenn die Länge ca. l Meter übersteigt. Aufgrund
der hohen Übertragungsraten treten nämlich elektrische Effekte

Die Diskettenlaufwerke | 179

wie Induktivitäten und Kapazitäten auf, die die Datenübertra-

gung ungünstig beeinflussen können. Am sichersten ist daher ein
Kabel, in dem die einzelnen Adern gegeneinander abgeschirmt

sind (z.B. SCART-Kabel).

Ist nun die Verbindung zwischen ATARI ST und Diskettensta-
tion gesichert, so muß das Kabel noch angeschlossen werden.

Hier noch einmal die Verdrahtungstabelle im Überblick:

ATARIST Leitung SHUGART-Stecker

1 Read Data 30

2 Side O select 32

3 Ground alle ungeraden

Anschlüsse

4 Index Pulse 8

5 Drive 0 select 10

6 Drive 1 select 12

7 Ground S.0.

8 Motor on 16

9 Direction in 18

10 Step 20

11 Write Data 22

12 Write Gate 24

13 Track 00 26

14 Write Protect 28

Werden an diese Leitungen zwei Laufwerke angeschlossen, so

werden alle Anschliisse parallel geschaltet. Die Auswahl, welches

der Laufwerke nun A bzw. B sein soll, geschieht direkt im

Laufwerk. Dazu müssen sogenannte Jumper umgesteckt werden,

kleine Stecker, die bestimmte Kontakte verbinden. Wo diese
Jumper im Laufwerk liegen und wie sie zu stecken sind, ent-

nehmen Sie dazu der Beschreibung des verwendeten Laufwerks.

180 ATARI ST Floppy und Harddisk

Anzahl zu | Anzahl zu dr. d. |Startadr. d. IStarladr. d | Siarladr. d

Eingabeprm. [Fat [Me™ | Mi [sc el MR (ee Er | Sek Luna Dauer
FUNKTION FDC%(12) |FDC%(13) |FDC%(14) | FOC%(15) FDC%(16) [FDC%(17) Dean) ED) hg Ee ie dg

Restore dt. 00 lee
see Ten en ae nd nnn nnn DUN HERE DEREN IN! UE
Pd... 2 \dleenkennneecbennennhnenhe nenn
Sep-m |... Bl...
Stop UT ll I
Read Sector | see BE HERE HERE ET IT. EN BEE WE |
Weite - Sektor |... Bde | den. N | nn.
Read Track |... 7b |... N...
Welte- Track |... 08 l.leecoleooodoo mM |... OO fed ecccseeseeesfececeseeeeeen
Rad-Addren | Tl IC BE RR DE oan) | ot
Force Interupt | nn en nen eh
iw. selektieren. |... a ce EEE EEE EEE RER EEE WERE HERE
Sektomsg. sen | Bf feccssssssedecssssssefronssussnfsssssssndossssssesefessesnsn fcc
Spurrag. evan | 3 ccccsssefpssscsessssafsssssssssefossssssssefeotssssessafeossssesstnafesssssssiuaf esses
Statusreg. lesen | ee nn cseefeccesssseefeessssssssefecsssesneefersssssesspcssssssssfssessuesusfvssssssweefeosseseen
Spurreg. schreiben 15 M-

- - - - - - [Anzahl der

Ausgabeprm. | | Nr | status | status | Timeout | stant. | endade usbetiag.
FUNKTION FDCH(14) |FOCK(IS) |FDCK(18) |FOCK(18) FDC%«20) |FDcala3 IFDesizsy | FOCK(21)
Restore 0. len Menke
Sn an MN en
SP .deuccdkoon. 1 Mh Menu.
Step - In X X Step od a EEE meer ESBEESEEEEE FE BEE EEEEEEEEEN BEEEEEEBeeer Bere
Re ae HERE Bi Selen: eher ef Bass ua ae nase mn

Weite-Sector |... m |. mx | me x head Tract | ae ass oop oo meee aso ee coos
a a BE Mev nee ee ee Bass BEE oe fe ae

Rand Aa | oz Vokal ge lu FRONT a Ba a BER BEE a ae
Ce. aaa | ns pessessn ses essen
Saklamag. mn | gen essen ssssssepessss essen
Pa a nn nen ensese a
Satire aa poo een]eeseeeenpeneeeeseseebeeenoenenensoen
Sara hen | nn nn ps bes [nee bene

Die Festplatte SH204 181

5. Die Festplatte SH204

Nun kommen wir zu der etwas teureren, aber doch wesentlich

schnelleren Art der Datenspeicherung: der Festplatte. Eine solche

Festplatte, auch Harddisk genannt, wird auch für den ATARI

ST angeboten, und zwar für einen recht günstigen Preis.

Was sind nun die Vor- und Nachteile einer Festplatte? Nun, der

erste Nachteil liegt auf der Hand: eine Harddisk Kostet wesent-
lich mehr als eine Diskettenstation. Außerdem ist es nicht mög-

lich, durch Wechseln der Platte Programme auszutauschen oder

eine Bibliothek anzulegen, wie es ja mit Disketten geht.

Doch betrachtet man die Vorteile einer Harddisk, so wird die

Investition doch schmackhaft. Da wäre einmal die Geschwindig-

keit, mit der der Datenaustausch zwischen ATARI ST und der

Festplatte abläuft. Diese ist nämlich bis zu 10 mal höher als bei

Diskettenoperationen.

Ein weiterer Vorteil ist die Kapazität einer Festplatte, die bei

den momentan angebotenen Geräten 20 Megabyte beträgt. Auf

eine solche Platte passen somit z.B. alle Programme und Dateien

eines umfangreichen Compilers mitsamt der Quelldateien Ihrer
C- oder PASCAL-Programme. Da diese Compiler meist disket-

tenorientiert arbeiten, d.h. ständig auf die Diskette (oder auch

Harddisk) zugreifen müssen, ist dies schon ein großer Vorteil.
Das ewige Wechseln der Disketten bei Verwendung nur eines
Laufwerks entfällt dann.

Eine häufige Verwendung von Festplatten findet sich auch in

der EDV, wo große Datenmengen verwaltet werden müssen. Da-

bei ist es unzumutbar, immer wieder Disketten zu wechseln.

Stellen Sie sich einmal vor, die Angestellten einer Bank müßten

für jeden Kontoauszug die entsprechende Diskette in den

Bankrechner einlegen!

Nun, für die EDV einer Bank reicht ein ATARI ST mit einer 20

MByte Festplatte wohl nicht ganz aus. Wohl aber für die Ver-
waltung eines kleineren Betriebes, in dem die Lagerhaltung und

182 ATARI ST Floppy und Harddisk

die Personalverwaltung mit einem Rechner bewältigt wird. Dies
ist auch die Hauptanwendung von Harddisks.

Wir wollen uns nun einmal ansehen, wie eine solche Datenmenge

von einer Festplatte und natürlich auch dem angeschlossenen

Rechner bewältigt wird.

5.1 Funktion und Aufbau

Die Funktion einer Harddisk ist derjenigen der Disketten sehr
ähnlich. Auch hier drehen sich eine oder mehrere Scheiben (in
der ATARI-Harddisk nur eine) mit konstanter Geschwindigkeit

und werden jeweils von einem Schreib-/Lesekopf überstrichen.

Hier treten allerdings schon einige gravierende Unterschiede ge-

genüber Diskettenlaufwerken auf.

Die Rotationsgeschwindigkeit der Festplatte ist bedeutend höher
als die der Diskette, um die hohe Geschwindigkeit des Daten-
zugriffs und der Datenübertragung zu ermöglichen.

Um nun den Schreib-/Lesekopf, der über einer so schnellen

Scheibe (etwa 10mal schneller als eine Diskette) dahinfliegt, zu
schonen, liegt er überhaupt nicht auf der Scheibe auf. Mit einem

technischen Meisterstück wird nämlich erreicht, daß der Kopf in

einem winzigen Abstand zur Platte bleibt. Dieser Spalt ist so

winzig, daß sich dazu ein Staubkorn wie ein Felsbrocken aus-
macht.

Die Festplatte SH 204 183

menschliches Staubkorn Finger-— Schreib — /

Haar Abdruck Lesekopf

Teer
vo ty

Bild: Vergleich Spalt, Staubkorn, Haar

So wie ein solches Staubkorn in obigen Bild wirkt, so wirkt es
auch in der Praxis. Liegt eines auf der Platte und trifft mit der

hohen Tangentialgeschwindigkeit der Platte auf den Kopf, so
kann dies zu bösen Schäden an der Platte und/oder am Schreib-

/Lesekopf führen. Einen solchen ’Unfall’ nennt man ’Head-
Crash’. Diese Vorfälle sind sehr gefürchtet, da sie meist teure
Auswirkungen haben.

Um einen Head-Crash zu vermeiden, ist die Platte mitsamt dem
Kopf in einem luftdichten Gehäuse verpackt. Dadurch erklärt

sich auch, warum Harddisks nicht ebenso wie Disketten wech-

selbar sind. Auf dem Markt befinden sich zwar Wechselplatten-

Laufwerke, die aber sehr aufwendig und dadurch auch sehr
teuer sind. Außerdem wird momentan für den ATARI ST kein

solches Laufwerk angeboten, so daß wir diese nicht weiter be-

trachten wollen.

Einen weiteren Unterschied zwischen einem Diskettenlaufwerk

und der Harddisk am ATARI ST stellt der Controller dar. Der
im ST eingebaute Floppy-Disk-Controller ist nur, wie der Name

schon sagt, für die Diskettenlaufwerke zuständig. Die Harddisk

dagegen hat ihren eigenen Controller, welcher auch im Gehäuse

des Laufwerks eingebaut ist. Dadurch ist es leider nicht mehr so

184 ATARI ST Floppy und Harddisk

einfach möglich, ein Fremdlaufwerk an den ATARI anzu-
schlieBen. Diesen Controller sehen wir uns jetzt einmal genauer

an.

5.1.1 Der Harddisk-Controller

Der in der ATARI ST-Festplatte verwendete Controller ist ein

sehr leistungsfähiges Gerät. Dieser Controller schafft eine Da-

tenübertragungsrate von bis zu 8 MBit pro Sekunde, das ist etwa
1 MByte/Sekunde. Eine solche Datenflut würde den Speicher ei-
nes 1 MByte-ATARI in einer Sekunde füllen! Leider ist diese
Zahl nicht für den wirklichen Datentransfer maßgeblich.

Eine starke ’Bremse’ der Datenübertragung ist die Mechanik, die

in der Festplatte steckt. Gemeint ist die Rotationsgeschwindig-
keit der Platte und der Schrittmotor, der den Schreib-/Lesekopf

erst einmal an die richtige Stelle, also über den richtigen Track
fahren muß. Alle diese Punkte verringern die tatsächlich er-

reichbare Geschwindigkeit des Datenaustauschs, die dennoch

sehr hoch ist.

Der Controller hat eine recht einfache innere Struktur. Dennoch

ist sein Befehlssatz so vielseitig, daß er sogar Fehlerkorrektur

unterstützt.

Die Hardware des Controllers besteht hauptsächlich aus einem
Disk-Controller, einem Kodierer/Dekodierer und einem Mikro-

controller. Diese Einzelteile haben die folgenden Aufgaben bzw.
Funktionen:

Der Disk-Controller wandelt die Daten vom seriellen ins paral-

lele Format und umgekehrt. Außerdem wandelt er die Daten
selbst ın ein anderes Bitmuster um, welches dann wirklich auf

die Platte geschrieben wird. Dieses andere Format ermöglicht
durch einen Trick die Erkennung von einfachen Fehlern beim
Lesen.

Der Kodierer/Dekodierer wandelt die vom Disk-Controller er-

haltenen Daten in die elektrischen Signale um, die den Schreib-

Die Festplatte SH 204 185

kopf steuern. Umgekehrt wandelt er die Signale, die beim Lesen

vom Kopf kommen, in Bits um, wobei er gleichzeitig als Da-

tenseparator dient (s. Floppy-Disk-Controller).

Der Mikrocontroller arbeitet wie ein eigentlicher Disk-Control-

ler. Seine Aufgaben sind:

- Interpretation der vom Rechner kommenden Kom-

mandos

- Auswahl des angesprochenen Laufwerks (normaler-

weise ist nur eines vorhanden)

- Auswahl des Kopfes in dem Laufwerk (obere oder

untere Plattenseite)

- Steuerung des Steppermotors, der den Schreib-

/Lesekopf in die richtige Position fahrt
- Statusermittlung

Hier nun ein einfaches Blockdiagramm des ATARI Hard-Disk-

Controllers:

TAH Hard | = Disk = Controller Block = | — Lagan }.

Schreib/

Lese - Daten
Hard - Disk «——»§ Bus - Sender/
Anschluss ‘ae Empfaenger

Disk — Encoder/

Controller Decoder

Micro —

Controller

Die Operationen, die man über den DMA-Bus mit der Harddisk

durchführt, sind in 5 verschiedene Phasen aufgeteilt. Diese
Phasen sind folgendermaßen definiert:

Datenbus —

Ueberwachung Laufwerks —

Status

186 ATARI ST Floppy und Harddisk

Reset-Phase

trıtt auf, wenn entweder die RESET-Taste am ST betätigt bzw.

der Rechner eingeschaltet wird oder der RESET- Befehl der

68000-Maschinensprache auftritt. Der Bus und damit der HDC

werden in den Grundzustand versetzt.

Bus-frei-Phase

liest vor, wenn kein Gerät auf den Bus zugreift.

Ziel- Anwahl-Phase

beginnt durch den Aufruf eines Gerätes durch Rücksetzen der

SEL-Leitung. Die Adressierung des gewünschten Gerätes ge-

schieht durch ein gesetztes Datenbit der 8- Bit-Parallel-Leitung.

Das adressierte Gerät (hier: HDC) antwortet mit einem BUSY-
Signal, worauf die SEL-Leitung wieder gesetzt wird. Danach be-
ginnt die

Informations- Ubertragungs- Phase

Während dieser Phase werden übertragen:

- der Kommando-Block, 6 Bytes vom ST zum HDC

- der oder die Daten-Blécke, wenn das gewählte

Kommando dies erfordert
- das Status-Byte vom HDC zum ST, welches die er-

folgreiche Operation anzeigt bzw. einen Fehler an-
zeigt. Dieses Byte ist jedoch immer Null, so daß die

Status-Ermittlung nur durch die Erkennung eines
eventuellen Timeout erfolgen kann.

- das Completion-Byte vom HDC zum ST, ein Null-

Byte, welches das Ende der gesamten Operation si-

gnalisiert.

Die Festplatte SH 204 187

Bus- Auslésungs- Phase

wird durch Setzen der BUSY-Leitung ausgelöst und bedeutet,

daß der Bus nun frei für die nächste Operation ist. Danach be-

findet sich der Bus wieder in der BUS-frei-Phase.

5.1.1.1 Befehlsstruktur

Die Ubertragung von Befehlen an den Hard-Disk-Controller ist

genau festgelegt. Jedes Kommando wird in einem 6 Byte langen

Block gesendet, dem ’Command-Descriptor-Block’. Hat der

Controller ein solches Kommando erhalten, so teilt er dies dem

Initiator, also dem ATARI ST, durch einen Interrupt mit. Ent-

hält das Kommando einen Befehl, einen bestimmten Track zu

suchen (Verify, Format Track, Read, Write), so wird dies auto-
matisch ausgeführt. Dabei wird der angegebene logische Daten-

block, der gewünscht wird, in physikalische Größen wie Plat-

tenseite und Tracknummer vom Controller umgewandelt. Das

Diagramm auf der folgenden Seite zeigt die Struktur eines

Kommandoblocks.

Controllernummer

Dies ist ein 3-Bit Wert (0-7), welcher die Nummer des gewähl-
ten Controllers darstellt. Somit ist es möglich, bis zu 8 verschie-

dene Controller anzuschließen und zu bedienen. Die Nummer,

bei der sich der einzelne Controller angesprochen fühlt, wird mit

Hilfe von 3 Schaltern auf der Platine des Controllers eingestellt.

Kommt dann ein Kommando über die gemeinsame Busleitung
der Controller an, so testet jeder, ob er gemeint ist. Wenn nicht,
so verhält er sich so, als ob er nicht existierte. Wenn doch, so

beginnt die Kommunikation zwischen dem Rechner (Initiator)
und dem angesprochenen Controller (Target = Ziel). Antwortet

kein Controller auf das Kommando, so gibt der Rechner nach
etwa 4 Sekunden auf: Timeout.

Eines ist hierbei noch zu erwähnen: die Rollen der einzelnen
Geräte als Inıtiator und Ziel sind festgelegt. Eine Kommunika-
tion zwischen gleichen Geräten ist somit unmöglich.

183 ATARI ST Floppy und Harddisk

Byte O

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

| XXXXXxxx |

Operationskode MT
Controller-Nummer

| XXXxxxxx|

Blockadresse HI yi
Laufwerksnummer

| XKXXXXXxX |

Blockadresse MID

| XXXXXXXxX |

HLL Blockadresse LD

| XXXXXXX<x |

I) Blockzähler

| XXKXXXXxX |

Kontrollbyte

Die Festplatte SH204 189

Operationskode

Dieser Kode, auch OpCode genannt, enthält in 5 Bits das aus-

zuführende Kommando. Dadurch sind nur Kommandos von 0

bis 31 möglich.

Laufwerksnummer

Ähnlich wie die Controllernummer ist dies eine 3-Bit-Zahl, die
das gewählte Laufwerk bezeichnet. Jeder der bis zu 8 Controller
kann somit jeweils bis zu 8 Laufwerke steuern, wodurch also
theoretisch 64 Laufwerke an den ATARI anschlieBbar sind.

Blockadresse

Diese 21 Bit-Zahl bezeichnet den gewählten logischen Daten-
sektor. Die Umrechnung dieser Zahl (bis zu 2097151) in die

physikalischen Werte erledigt der Controller. Die ATARI-Fest-
platte enthält 41616 Sektoren, so daß die Blockadresse diesen

Wert nicht überschreiten und, da die Blocknummer bei 0 be-

ginnt, auch nicht erreichen.

Blockzähler

Dieser Zähler bestimmt die Anzahl der zu lesenden bzw. zu
schreibenden Sektoren. Der Zähler muß einen Wert ungleich 0
enthalten (1-255).

Kontrollbyte

Dieses Byte enthält verschiedene Angaben, je nach dem verwen-

deten Kommando.

Um nun einen so aufgebauten Kommando-Block an den HDC
zu übertragen, muß folgendermaßen vorgegangen werden:

Zunächst wird der Prozessor durch die SUPER-Funktion ($20)
des GEMDOS (TRAP #1) in den Supervisor-Modus geschaltet,

190 ATARI ST Floppy und Harddisk

da einige privilegierte Zugriffe auf Hardware-Register erfolgen
müssen.

Danach werden durch Setzen der System-Variablen FLOCK

($43E) die Routinen der Floppy-Bearbeitung gesperrt. Dies ist

nötig, da sowohl der HDC als auch der FDC über die selben

Hardware-Register gesteuert werden. Damit es dabei keine
Überschneidungen geben kann, wie z.B. ein OK-Signal des
einen Controllers, wenn auf das OK des anderen gewartet wird,

wird der FDC quası aus dem System entfernt und kann nicht
mehr mitmischen. |

In dem Hardware-Register $FF8606, im folgenden WDL ge-
nannt, werden durch Einschreiben des Wertes $88 die Bits 7 und

3 gesetzt, alle anderen gelöscht. Dadurch wird einerseits der
HDC selektiert und andererseits die Leitung Al, die durch Bit 1

angesprochen wird, auf 0 gelegt.

Diese Leitung Al dient zur Signalisierung an den HDC, daß nun
ein Kommando-Byte (das erste Byte eines Kommando-Blocks)

übertragen wird.

Danach wird im Register $FF8604, im folgenden WDC genannt,
das Kommandobyte übergeben. Der HDC übernimmt dieses Byte

und meldet dies durch ein 0-Signal an der HDC-Interrupt-Lei-

tung. Diese Leitung liegt an Bit 5 des I/O-Portes des Multi-
Funktions-Chip MFP und ist somit an der Adresse $FFFAOI zu
finden. |

Dieser Interrupt findet auch nach jedem weiteren übertragenen
Byte statt. Kommt er nicht, so wurde das übertragene Byte ent-

weder nicht erkannt oder der HDC ist nicht bereit, Daten zu

empfangen.

Während der Übertragung der Kommando-Bytes wird auf den
Interrupt maximal 100 Millisekunden lang gewartet, nach der
volständigen Übertragung des Kommando-Blocks sogar bis zu 3
Sekunden, da dann ja das Kommando vollständig ausgeführt
werden muß, bis der HDC ein OK melden kann. Ist nach dieser

Zeit immer noch kein Interrupt erfolgt, so wird die Ubertragung

Die Festplatte SH 204 191

der Kommando-Bytes abgebrochen und ein sogenanntes Timeout

gemeldet.

Ist das Kommando-Byte übertragen und rechtzeitig durch den

Interrupt quittiert, so wird eine $8A in das WDL geschrieben,

wodurch die Al-Leitung wieder zu 1 wird.

Die restlichen 5 Bytes des Kommando-Blocks werden nun nach

dem gleichen Schema, nur mit gesetzten Bit 1 (Al), übertragen.

Zusammen mit einer $8A in WDL wird das Byte in WDC ge-
schrieben, bis zu 100 Millisekunden auf den Interrupt gewartet

(sonst Timeout) und dann das nächste Byte übertragen.

Nach Übertragung des letzten Bytes (Byte 5) des Kommando-

Blocks wird nun länger (max. 3 Sekunden) auf den Interrupt
gewartet, damit der HDC Zeit genug hat, das Kommando aus-

zuführen.

Ist der Interrupt in der Zeit erfolgt, wird eine $80 in das WDL-
Register geschrieben, um Bit 3 zurückzusetzen und damit den

HDC zu deselektieren. Dadurch wird der FDC, der Floppy-
Disk-Controller, wieder freigegeben.

Anschließend wird die System-Variable FLOCK ($43E) wieder

auf 0 gesetzt, um die Floppy-Operationen wieder zu ermögli-

chen. SchlieBlich und endlich kann danach der Prozessor wieder
in den User-Modus zurückgeschaltet werden.

Hier nun ein kleines Programm, welches die oben beschriebenen

Schritte durchführt und einen Kommando-Block zum HDC sen-

det. Bitte beachten Sie, daß dies nur vollständig funktioniert,
wenn das Kommando keine Datenübertragung über die DMA

beinhaltet (z.B. READ, WRITE), da dann die DMA ebenfalls

programmiert werden muß. Dazu kommen wir später.

: ** Hard-Disk-Zugriff S.D. **

» ** sendet Kommando-Bytes aus COM-Feld zum HDC **

wdc = $ff8604

192 ATARI ST Floppy und Harddisk

wdl = $f 8606

wdewdl = wdc

port = $fffa01

f Lock = $43e

run:

move.b #'0' num »Timeout-Meldung vorbereiten

clr.l -(sp)

move #$20,-(sp)

trap #1 ‚in Super-Modus umschalten

addq. l #6, Sp

move. L d0, spsave ‚alten Stackpointer retten

lea com, a0 ‚Zeiger auf Kommando-Block

bsr send ;Kommando-Block an HDC senden

bra exit fertig

send: ‚* Kommando-Block an HDC senden *

st flock ;Floppy sperren |

move #588 ,wdl | ;HDC selektieren, A1=0

clr.l do

moveq #5 ,d2 ‚Zähler: 6 Bytes

Loop:

clr.l do

move .b (a0)+,d0 ‚Byte holen

bsr send_byte ‚Byte an HDC senden

bmi error ;Timeout !

dbra d2, loop ‚weitermachen

cont:

move #$8a ,, wdl

bsr waitl ‚max. 3s auf Interrupt warten

bmi error Timeout !

move #$8a,wdl

move wdc , d0 ;Status-Byte holen

move #580 , wdl ;HDC deselektieren

move - wde,d1 :Completion-Byte holen

clr flock ;Floppy freigeben

rts ;fertig

Die Festplatte SH204 193

exit:

move. | spsave, - (sp)

move #$20,-(sp)

trap #1 ‚Umschalten in User-Modus

addq. l #6,Sp

rts ‚Ende

error: Error melden

clr flock ‚Floppy freigeben

move. l #senderr ,d0

bsr pline :Fehlermeldung ausgeben

bra exit und Schluß

send_byte: :* ein Byte zum HDC senden *

swap do ‚Byte ins HI-Wort

move #$8a ,d0 *$8A ins LO-Wort

move. | dO, wdewdl ;WDC und WDL setzen

bra wait ‚warten auf OK (Interrupt)

waitl:

add.b #1 ,num ‚Durchlauf -Nummer+1

move. l #450000, d3 Timeout nach 3 Sekunden

bra wait! ‚warten...

wait:

add.b #1,num ‚Durchlauf -Nummer+1

move. l #15000, d3 sTimeout nach 100 ms

wait:

subq. l #1 ,d3 :Timeout-Zahler- 1

bmi timeout ‚Timeout |!

move.b port,dO ;1/0-Port laden

and.b #$20 , dO ‚Bit 5 ausblenden

bne wait] noch gesetzt, weiterwarten

moveq #0,d3 ‚OK übergeben

rts | ; fertig

timeout:

moveq #-1,d3 nicht OK übergeben

rts

pline: ;* Zeile auf Bildschirm ausgeben *

move. l d0,-(sp)

194 ATARI ST Floppy und Harddisk

move #9,-(Sp)

trap #1

addq. l #6,Sp

rts

spsave: dc.l 0

senderr: dc.b "ERROR bei send_byte "

num: dc.b "1. mal !",10,13,0

com: dc.b $b,$0,$0,0,0,$0

even

Die Bytes des hier übertragenen Kommando-Blocks lassen den

Schreib-/Lesekopf der Harddisk auf Spur 0 fahren ($B=Seek).
Das Programm beinhaltet zu Testzwecken noch eine Fehler-Aus-
gabe, die ein Timeout mit Angabe des Zeitpunktes auf dem
Bildschirm ausgibt. Dieser Teil kann natürlich entfallen, er dient
nur zur Kontrolle der ordnungsgemäßen Übertragung des Kom-
mando-Blocks.

Etwas komplizierter wird die Übertragung eines Schreib- bzw.
Lese-Befehls an den HDC. Dabei muß zusätzlich zur Übertra-
gung des Kommando-Blocks noch die DMA (Direct Memory

Access) programmiert werden, die für die Übertragung der Da-
ten zwischen Harddisk und Computer-Speicher zuständig ist. Die

DMA benötigt folgende Informationen:

- die Speicher-Adresse, aus der bzw. in den die zu

übertragenen Daten-Bytes zu lesen sind. Diese

Adresse wird ın den Hardware-Registern $FF8609,

$FF860B und $FF860D übergeben, und zwar erst das
LO-, dann das MID- und dann das HI-Byte der

Adresse. Da dabei ein Byte zu einer vollständigen
32-Bit-Adresse fehlt, kann diese Adresse ’nur’ in ei-

nem Bereich zwischen 0 und $FFFFFF liegen (s.
auch FDC-Programmierung).

- die Richtung, in der die Daten zu übertragen sind,

d.h. Lesen oder Schreiben. Diese Information erhält

Die Festplatte SH 204 195

die DMA aus Bit 8 des WDL-Wortes, eine 0 bedeutet

Lesen in und eine | meint Schreiben aus dem Spei-

cher.

- den Zustand, ob die DMA überhaupt eingeschaltet
ist. Dies erfährt die DMA aus Bit 6 des WDL-Regi-
sters $FF8606. Normalerweise ist die DMA immer
eingeschaltet, d.h. Bit 6=0.

Es ist auch wichtig, in welchem Moment der DMA diese Infor-
mationen gegeben werden, damit nicht Uberschneidungen mit
vorhergehenden DMA-Aktionen stattfinden können. Soll von der
Harddisk gelesen werden, so wird erst das Kommando-Byte an

den HDC übergeben und dann erst die DMA-Adresse gesetzt.
Dadurch wird ausgeschlossen, daß die DMA unerwünschte Daten

in den Speicher lädt, da der HDC nach Empfang des Komman-

dobytes erst auf die weiteren Bytes des Kommando-Blocks war-

tet.

Um auf die Festplatte zu schreiben, wird dagegen erst die

DMA-Adresse gesetzt und danach das Kommando-Byte übertra-

gen. Wie dies praktisch zu bewerkstelligen ist, können Sie an-

hand des Programmes ’HDC-Tools’ im Kapitel 5.1.1.3 erkennen.

Zunächst wollen wir jedoch bei der leidigen Theorie bleiben und
die Kommandos für den HDC betrachten.

5.1.1.2 Liste der Befehle

Der beim ATARI ST verwendete Befehlssatz enthält nur 9 ver-

schiedene Kommandos. In den verschiedenen Handbüchern der

Harddisk sind zwar einige andere Kommandos aufgeführt, die
jedoch nicht in der angegebenen Weise bzw. gar nicht funktio-
nieren. Hier eine Übersicht über die funktionierenden Kom-

mandos mit dem dazugehörenden sedezimalen OpCode:

196 ATARI ST Floppy und Harddisk

OpCode Kommando

00 Test Unit Ready

01 Restore

03 Request Sense

04 Format Drive

08 Read

0A Write

OB Seek

15 Mode Select

1B Seek to Shipping-Position

Es folgt nun eine Erklärung der einzelnen Kommandos mit ihren
Parameter-Bytes. Das ’-’-Zeichen bedeutet, daß das Bit keine

Bedeutung hat. Diese Bits sollten dann auf 0 gelegt werden.

Test Unit Ready (00)

Mit diesem Kommando kann der Rechner den Bus ansprechen

und feststellen, welche Geräte angeschlossen sind.

Byte 0: |xxx00000|

| | | | | Kommando 00, Test Unit Ready

Controller-Nummer

Byte 1: | xxx

| | | | Laufwerks-Nummer

Byte 2 bis 5: — |

Ist das angegebene Laufwerk eingeschaltet und bereit, so wird

ım Status-Byte eine Null übergeben, andernfalls wird das Check
Condition-Bit gesetzt.

Die Festplatte SH 204 197

Restore (01)

Diese Kommando setzt den HDC ın den Grundzustand zurück

und läßt den Schreib-Lesekopf des Laufwerks zur Spur 0 zu-

rückfahren.

Byte 0: |xxx00001|

| | | | Kommando 01, Restore

Controller-Nummer

Byte 1: | xxx-——

| | | Laufwerks-Nummer

Byte 2bis5 | |

Request Sense (03)

Dieses Kommando gibt 4 Bytes zurück (4 mal WDC auslesen!),

wovon nur das erste Byte eine Bedeutung hat. Es enthält den

Error-Code des zuletzt ausgeführten Kommandos. War kein

Fehler aufgetreten, so erhält man dort eine 0.

Byte 0: |xxx00011|

| | | | | Kommando 03, Request Sense

| Controller-Nummer

Byte 1: | xxx ——J

| | | Laufwerks-Nummer

Byte 2: | |

Byte 3: | |

198 ATARI ST Floppy und Harddisk

Byte 4: 100000100 | = $04 Bytes werden zurückgegeben

Byte 3: |

Format Drive (04)

Dieses Kommando veranlaBt den HDC, die gesamte (!) Harddisk
zu formatieren. Es ist somit nicht besonders empfehlenswert,

dieses Kommando experimentell auszuprobieren!

Es werden dem Kommando einige Parameter mitgegeben:

das Data-Pattern-Flag, welches aus zwei Bits besteht

und bestimmt, welche Daten auf die leeren Sektoren

geschrieben werden sollen. Sind die Bits nicht gesetzt
(0), so werden in alle Sektoren $6C geschrieben. Sind
die Bits gesetzt, so wird das in Kommando-Byte 2
übergebene Byte geschrieben.

Data-Pattern: Hier steht das Byte, mit dem bei ge-
setzten Data-Pattern-Flag die formatierten Sektoren

gefüllt werden. Ist das Flag nicht gesetzt, so hat
dieses Byte keine Bedeutung.

Interleave-Faktor: Dieser Wert gibt den Abstand
zwischen zwei der Nummer nach aufeinanderfolgen-
den Sektoren an. Ist der Faktor 1, so werden die

Sektoren der Reihe nach auf die Tracks geschrieben.
Ist er z.B. 2, so wird zwischen Sektor 1 und 2 ein

anderer Sektor gelegt. Die Reihenfolge der 17 Sek-
toren eines Tracks wäre dann folgende:

Laufende Nummer

4 5 6 78 9 10 11 12 13 14 15 16 17

Sektor-Nummer

Die Festplatte SH 204 199

Somit benötigt man zwei Umdrehungen der Platte, um alle Sek-

toren eines Tracks zu lesen. Der Vorgang wird dadurch zwar

langsamer, allerdings auch sıcherer, da nach jedem gelesenen

Sektor eine kleine Pause zum nächsten entsteht. Normalerweise
ist dieser Faktor auf 1 gesetzt.

Byte 0: | xxx00100 |

| | | | Kommando 04, Format Drive

LI Controller-Nummer

Byte 1: | XXX——-xx—

| | Data-Pattern-Flag

Laufwerks-Nummer

Byte 2: | XXXXXXXX| Data-Pattern

Byte 3: | XXXXXXXX| Interleave-Faktor HI (sollte 0

sein)

Byte 4: | XXXXXXXX| Interleave-Faktor LO

(normalerweise 1)

Byte 5: |— —|

Read Sectors (08)

Dieses Kommando veranlaßt den Controller, den Schreib-

/Lesekopf auf die Spur des gewünschten Startsektors zu bewegen

und dann die angegebene Anzahl von Sektoren zu lesen und an

den Computer zu übertragen. Zusätzlich zur Übertragung des
Kommando-Blocks muß die DMA programmiert werden, damit

die ankommenden Daten auch in den entsprechenden Speicher-

bereich geschrieben werden.

200 ATARI ST Floppy und Harddisk

Byte 0:

Byte 1:

Byte 2:

Byte 3:

Byte 4:

Byte 5:

|xxx01000|

Kommando 08, Read Sectors

Controller-Nummer

| XXXXXXXX|

Mi Sektor-Nummer HI

Laufwerks-Nummer

|XXXXXXXxX |

|XXxXXXXxXx|

| XXXXXXXX|

Write Sectors (0A)

Sektor-Nummer MID

Sektor-Nummer LO

Anzahl der zu

lesenden Sektoren

Durch dieses Kommando werden Sektoren beschrieben. Der

Kopf wird auf den entsprechenden Track gefahren und die über

die DMA abgeschickten Daten empfangen und auf die Sektoren

geschrieben. Die DMA muß hierbei ebenfalls zusätzlich zur

Kommando-Block-Übertragung programmiert werden.

Byte 0:

Byte I:

Byte 2:

Byte 3:

lxxx0101 |

Kommando 0A, Write Sectors

Ixxxxxxxx|

Controller-Nummer

Sektor-Nummer HI

Laufwerks-Nummer

|XXXXXXXX |

|XXXXXXXX |

Sektor-Nummer MID

Sektor-Nummer LO

Die Festplatte SH 204 201

Byte 4: Ixxxxxxxx | Anzahl der zu
schreibenden Sektoren

Byte 5: I —

Seek (0B)

Durch dieses Kommando wird der Schreib-/Lesekopf des Lauf-

werks bewegt. Der Controller errechnet aus der mit dem Kom-
mando übergebenen Sektornummer den entsprechenden Track

und fährt den Kopf dort hin.

Byte 0: |xxx01011|

| | | | | Kommando OB, Seek

| Controller-Nummer

Byte 1: | XXXXXXXX|

| | | | Sektor-Nummer HI
LI Laufwerks-Nummer

Byte 2: | XXXXXXXX| Sektor-Nummer MID

Byte 3: | XXXXXXXX | Sektor-Nummer LO

Byte 4: | |

Byte 5: /— |

Mode Select (15)

Dieses Kommando wird zur Einstellung der Parameter fiir die

Formatierung der Harddisk verwendet. Es wird nach der Uber-

gabe des Kommandos (mit DMA-Programmierung !) ein 16-
Byte-Block an den HDC übergeben.

202 ATARI ST Floppy und Harddisk

Byte 0: |xxx10101|

| | | | | Kommando $15, Mode Select

Controller-Nummer

Byte 1: | xxx

| | Lauf werks-Nummer

Byte 2: HM +

Byte 3: |

Byte 4: |00010110 | = 16 Bytes werden übergeben

Byte 5: | —

Seek to Shipping-Position (1B)

Durch dieses Kommando wird der Schreib-/Lesekopf auf eine
Position gefahren, in der er sicher gegen Erschütterungen des

Laufwerks ist. Diese Position nennt man auch ’Shipping-Posi-

tion’, da sie für den Transport des Laufwerks vorgesehen ist.

Das Programm SHIP.PRG läßt alle angeschlossenen Festplatten-

Laufwerke auf diese Position fahren. Es sollte deshalb unbedingt
vor dem Transport der Harddisk aufgerufen werden. Dabei ist

zu beachten, daß beim Aufruf des Programms kein Inhaltsver-
zeichnis-Fenster auf dem Bildschirm ist, da sonst nach der

Rückkehr aus dem SHIP-Programm wieder das Inhaltsverzeich-
nis der Festplatte ausgelesen wird. Dieser Zugriff auf die Fest-

platte wird aber den Kopf wieder aus der sicheren Position

herausfahren.

Außerdem funktioniert das erste Kommando nach dem IB-

Kommando nicht korrekt, da der Kopf erst aus seiner Shipping-

Position fahren muß.

Die Festplatte SH 204 203

Byte 0: Ixxx11011|

| | | | __ Kommando 1B

Seek to Shipping-Position

Controller-Nummer

Byte 1: [xxx

| | | Laufwerks-Nummer

Byte 2 bis 5: H |

5.1.1.3 _ HDC-Tools

Zur Demonstration des Schreib- bzw. Lesezugriffes auf die
Harddisk nun ein Programm, welches wahlweise einen oder

mehrere Sektoren liest und in den Speicher überträgt oder um-
gekehrt Sektoren mit Daten aus dem Speicher beschreibt. Im
Beispiel werden 8 Sektoren ab Sektor 132 in den Speicher gela-

den. Dort liegt auch das Inhaltsverzeichnis des ersten Harddisk-
Teils (Partition).

Außerdem ist in diesem Programm die einfache Übertragung ei-

nes Kommandoblocks integriert, ähnlich wıe im Beispiel des

Kapitels 5.1.1.1.

;%% Harddisk-Sektor lesen/schreiben, Kommando senden **

wdc = $ff8604 ;FDC/HDC-Access, DMA-Sector-Count

wdl = wdc+2 ;DMA-Mode/Status

dma = $ff8609 ;DMA-Adresse HI

flock = $43e ;Floppy-VBL-Flag

port = $fffa01 ;Parallel-Port, Bit 5=HDC-IRQ

run:

clr.l -(sp)

move #320,-(sp)

trap #1 ‚in Supervisor-Mode schalten

204 ATARI ST Floppy und Harddisk

addq. l #6,Sp |

move. d0,spsave ;User-Stackpointer retten

bp1:

bra put für Nur-Ubertragung

pea puffer ;Puffer-Adresse

move #8,- (sp) 78 Sektoren

move. l #132,-(sp) ‚ab Sektor 132

bsr read ‚Sektor(en) in Puffer lesen

bra bp2

put:

bsr send :Kommando-Block übertragen

bp2:

move. | spsave,-(sp)

move #$20,-(sp)

trap #1 | ‚in User-Mode schalten

addq. l #6,Sp |

rts ‚Rückkehr zum Aufrufer

: oder

clr -(sp)

trap #1 ‚Rückkehr zum Desktop

send: ;* Kommando-Block übertragen *

lea wdc , a0

lea com,a1 rZeiger auf Kommando-Block

st flock ;Floppy sperren

move #$88 , wdl ;HDC selektieren, A1=0

clr.l do

moveq #5 , dl

Loop:

clr.l do

move.b (a1)+,d0

bsr send byte ‚Byte an HDC senden

bmi tout »Timeout !

dbra d1, loop ‚sonst weitermachen

bsr waitl ‚max. 3 Sekunden warten

bmi tout ‚Timeout !

move wdc ,d6

move #$80 , wdl ‚sonst

Die Festplatte SH204 205

clr

rts

flock

read: » * Sektor(en) lesen *

lea

st

move

nop

move.|

move. l

bsr

addq. |

bsr

bmi

move

nop

move

nop

move

nop

move

nop

move. lL

bsr

bmi

move

bra

wdc , a0

f lock

#588,2(a0)

#$08008a, (a0)

10(sp),-(sp)

setdma

#4 ,sp

set_parameters

tout

#$190,2(a0)

#$90 ,2(a0)

8(sp), (a0)

#$8a,2(a0)

#0, (a0)

waitl

tout

#$8a,2(a0)

exec

write: > * Sektor(en) schreiben *

lea

st

move. l

bsr

addq. l

move

nop

wdc , a0

f Lock

10(sp),-(sp)

setdma

#4 ,sp

#388,2(a0)

Floppy freigeben

‚fertig

;Floppy-VBL-Routine sperren

;HDC-Zugriff, A1=0

»READ - Kommando

-Puffer-Adresse

;DMA setzen

;Sektoranzahl und -Nummer

;Timeout aufgetreten !

Umschalten auf READ

;Sector-Count an DMA senden

‚Übertragung starten

‚max. 3 Sekunden warten

‚Timeout !

;Floppy-VBL sperren

;DMA-Adresse setzen

:HDC-Zugriff, A1=0

206 ATARI ST Floppy und Harddisk

move. l

bsr

move

nop

move

nop

move

nop

move

nop

move. l

bsr

move

exec:

nop

move. l

and. l

tout:

move

nop

move. l

and. l

clr

rts

set_parameters:

move

bsr

bmi

clr

move.b

bsr

bmi

#$0a008a, (a0)

set_parameters

tout

#$90 ,2(a0)

#$190,2(a0)

8(sp), (a0)

#$18a,2(a0)

#$100, (a0)

waitl

tout

#518a,2(a0)

(a0),d6

#srf00ff,d6

#380 ,2(a0)

(a0),d’

#Sf fO00fFf,d7

flock

#$8a,2(a0)

wait

setpx

do

4+5(sp),d0

send byte

setpx

;WRITE-Kommando

;‚Sektoranzahl und -nummer

‚Timeout !

‚Umschalten auf WRITE

;Sector-Count an DMA senden

‚Übertragung starten

‚max. 3 Sekunden warten

‚Timeout !

;HDC/DMA-Status in D6 holen

;HI=HDC, LO=DMA

‚auf FDC umschalten

;Completion-Byte holen

sHI=HDC (0), LO=DMA

;Floppy-VBL-Routine freigeben

; fertig

;Sektor-Anzahl und Sector-Count setzen

‚warten auf HDC-OK

‚Timeout !

‚Sektornr. HI

Die Festplatte SH 204 207

move.b

bsr

bmi

move.b

bsr

bmi

move

bsr

setpx:

rts

send_byte:

4+6(sp),d0

send byte

setpx

4+7(sp) ,d0

send_byte

setpx

4+8(sp),d0

send byte

: * 1 Byte zum HDC senden *

swap do

move #$8a , dO

move. l d0, (a0)

bra wait

waitl: ‚max. 3 Sekunden auf OK warten

move. | #450000, count

bra wait

wait: ‚max. 100 ms auf OK warten

move. l #15000, count

wait:

subq. l #1, count

bmi timeout

move.b port,d0

and.b #$20,d0

bne wait!

moveq #0, d0

rts |

timeout:

move. l #errline,dO

bsr pline

moveq #-1,d0

rts

setdma: » * DMA-Adresse setzen *

move.b 7Csp) ‚dmat4

»Sektornr. MID

‚Sektornr. LO

‚Anzahl der Sektoren

fertig

;HDC-Interrupt ?

‚nein

‚ja => OK

‚!Timeout! ausgeben

Timeout anzeigen

‚LO

208 ATARI ST Floppy und Harddisk

move.b 6(sp) dma+2 MID

move.b 5(sp),dma ;HI

rts

pline: ; * Zeile auf Bildschirm ausgeben *

move. | d0,-(sp)

move #9 ,- (Sp)

trap #1

addq. l #6,Sp

rts

errline: dc.b "Timeout aufgetreten !",10,13,0

com: dc.b $b,0,0,132,0,0

even

count: de.l 1 ;Timeout-Counter

spsave: dc.l 0 ;User-Stackpointer

puffer: blk.b 512*8,$FF ‚Puffer für 8 Sektoren

Mit diesem Programm ist man nun in der Lage, direkt Sektoren

von der Harddisk zu laden bzw. zu schreiben. Die Status-Infor-

mation, die eigentlich erfolgen sollte, wird in das Register D6

geschrieben, was bei Verwendung eines Debugger-Monitors (z.B.

das SID-Programm oder K-SEKA) abgefragt werden kann.

Der Unterschied zu der tiber das Betriebssystem verfiigbaren
Sektoren-Lese-/Schreibe-Funktion liegt darın, daß dort nur auf

den gewählten Teil der Harddisk, eben der Partition, zugegriffen
werden kann. Will man aber nun z.B. den Sektor 0 der Harddisk
lesen, so muß man dies mit obigem Programm tun.

5.1.1.4 Partitions- Analysator

Der erwähnte Sektor 0 ist auch recht interessant, da er ja Infor-

mationen über die Harddisk und ihre Partitionen enthält. Um
diese Informationen zu lesen und auszuwerten, kann das nun
folgende Programm verwendet werden. Es enthält u.a. auch

Teile des obigen Programmes (read), so daß diese evtl. auch di-

rekt übernommen werden können.

Die Festplatte SH204 209

Das Programm liest auf die bekannte Weise den Sektor 0 der

Harddisk aus und interpretiert die darin enthaltenen Daten.

Diese werden dann auf dem Bildschirm ausgegeben, wobei alle

Zahlen sedezimal (hexadezimal) dargestellt werden.

:** Partitions-Analysator S.D. **

wdc = $ff8604 ;FDC/HDC-Access, DMA-Sector-Count

wdl = wdc+2 :DMA-Mode/Status

dma = $ff8609 ;DMA-Adresse HI

flock = $43e ;Floppy-VBL-Flag

port = $fffa01 ;‚Parallel-Port, Bit 5=HDC-IRQ

run:

lea stp,sp

clr.l -(sp)

move #$20,- (sp)

trap #1 ‚in Supervisor-Mode schalten

addq. l #6,Sp

move. l d0,spsave ;User-Stackpointer retten

pea puf ‚Puffer-Adresse

move #1,-(sp) 3:1 Sektor

move. l #0,-(sp) sab Sektor 0

bsr read sSektor(en) in Puffer lesen

move. | spsave, - (sp)

move #$20,-(Sp)

trap #1 ‚in User-Mode schalten

adda. l #6,Sp

move. l #head, dQ

bsr pline ;Uberschrift ausgeben

move. l #hi_cc,d0

bsr pmsg

move puf+$1b6,d0

bsr pword ;Zylinder-Anzahl ausgeben

210 ATARI ST Floppy und Harddisk

bsr

move.

bsr

|

move.b

bsr

bsr

move.

bsr

move.

bsr

bsr

move.

bsr

move.

bsr

bsr

move.

bsr

move.

bsr

bsr

move.

bsr

move.

bsr

bsr

move.

bsr

move.

bsr

bsr

move.

l

b

l

perlf

#hi_dhc,dO

pmsg

puf+$1b8,d0 _

pbyt ‚Anzahl der Köpfe ausgeben

perl f

#hi_lz,dO

pmsg

puf+$1ibe,d0

pbyt ;Landeposition ausgeben

perlf

#hi_rt,dO

pmsg

puf+$ibf ,d0

pbyt ;Seek-Rate ausgeben

perl f

#hi_in,d0

pmsg

puf+$1c0,d0

pbyt :Interleave-Faktor ausgeben

perlf

#hi_spt,dO

pmsg

puf+$1c1,d0

pbyt ;Sektoren/Track ausgeben

perl f

#hd_size,d0

pmsg

puf+$ic2,d0

plong ‚Sektoren auf Harddisk

‚ausgeben

perl f

#bsl_count ,d0

Die Festplatte SH 204 211

bsr pmsg

move. | puf+$1fa,d0

bsr plong ;# tote Sektoren ausgeben

bsr perif

clr d5

clr.l dé

lea puf+$1c6,a6 ‚Partitions-Feld 0

Loop:

bsr perif

move.b d5,px_on

add.b #'0',px_on

cmp.b #0,0(a6,d6) ‚Partition aktiv ?

bne pon ‚ja

move. l #' aus',px_on+14 ;sonst 'aus' melden

move. | #px_on,d0

bsr pline

bra nextp

pon:

move. l #' an ',px_on+14

move. l #px_on,d0

bsr pline :'Partition an! ausgeben

and.b #580 ,0(a6,d6) ‚Boot-bar ?

beq noboot ‚nein

move. l #boot ,d0

bsr pline ‚sonst 'Boot-bar' ausgeben

noboot:

move.b 1(a6,d6),px_id+18

move 2(a6,d6),px_id+19

move.L #px_id,dO

bsr pline

move. | #px_start,d0

bsr pmsg

move. l 4(a6,d6),d0

bsr plong ‚Startsektor ausgeben

bsr perl f

move. l #px_size,d0

bsr pmsg

212 ATARI ST Floppy und Harddisk

move. | 8(a6,d6) ,d0

bsr plong ‚Sektoren/Track ausgeben

bsr perl f

nextp:

addq #1,d5

add #12,d6

cmp #4*12,d6

bit Loop

move #1,-(sp)

trap #1 ‚warten auf Tastendruck

addq #2,Sp

clr -(sp)

trap #1 ‚Rückkehr ins Desktop

read: ; Sektor(en) lesen (wie oben !)

lea wdc , a0 |

st flock ;Floppy-VBL-Routine sperren

move #388,2(a0) ;HDC-Zugriff, A1=0

nop |

move.| #$8008a, (a0) ‚read-Command

move. | 10(sp),-(sp) ;Puffer-Adresse

bsr setdma ;DMA setzen

addq. t #4 ,sp

bsr set_parameters ;Sektoranzahl und -Nummer

setzen

bmi tout Timeout aufgetreten |!

move #$190,2(a0)

nop

move #$90,2(a0) ‚Umschalten auf READ

nop

move 8(sp), (a0) ;Sector-Count an DMA übergeben

nop

move #$8a,2(a0)

nop

move. L #0, (a0) ;Ubertragung starten

Die Festplatte SH 204 213

tout:

set_parameters:

setpx:

send_byte:

bsr

bmi

move

move. l

and. |

move

nop

move. l

and. l

clr

rts

move

bsr

bmi

clr

move.b

bsr

bmi

move.b

bsr

bmi

move.b

bsr

bmi

move

bsr

rts

waitl

tout

#58a,2(a0)

(a0),d6

#sff00ff,d6

#880 ‚2(a0)

(a0) ,d7

#$f f00ff,d7

flock

#$8a ,2(a0)

wait

setpx

do

4+5(sp),d0

send_byte

setpx

4+6(sp),d0

send byte

setpx

4+7(sp),dO

send_byte

setpx

4+8(sp) ,d0

send_byte

;1 Byte zum HDC senden

swap

move

move. |

bra

do

#$8a,d0

dQ, (a0)

wait

;HDC/DMA-Status holen

;HI=HDC, LO=DMA

‚auf FDC umschalten

;Completion-Byte holen

;HI=FDC, LO=DMA

;Floppy-VBL-Routine freigeben

‚fertig

‚Sektor-Anzahl und Sector-Count setzen

‚warten auf HDC-OK

‚Timeout !

‚Sektornr. HI

-Sektornr. MID

»:Sektornr. LO

‚Anzahl der Sektoren

214 ATARI ST Floppy und Harddisk

waitl:

wait:

wait?:

timeout:

setdma:

‚max. 3 Sekunden auf OK warten

#450000, count move. |

bra wait]

‚max. 100 ms auf OK warten

move.L

subq. l

bmi

move .b

and.b

bne

moveq

rts

move. l

bsr

moveq

rts

#15000, count

#1,count

timeout

port,d0

#$20,d0

wait]

#0,d0

#errline,dO

pline

#-1,d0

:DMA-Adresse setzen

move.b

move.b

move.b

rts

7(sp) ‚dma+4

6(sp),dma+2

>(sp),dma

; ** weitere Unterroutinen **

pline:

perlf:

pchar:

» Print Line/CR

bsr

‚Print CR,LF

move

bsr

move

‚Print Character

move

move

trap

addq. l

rts

pmsg

#10,d0

pchar

#13,d0

DO

d0,-(sp)

#2,-(sp)

#1

#4 ,sp

;HDC-Interrupt ?

‚nein

‚ja => OK

‚Timeout anzeigen

‚LO

‚MID

HI

Die Festplatte SH204 215

pmsg:

plong:

pword:

pbyt:

phexwl1:

phexnib:

phexn1:

head:

hi_cc:

hi_dhc:

hi_lz:

hi_rt:

‚Print Line (DO)

move. l

move

trap

addq

rts

moveq

bra

swap

moveq

bra

: Print Hex-Byte

moveq

ror. l

rol.l

move. |

move. l

bsr

_
 move.

_
—

move.

dbra

rts

and. l

add.b

cmp.b

bcs

add.b

dc.

dc.

dc.

dc.

ıPark-Position

"Seek-Rate

d0,-(sp)

#9 ,-(sp)

#1

#6,Sp

‚DO 8-stellig hex ausgeben

#7 ,d1

phexwl1

‚Print Hex-Word DO

dd

#3,d1

phexwl 1

DO

#1,d1

#8,dO

#4 ,d0

d0,-(sp)

di,-(sp)

phexnib

(sp)+,d1

(sp)+,d0

d1,phexwl 1

#S0f , dO

#$30 , dO

#$3a,d0

phexn1

#7 ,d0

pchar

"0

7 "0

: "0

7 ",0

‚Zeichen ausgeben

b "** Harddisk-Analyse 8/86 S.D. **",0

b "Zylinder

dc.b "Köpfe

b

b

216 ATARI ST Floppy und Harddisk

hi_in: dc.b "Interleave : ",0

hi_spt: dc.b "Sektoren/Track : ",0

hd size: dc.b "Gesamt-Sektoren : ",0

bsl_count: dc.b "tote Sektoren : ",0

even

px_on: dc.b "1. Partition : "0

boot: dc.b "Boot-bar ",0

px_id: dc.b "Partition-ID : "0

"Start-Sektor : "0

"Sektoren-Anzahl : ",0

px_start: dc.

o
T

oO

oO

0
Ft

px_size: dc.

errline: de.b "Timeout aufgetreten !",10,13,0

even

data

count: de. 1 ; Timeout -Counter

spsave: dc. 0 ;User-Stackpointer

blk.l 200

stp: blk.t 1

puf: blk.b 512 ‚Puffer für einen Sektor

Und auch gleich das BASIC-Lader-Programm, welches das Pro-

gramm ’ANAPART.TOS’ auf der Diskette erstellt:

10 ı*%%% Erstellung von ANAPART.TOS ***

15 '

20 ?:fullw 2:clearw 2:gotoxy 0,0

25 ? "File >> ANAPART.TOS << wird erzeugt!":?:?:?

30 dim c% 612):cs#=0

35 for i=0 to 612

40 read a$:c%li)=val("&H''+a$)

45 check#=check#+(c%(1))

50 next 1

55 if check#= 6435851 then 70

60 ?"Geht leider nicht, da etwas mit den DATA's nicht stimmt."

65 goto 80

70 bsave "anapart.tos'",varptr(c%(0)), 1226

75 ? "Das Programm >> anapart.tos << ist nun geschrieben."

80 ?:27:2:?"Bitte Taste drucken":a=inp(2):end

Die Festplatte SH204 217

85

90

95

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

IKAAKKKKKKK DATAS für anapart.tos KkkKKK KKK

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

601A, 0000, 0484, 0000, 0000, 0000, 0000, 0000
0000, 0000, 0000, 0000, 0000, 0000, 4FF9, 0000
O7AC, 42A7, 3F3C, 0020, 4E41,5C8F,23C0, 0000
0488, 4879, 0000, 0780, 3F3C,0001,2F3C, 0000
0000, 6100, 01A0, 2F39, 0000, 0488, 3F3C, 0020
4E41,5C8F,203C,0000,0354,6100,02AC ,203C

0000 , 0377, 6100, 02BE , 3039, 0000 , 0966, 6100
026, 6100, 0298, 203C, 0000, 038A, 6100, 02A6
1039, 0000, 0968, 6100, 0286, 6100, 0280, 203C
0000, 039D ,6100, 028E, 1039, 0000, 096E , 6100
029E ,6100, 0268, 203C, 0000, 03B0,6100, 0276
1039, 0000, 096F ,6100, 0286, 6100, 0250, 203C
0000, 03C3, 6100, 025E, 1039, 0000, 0970, 6100
026E ,6100, 0238, 203C, 0000, 03D6,6100, 0246
1039, 0000, 0971, 6100, 0256, 6100, 0220, 203C
0000, 03E9, 6100, 022E , 2039, 0000, 0972, 6100
0230, 6100 ,0208, 203C, 0000, 03FC,6100,0216
2039, 0000, 09AA, 6100, 0218,6100,01F0, 4245
4286, 4DF9, 0000, 0976, 6100, 01E2, 13C5 ‚0000
0410, 0639, 0030, 0000, 0410, 0036, 0000, 6800
6600, 001A, 23FC, 2061, 7573, 0000, 041E, 203C
0000 ,0410,6100, 0182, 6000, 0070, 23FC, 2061
6E20, 0000, 041E, 203C,0000,0410,6100, 019A
0236, 0080 ,6800, 6700, 000C, 203C , 0000, 0423
6100, 0186, 13F6,6801, 0000, 043F ,33F6, 6802
0000 , 0440, 203C,0000, 042D ,6100,016C, 203C
0000, 0445, 6100, 017E, 2036, 6804, 6100, 0182
6100, 015A, 203C, 0000, 0458, 6100, 0168, 2036
6808,6100,016C,6100,0144,5245, 0646, 000C
0C46,0030,6D00, FF52, 3F3C,0001,4E41, 544F
4267, 4E41,41F9, OOFF , 8604, 50F9, 0000, 043E
317C, 0088, 0002,4E71, 20BC, 0008, 008A, 2F2F
000A, 6100, 0OEA, 588F ,6100, 0058, 6800, 003C
317C, 0190, 0002, 4E71,317C, 0090, 0002, 4E71
30AF , 0008, 4E71,317C, 008A, 0002, 4E71, 20BC
0000, 0000,6100, 0076, 6B00,0010,317C, 008A
0002, 2C10, 0286, OOFF, OOFF,317C, 0080, 0002

218 ATARI ST Floppy_ und Harddisk

137 DATA 4E71,2E10,0287,00FF ‚OOFF ‚4279 ,0000 ,043E
138 DATA 4E75,317C,008A,0002,6100,0050,6800 ,0030
139 DATA 4240,102F ‚0009, 6100, 0028, 6B00, 0022, 102F
140 DATA 000A,6100,001C,6B00, 0016, 102F ,000B, 6100
141 DATA 0010,6B00, 000A, 302F,000C, 6100, 0004, 4E75
142 DATA 4840,303C, 008A, 2080, 6000, 0010, 23FC, 0006
143 DATA DDDO, 0000, 0484, 6000, 000C, 23FC, 0000, 3A98
144 DATA 0000, 0484,53B9, 0000, 0484, 6B00,0014, 1039
145 DATA OOFF,FA01,0200, 0020, 6600, FFEA, 7000, 4E75
146 DATA 203C,0000,046B,6100,0020, 70FF,4E75, 13EF
147 DATA 0007, 00FF,860D, 13EF, 0006, OOFF,860B, 13EF
148 DATA 0005, 00FF,8609, 4E75,6100, 001A, 303C, 000A
149 DATA 6100,0006,303C, 000D, 3F00, 3F3C, 0002, 4E41
150 DATA 588F,4E75,2F00, 3F3C, 0009, 4E41,5C4F, 4E75
151 DATA 7207,6000, OO0E, 4840, 7203, 6000, 0006, 7201
152 DATA E098,E998, 2F00, 2F01,6100,000C,221F,201F
153 DATA 51C9, FFFO,4E75, 0280, 0000, OOOF ,0600, 0030
154 DATA OC00,003A,6500, 0006, 0600, 0007, 6000, FFAA
155 DATA 2A2A,2048,6172, 6464, 6973, 6B2D ,416E, 616C
156 DATA 7973,6520, 2038, 2F38, 3620, 2053, 2E44, 2E20
157 DATA 2A2A, 005A, 796C, 696E , 6465, 7220, 2020, 2020
158 DATA 2020,203A, 2000, 4B94, 7066, 6520, 2020, 2020
159 DATA 2020,2020, 2020, 3A20, 0050, 6172, 6B2D ‚506F
160 DATA 7369, 7469, 6F6E, 2020, 203A, 2000, 5365, 656B
161 DATA 2D52,6174,6520, 2020, 2020, 2020, 3A20, 0049
162 DATA 6€74,6572,6C65, 6176, 6520, 2020, 2020, 203A
163 DATA 2000,5365,6B74,6F72, 656E, 2F54, 7261, 636B
164 DATA 2020,3A20,0047,6573,616D, 742D ,5365, 6B74
165 DATA 6F72,656E, 203A, 2000, 746F, 7465, 2053, 656B
166 DATA 746F,7265,6E20, 2020, 3A20, 0000, 312E, 2050
167 DATA 6172,7469, 7469, 6F6E , 203A, 2020, 2020, 0042
168 DATA 6F6F,742D, 6261, 7220, 0050, 6172, 7469, 7469
169 DATA 6F6E, 2049, 4420, 2020, 203A, 2020, 2020, 2020
170 DATA 0053, 7461, 7274, 2D53,656B, 746F, 7220, 2020
171 DATA 203A,2000,5365,6B74,6F72,656E, 2D41,6E7A
172 DATA 6168,6C20,3A20, 0054, 696D ,656F, 7574, 2061
173 DATA 7566,6765, 7472, 6574, 656E , 2021, OAOD , 0000
174 DATA 0000,0002, 1006, 140E, OAQA, OEOA, OEOA, OEOA
175 DATA OEOA, OEOA, OEOA, OEOA, 120A,0814, 0612, 0614
176 DATA 0C08, 060A, 16FC, 0E06, 1C00

Die Festplatte SH204 219

Wie bereits im Kapitel über Boot-Sektoren beschrieben, gibt das

px flag für jede Partition (max. 4) an, ob sie aktiv und boot-
bar ist. Die Harddisk des ATARI ST enthält üblicherweise keine

boot-bare Partition, da der ST nicht von der Harddisk booten

kann ohne den Harddisk-Treiber (AHDI.PRG).

Mit der Bezeichnung ’Seek-Rate’ wird normalerweise eine 2 aus-
gegeben, was 3 Millisekunden pro Schritt (Step) bedeutet. Inter-

leave kann von 1 bis 16 (Sektoren/Track-1) sein, beträgt hier
jedoch üblicherweise 1. Dies stellt den Abstand zwischen zwei

der Nummer nach aufeinanderfolgenden Sektoren auf dem Track

dar, ebenso wie beı Disketten.

Der Wert hinter ’tote Sektoren’ gibt die Anzahl der defekten
Sektoren auf der gesamten Harddisk an. Diese Sektoren werden

vom HDX.PRG-Programm erkannt und markiert. Eine 0 be-

deutet hier, daß die Harddisk vollständig ın Ordnung ist. An-
sonsten ist ein defekter Sektor pro Megabyte noch ganz normal.

5.2 Anschluß der Festplatte

Die 19-polige Buchse auf der Rückseite des ST stellt die DMA -
Schnittstelle dar. An diesem Anschluß wird die Festplatte mit

dem beiliegenden (recht kurzen) Kabel angeschlossen und hat
somit über den DMA-Chip eine direkte Verbindung mit dem
Speicher des ST. Der Grund für die so kurze Strippe liegt übri-

gens in der immens hohen Datenübertragungsrate, die über die-
ses Kabel läuft. Längere Drähte wirken dabei wie Antennen, so
daß sich dabei einige Signale von einem zum anderen Draht
übertragen und somit den gesamten Datenaustausch stören kön-

nen!
Die Datenübertragung läuft parallel über 8 Datenleitungen (Pins
1-8), so daß immer ein komplettes Byte auf einmal übertragen
werden kann.

Zusätzlich verfügt diese Schnittstelle über verschiedene Service-
Leitungen wie Reset (Pin 12), durch die der ST die Festplatte

220 ATARI ST Floppy und Harddisk

bei RESET auf den Grundzustand zurücksetzt, oder eine Inter-

rupt-Leitung (Pin 10), durch die die Harddisk sich dem ST be-

merkbar machen und empfangene Daten quittieren kann.

Die gesamte Verbindung von Harddisk und ATARI ST läuft also
nur über diesen Stecker ab. Theoretisch kann man hier sogar bis
zu 8 Harddisk-Controller mit ihrerseits bis zu 8 Laufwerken
anschließen, jedoch ist dies durch einen fehlenden Zweitan-
schluß an der Harddisk nicht ohne Bastelei möglich...

Um nun mit der Harddisk zu kommunizieren, muß der Rechner

seine Wünsche ın Form von Kommando-Blöcken über die Da-

tenleitungen senden. Diese Kommando-Blöcke sind bereits be-

schrieben worden. Sie werden, wie auch die zu schreibenden

bzw. zu lesenden Daten, über die 8 Bit der Datenleitungen über-

geben. Dies wird im HDC-Tools-Programm durch einfache An-

wahl des entsprechenden Registers und Einschreiben des Kom-
mando-Bytes erreicht. Das Byte steht nun an den Datenleitungen

an und kann von der Harddisk übernommen werden, die dies

über die Interrupt-Leitung quittiert.

Um den Datenaustausch überhaupt zu ermöglichen, muß das

Treiberprogramm AHDI.PRG (ATARI Hard-Disk-Interface)
geladen werden. Dieses und das HDX-Programm laufen jedoch
nur, wenn das TOS im Rechner eingebaut ist. Zwar läuft der
Treiber auch sonst, aber nıcht das HDX-Programm, ohne das

die Arbeit mit der Festplatte unmöglich ist. Die Festplatte muß
nämlich unbedingt vor der Benutzung formatiert und damit par-
titioniert werden, auch wenn Sie beim neuen Gerät schon eine
Kapazität von 20 MByte vorfinden. Der Controller kann nämlich

nur maximal 16 MByte pro Partition verarbeiten!

5.3 Komplettes Inhaltsverzeichnis ausdrucken

Um auch die große Anzahl der Dateien, die auf eine Harddisk
passen, übersichtlich zu ordnen, verwendet man häufig Ordner,
die auch entsprechend verschachtelt werden, d.h. Ordner ent-

halten wiederum Ordner. Das bringt zwar eine große Übersicht-

Die Festplatte SH204 221

lichkeit, führt jedoch oft dazu, daß man nicht mehr genau weiß,

welche Dateien in welchem Ordner oder ’Unter-Ordner’ stecken.

Um dies herauszufinden, muß man immer wieder Ordner öffnen

und schließen, um sıch die Inhalte der vielen Ordner anzusehen.

Viel praktischer wäre es, wenn man sich den gesamten Inhalt
der Harddisk (oder auch einer Diskette) einfach ausdrucken
könnte. Dies ist jedoch mit dem ATARI-Betriebssystem nicht
ohne Klimmzüge möglich. |

Es soll nun ein Programm vorgestellt werden, welches diese

Aufgabe löst. Es fragt nach dem Einladen nach der Laufwerks-

bezeichnung (a-f) und gibt danach auf dem Drucker alle Dateien
mit den entsprechenden Ordnern aus, die sich auf diesem Lauf-

werk (Diskette oder Harddisk) befinden. Dabei werden Ordner-

Inhalte immer zwei Leerzeichen nach rechts eingerückt, so daß

die Verschachtelung ebenfalls deutlich sichtbar wird.

Zusätzlich zum Namen wird jeweils die Länge der Dateien de-

zimal neben den Namen ausgegeben. Ein solcher Ausdruck kann

zwar bei großer Belegung der Harddisk recht lang werden, lohnt
sich jedoch sehr, um die Übersicht über seine Dateien zu be-
halten. Schließlich können Sie so auch erkennen, ob sie einige
Dateien doppelt oder mehr auf der Platte liegen haben, was doch

nur Platz friBt... |

Hier nun das Programm, welches vollständig in Maschinenspra-
che geschrieben ist, und zwar für den SEKA-Assembler. Bei
Verwendung eines anderen Assemblers müssen ggf. die Kom-

mentare statt mit einem Semikolon mit einem Sternchen (*) be-
gonnen werden und die ’bik.x’-Anweisung durch ’ds.x’ ersetzt
werden.

222 ATARI ST Floppy und Harddisk

:** Komplettes Inhaltsverzeichnis ausgeben 8/86 S.D. **

run:

lea stp,sp

move. l #menu , d0

bsr pmsg

bsr getkey Laufwerk eingeben

cmp #'a',d0

blt run ‚falsches Laufwerk

cmp — #'f£' dO

bgt run ‚falsches Laufwerk

move.b dO, fname

bsr perl f

lea fname+7, a6 ‚Zeiger auf Filenamen-Ende +1

pea dta

move #$1a,- (sp)

trap #1 ;SETDTA

addq. | #6,Sp

clr d4 ‚Tiefe 0

lea tiefen,a4 Zeiger auf Zähler()-Array

move.b #0,(a4) ‚Zzähler=0

bsr sfirst

bra test

sfirst:

move #510,-(sp)

pea fname

move #$4e,-(sp)

trap #1 ;SFIRST

addq. l #8,sp

sea:

cmp.b #'.' dta+30 ‚Subdir ?

bne seax

bsr snext1

tst do

bne seax

bra sea

Die Festplatte SH 204 223

seax:

snext:

snext1:

next:

test:

up:

mlop:

selop:

rts

add.b

move

trap

addq.L

rts

bsr

tst

bne

cmp.b

bne

bra

subq

sub

cmp.b

bne

bsr

bsr

clr

move .b

addq

move.b

subq

beq

bsr

bra

#1,(a4,d4)

#54 f,-(sp)

#1

#2,Sp

snext

do

up

#510, dta+21

output

down

#1 ,d4

fertig

#6 ,36

#'\',-(a6)

mlop

addwc

sfirst

d7

(a4,d4),d7/

#1,d’

#0,(a4,d4)

#1,d7

next

snext

selop

> SNEXT

‚wieder eine Ebene hoch

‚Subdirectory ?

‚nein: Eintrag ausgeben

:Tiefe-1

:Fertig !

gue xO hinzufügen

‚Zähler(tiefe) in D7

»Zähler+1

‚fertig mit dieser Ebene

‚Zähler(Tiefe)-ten Eintrag

‚suchen

224 ATARI ST Floppy und Harddisk

down:

move. l #sub,a5

bsr druline

move. l #dtat30,a5

bsr druline

bsr drucr ;CR drucken

addq #1,d4 ;Tiefe+1

move.b #0,(a4,d4)

subq. | #4, a6

move #13,d7

lea dta+30,a3

flop:

move.b (a3)+,d0

beq flopx

move.b d0,(a6)+ *Filename als Pfad übertragen

dbra d7,flop

flopx:

bsr addwe pty #1 0 hinzufügen

bp:

bsr sfirst

bra test ‚nächste Tiefe absuchen

addwe :

move.b #'\! Ca6)+

move.b #'*!' (a6)+

move .b A. (a6)+

move .b #'*! (a6)+

move.b #0, (a6)+

rts

output: ‚Eintrag ausgeben

cmp.b #8, Seib ‚Alternate-Taste gedrückt ?

bne out! ‚nein

bra fertig ‚sonst Abbruch

out1:

lea dta+30, a0

lea outln,ad »Ausgabe-Zeile

move d4,d5

blop:

move #' '§ (a5)+

Die Festplatte SH 204 225

blop1:

blop1x:

fertig:

menu:

sub:

fname:

even

dbra

move.b

beq

move .b

bra

move .b

cmp. l

blt

move. |

bsr

move.b

move. |

bsr

bsr

bra

‚das war's

clr

trap

dc.b

dc.b

dc.b

dc.b

d5,blop

(a0)+,d0

blop1x

d0,(a5)+

blop1

#' ' (a5)+

#outln+26,a5

blop1x

dta+26,d0

pdez8

#0,(a5)

#outln,ad

druline

drucr

next

-(sp)

#1 ‚Exit => Desktop

ux* Inhaltsverzeichnis-Ausgabe S.D. **",10,13

"Bitte Laufwerk eingeben (a-f)

"Sub-Directory : ",0

Nas* eH 0,"

; ** Unterprogramme **

getkey:

pline:

;Get Key -

move

trap

and. l

addq. l

rts

bsr

> DO

#1,-(sp)

#1

#sff,dO

#2,sp

‚Print Line/CR

pmsg

0

226 ATARI ST Floppy und Harddisk

perlf:

pchar:

druline:

drux:

drucr:

druchr:

pmsg:

pdez8:

‚Print CR,LF

move

bsr

move

‚Print Character

move

move

trap

addq. l

rts

‚Zeile ab (a5)

move.b

beq

bsr

bra

rts

sCR/LF drucken

move

bsr

move

move

move

trap

addq. l

rts

Print Line (DO)

move. l

move

trap

addq

rts

#10,d0

pchar

#13,d0

DO

dO, -(sp)

#2,-(sp)

#1

#4 ,Sp

drucken

(a5)+,d0

drux

druchr

druline

#10,d0

druchr

#13,d0

d0, -(sp)

#5,-(sp)

#1

#4,Sp

dO, -(sp)

#9 ,- (Sp)

#1

#6,sp

‚Zeichen drucken

‚Zeichen drucken

;DO 8-stellig dezimal ausgeben

divu

swap

#10000, dO
do

Die Festplatte SH 204 227

move d0,-(sp) ‚Rest

swap do

and. l #$f fff ,dO

move. | #1000,d1

bsr dez1

move (sp)+,d0

pdez4: ;DO 4-stellig dezimal ausgeben

move.| #1000,d1

dez1:

divu d1,d0

move. | d0,-(sp)

add #'0',d0

move.b d0, (a5)+ ‚Zeichen in Ausgabezeile

move. | (sp)+,d0

swap do

and. #$f fff ,d0

divu #10,d1

bne dez1

rts

data

dta: blk.b 44

temp: blk.l 0

tiefen: blk.b 10

outlin: blk.b 80

blk 200

stp: blk.l 1

Und auch hier noch der BASIC-Lader. Es wird das Programm

’ALLDIR.TOS’ auf der Diskette erzeugt:

10 ı*%%%* Erstellung von ALLDIR.TOS ***

15 4

20 ?:fullw 2:clearw 2:gotoxy 0,0

25 ? "File >> ALLDIR.TOS << wird erzeugt":?:?:?

30 dim c& 374):cs#=0

35 for i=0 to 374

40 read a$:c%(1)=val ("&H"+a$)

228 ATARI ST Floppy und Harddisk

45 check#=check#+(c%(i))

50 next i

55 if check#= 3796015 then 70

60 ?"Geht noch nicht, da etwas mit den DATAs nicht stimmt."

65 goto 80

70 bsave "ALLDIR.TOS",varptr(c%(0)), 749

75 ? "Das Programm >> ALLDIR.TOS << ist nun geschrieben."

80 2:27:2:?"Bitte Taste drucken":a=inp(2):end

85 =!
90 Lk&k&kKKKKKEK DATAS fir ALLDIR.TOS KERKKKKKK

95 4

100 DATA 601A,0000,02BC,0000,0000,0000,0000,0000

101 DATA 0000,0000,0000,0000,0000,0000,4FF9,0000

102 DATA 0666,203C,0000,01A2,6100,0266,6100,0212

103 DATA 0C40,0061,6D00, FFE6,0C40, 0066, 6E00, FFDE

104 DATA 13C0,0000,01F5,6100,020A,4DF9,0000,01FC

105 DATA 4879,0000,02BC,3F3C,001A,4E41,5C8F , 4244

106 DATA 49F9,0000,02EC, 18BC ,0000,6100,0006, 6000

107 DATA 0044,3F3C,0010,4879,0000,01F5,3F3C,004E

108 DATA 4E41,508F ,0C39, 002E ,0000,02DA, 6600, 0010

109 DATA 6100,0014,4A40,6600,0006,6000, FFE8,4E75

110 DATA 0634,0001,4800,3F3C,004F ,4E41,548F ,4E75

111 DATA 6100, FFEE,4A40,6600,0012,0C39,0010, 0000

112 DATA 02D1,6600,0096,6000,0038,5344,6B00, 00EC

113 DATA 9CFC,0006,0C26,005C, 6600, FFFA,6100, 0066

114 DATA 6100, FF90,4247, 1E34,4800,5247, 19BC , 0000

115 DATA 4800,5347,6700, FFBA, 6100, FFA6,6000, FFF4

116 DATA 2A7C,0000,01E4,6100,0160, 2A7C,0000,02DA

117 DATA 6100,0156,6100,0162,5244, 19BC ,0000, 4800

118 DATA 598E,3E3C,000D,47F9,0000,02DA, 101B, 6700

119 DATA 0008,1CCO,51CF,FFF6,6100,000A,6100, FF34

120 DATA 6000,FF72,1CFC,005C,1CFC,002A, 1CFC,002E

121 DATA 1CFC,002A, 1CFC,0000,4E75,0C39, 0008, 0000

122 DATA 0E1B,6600,0006,6000,0052,41F9,0000,02DA

123 DATA 4BF9,0000,02F6,3A04,3AFC,2020,51CD, FFFA

124 DATA 1018,6700,0008, 1AC0,6000,FFF6,1AFC,0020

125 DATA BBFC, 0000,0310,6D00, FFF4, 2039, 0000, 02D6

126 DATA 6100,00FA, 1ABC, 0000, 2A7C, 0000, 02F6, 6100

127 DATA 00B8,6100,00C4,6000, FEF8,4267,4E41, 2A2A

128 DATA 2049,6E68,616C, 7473, 7665, 727A, 6569, 6368

Die Festplatte SH204 229

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

DATA
DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

6E69, 7320 ,4175, 7367 ,6162,6520, 2A2A, OAOD

4269, 7474 ,6520,4C61, 7566, 7765, 726B, 2065

696E ,6765 ,6265 ,6E20, 2861, 2066, 2920, 3A00

5375,622D ,4469, 7265 ,6374,6F 72,7920, 3A20

0061, 3A5C, 2A2E, 2A00, 2020, 2020, 2020, 2020

2020, 2020, 2020, 2020, 2020, 2020, 2020, 2020

2020, 2020, 2020, 2020, 2020, 2020, 2020, 2000
3F3C,0001,4E41,0280, 0000, OOFF, 548F,4E75
613E , 303C, 000A, 6104, 303C, 000D,3F00,3F3C
0002,4E41,588F ,4E75, 101D, 6700, 000A, 6100
0014,6000, FFF4,4E75, 303C, 000A, 6100, 0006
303C, 000D, 3F00, 3F3C, 0005, 4E41, 588F , 4E75
2F00,3F3C, 0009, 4E41,5C4F,4E75, 80FC, 2710
4840,3F00,4840,0280, 0000, FFFF,223C, 0000
03E8, 6108, 301F , 223C, 0000, 03E8, 80C1, 2F00
0640, 0030, 1ACO, 201F ,4840, 0280, 0000, FFFF
82FC, 000A, 66E6, 4E75 , 0000, 0002, 061E , OA06
1016, 1036, 440A, 1044, 0620, OADE , 0000

230 ATARI ST Floppy und Harddisk

Die RAM-Disk 231

6. Die RAM-Disk

Als Dritter im Bunde der Massenspeicher für den ATARI ST

steht die RAM-Disk. Eine solche scheinbare Diskettenstation im

Speicher stellt eine interessante und vor allem sehr schnelle

Möglichkeit der Datenspeicherung dar. Wie funktioniert das?

Zunächst einmal brauchen wir einen Speicherbereich, der von

keiner anderen Anwendung des Computers verwendet werden

kann. Dort hinein legen wir die Daten, die sonst auf eine Dis-
kette geschrieben würden. Der Vorteil liegt auf der Hand: Daten
im Speicher hin- und herzuschieben ist für den 68000-Prozessor

des ST eine leichte Sache und geht daher mit einer enormen

Geschwindigkeit vor sich. Zusätzlich entfallen alle mechanischen

Vorgänge, die eine Diskettenstation bremsen (Kopfpositionie-

rung, Motor anlaufen lassen usw.). Das Ergebnis: eine RAM-

Disk ist sehr schnell.

Was wir noch brauchen, ist ein Programm. Dieses Programm

muß die Verwaltung des RAM-Disk-Speichers übernehmen und

die Daten je nach Bedarf im Speicher verschieben. Solche Pro-
sramme sind bereits mehrere auf dem Markt, einige sind auch
in der Literatur zu finden (z.B. Tips & Tricks ATARI ST). Sie
arbeiten alle nach dem gleichen Prinzip, welches nun betrachtet

werden soll.

Zuerst muß der als RAM-Disk zu verwendende Speicher initia-

lisiert werden. Dazu muß ein Boot-Sektor erstellt werden, der

alle Informationen über die Art, Aufteilung und Größe der

’Disk’ enthält. Dieser Sektor ist auf richtigen Disketten der al-

lererste, also müssen diese Parameter an den Anfang des RAM-

Disk-Speichers geschrieben werden.

Danach muß sich das Programm installieren, d. h. es muß Vor-
bereitungen treffen, damit es immer erfährt, ob eine Daten-
übertragung stattfinden soll und wenn ja, wohin und in welcher
Richtung. Dies wird erreicht, indem drei Zeiger des Betriebssy-
stems auf eigene Routinen gerichtet werden. Diese Zeiger sind
Speicherzellen, in denen Adressen von Programmen stehen. Will

232 ATARI ST Floppy und Harddisk

das Betriebssystem ein solches Programm aufrufen, so wird der

entsprechende Zeiger ausgelesen und zur erhaltenen Programm-

routine verzweigt.

Die Zeiger, die bei der Installierung einer RAM-Disk verwendet
werden, sind fiir die Bedienung der Hard-Disk vorgesehen. Sie
liegen an den Speicheradressen $472 bis $47E und zeigen auf
Routinen folgender Bedeutungen:

Adresse Name Bedeutung

$472 hdv_bpb Feststellung und Übergabe des
Parameterblockes, der Angaben

über die Diskette bzw. Harddisk
enthält.

$476 hdv_rw Schreib-/Leseroutine für die
Harddisk. Dort wird der Daten-

transfer abgewickelt.

$47A hdv_ boot Boot-Routine fiir die Harddisk.
Wird von der RAM-Disk nicht
benötigt, da von ihr nicht ge-
bootet werden kann. |

$47E hdv_mediach Feststellung, ob das Medium
(Diskette) zwischenzeitlich ge-
wechselt wurde.

Sind die Zeiger schließlich alle neu eingestellt und ihre alten In-

halte gerettet, so kann das Programm verlassen werden. Dafür

wird jedoch ein spezieller Aufruf des BIOS verwendet, mit dem
sich ein bestimmter Speicherplatz reservieren läßt. Damit ist die

RAM-Disk schließlich installiert.

Nun muß man noch ein Diskettensymbol des Desktop für die
RAM-Disk vorbereiten. Dazu klickt man irgendeines der Dis-
kettensymbole an und ändert nach Wahl des Menüpunktes ’Disk

anmelden’ den Namen und den Kennbuchstaben der Disketten-

Die RAM-Disk 233

station. Nach Wahl des ’OK’-Knopfes erscheint nun ein weiteres

Symbol auf dem Bildschirm. Dieses kann nun nach gewohnter
Manier zum Laden und Speichern von Daten und Programmen
verwendet werden. Lediglich die Funktionen Formatieren und
Disk-Copy funktionieren nicht, so daß nur einzelne Files bear-

beitet oder gelöscht werden können.

Will nun das Betriebssystem auf die Hard- oder RAM-Disk zu-
greifen, so wird über einen der oben erwähnten Zeiger in das
immer noch im Speicher stehende RAM-Disk-Programm ge-

sprungen. Dort wird dann geprüft, ob sich die RAM-Disk an-

gesprochen fühlen soll oder nicht. Wenn nicht, so wird zu der
eigentlichen Routine verzweigt, deren Adresse ja gerettet wurde.

Ist doch die RAM-Disk gemeint, so beginnt das Programm mit
seiner Arbeit. Bei einem Schreib-/Lesezugriff werden die Para-
meter wie Sektor, Anzahl der zu lesenden Sektoren und Daten-

übertragungs-Richtung vom Stack gelesen und die entsprechen-

den Daten im Speicher kopiert.

Handelt es sich um die ’Media-Change’-Anfrage, bei der nach
einem eventuellen Wechsel des Speichermediums gefragt wird, so
sib das RAM-Disk-Programm grundsätzlich eine 0 zurück.
Diese bedeutet, daß nichts gewechselt wurde, was ja bei einer

RAM-Disk auch nicht möglich ist.

Die dritte Art des Aufrufes bedeutet, daß das Betriebssystem die

Speicheradresse des Parameterblockes erfahren möchte. Dafür

wird die gewünschte Adresse im Register DO übergeben.

Das waren schon alle Aufgaben eines RAM-Disk-Programmes.

Was es jedoch nicht kann, ist die Erhaltung der Daten nach dem
Abschalten des Rechners. Das ist nämlich der Haken bei der

Sache: wirklich abgespeichert sind die Daten nicht. Aus diesem

Grunde müssen die Daten, die z.B. mit einem Texteditor erstellt

wurden, unbedingt vor dem sicher verdienten Feierabend noch
von der RAM-Disk auf eine wirkliche Diskette bzw. Harddisk

kopiert werden!

234 ATARI ST Floppy und Harddisk

Doch nun genug der bloßen Theorie. Nun wollen wir uns ein

RAM-Disk-Programm ansehen, in dem alle diese Sachen vor-

kommen.

6.1 Ein komfortables RAM-Disk-Programm

Das in diesem Kapitel vorgestellte Programm enthält einige
Merkmale, die für die reine Anwendung einer RAM-Disk ei-
gentlich nicht nötig wären. Da sie jedoch recht nützlich sind, ist
das Programm zwar etwas umfangreicher, dafür aber kom-
fortabler. Es ist für die Verwendung der RAM-Disk als Lauf-
werk C vorgesehen, läßt sich jedoch auch leicht auf eine andere
Laufwerksnummer anpassen.

Das Programm ist ein Accessory, welches nach dem Booten in

dem ’Desk’-Menü unter dem Punkt ’RAM-Disk’ auftaucht. Wird
dieser Menüpunkt angeklickt, so öffnet sich ein kleines Dialog-
fenster, welches drei Auswahlpunkte beinhaltet.

Der erste Punkt, welcher auch stark umrandet ist, trägt die Be-
zeichnung ’Exit’. Wenn man nun diesen Punkt anklickt oder
auch nur die Return-Taste betätigt, so wird das Fenster gelöscht

und das Desktop meldet sich wieder. Passiert ist dabei gar
nichts. Dieser Punkt ist nur dafür vorgesehen, wenn der
Menüeintrag ’RAM-Disk’ versehentlich angewählt wurde. Dann
ist "Exit? der Notausgang.

Im mittleren Auswahlpunkt steht die Inschrift ’mehr’. Ein An-

klicken dieses Knopfes verändert die Zahl in dem rechten Aus-

wahlkästchen. Diese Zahl bedeutet die Größe der zu installieren-

den RAM-Disk. Durch Anwahl von ’mehr’ wird diese Zahl in

100er-Schritten erhöht, bis nach dem Wert 800 wieder eine Null

angeboten wird.

Hat man die gewünschte RAM-Disk-Kapazität eingestellt, so
wählt man den Knopf mit der Zahl an. Da für die Installierung
eines neuen Speicherbereiches der alte Inhalt der RAM-Disk

gelöscht wird, erscheint zur Sicherheit ein weiteres Dialog-Fen-
ster. In diesem Fenster muß auf die Frage ’Alten Inhalt der

Die RAM-Disk 235

RAM-Disk löschen?” mit Ja geantwortet werden; andernfalls
bleibt die alte RAM-Disk mit ihrer alten Kapazität und Bele-

gung erhalten.

Nachdem durch die Wahl von ’Ja’ nun alle Einstellungen erledigt
sind, macht sich das Programm an die Arbeit. Als erstes wird
der Speicherbereich, den die RAM-Disk vorher belegt hatte,

wieder an das Betriebssystem zurückgegeben.

Danach versucht das Programm, den gewünschten Speicherbe-

reich für sich zu reservieren. Sollte nicht genügend Speicherplatz
vorhanden sein, so erhält man die Meldung ’Nicht genug RAM’.
Nachdem diese Meldung quittiert wurde, ist sowohl die Meldung

als auch die RAM-Disk verschwunden. Man muß dann einen

kleineren Speicher auswählen, indem man nach erneuter Wahl

des ’RAM-Disk’-Menüpunktes so oft die ’mehr’-Taste betätigt,

bis der neue gewählte Wert erscheint. |

Wählt man als Kapazität der RAM-Disk die Null an, so wird sie
vollständig abgemeldet und belegt somit keinen Speicher mehr.

Somit ist man mit diesem Programm in der Lage, seine RAM-
Disk je nach Bedarf beliebig oft in der Größe verändern oder
ab- und anmelden. Diese Möglichkeit haben die meisten auf

dem Markt befindlichen RAM-Disk-Programme nicht, und bei
häufigem Arbeiten mit diesem Programm werden Sie die Vor-
teile zu schätzen wissen.

Noch ein Punkt sollte erwähnt werden, bevor wir uns das Pro-

gramm selbst ansehen. Da eine RAM-Disk nicht formatiert wer-
den kann (bitte erst gar nicht probieren, da dies die Disketten-

stationen ansprechen kann...), muß zum Löschen einer solchen

Disk’ jedes File einzeln gelöscht werden. Bei dem vorliegenden
Programm jedoch brauchen Sie lediglich in dem Dialogfenster
dieselbe Kapazität auszuwählen, und schon ist die gesamte

RAM-Disk leer.

Doch nun zum Programm:

236 ATARI ST Floppy und Harddisk

Peickk RAM-Disk mit Komfort S.D. *****

hdv_bpb = $472

hdv_rw = $476

hdv_mediach = $47e

drvbits = $4c2

start:

move. l #nstapel ,a/ ‚neuen Stack einstellen

move #10,opcode ‚appl_init

move #0,sintin

move #1,sintout

move #0,saddrin

move #0, saddrout

bsr aes

move intout, appid ‚Application-ID

move #77 ,opcode ;graf_ handle

move #5,sintout

move #0,saddrin

move #0, saddrout

bsr aes

move intout,grhandle ;Graphic-Handle

move #35 , opcode ;Menu_Register

move #1,sintin

move #1,sintout

move #1,saddrin

move appid, intin

move. | #accname, addrin

bsr aes

move intout,accid ;Accessory- Nummer

‚** Ab hier die Bereitschafts-Schleife **

Loop: bsr event ‚Event_Multi

cmp #40 ‚msgbuf f ;Acc_open ?

bne Loop ‚nein

Die RAM-Disk 237

run:

mores

: * Speicher

ok:

move

cmp

bne

bsr

bra

; ** Auswahl

move. l

bsr

move

cmp

beq

cmp

beq

addq

cmp

blt

clr

lea

clr.l

move

move

isl

lea

move. l

bra

msgbuf f+8, d0

accid,d0

Loop

run

Loop

kk

#wieviel,addrin

formalert

intout, choice

#1,choice

ende

#3,choice

ok

#2,size

#18,size

more

size

sizes,a0

do

size,d0

0¢a0,d0),kapazi

#1,d0

dezi,a0

0¢a0,d0),offer

run

reservieren *

move. l

bsr

cmp

beq

bsr

tst

bne

#clear,addrin

formalert

#2, intout

okx

mfree

size

ok1

‚unsere Accessory-Nummer ?

‚nein

‚Menü darstellen

‚immer wieder...

Auswahl darstellen

‚Exit?

‚ja => Ende

‚OK ?

‚ja
‚andere Größe anbieten

‚über 800 KByte?

‚nein

ja, wieder O KByte

‚neue Größe einstellen

‚neue Größe anzeigen

‚wiederholen

‚wirklich löschen?

‚nein => Ende

‚Speicher freigeben

:;0 KByte ?

‚nein

238 ATARI ST Floppy und Harddisk

okx:

ok1:

fehler:

init:

rts

move

clr.l

move

add. l

asl.l

asl.l

move. |

move

trap

addq. l

tst.l

beq

move. l

move. l

move

trap

addq. l

rts

move. |

bsr

bra

move. t

move. |

move. l

_
 move.

move.

.
~

-
_

move.

move. |

‚0 Kbyte: fertig

#2, changed ‚'Diskette wird gewechselt!

d7

kapazi,d’ Kapazität in KByte

#9 ,d7 ‚plus 9K für Verwaltung

#5 ,d7

#5,d7 ‚mal 1024=Kapazität in Byte

d7,-(sp) ‚anzumeldender RAM-Bereich

#$48,-(sp) »MALLOC- Funktion

#1

#6,sp

do Fehler aufgetreten ?

fehler ‚ja => Fehlermeldung

d0,puffer — ‚Startadresse der RAM-Disk

‚retten

#init,-(sp)

#38, -(sp) sInitialisierung im

‚Supervisor

#14

#6,Sp

#error,addrin

formalert ‚'Nicht genug RAM !!

ende ‚Abbruch

hdv_bpb,bpbsave ;alte Vektoren retten

#bpb, hdv_bpb

hdv_rw, rwsave ;Vektoren auf neue Routinen

‚setzen

#rw,hdv_rw

hdv_mediach,mediasave

#media,hdv_mediach

puffer, a0

Die RAM-Disk 239

i1loop1:

move. |

clr.l

dbra

#10240/4,d0

(a0)+
d0, iloop1

‚ * Boot-Sektor generieren *

bloop:

;* Funktion:

bpb:

bpb1:

move. l

add. t

lea

moveq

move.b

dbra

move

move

isl

add

move. |l

add. l

move.b

lsr

move.b

bset

rts

Get BPB *

cmp

beq

move. l

move. |

rts

puffer ,a0

#11,a0

boottab, a1

»Boot-Sektor + FATs löschen

sab Puffer+11

#tabend-boottab-1,d0

(a1)+,(a0)+

d0, bloop

kapazi,d’

d7,numcl

#1,d7

#18,d7

puffer, a0

#19,a0

d7,(a0)+

#8 ,d7

d7,(a0)

#2, drvbits+3

#2,4(sp)

bpb1

bpbsave, a0

jmp(a0)

#bpbt ab, dO

‚Daten in Boot-Sektor kopieren

Kapazität in KByte in BPB

‚Kapazität in Sektoren

‚plus 18 Sektoren

‚in Puffer+19 und +20

;LO

HI

Drive C anmelden

‚fertig

‚Drive C ?

‚ja
‚alte Routine

‚aufrufen .

‚Zeiger auf BIOS-Parame-

;ter-Block

240 ATARI ST Floppy und Harddisk

‚* Funktion: Read/Write *

rw: cmp

beq

move. l

jmp

rw1: move

ext.l

isl .l

isl.l

move. |

move

subq

move. l

add. lt

move

btst

beq

exg

rloop0: move. l

move.b

dbra

dbra

clr

rts

rloop:

7;* Funktion: Media-Change

media: cmp

beq

move. |

jmp

medial: move

clr

#2,14(sp)

rw

rwsave, a0

(a0)

12(sp) ‚do
do
#8 ,dO
#1 ,d0

6(sp),a0

10(sp),di

#1,d1

puffer ‚al

d0,ai

4(sp),d0

#0,d0

rloop0

a0,al

#511,d0

(a1)+, (a0)+

d0, rloop

d1,rloop0

do

#2,4(sp)

media

mediasave, a0

(a0)

changed, dO

changed

‚Drive C ?

‚ja
‚alte Routine

‚aufrufen

zrecno, logische Sektor Nummer

‚mal 512

:Puffer-Adresse

‚Anzahl Sektoren

sBasis-Adresse

‚plus relative Adresse in

;RAM-Disk

rwflag

‚lesen ?

‚ja
‚Ziel und Quelle tauschen

‚ein Sektor

‚Puffer kopieren

‚nächster Sektor

OK

‚Drive C ?

‚ja
‚alte Routine

‚aufrufen

‚Diskette evtl. gewechselt

saber nur einmal

Die RAM-Disk 241

rts

event:

move

move

move

move

move. |

lea

lea

moveq

lop1:

move

dbra

bsr

rts

aes: > AES-Aufruf

move. |

move

trap

rts

#25 , opcode

#16,sintin

#7,sintout

#1,saddrin

#msgbuf f , addrin

table,al

intin,a2

#15 ,d0

(al)+,(a2)+

d0, lop

aes

#aespb, di

#$c8,d0

#2

mfree: ; Speicher freigeben

tst.l

beq

move. l

move

trap

addq. l

move. |

move

trap

addq. l

tst.l

beq

puffer

ende

#reinit,- (sp)

#38, -(sp)

#14

#6,Sp

puffer, -(sp)

#$49,-(sp)

#1

#6,Sp

do

ende

;Event_ Multi, GEM-Ereignis

‚feststellen

;Parameter setzen

‚ist bereits abgemeldet

‚Reinitialisierung

‚im Supervisor-Modus

;MFREE- Funktion, Speicher

; freigeben

Error?

‚nein

242 ATARI ST Floppy und Harddisk

ende:

reinit:

formalert:

table:

accname:

even

wieviel:

offer:

clear:

error:

errori:

even

kapazi:

size:

move

bsr

clr.

rts

move

move

move

belr

rts

move

move

move

move

move

move

bsr

rts

dc.w

dc.b

de.

de.

dc.

dc.

dc.

dc

de.

dc.

dc. oO

oO

o
o

T
o
T

oO

CF

Ff

dc.

dc.w-

x

wl #error1,addrin

formalert ‚Error-Meldung

l puffer ‚kein Speicher mehr reserviert

mat bpbsave,hdv_bpb

mt rwsave,hdv_rw ‚Vektoren auf alte

‚Routinen setzen

„| mediasave,hdv_mediach

#2,drvbits+t3 ‚Drive C abmelden

#52,contrl ;form_alert, Alarmfenster

‚darstellen

#1,contri+2

#1,contrl+4

#1,contrl+6

#0, contrl+8

#1,intin

aes

$13,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0

" RAM-Disk ",0

"T1] [Wieviel RAM-Disk-KByte ?]"

"CExit| mehr |"

" 100 3",0,0

"[1] [Alten Inhalt der| RAM-Disk löschen ?]"

"[Ja ! | Nein]",0,0

[2] [Nicht genug RAM 17"

"(Dann nicht..]",0,0

"(2] (Fehler bei MFREE 17"

[Dann nicht..]",0,0

100

2

Die RAM-Disk 243

sizes:

dezi:

puffer:

changed:

bpbtab:

recsiz:

clsiz:

clsizb:

rdlen:

fsiz:

fatrec:

datrec:

numc | :

flags:

boottab:

tabend:

even

bpbsave:

rwSave:

mediasave:

aespb:

data

dc.w 0,100,200,300,400,500,600, 700,800

dc.b ' 0 100 200 300 400 500 600 700 800!

dc.l 0 *RAM-Disk-Puffer-Adresse

dce.w 0 Flag für 'Diskette gewechselt'

dc.w $200 ‚Sektorgröße

dc.n 2 ;Clustergröße in Sektoren

dc.w $400 ;:Clustergröße in Bytes

dc.w 7 ‚Directorylänge in Sektoren

dc.w 5 ;FAT-Größe

de.w 6 »FAT-Sektoren

dc.w 18 ‚Sektoren für Verwaltung

blk.w 1 ‚Kapazität in KByte

dc.t 0,0,0,0

; Daten in 8086- format

dc.b 0,2 ‚Bytes pro Sektor

dc.b 2 ‚Sektors pro Cluster

dc.b 1,0 ‚reserved Sektors

dc.b 2 :FATS

dc.b 112,0 Directory entries

blk.b 2 ‚Sectors on media

dc.b 0 ‚media descriptor

dc.b 5,0 ‚Sectors pro FAT

dc.b 9,0 ;Sectors pro Track

de.b 1,0 Sides
dc.b 0 ‚hidden

blk.t 1 ‚Platz für alte Vektoren

blk.t 1

blk.l 1

dce.l contrl,global, intin, intout, addrin, addrout

244 ATARI ST Floppy und Harddisk

choice: blk.w 1 ‚Auswahl

grhandle: blk.w 1

appid: blk.w 1 ‚Application-ID

accid: blk.w 1 ‚Accessory-Unit

msgbuff: blk.b 16

blk.l 128 ‚neuer Stack

nstapel: blk.l 1

contrl: ;GEM-Parameter-Block

opcode: blk.w 1

sintin: blk.w 1

sintout: blk.w 1

saddrin: blk.w 1

saddrout: blk.l 1

blk.w 5

global: blk.l 8

intin: blk.w 80

ptsin: blk.w 80

intout: blk.w 80

ptsout: blk.w 80

addrin: blk.w 80

addrout: blk.w 80

Dieses Programm wurde auf dem Macro-Assembler SEKA er-

stellt, wodurch einige Punkte anders aussehen als bei Program-

men fiir den DRI-Assembler, der in dem ATARI-Entwicklungs-
paket enthalten ist. Zu ändern wären jedoch lediglich die Kom-

mentarzeilen, die für den DRI-Assembler mit einem Sternchen

(*) beginnen müssen, und die ’blk’-Anweisung, die bei DRI ’ds’
lauten muß.

Das Programm ist in mehrere Teile untergliedert:

1. Anmeldung des Accessories

Die RAM-Disk 245

8.
9.
10.
ul.

Bereitschafts-Schleife, die im normalen Betrieb des

ATARIST ständig ım Hintergrund mitläuft und da-

her kein Ende haben darf
Auswahl-Dialogfenster darstellen und bedienen, da-
bei die gewählte Kapazität in ’kapazı’ ablegen

Sicherheits- Abfrage darstellen und bearbeiten
vorher benutzten Speicher abmelden (MFREE)
neuen Speicher reservieren, ggf. Fehlermeldung aus-

geben

BIOS-Vektoren für die Disk-Routinen retten und

neue Vektoren einstellen |

Get BPB-Funktion

Read/Write-Funktion

Media Change-Funktion
Datenfelder für Parameterblöcke

Die Punkte 7 bis 10 wurden bereits im vorigen Kapitel bespro-

chen. Die Funktionen der Punkte 1 bis 6 sind für die Beschrei-
bung an dieser Stelle zu umfangreich. Die vollständige Beschrei-

bung der verwendeten Funktionen finden Sie im ATARI ST IN-
TERN- oder im GEM-Buch von DATA BECKER.

Und hier wieder ein BASIC-Lader-Programm, welches das Ac-
cessory-Programm RAMDISK.ACC auf der Diskette erstellt:

10

15

20

25

30

35

40

45

50

55

60

65

70

75

'x** Erstellung des RAM-Disk-Accessories ***
I

?:fullw 2:clearw 2:gotoxy 0,0

? "File >> RAMDISK.ACC << wird erzeugt":?:?:?

dim c%(741):cs#=0

for i=0 to 741 |

read a$:c%l i)=val("&H"+a$)

check#=check#+(c%(1))

next 1

if check#= 5104824 then 70

2"Geht leider nicht, da etwas mit den DATAs nicht stimmt."

goto 80

bsave "RAMDISK.ACC", varptr(c%(0)), 1483

? "Das Programm >> RAMDISK.ACC << ist nun geschrieben."

246 ATARI ST Floppy und Harddisk

80 7:7:7:?"Bitte Taste drucken":a=inp(2):end

8 !

90 EXHHKEEEEE DATAS für RAMDISK.ACC Tritte

95 4

100 DATA 601A,0000,0546,0000,0000,0000,0000,0000

101 DATA 0000,0000,0000,0000,0000,0000,2E7C,0000

102 DATA 0B60,33FC,000A,0000,0546,33FC,0000,0000

103 DATA 0548,33FC,0001 ,0000,054A,33FC,0000,0000

104 DATA 054C,33FC,0000,0000,054E ,6100,02F6,33F9

105 DATA 0000,06BC,0000,094C,33FC,004D, 0000, 0546

106 DATA 33FC,0005,0000,054A,33FC,0000,0000,054C

107 DATA 33FC,0000,0000,054E,6100,02C8,33F9,0000

108 DATA O6BC,0000,094A,33FC,0023,0000,0546,33FC

109 DATA 0001,0000,0548,33FC,0001,0000,054A,33FC

110 DATA 0001,0000,054C,33F9,0000,094C,0000,057C

111 DATA 23FC,0000,03F4,0000,07FC,6100,0286,33F9

112 DATA 0000,06BC,0000,094E ,6100,0234,0C79,0028

113 DATA 0000,0950,6600,FFF2,3039,0000,0958,B079

114 DATA 0000,094E,6600, FFE2,6100,0006,6000, FFDA

115 DATA 23FC,0000,0402,0000,07FC,6100,02BE,33F9

116 DATA 0000,06BC,0000,0948,0C79,0001,0000,0948

117 DATA 6700,0278,0C79,0003,0000,0948,6700,0044

118 DATA 5479,0000,04BE,0C79,0012,0000,04BE ,6D00

119 DATA 0008,4279,0000, 04BE,41F9,0000,04C0,4280

120 DATA 3039,0000,04BE,33F0,0800,0000,04BC, E348

121 DATA 41F9,0000,0402,23F0,0800,0000,042C, 6000

122 DATA FF9O,23FC,0000,0434,0000,07FC,6100,024C

123 DATA 0C79,0002,0000,06BC,6700,0010,6100,01D2

124 DATA 4A79,0000,04BE,6600,0004 ,4E75,33FC ,0002

125 DATA 0000,0544,4287,3E39,0000,04BC,0687,0000

126 DATA 0009,EB87,E887,2F07,3F3C,0048,4E41,5C8F

127 DATA 4A80,6700,0018,23C0,0000,04F6,2F3C,0000

128 DATA 01C2,3F3C,0026,4E4E , 5C8F,4E75,23FC,0000

129 DATA 046E,0000,07FC,6100,01E2,6000,01AE,23F9

130 DATA 0000,0472,0000,093C ,23FC,0000,0258,0000

131 DATA 0472,23F9,0000,0476,0000,0940,23FC, 0000

132 DATA 0272,0000,0476,23F9,0000,047E,0000,0944

133 DATA 23FC,0000,02C2,0000,047E, 2079, 0000, 04F6

134 DATA 203C,0000,0900,4298,51C8, FFFC, 2079, 0000

135 DATA 04F6,D1FC,0000,000B,43F9,0000,0532, 7011

Die RAM-Disk 247

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

1009 ,51C8,FFFC,3E39 , 0000, O4BC, 33C7, 0000
0520, E34F ,0647, 0012, 2079, 0000, 04F6,D1FC
0000, 0013, 10C7, EO4F, 1087, 08F9, 0002, 0000
04C5 ‚4E75 ‚OC6F ,0002, 0004,6700, 000A, 2079
0000, 093C, 4ED0, 203C, 0000, 0512, 4E75, OC6F
0002, 000E , 6700, 000A, 2079, 0000, 0940, 4EDO
302F ,000C,48C0, E188, £388, 206F , 0006, 322F
000A, 5341, 2279, 0000, 04F6,D3CO0, 302F , 0004
0800 , 0000 , 6700, 0004 ,,C348, 203C, 0000, O1FF
10D9,51C8, FFFC,51C9, FFF2, 4240, 4E75, OC6F
0002, 0004 ,6700, 000A, 2079, 0000, 0944, 4EDO
3039, 0000, 0544, 4279, 0000, 0544,4E75, 33FC
0019, 0000, 0546, 33FC, 0010, 0000, 0548, 33FC
0007, 0000, 054A, 33FC, 0001, 0000, 054C, 23FC
0000, 0950, 0000, 07FC,43F9, 0000, 03D4,45F9
0000, 057C, 700F ,34D9,51C8, FFFC, 6100, 0004
4E75 ,223C,0000,04FA, 303C, 00C8, 4E42, 4E75
4AB9 ‚0000 ,04F6, 6700, 0032, 2F3C, 0000, 0376
3F3C, 0026, 4E4E , SC8F, 2F39, 0000, 04F6, 3F3C
0049,4E41, 5C8F , 4A80,6700, 0010, 23FC, 0000
0494, 0000, 07FC, 6100, 0032, 42B9, 0000, 04F6
4E75 , 23F9, 0000, 093C, 0000, 0472, 23F9, 0000
0940, 0000, 0476, 23F9, 0000, 0944, 0000, 047E
0889, 0002, 0000, 04C5, 4E75 ,33FC, 0034, 0000
0546,33FC, 0001, 0000, 0548, 33FC, 0001, 0000
054A,33FC, 0001, 0000, 054C,33FC, 0000, 0000
054E,33FC,0001,0000,057C, 6100, FF56, 4E75
0013,0001,0001,0001, 0000, 0000, 0000, 0000
0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000
2020, 5241, 4D2D , 4469, 736B, 2043, 0000, 5B31
5D5B, 5769, 6576, 6965 , 6020, 5241, 4D2D ‚4469
736B, 2D4B, 4279, 7465, 203F , 5D5B, 4578, 6974
7020, 6D65 , 6872, 207C, 2031, 3030, 205D , 0000
5B31,5D5B,416C, 7465, 6E20,496E ‚6861 ‚6074
2064, 6572, 7€20,5241,4D2D , 4469, 736B, 206C
9473, 6368, 656E, 203F ,5D5B, 204A,6120,2120
7020, 4E65 , 696E, 205D ,0000,5B32,5D5B, 4E69
6368, 7420, 6765 ‚6E75 ‚6720 ,5241 ,4D20 ,215D
5B44,616E, 6E20, 6E69, 6368, 742E, 2E5D ‚0000
5B32,5D5B, 4665, 686C, 6572, 2062, 6569, 204D

248 ATARI ST Floppy und Harddisk

176 DATA 4652,4545 ‚2021 ,505B ‚4461 ‚6E6E ‚206E ‚6963
177 DATA 6874, 2E2E,5D00, 0000, 0064, 0002, 0000, 0064
178 DATA 00C8,012C,0190,01F4,0258, 02BC, 0320, 2020
179 DATA 3020,2031,3030, 2032, 3030, 2033, 3030, 2034
180 DATA 3030, 2035, 3030, 2036, 3030, 2037, 3030, 2038
181 DATA 3030,0000,0000, 0000, 0546, 0000, 055c, 0000
182 DATA 057C,0000,06BC, 0000, 07FC, 0000, 089C ‚0200
183 DATA 0002,0400,0007,0005, 0006, 0012, FFFF, 0000
184 DATA 0000,0000,0000, 0000, 0000, 0000, 0000, 0002
185 DATA 0201,0002, 7000, FFFF, 0005, 0009, 0001, 0000
186 DATA 0000,0000, 0002, 0808, 0808, 080A, 0408, 0808
187 DATA 080A, 0408, 0808, 0806, 0406, 040A, 040C, 0A06
188 DATA 1204,0A04,080C, 0A08, 0A06, 0808, 0808, 0A04
189 DATA OCOE,0E08, 2006, 1004, 1206, 0E06, 0E06, 0A12
190 DATA OCOE,060C, 2608, 121C, 3408, 060A, 0808, 0806
191 DATA 0406,0614, 0E0A,0E14,040A, 080A, 0A16, 0808
192 DATA 0808, 0801,3204, 0404, 0404, 0000

Wenn Sie nun Ihren Rechner eingeschaltet und die RAM-Disk
installiert haben, müssen Sie oft etliche Programme auf diese

RAM-Disk kopieren, bevor Sie arbeiten können. Diese ewige

Kopiererei ist nicht nur lästig, sondern auch zeitaufwendig.
Dieses Problem kann jedoch auf einfache Weise gelöst werden.

6.2 Disk-to-RAM-Disk Copy

Das folgende Programm kopiert einfach den gesamten Inhalt ei-
ner einseitigen Diskette in die RAM-Disk C. Hierbei werden
alle Sektoren von 0 (logische Sektornummer) bis 9*80-1, also
719, von dem gewählten Laufwerk gelesen und in die ’Sektoren’
der RAM-Disk kopiert. Dabei ist natürlich zu beachten, daß die
Kapazität der RAM-Disk mindestens 400 KByte betragen muß,

damit der Sektor 719 auch existiert.

Um das Programm so schnell wie möglich zu machen, werden

pro Aufruf der Lese- bzw. Schreiberoutine ’FLOPRW’ jeweils 9
Sektoren hintereinander gelesen. Den leichten Geschwindigkeits-

vorteil gegenüber dem einzelnen Kopieren von Sektoren haben

Die RAM-Disk 249

wir dem DMA-Chip zu verdanken, der mit einer Programmie-

rung alle 9 Sektoren (jeweils ein ganzer Track) auf einmal liest
und zum Rechner zurückschickt. Das ergibt zugegebenermaßen

kein umwerfendes Geschwindigkeits-Plus, aber immerhin ein
wenig. Noch schneller ginge es natürlich, wenn gleich alle Sek-
toren der Diskette auf einmal gelesen würden, doch gibt dies

evtl. Speicherplatzprobleme.

Legt man eine zweiseitige Diskette ın das zu lesende Laufwerk
ein, so erscheinen im Inhaltsverzeichnis der RAM-Disk natürlich

alle Dateinamen des Originals. Das Inhaltsverzeichnis ist ja auch
vollständig kopiert worden, nicht jedoch die hintere Hälfte der

Sektoren. Ist die Originaldiskette über die Hälfte belegt, so las-
sen sich die dort liegenden Programme und Dateien nicht von
der RAM-Disk laden. Ansonsten funktioniert das Programm
auch mit zweiseitigen Disketten einwandfrei.

Sehen wir uns nun das Programm an:

sek Disk - to - RAM-Disk - Copy S.D. ***

run:

clr.l apirsv

clr.l ap2rsv

clr.l ap3rsv

clr.l ap4rsv

move #10, opcode ‚appl_init

move #0,sintin

move #1,sintout

move #0, saddrin

move #0,sintin

jsr aes

move #77, opcode ;graf_handle

move #5,sintout

move #0, saddrin

move #0, saddrout

jsr aes

move intout, grhandle

250 ATARI ST Floppy und Harddisk

move. l #alarm,d0

bsr formalert ‚Auswahl fenster ausgeben

subq #2,d0 sLaufwerksnummer korrigieren

tst do

bmi quit ‚Abbruch

move dO,drive ;Laufwerksnummer retten

clr sector ‚Beginn bei Sektor 0

loop:

move drive,di gewählte Diskette

move #2 ,dO ‚Read

bsr floprw ‚9 Sektoren lesen

bne readerr ‚Fehler beim Lesen !

move #2,d1 ‚Drive C = RAM-Disk

move #1,d0 ‚Write

bsr floprw 79 Sektoren schreiben

bne wrerr Fehler beim Schreiben I!

add #9 ‚sector ‚Sektornummer + 9

cmp #9*80,sector ‚Ende ?

blt Loop ‚nein

quit:

clr -(sp)

trap #1 ‚Exit => Desktop

floprw: ;Read/Write Diskette

move d1,-(sp) sLaufwerk

move sector, -(sp) ‚Start-Sektor

move #9,-(sp) 79 Sektoren lesen/schreiben

pea puffer ‚Puffer

move d0O,-(sp) ‚Read/Write

move #4,-(sp)

trap #13 : rwabs- Funktion

add. l #14,sp

tst dO ‚Test auf Fehler

rts

readerr:

move. l #reer ,d0

Die RAM-Disk 251

bsr formalert ‚"Fehler beim Lesen !"

bra quit

wrerr:

move. l #wrer,dO

bsr formalert ‚"Fehler beim Schreiben!"

bra quit

aes: ;AES-Aufruf

move. | #aespb,d1

move #$c8 , dO

trap #2

rts

formalert:

move #52,contrl ;form alert

move #1,contrl+2

move #1,contrl+4 -

move #1,contrl+6

move #0, contrl+8

move #1,intin

move.| d0, addrin

jsr aes

move intout,dO

rts

alarm: de.b "[1] [Von welchem Laufwerk| kopieren ?]"

dc.b "[Exit| A | B]",0,0

reer: dc.b "[2] [Fehler beim Lesen !] (Quit]",0,0

wrer: dc.b "[2] [Fehler beim Schreiben !] [Quit]",0,0

even

aespb: dc.l contrl,global, intin, intout,addrin, addrout

data

contrl: ‚diverse Felder für das AES

opcode: bik.w 1

sintin: blk.w 1

sintout: blk.w 1

saddrin: blk.w 1

252 ATARI ST Floppy und Harddisk

saddrout: blk.l 1

blk.w 5

global: blk.w 7

apirsv: blk.l 1

apersv: blk.l 1

ap3rsv: blk.l 1

ap4rsv: blk.l 1

intin: blk.w 128

ptsin: blk.w 128

intout: blk.w 128

ptsout: blk.w 128

addrin: blk.w 128

addrout: blk.w 128

grhandle: blk.w 1

drive: blk.w 1 » Laufwerks-Nummer

sector: bik.w 1 ‚Sektoren-Zähler

puffer: bik.b 9*512 ‚Puffer für 9 Sektoren

Durch den recht einfachen Aufbau des Programmes sind einige
Variationen im Programm leicht möglich. So können Sie z.B.
durch Änderung der Ende-Bedingung im CMP #9*80,SECTOR
-Befehl auch doppelseitige Disketten in eine 800 KByte-RAM-
Disk kopieren, wenn Sie dort einfach #9*80*2 einsetzen.

Eine weitere denkbare Variation wäre es, die Kopierrichtung

ebenfalls wählbar zu machen. Dadurch wäre es möglich, nach

der Arbeit in der RAM-Disk seine Arbeit auf Diskette zurück-

zuspeichern.

Auch noch interessant wäre es, das Programm in ein Accessory

umzuwandeln. Ausgestattet mit allen möglichen Zusatzfunktio-
nen könnte dies ein recht brauchbares Werkzeug ergeben.

Doch nun auch den BASIC-Lader. Er erstellt das Programm
DTRCOPY.PRG auf der Diskette:

Die RAM-Disk 253

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

(eke Erstellung des Disk-to RAM-Disk-Copy ***

?:fullw 2:clearw 2:gotoxy 0,0

? "File >> DTRCOPY.PRG << wird erzeugt":

dim c%(286):cs#=0

for i=0 to 286

read a$:c%(i)=val ("&H"+a$)

check#=check#+(c%(i))

next i

if check#= 2531110 then 70
2"Geht leider nicht, da etwas mit den DATAs nicht stimmt."

goto 80

bsave "DTRCOPY.PRG",varptr(c%(0)), 573

? "Das Programm >> DTRCOPY.PRG << ist nun geschrieben."

?:27:9:?"Bitte Taste drücken":a=inp(2):end

Lie DATAS für DTRCOPY.PRG *# ies

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

601A,0000,01F2,0000,0000, 0000, 0000, 0000

0000, 0000, 0000, 0000, 0000, 0000, 42B9, 0000

0216,42B9,0000,021A,42B9, 0000, 021E ,42B9

0000 ,0222,335FC,000A,0000,01F2,335FC, 0000

0000,01F4,33FC,0001,0000,01F6,33FC,0000

0000,01F8,33FC,0000,0000,01F4,4EB9, 0000

O010E ,33FC,004D ,0000,01F2,33FC, 0005, 0000

01F6,33FC,0000,0000,01F8,33FC, 0000, 0000

01FA,4EB9, 0000, 010E ,33F9,0000,0426,0000

0826,203C,0000,0160,6100,009E ,5540,4A40

6B00 , 0044 ,33C0, 0000, 0828, 4279, 0000, 082A

3239, 0000 ,0828,303c ,0002,6100, 002E , 6600

004E ,323C, 0002, 303C ,0001,6100,001E , 6600

004C ,0679, 0009, 0000, 082A,0C79,02D0,0000 .

082A, 6D00, FFCC, 4267,4E41, 3F01, 3F39, 0000
082A, 3F3C, 0009, 4879, 0000, 082C, 3F00, 3F3C
0004, 4E4D ,DFFC, 0000, O00E, 4A40,4E75, 203C
0000, 0195, 6100, 0022, 6000, FFCC, 203C, 0000
01B5,6100,0014,6000, FFBE,223C, 0000, 01DA
303C, 00C8,4E42,4E75, 33FC, 0034, 0000, 01F2
33FC,0001,0000,01F4,33FC,0001,0000,01F6
33FC,0001, 0000, 01F8,33FC,0000,0000,01FA

254 ATARI ST Floppy und Harddisk

122 DATA 33FC,0001,0000,0226,23C0,0000,0626,4EB9

123 DATA 0000,010E,3039,0000,0426,4E75,5B31,5D5B

124 DATA 566F,6E20, 7765 ,6C63, 6865 ,6D20,4C61, 7566

125 DATA 7765,726B,7C20,6B6F ,7069,6572,656E , 203F

126 DATA 5D5B,4578,6974,7C20,4120,7C20,4220,5D00

127 DATA 005B,325D,5B46, 6568, 6C65, 7220, 6265 ,696D

128 DATA 204C,6573,656E,2021,5D5B,5175,6974,5D00

129 DATA 005B,325D ,5B46,6568,6C65 , 7220, 6265 , 696D

130 DATA 20535,6368, 7265 ,6962,656E ,2021,5D5B,5175

131 DATA 6974,5D00,0000 ,0000,01F2,0000,0208, 0000

132 DATA 0226,0000,0426,0000,0626,0000,0726,0000

133 DATA 0002,0606, 0608 , 0808 , 0808 , 0608 , 0808 , 0806

134 DATA 0604,0612,0606, 2408, 100A, 180E ,0E10,0808

135 DATA 0808,0806,0606, 8004 ,0404 ,0404, 0000

Programmieren in Maschinensprache 255

7. Programmieren in Maschinensprache am

Beispiel eines Disk-Monitors

Mit den bisher in diesem Buch angebotenen Programmen können
Sie schon einige Daten der Diskette ansehen und ändern, doch
was ist ein Floppy-Buch ohne einen Disk-Editor, mit dem man

alle Daten der Diskette ändern und ansehen kann? Da ich mitt-
lerweile schon auf eine siebenjährige Erfahrung im Abtippen
von Programmen aus Zeitungen und Büchern habe, möchte ich
Ihnen den großen Frust ersparen und einen quasi-modularen
Aufbau des Programms anbieten, der schon mit relativ wenig
Tipparbeit zum Erfolgserlebnis führt.

Das Listing edit.s enthält zwar alle Menüpunkte und alle Daten
und Unterprogramme des gesammten Diskeditors, doch wurden

nur die Unterroutinen des Sektor-Menüs ausformuliert, alle an-

deren Routinen enthalten nur ein rts, kehren also bei Aufruf

sofort zurück. Im Listing subrout.s folgen dann die ausformu-
lierten Unterprogramme mit gleichem Namen, die Sie dann nach

Bedarf an Stelle der Platzhalter ins Programm edit.s einfügen
und dieses so bis zur maximalen Größe ausbauen können.

Beim Eingeben des Programms werden Sie schon auf das

"srößte" Problem bei der Entstehung des Editors stoßen: die
Namensgebung der Labels und Variablen. Acht signifikante

Buchstaben sind bei einem solch umfangreichen Assemblerpro-

jekt einfach zu wenig, um einprägsame und logische Namen für
Unterprogramme und Variablen zu formulieren.

Wenn Sie den Editor sofort nutzen wollen, besteht natürlich

auch die Möglichkeit, die Diskette zum Buch beim Verlag zu
bestellen, die dann alle Programme und Sources des Floppy-

buches enthält.

256 ATARI ST Floppy und Harddisk

7.1 Die TOS-Funktionen zum Floppy-Zugriff

Die Funktionen des Editors bauen zum größten Teil auf Funk-
tionen des Betriebssystems (TOS oder GEMDOS) auf, nur ein
kleiner Teil greift direkt auf DMA-Chip und Controller zu. Der
Zugriff auf Disk-Controller und DMA-Chip des ATARI ST
vom Betriebssystem aus ist von verschiedenen Ebenen des hie-

rarchisch gegliederten TOS möglich.

Die "Hochsprachen" wie Pascal, C, Fortran und BASIC ermégli-
chen das Arbeiten mit sequentiellen und wahlfreien (RANDOM-

ACCESS) Dateien, d.h eine Hochsprache unterteilt die Diskette
nicht in Spuren und Sektoren, sondern der Zugriff auf die Dis-
kette ist File-orientiert und bewegt sich nur in den Grenzen
dieser Files.

Steigt man einen Schritt tiefer in der Hierarchie des Betriebssys-
tems, so erkennt man, daß sıch die Hochsprachen der GEM-

DOS-Funktionen des ATARI ST bedienen. Diese GEMDOS-
. Funktionen stellen die Betriebssystemeigenen Routinen für die
Hochsprache-Kommandos zur Verfügung, d.h. diese GEMDOS-

Routinen sind immer noch File-orientiert und bieten nur wahl-
freien und sequentiellen Zugriff auf Files der Diskette.

Beim nächsten Schritt stößt man auf die BIOS-Funktionen, die

praktisch den ersten physikalischen Kontakt mit der Diskette

ermöglichen, indem diese in logische Sektoren von 0 bis zum
Fassungsvermögen (bei DS-Disks 1440, bei SS-Disks 720) einge-
teilt wird. Die BIOS-Funktionen erlauben so den Zugriff auf
alle Sektoren der Diskette, man weiß allerdings nicht, auf wel-
cher Spur und Seite sich der gelesene logische Sektor befindet.
Es ist allerdings möglich, aus den Daten des Bios-Parameter-

blockes auf diese zu schließen (s.u.). Bedient man sich schließ-
lich der XBIOS-Funktionen, wird der Zugriff auf Track, Seite

Programmieren in Maschinensprache 257

und physikalischen Sektor möglich. Der Anwender muß aller-
dings dabei wissen, wieviele Sektoren sich auf einem Track

befinden ect. Dafür bieten die XBIOS-Funktionen die Möglich-
keit, solche diskspezifischen Eigenschaften zu bestimmen. So

kann man z.B. einzelne Tracks formatieren und dabei die
gewünschte Anzahl der Sektoren pro Track angeben.

Als Mittelpunkt aller Routinen erweisen sich schließlich der
Disk-Controller WD1772 und der DMA-Chip, die im I/O

Bereich des ATARI-Adreßbereiches von $FF800 bis $FFFFF
einige Adressen belegen, über die dann sämtliche Funktionen

dieser beiden Chips gesteuert werden können.

Zur Verdeutlichung: der BASIC-Befehl WRITE#, der Daten in
eine sequentielle Datei schreibt, bedient sich der GEMDOS-

Funktion WRITE, welche ihrerseits die BIOS-Funktion RWABS

aufruft, wobei sich diese die XBIOS-Funktion FLOPWR zunutze
macht um letztlich DMA- und Controller-Chip mitzuteilen,

wohin welche Daten auf Diskette geschrieben werden müssen.

Alle Betriebsystems-Funktionen (GEMDOS, BIOS, XBIOS) wer-
den im DATA BECKER Buch "ATARI ST INTERN" ausführ-
lich beschrieben, so daß ich hier nur auf die insgesamt acht
BIOS und XBIOS Aufrufe eingehe, die der direkten Kommuni-
kation mit der Diskette dienen. Alle Aufrufe erwarten zu über-
gebende Parameter auf dem Stack und geben eventuelle Ergeb-
nisse oder im Fehlerfall einen negativen Fehlercode im Register
DO zurück. Nach einem Aufruf sind in den meisten Fällen die
Register DO-D2 und AO0-A2 verändert, müssen folglich bei

Bedarf "gerettet" werden. Die beiden BIOS-Funktionen RWABS

und GETBPB werden über den BIOS-spezifischen TRAP #13
aufgerufen und bewirken folgendes:

Rwabs: BIOS-Funktionsnummer 4

Diese sehr flexible Funktion dient sowohl zum Lesen als auch

zum Schreiben von einem oder mehreren logischen Sektoren.
Diese Sektoren können sowohl auf der physikalischen Diskette

258 ATARI ST Floppy und Harddisk

als auch auf der Harddisk und schlieBlich in einer RAM-Disk
liegen. Als Parameter werden übergeben:

device: bestimmt das Laufwerk auf welches zugegriffen wird.
Die Nummerierung fängt bei 0 für Laufwerk A an und ist noch
oben unbegrenzt. Die in diesem Buch ım Kapitel 6.1 vorgestellte

RAM-Disk, die als Laufwerk C angesprochen wird, hat also

eine device-Nummer von 2.

recnr: gibt die logische Nummer des zu bearbeitenden Sektors
an. Zählbeginn ist wiederum die 0. Die maximale Anzahl der
Sektoren schwankt je nach Gerät: so passen zum Beispiel auf

eine einseitige 80 Track-Diskette im ATARI Format (double
Density) 720 logische Sektoren, von denen aber für User-Daten
"nur" 702 zur Verfügung stehen. Auf den achtzehn übrigen
Sektoren verwaltet das TOS die Userdaten mittels Directory und
FAT (File Allocation Table).

anzahl: bestimmt die Anzahl der zu bearbeitenden logischen
Sektoren.

puffer: ist eine Adresse, aus der bzw. in die die Daten der

Floppy geschrieben werden sollen. Möchten Sie also 4 logische

Sektoren des ATARI-spezifischen Formats (512 Bytes/Sektor)

lesen, müssen ab Adresse ’puffer’ 4*512=2048 freie Bytes zur
Verfügung stehen. |

rwflag: schließlich bestimmt, ob gelesen oder geschrieben wird.
Es sind 4 verschiedene Werte möglich:

wflag: Bedeutung:

0 Sektoren lesen
1 Sektoren schreiben
2 Sektoren unbedingt lesen (auch bei Diskwechsel)

3 Sektoren unbedingt schreiben "

Programmieren in Maschinensprache 259

Ein möglicher Aufruf in Maschinensprache könnte so aussehen:

move.w #0,-(a7)

move.w #11,-(a7)

move.w #5,-(a7)

move.l #puffer,-(a7)

move.w #2,-(a7)

move.w #4,-(a7)

trap #13

add.l #14,a7

tst.w do

bmi error

Laufwerk A (device)

recnr Beginn bei log. Sekt. 11

anzahl,alle 5 Directory S

Adresse des freien Platzes

rwflag, unbedingt lesen

BIOS Funktionsnummer

BIOS Aufruf

Stack restaurieren

prüfen ob ein Fehler aufgetreten ist

negativer Wert bedeutet Fehler *
+

2
x

s
r

*
3

*
*

+ hier geht es im Normalfall weiter, die

* gelesenen Daten befinden sich jetzt im

* RAM ab Adresse 'puffer"!

Getbpb BIOS Funktionsnummer 7

Der BIOS-Parameterblock beeinhaltet die Daten der aktuellen

Diskette. Diese Daten befinden sich im Bootsektor der Diskette

und werden beim Aufruf dieser Funktion in den sich im RAM

befindenden BPB (Biosparameterblock) eingetragen. Aufruf von
Assembler:

move.w device,-(a/)

move.w #7,-(a’)

trap #13

addq.l #4,a7

tst.w do

bmi error

* Nummer des Laufwerkes 0 =A

BIOS Nummer

Stack bereinigen

Im Fehlerfall ist DO negativ

* sonst steht in DO die Adresse des BPB.

Im Normalfall erhält man $4DCE für

* Laufwerk A und $4DEE für Laufwerk B

260 ATARI ST Floppy_und Harddisk

Ab der in DO zurückgebenen Adresse befinden sich die Daten in

Wortgröße (2 Byte) im Speicher, als da wären:

Laufwerk A

Adresse: Name: Bedeutung ss DS

$4DCE recsiz Sektorgröße in Bytes 512 512

$4DDO clsiz Clustergröße in Sektoren 2 2

$4DD2 clsizb Clustergröße in Bytes 1024 1024

$4DD4 rdlen Directorylänge in Sektoren T 7

$4DD6 fsiz FAT-Größe in Sektoren 5 5

$4DD8 fatrec Sektornummer des zweite FAT 6 6

$4DDA datrec Sektornummer des ersten Datencl. 18 18

$4DDC numel Anzahl der Cluster auf Disk 351 711

$4DDE bflags diverse Flags |

$4DEO unbekannt

$4DE2 nside Anzahl der Seiten der Disk 1 2

Die Beispieldaten gelten jeweils für das ATARI-spezifische

Aufzeichnungsformat mit 80 Tracks (SS = einseitig formatierte
Disketten, DS = doppelseitig formatierte Disketten).

Mediach BIOS Funktionsnummer 9

Diese Funktion prüft anhand des Diskettennamens, ob zwi-

schenzeitlich die Diskette gewechselt wurde. Als Parameter wird

die Laufwerksnummer übergeben.

move.w device,-(a’)

move.w #9,-(a7)

trap #13

addq.l #4,a7

Laufwerksnummer (z.B. 0 für A)

BIOS Funktionsnummer

Aufruf

Stack restaurieren

Programmieren in Maschinensprache 261

Die in DO zurückgegeben Werte liegen zwischen 0 und 2 und

bedeuten:

Nummer: Bedeutung:

0 Diskette wurde nicht gewechselt

l Diskette wurde möglicherweise gewechselt

2 Diskette wurde gewechselt

Hier folgen nun die vier für unsere Zwecke wichtigen XBIOS
Funktionen:

Floprd Funktionsnummer 8

Mit dieser Funktion kann man einen oder mehrere hintereinan-
derliegende Sektoren eines Tracks lesen. Die zu übergebenden

Parameter sind:

anzahl: bestimmt, wie viele Sektoren gelesen werden sollen. Die

bei den ATARI-Disketten möglichen Werte schwanken zwischen

1 und 10. Zehn Sektoren können allerdings nur gelesen werden,

wenn sie mittels eines speziellen Formatierprogrammes auch auf

der Diskette existieren, da das ATARI- eigene Formatierpro-

gramm "nur" neun Sektoren pro Track auf die Diskette schreibt.

seite: gibt die Seite der Diskette an, 0 oder 1.

track: bestimmt den Track, auf dem sich der zu lesende

Sektor befindet.

sector: nun der physikalische Sektor selbst

device: der schon bekannte Laufwerksparameter (0=A)

file ein Langwort, das keine Bedeutung hat und wohl
für Erweiterungen der Funktion gedacht ist

262 ATARI ST Floppy und Harddisk

puffer:

den sollen

move.w #1,-(a/7)

move.w #0,-(a/)

move.w #0,-(a7)

move.w #1,-(a7)

move.w #0,-(a7)

move.l #0,-(a7)

move.l #puffer,

move.w #9,-(a’)

trap #14

add. #20,a7

tst.w dO

bmi error

puffer: ds.b 512

Flopwr:

-(a7)

die Adresse, an die die Diskdaten übertragen wer-

* anzahl, einen Sektor

* seite

* Track null

* Sektor eins = Bootsektor

* Laufwerk A

* filler, dummy Langwort

* Adresse des Datenzielortes
* XBIOS Funktionsnummer

XBIOS Funktionsnummer 9

Analog zur vorherigen Funktion können mit Flopwr Sektoren
auf Diskette geschrieben werden. Die zu übergebenden Parame-

ter sind die gleichen wie bei Floprd.

move.

move.

move.

move.

move.

move.

move.

move.

trap

add. |

x
z

zZ

2
z
o
o

um

=

HL,
#0,
#5,

#0,
#0,

#9,
#14
#20, a7

-(a7)

-(a7)

-(a7)

#1,-(a7)

-(a7)

-(a7)

#puf fer, - (a7)

-(a7) »
x

©
©

3
3

+
EF

F anzahl, vier Sektoren

seite

Track fünf

Sektor 1 = Startsekt. des

Schreibens

Laufwerk A

filler, dummy Langwort

Adresse der zu schreib. Daten

XBIOS Funktionsnummer

Programmieren in Maschinensprache 263

tst.w do

bmi error

puffer: ds.b 4 * 512

Dieser Aufruf schreibt die 2048 Datenbytes, die ab Adresse
’puffer’ im Speicher stehen, auf die Sektoren 1,2,3,4 des Tracks

5 auf Seite 0 der Diskette.

Flopfmt:

virgin:

magic:

interleave:

XBIOS Funktionsnummer 10: Diese Routine er-

möglicht das Formatieren eines Tracks mit 1-10
Sektoren pro Track. Die Parameter sind:

Dieses Wort bestimmt die neuen Sektorinhalte, also

die Daten, die in die einzelnen Sektoren eingetra-
gen werden. Es empfiehlt sich, den gleichen Wert

wie das TOS ($E5E5) zu nehmen, da Bytewerte
srößer $EF unter Umständen nicht als Byte ge-
schrieben werden, sondern Sonderfunktionen dar-

. stellen und z.B. Adressmarks oder Checkssums der

bisher geschriebenen Bytes schreiben (sehen sie
dazu doch bitte ins Kapitel über den Floppy Disk
Controller).

Dies ist die magische Konstante $87654321.

bestimmt den Sektorversatz auf der Diskette. Com-
puter mit wenig intelligentem Floppydiskcontroller
ohne DMA müssen die von der Diskette gelesenen

Daten noch auswerten, was ja etwas Zeit kostet.

Dadurch kann es vorkommen, daß der nächste

Sektor schon am Schreiblesekopf vorbeirotiert ist,

wenn die CPU ihre Arbeit beendet hat. Schreibt
man nun die Sektoren nicht in der Reihenolge 1 2
345678 9 (interleave = 1), sondern z.B. 1627

3 8 49 5 (interleave = 2) auf die Diskette, so kann
die Zeit zwischen dem aktuellen und dem nächsten
Sektor für die Datenauswertung ausreichen. Dies

264 ATARI ST Floppy_ und Harddisk

seite:

track:

spt:

device:

filler:

puffer:

kann die Datenübertragung erheblich beschleuni-
gen, da sonst die Diskette erst eine ganze Umdre-
hung bis zum Auffinden des Folgesektors zuriick-
legen müßte. Beim ATARI ST wird die Daten-
auswertung vom Controller vorgenommen, so daß

die Sektoren ohne Versatz geschrieben werden
können. Ein Wert von eins sollte also hier überge-
ben werden.

die Diskettenseite

der Zieltrack

Anzahl der Sektoren pro Track. Die Diskette "ver-

kraftet" zehn Sektoren pro Track, das TOS arbeitet

mit neun.

Laufwerksnummer

wieder ein dummy-Langwort für spätere Erweite-
rungen

bestimmt die Adresse, an der das XBIOS den kom-
pletten Track aufbaut (mit allen Sync-Bytes und
Adreßfeldern). Es werden ca. 8 KByte benötigt.

Funktionsnummer ist 10

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

w #$e5e5,-(a7) * virgin

lL #$87654321,-(€a7) * magic

w #1,-(a7) * interleave gleich 1

w #0,-(a7) * Seite 0

w #5,-(a7) * Track 5

w #9,-(a7) * spt, 9 Sektoren pro Track

w #0,-(a7) * device 0 gleich Laufwerk A

I #0,-(a7) * filler, dummy Langwort

l #puffer,-(a7) * Adresse des freien Speichers

w #10,-(a7) * XBIOS Funktionsnummer

Programmieren in Maschinensprache 265

trap #14

add.t| #26,a7

tst.w do * Fehler aufgetreten ?

bmi error * ja

puffer: ds.b 8*1024 * hier ist Platz

Protobt: XBIOS Funktionsnummer 18

Diese Funktion erleichtert das Erstellen eines Bootsektors für

verschiedene Diskettenformate. Zuerst liest man den Sektor 1

von Track 0, Seite 0 einer beliebigen formatierten Diskette ein,
ruft anschließend Protobt auf und schreibt nun den durch Pro-

tobt geänderten Bootsektor wieder auf Sektor 1, Track 0, Seite 0

der Diskette, auf der der Bootsektor erzeugt werden soll. Die zu
übergebenen Parameter:

execflag: gibt an, ob der Bootsektor ausführbar ist, d.h. ob sich

ab Byte 30 relativ zum Sektoranfang ein ausführbares Bootpro-
gramm befindet. Mögliche Werte sind:

Wert: Bedeutung:

nicht ausführbar

l ausführbar

-] Puffer bleibt so wie er war

disktyp: Diskettentyp

0 40 Track, single sided (SS, SD 180 K-Byte)
1 40 Track, double sided (DS, SD 360 K-Byte)
2 80 Track, single sided (SS, DD 360 K-Byte)

3 80 Track, double sided (DS, DD 720 K-Byte)
-] Disktyp bleibt unverändert

266 ATARI ST Floppy und Harddisk

Die ATARI Formate sind, wie Sie sicher schon erkannt haben,

die double Density Formate 2 und 3.

serialnr: die Serienummer bedeutet eine 24-Bit große Zahl,
die in den Bootsektor geschrieben wird und an der

das Betriebssystem einen eventuellen Disketten-

wechsel erkennt. Ist die übergebene Seriennummer

srößer als 24-Bit (z.B. $01000000), so schreibt das
Betriebssystem eine Zufallszahl, ist sie -1, wird die
Pufferseriennummer nicht verändert.

puffer: bedeutet die Adresse, an der sich der zu verän-

dernde Bootsektor befindet (512 Bytes Platz).

move.w #-1,-(a/) * execflag, Ausführbarkeit nicht ändern

move.w #3,-(a7) * disktyp, 80 Track,

move.l| #%04000000, -(a7)* serialnr, Zufallsseriennummer

move.l #puffer,-(a7) * Hier befindet sich der Sektor

move.w #18,-(a/) * XBIOS Funktionsnummer

trap #14,-(a7)

add.l #14,a7

tst.w dO

bmi error * hat nicht geklappt

puffer: ds.b 512

Dieses Programmfragment wandelt einen von einer einseitigen
Bootdiskette eingelesenen Bootsektor in einen solchen für eine
zweiseitige Diskette um, der dann auf die formatierte zweiseitige
Diskette geschrieben werden kann. So kann auch von einer
zweiseitigen Diskette das Betriebssystem geladen werden.

Nun schauen wir uns einmal an, welche Informationen sich im

Bootsektor befinden.

Die 16-Bit Daten stehen ım Intel-Format (erst Low-Byte, dann
High-Byte) auf der Diskette, und ein ausführbarer Bootsektor ist
durch eine Checksum von $1234 gekennzeichnet.

Programmieren in Maschinensprache 267

Byte 40 Track SS 40 Tr DS 80 Tr SS 80 Tr DS

0,1 bra 30 Sprung nach $30 sofern der Bootsektor

| ausführbar ist

2-7 Text: 'Loader'

8-10 serialnr

11-12 bps 512 512 512 512

13 spc 2 2 2 2

14-15 res 1 1 1. 1

16 fat — 2 2 2 2

17-18 dir 64 112 112 112

19-20 sec 360 720 720 1440

21 media 252 253 248 249
22-23 spf 2 2 5 5

24-25 spt 9 9 9 9

26-27 side 1 2 1 2

28-29 hide 0 0 0 0

30 bootcode: ab hier steht bei einem ausführbaren Bootsektor

der Bootcode

510-511 Checksumme des gesamten Bootsektors von Byte 0 bis 509

7.2. Das Listing und die Bedienung des Disk-Editors

Wie weiter oben schon erwähnt, folgt hier nun der erste Teil des

Disk-Editors. Dieses Listing ist fiir den Assembler von Digital
Research (Entwicklungspaket) vorgesehen und mit diesem so zu
verarbeiten. Nachdem Sie das Listing richtig abgetippt und
assembliert haben funktioniert in dem dann vorhandenen Pro-
gramm "edit.tos" nur das Sektormenü. Zum Vollausbau zum
gesamten Programms müssen Sie die "dummy-Unterprogramme"

noch durch die vollwertigen Unterprogramme ersetzen. Der

BASIC-Lader für das komplette Programm befindet sich im

Anhang I. A

268 ATARI ST Floppy und Harddisk

KERKKKKEKKKKKKKKICI TECK TITTEN

*

* The little Diskeditor, U. Braun , August 1986

*

* DATA BECKER FLOPPY-BUCH

* +
£

3
&

KHER EEREEREREEREREEEREHRAEEEEERKKKERKKE

text

KKKKKKKKKKKKRKKKHTT KK IT RICK KE

* *

* Einsprung nach dem Laden, Lange berechnen, und Platz reservieren *

* *

KEREKEKKKRKEKREKEEKEKEREEKEREKAEEREEKEEREREERKKEREEKKREREEEKEEREEEEERRKKRKKRKE

sstart: move.l a7,a5 * auf dem Stack ist die Basepageadresse

move.l 4(a5),a5 * basepage address = Programmanfang - $100

move.l $c(a5),d0 * Programmlänge

add.lt $14(a5),d0* Länge des initialisierten Datenbereichs

add. $1c(a5),d0* Länge des nicht initialisierten Datenbereichs

add.l #$1100,d0 * 4 K-Byte Userstack=reichlich Platz

move.l a5,d1 * Startadresse des Programms

add.t d0,di * Plus Anzahl belegter Bytes = Platzbedarf

and.l #-2,d1 * gerade Adresse für Stack

move.l di1,a7 * Userstackpointer auf letzten 4K- Byte

move.l dO,-(sp) * Länge des reservierten Bereichs

move.l a5,-(sp) * Anfangsadresse des reservierten Bereichs

move.w d0,-(sp) * Dummy-Wort

move.w #$4a,-(sp)* GEM Dos Funktion SETBLOCK

trap #1

add.l #12,sp * alte Stackadresse wieder restaurieren

move.w #3,-(a7) * Repeat-Rate ändern wegen Überlauf

move.w #$b,-(a/7) * des Tastaturpuffers bei schnellerer

 move.w #35,-(a7) * Repeat-Rate

trap #14

addq.| #6,a7

jsr haupt * Sprung zum Hauptprogramm . (User-erstellt)

move.l #0,-(a7) * Beendet das laufende Programm

trap #1 * zurück zum Gem-Desktop

Programmieren in Maschinensprache 269

HAKKAR EERE ERRATA EK

* *

* Hier beginnt nun das eigentliche Programm *
* *

KITTS EEK

haupt: jsr start! Line-A initialisieren

jsr leerebuf Tastaturbuffer leeren

jsr clear Bildschirmlöschen

jsr init Default-Parameter setzten

jsr gohaupt Hauptmenue einstellen

jsr menuel1 Ausführung an Menue-Handler Uber-

x
x

+
££

€
x

F

haupend: rts geben, zurück zum Desktop

ETT TELL CTICCTOCCCCCCCCTCCCCCCCCTICCTOCTOCT OCCT CCL OCLC OLS LES Lee Lee ee re eS

init: jsr cursoff * Cursor ausschalten

Jsr clear * Bildschirm löschen

move.w #0,wtrack * Track null, Seite null

move.w #0,wside

move.w #0,wdrive * Drive null, Sector eins

move.w #1,wsector einstellen

move.w #0,d0

+

move.w #6,maxdriv * maximale Anzahl drives

move.w #1,maxside * maximale Anzahl Sides-1

move.w #79 ,maxtrack * default maximale Anzahl Tracks

move.w #9 maxsect * default maximale " Sectors

move.w #9,asector * maximale Anzahl Sect/Track

move.b #'0',setrack * auch die Menuestrings mit

move.b #'9' setrack+1 * den richtigen Werten versorgen

move.w #1500,maxclust * maximale Anzahl Cluster

move.l #platztr,editptr * Buffer

jsr prmessag * Werbetext ausgeben

rts * und zurück

270 ATARI ST Floppy und Harddisk

KAAKKKKEKKEKKKKEEKEKEREEEREEAEKEKEEEKEREEEEEREEEEEEKERERREEEEEKRERKKK KEE

* gibt einen Werbetext mit Copyright aus

KKRKKKKKKEKKKKKKTKK EKER TE KK I KT TI KT TITTEN KU

prmessag: jsr

move.W

move .W

jsr

move.

jsr

move.wW

move.W

jsr

move. lt

jsr

move .W

move .wW

jsr

move. |

jsr

jsr

Jsr

jsr

rts

leerebuf

#20,spalte

#10,zeile

loccurs

#hafragi,a0

printf

#20,spalte

#12,zeile

loccurs

#hafrag2, a0

printf

#20,spalte

#14,zeile

Loccurs

#hafrag3,a0

printf

wtast

clear

leerebuf

* Tastaturpuffer leeren

Cursor positionieren

x
x

£+
x

*
x

Message Teil 1

* ausgeben

Cursor positionieren

* Message Teil 2

ausgeben

Cursor positionieren

Message Teil 3

ausgeben

auf einen Tastendruck warten

Bildschirm löschen

Tastaturbuffer leeren

und zurück

*

KEAKKKKKKEEHKEEEREEKEEAEKKKEEAEEREAEEEEEEREEEEKEAEEREREREEKREEAREKEK KKK

* Dies ist die Menue-Loopschleife, der Programmteil, der das

* gesammte Programm steuert. Hier wird erkannt, ob durch Cursor

* Links und rechts ein anderer Menuepunkt angewählt wurde, oder

* ob durch Cursor up und down ein Menuepunkt ausgewahlt wurde,

* dann wird mittels meselct die Programmcontrolle an diesen

* Menuepunkt Ubergeben
KRKKKKKKREAKEEEEEREEKEREKEKEEKEEKEE KEE EKER

menuel1: jsr taste

tst.l dO

* Tastatur abfragen

* keine Eingabe, dann weiter warten

beq menuel'1

swap d0

cmp.b #$44,d0

* sonst auf verschiedene Tasten prüfen

beq menende

* F-10 Taste = Ende, NOTSTOP, für Debug

+
x

x
x

*
*

Programmieren in Maschinensprache 271

menuel2: cmp.b #$4b,d0 * Cursor links

bne menuel3

jsr ceurlinks

bra menuel1

menuel3: cmp.b #$4d,d0 2 * Cursor rechts

bne menuel4

jsr ceurrecht

bra menuell

menuel4: cmp.b #$50,d0 * Cursor down

bne menuel5

jsr cursdown

bra menuel1

menuel5: cmp.b #$48,d0 * Cursur-Up

bne menuel6

Jsr cursup

menuel6: bra menuel1

haupend2:add.| #8,a7 * Hier sind noch zwei Rücksprung-

“menende: rts * adressen auf dem Stack (entfernen)

KREIEREN CT KT TI RRR ERE

* Mit Cursor up wurde eine Menuepunkt ausgewählt, der entsprechende *

* Sprungadressenblock wird nach jmptable geladen, und zu meselect *

* verzweigt *

KEKEKKREKKEKEEEEKEAREKEEKAKKAEERKKK KKK KR KR RRR RR RK KK KR KEK

cursup: move.l incvar,jmptable * Sprungtable für Auswahl durch

jsr meselect * Cursor up, Routine ausführen

rts * und zurück zum Menue-Loop

KEEKEKKEKEEAEKEEKREKEEEEEREERERKIKEEREEEEERETREEREEEREREERERECRA KR RR EK

* Es wurde ein Menuepunkt mit Cursor down ausgewählt, in einigen *

* Menues unterscheiden sich die auszuführenden Unterprogramme je *

272 ATARI ST Floppy und Harddisk

* nach auswählender Taste (up oder down) z.b inctrack und dectrack *

* beim Sektormenue *

KkKkkkKkkKkKKhkkKK KKK KK KKK RR KKK KKK RK KKK KR KK Km AK KK RK KK

cursdown: move.l decvar, jmptable * Sprungtabelle für Auswahl

jsr meselect * druch Cursor down

rts

KREKKKKKKKKKHKKTKTK KT TC IT TITTEN KK U

* Durch Cursorlinks werden die einzelnen Menuepunkte "angefahren! und *

* invers dargestellt *

KAAKKEKKKKKKKKKKKTH TC TC KK KK IT KK KK IT TI KK IT CI KK IT KT KK KK KK N

curlinks: move.l revnum,dO * Anwahl der Menuepunkte

sub.l #1,d0

beq laround * durch reverses Schreiben

move.l d0,revnum * derselben

bra curlend

Laround: move.l ganz,revnum * swap arround

curlend: jsr dispmen * Anzeige des Menues

rts

KEKEREKKEKREEKEEEEEEEKEREEEEERRKEEEKE TC TI TC TITTEN KU

* wie bei curlinks, nur wurde Cursor rechts betätigt *

KERKKEKKKKHKKRTKKTCT KT KT II TI IT TI TI I KK TI I KK RR IKK

currecht: move.l revnum,d0 * wie bei Curlinks

add.lt #1,d0

cmp.l ganz,d0

bgt raround

move.l d0,revnum

bra currend

raround: move.l #1,revnum

currend: jsr dispmen

rts

Programmieren in Maschinensprache 273

KKKKKKKKKERKEEEEKEKEKEKEEREKEKEEEKKER EEK KERR:

* Bringt die entsprechende Unterroutine zur AusfUhrung *

KEK KHAKI CT TI TI TI KT KT KK KT KEK

meselect: jsr leerebuf

move.l jmptable, a0

move.l revnum,dO

subq.l #1,d0

lsl.l #2,d0

move. (a0,d0.l),a1

jmp (a1)

Aufruf der ausgewählten

Routine, in Jumptable ist

die Anfangsadresse des

Sprungadressenblockes

mal vier, eine Adresse

belegt vier Byte, Laden

und Ausführen der Routine +
£

r
3
.
3

3%

KAKA EERE CE EERE AKER REREEREEEREERARERERER ERK

* Handelt die aufgetretenden Fehler, indem aus der auf dem Stack *

* Ubergebenen negativen Fehlernummer, ein Fehlerstring gewonnen *

* wird, der dann angezeigt wird. *

HIKARI KEK

Auf dem Stack wird die Fehler-

nummer Ubergeben (Wort)

Cursor in Zeile 2 positionieren

Zeile löschen

Fehlernummer holen

positiv machen

errhand: move.w #10,spalte

move.w #2,zeile

jsr loccurs

jsr delline

move.w 4(a7),d0

neg.w dO

cmp.w #29,d0

blt errhand1

move.w #29,d0

+
+

x
3

3
*

maximal Fehler vergleichen

+ default Fehlernummer

move.l (a7)+,a0

addq.l #2,a7

jmp (a0)

Rücksprungadresse holen

Stack korrigieren (Fehlern.)

zurück zum Rufer

errhand1:lsl.w #2,d0 * als Zeiger in die

move.l #errtab,al * Fehlertabelle benutzen

move.| 0¢(a1,d0.w),a0 * Fehlerstring holen

jsr printf * drucken

jsr wtast * auf Tastendruck warten

jsr delline * Zeile wieder löschen

jsr cursbuf * Cursor wieder auf Zeile 4

*

*

*

274 ATARI ST Floppy und Harddisk

KEKE

* Ubergibt die Parameter fiir das Hauptmenue an diverse Variablen *

* menueadr, incvar, decvar, ganz, revnum *

KKKKEKKAKKEEEKEREAEEREEKERREKEKEAEKATEKKEKERERKKEEEREKKKKRK RR KEK

gohaupt: jsr clear

move.l #7,ganz

move.l #1,revnum

move. | #menhaupt ‚menueadr

move.l #haincjmp, incvar

move.l #haincjmp,decvar

jsr dispmen

rts

Bildschirmlöschen

sieben Menuepunkte im Hauptm.

erster Menuepunkt revers

Adressen der Menue-Strings

Adressen der Menuroutinen

für Cursor up und down

gleich, Menue anzeigen

und zurück +
ır

x
x

€
*

*

KKKKKKKKKKKKHKTKTCTTTT TC TITTEN IT TE TE KT KICK U

* Hier folgen die Routinen des Hauptmenues *
KAKA RRKKKK

KEKKEKEKEKKEKKKREEKKEKEEKEKEERKEREEERKE EKER KEREKEKREREEKKKKKKKKE

* versorgt die Variablen des Menueselect-Systems mit den Adressen *

* fur den TRACK Menuepunkt *
KIKI KIARA IAAI RRR III ATA ISIS TAIN AA IIIA AAI SARA OAR IAI ARAMA RII RR

gotrack: jsr clear * Bildschirm löschen

move.l #mentrack,menueadr * Adressen der Menue-Strings

move.l #8,ganz * das Track-Menue hat 8 Punkte

move. #5,revnum * 5. Punkt revers darstellen

move.l #trincjmp, incvar * Cursorup- Jumptable

move.l #trdecjmp,decvar * Cursor-down- Jumptable

jsr dispmen * Menue anzeigen

jsr cursmess * und eine Meldung machen

move.l #trfrag1,a0 * “TRACK MODE"

jsr printf

rts | * und zurück zum Menue-Handler

KERKKKEKEEKEKEKEEEEEEEKEEEREKEKEAREEEKEEEEEEREEEEREKEKEEEEEEEEEEKREKKKKRKKKKK

* versorgt die Variablen des Menueselect-Systems mit den Adressen *

* fur den TRACK with SYNCS Menuepunktes *
KEEKKEKREKEKRECEEEEEEEE KER ERE EKER EREEERREREEKE

Programmieren in Maschinensprache 275

gosync: move.l #6,ganz * Track mit Sync-Menue hat

move. #4, revnum * sechs Menuepunkte

move.l #syincjmp, incvar * up-Jumptable

move.l #sydec jmp, decvar * down-Jumptable

move.l #mensync ‚menueadr * Adressen der Menue-Strings

Jsr dispmen * anzeigen des Menues

jsr cursmess * Cursor positionieren

move.l #trfrag2,a0 * "Track with Syncs"

jsr printf * drucken

rts

KARKKKKKKKKKKKHTT KT TC TECK TITTEN KU

* versorgt die Variablen des Menueselect-Systems mit den Adressen *

* für den SECTOR Menuepunkt *
HAKKKAKKKEEKKKEEKEREEEEKEEEEKEKEEKKERKEEEKREKEKEERREEEEREEEEKEKKKKKK KKK KKEK

gosektor:jsr clear

move.| #mensect ‚menueadr * Sektormenuepunkte

move.l #seincjmp, incvar

move.l #sedec jmp, decvar

move.l #platztr,editptr

move.l #8,ganz * 8 Menuepunkte

move.l #5,revnum * 5. revers darstellen

jsr dispmen

jsr cursmess

move.l #sefrag1,a0

jsr printf

rts

KRERKKKKKKEKKKTTKTTKTTTTTTICKITEITTT TECK IT CK KK KK KU

* versorgt die Variablen des Menueselect-Systems mit den Adressen *

* für den CLUSTER Menuepunkt *
KEKKKKKKKKKKKTKKTTT TI KT KT TITTEN IT TEE REE

goclust: jsr initdriv

jsr rdfat

move.l #8,ganz

Clustermenue, erst Drive

initialisieren, dann FAT lesen

Menue hat acht Unterpunkte

move.l #3,revnum read = revers

x
+

££
&

*

move.l #menclust ,menueadr Adresse der Menue-Strings

276 ATARI ST Floppy und Harddisk

move.t #clincjmp, incvar * Jumptable

move.l #cldecjmp,decvar

jsr cursmess

move.l #clfrag1,a0 * "cluster mode"

jsr printf * schreiben

jsr dispmen * Menue anzeigen und

rts * zurück

KERKKKKKKKKKKTKTKTTTC KT REREEEEERERAAEEAAEEKRKK IK

* versorgt die Variablen des Menueselect-Systems mit den Adressen *

* fur den FORMAT Menuepunkt *
KEKEKKKKKKKEEEKECEREEREREREREEERAEKREEKEREREREREEEEEEEREREAEAEEEK RR KK KK

goformat: jsr clear Format -Menue *

move.l #formmen,menueadr * Adresse der Menuestrings

move.l #8,ganz * acht Menuepunkte

move.l #3,revnum * dritten revers

move.| #foincjmp, incvar *

move.l #fodecjmp,decvar

jsr dispmen

jsr cursmess

move.l #drfrag1,a0

jsr printf

rts

KEKE RRR IKK

* Untermenue zum Format Menue, versorgt die Variablen mit den *

* Adressen des GAP's Menue *

KARKKKKKKKKKKKKKKKKK KK KK IK. KK KK I KT RK Kk KKK KKK RR KR I KK KK AK KK KK NK KK KK KK

gogaps: jsr clear

move.| #mengap,menueadr

move.l #7,ganz * sieben Menuepunkte

move.l #1,revnum

move.l #gpincjmp, incvar

move.l #gpdec jmp, decvar

Jsr dispmen

jsr cursmess

move.l #gpfrag1,a0

Programmieren in Maschinensprache 277

Jsr printf

rts

HEMET AKER ERATE TRITT KICK

* versorgt die Variablen des Menueselect-Systems mit den Adressen *

* fur den OPTION Menuepunkt *
KEKKKKEKKKEKEEKEEKEKEEKEEEKEKE EKER ERE EKER E

goinit: move.l #6,ganz * Init Menue hat sechs

move.l #4,revnum * Menuepunkte

move.l #inincjmp, incvar

move.l #indecjmp,decvar

move. #meninit,menueadr

jsr dispmen

jsr cursmess

move.l #drifrag1,a0

jsr printf

rts

HAKKAR KEIR REE TITTEN

* Hier folgen die ersten Routinen des SECTOR Menuepunktes *
KEK TAKARA ETEK R ERK EERE

PERAK AAA KAA HAA A HITE RR AKERS

* Inkrementiert die Drivezahl innerhalb des Menuepunktes *
KAKKKKKKKKKKKKKH KEKE EEK EERE EERE ERERRRRREREERKEEKE

incdrive: move.w wdrive,d0 * aktives drive

cmp.w maxdriv,d0 * mit maxdrive vergleichen

blt incdr1 * wenn kleiner, dann erhöhen

move.w #0,d0 * sonst aktives drive auf null

bra incdr2

incdr1: addq.w #1,d0

incdr2: move.w dO,ndrive * wieder speichern

add.b #'0',d0 * und auch ins Menue eintragen

move.b dO,mdrive *

jsr dispmen * diese auch anzeigen

rts * und zurück

278 ATARI ST Floppy und Harddisk

KKERKKKKKEKKTKKTKKKTTTKKTT TE TITTEN

* Dekrementiert die Drivezahl innerhalb des Menuepunktes, die *

* folgenden Unterprogramme funktionieren ahnlich, inctrack, incside *
KRKRKKEAKKEKARAETKERATKKEKEEKEEKEKEKEKEEREKKARAKKEKEEEKKKKAKEKR KEKE

decdrive: move.w wdrive,d0 * aktuelles drive decrementieren

cmp.w #0,d0

ble decdr1

subq.w #1,d0

bra decdr2

decdri: move.w maxdriv,dO

decdr2: move.w dO,ndrive

add.b #'0',d0

move.b d0,mdrive

jsr dispmen

rts

KKK KKK

aktuelle Seite

gleich eins?

wenn ja, dann

Seite null einstellen

incside: move.w wside,d0

cmp.w #1,d0

blt incsi1

move.w #0,d0

bra incsi2

incsil: move.w #1,d0

*
x

*
F

+ sonst Seite eins

incsi2: move.w d0,wside * und speichern

add.b #'0',d0 * und in Menue-String eintragen

move.b dO,mside

jsr dispmen * Menue anzeigen

rts * und zurück

decside: move.w wside,d0 * Seite decrementieren s.o

cmp.w #0,d0

ble decsi1

move.w #0,d0

bra decsi2

decsii: move.w #1,d0

decsi2: move.w dO,wside

add.b #'0',d0

Programmieren in Maschinensprache 279

move.b dO,mside

jsr dispmen

rts

KERKKUKRKKKKRKKTKCKCTT KETTE

inctrack:

inctr1:

inctr2:

dectrack:

dectr1:

dectr2:

move.w wtrack,d0

cmp.w maxtrack,d0

blt inctr1

move.w #0,d0

bra inctr2

addq.w #1,d0

move.w dO,wtrack

ext. do

divu #10,d0

add.b #'0!,dO

move.b d0,mtrack

swap do

add.b #'0',d0

move.b dO,mtrack+1

jsr dispmen

rts

move.w wtrack,d0

cmp.w #0,d0

ble dectr1

subq.w #1,d0

bra dectr2

move.w maxtrack,d0

move.w d0,wtrack

ext.l do

divu #10,d0

add.b #'0',d0

move.b d0,mtrack

swap d0

add.b #'0',d0

move.b dO,mtrack+1

jsr dispmen

rts

+
3

*
* Track inkrementieren, aktueller

mit maxtrack vergleichen

wenn kleiner, dann weiter

sonst aktuellen Track auf Null

* eins addieren

und speichern

* ins Menue eintragen,

* binär -> ascii

High-Byte

Low-Byte

* Menue anzeigen

Track decrementieren

* aktueller Track gleich Null,

*

*

dann aktueller Track = maxtrack

in Menue-String eintragen

anzeigen und zurtick

280 ATARI ST Floppy und Harddisk

KKRKKKKKKEKKKKHKCKI CT TC TR TC EK

incsect: move.w wsector,d0 * aktuellen Sektor inkrementiern

cmp.w maxsect,dO * siehe inctrack

bit incsel

move.w #0,d0

bra incse2

incse1: addq.w #1,d0

incse2: move.w d0,wsector

ext.l do

divu #10,d0

add.b #'0',d0

move.b d0,msector

swap dO

add.b #'0',d0

move.b d0,msector+1

jsr dispmen

rts

decsect: move.w wsector,d0 * aktuellen Sektor dekrementieren

cmp.w #0,d0

ble decse!

subq.w #1,d0

bra decse2

decse1: move.w maxsect,d0

decse2: move.w d0,wsector

ext.l do

divu #10,d0

add.b #'0',d0

move.b dO,msector

swap d0

add.b #'0',d0

move.b dO,msector+1

jsr dispmen

rts

KAKA RK REE

* Liest den aktuellen Sektor, in wsector, wenn drbyte = 1024 dann *

* werden 1024 Byte gelesen, da das Betriebssystem mit der *

* der Anzahl der Sektoren, nur die Anzahl der zu lesenden Bytes *

Programmieren in Maschinensprache 281

x
+

£
x

+

Siehe ATARI ST INTERN Seite 399

ausrechnet, indem die Anzahl der Sektoren mit 512 multipliziert

wird. Übergibt man 2 Sektoren, werden also 1024 Byte, gelesen,

egal ob diese in einem Sektor zu 1024 Byte, oder in 2 zu 512

oder in 4 zu 256 Byte organisiert sind.

+
x

r
FF

F

KKK RRR

readsec: move.w drbyte,d0

move.w #1,d1

cmp.w #1024,d0

bne readweit

move.w #2,d1

readweit: move.w di, -(a7)

move.w wside,- (a7)

move.w wtrack, - (a7)

move.w wsector, -(a/)

move.w wdrive,-(a7)

clr.l -(€a7)

move.| #platztr,-(a/)

move.w #8,-(a7)

trap #14

add.l #20,a7

tst.w dO

bmi readser

jsr showsec

rts

readser: move.w d0,-(a7)

jsr errhand

jsr cursmess

move. #sefragi,a0

jsr printf

rts

*
*£

€£
x

r
3

I
r

r
zz

FF
FF

x
r

FF
F&F

KF

F Anzahl Bytes/Sektor

default gleich 1 Sektor

ist drbyte = 1024, dann

einen Sektor mit 1024 Bytes

lesen.

Anzahl der Sektoren

Seite

Track

Sektor, bzw. Startsektor

Drive

dummy Langwort

Pufferadresse

floprd

XBIOS-Call

Stack restaurieren

ist ein Fehler aufgetreten?

wenn ja, dann melden

sonst, gelesenen Sektor anzeigen

und zurück

* Fehlernummer auf Stack

* Fehler handeln

und zurück

HITTITE ERE EKER IT KK

* Zeigt den Sektor auf dem Bildschirm, bedient sich der showit *

* Unterroutine, die alles anzeigt, was ihr übergeben wird, siehe *

* auch bei editsec *

HAHAHA KAA TANGER 2 2 2272 2225722 2 22202020272 32 7272 2202227272712 5272 2722272722272 2 2 2272 REE

282 ATARI ST Floppy und Harddisk

showsec:

showse2:

move .W

move. L

move .W

move .W

move .wW

move .W

move .wW

cmp. W

bne

move .W

move.W

move .W

jsr

rts

#0, head2

editptr, topptr

#31,prcount

#18,zeicount

#0 ‚maxdown

#208 ,maxup

drbyte,d0

#1024 ,d0

showse2

#512 ,maxdown

#720,maxup

#63, prcount

showit
+

x
3

x
x

*
* Zeiger in Sektor

Zeiger auf Sektoranfang

Zahler zum Ausdrucken

Anzahl der gezeigten Zeilen

Scrolldown-Flag

Scrollup-Flag

Bytes in Sektor/ aus Gap-Menue

wenn es 1024 sind, dann

* Scrollup und Scrolldown- Flags

* entsprechend setzten

* auch den Druckzeilenzähler

KKEKKREEKEKEREEEEREEREEKERREEEEEEEEKERAKEEAEEREAUREREREKRERERREREREREKRKEK RAKE

* universelle Anzeigecontrol-Routine, die die Tastaturabfrage über-

* nimmt, up und down scrollt und auf die 'p' - Taste zweck Drucker-

* ausgabe prüft. Es wird ein Zeiger auf den Start des anzuzeigenden

* Speicherbereiches übergeben, sowie die obere und untere Begrenzung.

KITA CT KT KT TITTEN KR

showit:

showit3:

showit4:

jsr

jsr

move .W

move.W

jsr

jsr

jsr

jsr

swap

cmp.b

beq

cmp.b

beq

cmp.b

beq |

cmp.b

beq

cmp.b

cursbuf

Leerebuf

#0 ,head2

head2,head1

dispbuf

leerebuf

cursbuf

taste

do

#$19,d0

printit

#$48 , dO

upper

#$50,d0

lower

#$1c,d0

shsecli

#$4b,d0

x
x

x
+

x Tastaturpuffer leeren

Zeiger in Sektor

nach Zeiger für dispbuf-Routine

schreibe diesen Buffer

Tastaturbuffer leeren

* Tastaturabfrage

+
x

3
x

+3
3

x Test

wenn

Test

wenn

Test

wenn

Test

ob 'p'-Taste betätigt

ja, Ausgabe auf Drucker

ob Cursor-up

ja, handle it

ob Cursor -down

ja, handle it

ob 'RETURN'-Taste

Test ob Cursor- links

*

*

*

*

Programmieren in Maschinensprache 283

shsecli:

showiten:

upper:

upper1:

uppend:

Lower:

Llower1:

Lowend:

beq

cmp.b

bne

jsr

bra

jsr

rts

move.W

cmp.wW

beq

cmp.wW

beq

sub.w

sub. |

bra

sub.w

sub. l

bra

move .W

cmp.wW

beq

CMP.W

bne

add.w

add. |

bra

add.w

add. |

bra

shsecli

#$4d,d0

showit4

currecht

showiten

curlinks

head2,d0

#0, d0

uppend

maxup, dO

upper 1

#256, head2

#256, topptr

uppend

#208 ,head2

#208, topptr

showi t3

head2,dO

maxup, d0

Lowend

maxdown, dO

Lower 1

#208 ,head2

#208, topptr

lowend

#256, head2

#256, topptr

showi t3

+
x

x
x

&
F

*
€

+
+

£
r

&
rk

©
&

3
F

*

wenn ja

Test ob Cursor-rechts

wenn nein, zur Frageschleife zur.

sonst Cursor-rechts, anschl. zur.

zum aufrufenden Programmteil

Cursor-links aufrufen und zurück

zum aufrufenden Programmteil

'handelt' Cursor-up Betätigung

zeigt der Pointer auf den Sektor-

Anfang, dann mache nichts

zeigt er auf den oberen Maximal -

punkt, dann subtrahiere 208 zum

Ausgleich

sonst subtrahiere 256

von Zeiger in Sektor, und Zähler

und zurück

subtrahiere 208 von Zeiger in

in Sektor zum Angleich an Se.

und zurück zur Anzeige

handling des Cursor -down

* wie upper, nur addieren zu

* Zeiger und Zähler

* weiter anschauen

KKK TEE I KK EN

* Druck den Inhalt des Buffers auf den topptr zeigt als 16 2-stellige *

* sedezimal Zahlen, und 16 ASCII-Ziffern auf Drucker, die Anzahl *

* der zu druckenden Zeilen wird in prcount übergeben *
KEKKKKKEKEERK KARE KEKE AKHTAR REECE

284 ATARI ST Floppy und Harddisk

printit:

printitO:

printit1:

printit2:

printit3:

move .W

movem. lt

move. l

move .W

move.b

move .W

jsr

dbra

move. |

move .W

move.b

move.W

jsr

dbra

jsr

jsr

move. lt

move. l

move .W

move .W

move.W

move.W

move.W

jsr

jsr

move.W

move.

move .W

move. W

jsr

dbra

jsr

add. |

add.w

jsr

dbra

jsr

movem. |

move.W

bra

#0,device

a3-a5/d3-d7,savereg

#misecta,a5

#45 ,d7

(a5)+,d0

d0,-(a7)

conout

d7,printito

#miclusa, a5

#13,d7

(a5)+,d0

d0, -(a7)

conout

d7,printitt

crlinef

crlinef

topptr,a4

a4,a5

head2, head1

#15 ,d3

d3 ,d4

prcount ,d5

d4 ,d3

header

hex16

d4,d3

a5,a4

#5 ,d/

#$20, -(a7)

conout

d7,printit3

char16

#16,a5

#16,head1

crlinef

d5,printit2

leerebuf

savereg,a3-a5/d3-d7

#2 ,device

showit4

*
x

+
*

+
*+

+
&€

*
3

r
©

r
r

r
s
r

*
F

*
+

x
£

3
*

*

conout auf Drucker

retten der Register

Drucken von aktuellem

Track, Sektor und Seite

drucken

Clusternummer drucken.

Carriage-Ret. + Line-Feed

2 mal

Zeiger in Sektor

speichern

aktuellen Zähler

Spaltenzähler entspricht 16 Sp.

speichern

Anzahl der zu druckenden Zeilen

Anzahl Zeilen

Ausgabe der Zählbytes

Ausgabe von 16 sedez. Bytes

Zähler restaurieren

Zeiger wieder auf Sektoranfang

fünf Leerzeichen zwischenschieben

Ausgabe

Augabe von 16 ASCII-Zeichen.

Zeiger auf Sektor angleichen

neue Zeile anfangen

bis alle gewünschten Zeilen

gedruckt wurden

Rückruf der Register

Ausgabe wieder auf Bildschirm

und Anzeige des Sektors

Programmieren in Maschinensprache 285

printerr:rts

KRKKKKKKKKKKKKKHTKTT TECK KT KRITIK TITTEN

* schaltet im Sector Mode in den Edit Mode, indem die sehr flexible *

* editit-Routine aufgerufen wird, dieser Routine wird nur ein *

* Zeiger auf den Start des zu editierenden Speicherbereichs über- *

* geben, und zwei Begrenzungsvariablen

KHKKKKAATAKKEKAEHKAAARRAKERERAEAIAAEKEAHAEKEKEATEEKAKRKKKK Ka KR KEKE

editsec: jsr

move. |

jsr

move .wW

move .W

jsr

jsr

move .W

cmp.wW

bne

move .W

move .W

bra

edseweil: move.w

move .W

edsewei2: move.w

move. l

jsr

jsr

jsr

move .W

jsr

jsr

jsr

move. |

jsr

jsr

jsr

cursmess

#edfrag1,a0

printf

#0,spalte

#4,zeile

loccurs

clrest

drbyte,d0

#1024 ,d0

edsewei 1

#512,maxdown

#720,maxup

edsewei2

#0 , maxdown

#208,maxup

#18, zeicount

#platztr,editptr

editit

curlinks

curlinks

#2,zeile

loccurs

delline

cursmess

#sefrag1,a0

printf

cursof f

showsec

*

edit message anzeigen

restlichen Bildschirm löschen

wenn 1024 Bytes/Sektor dann

* Begrenzung höher wählen, damit

* diese 1024 Bytes auch editiert

*
+

+
+

3
+

3
F

werden können

sonst entsprechend kleinere

Begrenzungen wählen

19 Zeilen anzeigen

Pufferadresse

und editiern

anschließend Sektormenue

wieder auf lesen einstellen

Zeile löschen

Message anzeigen

* Cursor ausschalten

* und den Sektor noch mal anzeigen

286 ATARI ST Floppy und Harddisk

jsr leerebuf

rts

* Tastaturpuffer leeren

* und zurtick

KEKE KKK

* Dies ist nun die flexible Editroutine, die beliebig viele Zeilen *

* a 16 Byte editiert, und diese Zeilen auch als 16 sedezimal und *

* 16 ASCII Zeichen anzeigt *

KEKE KKK

editit: movem.| a3-a6/d3-d/7,-(a7) * Register retten

move. editptr,topptr * Pufferadresse

move.w #0,head2 * Zahler fur Puffer initialisieren

move.w #0,head1

jsr dispbuf * erste Pufferseite anzeigen

jsr leerebuf * Tastaturbuffer leeren

move.w #7,spalte * Edit beginnt in Spalte 7

move.w #4,zeile

jsr loccurs * Cursor positionieren

editsO: jsr curson * blinkenden Cursor einschalten

move.t #retwi,-(a7) * Adresse eine Variablen an

jsr hexein * hexein übergeben, in dieser

jsr cursoff * Adresse steht dann die

tst.w retw1 * eingegebene Zahl, war die Zahl

bmi otherkey * negativ, dann andere Taste bet.

move.w zeile,d0 * aktuelle Zeile

subgq.w #4,d0 * Startoffset der ersten Zeile

Isl.w #4 ,d0 * mal 16 Zeichen / Zeile

move.w spalte,d2 * plus Spalte - Startoffset

sub.w #7,d2 |
ext. l d2 * dividiert durch 3 Zeichen pro

divu #3 ,d2 * Byte (1 Space + 2 Digits)

add.w d2,do * plus Zeilenoffset

move.w retwi,di * eingegebene Sedezimalziffer

move.l topptr,a3 * Startadresse des Puffers

move.b d1,0(a3,d0.w) * Ziffer in Puffer eintragen, mit

jsr dispzeil * Offset als Zeiger, Zeile anzeigen

cmp.W #52,spalte * war es das letzte Editbyte in der

bit edits! * Zeile ?

move.w #4,spalte * wenn ja, an Zeilenanfang zurück

Programmieren in Maschinensprache 287

edits1: addq.w #3,spalte * sonst 3 Zeichen/Byte addieren

jsr loccurs * Cursor positionieren

bra edits0 * und weiter editieren

KEKKKKKKKEKKEKEEREKREEEEREEKEREEREEEEREAEEKEKEEEREKRERREEEREAEEEREK KKK

otherkey: move.l varl1,d0 * hierhin wird verzweigt, wenn

swap do * keine gültige Ziffer eingegeben

cmp.b #$4b,d0 * wurde, Cursor left?

beq oleft * ja, handle it

cmp.b #$4d,d0 * cursor right

beq oright

cmp.b #$50,d0 * Cursor down

beq odown

cmp.b #$48 , dO * cursor up

beq oup

cmp.b #552 ,d0 * Insert-Taste

beq edend1

cmp.b #572,d0 * Enter-Taste

beq edend1 * beendet edit Mode

cmp.b #$1c,d0 * Return-Taste beendet ebenfalls

beq edend1 * den Edit-Mode

jsr dispzeil * sonst Zeile anzeigen

jsr loccurs * Cursor positionieren

bra edits0 * und weiter editieren

oleft: move.w spalte,dO * Cursor left

cmp.W #7,d0 * Cursor schon am linken Rand,

bgt oleft1 * wenn nicht, dann weiter

move.w #55,spalte * wenn ja, wrap arround

oleft1: subq.w #3,spalte * wenn nicht, 3 Zeichen/Byte

jsr loccurs * subtrahieren, Cursor positioniern

jsr leerebuf * Tastaturbuffer leeren

bra edits0 * und weiter editieren

oright: move.w spalte,dO * das gleiche in grün für Cursor

CMP.W #52,d0 * right

blt oright1

move.w #4,spalte

oright1: addq.w #3,spalte

jsr loccurs

288

leerebuf

edits0

jsr

bra

ATARI ST Floppy und Harddisk

KEKKKEKKKEKEKEKEKEREREEKEEEREERE ERE ERE KE

odown: jsr cursof f

move.w zeile,dO

cmp. W #22,d0

bit odown2

move.w head2,d0

cmp.W maxdown, dO

bne odown1

add.w #208 ,head2

add. lt #208, topptr

move.w spalte,oldspal

jsr dispbuf

move.w oldspal,spalte

move.w #5,zeile

jsr loccurs

bra odownend

odownl: cmp.w maxup, dO

beq odownend

add.w #256, head2

add. | #256, topptr

move.w spalte,oldspal

jsr dispbuf

move.w oldspa1,spalte

move.w #6,zeile

jsr loccurs

bra odownend

odown2: addq.w #1,zeile

jsr loccurs

odownend: jsr leerebuf

bra edits0

x

N
r

&€
€*

F&F

F&F

FF
r

FE
FF

FF
x

F
+

+
+

+
&

Cursor down betatigt,

aktuelle Zeile

kleiner als 22

wenn ja, weiter

sonst Zahler mit

Begrenzung vergleichen

wenn nicht gleich weiter

wenn gleich, den Rest des

Buffers bearbeiten, darum nur

208 anstelle von 256 addieren

den Buffer erst anzeigen

Cursor in alte Spalte

Offset in Buffer

Cursor positionieren

und zurück

wenn gleich oberer Begrenzung

dann mache nichts

sonst addiere 256 zu den

Zeigern

und zeige den Buffer an

und zurück

wenn nicht in Zeile 22, dann

erhöhe aktuelle Zeile um eins

leere Tastaturbuffer und

weiter editieren

KEAKKKKKKEKEKEUEKKEERREKEEREEERKEEEEREREEREEKKRERKERERKEERERERERKRRKKRK RRR KK

oup: jsr cursoff

move.w zeile,dO

cmp.W #4 ,d0

* das gleich wie für Cursor-down

*

* aktuelle Zeile =

nun für Cursor up

Zeile 4

Programmieren in Maschinensprache 289

oup1:

oup2:

oupend:

edend1:

bne

move.wW

cmp.W

beq

CMP.W

beq

sub.w

sub.|

move .W

jsr

move .W

move.W

jsr

bra

sub.w

sub. l

move .W

jsr

move .W

move.W

jsr

subq.Ww

jsr

jsr

bra

move .wW

move .W

jsr

movem. l

rts

oup2

head2,d0

#0, d0

oupend

maxup, d0

oup1

#256,head2

#256, topptr

spalte,oldspat

dispbuf

oldspa1,spalte

#19, zeile

loccurs

_ oupend

#208 ,head2

#208, topptr

spalte,oldspat

dispbuf

oldspa1,spalte

#19, zeile

loccurs

#1,zeile

loccurs

leerebuf

edits0

#0,spalte

#4 ,zeile

loccurs

(a7)+,a3-a6/d3-d7

+
£

r
r

 r
€

r
r

x
FF

FE
x

HF
F

+
*

+
3

3
*

*

wenn nicht, dann weiter

wenn ja, Zähler laden

am oberen Ende des Editpuffers?

wenn ja, mache nichts

wenn nein, vergleiche mit Begre.

wenn gleich subtrahiere nur 208

sonst subtrahiere 256 von den

Zeigern,

alte Spalte laden

Buffer

Cursor

Offset

Cursor positionieren

und zum Ende

oberen Rest des Buffers anzeigen

anzeigen

in alte Spalte

in Zeile

wenn nicht in oberster Zeile,

einfach Zeile decrementieren

Tastaturbuffer leeren

und weiter editieren

Editieren abbrechen, Cursor

in Zeile 4 positionieren

Register zurück

und zurück

KREKKKKKKKKTIKTKTKTT KK TITTEN KU

writsec: movem. |

move .W

move.W

jsr

move. l

a3-a6/d3-d7,-(a7) * schreibt einen Sektor auf Disk

#0 ,spalte

#2,zeile

loccurs

#wrfragi,a0

*

*

erst einmal fragen ob wirklich

geschrieben werden soll

290 ATARI ST Floppy_ und Harddisk

jsr printf

move. #misecta,a3 * aktuellen Track,Sektor ect.

move.w #45,d3 * auf Bildschirm ausgeben

writl1: move.b (a3)+,dO

move.w dO0,-(a’)

jsr conout

dbra d3,writl

move.l #wrfrag2,a0

jsr printf

jsr leerebuf * Tastaturpuffer leeren, und

jsr wtast * auf Tastendruck warten

cmp.b #'y!,dO * wurde weder 'y! noch 'Y'

beq writit * betatigt, dann nicht schreiben

cmp.b #'Y' dO

bne wrend1 * und zum Ende hüpfen

writit: move.w drbyte,d0 * wenn drbyte = 1024, dann die

cMP.W #1024,d0 * selbstgeschriebene writesec-

beq selfsect * Routine benutzten

move.w #1,d1 * sonst einen Sektor schreiben

writil: move.w d1,-(a7) * Anzahl |

move.w wside,-(a7) * Seite

move.w wtrack,-(a’) * Track

move.w wsector,-(a/) * Sector

move.w wdrive,-(a/) * Drive

clr.l -(a/) * Dummy-Langwort

move.l #platztr,-(a7) * Pufferadresse

move.w #9,-(a7) * flopwr

trap #14 * XBIOS-Call

add. | #20,a7

tst.w do * Test ob Fehler

bmi writerr * Fehler handeln

wrend2: jsr delline

jsr leerebuf

jsr cursmess . * Mode anzeigen

move. l #sefrag1,a0

jsr printf

movem.l (a’)+,a3-a6/d3-d7

rts * und zurück

Programmieren in Maschinensprache 291

wrend1: jsr delline

move.l #wrfrag3,a0 * message = "not written"

jsr printf

jsr leerebuf

jsr wtast

bra wrend2

writerr: move.w d0,-(a’) * Fehler handeln

jsr errhand

bra wrend2

KEKEKKEEEKEKKEKRKKEKKEREKEKEREREREEKEKEKEKEEREAAEEREREEEREREREHREAREERERERKR RRR

KAUKEKKEKEEEREKEEKEEREEEEREEEEREEERREKEREREREREEEEEREREEEREERREEREKK KS

Hier geht es los mit der modularen Assemblerprogrammierung

geben Sie einfach die Routinennamen mit dem RTS ein. Im

Programm funktioniert dann nur das Sektormenue, d.h. Sie

können dann nur Sektoren lesen und schreiben, wenn dieses

Rumpfprogramm dann fehlerfrei funktioniert, können Sie die

vollständigen Unterprogramme aus dem jeweiligen Listing

hier eintragen. Am besten tragen Sie Jeweils den ganzen, zu

einem Menuepunkt gehörenden Block ein, da die meisten

Menuepunkte auf Routinen der anderen Punkte zurückgreifen

ein wenig sollten Sie auch auf die Reihenfolge der Implentation

achten, als Empfehlung schlage ich vor: erste OPTION, dann

TRACK, anschließend TRACK with SYNCS, FORMAT und CLUSTER *

KEKKKKKKKKKKKKKKKTT TI KT KETTE TI KT TITTEN KK
x

££
£

££
$$

€
F€

F
F

*¥
€£

££
€

€
FF

FF
F

FF
FE

HF
F

KEKRKKKKKKKKKKKTCKTK TITTEN KH KU

KERKKKKKKKKKKKKKKK TC TITTEN KK

KEKE KEKE KK CK KK

* Subroutines des Menuepunktes OPTION, sollten zuerst implementiert *

* werden, da hiermit auf die Möglichkeit gegeben wird den 10. Sektor *

* auf dem 82 Track ect. zu lesen, außerdem werden einige Routinen *

* von anderen Programmteilen aufgerufen *

KKKKAKAKAKKK KAKA Ka KK RK KKK

KAKKEKKEKKEAKKEEAEKEKEEEKEKEKEKEEAEEKEREEKEREEERERREEEERERERREEREKRRRRRERKRKKKRE

292 ATARI ST Floppy und Harddisk

incmaxtr: rts

decmaxtr:rts

incmaxse:rts

decmaxse: rts

dodrivin: rts

showbpb: rts

initdriv: rts

rdfat: rts

KEKAKEKKKEKEKEKERKKREKEEEKERKEKEKKEEEE KREUK

KAEKKKKKKKKEAAKKEKEKEKEEEKEKRRKEEKEEEKEKEREREEKEEREERREREREREREEEEREEERKEKRKKR KKK KT

* Subroutines des Menuepunktes TRACK des Hauptmenues plus *

* einer eigenen Sektorschreibroutine *

KRKEKKKKKKKAKHKEKEKKKAAEKEEEKEKAKAKEEK KHAKI

KREKKKAKKKKKKKKKTKK KK TC ERE

22 2202212712712 7227020202 02702 1205 72 7202 7202727202272 72 0272020272272 72 7202 022 720212 12 7277 72 0272270272722 722 2 272727202 I IRE

eigene Sektorschreibroutine, greift direkt auf Controller und DMA

chip zu. die XBIOS-Routine zum Sektorschreiben läßt sich im Gegen-

satz zur Sektorleseroutine nicht dazu "Uberreden" Sektoren mit

der Grundaustattung des Programms (nur mit Sektormenue) ist es

leider nicht möglich Sektoren mit 1024 Bytes pro Sektor zu

schreiben.

WERKE TE EN KU

x
x

x
x

x
x

%* *

*

*

1024 Byte zu schreiben, daher wird diese Routine aufgerufen. In *

*

*

*

selfsect: rts

Programmieren in Maschinensprache 293

KEKKKEKEKEEEREEEEEERREE EERE REE

* Subroutines des Menuepunktes TRACK des Hauptmenues *
KKK AKAKAA RAHAT EAHA HAE KAT TH HT TI TI KT TC KH KK KU

readitr: rts

incstra: rts

decstra: rts

edittr: rts

showtr: rts

writitr: rts

FHKE REECE

KIKKKKKKEKEKEKEKAKHEKEREEEEEKEEEEEEKRAEEREKCREKRRREEKEREEREEEEEEKERKEEE

* Subroutines des Menuepunktes TRACK with SYNCS, die Routinen *

* greifen auf keine anderen Routinen zurück, kann daher wahlfrei *

* implementiert werden *
KKK ERRATA KKK

KHKKKKKKKKEIKKEEKREKREEKEEEEKEEREAEKEEK KERR EKER

rdtracks: rts

shtracks: rts

readadr: rts

showadr: rts

FRIAR KAKI TITTEN U

* Subroutines des Menuepunktes CLUSTER des Hauptmenues, die Routinen *

* greifen auf Routinen des OPTION-Menue-Punktes zurück, daher bitte *

* das Option-Menue zuerst implementieren *
FHA AHA KAA AA KIKI RETAKE RETAKE AER

294 ATARI ST Floppy und Harddisk

edclust: rts

decclust: rts

incclust: rts

nextclst: rts

wrelust: rts

rdclust: rts

stclust: rts

HIKKKKKEKKKEEKRKEEEEKEEK EERE ERK KEKE RRR IRKEEERIEREEKEEEEREEREREREEEEREREERERK KEK

* Format Unterroutinen des Hauptmenues *

* diese Routinen greifen auf Unterprogramme des Menuepunktes *

* TRACK with SYNCS zurück, daher muß der Menuepunkt TRACK with *

* SYNCS zuerst implementiert werden, und danach erst der Formatter *
KAKKKKKKKKKKKKKKTCK TC T KT KK KK KKK KKK

formati: rts

xformat: rts

incgap1: rts

Incgap2: rts

incgap3: rts

incgap4: rts

incgap5: rts

decgap1: rts

decgap2: rts

Programmieren in Maschinensprache 295

decgap3: rts

decgap4:rts

decgap5:rts

incbyte:rts

decbyte: rts

KEKE ERE RE KICK CK CK KK KK KK

KKKKKKKKKKKTHKKKTK KK KT KKITI TK K TTIK KCKTIKCICCK K KKKKK K KU

* *

* Hier folgen einige sehr oft benötigte Unterprogramme *

* . *

HIAKKKKKKEEKEEKEREEEKEEREEEREEEEREKEEEKEEEEKREEREEREREEEREKREERE KKK

KKEKREEKCKEEEEREEREEEERERREEEKREAKEEEERRERREEERREREREEKEREKRHEREEREKRRERK KKK

KEKE

* zeichnet eine Horizontale Linie von 0,20 nach 639,20 *
KKIKKEKIK KT TC TH KT TH KT HK HK KK KK IK KT KK KH KK KT KK KK IE KK

hline: move.l Lineavar, a0 * Zeiger auf Line-A-Variablen

move.w #0,38(a0) * X1

move.w #20,40¢a0) * Y1

move.w #639,42(a0)

move.w #1,24(a0) Farbe

move.w #0,36(a0) Write-Mode

Muster + Anzahl Musterworte

Horizontal Line

move.l #pattern,46(a0)

move.w . #0,50(a0)

dc.w $a004

rts

+
+

x
*

KARKKKKKETEAEEEEEKRREEE EERE

* Schreibt einen String auf den Bildschirm *

KKKKKKKKKKKKKKKKKKKKKK KKK AEE KKK N KT KT KT KT N IK IK RRR RK:

296 ATARI ST Floppy und Harddisk

printf: move. l a0,-(a’) * schreibt den String, dessen

move .W #9 ,-(a7) * Anfangsadresse sich imAdress-

trap #1 * register AD befindet, auf den

addq. l #6,a7 * Bildschirm, String muß mit Null

rts * abgeschlossen werden

HIKER REET EKS

* Initialisiert die Line-A-Variablen, und speichert die Adresse des *

* Variablenblocks in "Lineavar". | *
KHAKKKAKKKEEEAHKEEEEEEKEERREEEKKKEEKEERKKREEEKKEKREEKREKKKAKK KKK RR IK

inlinea: dc.w $a000 * initialisiert die Line-A-Variabl.

move. | a0,lineavar * Adresse speichern

move .W #0,32(a0)

move .W #$ffff,34(a0) * Muster der Linie

move .W #0, 36(a0) * Writing mode = replace

move .W #1,24(a0) * Zeichenfarbe

rts

KAKA AA 2 2027 27272702702702 02 0772 02 7272 72 272727202 222 2 222027272272 727 272 727272 72272 272 2722 2 2720227272222 72 2 27272707

* Line-A- initialisieren *

KEHKKKKKKKKKKK KT TI LT KL TC HT TE TR N I TRITT HN IK HT TR KR KK KH KK

start: jsr ‘ inlinea * Line A initialisieren

rts

KEKE TICKET TI KKK

Schreibt eine Zahl die in Wortgröße auf dem Stack übergeben wird

als 2-stellige Sedezimalzahl auf den Bildschirm, bzw. auf das

durch den Inhalt von device bestimmte Gerät

+
x
x

x
&

+
x

3
8

x

KERKKKKKKKKKKTTKTTT KT TI NT TC TC TC TC TC CK U

hexpr: move.w 4(a7),d1 * Argument vom Stack holen

and.w #500ff,d1 * Highwort ausmaskieren

move.w di,varw] * Byte speichern

Programmieren in Maschinensprache 297

ischar!:

secdig1:

ischar2:

hexpren:

hexdig:

hexchar:

lsr.w

ext.w

and.w

cmp.W

bgt

jsr

bra

jsr

move .W

and.w

CMP.W

bgt

jsr

bra

jsr

move.|

add. l

jmp

add.w

move.W

move.W

move.W

trap

adda. l

rts

sub.w

add.w

move.W

move.W

move.W

trap

addq. l

rts

#4 ‚41
di

#500ff,d1

#9 ,d1

ischart

hexdig

secdig1

hexchar

varw1,d1

#5000f ,d1

#9 ,d1

ischar2

hexdig

hexpren

hexchar

(a7)+,a0

#2,a7

(a0)

#48 ,d1

di1,-(a7)

device, -(a7)

#3,-(a7)

#13

#6,a7

#10,d1
#65 ,d1

d1,-(a7)

device, -(a/)

#3,-(a7)

#13

#6 ,a7

*

*

*

*

* unteres Nibbel "rausschieben!

auf Wortgröße erweitern

high-Byte ausmaskieren

* größer als neun, dann

einen Character von 'A'-'F! drucken

sonst eine Ziffer von '0'-'9!

* nun das untere Nibble des low-Byte

* umwandeln, ausmaskieren der oberen

* größer als neu, siehe oben

zum ende

* Rücksprungadresse noch auf dem STack

* Stack vom Variablen befreien

+
*
3
.
3

+

und zurück zum Rufer, wie rts

ASCII-Wert von '0' addieren

und drucken

conout

BIOS-TRAP

* Zehn abziehen und ASCII-Wert von

* 'A' addieren

und drucken

298 ATARI ST Floppy und Harddisk

KKK ERE RRR KKK

* Ausgabe einer 2 Byte Integerzahl als Dezimalzahl *

HAKKAR KEKE AKKKR KKK KKK KKK KKK KKK KK

dezpr:

dezpr1:

dezpr2:

dezpr3:

dezpr4:

dezpr5:

dezpr/:

#0 ,dflag

4(a7),d3

d3

#10000,d3

dezpr1

#-1,dflag

deznum

d3

d3

#1000,d3

dezpr3

#-1,dflag

deznum

d3

d3

#100,d3

dezpr4

#-1,dflag

deznum

d3

d3

#10,d3

dezpr7/

#-1,dflag

deznum

d3

#-1,dflag

deznum

(a7)+,a0

#2,a7

(a0)

*

*
¢

*
3

3
*

*
*

©
+

x
x

x
*

drucken eine 2-Byte Integer Dezimal-

zahl, führende Nullen werden unter-

drückt und als Spaces ausgegeben

Flag für geforderte Ausgabe, keine

drucken

Rest der 1. Division nun durch 1000

dividieren

und dann als 1000'er Stelle drucken

ungleich Null, dann Flag setzten

Rest durch 100 dividieren

und drucken

Rest durch 10 dividieren und

als Zehnerstelle der Zahl drucken

den Rest der letzten Division auf

jeden Fall drucken, da bei Null-

Ergebnis auch eine Null angezeigt

werden soll.

Rücksprungadresse in AO holen, STack

restaurieren, und zurück zum Rufer

Programmieren in Maschinensprache 299

+ deznum: tst.w dflag druckt eine Ziffer von '0'-'9!

bne deznum1 * aber nur, wenn dflag ungleich null

move.b #' ',d0 * ist, durch

move.w d0,-(a7)

bra deznum2

deznum1: add.b #'0',d3 * Addition von ASCCI-Wert für '!0'

move.w d3,-(a’)

deznum2: jsr conout * drucken

rts .

KREKKKKKKKKKKKKKKCTC TITTEN KT KCK KU

dezlpr: move.w #0,dflag * druckt eine 4-Byte Integerzahl, die

move.l 4(a7),d3 * auf dem Stack als Langwort über-

move.l d3,d4 * geben wird, als Dezimalzahl,

divs #10000,d3 * führende Nullen werden ebenfalls

ext.l d3 * nicht berücksichtigt, und als

divs #10,d3 * spaces gedruckt.

* move.w d3,d5 erst durch 100000 dividieren.

tst.w d3 * wenn null, dann keine 100000'er Stelle

beq dezlpr1

move.w #-1,dflag

dezlpr1: jsr deznum * sonst die 100000'er St. drucken

move.w d5,d3 * Ergebnis der Division wieder mit

muls #10,d3 * 100000 multiplizieren, Rest zur
muls #10000, d3 * Ausgangszahl wie bei dezpr weiter

sub. l d3,d4 * behandeln.

move.l d4,d3

divs #10000, d3

beq dezlpr3

dezlpr2: move.w #-1,dflag

dezlpr3: jsr deznum

swap d3

ext.| d3

divs #1000, d3

beq dezlpr4

move.w #-1,dflag

300 ATARI ST Floppy und Harddisk

dezlpr4: jsr deznum

swap d3

ext.L| d3

divs #100,d3

beq dezlpr5

move.w #-1,dflag

dezlpr5: jsr deznum

swap d3

ext.l d3

divs #10, d3

beq dezlpr6

move.w #-1,dflag

dezlpr6: jsr deznum

swap d3

move.w #-1,dflag

jsr deznum

move.l (a7)+,a0

addq.l| #4,a7

jmp (a0)

KEKKKKKKEREREEKEEEEAKEAEEEEEEREKREREKTAREREEEEEEEREEEEREEKEEEEKHKAKRR KKK

* Anzei ge der Menueleiste *

KEAKEKKEKEEKEEKKEEKEEERECEERE EERE KKEEEEERKKKEEEKRERKEKREEEREREEEREKRKEEKRERKE

dispmen:

dispmen]:

dispweil:

move.w #0,spalte * Cursor auf oberste Zeile

move.w #0,zeile

jsr loccurs * positionieren

move. l menueadr , a6 * hier steht ein Zeiger auf die

move. | revnum, d6 * Adressen der Menuestrings

subq. l #1,d6 * in revnum befindet sich die

beq dispwei1 * Nummer des revers dargestellten

subq. l #1,d6 * Menuepunktes

move. (a6)+,a0 * die einzelnen Adressen holen, und

jsr printf * mittel printf drucken, bis alle

dbra d6,dispment * Menuestrings bis zum Reversen gedrukt

jsr revon * dann den reversen Menuestring

move. lt (a6)+,a0 * anzeigen,

jsr printf * revers wieder ausschalten

jsr revout

Programmieren in Maschinensprache 301

dispmen2: move.|

move. l

sub. l

beq

subq. l

jsr

dbra

dispmen3: jsr

jsr

rts

ganz,d/

revnum, d7

dispmen3

#1,d7

(a6)+,a0

printf

d7,dispmen2

hline

delrest

+
+

*
+

* Gesamtzahl aller Menuepunkte

minus der Reversen Nummer

wenn Null, dann war es letzter

sonst die restlichen Menue-

punkte nichtrevers drucken

* bis alle gedruckt sind

* zu guter letzt, eine horizontale

* Linie zeichnen, und zurück

KREKKREKKKEEKREEKEREREEEEREKREKREEEE REE

* *

* Schreibt den Inhalt eines Speicherbereiches, dessen Anfangs- *

* adresse in topptr übergeben wird, als 16 2-stellige sedez. Zahl *

* sowie 16 zugehörige ASCCI-Zeichen auf den Bildschirm .*

KRKKKKKKKKKKKRTT TITTEN TI TR KK KK KK

dispbuf:

dispb1:

movem.|

move.|

move. l

move.W

move .W

move .W

move.W

move.W

move.W

move.W

jsr

move .W

move.W

move.W

jsr

jsr

jsr

move .W

move. |

a3-a5/d3-d7,savereg

topptr,a4

a4,a5

head2, head1

#15 ,d3

d3,d4

zeicount,d5

#4 ,zeile

#4,curzei1

#0, spalte

loccurs

#0,spalte

curzeil,zeile

dé ,d3

loccurs

header

hex16

d4,d3

a5,a4

+
xx

r
3»

x
F

F Register speichern

Startadresse des Speicherber.

zwischenspeichern

Zähler für offset in Block

Spaltenzähler = 16 Spalten

zwischenspeichern

Anzahl der Zeilen wird in

zeicount übergeben

Cursor auf Zeile 4 Spalte 0

positionieren

* Cursor auf Current-zeile

* positionieren

+
+

*
3

3%

Spaltenzähler

Zähler in Block drucken

16 Sedezimalzahlen drucken

Spaltenzähler

topptr

302 ATARI ST Floppy_ und Harddisk

move.w #59,spalte * in Spalte 59 die Ascii-Zeichen

move.w curzeiil,zeile

jsr loccurs

jsr char16 * 16 Ascii-Zeichen drucken

add. l #16,a5 * 16 zum Zeiger in Speicher add.

add.w #1,curzeil * in der nächsten Zeile weiter

add.w #16,head1 * machen, 16 zum Zähler addieren

dbra d5 ,dispb1 * bis alle Zeilen angezeigt

jsr leerebuf * Tastaturpuffer leeren

movem.l savereg,a3-a5/d3-d7 * und die Register zurückholen

rts

KAIKKKKKKEKEAEKEEREREREKREKEEEAREEREKEKTERERRRERERERERERERERER ERE RERERREERE

* schreibt einen Header vor jede Zeile *

eT TST ESC TEP T Ee Leer ee eee ec ee eer eee eee ere r ere eee ere ee eee KK KK KK TE KK KK KH

header: move.w head1,d6 * Zähler

Isr.w #8 ,d6 * durch 256 dividieren (High-Byte)

move.w de6,-(a’) * und als sedezimal-Zahl drucken

jsr hexpr

move.w headi,-(a’) * Low-Byte drucken

jsr hexpr

move.b #':',d6 * Doppelpunkt drucken

move.w d6,-(a7)

jsr conout

rts

HHA AKA AHHH KU

* schreibt 16 sedezimal-Zahlen *

KkkekeKKKK KKK RK RK KR KKK I I KL RK KR KR RK TI KT RR KKK RK RK RK KKK

hex16: move.w #$20,-(a7) * zwei Spaces drucken

jsr conout

move.w #%$20,-(a/7)

jsr * conout

hex161: move.b (a4)+,d7 * den Inhalt des Speicherbereichs

move.w d/,-(a7) * als Sedezimalzahlen Drucken

jsr hexpr * jeweils 16 mit einem Space dazwi.

move.w #%20,-(a7)

Programmieren in Maschinensprache 303

jsr conout * der Zähler wird in d3 übergeben

dbra d3,hex161

rts

KEKEKEKKEKEKKEREKEKKEEKETCEEREEEKEKEEKEKEKEEREKEEKEEERREEEEEEREKREKRKKKRKKKKE

* schreibt 16 ASCII-Zeichen auf den Bildschirm *

KKEKKEKKKKKKREKKKKKK KKK KKK KKK RK KKK KK RRR TI KK KKK

char16: move.b #!':',d7 * erst einen Doppelpunkt und

move.w d’,-(a’)

jsr conout

move.w #320,-(a7) * zwei Spaces. dann

jsr conout

char161: move.b (a4)+,d/7 * 16 Ascii-Zeichen drucken

cmp.b #$20,d7 | * alles was kleiner als $20

bgt char162 * als Punkt drucken

move.b #!'.',d7

char162: ext.w d7 * sonst High-Byte ausmaskieren

and.w #%00ff,d’

move.w d/,-(a7)

jsr conout ~ * und drucken

dbra d3, char 161 * 16 mal, in D3 Ubergeben

rts

KRKKKKKKKKKKKKKT KT KT ET KT KK KK I KK KK

* schreibt eine ganze Zeile auf den Bildschirm *

KKKEKEKEKEEREKREREEREEKEEEREEEEERER EERIE TITTEN

dispzeil: move.w spalte,oldspai * eine Zeile im 16/16 Format

move.w #0,spalte * drucken

jsr loccurs - * Cursor positionieren

move.w oldspai,spalte

move.w #15,d3 * jeweils 16 Spalten

move.w d3,d4

move.l topptr,as.

clr.l do

move.w zeile,d0

subq.w #4,d0

Lsl.w #4 ,d0

Zeiger auf Anfang des Speicher-

bereiches, mit Hilfe der

momentanen Zeile, die Position

relativ zum Anfang des Bereiches

berechnen: mal 16 +
+

x
r

F

304 ATARI ST Floppy und Harddisk

move.w d0,di * zwischenspeichern

add.w head2,dO * Zähleroffset addieren

move.w d0,head1 * in aktuellen Zähler übernehmen

ext.L d1

add. | d1,a4 * zum Zeiger in Speicherbereich

move.| a4,a5 * addieren, gleich Zeiger auf

jsr header * die momentan editierte Zeile

jsr hex16 * 16 Zahlen drucken

move.w spalte,oldspa1

move.w #59,spalte

jsr loccurs

move.w d4,d3

move.l a5,a4 * und 16 ASCII's drucken

jsr char 16

move.w oldspai,spalte * alte spalte zurückholen, und

jsr loccurs * Cursor positionieren

rts

KEKKKKKKKKKKTKKKCHK TC TC KETTE KT KK

* Hier folgen die Routinen für die Terminalemulation *

KAÄKKKKKKKKKKHKTK KT TI KT KT KIT IT TI KK

revon: move.| #revers1,a0 * Reverses drucken ab hier ein

jsr printf

rts

revout: move.l #revers2,a0 * revers ab hier wieder aus

jsr printf

rts

delrest: move.l #clrest2,a0 * löscht den Rest der Zeile

jsr printf

rts

delline: move.l #delline1,a0 * löscht die ganze Zeile

jsr printf

rts

Programmieren in Maschinensprache 305

clear:

home:

crlinef:

clrest:

curson:

cursoff:

cursmess: move.w

move. l

jsr

rts

move. |

jsr

rts

move .W

jsr

move .W

jsr

rts

move. l

jsr

rts

move. lL

jsr

rts

move. |

jsr

rts

move .W

jsr

rts

#clear1,a0

printf

#home1 , a0

printf

#$1c,- (a7)

conout

#$0a,-((a7)

conout

#clrest1,a0

printf

#curon1 , a0

printf

#curout1 , a0

printf

#30,spalte

#2,zeile

loccurs

cursbuf: move.w #0,spalte

move.w #4,zeile

jsr

rts

loccurs

Löscht den ganzen Bildschirm

* und positioniert Cursor in

* obere linke Ecke

* positioniert Cursor in obere

* Linke Ecke

* gibt Carriage-Return mit

Linefeed auf Ausgabegerat

Löscht den Rest des Bildschirms

schaltet Cursor ein

schaltet den Cursor aus

* positioniert den Cursor

* zur Ausgabe von Mitteilungen

positioniert den Cursor zur

* Ausgabe des Sektorbuffers

306 ATARI ST Floppy und Harddisk

KEKE RERERERERREREEEKEERERKEREREREEEREKERRREEKKEKREEEE

* Cursorpositionierung *
KKK KHATER EEE HERRERA KEK

Loccurs: move.l #loccurs1,a0 * positioniert den Cursor auf die

addq.l #2,a0 * in spalte und zeile Ubergebenen

move.w zeile,d0 * Koordinaten, (0-79),(0-24)

add.w #32,d0 * internen Offset addieren

move.b d0,(a0)+ * Speichern

move.w spalte,dO

add .w #32,d0 * internen Offset addieren

move.b dO,(a0)+ * und speichern

move.l #loccurs1,a0 * anschließend veränderten

Jsr printf * Positionierbefehl drucken

rts

curstab: move.w tab1l,spalte * positioniert den Cursor in

jsr loccurs * Spalte tab1 der aktuel. Zeile

rts

KHKKHKIK EKER EERIE 1202212 22202 2 2 2022 022 2 22 2 2 2 2 2 2 2022 2 22 2 02 2020272 12722 120202 12722022 2222.27

* Tastaturabfrage, wartet nicht und gibt sowohl Tastencode als *

* auch ASCII-Code ind DO zurück, wurde keine Taste betätigt, - *

* ist DO gleich null *

KAKKKKKKKKKEKKEKKEEREKEKEEREEEKREKRREREREREKRRERKREREKEKEEEEKREERERERERKEREREKE

taste: move.w #2,-(a/) * fragt die Tastatur ab

move.w #1,-(a/) * gibt den ASCII-Code der

trap #13 * betätigten im Low-Byte des

addq.l #4,a7 * unteren Wortes von DO und den

tst.w do * Scan-Code im Low-Byte des oberen

bpl endtast2 * Wortes von DO zurück.

move.w #2,-(a/) * wurde Taste betätigt, dann

move.w #2,-(a/) * Taste aus Buffer holen und

trap #13 * zurück

addq.lt #4,a7

rts

Programmieren in Maschinensprache 307

endtast2: move.|

rts

leerebuf: move.w

trap

addq. l

tst.

beq

move .W

trap

addq. l

bra

leerenl: rts

conout: move.

move.

move.

move

trap

addq.

move.

addq.

jmp

wtast: move.

trap

addq.

rts

W

W

W

W

oW

W

#0, dO

#$b,-(a7)

#1

#2,a/7

do

leeren]

#7, (a7)

#1

#2,a7

leerebuf

4(a7),d0

dO, -(€a7)

device, -(a/)

#3,-(a7)

#13

#6,a7

(a7)+,a0

#2,a7

(a0)

#1,-(a7)

#1

#2,a7

* sonst Null zurtick

leert den Tastaturbuffer

* solange wiederholen, bis kein

* Zeichen mehr im Puffer

gibt ein Zeichen auf das in

device stehende Gerät aus |

siehe ST INTERN

Rücksprungadresse holen

* Tastatureingebe, warte auf

die Eingabe, und zeigt einen

* blinkenden Cursor

KAKKKKKKKKKKKKKKKTK TTS

* Eingabe einer 1 Byte Sedezimal-Zahl an die auf dem Stack über *

* — gebenen Adresse

KHAKKKIKHKEKE KEKE EERE EKER IK IRE RE KK IK EERE EKER EREKEKREKREREEREE

hexein: jsr

move. l

cmp.b

bgt

cmp.b -

blt

wtast

d0, var l1

#'f' dO

hexeierr

#'a! dO

hexein1

+
+£

+
x

*

*

gibt an die Variable auf dem

Stack eine Uber die Tastatur

einzugebende Hexzahl (2 digits)

wurde eine unerlaubte Taste

betatigt, so wird -1 Ubergeben

308 ATARI ST Floppy und Harddisk

hexein!:

hexein2:

hexein3:

hexein4:

hexein5:

hexeierr:

bstest1:

sub.b

add.b

bra

cmp.b

blt

cmp.b

bgt

sub.b

Isl.w

move.W

jsr

move. |

cmp.b

bgt

cmp.b

blt

sub.b

add.b

bra

cmp.b

blt

cmp.b

bgt

sub.b

move .W

or.W

ext .W

and.w

move.W

move.|

move.W

move. t

addq. |

jmp

move .W

bra

cmp.b

bgt

#'a! dd

#10,d0

hexein2

#'0', dO

hexeierr

#'9' dO

bstest1

#'0',d0

#4 ,d0

dO, varw1

wtast

dO,varl1

#'f' dO

hexeierr

#'a' dO

hexein3

#'a!,do

#10,d0

hexein4

#'0', dO

hexeierr

#'9' dO

bstest2

#'0',dO

varwi,di

d1,d0

do

#S00f f , dO

dO, varw2

4(a/7),a0

dO, (a0)

(a7)+,a0

#4, a7

(a0)

#-1,d0

hexeind

#'F! dO

hexeierr

Test ob zwischen 'a!' und 'f!

wenn ja 'a' subtrahiern, und 10

addieren.

wenn nicht, dann Test ob zwichen

+
+

x
x

3%

null und neun,

* wenn nicht, dann Test ob('A!'-'F!)

sonst '0' subtrahieren

mal 16 = High-nibble

zwichenspeichern

nachstes Nibble holen

zwischenspeichern
+

+
x

x
3

*

gleicher Test wie erstes Nibble

* Test ob Großbuchstaben

* ohne Fehler zurück

* back to caller

* mit Fehlercode zurück

* Test ob zwischen 'A' und 'F!

* wenn nein, dann mit Fehlercode

Prosrammieren in Maschinensprache 309

cmp.b #'A',dO * zurück

blt hexeierr * sonst ascii 'A' subtahieren, und

sub.b #'A' dO * zehn addieren

add.b #10,d0

bra hexein2 * nachstes nibbel holen

bstest2: cmp.b #'F!' dO * gleich wie bstest1 für das

bgt hexeierr * zweite Nibble

cmp.b #'A', dO

blt hexeierr

sub.b #'A',dO

add.b #10,d0

bra hexein4

KETTE

KRKKKKKKKKHTKKHKT TITTEN TITTEN U)

* Variablen des Grundprogramms *
KRERKKKKKKRKKKHTHT KERR ERE EEE EEK EERE IT N RE

KKKKKKKKKRKKKKKRK KK HI IK KK KK KK KK KK KIT TITTEN

KEKKKKKKKKKKT KT IKT TITTEN IT N KK KU

* Menuedaten für das Hauptmenue, Adressen der Menutexte und *

* Adressen der Subroutines (haincjmp) *
ARKEKKKKKKKKKKKK KT IK IT TC TI TITK T T TITIK K TKT K K KO

data

haincjmp: dc.l gotrack

dc.l gosync ve

dc. l gosektor

dc. l goclust

dc. l goformat

dc.l goinit

dc. l haupend2

menhaupt: dc.l mihauta

dc. l mihauia1

dc. l mihau1b

310 ATARI ST Floppy und Harddisk

dc.L mihau1b1

dc. l mihautc

dc. l mihautd1

de. | mihaule

mihaula: dc.b ' TRACK ',0

mihaula1: dc.b ' TRACK/SYNCS ',0

mihauib: dc.b ' SECTOR ',0

mihau1b1: dc.b CLUSTER ',0

mihauic: dc.b ' FORMAT ',0

mihauid: dc.b ' FATS ',0

mihauid1: dc.b ' OPTIONS ',0

mihaule: dc.b ' ENDE ',0

hafrag1: dc.b 27,'p A LITTLE DISK UTILITY (CC) U. Braun 1986 !

dc.b 27,'q',0

hafrag2: dc.b 27,'p DATA BECKER FLOPPY-BUCH FÜR ATARI ST ı

dc.b 27,'q',0

hafrag3: dc.b 27,'p Select Menue Items with Cursor-Keys

dc.b 27,'q',0

REAKEKKEEKEREREEEREERREEREREETCEKRUTEK KERR

* Adressen der Sectormenutexte (mensect) und er Sectormenue- *

* routinen *

Kkkkkkkkkkkkkhkekkkekek ET TC HK RK KR RK KKK KK RK KKK

seincjmp: dc.l incdrive

de. l incside

dc.| inctrack

dc.| incsect

dc.l readsec

dc.l writsec

dc. l editsec

dc. gohaupt

sedecjmp: dc.l decdrive

dc. l decside

Programmieren in Maschinensprache 311

mensect:

misecta:

mdrive:

misectb:

mside:

misectc:

mtrack:

misectd:

msector:

misecte:

misectf:

misectg:

misecth:

wrfragi:

wrfrag2:

wrfrag3:

sefrag1:

edfrag1:

dc.

de.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

de.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc

dc.

dc.

dc.

—
.
—

g
g

e
n

v
o
r

vo

ro

vo

y
o

oT

—
v
u
U
O
0
D
v
o

7
0
0

FT

O0

dectrack

decsect

readsec

writsec

editsec

gohaupt

misecta

misectb

misectc

misectd

misecte

misectf

misectg

milsecth

' drive: !
‘o'r! ',0

' side: '
O's! ' 0

' track: !
‘Or, 101, ' 0

' sector: !
gr,‘ ' 0

' READ 1,0

' WRITE ',0

' EDIT ',0

' BACK !,0

27,'p',' Write this Sector to: ',27,'q',0

27,'p <yes,no> ? ',27,'q',0

27,'p Not written. <press key> ',27,'q',0

27,'p SECTOR MODE ',27,'q',0

27,'p EDIT MODE: < return > := ENDE ',27,'q',0

KEKKEKKEREKRKEREREREREREKREREREKREKEEEREKRKEEREKREEEEREREKRERRERERERERERERERKREKK

* Adressen für das Trackmenue

KAKKKKKKKKKKKKKKKKKK KK KK Ka RR KK. N. KK RK RRR RR KK KK KK KK

*

312 ATARI ST Floppy und Harddisk

trincjmp: dc.l

de.

de.

dc.

de.

dc.

dc.

dc.

trdecjmp: dc.l

dc.

dc.

dc.

dc.

dc.

dc.

dc.

mentrack: dc.l

de.

de.

de.

de.

dc.

dc.

dc.

mitracai: dc.b

setrack: dc.b

mitracka: dc.b

mitrackb: dc.b

mitrackc: dce.b

mitrackd: dc.b

trfragi: dc.b

trfrag2: dc.b

trfrag3: dc.b

L

l

l

l

l

lL

l

l

l

l

l

l

|

l

l

l

l

l

lL

L

l

incdrive

incside

inctrack

incstra

readitr

writitr

edittr

gohaupt

decdrive

decside

dectrack

decstra

readitr

writitr

edittr

gohaupt

misecta

misectb

misectc

mitracal

mitracka

mitrackb

mitrackc

mitrackd

' Sec/Trac:

mo’ gt! ' 0

' READ

I WRITE ',0
' EDIT Tr. ',0
' BACK ',0

27,'p TRACK MODE ',27,'q',0
27,'p TRACK WITH SYNCS MODE ',27,'q',O

27,'p Sector: ',0

Programmieren in Maschinensprache | 313

trfrag4: dc.b ' '27,'q',0

trfrag5: dc.b 27,'p Write this Track to ',27,'q',0

trfrag6: dc.b 27,'p < yes/no > ',27,'q',0

KEKKKHKKKAEKAKEEKEKEREEEEEKKREEKEEEREKREEREKRKEKKEKEEEKEEEATEEERERRRKR KR EK

* Adressen für das Track mit Syncs-menue *

KKKAK KKK IKKE KEKE TC TITTEN TI TI KT KK KK EN KK

syincjmp: dc.l incdrive

dc. l incside

dc. l inctrack

dc. l rdtracks

de. l readadr

dc.l gohaupt

sydecjmp: dc.l decdrive

dc. l decside

de.l dectrack

de. | rdtracks

dc. l readadr

dc. | gohaupt

mensync: dc. misecta

dc. l misectb

dc. l misectc

dc. l misynca

dc.l misyncb

dc. l mitrackd

misynca: dc.b ' READ WITH SYNCS ',0

misyncb: dc.b ' ADDR. FIELD ',0

KAA KAKI KARRATHA KEE

* Cluster

KAXKKKKKKRKKKKKKKKKKK KK KKK KKK RR RRR Ka RRR RK

314 ATARI ST Floppy und Harddisk

clincjmp: dc.l

dc.

dc.

dc.

dc.

dc.

dc.

de.

cldecjmp:

menclust:

miclusa:

miclusa'

miclusb:

miclusc:

miclusd:

clfrag1:

clfrag2:

clfrag4:

=

—
_

F
F

g
u
n

E
S

g
u

 g
um

m

dc.

de.

dc.

dc.

dc.

dc.

dc.

de.

dc.l

de.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.b

de.

dc.

dc.

dc.

dc.

dc.

dc.

sclfrag1: dc.b

L

L

l

l

lL

Ll

l

b

oT

oF

T
o

FT

Ft

incdrive

incclust

rdclust

nextclst

wrclust

edclust

stclust

gohaupt

decdrive

decclust

rdclust

nextclst

wrelust

edclust

stclust

gohaupt

misecta

miclusa

misecte

miclusb

misectf

miclusd

miclusc

misecth

' CLUST: !

Oh toh OH tore tg

' NEXT ',0

' STARTofFILE ',0

' EDIT ',0

27,'p CLUSTER MODE ',27,'q',0

27,'p When leaving CLUSTER MODE, last read '

‘Cluster is updatet in SECTOR Menue ',27,'q',0

27,'p This was the last Custer ',27,'q',0

27,'p Filename: Fileattribut: !

Programmieren in Maschinensprache 315

dc.b ‘ Startcluster: Number of Bytes: ',27,'q',0

sclfrag2: dc.b 27,'p Start-Cluster mit <RETURN> ins Menue!

dc.b ' übernehmen, lesen durch <up>, <down>. ',27,'q',0

clfrag5: dc.b 27,'p Write this Cluster to: ',27,'q',0

trecsiz: dc.b ' Bytes per Sector: ',0

telsiz: dc.b ' Sector per Cluster: ',0

telsizb: dc.b ' Bytes per Cluster: ',0

trdlen: dc.b ' Sector per Directory: ',0

tfsiz: dc.b ' Sector per FAT: ',0

tfatrec: dc.b ' Sektornumber second FAT:',0

tdatrec: dc.b ' Sector of first Datecluster:',0

tnumcl: dc.b ' Number of clusters: ',0

tanzside: dc.b ' Number of sides: ',0

tdirt: de.b 27,'p First Directory-sektor on Side: 0 Track: 1 !

dc.b I Sector: 3 ',27,'q!',0

tdir2: dc.b 27,'p First Directory-sektor on Side: 1 Track: 0 !

dc.b ' Sector: 3 ',27,'q',0

tfolder: dc.b ' Subdirectory ',0

treadwr: dc.b ' Read/Write ' 0

treadon: dc.b ' Read only ' 0

thidden: dc.b ' HIDDEN File ',0

tdelet: dc.b ' Deleted ' 0

tdisname: dc.b ' Diskettenname ',0

KEKKKKEKEKEREREECERRERREREREREKREKKEKREREEEEERRREREEERKKRREEREREKEERRKRREE

* Format-Menue *

KAKKKKKKEKKKKKKKKKK KK KK TH kkk KKK CK KKK RK KR KC KK KK KH KR

foincjmp: dc.l incdrive

dce.l incside

dc.l inctrack

de. l incstra

dc. l format!

dc.| xformat

dc. l gogaps

dc. l gohaupt

316 ATARI ST Floppy und Harddisk

fodecjmp: dc.l

formmen:

m1 formd:

miforme:

miformf:

mi formg:

fofrag!:

fofrag2:

_fofrag3:

fofrag4:

fofrag5:

fofrag6:

xffrag!:

xffrag2:

miform1:

dc. l

dc. l

dc. l

dc. l

dc. l

dc. l

dc. l

dc. l

dc. l

dc. t

dc. l

dc. l

dc. l

dc. l

dc. l

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc.b

dc. l

decdrive

decside

dectrack

decstra

format1

xformat

gogaps

gohaupt

misecta

misectb

misectc

mitracal

m1 formd

miforme

m1 formf

miformg

' FORMAT ',0
' XFORMAT ',0

' GAPS ',0
' BACK

27,'p Format Track Mode

27,'p Track:',0

' formatieren ?

27,'p Nicht formatiert

' auf Seite:',0

ı von Drive:',0

' 0

',27,'q',0

<yes/no> ',27,'q',0

<Taste> ',27,'q',0

27,'p Wirklich mit neuen GAP's zwischen den !

'Sektoren formatieren? <yes/no> ',27,'q',0

27,'p Wait a second, then press key ',27,'q',0

' Format Track ' 0

KHAKI REECE CREEK KKK RK

* Init Menue *

HHH HA IIA IH I IK KIKI AIRE ITTI AI IT AI III AK IT IKEA 2 22 727272272272 720202 2727225

Programmieren in Maschinensprache 317

inincjmp: dc.l incdrive

dc. l incmaxtr

dc.| incmaxse

dc. l dodrivin

dc.l showbpb

dc. l gohaupt

indecjmp: dc.l decdrive

dc.l decmaxtr

dc. l decmaxse

dc. l dodrivin

dc.l showbpb

dc.l gohaupt

meninit: dc.l misecta

dc. l midrina

dc. l midrinb

de. l midrinc

dc. l midrinc1

dc.l midrind

midrina: dc.b ' MAXTRACK: !

maxitr: dc.b ızıyı to

midrinb: dc.b ı MAXSECTOR: '

maxise: dc.b ‘Or, 'or! 1 0

midrinc: dc.b ' INIT DRIVE ',0

midrinct: dc.b ı SHOW BPB ',0

midrind: dc.b ' BACK ',0

drifragi: de.b 27,'p INIT DRIVE MENUE ',27,'q',0

drifrag2: dc.b 27,'p Bios Parameter Block of active drive '

dc.b ı < press key > ',27,'q',0

catfral: dc.b 27,'p Directory starts at Side: 0 Track: 1 Sector: 3

I

dc.b 27,'q',0

catfra2: dc.b 27,'p Directory starts at Side: 1 Track: 0 Sector: 3

dc.b 27,'q',0

318 ATARI ST Floppy_ und Harddisk

device: dc.w 2

drive: dc.w 0

side: dc.w 0

track: dc.Ww 0

sektor: dc.w 0

seek: dc.w 3

savesr: dc.w 0

flstatus: dc.w 0

Kk tte de deka a aK KKK KK KKK KKK KR KK TC K KK CK RK RK:

* Gap-Menue *
KRITERIEN

gpincjmp: dc.l incgap1

de.l incgap2

dc.L incgap3

dc.L incgap4

dc. l incgap5

de. l incbyte

dc.l goformat

gpdecjmp: dc.l decgap!

dc. l decgap2

dc.l decgap3

dc.l decgap4

dc.l decgap5

de. decbyte

dc.l goformat

mengap: dc.l migapa

dc.L m1gapb

dc. l m1gapc

dc.l mi gapd

dc. migape

dc.L migapf

dc.L migapg

Programmieren in Maschinensprache 319

migapa: dc.b ' GAP1: !

mgap1: dc.b 160 ',0

migapb: dc.b ' GAP2: !

mgape: dc.b 12 ',0

migapc: dc.b U GAP3: !

mgap3: dc.b '22 ',0

migapd: dc.b ' GAP4: !

mgap4: dc.b 140 ',0

migape: dc.b ' GAP5: !

mgap5: dc.b 1664 ',0

migapf: dc.b ' Byte/Sek: !

mdrisekt: dc.b 10512 ',0

migapg: dc.b ' BACK ',0

drfrag1: dc.b 27,'p Drive Format Mode ',27,'q',0

gpfragi: dc.b 27,'p Change Gaps between Sektors ',27,'q',0

slfragi: dc.b 27,'p Bitte eine Sekunde warten, dann Taste

ı,27,'q',0

slfrag3: dc.b 27,'p SECTOR MODE ',27,'q',0

drbyte: dc.w 512

gap: dc .w 60

gap2: dc.w 12

gap3: dc.w 22

gap4: dc.w 40

gapd: dc.w 664

KRITIK

sadfragi1: dc.b . 27,'p Track: Seite: Sektor: Bytes: Checsum(hex) !

dc.b 27,'q',0 |

KREIEREN KK KR

* Hier stehen die Escape-Sequenzen für die Terminal-Emulation *

* wie: Revers ein- und ausschalten, Cursor positionieren ect. *
KEEREKKKEKEKKEREKEKKEKRE REE KT KK KK KK KK KU

\

clrest1: de.b 27,'J',0

clrest2: dc.b 27,'K',0

320

revers1: dc.b

revers2: dc.b

Loccurs1: dc.b

home1: dc.b

clear1: dc.b

curupl: dc.b

curdown1: dc.b

insline1: dc.b

delline1: dc.b

overout1: dc.b

curout1: dc.b

curoni: dc.b

spaces: dc.b

hilcurs: dc.b

ATARI ST Floppy und Harddisk

27,'p',0

27,'q',0

27,'Y',33,33,0

27,'H',0

27,'E',0

27,'A',0

27,'B',0

27,'L',0

27,'1',0

27,'w',0

27,'f',0

27,'e',0
t ' 0

27,'J',0

KURT ERE EERE

* Adressen der Fehlertexte *

kkkkkkkkkkhkhkhhkk kkk kkk k N TE N I TI aK KKK KKK KKK RK CK KU

errtab: dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc. g
e

g
u

g
u
n

g
u
n

g
u
n

g
u

g
u

g
m

g
m

e
e
e

g
u

g
u

g
m

g
u

g
u

g
u
n

g
u
n

e
e

error

error2

error3

error4

error5

error6

error?

error

error9

error10

error11

error12

error13

error14

error15

error16

error17

error18

error19

Programmieren in Maschinensprache 321

de.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc. u

u

g
e
n

error20

error21

error22

error23

error24

error25

error26

error27

error28

error29

KRKKKKEKKKKKKKKTTCTCT TE TC ETC TI TC KT TC TE KK KK CK

* Hier folgen nun die eigentlichen Fehlertexte *

KEKE EKER KR EERE TI KT KK KK TI KK TI KK KR KKK KE

errort:

errore:

error3:

error4:

error:

error6:

error”:

dc.

dc.

dc.

dc.

dc.

dc.

dc.b

',27,'q',0

errors:

error9:

error10:

error11:

error12:

error13:

errori4:

error15:

error16:

error17:

error18:

error19:

error20:

error21:

error22:

error23:

error24:

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

T
T

oO

oO

FT

8
U
U
V
v
y
v
u
o
u
v
v
r
v
v
v
v
y
v
y
v
v
v
o
v
o
o
o
o

27,'p',' NO BOOTSECTOR ',27,'q',0
27,'p Directory-Sectors defect <key> ',27,'q',0

' fehler3',0

' fehler4',0

+ fehler5 ',0

' fehler6 ',0

27,'p',' Diskette einlegen / Track nicht vorhanden

ı fehler8 ',0

27,'p',' Dieser Sektor existiert nicht !',27,'q',0

' fehler10! ,0

' fehler11',0

' fehlert2' ,0

' fehler13 ',0

27,'p Bitte Schreibschutz entfernen. ',27,'q',0

' fehler15 ' 0

' fehler16 ',0

' fehler17',0

' fehler18 ',0

ı fehler19 ',0

27,'p Kein weiterer Cluster ',27,'q',0

' fehler21 ',0

' fehler22 ',0

' fehler23 ',0

' fehler24 ',0

322 ATARI ST Floppy und Harddisk

error25: dc.

error26: dc.

error27: dc.

error28: dc.

error29: dc.

' fehler25 ',0

' fehler26 ',0

fehler27 ',0

' fehler28 ',0

' fehler29 ',0 r
o
r

o
e

—.

KEKE REE EKER EK KKK

pattern: dc.w $ffff

bss

menueadr: ds.l

ganz: ds.l

revnum: ds.|

jmptable: ds.l —
_
—

jg
/«

ax
H

-=
_-

o
d

wtrack: ds.w

wsector: ds.w

wside: ds.w

wdrive: ds.w

welust: ds.w —
_
—

x
a

=
)

=

u

maxtrack: ds.w

maxsect: ds.w

maxdriv: ds.w

maxside: ds.w

maxclust: ds.w U

=

topptr: ds.l

oldtop: ds.l 1

botptr: ds. =

m

spalte: ds.

zeile: ds.

head1: ds.

head2: ds. =z

£
_

£
Ef

=

=
=

curzeil: ds.w

curspai: ds.w 1

oldzeil: ds.w 1

Programmieren in Maschinensprache 323

oldspa1: ds.w 1

zeicount: ds.w 1

prcount: ds.w

retwi: ds.

incvar: ds.

decvar: ds.

usstack: ds.

sustack: ds. -

-

-—
-

—-

=

—

2»

=

=

«
2

dmastat: ds.w 1

currdma: ds.b 1

highdma: ds.b 1

middma: ds.b 1

lowdma: ds.b 1

maxhead: ds.w 1

savebpb: ds.l 1

recsiz: ds.w 1

clsiz: ds.w 1

clsizb: ds.w 1

rdlen: ds.w 1

fsiz: ds.w 1

fatrec: ds.w 1

datrec: ds.w 1

numcl: ds.w 1

bflags: ds.w 1

‘oldsec: ds.w 1

dflag: ds.w 1

eflag: ds.w 1

edflag: ds.w 1

anzside: ds.w 1

tab1: ds.w 1

324 ATARI ST Floppy und Harddisk

oldclst:

newclst:

clstnum:

logsect:

asector:

topdma:

editptr:

savereg:

maxdown:

maxup:

Lineavar:

varli:

varw1:

varwe:

varw3:

dirptr:

dirbuf:

fatbuf:

formbuf:

platztr:

ds.

ds.

ds.

ds.

ds.

ds.

ds.

ds.

x
x

x

ds.w

ds.

ds.l

ds.

ds.

ds.

ds.

ds.

ds.

ds.

ds.

end

xz

£
x

x
£

_
x

x

e
n

e
e

|

4000

4000

6000

6000

Hier folgen jetzt die vollwertigen Unterprogramme zu den ein-

zelnen Menuepunkten die beim Listing "edit.s" noch auf rts
endeten.

Am besten halten Sie sich an die von mir vorgegebene Reihen-
folge, da manche Menuepunkte auf Unterprogramme anderer

Menues zurückgreifen. Wenn Sie das Programm in der hier vor-
geschlagenen Weise vervollständigen ergeben sich keine Pro-
bleme dieser Art.

Programmieren in Maschinensprache 325

Zuerst die Unterprogramme des Options-Menues, damit Sie den

Maximal-Track und Sektor bestimmen und außerdem den Bios-

Parameterblock ansehen können.

KKKKKKKKKKKRTEKTE TITTEN TTTTE TTK K K KC

KHER KEK

* Subroutines des Menuepunktes OPTION, sollten zuerst implementiert *

* werden, da hiermit auf die Moglichkeit gegeben wird den 10. Sektor *

* auf dem 82 Track ect. zu lesen, außerdem werden einige Routinen *

* von anderen Programmteilen aufgerufen *

KHKKKAKKAKKEKKEKKKEREEKAKE REHEAT KKK KKK

KAKKKKKKEKKKKKTKCKTKCCK TITTEN

KREIKKKKKKKKKRKKTK CK TC KT TITTEN TE KH

* aktuelles Drive (aus dem Menue) initialisieren, und die Variablen *

* des Biosparameterblockes speichern *
KHAKI TITTEN N

initdriv: move.w wdrive,dO * aktuelles drive

move.w wdrive,-(a/) * auf den Stack

move.w #7,-(a’) * Getbpb Funktion

trap #13 * BIOS-Trap

addq.l #4,a7 * Stack restaurieren

tst.l dod * Fehler aufgetreten?

bne doiniti

move.w d0,-(a/7) * wenn ja, dann diesen Ubergeben

jsr errhand * und dann zurück

bra doiniten

doiniti: move.l d0,a0 * sonst dO = Basisadresse vom BPB

move .W (a0)+,recsiz * Bytes pro Sector

move.w (a0)+,clsiz * Sectors/ Cluster

move.w (a0)+,clsizb * Bytes/Cluster

move.w (a0)+,rdlen * Sectors/Directory

move.w (a0)+,fsiz * Sectors/Fat

move.w (a0)+,fatrec * Sec. Num. des zweiten FAT

* move.w (a0)+,datrec Sec.Num. des ersten Dat.CLust.

326 ATARI ST Floppy und Harddisk

move .W

move .W

move .wW

move .W

doiniten: rts

(a0)+,numcl

(a0)+,bflags

(a0)+,anzside

(a0)+, anzside

+
3

3
3

& Anzahl der DAtencluster

Flags

noch dummy

Anzahl der Seiten

und zurück

KEKE

* Liest die Fatsektoren von der Diskette in den Fatbuffer *

KERKKKKRKUKKÄKKK KK KT TE N TC kkk RK RRR KR KK RRR RK RRR KK

rdfat: move.w

move .W

move .W

move. |

move .W

move .W

trap

add. {

tst.w

bmi

rdfatend: rts

rdfater: move.w

jsr

bra

wdrive,-(a7)

fatrec,-(a7)

fsiz,-(a’)

#fatbuf,-(a’)

#2,-(a7)

#4,-(a7)

#13

#14,a7

do

rdfater

d0, - (a7)

errhand

rdfatend

+
x

3
s
r

x
x

x
3

F
F

*

aktuelles drive

Sectnummer des zweiten Fat

Anzahl der Sektoren pro FAT

Pufferadresse auf Stack

unbedingt lesen

Rwabs Funktion

BIOS-Trap

Stack restaurieren

Fehler aufgetreten?

wenn ja, dann handlen

sonst zurück

Fehlernummer auf Stack

handlen

* und zurück

KAA TITTEN KU

* Liest die Directory-Sektoren von der Diskette in einen Puffer *
RAK ATER KKAKKEKKaaKR KKK RK KKK

rddir: move.w

move .wW

lsl.w

addq.w

move .W

move.W

move. |

wdrive,-(a7)

fsiz,d0

#1 ,d0

#1,d0

d0, -(a7)

rdlen, -(a/7)

#dirbuf,- (a7)

aktuelles Drive

Anzahl der Fatsektoren

mal zwei (FAT's) plus eins

gleich logische Sektornummer des

ersten Directorysektors

Anzahl Directory-Sektoren

Adresse des Puffers

Programmieren in Maschinensprache 327

move.w #2,-(a’) * unbedingt lesen

move.w #4,-(a7) * Rwabs Funktion

trap #13 * BIOS

add. l #14,a7

tst.w do * Fehler?

bmi rddirer * ja

+ rddirend: rts wenn nicht, dann sofort zurtick

rddirer: move.w 4d0,-(a7) * Fehlernummer

jsr errhand

bra rddirend

KHAKI EERIE REET

* erhöht die maximale Anzahl der einstellbaren Tracks im Init-Drive- *

* Menue, bis zu diesem Wert kann man dann in allen anderen Menues *

* die aktuelle Tracknummer erhöhen *

KEKKKKKKEKKKKKH KK KT TE KT KT IK T K HK KK kh KK I KK TH KT KR kkk kek kkk RK KK HE IK

incmaxtr: move.w maxtrack,d0

cmPp.W #99 , d0 * 99 ist das Maximum

blt incma1 * sonst das gleiche Verfahren wie

move.w #0,d0 * bei den bisherigen Menuechanges

bra incma2

incma1: addq.w #1,d0

incma2: move.w dO,maxtrack

ext.t do

divu #10,d0

add.b #'0' dO

move.b dO,maxitr * auch im Menuetext ändern

swap do

add.b #'0' , dO

move.b d0,maxitr+1

jsr dispmen * Menue anzeigen

rts * und zurück

328 ATARI ST Floppy und Harddisk

decmaxtr: move.w maxtrack,d0 * erniedrigt die maximal einstellbare

cmp.W #0, d0 * Tracknummer

ble decma1

subq.w #1,d0

bra decma2

decma1: move.w #99,d0

decma2: move.w d0,maxtrack

ext. do

divu #10,d0

add.b #'0', dO

move.b dO,maxitr * im Menuetext ändern

swap do

add.b #'0O' dO

move.b dO,maxitr+1

jsr dispmen * Menue anzeigen

rts * und zurtick

incmaxse: move.w maxsect,d0 * nun das gleiche mit dem maximal

cmp .W #99 , dO * einstellbaren Sektor

bit incmas1

move.w #0,d0

bra incmas2

incmas1: addq.w #1,d0

incmas2: move.w dO,maxsect

ext. do

divu #10,d0

_add.b #'0' dO

move.b d0,max1se * im Menuetext einstellen

swap do

add.b #'0',d0

move.b dO,maxise+1

jsr dispmen * Menue anzeigen

rts * und zurück

decmaxse: move.w maxsect,d0 * erniedrig den maximal einstell-

cmp.wW #0, dO * baren Sektor

ble decmas1

Programmieren in Maschinensprache 329

subg.w

bra

decmas1: move.w

decmas2: move.wW

ext.l

divu

add.b

move .b

swap

add.b

move.b

jsr

rts

#1,d0

decmas2

#99 ,dO

d0,maxsect

do

#10,d0

#'0' dO

d0,maxise * im Menuetext ändern

do

#'0' dO

d0 ,maxiset1

dispmen * Menue anzeigen

* und zurück

KERKKKKKKKRKKTCKT TC TC CT KT TITTEN KU

* hier folgt die eigentliche Drive-Init-routine, die sowohl das *

* aktuelle Drive (in wdrive) initialisiert und den Bios-Parameter- *

* Block einliest als auch die FAT- und Directory-Sektoren in die *

* jeweiligen Puffer einliest *

KAKA KKK KE

dodrivin: jsr

jsr

jsr

jJsr

jsr

dodriven: rts

initdriv * Drive initialisieren

rdfat * FAT Sektoren einlesen

rddir * Directory Sektoren einlesen

showbpb * BIOS-Parameter-Block anzeigen

curlinks

* und zurück

KAKKKEHRKKKK KT TEN TITTEN KICK KU

* Anzeigen des BIOS-Parameter-Blockes *

KAKA AAA REAR 20202 002 2020202050202 020202 20502 2 2 205 2 20202 2 2 202 2 2 2020202 2 202 2 202 2 2 2 0202020205

showbpb: move.w

move .wW

jsr

move. l

#4,zeile * Cursor in Zeile 4, Spalte 10

#10,spalte

loccurs * positionieren

#drifrag2,a0 * Message ausgeben

330 ATARI ST Floppy_ und Harddisk

jsr

move.W

move.W

move.W

jsr

move. l

Jsr

jsr

move.W

jsr

addq.w

move .W

jsr

move. l

jsr

jsr

move.W

Jsr

addq.w

move.W

jsr

move. lt

jsr

jsr

move .W

jsr

addq.w

move.W

jsr

move. |

jsr

jsr

move .wW

jsr

addq.w

move. W

jsr

move. lt

jsr

jsr

printf

#42, tabi * Tabpunkt auf dem Bildschirm für die

#6,zeile * Ausgabe der Zahlen

#12,spalte

loccurs

#trecsiz,a0 * Bytes pro Cluster

printf

curstab

recsiz,-(a’)

dezpr

#1,zeile

#12,spalte

loccurs

#tclsiz,a0 * Sektoren pro Cluster

printf

curstab

clsiz,-(a7)

dezpr

#1,zeile

#12,spalte

loccurs

#tclsizb,a0 * Bytes pro Cluster

printf

curstab

clsizb, -(a7)

dezpr

#1,zeile

#12,spalte

Loccurs

Text schreiben

Bytes pro Cluster als Dezimalzahl

schreiben

eine Zeile weiterschalten 3
3

&
3

#trdlen, a0 * Sektoren pro Directory

printf

curstab

rdlen, - (a7)

dezpr

#1,zeile

#12,spalte

loccurs

#tfsiz,a0 * Sektoren pro FAT

printf

curstab

Programmieren in Maschinensprache 331

move.W

jsr

addq.w

move.W

jsr

move. l

jsr

jsr

move.W

jsr

addq.w

move.W

jsr

move.|

jsr

jsr

move.W

jsr

addq.w

move.W

jsr

move. l

jsr

jsr

move .W

jsr

addq.w

move .W

jsr

move. |

jsr

jsr

move .W

jsr

addq.w

move .wW

jsr

move. l

move .W

cmp.W

fsiz,-(a7)

dezpr

#1,zeile

#12,spalte

loccurs

Atfatrec, a0

printf

curstab

fatrec,-(a7)

dezpr

#1,zeile

#12,spalte

Loccurs

#tdatrec,a0

printf

curstab

datrec, -(a7)

dezpr

#1,zeile

#12,spalte

loccurs

#tnumcl , a0

printf

curstab

numcl , - (a7)

dezpr

#1,zeile

#12,spalte

loccurs

#tanzside, a0

printf

curstab

anzside,-(a7)

dezpr

#2,zeile

#10,spalte

loccurs

#tdir1,a0

anzside,d0

#2,d0

* Sektornummer des zweiten FAT

* Sektornummer des ersten Daten-

* clusters

* Anzahl der Datencluster

* Anzahl der Diskettenseiten

* Angabe wo sich der erste Directory-

* Sektor befindet, differiert bei

* ejn- und zweiseitigen Disketten

332 ATARI ST Floppy und Harddisk_

bne showbpb1

move.l #tdir2,a0

showbpb1: jsr printf

Jsr leerebuf * Tastaturpuffer leeren

jsr wtast * auf Tastendruck warten

jsr cursmess

jsr delline

jsr cursmess

move. #drifrag1,a0 * Message anzeigen

jsr printf

rts * und zurück

Nun die Unterprogramme des Track-Menues

KIT III III II III III ISI OT IIIA III FR IK

KRKKEKKKERREKKEEKEEEKEERERKEREEEEEEEREKEEKEREEKKEERKKEEKEEEKEEREKRERR RRR EEK

* *

* Unterprogramme des TRACK Menues plus eigene Sektorschreibroutine *
* *

KERKKKKKKKKKRHKTKKTI TC KT CK TC KT KT TI KK KK KEK

KEKE EERE

KEKKKKAKEREEEEEEERAHHAUEEERIT TI TC ERE RK KK

eigene Sektorschreibroutine, greift direkt auf Controller und DMA *

chip zu. die XBIOS-Routine zum Sektorschreiben läßt sich im Gegen- *

satz zur Sektorleseroutine nicht dazu "Uberreden" Sektoren mit *

1024 Byte zu schreiben, daher wird diese Routine aufgerufen. *

Damit diese Funktion eingefügt werden kann, muß zuerst das *

rdstrack-Menue implementiert werden, da einige Routinen dieses *

Meneus aufgerufen werden (super, seldrive, ect.) In der *

Grundaustattung des Programms (nur mit Sektormenue) ist es *

leider nicht möglich Sektoren mit 1024 Bytes pro Sektor zu *
* *

££
££

©
+

©
&€

F£
€

F

schreiben.

te SEEPS Ee eeeEeEee Sees eceseee ee cerceeserceseeeeeseecescercece secre sce cress KK 2.5.5 5.3

selfsect: jsr super * Supervisor-Mode einschalten

st flock * Floppy-Interrupt ausschalten

Programmieren in Maschinensprache 333

jsr seldrive

jsr flreset

jsr searcht

jsr selwrite

sf flock

jsr leerebuf

jsr cursmess

jsr delline

jsr flreset

jsr user

move.lt #slfragi,a0

jsr printf

jsr wtast

jsr super

jsr deselect

jsr user

jsr cursmess

jsr delline

jsr cursmess

move.l #slfrag3,a0

jsr printf

movem.l (a’)+,a3-a6/d3-d7

rts

+
r
n

r
€

€
x

KF
F

a
+

x
r

©
3

&
F

*

drive und Seite selectieren

reset des Controllers

Track in wtrack suchen

Sektor schreiben

Floppy-Interrupt wieder zulassen

Tastaturpuffer leeren

Cursor positionieren

Zeile löschen |

Controller reset

User-Mode einschalten

Message ausgeben

auf Tastendruck warten

Super-Visor-Mode einschalten

Floppy deselektieren

User-Mode einschalten

Cursor positionieren

Zeile löschen

wieder positionieren

Message ausgeben

Register zurückholen

* und zurück

KKKKKKKKKKKKRT TITTEN

* *

* Hier wird nun der Sektor auf die Diskette geschrieben. *

* x

KAKI KEKE TC TE T KT KK

selwrite: jsr setplatz

move.w #$190 , dmamode

move.w #$90,dmamode

move.w #$190,dmamode

move.w #4,d6

jsr “wrceontr

move.w #$184,dmamode

move.w wsector,d6 x
x

x
&*

x
x

x
8% Adresse des Puffers einstellen

Auf Schreiben umschalten

durch "Toggeln" der Schreib-

Lese-Leitung

Sectorcount-Register mit 4

beschreiben

Sectorregister des FDC anwählen

aktuellen Sektor an FDC übergeben

334 ATARI ST Floppy und Harddisk

jsr

move .W

move .W

jsr

move. l

selwrit1: btst

beq

subq. l

bne

move .W

jsr

jsr

jsr

rts

selwrend: jsr

move .W

btst

bne

rts

selwerr1: move.wW

jsr

jsr

jsr

rts

wrcontr

#$180 , dmamode

#$a0 , d6

wrcontr

#$50000,d7

#5,mfp

selwrend

#1,d7

selwritt

#-9,-(a7)

errhand

cursmess

delline

rdstatus

flstatus,d0

#6, dO

selwerr1

#-8,-(a7)

errhand

cursmess

delline

*

*

*

*

*

*

*

*

+
*

*
e+

x
x

x
&

Controller anwählen

Sektor-Write-Befehl an Controller

übergeben

Time-out-Zähler

Interrupt-Eingang des FDC am MFP

wenn 1 dann fertig

Timeout Zähler erniedrigen, wenn

* noch nicht abgelaufen, weiterwarten

Sonst Fehlernummer 9 auf Stack

an Errorhandler übergeben

anschließend Ausgabezeile

Löschen

hierhin wird bei fehlerfreiem Ab-

lauf verzweigt

writeprotect

ja

wenn nicht, dann zurück

* Fehlermeldung Nr. 8(writeprotect)

* ausgeben und anschließend Ausgabe-

* zeile löschen

KARKKKKKEKEEKEKEEEEA EKER RRR

KEKKEKRKEKKEKREEKEKEKEREEAEKEE EERE KERR

* Subroutines des Menuepunktes TRACK des Hauptmenues *
KERKEAKKECKERAATR AEE KATE EKER EERE KEK

KKKKKKKKEEKKERATEAKEREEEEERE EEE EEEEEREREREREEEKEEREERREEEKEREEREKKRRKEKK

KKKKKEKAEHEKEEETEEEAEKEKEE KERR KT TICKET KK CK

* *

* Diese Routine ließt einen ganzen Track, bzw. die in der Variablen *

* asector Ubergebene Anzahl von Sektoren. Es wird von Standard- *

Programmieren in Maschinensprache 335

* sektoren mit 512-Byte ausgegangen, so daß eventuelle Abweichungen *

* durch Verändern der Variablen asector ausgeglichen werden müssen *

* *

KETTE TRETEN X

readitr:

readt12:

readtier:

move.W

mulu

move.W

move .W

move.W

move.W

move .W

move .W

clr.l

move. |

move.W

trap

add. l

tst.w

bmi

jsr

rts

move .W

jsr

jsr

jsr

jsr

move. |

jsr

jsr

bra

#512,d0

asector,d0

d0 ,maxhead

asector, -(a7)

wside, -(a7)

wtrack, -(a7)

#1,-(a7)

wdrive,-(a7)

-(a7)

#platztr,-(a7)

#8, - (a7)

#14

#20,a7

do

readtier

showtr

d0,-(€a7)

errhand

leerebuf

wtast

cursmess

#trfragi,a0

printf

delrest

readt12

*
+

r
ır

r
©

&
r

3
F&F

3

Ir
FF

x
3

F
+

x
+

+
*

Standardsektorgröße

Anzahl der Sektoren pro Track

Maximale Anzahl Bytes als Zähler

Anzahl Sektoren/Track aus Menue

aktuelle Seite

aktueller Track

ab Sektor eins

aktuelles Drive

Dummy-Langwort

Pufferadresse

X-tended Bios Funktion 8

aufrufen, anschließend den Stack

bereinigen und auf fehlerfreien

Ausgang untersuchen

Wenn Fehler, dann ausgeben

sonst den Track anzeigen und

anschließend zurück

Fehlernummer auf dem Stack an den

Fehlerhandler übergeben, an-

schließend Tastaturpuffer leeren

und auf Tastendruck warten

Message ausgeben

und zurück

KAKKKKKKKKKKKKKKTK TC TI KT KK KT KK TI IT TI KT TITTEN

* erhöht bei Cursor-up Betätigung die Anzahl der Sektoren pro Track *

* im Menue
KAKKKKKKKKKKKKKKTKTKKK TC KK CK CHI KT KICK IKT KK TC CK KK

*

336 ATARI ST Floppy und Harddisk

incstra: move.wW

incst1:

incst2:

cmp. W

blt

move .W

bra

addq.w

move .W

ext. |

divu

add.b

move.b

swap

add.b

move.b

jsr

rts

asector ,d0

maxsect , d0

incst1

#0 ,d0

incst2

#1,d0

d0,asector

do

#10,d0

#'0' d0

dO, setrack

do

#'0' dO

d0, setrack+1

dispmen

+
*

3
£

N
a

N

&€
€&

€
r

x
FF

FF
*

F Anzahl der Sektoren pro Track

mit der Maximalanzahl derSektoren

vergleichen, wenn größer oder

gleich, dann Anzahl Sektoren/Track

auf Null, und zurück

sonst eins zu Anzahl Sekt./Tr.

addieren

Die Änderung auch im Menuetext

eintragen, durch Divison durch

10 in einzelne ASCII-Byte zerlegen

und ins Menue eintragen

auch das Low-Byte richtig

ins ASCII-Format umwandeln

und ins Menue eintragen, an-

schließend das Menue anzeigen

und zurück

KEKUEKKKERKKKHTTR TC KH TI TTS KR

* erniedrigt sectoren pro track im menue
KKK HAE

decstra:

decst1:

decste:

move .W

cmp.W

ble

subq.w

bra

move .W

move .W

ext.

divu

add.b

move .b

swap

add.b

move .b

asector,dO

#0,d0

decst1

#1,d0

decst2

maxsect,d0

d0,asector

do

#10, d0

#'0' dO

dO,setrack

(0 10 Bu

#'0',d0

d0, setrack+1

* sektoren/track

* wenn größer als null, dann eins

* subtrahieren, sonst

* Maximalanzahl einsetzen

* ins Menueeintragen

*

Programmieren in Maschinensprache 337

jsr

rts

dispmen * Menue anzeigen und zurtick

KEKKKKEKEEAKEKEEEKEEEEEEECKERKEEAEEEREEKEEREEEEEREEEEEEREEREEKERREEREKRKREEE

* versorgt die Variablen der allgemeinen Editroutine mit Werten,

* (maxdown, maxup ect.) und ruft die Editroutine dann auf
IIA ATEI ARIA HERAT TRIER ITERATE IAAT ARERR IIIA RII

edittr: move.w

move .W

move.W

move. |

sub. l

divu

swap

tst.w

beq

sub. l

edittri: move.l

move .wW

move .W

move .W

jsr

move.|

Jsr

jsr

jsr

jsr

jsr

move. lt

jsr

jsr

jsr

jsr

jsr

rts

#0 ,maxdown

#208 ‚maxup

#18, zeicount

topptr,dO

#platztr,d0

#512,d0

do

do

edittr!

#256, topptr

topptr,editptr

#0,head2

#20,spalte

#2,zeile

loccurs

#edfrag1,a0

printf

editit

cursmess

delline

cursmess

#trfrag1,a0

printf

curlinks

curlinks

cursbuf

clrest

+
*

£
x

3
ıxr

x

€
r

F&F

+
HF

F es sollen jeweils nur 512 Byte

editiert werden,

und 19 Zeilen werden angezeigt

Zeiger in den Trackpuffer

minus Anfangsadresse des Puffers

durch die Anzahl der Bytes pro

Sektor dividieren, wenn ein Rest

vorhanden, dann war es nicht der

der Anfang eines Sektors und es

muB 256 subtrahiert werden

diesen Zeiger auf Sektoranfang

im Trackpuffer an editit Uber

geben, Message in Spalte 20 der

Zeile 2 ausgeben

und edit aufrufen

* anschließend Messagezeile

Löschen und

Menue wieder auf read einstellen

* restlichen Bildschirm löschen

und zurück

338 ATARI ST Floppy und Harddisk

KEKE CK KK CN KU

* ermöglicht das Ansehen des gesamten, in den Puffer eingelesenen *

* Tracks *

KkKkkkkk kkk Kk KKK KKK KKK KKK KK KKK KKK KKK KKK KKK KKK RK KKK

showtr: move.w #0,head2 * Byte-Zähler

move.l #platztr,topptr * Pufferanfang

move.w #0,edflag * Flag

move.w #15,zeicount * 16 Zeilen sollen jeweils gezeigt

move.w #2,zeile * werden, in Spalte 59 der zweiten

move.w #59,spalte * Zeile den aktuellen Sektor

jsr loccurs

move.l #trfrag3,a0 * anzeigen

Jsr printf

clr.w do

move.w #1,d0

move.w dO,-(a7)

jsr dezpr * Sektor drucken

move.lt #trfrag4,a0

jsr printf

showt1: move.w #4,zeile * Cursor positionieren

move.w #0,spalte

jsr loccurs

jsr clrest * Rest des Bildschirms löschen

Jsr leerebuf

showt2: jsr dispbuf * die erste Seite anzeigen und

showt3: jsr taste * Tastatur abfragen

swap do

cmp.b #$48 , d0 * Cursor up ?

beq showtup

cmp.b #$50,d0 * Cursor down ?

beq showtdo

cmp.b #$1c,d0 * Return ?

beq showten1

cmp.b #$4b,d0 * Cursor links ?

beq showtli

cmp.b #$4d,d0 * Cursor rechts ?

beq showtre

Programmieren in Maschinensprache 339

bra

showtre: jsr

bra

showtli: jsr

bra

showtup: move.w

cmp.W

beq
süb.w

sub. l

showtuen: move.w

lsr.w

I\sr.w

add.w

move .W

move.W

move.W

jsr

move.|

jsr

move .W

jsr

move.

jsr

jsr

showtuei: bra

showt3

currecht

shonten!

curlinks

showten!

head2 ,d0

#0,d0

showtuen

#256, head2

#256, topptr

head2 , do

#8 ,d0

#1,d0

#1,d0

d0, varw3

#59, spalte

#2,zeile

loccurs

#trfrag3,a0

printf

varw3, - (a7)

dezpr

#trfrag4,a0

printf

delrest

shont2

* keins von allem weiter abfragen

* cursor auf rechten Menuepunkt

* und zurück

* Linken Menuepunkt invers

*
t+

x
x

£€
£€

&
&

darstellen und zurück

Byte-Zähler mit

Null vergleichen

wenn nicht gleich null,

dann 256, entspricht einem halben

Sektor, abziehen

Byte-Zähler

dividiert durch 512

plus eins gleich Sektornummer

die aktuelle Sektornummer in

* Zeile 2 ausgeben

*

den Rest der Zeile löschen

und zur Schleife zurück

KARATE HT TC TI KT KT TC EN KK

showtdo: move.w

move.W

sub.wW

cmp.W

beq

add.w

add. l

head2,d0

maxhead, d1

#256, d1

d1,d0

shwtrden

#256, head2

#256, topptr

* Cursordown- Handling

* 256 zu Pufferpointer und

* und Byte-Zähler addieren

340 ATARI ST Floppy und Harddisk

shwtrden: move.w head2,d0

lsr.w

isr.w

add.w

move.W

move.W

move.W

jsr

move.|

jsr

move .W

jsr

move. l

jsr

jsr

shwtrdi1: bra

showteni: jsr

rts

#8,d0

#1,d0

#1,d0

d0, varw3

#59, ,spalte

#2,zeile

loccurs

#trfrag3,a0

printf

varw3, > (a7)

dezpr

#trfrag4,a0

printf

delrest

showt2

leerebuf

* den Byte-Zähler durch 512

* dividieren und eins addieren

* ergibt aktuelle Sektornummer

die Sektornummer anzeigen

Rest der Zeile löschen

Tastaturpuffer leeren

* und zurück

KRARKKKKKKKHTITKTKTCT TI TC TI TITTEN KL

writitr: move. l

move .W

jsr

jsr

move.

jsr

move.

o
m

move.

writiti: move.

move.

jsr

dbra

move. L

jsr

jsr

jsr

cmp.b

x
z

U
m

x

a4, -(a7)

#2 ,zeile

loccurs

delline

#trfrag5, a0

printf

#33,d2

#misecta, a4

(a4)+,d0

d0, -(a7)

conout

d2,writit1

#trfrag6,a0

printf

leerebuf

wtast

#'Y' dO

* schreibt den eingelesenen Track

+
+

x
3

*

wieder auf die Diskette

34 Byte ab misecta auf Bildschirm

ausgeben

Fragen ob wirklich auf Diskette

geschrieben werden soll

Tastaturpuffer leeren

Tastatur abfragen und auf

kleines und großes Ypsilon über

Programmieren _in Maschinens prache 341

beq writit2 * prüfen

cmp.b #'y!,dO

bne writiten * wenn andere Taste, dann nicht

writit2: move.w asector,-(a7) * Anzahl der Sektoren auf Stack

move.w wside,-(a7) * aktuelle Seite

move.w wtrack, -(a7) * aktueller Track

move.w #1,-(a7) * Startsektor gleich eins

move.w wdrive,-(a7) * aktuelles Drive

clr.l -(a7) * Dumny-Langwort

move.l #platztr,-(a/7) * Pufferadresse

move.W #9,-(a/) * Flopwr Befehl auf Stack

trap #14 * XBIOS-Trap

add. lt #20,a7 * Stack restaurieren

tst.w rel) * ist ein Fehler aufgetreten ?

bmi writier1 * ja

writiten: jsr cursmess * kein Fehler, dann Statuszeile

jsr delline * löschen und Message ausgeben

writitel: jsr cursmess

move. #trfragi,a0

jJsr printf

move.l (a/7)+,a4 * holt a4 zurück

rts

writieri: move.w d0,-(a7) * Fehlernummer auf den Stack

jsr errhand * Fehler handeln

bra writitel * und zum Ende

Nun die Unterprogramme des Track with Sync-Menues

KEKE KK

HKEKKKIKK KKK EEK EKER EER EKER EERE EEE EEE ER EKER KEKE

* Subroutines des Menuepunktes TRACK with SYNCS, die Routinen *

* greifen auf keine anderen Routinen zurück, kann daher wahlfrei *

* implementiert werden *
KAKI HAKATA KT KT KH IT KH TI TH TH KH KT TI TITTEN

KKK KATATE AKER EKA TI TH KT TH TI TITTEN TI KKK

342 ATARI ST Floppy und Harddisk

KKKKKKKKKEKKEEKKEKEKEIKEEKEREEEA KEKE EERERREKEREEREREREEEREERKE

* zuerst einige häufig benutzte Variablen *

KEK RAKHI AKER TI KT TRITT KIT KK KT KK KR IEE

dmamode: equ $ff8606

dmadat: equ $rff8604

dmahigh: equ $f f8609

dmamid: equ $f f860b

dmalow: equ $f 860d

mfp: equ $fffa01

flselec: equ $f f8800

flwrite: equ $f Ff8802

flock: equ $43e

KHKKKHKKA HEHE TC KETTE TRITT IE KEN

* schaltet den Prozessor in den Supervisor-Mode, sollte sich der *

* Prozessor schon im Supervisormode befinden, passiert nichts *
HIKE KKA KIARA REKEKEKEREREEEHREEKEREREEREEREEEEEEREREEE

super: move.l #1,-(a7) *

move.w #$20,-(a7) * GEMDOS-Funktion Super

trap #1 * Test ob schon im Super -Modus

add. l #6,a7

tst.w do *

bne super 1 * Prozessor schon im Super-Mode

clr.l -(a7) * wenn nicht, dann auf Super-

move.w #$20,-(a7) * visor-Mode umschalten

trap #1

add. l #6,a7

move.l dO,usstack * Userstack speichern

supert: rts * ab hier im Supervisor-Mode

Programmieren in Maschinensprache 343

KERKKKKKKKTTKTTTTETITITTEKITT TEE ERRRTICC K KK

* schaltet wieder zurück in den User -Mode *

KkEKKKKKK RR KKK KKK KKK KKK KKK RK KKK RK KKK

user: move.l #1,-(a7)

move.w #8%20,-(a7) * GEMDOS-Funktion Super

trap #1

add. | #6,a7

tst.w do

beq user 1 * schon im User-Mode

move.l usstack,-(a7)

move.w #$20,-(a/7)

trap #1

add. | #6 ,a7

user1: rts

KERMIT KKK

fwarten: dbra d7, fwarten

rts

KKK REE RK

* Reset des Floppydiskcontrollers (FDC) *
KEKE KK KT IT KUN KK KK CK N

flreset: Jsr super * in Supervisor-Mode umschalten

move.w #$80,dmamode * Zugriff auf FDC-Register

move.w #$d0,d6 * Reset durch Interupt-Befehl

jsr wrcontr * Befehl an Controller

move.w #40,d7 * ein wenig warten

jsr fwarten

rts * und zurück

344 ATARI ST Floppy und Harddisk

HAKKAR REE

* Liest das Statusrgister des Controllers und speichert dieses *
KKAREKAKETEKAKKEEEEAEKEKEATEEHEE RETREAT EREREEKEREERECEKKKAA KKK

rdcontr: jsr super * Supervisor-Mode einschalten

move.w dmadat,d3 * Statusregister nach D3.

jsr readco1 * ein wenig warten

readcol: move.w sr,-(a/)

move.w d’,-(a’) * Timout-Zähler retten

move.w #40,d7

readco2: dbra d7, readco2

move.w (a’)+,d? * anschließend zurück

move.w (a/7)+,sr

rts

KAKAKKERKEEKREKEEREEETEKEEEKEKEEEEEEREEKEREEEEEEEKEREEEEREKEREEEERRRRAK RR KE

* übergibt die in D6 stehenden Zahl an den Floppy-Disk-Controller *
KIKI

wreontr: jsr super * Supervisor on

jsr readco1

move.w d6,dmadat

jsr readco1 * ein wenig warten

rts

KEKKKKEKKKTRTKTTKCTC TEILT CC CT N I TC KK KK N

* Liest das Statusregister des FDC und speichert dieses in flstatus *
KERKKEKKKKKHTKTTTCTTCT CT TI TC TI CT TC TH TI KT TE KTTTTTTTT RK KR RR KK

rdstatus: jsr super * Supervisor on

jsr readcol

move.w dmadat,flstatus * Status nach flstatus

jsr readco1 * ein wenig warten und

rts * dann zurück

Programmieren in Maschinensprache 345

KEKE KK KK

* selektiert das aktuelle Drive (rote Lampe brennt) *
KHATER TICKET TEN TEN TC KT TC CK KK

seldrive: jsr super * Supervisor on

move.w wdrive,dO * aktuelles Drive

cmp.W #1,d0 * größer als 1

bgt "seldrend * wenn ja, dann zuück

addq.b #1,d0 * sonst mit aktueller Seite

Isl.b #1,d0

or.W wside,d0 * verknüpfen,

eor.b #7 ,d0

and.b #7 ,d0

select: move.w sr,-(a/7)

or.W #$700,sr * Interrupt ausschalten, da derFloppy

move.b #$e,flselec * Interrupt die Drives wieder

move.b flselec,di * deselctiert

and.b #$f8,d1

or.b do, d1 .

move.b di,flwrite * an ACIA übergeben

move.w (a/)+,sr * Staturregister zurückholen

seldrend: rts * und zurück

KREKKKKKKKKKERHKTHTKTKC TITTEN IKK KO

* aktuelles Drive deselektieren (rote Lampe erlischt) *

* das Timing zwischen Floppy-Reset und deselektieren muß stimmen, *

* sonst läuft der Floppy-Motor weiter *
HHH HHA HIT IARI IEEE ERE 2 2 2 2 202 2 a 2 2 2 22 2 2 202 202 202 202 202 ER EEREKEREREKE

deselect: jsr super * Supervisor on

move.w #%80,dmamode * FDC-Register auswählen

move.b #7,d0

jsr select * deselektieren

rts | * und zurück

346 ATARI ST Floppy_und Harddisk

KERKEKKKKEEEKRREERCERREEEREAEREE KEKE RRR KKK

* Liest einen ganzen Track mit allen Syncs in den Puffer der bei *

* Adresse platztr beginnt *
KEKKKKRKEEKEEEEEEEREREEEEKEREEEKEEREREERERERERREREEEEEEEREEEERERE EK EKER

rdstrack: jsr super * Supervisor on

clr.lt currdma

move.w sr,Vvarw3 * altes Statusregister retten

move.w #$2700,sr * Interrupts sperren, ist eigentlich

move.w #%90,dmamode * nicht nötig, Sektor-Count Register

move.w #%190,dmamode * Toggle DMAMODE um auf Lesen umzu-

move.w #$90,dmamode * schalten, und das DMA-Register zu

move.w #816,d6 * löschen, es sollen 22*512 Byte

move.w #512,d2 * gelesen werden, (soviele stehen

mulu d6,d2 * gar nicht auf der Diskette)

move.w d2,maxhead * aber

add. #platztr,d2 * errechnen der DMA-Endadresse

move.l d2,topdma * diese speichern

jsr wrcontr * d6 (Anzahl der Sektoren) an FDC

move.l #platztr,d0 * Adresse des DMA-Puffers an

move.b d0,dmalow * DMA-Chip Ubergeben

lsr.l #8, d0

move.b dO,dmamid

isr.l #8 , dO

move.b d0,dmahigh

move.w #$80,dmamode * FDC-Register anwählen

move.w #$e8,d6 * Readtrack-Command an FDC

jsr wreontr * übergeben

move.l #%50000,d7 * Timeout-Zähler

move.l topdma,a5 * DMA-Endadresse

move.w #%$200,d0 * ein wenig waren

rdi: dbra dO,rdi

rdstrl1: btst #5 ,mfp * Befehl schon abgearbeitet?

beq rdtrend1 * wenn ja, dann ende

subq.l #1,d7 * Sonst Time-out-Zähler erniedr.

beq rdtrerr1 * wenn Zahler abgelaufen, dann Fehler

move.b dmahigh,highdma * Testen ob End DMA-Adresse schon

move.b dmamid,middma * erreicht, ist unnötig, da der

Programmieren in Maschinensprache 347

move.b

cmp. l

bgt

rdtrend1: move.w

move.W

move .W

btst

beq

move .W

jsr

rdtend: move.w

rts

rdtrerr2: bra

rdtrerri: bra

dmalow, lowdma

currdma, a5

rdstrt1

#$90 , dmamode

dmamode , d5

d5 ,dmastat

#0,d5

rdtrerr2

#380 , dmamode

rdstatus

varw3,sr

rdtend

rdtend

* Controller vorher abbricht (weniger

Byte auf Diskette)

auf Sektorcountregister umschalten

* Status des DMA-Chips lesen

t+
*

&
*

und speichern

auf FDC-Register umschalten

FDC-Status lesen

Statusregister zurückholen

und zurück

KEKEKEKEKREEKEEREEKEEKREREEERKEREERKREREEKEKREERKEEEEEREKEREEREERKKKKK KE

* Stellt den Lese-Kopf auf den in wtrack Ubergebenen Track *
KKRKKKKKKKKKRKTHT IKT TICKET KT TUN TTS

searcht: jsr

jsr

move .W

move .W

jsr

move.W

move.W

jsr

move.|

searchi: subq.l

beq

btst

bne

rts

searendi: move.w

jsr

rts

super

track0

#586 , dmamode

wtrack,d6

wrcontr

#$80 , dmamode

#$1b,d6

wrcontr

#$60000,d7

#1,d7

searend1

#5,mfp

search!

#-7,-(a7)

errhand

3
x

£
€

&€
&£

&€
FF

*F Supervisor on

Track null suchen

Track Register selektieren

aktuellen Track an Trackregister

übergeben.

FDC-Register selektieren

Search-Track-Befehl

an Controller übergeben

Timeout -Zähler

* Befehl schon abgearbeitet?

* nein, dann weiter warten

Fehler = keine Diskette

348 ATARI ST Floppy und Harddisk

KRKKKKKKKITKTTTTTTTTTTT TREE TT TTTRT TT T K TCK C K KU

* Track null suchen *

KkKKKKKKKKKKKKK RRR KKK KKK RK KK KKK KKK

trackO: move.w seek,d6 * Seek-Rate

and.w #3 ,d6 * mit Track null Befehl verknüpfen

move.l #%$50000,d/ * Time-out-Zähler

move.w #%80,dmamode * Zugriff auf FDC Register

jsr wrcontr * Befehl Ubergeben

track0l1: subq.l #1,d7 * Zähler erniedrigen

beq trackler * Timeout

btst #5 ,mfp * FDC fertig?

bne track0l1 * nein, dann weiter warten

rts * und zurück

trackOer: move.w #-7,-(a/) * Fehlernummer an Fehler-

jsr errhand * handler Ubergeben

rts * und zurück

KEKKEKKKEKEEKEEEEERERRKEEKEER EER KERRIER KKK

* übergibt die Adresse des Puffers platztr an den DMA-Controller *
KHER KEKE REECE KT CN KK I KK HC

setplatz: move.l #platztr,d0

move.b d0,dmalow

isr.l #8 , dO

move.b dO,dmamid

lsr.l #8 , dO

move.b d0,dmahigh

rts

Programmieren in Maschinensprache 349

KIKKKKKKKKUHTKTKK TITTEN

* die Readtrack mit allen Syncs Steuerroutine, sie ruft alle er-

* forderlichen Unterprogramme auf
KAKKKKKKEKKKKKKKKKK CT TI TITTEN TITTEN KT TITTEN

rdtracks: movem.l a3-a6/d3-d7,-(a7)

jsr

jsr

jJsr

move. l

jsr

move .W

Jsr

st

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

sf

jsr

cursmess

delline

cursmess

#trfrag2,a0 *

printf

#18, zeicount

super

f lock

seldrive

flreset

searcht

rdstrack

rdstrack

flreset

user

shtracks

super

deselect

f lock

user *

+
*

+
r

&€
€

©
€

€
F&F

F&F

HF

Kr

* Register retten

Message ausgeben

für Subroutine Dispbuf = 19 Zeilen

Supervisor on

Floppy-interrupt aus

Drive selektieren

Controller "resetten!!

aktuellen Track suchen

zweimal diesen Track lesen, da die

Diskette sonst nicht auf Touren ist

FDC resetten

User-Mode on

Diesen Track anzeigen

Supervisor on

Floppy deselektieren

Floppy-Interrupt freigeben

User-Mode einschalten

movem.l (a7)+,a3-a6/d3-d7 * Register zurückholen

rts * und zurück

*

*

KKK AKAIKE ERATE EERE EREEREKEREEREREREERERKKKKKE

* Ubergabe der Parameter zur Anzeige des Tracks an die allgemeine

* showit-Routine

*

*

PRK KAA EEE EERE ERE EERE

shtracks: move.w

move. |

#0 ,head2

#platztr,topptr

350 ATARI ST Floppy und Harddisk

move.W

move .W

move .wW

move .wW

jsr

jsr

jsr

jsr

rts

#18, zeicount

#100, prcount

#7680 , maxdown

#7888 ,maxup

cursbuf

clrest

showit

leerebuf

* 19 Zeilen auf Schirm

101 Zeilen auf den Drucken *

* Rest des Bildschirms löschen

* Puffer anzeigen, mit handle

* der Cursortasten ect.

KEKKKKKKRTKRTTRTTTT CT TER

* lesen der Adressfelder auf der Diskette

KEKKKKKKKKKT KHK TC TC kkk RK KK KT KK KT N KT KT KT N I TI KK I KK KK KK A KK KK KK KK KK

readadr:

readad1:

jsr

jsr

move. l

jsr

move .W

cmp. Ww

bgt

jsr

jsr

isr.

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

rts

cursmess

delline

#hilcurs,a0

printf

wdrive,dO

#2,d0

rdaderr

super

seldrive

flreset

searcht

searcht

setplatz

rdadr

flreset

user

showadr

super

deselect

user

* Cursor positionieren

* Linie löschen
*

+
3
x

x
3

3
x

3
3

3
*

F
F-

Message ausgeben

Supervisor on

aktuelles Drive selektieren

FDC reset

zweimal den aktuellen Track suchen,

damit das Drive auf Touren kommt

DMA-Transfer-Adresse setzen

Adressfelder lesen

FDC Reset

User-Mode on

Adressfelder anzeigen

Supervisor on

aktuelles Drive deselektieren

User-Mode on

und zurück

KKKKKKKKKKKKKKTKKE KK KT IN KK TI KK KK KT KT KK KK KT KT TC TE KK KK KU

*

* Liest 25 Adressfelder von der Diskette *

*

Programmieren in Maschinensprache 351

* *

KAKKEKEKKKEKEEEEKEEKEEEEEKKEAKEEREEEEEEREEEKEEREKREEEKEEEEKEEEEKKEEKKK KKK

rdadr: jsr

move .W

move .W

move .W

move .W

jsr

move.W

move.W

rdadr1: move.w

move. lt

jsr

rdadr2: btst

" beq

subq. l

beq

bra

rdadreni: dbra

rts

rdaderr: move.w

jsr

rts

super

#390 , dmamode

#$190 , dmamode

#$90 , dmamode

#1,d6

wrcontr

#$80 , dmamode

#24 ,d4

#5c8,d6

#540000,d7

wrcontr

#5, mfp

rdadren1

#1,d7

rdaderr

rdadr2

d4,rdadr1

#-6,-(a7)

errhand

K
r

€
€

££
€

£*
€

3
3

€F
r

FE
F

FF
F Supervisor-Mode einschalten

Togglen der read- write- Leitung

Löschen des DMA-Status, Reset DMA

Chips, auf Lesen und Sektorcount-

Register umschalten, 1 Sektor lesen

an FDC-Controller

auf FDC-Register umschalten

24+1 Adressfelder lesen

Read Adress Befehl

Time-out Zähler

Befehl an FDC

Befehl schon abgearbeitet?

ja |
sonst Timeout verringern

abgelaufen?, dann Fehler

sonst weiterwarten

25 mal wiederholen

und zurück

Fehlermeldung

ausgeben, und abbrechen

KKEKREKEREKEKRKEREEEEEREEREEEKEREEKEKREKERREKREKREKRERKKERERREEE KERRIES

* Anzeigen der eingelesenen Adressfelder, es wurden mehr Adressfelder *

* eingelesen, als angezeigt werden, da der DMA-Controller die Bytes *

* in Gruppen von 16 überträgt, ein Adressfeld aber nur 6 Bytes be- *

* inhaltet. *

KEKEKKKKKKHERKEKEKEKEEKEKEEREEKREKREREERERRERRECKKEEEREEEREEREREREEREEERKKKERKEK

showadr: jsr

jsr

move. |

jsr

jsr

cursmess

delline

#sadfragi,a0

printf

cursbuf *

* Cursor pos. und löchen und Message

* ausgeben

cursor positionieren

352 ATARI ST Floppy_und Harddisk

showadr1:

showadre:

showadr/7:

move .W

move. lL

move .W

move .W

jsr

move.b

move .W

jsr

move .W

jsr

move .W

jsr

dbra

move .W

jsr

move .W

jsr

move .b

ext.W

move .wW

cmp.W

beq

move .W

cmp.W

beq

move .W

cmp.W

beq

move .W

move .W

jsr

move .W

jsr

move. |

jsr

move.b

move.W

jsr

move.b

#17,d5

#platztr,a3

#2 ,d4

#520, -(a7)

conout

(a3)+,d0

d0, -(a7)

dezpr

#520, -(a7)

conout

#520, -(a’)

conout

d4, showadr2

#$20,-(a7)

conout

#$20,- (a7)

conout

(a3)+,d0

do

#128,d1

#0,d0

showadr7

#256,d1

#1, d0

showadr7

#512,d1

#2,d0

showadr 7

#1024,d1

di,-(a7)

dezpr

#520,-(a7)

conout

#spaces, a0

printf

(a3)+,d0

d0, -(a7)

hexpr

(a3)+,d0

+
+

x

3
%

*
* 18 Adressfields anzeigen

Pufferadresse der Adressfelder

3 Daten ausgeben (Track, Seite,

Sektor), erst ein Leerzeichen

ausgeben

Byte aus Puffer holen

als Wort auf den Stack schieben

und als Dezimalzahl ausgeben

zwei Spaces hinterherschicken

* dreimal wiederholen

* dann 2 Spaces schreiben

nächstes Byte aus Puffer (ent-

* hält die Sektorgröße)

+
3
x

+

eine 0 bedeutet 128 Byte/Sektor

1 gleich 256 Byte/Sektor

2 gleich 512 Byte/Sektor

sonst 1024 Byte/Sektor als Default

Anzahl der Byte/Sektor als

Dezimalzahl ausgeben

ein Space und

mehrere Spaces ausgeben

* nachstes Byte aus Puffer ist die

* Checksumme des Adressfeldes, welche

* nun als Sedezimalzahl ausgegeben wird

* nachstes Byte aus dem Puffer

Programmieren in Maschinensprache 353

move.w dO,-(a’)

jsr hexpr * als Sedezimalzahl

move.w #13,-(a7) * Carriage-Return plus Linefeed

jsr conout * hinterherschicken

move.w #10,-(a7)

jsr conout

dbra d5 , showadr1 * 18 mal wiederholen

jsr wtast * und auf Tastendruck warten

rts * nun zurück

Nun die Unterprogramme des CLUSTER-Menues

KEKKKKEKERKKHTTTTTKTCTT TITTEN KT KK A

KEKEKKKEKEEKKEEKKEREEEEKREEEEEKEEEEEKERKEREKEREEEREERRERKEEEKRERERERERRRKEKEE

* Subroutines des Menuepunktes CLUSTER des Hauptmenues, die Routinen *

* greifen auf Routinen des OPTION-Menues zurück, daher bitte *

* das OPTION-Menue zuerst implementieren *
KKKKKKKKEKKEREREEKEEEEEEECREKEEEKEKEEEEKEREEKREKEKEEKKEEREEREEEEEREERKEKKRRKKEKEK

KKKKKKKEKAAKEEEEEEAEECEKEEKEKEEKREKKHEEREEEERREREEREEEREREREREREEEEERK KKK

edclust: jsr cursmess * Cursor pos. ect.

jsr delline

move.w #20,spalte

move.w #2,zeile

jsr loccurs

move.1 #edfragi,a0 * Message

jsr printf

move.w #512,maxdown * Scroll up and down Variablen

move.w #720 ,maxup

move.l #platztr,editptr * Pufferadresse

jsr editit * Cluster editieren

jsr cursmess * Message-Zeile löschen

jsr delline

jsr cursmess

move. #clfragi,a0 * Message ausgeben

jsr printf

354 ATARI ST Floppy und Harddisk

jsr

jsr

jsr

jsr

rts

curlinks

curlinks

curlinks

shelust

+
xx

x
3

& drei mal links

zum Sprung ins read

Untermenue

Anzeigen des Clusters

und zurück

KKERKKKKKKRTRKETTTTTRT TITTEN KT KK CK KU

* erniedrigen der Clusternummer im Clustermenue *

KKK EAE KE KEE K KEE I KT KT KT KK TI KK KK N?

decclust: move.w

move .W

trap

addq. l

btst

bne

btst

bne

move .W

bra

decclshi: move.w

declst0O: move.w

sub.w

CMP.W

bit

bra

declst1:

declst2:

move .W

move.W

ext.l

divu

add.b

move .b

swap

ext.l

divu

add.b

move.b

swap

ext. l

#-1,-(a7)

#11,-(a7)

#13

#4,af

#0, d0

decclshi

#1,d0

decclshi

#1 ,d2

declst0

#10,d2

welust,d0

d2,d0

#0, d0

declst1

declst2

maxclust,d0

dO, wcelust

do

#1000, d0

#'0' dO

dO,miclusal

do

do

#100, d0

#'0' dO

dO,miclusa1+1

do

do

x
+

3
*

+
*

+
&

£€£

£€
x

xx
r

FF
FF

x
r

sr
HF

F

*

: Keyboard-Shift abfragen

wenn eine Shift-Taste betätigt

wurde, dann beträgt das Decrement

10, sonst wird nur um eins er-

niedrigt

Shift betätigt

sonst nicht Shift betätigt und

daher nur um 1 erniedrigen

um 10 erniedrigen

aktuelle Clusternummer

Decrement subtrahieren

0 schon überschritten

Ja

nein

maximale Clusternummer als neue akt.

Clusternummer speichern

nun muß die neue aktuelle Cluster-

nummer auch in das Menue eingetragen

werden, daher durch dividieren in

Zehnerpotenzen zerlegen, und ins

Clustermenue eintragen

100'er eintragen

Programmieren in Maschinensprache 355

divu #10,d0

add.b #'0',dO

move.b dO,miclusal+2

swap do

add.b #'0' dO

move.b d0,miclusai+3

jsr dispmen

rts

*

*

*

10'er eintragen

und zum Schluß die Einer ins Menue

Menue anzeigen und

zurück

KEKEKKRKKKEKEEREKEREKREEERRERERKEEKREKRERKKEERKRERKEEERERRREREEREEEEAREK KEKE

* erhöhen der aktuellen Clusternummer *

KKEKKKKKKKKk Kk KKK KKK KKK KKK KKK KKK KKK RKC IK

incclust: move.w #-1,-(a7)

move.w #11,-(a7)

trap #13

addq.l #4,a7

btst #0,d0

bne incclshi

btst #1,d0

bne incclshi

move.w #1,d2

bra inclstO

incclshi: move.w #10,d2

inclstO: move.w wclust,dO

add.w d2,d0

cmp.W maxclust,dO

blt inclst1

move.w #0,d0

inclst1: move.w dO,wclust

ext.L do

divu #1000,d0

add.b #'0' dO

move.b dO,miclusal

swap do

ext. l do

divu #100,d0

add.b #'0', dO

* Keyboard-Shift abfragen

* wie bei decclust -

+
+

x
££

r
x

Ir
€

SF
F

keine Shift-Taste, dann 1 als Incre-

ment |

sonst Increment gleich 10

Increment zu aktueller Clusternummer

addieren, und mit maximaler Nummer

vergleichen

kleiner als maximale Nummer —

Nummer 0 annehmen

neue aktuelle Nummer speichern

und die aktuelle Nummer ins Menue-

eintragen, 1000'er Stelle

1000'er Stelle eintragen

356 ATARI ST Floppy_ und Harddisk

move.b

swap

ext. l

divu

add.b

move.b

swap

add.b

move.b

jsr

rts

dO,miclusal+1

do
do
#10,d0
#'0', dO
dO,miclusa1l+2

do

#'0',dO

dO,miclusa1+3

dispmen

*

*

*

100'er Stelle eintragen

10'er Stelle eintragen

1'er Stelle eintragen

* Menue anzeigen und

* zurück

KEKERKKERKEEKEEKRERREERERREEREEKERREEREEREERRERETRRERREREEEETRERERRKRKIK

* sucht den nächsten, auf den aktuellen Cluster folgenden Cluster,

* ist kein Nachfolge-cluster vorhanden, wird dies kundgetan
ES 5 0 5 5 5 5 202 2 2 5 2 202 2 5 2 2 2 2 2 2 202 2 2 2 2 2 2 2 2 2 2 5 2 202 2 5 20802 2 2 202 2 202 2 2 2 202 202 5 2.202 2 80202027;

nextclst: move.w

neclend:

neclerr1:

move .W

jsr

move .W

tst.w

beq

cmp.W

bge

subq.wW

move .W

move. |

jsr

jsr

rts

jsr

move.W

jsr

jsr

wclust,dO

d0,oldclst

findclst

newclst,d0

do

neclerr1

#$ff8,d0

neclerr1

#1,d0

dO,wclust

#3, revnum

incclust

rdclust

cursmess

#-19,-(a7)

errhand

cursmess

*
*

+
x

3
x

x
3»

3
X

&
&€

3
F aktuelle Clusternummer

zwischenspeichern

nächsten Cluster suchen

hier steht der nächste Cluster

oder eine 0, was einen Fehler

signalisiert

oder ein Ende-kennzeichen, was

den letzten Cluster anzeigt.

eins subtrahieren, zum besseren

Handling der Menueanzeige, nun

kann nämlich die incclust-Routine

aufgerufen werden, die den incre-

mentierten Cluster anzeigt, dann

diesen Cluster lesen |

Letzten Cluster als solchen melden

*

*

Programmieren in Maschinensprache 357°

move. #clfrag1,a0

jsr printf

bra neclend * und zurück

KRKKKKKKKKTTTTTTTTTTTT TITTEN

findelst: move.l #fatbuf,a0

move.w oldclst,d0

move.w #3,d1

mulu d0O,di

lsr.w #1,d1

btst #0,d0

bne ungerad

gerade: move.b 1(a0,d1.w),d0

lsl.w #8, dO

or.b 0¢a0,d1.w),d0

and.w #s0fff,do

move.w d0,newclst

bra ficlend

ungerad: move.b 1(a0,d1.w),d0

Isl.w #8,d0

move.b 0(a0,d1.w),d0

isr.w #4 ,d0

and.w #s0fff,do

move.w d0,newclst

ficlend: rts |

* Adresse des FAT-Buffers

* alte Clusternummer

*
*

*
n
r

r
©

N
ır

ır
sr

r
x

+
F

mal 3, und

dividiert durch 2, gleich mal 1.5

war die alte Clusternr. gerade oder

ungerade (durch 2 teilbar odernicht)

wenn gerade, dann mostsignificant

Nibble holen, 8 Bitstellen nach

Links schieben, und die beiden rest-

Lichen Nibble dazuodern

als neue Clusternummer speichern

und zurück

sonst: most significant Nibble und

nächstes Nibble holen, 8 Bitstellen

nach links, least significant Nibble

die oberen 12-Bit enthalten die

Clusternummer, daher 4 Bit nach

nach rechts, ausmaskieren, speichern

und zurück

KERKKUKKKHTTTTTT TRETEN TECK

* schreibt den aktuellen Cluster nach Frage auf die Diskette *

RIKKI

wrelust: movem.t a3-a5/d3-d5,-(a/7)

move.w #0,spalte

move.w #2,zeile

jsr loccurs

move.l #clfrag5,a0

* Register retten

* Message ausgeben

358 ATARI ST Floppy und Harddisk

wrcelts

wrel2:

writclst:

wrelend:

jsr

move. |

move .W

move.b

move .W

jsr

dbra

move. |

move .wW

move.b

move .W

jsr

dbra

move. |

jsr

jsr

jsr

cmp.b

beq

cmp.b

bne

move .W

move .W

sub.w

muls

add.w

move .W

move.W

move. l

move.W

move .W

trap

add. l

tst.w

bmi

jsr

jsr

jsr

move. l

printf

#misecta,a3

#9 ,d3

(a3)+,d0

dO, -(a7)

conout

d3,wrcl4

#miclusa,a3

#12,d3

(a3)+,d0

dO, -(a7)

conout

d3,wrcl2

#wrfrag2,a0

printf

leerebuf

wtast

#'y',d0

writclst

#'Y¥' dO

wrelend1

wdrive,-(a7)

wclust,dO

#2,d0

clsiz,d0

datrec,d0

d0, -(a7)

clsiz,-(a7)

#platztr,-(a’)

#3, (a7)

#4,-(a7)

#13

#14,a7

do

wrelster

cursmess

delline

cursmess

#clfragi,a0

*

*

aktuellen Track

und Cluster als Frage ausgeben

* wirklich schreiben

x
*£

€£

©
©

&€

©
€

&€

FF

FF

FF

FF

FF

F
Kr

ja

ja

sonst halt nicht schreiben

aktuelles Drive Ubergeben

aktuelle Clusternummer

Nummer 2 ist erster Datencl.

logische Sektornummer

berechnen .

logische Sektornummer auf ST

Anzahl Sektoren pro Cluster

Anfangsadresse des Clusters

Schreiben, Diskettenwechsel ignor.

Rwabs

BIOS-Trap

Stack restaurieren

Fehler aufgetreten,

wenn ja, dann handlen

sonst Menue-Message ausgeben

Programmieren in Maschinensprache 359

jsr -

movem.|

rts

wrelster: move.w

jsr

bra

wrelendi: Jjsr

jsr

jsr

move. l

jsr

jsr

jsr

jsr

bra

rts

printf

(a7)+,a3-a5/d3-d5

d0, -(a7)

errhand

wrclend

cursmess

delline

cursmess

#urfrag3, a0

printf

leerebuf

wtast

delline

wrelend

*

* Register zurückholen

und zurück

* Fehlernummer an

* Errorhandler und anzeigen

* und zurück

KEKKKKKKKRKKKTKCKTI CK TECK CT KT TECK TRITT KK TH KK

* Liest den aktuellen Cluster in den Speicher, funktioniert auch

* mit der RAM-Disk
KKKKIKKKKKKKKTT TICKET TECK TC CK REE

rdclust: movem.|

rdclO: move.w

move .W

subq.w

muls

add.w

tst.w

bpl

move .W

rdcl2: move.w

move .wW

move .W

move. |

a3-a6/d3-d7,-(a7)

wdrive,-(a7)

wcelust,dO

#2,d0

clsiz,d0

datrec,d0

do

rdcl2

#0,d0

d0, logsect

do, - (a7)

#2,-(a7)

#platztr,-(a’)

*

*

*

*

*

*

*

*

*

* Register retten

aktuelles Drive

aktueller Cluster

*

*

logische Sektornummer berechnenen

größer als null

wenn nicht, dann null annehmen

logischen Sektor speichern

und auf Stack

2 Sektoren lesen

Pufferadresse

360 ATARI ST Floppy und Harddisk

rdcl3:

rdcl4:

rdclend:

rdclster:

move.W

move.W

trap

add. |

tst.w

move .W

divs

swap

addq.w

move .W

swap

move .W

move .W

move .W

cmp.W

lsr.w

btst

beq
move .W

move .W

jsr

jsr

jsr

move. |

jsr

movem. |

rts

Jsr

tst.l

bne

move .W

jsr —

bra

#0,-(a7)

#4,-(a7)

#13

#14,a7

do

rdclster

logsect,dO

#9 ,d0

do

#1,d0

dO,wsector

do

do, d2

#0, wside

anzside,di

#2,d1

rdcl3

#1,d0

#0,d2

rdcl4

#1,wside

dO,wtrack

secinmem

shclust

cursmess

#cl frag1,a0

printf

(a7)+,a3-a6/d3-

initdriv

do

rdcl0

do, -(a7)

errhand

rdclend

+
+

x
xx

3
x

3
€

Ir

*
+

3
*

&

Rwabs Befehl

BIOS-Trap

Stack restaurieren

ist ein Fehler aufgetreten?

wenn ja, dann anzeigen

logischen Sektor in physikalisch.

hier muß noch geändert werden

umrechnen

eins zum Rest der Div. addieren

gleich physiklalischer Sektor

Ergebnis der Div. speichern

Seite null als Default

Anzahl der Seiten

wenn 2 Seiten, |

* dann durch 2 teilen

* Test ob Ergebnis ungerade

gleich physikalischer Sektor

* Sector into Memory

* Cluster anzeigen

* Message ausgeben

d7 * Register zurückholen

*

*

*

*

*

und zurück

wemm Fehler aufgetreten ist, dann

erst Drive initialisieren,

wenn dies ohne Fehler, dann nochein.

muß noch geändert werden

Programmieren in Maschinens prache 361

secinmem: move.w wside,d0 * überträgt den aktuellen Sektor ins

add.b #'0',dO * Sektormenu zwecks späterer Anzeige

move.b dO,mside

move.W wsector,d0

ext. l do

divs #10,d0

add.b #'0' dO

move.b d0,msector

swap do

add.b #'0',d0

move.b dO,msector+1 * low Byte des Sektors

move.w wtrack,dO

ext.| do

divs #10,d0

add.b #'0' dO

move.b dO,mtrack

swap do

add.b #'0',dQ

move.b dO,mtrack+1 * low Byte des Track

rts

KERKKKRIKKKRTTHHTTTT RETTET TC TRIERER KKK

* Zeigt den Cluster an

KERKKKKKKKRKHTTT IT TH NT TE TR KT TH TER HT TH TER TUT TE TITTEN KK

shclust: move.W

move. Ww

move.W

move. |

move. Ww

move.W

jsr

jsr

move.W

move.W

jsr

move. l

#0, head2 * Byte-Zahler

#18,zeicount * 19 Zeilen sollen angezeigt werden

#63, prcount * bei Druckerausgabe 64 Zeilen

#platztr,topptr * Pufferadresse

#512,maxdown * Scrollbegrenzer

#720,maxup

cursbuf * Cursor positionieren und

clrest * Rest des Bildschirms löschen

#0,spalte * Cursor auf letzte Bildschirmzeile

#24,zeile

loccurs * positionieren

#cl frag2, a0

*

362 ATARI ST Floppy_ und Harddisk

jsr printf

jsr showit * und den Cluster anzeigen

rts * anschlieBend zurtick

HKKEAKKKEKKKREREEEEREEEEEEEHEREEEEKEAEKEKREKEEERERERREEREREEEEEEEEKEARAKK KR REKK

* Anzeigen des Startcluster der auf der Diskette befindlichen Files *

* die Startcluster werden durch <return> in die aktuelle Menue- *

* Clusternummer übernommen, ist der invers hervorgehobene Filename *

* ein Subdirectory, wird in dieses verzweigt. *
KKK EEK KERR REE KK

stelust: movem.l a3-a5/d3-d7,-(a7)

jsr initdriv * Drive intialisieren

jsr rdfat * FAT- und Directory-Sektoren in die

jsr rddir * jeweiligen Puffer einlesen

stclst0: move.w #0,spalte

move.w #2,zeile

jsr Loccurs * Cusor positionieren

move.l #sclfrag1,a0

jsr printf

move.w #17,zeicount * 18 zeilen sollen angezeigt werden

jsr detrest * Rest der Zeile löschen

move.l #dirbuf,a3 * Adresse des Directory-Buffers

move.l a3,a4 * zwischenspeichern

move.l a3,topptr * als Zeiger benutzen

move.l a3,oldtop * nochmal zwischenspeichern

jsr cursbuf * Cursor

jsr showdir * 18 Zeilen anzeigen

jsr cursbuf . * Cursor auf Anfang

move.l #dirbuf,topptr * Anfang des Directory-Puffers

jsr revon * Invers einschalten

jsr dirzeil * ersten Filenamen (Diskettenname)

jsr revout * invers überschreiben, dann invers

stelst1: jsr taste * wieder aus, und Tastatur abfragen

swap do

+ cmp.b #$1c,d0 Return Taste betatigt?

beq dirclsel * wenn ja

Programmieren in Maschinensprache 363

cmp.b #$48 , dO * cursor up?

beq stclup * ja

cmp.b #$50,d0 * Cursor down?

beq stcldo * ja

cmp.b #$4b,d0 * Cursor links?

beq stclli * ja

cmp.b #$4d,d0 * Cursor rechts

bne stclst1

jsr currecht * ja, dann aufrufen

bra stclend1

stclli: jsr curlinks

bra stelend]

stclup: move.w zeile,d0 * aktuelle Cursorzeile

cmp.W #4 ,d0 * Zeile 4 gleich obere Grenze

ble stclup3 * gleich 4, dann scrollen

move.w #0,spalte

jsr Loccurs

jsr dirzeil * sonst eins von der aktuellen

subq.w #1,zeile * Zeile subtrahieren, Cursor

move.w #0,spalte * auf die neue Zeile und Spalte

jsr loccurs * null einstellen

jsr revon

jsr dirzeil * und diese Zeile invers ausgeben

jsr revout * invers ausschalten

bra stclupen * und zurück

stclup3: cmp.l #dirbuf,topptr * oberste Zeile im Puffer erreicht?

beq stclupen * wenn ja, nicht scrollen son. back

move. topptr,d0 * sonst Zeiger um Anzahl der Zeilen

move.w zeicount,d0 * mal Anzahl der Zeichen pro Zeile

addq.w #1,d0 * erniedrigen geändert 18.8.86

muls #32 ,d0 |

Zeiger in Buffer erniedrigen sub. | d0, topptr *

jsr showdir * 18 Zeilen anzeigen

move.w #21,zeile .

move.w #0,spalte * letzte angezeigte Zeile invers

jsr loccurs * Cursor pos.

jsr revon * invers on

364 ATARI ST Floppy_ und Harddisk

jsr

jsr

jsr

stclupen: bra

stcldo: move.w

cmp.W

bgt

move .W

addq.w

sub.w

ext.|

Ist.L

move. |

move.b

beq

move .wW

jsr

jsr

addq.w

move .W

jsr

jsr

jsr

jsr

jsr

stcldo1: bra

stcldo3: move.w

addq.w

sub.W

ext.l

isl.l

move. |

move.b

beq
move .W

addq.w

muls

dirzeil

revout

leerebuf

stclst1

zeile,d0

#20,d0

stcldo3

zeile,dd

#1,d0

#4 ,d0

do

#5 ,d0

topptr,a6

0¢a6,d0.1),d0

stcldoen

#0,spalte

loccurs

dirzeil

#1,zeile

#0, spalte

loccurs

revon

dirzeil

revout

loccurs

stcldoen

zeile,d0d

#1,d0

#4 ,d0

do

#5 , dO

topptr, a6

0¢a6,d0.1),d0

stcldoen

zeicount ,d0

#1,d0

#32,d0

+
*

+
+

*
+

+
3

*

Zeile anzeigen

invers wieder aus

und zum Loop

aktuelle Zeile größer als 20

Ja

wenn nicht, dann eins addieren

Offset zum oberen Bildschirmrand

mit 32 multiplizieren

Zeiger in Directorypuffer

erstes Byte dieses Eintrages holen

wenn Byte=0, dann leerer Eintrage

sonst Cursor positionieren und

* die alte Zeile normal anzeigen

Zeilenzähler erhöhen und |

* die neue Zeile invers

*

*

darstellen

inverse Darstellung wieder aus

und zum Loop

erstes Byte des nächsten Directory-

* eintrages holen, eins addieren und

x
.

x
£

3
&

*

Offset zum oberen Rand subtrahieren

mal 32 (Anzahl Byte pro Direintrag)

Zeiger auf Anfang Dirpuffer

ist der nächste Eintrag null

dann zurück zum Loop

Anzahl der anzuzeigenden Zeilen

plus eins

mal 32 gleich Offset vomPufferanfang

Programmieren in Maschinensprache 365

add. | topptr ,d0

move.l dO,topptr

jsr cursbuf

jsr showdir

jsr cursbuf

jsr revon

jsr dirzeil

jsr revout

jsr leerebuf

stcldoen: bra stelsti

stclend1: jsr cursmess

jsr delline

jsr cursmess

move.| #clfragi,a0

jsr printf

movem.l (a/7)+,a3-a5/d3-

rts

* Offset zu topptr addieren

* Cursor pos.

* Directory anzeigen

*-und den ersten Eintrag invers

* darstellen

* zurück zum Loop

* Messageline löschen

* Mode anzeigen

d7 * Register zurückholen

* und zurück

KEKE

* reagiert auf Betätigung der RETURN Taste, übernimmt den *

* oder zeigt ein Subdirectory an *

HAKKAR 2 2 E22 2 22 2 2 Sa 2 2 202 2 2.8 202 2 202 2 2 0.202 2.202 2 2. 2020202020202 2. 202.2 2. 2.203

dirclsel: move.t topptr,a0

move.w zeile,d0

sub.w #4, d0
ext. l d0

ist.l #5 ,d0

move.b 11(a0,d0.1),d1

cmp.b #$10,d1

beq subdir

dirsel1: move.w clstnum,d0

subq.w #1,d0

move.w d0,wclust

* Zeiger auf momentanen Pufferanfang

* mal 32

* File-Type Byte holen

* ist es ein Subdirectory

* ja

* sonst aktuelle Clusternummer

* 1 subtrahieren wegen incclust

366 ATARI ST Floppy und Harddisk

move. #3,revnum * 3. Menuepunkt invers

jsr incclust * Clusternummer erhöhen und Menue an-

bra stclend1 * zeigen, dann zum Loop

KEKKEKKEKEKEKREKREEKEREEEEEKEREEEKEEAEEKEKERKRKEKKE

dirsel2: jsr rddir * Directory-Sektoren neu einlesen

bra subdiren

ist die Clusternummer null dann nur

beq dirsel2 die Directory-Sektoren neu einlesen

move.w clstnum,d0d sonst ab der Anfangsclusternummerdes

move.l #dirbuf,dirptr * Subdirectories 2 logische Skt. lesen

clr.w d3 |

subdir1: move.w clstnum,dO

move.w wdrive,-(a7) * aktuelles Drive

subdir: tst.w clstnum

+
+

+
*

subq.w #2,d0 * Clusternummer in logische Sektornum.

muls clsiz,d0 > * umrechnen

_ add.w datrec,d0

move.w d0,-(a7)

move.w #2,-(a7) * 2 logische Sektoren lesen

move.l dirptr,-(a7) * Pufferadresse

move.w #2,-(a7) * unbedingt lesen

move.w #4,-(a’) * BIOS Rwabs

trap #13 * BIOS Trap

add. | #14 ,a7

tst.w do * Fehler aufgetreten?

bmi subdierr * ja, dann handlen

add. | #1024,dirptr * sonst 1024 Byte pro Cluster add.

move.w clstnum,oldclst * Clusternummer speichern

jsr findelst * und evt. Nachfolgecluster suchen

move.w newclst,dO

move.w d0,clstnum

tst.w do | * Nachfolgecluster gefunden?

beq subdiren * wenn nicht, dann zum Ende

cMP.W #$ff8,d0 * war es ein Endekennzeichen

bge subdiren * wenn ja, dann zum Ende

bra subdir * sonst zweiter einlesen

Programmieren in Maschinensprache 367

subdiren: bra stclst0 * zum Loop

subdierr: move.w d0,-(a7) * Fehler handlen, Fehlernummer

jsr errhand

bra stelend1

KRERKKKKKKTRKKTTTTTTT KIT CK KK

* zeigt eine Seite Directoryeinträge *

KKK EEK AKER KT TC TC KT CT KKK

showdir: move.w #0,eflag

jsr cursbuf * Cursor pos.

jsr clrest * Rest des Bildschirms löschen

move. topptr,a5 * Zeiger in Dirpuffer

move.w zeicount,d7 * Anzahl der Zeilen pro Seite

showd1: move.b #!' ',d0 * erst mal Spaces ausgeben

move.w dO,-(a7)

jsr conout

move.b #'! ',d0

move.w dO,-(a”)

jsr conout

clr.l d4

move.w #9,d6 * Länge von Filnamen mit EXT.

move.b 0(a5,d4.l),d0 * Test ob leerer Dir-Eintrag

beq showdien * wenn ja, dann zum Ende

addq.l #1,d4 * wenn nicht, dann

move.w d0,-(a7)

jsr conout

showd2: move.b 0O0(€a5,d4.l),d0 * den Filenamen mit EXT. ausgeben

addq.l #1,d4

move.w d0,-(a/)

jsr conout

dbra d6 , showd2

move.w #20,tab1

jsr curstab * nun das Fileattribut

jsr disattr * ausgeben

move.w #40,tab1

jsr curstab

jsr disclus * anschließend den Startcluster aus.

368 ATARI ST Floppy und Harddisk

move.w #55,tabl

jsr curstab

jsr dissize * und schließlich die Filegröße in B.

move.w #0,spalte

addq.w #1,zeile

jsr loccurs

add. | #32,a5

dbra d7, showd1

* 32 Byte pro Dir-Eintrag

showd8: move.w #0,spalte * Übernahmemessage in letzter Zeile

move.w #24,zeile * ausgeben und

jsr loccurs

move.l #sclfrag2,a0

jsr printf

rts * zurück

showdien: move.w #1,eflag

bra showd8

KKRKKEKEKREKERKHREEKEEEEKEREREERERAEERREAKEEAEEEEREKKEEREKEREREREEEAEKEKKK KEKE

* gibt eine Directory Zeile auf dem Bildschirm aus *

KkkkKkKK KKK RRR KKK I I CK I TI KK I TI KKK KKK KEE

y

dirzeil: move.l topptr,a3 * Zeiger in Dir-Puffer

move.w #0,eflag

move.w zeile,d3

sub.w #4 ,d3 * Offset vom oberen Bildschirmrand

ext.| d3

Isl.L #5,d3 * mal 32, entspricht einem Dir-Eintrag

move.b #' ',d4

move.w d4,-(a’) * zwei Spaces

jsr conout

move.w d4,-(a7)

jsr conout

move.b 0(a3,d3.l),d0 * erstes Byte des Eintrages, wenn

beq dirzend] * null, dann leerer Eintrag

move.w dO,-(a’) * sonst Byte ausgeben

jsr conout

addq.l #1,d3

move.w #9,d6 * restliche Länge des Eintrages

Programmieren in Maschinensprache 369

dirzeil: move.b

addq. |

move .W

jsr

dbra

move.W

jsr

jsr

move .W

jsr

jsr

move .W

jsr

jsr

dirzend: rts

dirzendi: move.w

bra

0¢a3,d3.1),d0 * restlichen Byte des Eintrages holen

#1,d3

d0, -¢(a7)

conout

d6,dirzei1

#20, tab1

curstab

disattr

#40, tab!

curstab

disclus

#55, tab!

curstab

dissize

#1,eflag

dirzend

*

*

und ausgeben

nun das Fileattribut ausgeben

und den Startcluster

schließlich die Filegröße in Byte

* und zurück

KKEREKREREKREREREREERERITREEEEKEEREKERERERERERKREKEREEREREREREREKREEEREKREKEEREE

* gibt die Startclusternummer des aktuellen Dir-Eintrages aus *
KAKI KEIKI RAKE EERE REECE EERE

disclus: move.b

move.W

jsr

move.W

sub.w

ext.L

\sl.Ll

move.b

isl.w

move .b

move .W

move.W

jsr

move.b

move .W

jsr

rts

#' ' dO

dO, -(a7)

conout

zeile,dO

#4 ,d0

do

#5 ,d0

27(a3,d0.1),d1

#8,d1

26(a3,d0.1),d1

d1,clstnum

di,-(a7)

dezpr

#' ' dO

d0,-(a7)

conout

+
*

3
3

*%

Space ausgeben

mal 32

auf Startcluster im Eintragzugreifen

mal 256 da High-Byte

Low-Byte dazuladen

als Clusternummer speichern

* und als Dezimalzahl ausgeben

* noch ein Space und

zurück

370 ATARI ST Floppy und Harddisk

KKKEKKEEKEECERREEEEREEREREEREREEREEREEREKRREREEKEEEERREREEEEAERKKKA KEKE

* gibt die Filegröße in Byte des aktuellen Dir-Eintrages aus

KERKKKKKKKKKT TE KAAEKKEKKEKREKKARKRK KKK RR KK

dissize: move.w zeile,d3

sub.w #4 ,d3

ext. l d3

lsl.l #5 ,d3

clr.l di

move.l topptr,a3

move.b 31(a3,d3.1),di

Lsl.l #8 ,d1

move.b 30(a3,d3.1),d1

isl.l #8,d1

move.b 29(a3,d3.1),di

Isl.L #8 ,d1

move.b 28(a3,d3.1),di

move. d1,-(a7)

jsr deztpr

move.w #$20,-(a7)

jsr conout

rts

*

*

*

Offset vom oberen Bildschirmrand

subtrahieren

mal 32

Most significant Byte zuerst

laden und wiederum um eine Byte-

Position nach links schieben

bis alle vier Byte des Größen-

eintrages erfaßt und ins

+
+

3
x

r
x

3
F

geben, noch ein Space hinterher

* und zurück

Motorola-Format umgewandelt wurd.

dann die Größe als Dez.-Zahl aus-

*

(Intel), Byte in nächste Byte-Pos.

schieben, next signif. Byte dazu-

KERKKKKRKKEKKRKTTKTI TITTEN CH TITTEN ECK IC E

* gibt das File-Attribut des aktuellen Directory-Eintrages aus

KEKE EERE TE KT KIT aA RR KKK

disattr: move.w zeile,d3

sub.w #4 ,d3

ext. d3

isl. #5 ,d3

move.l topptr,a3

move.b 0(a3,d3.l),d1

cmp.b #$e5 ,d1

beq deleted

move.b 11(€a3,d3.l),d1

cmp.b #$10,d1

*

x
x

3
*

x
x

*%

aktuelle Zeile

Offset zum oberen Bildschirmrand

mal 32

Zeiger in Dir.-Puffer

erstes Byte des Eintrages holen

ist es das Zeichen für gelöschtes

File? wenn ja, dann anzeigen

sonst Dateiattribut holen,

ist es ein Subdirectory? wenn ja,

*

Programmieren in Maschinensprache 371

beq

cmp.b

beq

cmp.b

beq

cmp.b

beq

move. l

jsr

disatten: rts

disname: move. l

jsr

bra

folder: move.l

jsr

bra

move. |

jsr

bra

readonly:

hidden: move.l

jsr

bra

move. lt

jsr

bra

deleted:

folder

#$01,d1

readonly

#$02,d1

hidden

#508,d1

disname

#treadwr, a0

printf

#tdisname, a0

printf

disatten

#tfolder, a0

printf

disatten

#treadon, a0

printf

disatten

#thidden, a0

printf

disatten

#tdelet, a0

printf

disatten

dann 'Subdirectory' ausgeben

* ist es nur zum Lesen zu öffnen

* handelt es sich um ein verstecktes

* File?

* ist es der Diskettenname

Default ist: File kann gelesen und

* beschriebeben werden

* und zurtick

ausgeben und

zurück

ausgeben und

zurück

ausgeben und

zurück

ausgeben und

zurück

ausgeben und

zurück

Und schließlich die Unterprogramme des FORMAT-Menues

inclusive GAP-Menue

372 ATARI ST Floppy_ und Harddisk

KKEKKKKKKRTTTTTTTTTETT RT TEE KT KT TITTEN KU

KRKEKEKEKEKRRREEEKEEKREREREREKREKREREEEREEEEREREREREREREREREREREREKKEEK RRR

* Format Unterroutinen des Hauptmenues *

* diese Routinen greifen auf Unterprogramme des Menuepunktes *

* TRACK with SYNCS zurück, daher muß der Menuepunkt TRACK with *

* SYNCS zuerst implementiert werden, und danach erst der Formatter *
KAHKEKKKKACKEAREEKEACERERERRREKERKEAERACEEKEEEEEREEKEKKKaK KK RR EK

KAKKKEKKKEKEEKEEEREEREEREEREAKERKEREEEEEERERRERREEEEEREKERERKEKREKRKAKRKKK

format1: jsr

jsr

jsr

move. l

jsr

move .W

jsr

move. |

jsr

move.W

jsr

move. |

jsr

move .W

jsr

move. |

jsr

jsr

cmp.b

beq |

cmp.b

beq

jsr

jsr

move. l

jsr

jsr

bra

doform1: move.w

move. l

cursmess *

delline *

Leerebuf *

#fofrag2, a0 *

printf

wtrack,-(a7)

dezpr

#fofrag5,a0

printf

wside, - (a7)

dezpr

#fofrag6,a0

printf

wdrive,-(a7)

dezpr

#fofrag3,a0

printf

wtast _ *

#'y' dd

doform!

#'yY' dO

doform’

delline

leerebuf *

#fofrag4,a0

printf

wtast *

formiend *

#$e5e5, - (a7)

#$8 7654321, -(a?)

Cursor in Messageline positionieren

Zeile löschen

und Tastaturbuffer löschen

Fragen ob wirklich formattieren

Tastatur abfragen

* wenn weder großes noch kleines 'y',

dann nicht formattieren sondern

auf Tastendruck warten und

zurück

* sonst formattieren, Virgin wert

* Magic number

Programmiieren in Maschinensprache 373

move.w #1,-(a7) * sector-interleave

move.w wside,-(a7) * aktuelle Seite

move.w wtrack,-(a7) * aktueller Track

move.w asector,-(a/) * aktuelle Anzahl derSektoren/Track

move.w wdrive,-(a7) * aktuelles Drive

clr.l -(a7) * Dummy Langwort

move.l #formbuf,-(a7) * Platz zur Erzeugung des Tracks

move.w #10,-(a7) * XBIOS Flopfmt

trap #14 * XBIOS Trap

add. | #26,a7

tst.w do

bmi formierr * Fehler aufgetreten?

formiend: jsr cursmess

jsr delline

jsr cursmess

move.l #fofrag1,a0 * Message ausgeben

jsr printf

jsr currecht * menue-Cursor korrigieren, Menue

rts * anzeigen und zurtick

formierr: move.w d0,-(a7) * Fehlernummer auf Stack, handlen

jsr errhand

formiend * und zurück bra

KEKKKKKTTTTTTTTTTTTTTTTTTT TC TITTEN U

* erzeugt ab der Adresse formbuf einen Track mit allen syncs, der *

* dann mit writetr des Controller zwecks Formatierung auf Diskette *

* geschrieben wird. xformat im Menue *

KKK KT KK AAA ATREARAEKEKEEKCEEERAEARREEEEEEKEEEEREEKEKTREEEEEEKKKKK

maketr: move.w #1,sektor * erster Sektor hat die Nummer 1

move. #formbuf, a2 * Adresse des Puffers, in dem der Tr.

move.w gap1,d0 * erzeugt wird, erste Lücke

move.w #$4e,d/7 * Vorspann-Byte ist $4E

jsr wpuff * gapi mal in Puffer eintragen

makt1: move.w gap2,d0 * Anzahl Byte zweite Lücke

move.w #0,d’7 * Byte-Wert ist 0

jsr wpuff * in Puffer eintragen

374 ATARI ST Floppy und Harddisk

makt4:

makt3:

makt2:

makt5:

move.W

move.b

jsr

move.

move.

move

move.

move.

move.

move.

move.

cmp.W

beq

cmp.W

beq

cmp.wW

beq

move .W

bra

move .W

bra

move.W

bra

move.

move.

move.

move.

move.

jsr

move.W

z
<
z
k
o
e
o
t
E

move.W

jsr

move.W

move.W

jsr

move .b

move .W

move .b

jsr

move.b

f
e
o
0
o
r
o
v
r
x
o
u
o
e

so

#3 ,d0

#$f5 ,d7

wpuff

#$fe,(a2)+

wtrack,d0

d0,(a2)+

wside,d0

d0, (a2)+

sektor,dO

dO, (a2)+

drbyte,d0

#1024 ,d0

makt2

#512,d0

makt3

#256,d0

makt4

#0,d1

makt5

#1,d1

makt5

#2 ,d1

makt5

#3 ,d1

. di1,(a2)+

#5f7,(a2)+

gap3,d0

#$4e,d7

wpuff

gap2,dO

#0,d7

wpuff

#3 ,d0

#$f5 ,d7

wouf f

#$fb,(a2)t+

drbyte,d0

#$e5 ,d7

wpuff

#$f7,(a2)+

+
x

&
% drei mal $F5 in Puffer als Syncbyte

und zum löschen des CRC-Registers

(Checksum), in Puffer eintragen

Adressmark direkt in Puffer

ebenso den aktuellen Track

die aktuelle Seite

* den momentanen Sektor

* Anzahl der Byte pro Sektor

* mit den 4 möglichen Werten

*
3

r
+

*
F

*
x

+
3

3
3

*
F

* vergleichen, und demnach den

geforderten Wert eintragen

Checksum of Adressfield in Puff.

Anzahl der Byte in Lücke 3

Füllbyte ist $4E

in Puffer schreiben

und nocheinmal gap2 mal 0 in

den Puffer eintragen

3 mal Syncbbyt, werden als A1

auf Diskette geschrieben, als

$F5 in Puffer schreiben

Dataadressmark

Anzahl der Byte/Sektor als Zähler

für die Datenbyte dieses Sektors

$E5 als Datenbyte in Puffer schr.

Checksum schreiben

Programmieren in Maschinensprache 375

move.w gap4,dO * gap5 mal $4E als Füllbyte für Lücke4

move.w #S4e,d’

jsr wpuff * in Puffer schreiben

move.w sektor,dO * momentanen Sektor um eins erhöhen

addq.w #1,d0

move.w dO,sektor

cmPp.W asector,d0 * mit Anzahl der Sektoren pro Track

ble makt1 * vergleichen, wenn größer, dann

move.w gap5,d0 * ist der letzte Sektor in den Puffer

move.w #%$4e,d/ * geschrieben, und nun kann die 5.

jsr wpuff * Lücke am Trackende mit $4E gefüllt

rts * werden, dann zurück

KEKE

* schreibt den Byte-Wert in Register D7, DO-mal in den durch *

* Adressregister A2 adressierten Puffer | *

KEKKKKKKAARKRERAEAAAREKKAREKKEKAKAEAAKR AK RRR RR RK EK

wpuff: subq.w #1 ,d0 * Zahler anpassen

wpuffl: move.b d7,(a2)+ * in Puffer schreiben

dbra dO, wouf f1 * DO-mal

rts

HEEKEKEEKRUKEEEEKEEEERERREEEEEKEKEERKEREKKKEREEEEEEEREEREEREREEREERREEKK

* übergibt die Adresse des Trackpuffer an den DMA-Controller, die *

* Routine muß im Supervisor-Mode aufgerufen werden. *
KEKKKKAKAKHAREKKEATTRKEE TC TC TITTEN KT I KK KK

setbuf: move.l #formbuf,d0 * Adresse des Trackpuffers

move.b d0,dmalow * Low-Byte eintragen

lsr.l #8, d0 * 8-Bit rechtschieben
move.b dO,dmamid * und nachstes Byte eintragen

isr.l #8 , dO * acht Bit rechtsschieben

move.b d0,dmahigh * und Highbyte eintragen

rts

376 ATARI ST Floppy und Harddisk

KRAKKEAEKEREKEREREKRERERKERRERERKEEEEERKREREREREEREREERERERERRERREEKRAKKEKKEK

* formattiert einen Track, indem der Inhalt des Trackpuffers *

* (in formbuf) durch den write-Track Befehl des Diskcontrollers *

* direkt auf die Diskette geschrieben wird *

KAAAAKAKKKKEEEREEEKEEKEREEEREEEEEEEEKKEEREKEKREREKREEEREEREEEEKKEKRRKKRKE KK

xfortrac: move.w #$190,dmamode * DMA löschen und auf schreiben

move .W #$90 , dmamode * umschalten

move .wW #$190 , dmamode

move .wW #$1f ,d6 * 31 ins Sektorcountregister ein-

jsr wrcontr * tragen

move .W #$180 , dmamode * FDC-Register selektieren

move.W #$f8,d6 * write-Track Befehl

jsr wrcontr

move. l #$60000 , d7 * Time-out Zähler

xforti: subq.l #1,d7 * erniedrigen |

beq xforterr * wenn abgelaufen, dann Fehler

btst #5 ,mfp * FDC schon fertig?

bne xfort1 * wenn nicht, weiter warten

rts * sonst zurück

xforterr: move.w #-24,-(a7) * Fehlernummer auf Stack und

jsr errhand * handlen

rts

HEKKKAKKERREEKEREREEEEREERREKEEKEREEAEEKEKREREEKEERERERREKREREERREEKRRKKE

* ruft die Routine zum direkten Formattieren eines Tracks auf *

kKkkekkkhhkkkkkkhkkhhhkkekhkkkhkkhhhkhhkehkkkkkkkkkhckekhkeaukkhhhhhkhkkhkkekkkkRe kk RR EK

xformat: movem.l a3-a6/d3-d7,-(a7)

jsr cursmess

jsr del line * Register retten und Message

move.l #xffrag1,a0 * ausgeben

jsr printf

jsr leerebuf * Tastaturbuffer leeren und

jsr wtast * auf Tastendruck warten

cmp.b #'y' dO

beq xformit

Programmieren in Maschinensprache 377

cmp.b

bne

xformit: jsr

st

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

jsr

move. t

jsr

jsr

jsr

sf

jsr

jsr

xformend: jsr

jsr

jJsr

move. l

jsr

movem.|

rts

#'Y!,dO

xformend

super

flock

setplatz

seldrive

flreset

searcht

- rdstrack

setbuf

maketr

searcht

xfortrac

leerebuf

cursmess

delline

flreset

user

#xf frag2,a0

printf

wtast

super

f lock

deselect

user

cursmess

delline

cursmess

#drfrag1,a0

printf

+
x

x
x

©
x

x
r

HF
F

weder groß noch klein ‘y!'

sonst Supervisor on

Floppy-Interrupt sperren

einmal den Track lesen, dient

der Beschleunigung der Diskette

da sonst bei den inneren Tracks

die Umfangsgeschwindigkeit der

Diskette nicht ausreichend ist

jetzt den Trackpuffer an DMA-Co.

den aktuellen Track im Puffer er-

zeugen, und den Track suchen

nun den Track auf Diskette schreiben

* Controller resetten

+
s
r

x
3

3
*

User-Mode wieder einschalten

Message ausgeben

Tastatur abfragen

Supervisor einschalten

Floppy-Interrupt freigeben

Laufwerk deselektieren

User-Modus einschalten

* Message ausgeben, Register

(a)+,a3-a6/d3-d7
*

zurückholen, und

zurück

KEKKKKKKKTTTTTTTTTTTTT TITTEN TITTEN TITTEN

* die folgenden Menuepunkte ermöglichen das Erhöhen und Erniedrigen *

378 ATARI ST Floppy_ und Harddisk

* der gaps im Menue, Einzelheiten bitte beim Sektormenue nach-

* schlagen.

KRAKKKKAK KKK KKK TH TR KT TI TH TR TI KKK KKK RK KKK RK KK

incgaps:

incgaps1

incgaps2:

incgap1:

incgap2:

incgap3:

cmp.W

bit

move .W

bra

addq.w

rts

move .W

jsr

move .W

divu

add.b

move.b

swap

add.b

move.b

jsr

rts

move.W

jsr

move.W

divu

add.b

move.b

swap

add.b

move.b

jsr

rts

move.wW

jsr

move .W

divu

#99 ,dO

incgaps1

#0,d0

incgaps2

#1,d0

maximal Anzahl der Füllbyte für

alle Gaps gleich 99, diese Routine

wird von allen incgap-Menuepunkten

aufgerufen, da die Begrenzungen

gleich sind +
x

££

&
*

gap1,d0

incgaps

d0,gap1

#10,d0

#'0' ,d0

d0,mgap1

do

#'0' dO

d0,mgap1+1

dispmen

gap2,dO

incgaps

d0, gap2

#10,d0

#'0',dO

d0,mgap2

do

#'0' dQ

d0,mgap2+1

dispmen

gap3 ,d0

incgaps

d0,gap3

#10,d0 ~

*

*

Programmieren in Maschinensprache 379

incgap4:

incgap5:

incgap5x:

incgap5a:

add.b

move.b

swap

add.b

move.b

jsr

rts

move.W

jsr

move.W

divu

add.b

move.b

swap

add.b

move.b

jsr

rts

move.W

move .W

trap

addq. l

move .W

btst

bne

btst

bne

move .W

move .W

add.w

cmp.W

ble

move .W

move .wW

ext.l

divs

add.b

move.b

#'0',d0

d0,mgap3

do

#'0', dO

do ‚mgap3+1

dispmen

gap4,d0

incgaps

d0, gap4

#10,d0

#'0', dO

d0 , mgap4

do

#'0',d0

dO ‚mgap4+1

dispmen

#-1,-(a7)

#11,-(a7)

#13

#4,a7

#10,d1

#0, d0

incgap5x

#1 ,d0

incgap5x

#1,d1

gap5 ,dO

d1,d0

#999 ‚AO

incgap5a

#0, d0

d0,gap5

do

#100, d0

#'0' dO

d0,mgap5

* Keyboard-Shift gedrückt ?

380 ATARI ST Floppy_ und Harddisk

swap

ext.l

divs

add.b

move.b

swap

add.b

move .b

jsr

rts

do

do

#10,d0

#'0' dO

d0,mgap5+1

do

#'0' dO

d0, mgap5+2

dispmen

KKKKKKAAKTAEREREKREAAEAEEUKEIEE EAHA

decgaps:

decgaps1:

decgaps2:

decgap!:

decgap2:

CMP.W

ble

subq.w

bra

move .W

rts

move .wW

jsr

move .W

divu

add.b

move.b

swap

add.b

move .b

jsr

rts

move .wW

jsr

move .W

divu

add.b

move.b

swap

add.b

#0, dO

decgaps1

#1 ,d0

decgaps2

#99 , dO

gap1,d0

decgaps

d0,gap1

#10,d0

#'0', dO

d0,mgap1

do

#'0', dO

dO ‚mgap1+1

dispmen

gap2,dO

decgaps

dO,gap2

#10,d0

#'0' dO

d0 ,mgap2

do

#'0',d0

* wird von allen decgap Menuepunkten

* aufgerufen, da max und min Anzahl

* bei allen gabs gleich ist

Programmieren in Maschinensprache 381

decgap3:

decgap4:

decgap5:

move .b

jsr

rts

move .W

jsr

move .W

divu

add.b

move.b

swap

add.b

move .b

jsr

rts

move .W

jsr

move .W

divu

add.b

swap

add.b

move.b

jsr

rts

move.

move .W

trap

addq.

move.

btst

bne

btst

bne

move.

-move.b

e
o

d0, mgap2+1

dispmen

gap3,d0

decgaps

dO, gap3

#10,d0

#'0',dO

dO,mgap3

do

#'0',d0

dO ‚mgap3+1

dispmen

gap4 , do

decgaps

d0, gap4

#10,d0

#'0',dO

dO ‚mgap4

do

#'0',dO

dO ,mgap4+1

dispmen

#-1,-(a7)

#11,-(a7)

#13

#4 ,a7

#10,d1

#0, d0

decgap5x

#1 ,d0 * rechte Shifttaste

decgap5x

#1,d1

382

decgap5x: move.w

sub.w

bpl

move .wW

decgap5a: move.w

ext.l

divs

add.b

move.b

swap

ext. l

divs

add.b

move.b

swap

add.b

move.b

jsr

rts

ATARI ST Floppy und Harddisk

gap5,dO

d1,d0

decgap5a

#999 , dO

d0, gap5

do

#100,d0

#'0',dO

dO ‚,mgap5

do

do

#10, d0

#'0' ,d0

d0,mgap5+1

do

#'0',dO

dO,mgap5+2

dispmen

KEKKKKKHKKTTTHKTT TI TTTTTTEKTTIETITTTTTTITETETTTTITTTTEKTKKKKKKCK CK KU

* verändert die Anzahl der Byte pro Sektor, diese wird in drbyte

* gespeichert und beeinflußt auch die Anzahl der angezeigten und

* geschriebenen Byte im Sektormenue, natürlich nur wenn das Format

* Modul eingebaut ist.

KAKA AMAA KAA ERA KT TI HN TH KT TI TITTEN KK KK KH N

incbyte: move.w

cmp.W

beq

cmp.W

beq

cmp.W

beq

move. W

move.b

move.b

move.b

drbyte,d0 * mögliche Anzahl der Byte/Sektor

#128,d0 * ist 128, 256, 512 oder 1024 Byte

incby1

#256,d0

incby2

#512,d0

incby3

#128,d0

#'0' mdrisekt * Auch in den Menuetext eintragen |

#'1' mdrisektt1

#'2' mdrisekt+2

*

*

*

*

Programmieren in Maschinensprache 383

move.b

bra

incbyl: move.w

move.b

move.b

move.b

move.b

bra

incby2: move.w

move.b

move.b

move.b

move.b

bra

incby3: move.w

move.b

move.b

move.b

move.b

incbywei: move.w

jsr

rts

#'8' mdrisekt+3

incbywei

#256,d0

#'O' mdrisekt

#'2' mdrisektt1

#15! mdrisekt+2

#'6' mdrisekt+3

incbywei

#512,d0

#'0' ‚mdrisekt

#'5' mdrisekt+1

#'1' mdrisekt+2

#'2' mdrisekt+3

incbywei

#1024 ,d0

#'1' mdrisekt

#'0' mdrisektt1

#'2' mdrisekt+2

#'4' mdrisekt+3

d0,drbyte

dispmen

KKERKKKKEKKERKKKTK KK KIT KT TC IT TE IK KK KU

* erniedrigt die Anzahl der Byte/Sektor, läßt ebenso wie incbyte nur *

* die vier möglichen Werte des FDC (128, 256, 512, 1024) zu *

KERKKKKKKKRKKKK TITTEN KT TITTEN

decbyte: move.w

cmp.W

beq

cmp.W

beq

cmp.W

beq

drbyte,d0

#128 ,d0

decby1

#256,d0

decby2

#512,d0

decby3

384 ATARI ST Floppy_ und Harddisk

move.W #512,d0

move.b #'0' mdrisekt

move.b #'5' ,mdrisekt+1

move.b #'1',mdrisekt+2

move.b #'2' mdrisekt+3

bra decbywei

decby1: move.w #1024,d0

move.b #'1',mdrisekt

move.b #'0' mdrisekt+1

move.b #'2', mdrisekt+2

move.b #'4' mdrisekt+3

bra decbywei

decby2: move.w #128,d0

move.b #'0',mdrisekt

move.b #'1',mdrisekt+1

move.b #'2', mdrisektt+2

move.b #'8' mdrisekt+3

bra decbywei

decby3: move.w #256,d0

move.b #'0',mdrisekt

move.b #'2' mdrisekt+1

move.b #'5' mdrisekt+2

move.b #'6',mdrisekt+3

decbywei: move.w d0,drbyte

jsr dispmen

rts

Die Bedienung des Diskeditors

Die Steuerung des Diskeditors erfolgt fast ausschlieBlich mit den

Cursortasten; Cursor links und rechts wählen die verschiedenen
Menüpunkte an, Cursor hoch und runter selektieren diesen

Menüpunkt oder verändern den variablen Teil eines Menüpunk-

tes (drive, side, track ect.). Bei manchen Menüpunkten führt die

Programmieren in Maschinensprache 385

Auswahl in ein neues Menü, aus dem dann wieder mit Cursor

links und rechts ein neuer Menüpunkt ausgesucht werden kann.

Und hier nun die Erklärung der einzelnen Menüpunkte:

7.2.1 Das Hauptmenü

Alle Punkte des Hauptmenüs, mit der Ausnahme des ’Ende’-

Punktes, führen in ein neues Menü:

TRACK: wählt das Track-Menü aus, in dem die Behandlung

ganzer Tracks möglich ist.

TRACK/SYNC: Auswahl des Track-with-Syncbytes-Meniis; in

SEKTOR:

CLUSTER:

FORMAT:

OPTIONS:

ENDE:

diesem Modus kann man auf alle Informationen
der Diskette zugreifen, z.B. auf die Gap- und
Synchronationsbytes.

Auswahl des Sektor-Mode, der das Lesen, Editie-

ren und Schreiben von Sektoren ermöglicht.

Auswahl des Cluster-Modus, in dem über Cluster

auf die Diskette zugegriffen werden kann.

Auswahl des Format-Modus, der das Formatieren

einzelner Tracks mit verschiedenen Formaten, auch

Nicht-ATARI-Formaten, erlaubt.

Auswahl des Options-Menüs, ın dem das aktuelle

Laufwerk neu bestimmt werden kann. Außerdem

kann man die maximale Anzahl der Tracks und

Sektoren festlegen.

Beendet das Programm und kehrt zum Desktop
zurück

386 ATARI ST Floppy und Harddisk

7.2.2 Das Track-Menü

Das Track-Menü enthält selbst wieder eine Anzahl von Menü-

punkten:

drive:

side 0:

track 00:

sect/trac 00:

READ:

WRITE:

EDIT:

BACK:

0 wurde dieser Punkt ausgewählt, kann man mit

Cursor-up und down das aktuelle Drive neu an-

wahlen. Alle Mentipunkte, denen ein Doppelpunkt

und eine Zahl folgt, bieten diese Möglichkeit des
Veränderns durch Betätigung der Cursor-Tasten.

Auswahl der Laufwerksseite, 0 oder 1.

Auswahl des Tracks auf den dann zugegriffen
wird. Die maximale auswählbare Nummer wird im

Option-Menü des Hauptmenüs bestimmt.

bestimmt die Anzahl der zu lesenden und

schreibenden Sektoren pro Track.

durch Anwahl dieses Punktes wird der augenblick-

lich angezeigte Track des aktuellen Drives gelesen
und anschließend angezeigt. Mit Cursor-up und
down kann man durch die einzelnen Sektoren die-
ses Tracks scrollen. Es ist auch möglich, während
des Scrollens durch den Text durch Betätigen von

Cursor-rechts und links die Edit-Funktion aufzu-
rufen und so ım Track etwas zu ändern.

nun wird der gesamte Track nach einer Sicher-
heitsabfrage wieder auf die Diskette zurückge-
schrieben.

bietet die Möglichkeit des Editierens eines Sektors
des Tracks. Es kann aus der Read-Funktion auf-

gerufen werden, man kann jeweils nur einen Sek-
tor des Tracks editieren.

kehrt zurück zum Hauptmenü

Programmieren in Maschinensprache 387

7.2.3 Das Track with Syncs-Menü

Hier wieder die einzelnen Unterpunkte:

drive 0: Auswahl des aktuellen Laufwerks

side 0: Auswahl der aktuellen Seite

track 00: Auswahl des aktuellen Tracks

readwithsync: liest den gesamten Track mit allen Gaps und

ermöglicht das Scrollen durch diesen Track.

Addrfield: zeigt die Adreßfelder des gesamten Tracks mit

Bytegröße und Checksumme an. Die Ausgabe er-

folgt teilweise doppelt, da immer 16 Adreßfelder

angezeigt werden.

BACK: Zurück zum Hauptmenü

7.2.4 Das Sektor-Menü

Die einzelnen Menüpunkte des Sektor-Menüs:

drive 0: Auswahl des aktuellen Laufwerks

side 0: Auswahl der aktuellen Seite

track 00: Auswahl des aktuellen Tracks

sektor 00: Auswahl des aktuellen Sektors

READ: Lesen des aktuellen Sektors und Anzeigen dessel-

ben

WRITE: Schreiben des im Speicher befindlichen Sektors in

den momentan angezeigten Sektor nach Sicher-
heitsabfrage.

388 ATARI ST Floppy_ und Harddisk

EDIT:

BACK:

verzweigt in den Edit-Modus, der die Eingabe von
Sedezimal-Zahlen erlaubt und bei dem man mit
den Cursor-Tasten alle Bytes des Sektors ansteuern
kann. Der Edit-Modus wird durch Betätigung der
Return-Taste wieder verlassen.

Zurück zum Hauptmenü

7.2.5 Das Cluster-Menii

Die einzelnen Menüpunkte des Cluster-Menüs:

drive 0:

clust 0000:

READ:

NEXT:

WRITE:

Auswahl des aktuellen Laufwerks

Auswahl des aktuellen Clusters, geschieht wie-
derum durch Cursor Up und Down, gleichzeitiges

Betätigen der SHIFT-Taste und Cursor UP und
Down, erhöht bzw. ernidrigt die Clusternummer
um 10.

liest den aktuellen Cluster in den Speicher ein und

berechnet den physikalischen Sektor nebst Track

und Seite, an dem dieser Cluster beginnt. Die In-

formationen über den physikalischen Sektor wer-
den ins Sektor-Menü eingetragen, d.h. wenn man
nach dem Lesen eines Clusters ins Sektor-Menü

überwechselt, kann man den Startsektor dieses

Cluster durch READ sofort lesen.

berechnet mit Hilfe des File-Allocation-Table den

Nachfolgecluster innerhalb des Files und liest ihn

in den Speicher ein.

schreibt den im Speicher befindlichen Cluster nach

einer Sicherheitsabfrage auf den aktuellen, im
Menü angezeigten, Cluster der Diskette.

Programmieren in Maschinensprache 389 |

EDIT:

Startof file:

BACK:

ermöglicht das Editieren eines Clusters, ’Return’

beendet den Edit-Modus.

Zeigt alle Files des aktuellen Laufwerks mit zuge-
hörigen File-Attributen. Das Scrollen durch die

einzelnen Files ermöglichen wiederum die Cursor-
up und down Tasten, wobei ein Druck auf die

Return-Taste den Startcluster des momentan ange-
wählten Files in das Cluster-Menü überträgt. Sollte
das angewählte File ein Subdirectory repräsentie-
ren, wird in dieses verzweigt und man kann nun
ein File des Subdirectories anwählen. Zurück ins
Hauptdirectory (Rootdirectory) gelangt man durch

Anwahl des einzelnen Punktes.

zurück zum Hauptmenü.

7.2.6 Das Format-Menü

Die Punkte des Format-Menüs:

drive 0:

side 0:

track 00:

sec/tra.00:

FORMAT:

Auswahl des aktuellen Laufwerks

Auswahl der aktuellen Seite

Auswahl des aktuellen Tracks

Auswahl der Sektoren pro Track. Die maximal

mögliche Anzahl hängt von dem Menüpunkt
MAXSEKT im Options-Menü ab, d.h. steht bei

MAXSEKT eine 10, kann man auch bei sec/track

die 10 anwählen.

Formatiert den aktuellen Track mit sec/track Sek-

toren nach vorheriger Sicherheitsabfrage. Die For-
matierung erfolgt durch die XBIOS-Funktion und
formatiert grundsätzlich Sektoren mit 512-Bytes
(ATARI-Format).

390 ATARI ST Floppy und Harddisk

XFORMAT:

GAPS:

BACK:

Formatiert den aktuellen Track mit den im

GAP-Menü veränderbaren Parametern, so kann

man z.B. die Anzahl der Bytes/Sektor, aber auch

die Anzahl der Synchronisationsbytes selbst be-
stimmen.

Verzweigt in ein eigenes Menü, in dem dann die
Parameter für XFORMAT eingestellt werden kön-
nen.

Zurück zum Hauptmenü

7.2.7 Das GAP-Menü

Die Punkte des Gap-Menüs:

GAPI 00:

GAP2 00:

GAP3 00:

GAP4 00:

GAP5 00:

BYT/SEK:

BACK:

bestimmt die Anzahl der Fillbytes am Trackan-
fang, maximal möglich sınd 99.

bestimmt die Anzahl der Null-bytes

bestimmt die Anzahl der

bestimmt die Anzahl der

bestimmt die Anzahl der Fillbyte, die am Track-
Ende eingefiigt werden.

hier können die vier vom Diskcontroller un-
terstützten Byte pro Sektor Formate (128, 256, 512,

1024) eingestellt werden. Die Auswahl beeinflußt
auch das Lesen eines Sektors im Sektor-Menü, da

bei 1024-Byte Sektoren auch die Möglichkeit be-
stehen muß, diese zu Editieren ect.

zurück zum Hauptmenü

Programmieren in M aschinensprache 391

7.2.8 Das Options-Menü

Die Punkte des Options-Menüs:

drive 0: Auswahl des aktuellen Laufwerks

MAXTRACK 00: Auswahl des maximalen anwählbaren Tracks

für die Track-Menüpunkte.

MAXSEKT 00: Auswahl des maximalen anwählbaren

Sektors für die Sektor-Menipunkte,

bestimmt außerdem auch die maximal

anwählbaren Sektoren pro Track.

INIT DRIVE: Aufruf der BIOS-Funktion, Anzeige der
Disk-Parameter

SHOW BPB: Zeigt die Bios-Parameterblock des aktuellen Lauf-

werks.

BACK: Zurück zum Hauptmenü

7.3 Beispiele zur Benutzung des Disk-Editors

Als erstes wollen wir den Diskeditor einmal am Directory und
an der File Allocation Table (FAT) praktisch erproben. Zu die-
sem Zweck formatieren Sie bitte eine einseitige Diskette mit
dem Namen "WORK.TST" und kopieren auf diese das

"DESK2.ACC" Accessory von der Systemdisk, das eine Länge

von 6258 Bytes hat (neuestes TOS).

Wie schon vorher erwähnt, teilt das GEMDOS die Disketten in

Blöcke (Cluster) zu zwei Sektoren mit jeweils 512 Bytes, also
insgesamt 1024 Bytes, ein. Sechs mal 1024 ergibt 6144, das

"DESK2.ACC" paßt folglich nicht in 6 Cluster, sondern belegt
auch noch einige Byte des 7. Diskettenclusters. Nun laden Sie

bitte den Diskeditor, wählen das Sektor-Menü und stellen

Drivenummer, Track 1, Seite 0 und Sektor 3 ein. Auf diesem
Sektor steht auf einseitig formatierten Disketten der erste

392 ATARI ST Floppy und Harddisk

und betrachten das angezeigte Ergebnis. Mit der Taste ’p’ kön-

nen Sie sich den Sektor auch ausdrucken lassen.

Sehen wir uns nun das Ergebnis Ihrer Aktionen an. Sie finden

als erstes den bei der Formatierung gewählten Namen wieder.

Jeder Directory-Eintrag, der Diskettenname zählt auch als sol-

cher, belegt genau 32 Bytes. Der Diskname benötigt die Bytes 0
bis 31 des Sektors und der erste Directory-Eintrag beginnt bei
Byte 32 (Sedezimal $20). Die ersten elf Bytes (0 bis 10) jedes
Directory-Eintrags sind für den Filenamen reserviert, und zwar
wird nicht benötigter Platz der acht möglichen Buchstaben des

Filenamens durch Spaces (Sedezimal $20) belegt. Die nächsten

drei Bytes (8-10) belegt die File-Extension.

Alle nun folgenden Daten stehen im Intel-Format auf der Dis-
kette, d.h. belegen die Daten mehr als ein Byte, steht stets das

Low-Byte vor dem High-Byte. Das Datenwort $1234 wäre somit
als $34 $12 gespeichert.

Das zwölfte Byte (Nummer 11) jedes Eintrags fungiert als
Dateiattribut und kennzeichnet die verschiedenen Zugriffsmög-
lichkeiten auf das File. Die Zahl $08 im Dateiattributfeld des
Diskettennamens deklariert diesen Eintrag als Diskettennamen.

Nun folgen 11 Bytes (Nummer 12 bis 21, $0C-$15) die ohne
Bedeutung sind, doch in Byte 22 und 23 ($16 $17), relativ zum
Eintragsanfang, steht die Uhrzeit des letzten Schreib-Zugriffs
auf das File. Die Uhrzeit ist ın den Bits dieser beiden Bytes
Kodiert, wie Sie ja bereits im Kapitel 3.3 erfahren haben. Als

Besonderheit ist noch anzumerken, daß die Sekunden nur im 2-

Sekundentakt gezählt werden, so daß die Sekunden noch mit

zwei multipliziert werden müssen. |

Im Anschluß an die Uhrzeit-Bytes folgen im Directory-Eintrag

die Datum-Bytes (24 - 25, $18 $19,) die in ähnlicher Weise
codiert sind.

Womit wir nun schon zu den beiden wichtigsten Bytes eines

jeden Directory-Eintrages kommen, zu den Bytes 26 und 27

($1A, $1b) relativ zum Eintragsanfang, die den Startcluster des

Programmieren in Maschinensprache 393

Files angeben. Wie Sie selbst sehen, steht bei "unserem" File $02

$00, was umgeformt auch schon den Startcluster $0002 ergibt.
Das File "DESK2.ACC" beginnt also bei Cluster Nummer 2,

welcher gleichzeitig fiir das Betriebssystem den ersten freien
Cluster einer Diskette darstellt. Zur Umrechnung der Cluster-

nummer in die logische und physikalische Sektornummer müssen

einige Parameter des BIOS-Parameterblockes und des Bootsektors

zu Rate gezogen werden (clsize,datrec,spt,nside). Die Umrech-

nung geschieht folgendermaßen:

1. Subtraktion von 2 von der Clusternummer, da Cluster

Nummer 2 laut Zählweise des Betriebsystems der erste
freie Cluster ist.

2. Multiplikation des obigen Resultates mit der Anzahl der

Sektoren pro Cluster (clsize = 2 bei ATARI ST).

3. Addition der Nummer des ersten logischen Datensektors,
(datrec = 18 bei ATARI ST)

Die erhaltene Zahl repräsentiert die logische Sektornummer des

ersten Sektors dieses Clusters. Der zweite Sektor des Clusters ist

der direkt folgende (bei einseitigen Disketten). Bei zweiseitig
formatierten Disketten befindet sich der erste Sektor des ersten

Datenclusters auf Seite 0, Track 1, Sektor 1, der zweite Sektor

dieses Clusters ist der Sektor 2 auf Track 1 Seite 0. Die Cluster

werden also auch in diesem Fall durch hintereinanderliegende
Sektoren auf einem Track gebildet. Wird allerdings der letzte

Sektor eines Tracks auf Seite 0 erreicht, schreibt das Betriebs-

system den Folgesektor auf den gleichen Track, Sektor I der
Seite 1. Wurden also wie im ATARI-Format Tracks mit 9 Sek-

toren formatiert, so liegt der erste physikalische Sektor des
fünften Datenclusters auf Seite 0, Track 1, Sektor 9 und der

zweite Sektor dieses fünften Datenclusters wird auf Seite 1,

Track 1, Sektor 1.

Doch nun zurück zum logischen Sektor des Startclusters. Es fehlt

nämlich noch die Berechnung von physikalischem Track und
Sektor, auf dem sich dieser logische Sektor, dessen Zählweise ja
bei null beginnt, befindet. Wir nehmen wieder eine einseitige

394 ATARI ST Floppy und Harddisk

Diskette als Grundlage und teilen nun die logische Sektornum-
mer durch die Anzahl der Sektoren pro Track (spt = 9, ATARI-

Format): das Ergebnis der Division ist der Track, der Rest der

Division der Offset zum Sektor 1 dieses Tracks.

Wieder auf das erste File angewandt: Cluster Nummer 2 minus 2
ergibt null, mal 2 Sektoren pro Cluster bleibt null, plus 18 gleich

18, geteilt durch 9 Sektoren pro Track gleich 2 Rest Null: Der

erste Sektor des ersten Clusters vom File "DESK2.ACC" ist somit

auf Track 2 Sektor 1 lokalisiert.

Für eine zweiseitig formatierte Diskette läuft die Reehnung bis
zum logischen Sektor gleich, nur die Umrechnung auf physika-

lischen Track und Sektor muß nun die Seite mitberücksichtigen:
die logische Sektornummer wird wieder durch die Anzahl der
Sektoren pro Track (spc) dividiert, und der Rest dieser Division

ergibt auch den Offset zum Sektor 1, nur die Berechnung des
Tracks differiert ein wenig. Das Ergebnis der Division durch die
Anzahl der Sektoren pro Track wird durch die Anzahl der Sei-

ten, nämlich 2 bei doppelseitig formatierten Disketten, geteilt:
ist die Division ohne Rest möglich, so repräsentiert das Ergebnis

den Track fir diesen Sektor auf Seite null der Diskette. Entsteht
bei der Division ein Rest, so befindet sich der berechnete Track
auf Seite 1 der Diskette.

Nun zur Berechnung des physikalischen Sektors für den Cluster
2 bei doppelseitig formatierten Disketten. An der Berechnung

des logischen Sektors ändert sich nichts: hier ergibt sich auch 18,
nun dividiert man durch die Anzahl der Sektoren pro Track (9)
und erhält 2 Rest 0, die Sektornummer ist also 1 (wegen Null-
rest). Zur Ermittelung von Track und Seite dividiert man nun
die eben gewonnene zwei durch die Anzahl der Seiten (2) der
Diskette, dies ergibt 1 Rest 0. Somit befindet sich der Sektor,

nach oben genannter Regel, auf Track 1 Seite 0 der Diskette.

Zur weiteren Übung wollen wir noch die Startsektor des Direc-
tories für ein- und zweiseitig formatierte Disketten ermitteln.
Der logische Startsektor ergibt sich wieder aus BPB und Boot-
sektor, indem man die Anzahl der reservierten Sektoren (res = 1
bei ATARI) zu dem Produkt aus Anzahl der File-Allocation-

Programmieren in Maschinensprache 395

Tables (fat = 2) und Anzahl der Sektoren pro File-Allocation-

Table (spf = 5) addiert. Also logischer Sektor =1+2*5=11.
Der Directory-Anfang befindet sich auf allen ATARI-Disketten
auf dem logischen Sektor 11. Für eine einseitig formatierte Dis-
kette folgt für den physikalischen Sektor:

11 geteilt durch 9 (Sektoren/Track) gleich 1 Rest 2. Sektor
gleich 1 plus Rest = 3, der logische Sektor 11 befindet sich also
auf einseitigen Disketten auf Track 1. Sektor 3. Für eine dop-

pelseitige Diskette:

11 geteilt durch 9 gleich 1 Rest 2, Sektor gleich 1 plus Rest = 3,

1 dividiert durch 2 ergibt 0 Rest 1, es existiert ein Rest => Seite
1, Track gleich Ergebnis der ersten Division (1). Der logische
Sektor 11 befindet sich auf doppelseitigen Disketten auf Seite 1,

Track 0, Sektor 3, wıe Sie selbst feststellen können.

Bei der Clusterberechnung haben wir den Directory-Eintrag für
das File "DESK2.ACC" vollkommen aus den Augen verloren, es
fehlen nämlich zu den 32 Bytes pro Directory-Eintrag nur noch
die letzten vier Bytes (28-31, $1C-$1F), welche die Dateigröße
in Byte angeben. Für $72 $18 $00 $00 ergibt sich $00001872
(Intel läßt grüßen), und diese Sedezimal-Zahl stimmt nach der
Umwandlung ins Dezimalsystem (6258) auffallend mit der vom
Desktop angezeigten Größe überein. Bevor Sie sich nun das eben
gesagte noch einmal in Ruhe in einer Tabelle anschauen können,
müssen noch zwei Bytes mit Sonderfunktionen erläutert werden:

es sind dies das erste Byte des Directory-Eintrages (Byte 0)

sowie das zwölfte Byte (Byte 11), das Attribut-Byte.

Das erste Byte des Namens, im Beispiel $44, bedeutet bei Bytes

ungleich $E5, $00 und $2E den ASCII-Code des ersten Buchsta-
bens ($44 = ’D’). Die anderen Einträge haben folgende Bedeu-
tung: _

396 ATARI ST Floppy und Harddisk

1. Byte des Namens: Bedeutung:

$00:

$2E:

iese Datei wurde noch nicht benutzt (trivial $E5 : Diese
Datei wurde zwar schon benutzt, ist aber geléscht wor-
den.

Dieses Byte weist auf den Pfad vom Subdirectory zum
Rootdirectory. Ist das nächste Byte ebenfalls $2E, so
steht im Feld der Clusternummer die Clusternummer

des nächsten übergeordneten Directories, ist das zweite

Byte $00, so ist das übergeordnete Directory das Root-
directory. Dieser Zusammenhang wird weiter unten
noch genauer erklärt.

Das Attribut-Byte (Byte 11) kann folgende Werte annehmen:

$00:

$01:
$02:
$08:

$10:

Diese Datei (File) kann sowohl gelesen als auch be-
schrieben werden.
Diese Datei kann nur gelesen werden (read only).

Diese Datei wird im Directory nicht angezeigt (hidden).
Dies kennzeichnet den Diskettennamen, alle Bytes nach

dem 10 haben keine weitere Bedeutung.

Bei dem Dateinamen handelt es sich um ein Subdirec-
tory (Ordner)

Die Bedeutung der 32 Bytes jedes Directory-Eintrages ist:

Byte:

0-10

1]
12-21
22-23
24-25
26-27
28-31

Bedeutung

Dateinammen mit Extension, erstes Byte ist evtl. der
Status ($E5,$2E)
Dateiattribut, (read/write, readonly, subdirectory)

unbenutzt

Uhrzeit

Datum

Startcluster des Files

Filegröße in Bytes

Programmieren in Maschinensprache 397 .

7.3.1 File-Allocation Table

Sie wissen nun, wie sie den Anfang eines Files auf der Diskette
finden können: einfach die Bytes Nummer 26 und 27 des

Directory-Eintrages fiir das File ins Dezimalsystem umwandeln,
die so erhaltene Clusternummer nach oben erläuterten Regeln in
logische Sektornummer ect. umwandeln. Doch wo befindet sich

der zweite Cluster eines Files, wo der letzte?

Alle diese Fragen klärt die File-Allocation-Table, deren Anfang
immer auf Seite 0, Track 0, Sektor 2 zu finden ist (single und
double sided). Zum besseren Verständnis lesen Sie doch einfach
den Sektor 2 auf Track 0, Seite 0 ihrer einseitig formatierten

Diskette mit dem File (Sie können den Filenamen bestimmt
schon auswendig) mittels Diskeditor und ’read’ in den Speicher.
Von den ersten drei Bytes einmal abgesehen ($F7 $FF $FF) ist
doch schon eine Struktur zu erkennen.

In dieser FAT befinden sich Informtionen über jeden Cluster
der Diskette, und zwar, ob er belegt ıst, und wenn ja, welches

der nächste Cluster des Files ıst. Lassen wir erst einmal die
seltsame Struktur (03 40 00 05) außer acht und nehmen als Zif-
fernfolge 3, 4, 5 an. Nehmen wir weiter an, die Tabelle sehe
folgendermaßen aus:

START: 1, 2, 3, 4,5

Start soll nur die Adresse symbolisieren, an der sich die Zahl

Eins befindet. Das ganze ist eine lineare Liste, das nullte
Listenelement (relativ zu Start) hat den Wert 1, das erste den
Wert 2 ect. Lesen wir nun die Adresse Start, so finden wir den
Wert Eins. Diese Zahl Eins soll die Information des nächsten zu
lesenden Listenelementes darstellen. Zur Adreßermittlung
addieren wir die Zahl Eins zur Adresse von Start und lesen die
nun gefundene Adresse (START+1) aus, was als Ergebnis die

Zahl zwei liefert.

Diese zwei sagt uns also: die Nummer des nächsten zu lesenden

Listenelementes befindet sich an der Adresse START+2, hier

steht die Zahl 3. So wird es möglich sich von Listenelement zu

398 ATARI ST Floppy und Harddisk

Listenelement zu hangeln, indem man einfach die Elemente liest
und das Ergebnis als Offset relativ zum Start der Liste ansieht.
Dies klingt auf den ersten Blick ein wenig unverständlich, ist
aber genau die Methode, mit der das Betriebssystem die Cluster
der Diskette verwaltet.

Sehen wir uns also noch einmal die vereinfachte Eintragung in
unserer FAT (3,4,5,) an und bauen vor diese 3 Elemente 2
dummy-Eintragungen (x,x,3,4,5). Unsere Clusternummer für das
File "DESK2.ACC" ist 2, das Lesen der Adresse START+0 ergibt

x, ebenso das Lesen der Adresse START+1. Lesen wir aber die

Adresse START+2, so erhalten wir den Wert 3, Lesen von

START+3 ergibt als Resultat 4. Für DESK.ACC würde das
bedeuten, der nächste auf Cluster 2 folgende Cluster ist die

Nummer 3, danach folgt Nummer 4 ect.

Das Umrechnen von Clusternummer in Setornummer ist ja nun
bekannt, wir benötigen nur noch eine Methode, das Ende eines

Files zu kennzeichnen. Die Lösung des Betriebssystems mit Hilfe

der FAT: Ergibt sich beim Lesen einer soeben gewonnenen
Adresse ein bestimmter Wert, so ıst der soeben gelesene Cluster
der letzte des Files.

Damit das ganze noch ein wenig komplexer wird, kommt jetzt
das Intel-Format in Verbindung mit einer 12-Bit Darstellung ins
Spiel. Ein FAT-Eintrag belegt nämlich genau 12-Bits, das sind 3
Nibbel a 4 Bits. Die 12 Bit reichen vollkommen aus, da nicht
mehr als 2“12 = 4096 Cluster auf der Diskette vorhanden sind.

Zur Erklärung des seltsamen Formates und zum Erkennen der
Clusternummer werfen Sie doch bitte einen Blick auf die FAT.
Denken wir uns erst einmal 16 Bits pro FAT-Eintrag, die im
Intel-Format hintereinander stehen. Bei diesen 16 Bits ıst das
most significant Nibble (die ersten vier Bit) des High Byte
überflüssig und durch ein X gekennzeichnet. Dieses freie Nibble
wird nun durch das least significant Nibble (die letzten vier Bit)
des Low-Byte des nächsten Eintrages belegt. Das most signifi-
cant Nibble des Low-Byte und das least significant nibbel des
High-Byte nehmen nach einem Uberkreuztausch zusammen den
Platz des Low-Bytes ein. Aus zwei 16-Bit-Eintragen wurden so

Programmieren in Maschinensprache 399

zwei 12-Bit-Einträge, wodurch ein Nibble einspart wird (das
High-Byte des zweiten Eintrages). Da pro zwei Eintragungen ein
Byte eingespart wird, ist das ganze System periodisch symme-
trisch, d.h. nach zwei 12-Bit-Einträgen hat sich die Nibble-
Schieberei ausgeglichen und das Spiel beginnt von neuem.

Zur Umrechnung von 12-Bit-Einträgen im Intel-Format in les-
bare 12-Bit-Einträge im Motorola-Format ist daher die Nummer
des Eintrages von entscheidender Bedeutung. Man beginnt mit
dem Zählen bei Null und zählt jeweils drei Nibble als einen
Eintrag. Wie schon am einfachen Beispiel erläutert (x, x), ist den
ersten beiden Einträgen (Nummer null und eins) in der realen
FAT (F7 FF FF) keine Bedeutung zugeordnet und der erste gül-
tige Eintrag ist der folgende, die Nummer 2. Ist die Zugriffs-
nummer, wie in diesem Fall (2), gerade, so findet man die bei-

den niedrigwertigsten Nibbles (Motorola-Format) im ersten Byte
dieses Eintrages (03) und das höchstwertigste Nibble (Motorola-
Format) des Folgeclusters im zweiten Nibble des Folgebytes (0),
so daß als Folgecluster der Cluster Nummer 003 (Motorola-For-
mat) ermittelt ist.

Sucht man nun den Folgecluster dieses dritten Datenclusters, so

zählt man wiederum in 3er Gruppen von Anfang an und findet

als vierten Eintrag (Nummer 3) die beiden Byte 40 00, wobei

der Anfang der Dreiergruppe eigentlich die Null im ersten Byte

ist. Bei einer ungeraden Zugriffsnummer, in diesem Fall die 3,
repräsentieren die letzten beiden Nibble des zweiten Byte (00)

die High-Nibble und das erste Nibble des ersten Byte das least-
significant Nibble der Clusternummer: ım konkreten Beispiel

wird so als Folgecluster die Nummer 004 ermittelt.

7.3.2 Subdirectories und Ordner auf Diskette

Das Filesystem des ATARI TOS ist hierarchisch und rekursiv,

d.h. man kommt von jedem beliebigen Subdirectory (Ordner)
wieder zum Hauptdirectory (Wurzel- oder Root-Directory). Zum
besseren Verständis legen Sie doch bitte mit dem Desktop-
Menüpunkt ’Ordner anlegen’ zwei Ordner mit den Namen
"ORDNERI.SUB" und "ORDNER2.SUB" an, starten den Diske-

400 ATARI ST Floppy und Harddisk

ditor und lesen aus dem Sektor-Menü heraus den Directory-
Sektor (Seite 0, Track 1, Sektor 3).

An dem schon erwähnten Byte Nummer 11 des Eintrages für
"ORDNER1.SUB" ($10) erkennen Sie, daß dieser Eintrag ein
Subdirectory darstellt. Der Startcluster dieses Subdirectories ist
der Cluster Nummer 9 (Bytes 26 und 27), der auf Track 3 Sek-
tor 6 der einseitigen Diskette beginnt. Lesen Sie doch bitte die-
sen Sektor aus dem Sektor-Menü heraus in den Speicher.

Jedes Subdirectory bekommt vom Betriebssystem eigene Direc-

tory-Sektoren "spendiert". In diesen Subdirectory-Sektoren sind

die beiden ersten Einträge immer belegt, auch wenn noch keine
Datei ins Subdirectory eingetragen ist. Der erste Eintrag beginnt
mit einem Punkt ($2E) gefolgt von Spaces, im Attribut-Byte
steht als Kennzeichen des Subdirectories eine $10 und als
Startcluster ist der eigene Anfang eingetragen, in diesem Fall die
9. Im zweiten Directory-Eintrag eines Subdirectories, der von

zwei Punkten ($2E) eingeleitet wird, steht im Startclustereintrag
(Byte 26, 27) der Startcluster des nächsttieferen Subdirectory. In
unserem Fall finden Sie zweı Null-Bytes (00 00), was bedeutet:
das nächsttiefere Subdirectory ist das Hauptdirectory (Rootdi-
rectory), da ja das Subdirectory "ORDNERI.SUB" vom Haupt-
directory aus angelegt wurde.

Verlassen Sie nun bitte den Diskeditor und lassen Sie sich vom
Desktop eın Inhaltsverzeichnis des Subdirectories "ORD-

NERI1.SUB" geben (Doppelklick auf Namen). Während also nun

das leere Subdirectory "ORDNERI1.SUB" angezeigt wird, wählen

Sie bitte mit Hilfe des Menüpunktes ’Ordner anlegen’ einen

neuen Ordner mit Namen "INORDI.SUB" an und starten

anschließend wieder den Diskeditor. Im Hauptdirectory (Track
1, Sektor 3) hat sich nichts geändert, so daß Sie sofort den
Startsektor des Subdirectories "ORDNERI1.SUB" auf Track 3,

Sektor 6 mit Hilfe des Sektor-Menüs anwählen können.

Der soeben innerhalb dieses Subdirectories angelegte Ordner ist,

wie Sıe sehen, im Directory-Sektor des Subdirectories eingetra-
gen, und zwar findet sich als Startcluster die Nummer 11. Clus-

Programmieren in Maschinensprache 401_

ter Nummer 11 beginnt auf einseitigen Disketten auf Track 4,
Sektor 1, den Sie bitte wiederum einlesen.

Im ersten Eintrag des Subdirectories "inordl.sub" findet sich der
rekursive Verweis auf sich selbst und im zweiten Eintrag der
Verweis auf das nächsttiefere Subdirectory, das in diesem Fall
dem Subdirectory "ORDNERI.SUB" entspricht, welches auf

Startcluster 9 beginnt.

7.3.3 Formatieren im Nicht-ATARI-Format

Es gibt zwei Arten eines Nicht-ATARI-Formates, erstens die
Verwendung von mehr Tracks und Sektoren als bei der Forma-
tierung vom Desktop (80 Tracks 0-79, und 9 Sektoren pro Track

1-9) und zweitens verschiedene Anzahl von Byte/Sektor und
mehr oder weniger Synchronisationsbytes zwischen den Adreß-
und Daten-Feldern. Möchten Sie z.B. den Track Nummer 81 mit
10 Sektoren formatieren, wählen Sıe bitte das Options-Menü an

und erhöhen Sie die Variable MAXTRACK durch Anwahl mit

den Cursor-Tasten auf 81. Mit dem gleichen Verfahren erhöhen
Sie bitte auch die Variable MAXSECTOR auf 10. Nun verlassen
Sie das Options-Menü mittels BACK. und wählen das Format-

Menü an. Hierin erhöhen Sie bitte die Tracknummer auf 81 und
die Variable SEC/TRAC auf 10. Anschließend brauchen Sie nur
noch FORMAT anzuwählen und die nun folgende Sicher-
heitsabfrage durch die Taste ’y’ zu bestätigen: schon wird der
Track 81 mit 10 Sektoren pro Track formatiert.

Möchten Sie das ATARI-Format ganz verlassen und auch die
Zwischenräume zwischen den Sektoren und die Sektorgröße nach
eigenen Wünschen gestalten, müssen wir die TOS-Programmie-
rung hinter uns lassen und direkt auf den Diskcontroller
zugreifen. Natürlich müssen wir uns bei der Auswahl auf die
Grenzen des Diskcontrollers beschränken, so kann man z.B.

nicht Sektoren mit 630 Bytes/Sektor formatieren, da der Disk-

controller nur vier verschiedene Sektorgrößen handhaben kann
(128, 256, 512, 1024). Zum Formatieren des Tracks Nummer 79
mit 4 Sektoren mit jeweils 1024 Byte pro Sektor und einem

Trackvorspann von 32 mal $4E anstelle von 60 mal $4E wählen

402 ATARI ST Floppy und Harddisk

Sie bitte aus dem Menüpunkt FORMAT den Punkt GAPS aus.

Sie erhalten dann ein neues Menü, wo Sie bitte den Wert für

GAPI auf 32 erniedrigen und dann BYT/SEC auf 1024 erhöhen.
Nachdem Sie mit BACK wieder ım Format-Menü gelandet sind,
erniedrigen Sie hier bitte den Menüpunkt SEC/TRAC auf 4 und

wählen letztlich den Menüpunkt XFORMAT.

Die Sicherheitsabfrage muß wieder mit ’y’ beantwortet werde
und schon ist der Track 79 neu formatiert. Sie sollten übrigens
wirklich die geforderte Sekunde oder ein bißchen mehr warten,
da sonst der Laufwerksmotor weiterläuft. Ich hätte natürlich
auch eine Zwangspause einbauen können, aber in der Testphase

war die Option eines laufenden Motors sehr nützlich, da die

verschiedenen Laufwerke verschiedene Spin-Up Zeiten haben.

Dies bedeutet, daß das eingebaute Laufwerk des ATARI 1040

ST seine Nenndrehzahl schneller erreicht als z.B. die "alte" SF
354, so daß Programmteile, die direkt auf den Floppy-Controller
zugreifen, bei den verschiedenen Laufwerken unterschiedlich
funktionierten (mal ja, mal nicht). Dieser Fehler trat in der
Testphase auf, ist aber jetzt natürlich behoben. Sollten Sie

jedoch irgendwelche exotischen Laufwerke angeschlossen haben
(alte 5 1/4 Zoll) und die Menüpunkte READ with SYNCS oder
XFORMAT nicht funktionieren, so lassen Sie bitte einfach den

Laufwerksmotor durch frühzeitiges Verlassen des READ-with-

SYNCs-Menüs laufen und rufen die gewünschte Funktion mit
laufendem Motor noch einmal auf.

Track with Syncs

Zur praktischen Erprobung des TRACK/SYNCS Untermenues

nehmen Sie bitte eine normal formatierte Diskette und wählen

diesen Menuepunkt an. Dann lesen Sie bitte den Track 79 durch

Anwahl von READ with SYNCS in den Speicher und schauen
sich die ersten Byte an.

Als Trackvorspann sollte nun ca 60 mal $4E am Trackanfang
stehen, es können jedoch auch andere Werte erscheinen (z.B.
$E4, $9C, $27). Dieses Phänomen wird vom Controller verur-
sacht, da der Lesevorgang am Trackanfang nicht synchronisiert

Programmieren in Maschinensprache 403

wird, so daß z.B. das erste Bit von $4E überlesen wird und der
Controller von dieser Stelle an die nächsten 8 Datenbit als erstes

Byte liest.

im Beispiel:

4 E 4 E 6 ..->9 cc 9 C€ 9

0100 1110 0100 1110 0100 1..--> 1001 1100 1001 1100 1001

Nach dem Trackvorspann der ca 60 Bytes umfasst folgen 12
Nullbytes ($00) wobei das erste und letzte Nullbyte auch ange-
schnitten sein kann und andere Werte aufweisen kann. Im
Anschluß hieran erscheinen nun die ersten Synchronisations-
bytes, nämlich drei mal $Al wobei das erste $Al meist nicht
korrekt gelesen wird. Die drei $A1 Byte schalten den Hardware-
Checksum-Ermittler ein, d.h. über die nun folgenden Datenbytes
ermittelt der Diskcontroller die Checksumme. Als nächstes Byte
sehen Sie nun $FE welches die folgenden sechs Datenbytes als
Adressfeld identifiziert. Der Inhalt dieser Bytes lautet ($4F, $00,

$01, $02, $70, $1D), $4F: Track 79, $00: auf Seite 0, $01: Sektor
1, $02: der folgende Datensektor besteht aus 512 Bytes,
$70 $1D: Checksumme über das Adressfeld. Nun folgen wieder
22 mal $4E und 12 mal $00 gefolgt von 3 mal $Al. Das nächste
Byte ($FB) kündigt die folgenden 512 Datenbyte (alles $ES auf
einer frisch formatierten Diskette) gefolgt von 2 Checksumbytes
($C4 $0B) an. Ans Ende des Datensektors wurde 40 mal $4E
geschrieben und danach wiederholen sich die einzelnen Synchro-

nisationsbereiche ($00, $4E, $Al ect.) für die noch folgenden
acht Adress- und Datenfelder diese Tracks.

Verlassen Sie doch nun einmal das Track/Sync Menue und wäh-
len aus dem Format-Menue den Unterpunkt GAP an. Nun erhö-

hen Sie bitte mit den Cursortasten den Wert für GAP2 von 12
auf 15, wählen danach XFORMAT und bestätigen die Abfrage
mit y. Wenn Sie sich nun den so formatierten Track Nr. 79
nocheinmal mittels TRACK/SYNC-Menue anschauen sehen Sie
nunmehr jeweils 15 mal $00 zwischen den einzelnen Adress-
und Datenfeldern.

404 ATARI ST Floppy und Harddisk

7.4 Das Assemblieren mit verschiedenen Assemblern

Digital Research:

1.
2.
3.

Assemblieren mittels: as68.ttp -1 -u editor.s

Linken mit: link68.ttp [u] edit.68k=edit.o

Ladbar machen mit: relmod.ttp edit.68k edit.tos

Das File edit.tos ist durch anklicken ladbar.

GST-Assembler:

1)

2)

3)

4)

An den Anfang des Files "edit.s" muß " opt abs "

eingefügt und alle Speicherplatzdirektiven wie " text,
bss, data " müssen durch " section " angeführt wer-
den. Aus " text " wird somit " section text ". Das
Programmfile nach dem Andern mit dem Namen
"edit.gst" abspeichern.

Erstellen eines Linkfiles mit Namen "asl.Ink", wel-

ches nur die eine Zeile " input * " enthält.

Assemblieren von "edit.gst" mit asm.prg edit.gst -
errors

Linken mit link.prg edit -with asl.Ink -prog edit.tos

Das File edit.tos ist wiederum startbar.

Metacomco-Assembler

Das Programmfile "edit.s" kann ohne Änderung übernommen
werden.

1) Erstellen eines Linkfiles "asl.Ink" welches als einzige
Zeile " input *" enthält. |

Programmieren in Maschinensprache 405

2) Assemblieren mit assem.ttp edit.s to edit.bin

3) Linken mit link.ttp edit.bin -with asl.

Das so entstandene Programmfile "edit.prg" ist startbar.

406 ATARI ST Floppy und Harddisk

Maschinen-Hilfsprogramme fiir BASIC 407

8. Maschinen-Hilfsprogramme für BASIC

Das BASIC des ATARI ST ist mit recht vielen Funktionen aus-
gestattet und dabei noch sehr schnell. Dennoch tauchen immer
wieder Probleme auf, die in BASIC nicht oder nur sehr schwer
gelöst werden können. Auch Zeitprobleme entstehen oft da, wo

große Datenmengen zu verwalten sind.

Abhilfe schafft hier meist ein mehr oder weniger kleines
Maschinen-Programm, welches in das BASIC-Programm einge-
bunden werden kann. Ein solches Unterprogramm kann leicht in

ein Integer-Feld (z.B. A%(n)) abgelegt und dort aufgerufen
werden. Dabei sind einige Dinge zu beachten, welche wir nun
betrachten wollen.

8.1 Aufruf und Parameteriibergabe

Es gibt in nahezu jedem BASIC-Dialekt zwei Befehle, die das
Zusammenspiel zwischen BASIC und Assembler ermöglichen.
Diese beiden Befehle lauten USR und CALL.

Leider ist beim ATARI-BASIC die USR-Funktion nicht imple-
mentiert. Eine ältere Version gab dies sogar mit der Meldung
Function not yet implemented’ zu. Wir müssen uns daher mit

der anderen Funktion näher beschäftigen.

CALL ruft, wie der Name schon sagt, ein Maschinen-Programm
auf. Dabei werden folgendermaßen die Parameter angegeben:

CALL A (P1,P2,P3)

A bedeutet dabei die Adresse des Maschinenprogramms. Pl, P2

und P3 sind Parameter, die an das Programm übergeben werden.

Die Anzahl dieser Parameter ist beliebig, also zwischen 0 und

sehr vielen.

408 ATARI ST Floppy und Harddisk

Wird ein direkter Wert (z.B. 1) angegeben, so wird dieser so

übernommen. Setzt man eine Variable ein, so wird deren Inhalt

angenommen. Dabei ist zu beachten, daß die Werte in einem

Langwort übergeben werden, so daß nur Werte zwischen minus
und plus 2 Milliarden zulässig sind. Fließkommazahlen können
nicht verwendet werden.

Bei der Übergabe eines Stringvariablen (z.B. A$) wird die
Adresse des Strings im Speicher übernommen. Dadurch spart
man sich den Umweg über die VARPTR-Funktion. Diese
Funktion braucht man dennoch zur Errechnung der Anfangs-
adresse des Programms. |

Das Maschinen-Programm findet nun auf dem Stack folgende
Parameter:

Zuerst einmal die Rücksprung-Adresse, zu der die Kontrolle des

Prozessors beim RTS-Befehl zurückkehrt. Dieser Wert ist meist

uninteressant, er darf jedoch auf keinen Fall verändert werden!

Danach folgt ein Wort, welches die Anzahl der übergebenen
Parameter enthält. Man kommt an dieses Wort einfach durch den

Befehl MOVE.W 4(SP),DO heran, wobei die Anzahl nun im

Register DO liegt.

Das nun folgende Langwort enthält einen Zeiger auf die Para-

meter-Liste selbst. Dieser Zeiger kann z.B. durch MOVE.L
6(SP),A0 in das Adreß-Register AO geladen werden.

Die Parameter-Liste enthalt nun in der im BASIC-Aufruf gege-
benen Reihenfolge die Langworte der Parameter. Diese Werte
können nun im Maschinen-Programm weiterverarbeitet werden.

Bei den Experimenten mit dieser Funktion stieß ich auf einen

merkwürdigen Effekt. Einige Programme liefen einwandfrei,
andere, zum Teil einfachere, ließen den Rechner abstürzen.

Nach mehrmaligen Haareraufen und Aschenbecherleeren kam

ich schließlich auf des Rätsels Lösung: In dem Maschinen-Pro-
gramm darf nicht das Adreß-Register A6 verwendet bzw. ver-

Maschinen-Hilfsprogramme fiir BASIC 409

ändert werden! Nach der Änderung aller A6 im Programm in A4
liefen die Programme sofort einwandfrei...

8.2 Einige Beispielprogramme

In den nun folgenden Kapiteln sollen einige Unter-Routinen für
BASIC-Programme vorgestellt werden. Dabei werden einige Pro-
blemlösungen gegeben, die Sie hoffentlich auch für Ihre eigenen
Programme verwenden können. Außerdem können Sie anhand

der Beispielprogramme sehen, wie die Verwendung und der

Austausch verschiedener Parameter vor sich gehen kann. Damit

können Sie dann auch andere Maschinen-Programme schreiben,
die Ihr BASIC-Programm wesentlich verbessern und beschleuni-
gen können.

Die Beispiele sind immer jeweils in Assembler- und in BASIC-
Listings gegeben. Das BASIC-Programm enthält dabei auch je
einen Lader, mit dem das Maschinenprogramm generiert wird.
Sie können natürlich auch so vorgehen, daß Sie die Daten des
Maschinen-Programmes in einer Datei auf Diskette ablegen und
mit dem Befehl BLOAD "Filename",A in das Feld einlesen. Da-

durch wird zwar ein zusätzlicher Diskettenzugriff nötig, das
BASIC-Programm wird jedoch kürzer und übersichtlicher.

8.2.1 Schnittstelle BASIC/TOS

Das Betriebssystem des ATARI ST bietet viele Funktionen, an
die man jedoch aus einem BASIC-Programm heraus nicht
herankommt.

Mit Hilfe eines Maschinenprogramms kann dieses Problem je-
doch leicht gelöst werden. Eın solches Programm muß die Mög-

lichkeit bieten, eine beliebige Anzahl von Parametern vom auf-
rufenden BASIC-Programm zu übernehmen und auf dem Stack
dem Betriebssystem zu übergeben.

Das nun folgende Programm besitzt diese Möglichkeit. Damit
stellt es eine universelle Schnittstelle zwischen BASIC und dem

410 ATARI ST Floppy und Harddisk

Betriebssystem dar. Der Aufruf des Programms erfolgt mit einer
beliebigen Anzahl von Parametern. Dabei ıst jedoch zu beachten,
daß nur Daten mit Wortbreite (16 Bit) übernommen werden. Ein
Langwort muß daher in zwei Teilen übergeben werden.

Der letzte Parameter, der im CALL-Befehl angegeben wird, hat
eine besondere Bedeutung. Da einige Funktionen des GEMDOS

einen Wert zurückgeben, wird dieser Wert in die zuletzt angege-
bene Adresse übergeben. Im Beispielprogramm (BASIC) wird die
Funktion CONIN demonstriert, die auf die Betätigung einer
Taste wartet und den Wert dieser Taste zurückgibt.

Doch sehen wir uns zuerst das Maschinenprogramm selbst an.

Die übergebenen Parameter werden in einer Schleife auf den
Stack übertragen und dann mit einem TRAP-Befehl an das
Betriebssystem übergeben. Der Rückgabewert, der im allgemei-
nen im Datenregister DO zurückkommt, wird nun an die Adresse
des letzten Parameters geschrieben.

‚*%* BASIC-TOS-Schnittstelle 6/86 S.D. **

‚** Aufruf mit CALL ADR (Parameter-Liste,x) **

»** mit x als Adresse des Rückgabewertes DO **

run:

move 4(sp),d0 ‚Anzahl der Parameter

move.l 6(sp),a5 ‚Zeiger auf Parameterblock

subq #2,d0 ;Parameteranzahl korrigieren

move.l sp,a4 ‚alten Stackpointer retten

Loop:

move.| (a5)+,d1 ‚Parameter holen

move di,-(sp) ‚und auf den Stack damit

dbra d0, loop ‚weitermachen

trap #1 ;TOS aufrufen

move.l (a5),a5 ‚Rückgabeadresse ermitteln

move.l d0,(a5) :D0 zurückgeben

move.l a4,sp ‚Stack reparieren

rts ‚Ende!

Maschinen-Hilfsprogramme_für BASIC 411

Wie Sie sehen, ist das Programm ausgesprochen einfach. Wir

wollen deshalb gleich zu dem BASIC-Programm übergehen, wel-
ches das Maschinenprogramm erstellt und danach einen Probe-

lauf macht. Die dabei eingesetzte Funktion ist, wie schon er-
wähnt, die CONIN-Funktion, die auf einen Tastendruck wartet

und den Wert der gedrückten Taste in DO zurückgibt. Dabei be-
deutet das niederwertige Wort von DO den ASCII-Wert der
Taste, das höherwertige Wort enhält den rechnerinternen Scan-
Code. Beide Werte erhält man im Langwort DO, welches in die
String-Variable B$ geschrieben wird. |

10 '** BASIC-TOS-Schnittstelle S.D. **

20 defdbl s

30 dim a%(200)

40 a=varptr(a%(0))

50 s=0

60 for i=0 to 14 :read a%(i)

70 s=s+a%(i) :next i

80 if s<> 174830 then ?"Fehler!":stop

100 b$=space$(10)

110 b=varptr(b$) :'Adresse für die Rückgabe

120 call a (1,b) :'Aufruf der Routine

130 ?peek(b),b$:'Ausgabe des Ergebnisses

1000 '** Daten für BASTOS **

1010 data &H302F ,4, &H2A6F ,6, &H5540, &H284F , &H221D ,&H3FO1

1020 data &H51C8, &HFFFA, &H4E41 , &H2A55, &H2A80, &H2ESC, &H4E 75

8.2.2 Directory auslesen

Ein ärgerlicher Mangel des ATARI-BASIC ist die fehlende
Möglichkeit, das Inhaltsverzeichnis einer Diskette auszulesen.
Man kann zwar mit dem Befehl DIR das Directory auf dem
Bildschirm ausgeben lassen, doch was nützt das schon?

412 ATARI ST Floppy und Harddisk

Will man nun aber in einem Programm die Informationen, die
das Directory beinhaltet, verwenden, so muß man wieder einmal
auf ein Maschinen-Programm zurückgreifen. Ein solches Pro-

gramm finden Sie in diesem Kapitel. Es kann sogar außer dem
normalen Zugriff auf die Dateinamen noch alle anderen Infor-
mationen liefern, die im Inhaltsverzeichnis stehen (siehe Kapitel

6.3). Zusätzlich liefert es noch die Angaben über die gesamte
und die verbliebene Kapazität der aktuellen Diskette.

Doch betrachten wir erst einmal das Maschinen-Programm
selbst. a

‚*%* Directory für BASIC S.D. **

run:

bra sfirst ‚Einsprung 1

snext: ‚Einsprung 2

move #54 f,-(sp)

trap #1 ‚snext-Funktion

addq.l #2,sp

tst do

bne warnix ‚keine weiteren Einträge

rts

sfirst:

cmp #3 ,4(sp)

bne quit ;keine 3 Parameter!

move. lt 6(sp),a5 ‚Zeiger auf Parameterblock

lea puffer(pc),a4

move.l 8(a5),(a4) ;Pufferadresse retten

move.l 8(a5),-(sp) ;Pufferadresse

move #$1a,-(sp)

trap #1 ;SETDTA-Funktion

addq.l #6,sp

move 6(a5),-(sp) ‚Attribut

Maschinen-Hilfsprogramme fiir BASIC _ 413

move.l (a5),-(sp) ; Filename

move #$4e,-(sp)

trap #1 »;SFIRST-Funktion

addq.l #8,sp

tst do

bne warnix

quit:

rts ;=> BASIC

warnix:

move.l puffer(pc),a4

clr -(sp) ‚aktuelles Laufwerk

move.l a4,-(sp) ‚Puffer-Adresse

move #536, -(sp)

trap #1 ;GET-FREE-SPACE- Funktion

addq.l #8,sp

move.l #'!Frei! ,30(a4) Kein Filename!

rts ‚=> BASIC

puffer: dc. 0

Das erste, was an dem Programm auffallt, sind die zwei unter-

schiedlichen Einsprung-Punkte. Dies ist deshalb so, weil das

Programm eigentlich aus 2 eigenen Programmen besteht.

Der erste Teil ist die "SEARCH FIRST’-Funktion. Dieser Funk-
tion des GEMDOS müssen einige Parameter übergeben werden,

wie Such-Name, File-Attribut und Pufferadresse. Die Funktion

des anderen Programmteils, "SEARCH NEXT’, benötigt dage-
sen keine Parameter, da die Einstellungen des letzten

"“SEARCH_FIRST’-Aufrufes weiterverwendet werden.

Für das aufrufende BASIC-Programm heißt dies, daß es erst das

Programm am Anfang aufrufen muß und dann mit der Adres-
se+4 weiterverfahren muß. Außerdem muß nur einmal die Para-

meterübergabe vorgenommen werden.

414 ATARI ST Floppy und Harddisk

Findet die SEARCH_FIRST- oder die SEARCH_NEXT-Funk-
tion kein weiteres File, welches den Suchkriterien entspricht, so

wird eine weitere Funktion aufgerufen. Diese Funktion gibt
einen Parameterblock zurück, in dem die Informationen über

Gesamtgröße und Restkapazität der aktuellen Diskette enthalten
sind. Diese Informationen erhält das BASIC-Programm in dem
selben Parameter-Block zurück wie auch die Directory-Einträge.
Es kann sie jedoch daran erkennen, daß als Programmname

’Frei’ übergeben wird.

Der erste Aufruf des Programms lautet

CALL A (F$,A,P$)

Die Bedeutung der Parameter:

A gibt die Anfangsadresse des Maschinen-Programms
an.

F$ ist ein String, in dem der Pfadname der zu suchen-

den Dateien enthalten ist (z. B. B:*.BAS). Der
String muB mit einem Nullbyte abgeschlossen sein!

A ist das Attribut, welches die zu suchenden Dateien

haben sollen. Eine Null sucht nach allen normalen

Dateien.

P$ bezeichnet einen String, der als Puffer für die vom
Maschinen-Programm zurückgegebenen Daten
dient. Die Aufteilung des Puffers entnehmen Sie
bitte dem Kapitel 6.3.

Hier nun ein BASIC-Programm, welches das Maschinen-Pro-
gramm generiert und gleich ein Anwendungsbeispiel darstellt. Es
werden dabei alle Dateien der im aktuellen Laufwerk liegenden
Diskette mit ihrer Länge ausgegeben. Im Anschluß daran erhält
man die noch auf der Diskette vorhandenen Kapazität in Bytes.

Maschinen-Hilfsprogramme für BASIC 415

10 '** Directory lesen S.D. **

20 defdbl s

30 dim a%(200)

40 d=varptr(a%(0)) :'1. Einsprung für SEARCH FIRST

50 s=0

60 for i=0 to 52 :read a%(i)

70 s=staZ%(i) next i

80 if s<> 610895 then ?"Fehler!":stop

130 di=d+4 :'2. Einsprung für SEARCH NEXT

150 f$="*.*"+chr$(0) :'Suchstring

160 p$=space$(50) :'Puffer löschen

170 call d (f$,0,p$) :'SEARCH FIRST

180 goto Lop1

190 loop:

200 call di :'SEARCH NEXT

210 lop:

220 if mid$(p$,31,4) = "Frei" then 260 :'Ende

230 i=27: gosub calc :'Lange berechnen

240 ?mid$(p$,31,14),l :'Name und Länge ausgeben

250 goto loop

260 i=1: gosub calc :'freie KBytes berechnen

270 2"** Freie Bytes : ":1*1024 :'und in Bytes ausgeben

280 end :'Programm-Ende

290 calc:

300 l=asc(mid$(p$, 1+3,1))+&H100*asc(mid$(p$, i+2,1))

310 l=l+&H10000*asc(mid$(p$, i+1,1))

320 return

1000 '** Daten fiir BASDIR **

1010 data &H6000,8&H12,&H3F3C, &H4F, &H4E41, &HO48F , SH4A40

1020 data &H6600,&H3C, &H4E75, &HC6F,3,4, &H6600, &H2E ‚&H2A6F

1030 data 6,&H49FA, &H42,&H28AD,8, &H2F2D,8, &H3F3C

1040 data &H1A,&H4E41,&H5C8F , &H3F2D ,6,&H2F15,&H3F3C, &H4E

1050 data &H4E41,&H508F , &H4A40, &H6600,4, &H4E75 , &H287A, &H18

1060 data &H4267,8&H2FOC, &H3F3C, &H36, &H4E41 , RHSOBF , &H297C

1070 data &H4672,8H6569,8&H1E,&H4E75,0,0

416 ATARI ST Floppy und Harddisk

8.2.3 Sektoren lesen/schreiben

Die Daten auf einer Diskette sind, wie bereits besprochen, in

Sektoren abgelegt. An diese Sektoren kommt man normalerweise
nicht direkt heran, das Betriebssystem läd nur die Sektoren, auf

denen die gewählte Datei steht.

Will man nun auf bestimmte Sektoren zugreifen, so muß man
wieder einmal ein Maschinenprögramm bemühen, welches einen
einzelnen Sektor lesen bzw. schreiben kann. Ein solches Pro-

gramm wird nun vorgestellt. |

Dem Programm werden 3 Parameter übergeben: die logische

Sektornummer, eine Lese- bzw. Schreib-Anweisung und die
Adresse des zu verwendenden Puffers.

Die logische Sektornummer kann von 0 bis zum maximalen Wert

sein. Dieses Maxımum hängt von dem verwendeten Disketten-

format ab.

Die Lese/Schreibe-Anweisung kann folgende Werte annehmen:

0 - Sektor lesen
1 - Sektor schreiben

2 - Sektor lesen, Diskettenwechsel ignorieren

3 - Sektor schreiben, Diskettenwechsel ignorieren

Wird das Kommando 0 oder | verwendet, so greift das Pro-

gramm nur auf die Diskette zu, die momentan im Laufwerk

liegt. Ein Diskettenwechsel bewirkt, daß nicht zugegriffen wird.

Das Maschinenprogramm sieht folgendermaßen aus:

‚*%* Sektor lesen S.D. **

st CALL A (Sektor,rw (2=read,1=write),Puffer) **

run:

Maschinen-Hilfsprogramme fiir BASIC 417

cmp #3,4(sp) ‚3 Parameter?

bne quit ‚nein => Abbruch

move.l 6(sp),a5 ‚Zeiger auf Parameter

clr -(sp) ;Laufwerk A

move 2(a5),-(sp)

move #1,-(sp) 3:1 Sektor

move.l 8(a5),-(sp) ‚Puffer

move 6(a5),-(sp) ‚Read/Write

move #4,-(sp) ;RWABS- Funktion

trap #13 ;BIOS-Aufruf

add. | #14,sp

quit:

rts ‚=> BASIC

Das Programm greift nur auf Laufwerk A zu. Sollte dies eben-
falls varıabel sein, so können Sie das Programm auch fir 4
Parameter umschreiben.

Hier nun das entsprechende BASIC-Programm, welches das

Maschinen-Programm erstellt und gleich eine kleine Demonstra-

tion darstellt:

10 '** Durchsuchung eines Integer-Feldes S.D. **

30 dim a%(100),f%(300)

40 a=varptr(a%(0))

50 defdbl s

60 s=0

70 for i=0 to 22: read a%(i) :'Programm einlesen

80 s=s+ta%(i) :next 1

90 if s<> 165974 then ?"Fehler!" sstop

100 f=varptr(f%(0))

200 input "Sektor, rw : ";5%,r%

210 call a (s%,r%,f) :'Aufruf des Programms

220 for i=0 to 255

418 ATARI ST Floppy und Harddisk

230 if Ci mod 16)=0 then ?

240 ?mki$lf%li)); :'ASCII-Ausgabe des Sektors

250 next i :?

1000 '** Daten für Maschinenprogramm **

1010 data &HC6F,3,4,&H6600 ,&H24 ,&H2A6F , 6, &H4267

1020 data &H3F2D,2,&H3F3C,1,&H2F2D,8,&H3F2D,6

1030 data &H3F3C,4,&H4EAD,&HDFFC,O,&HE,&H4E75

8.2.4 Beliebige Diskettenformatierung

Wie wir bereits im 6. Kapitel gesehen haben, lassen sich die 33-

Zoll-Disketten in verschiedenen Formaten verwenden. Dabei

sind die Anzahl der verwendeten Seiten, der Tracks und der

Sektoren pro Track variabel.

Um nun aus einem BASIC-Programm heraus eine Diskette zu

formatieren, ist man auf zusätzliche Unterstützung von einem
Maschinen-Unterprogramm angewiesen, da ein entsprechender

BASIC-Befehl dafür im Befehlsvorrat fehlt. Außerdem könnten
auch mit dem Umweg über das Desktop nur zwei verschiedene
Formate verwendet werden. Abhilfe schafft hier ein Maschinen-
programm, welches vom BASIC aus aufgerufen und mit einigen
Parametern versorgt werden kann. Diese Parameter ergeben dann

das Format, in dem die angegebene Diskette initialisiert wird.

Das Programm selbst erinnert grob an jenes, welches wir im 6.
Kapitel kennengelernt haben. Bei der näheren Betrachtung fallen
jedoch einige gravierende Unterschiede auf.

Zum einen fehlt das Menü und die damit verbundene Parame-
terberechnung. Alle wichtigen Einstellungen werden nämlich
direkt vom aufrufenden BASIC-Programm übergeben.

Zum anderen sind die Adressierungen der Variablen anders
geartet. Dies ist aus dem Grunde so kompliziert, da das Pro-

gramm mit einem BASIC-Lader in einen Speicherbereich gelesen
wird, der dem Programm selbst unbekannt ist. Alle Adressierun-

Maschinen-Hilfsprogramme fiir BASIC 419

gen miissen somit relativ sein, absolute Adressen gibt es hier

keine.

Aufgerufen wird das Maschinenprogramm durch einen CALL-
Befehl folgenden Aufbaus:

CALL A (S,T,SPT,LW)

Die verwendeten Variablen haben folgende Bedeutung:

A

SPT

LW

ist die Speicheradresse, an die das Maschinenpro-

sramm gelegt wurde. Im vorliegenden Beispiel ist
dies die mit der VARPTR-Funktion ermittelte

Adresse des Integer-Feldes A%.

steht fiir die Seitenanzahl, die auf der Diskette

formatiert werden soll. Dabei ist die Anzahl-1 zu

übergeben (einseitig: S=0, doppelseitig: S=1).

gibt die Anzahl der Tracks an. Normalerweise ent-
hält eine Diskette 80 Tracks, physikalisch sind je-
doch bis zu 82 (manchmal sogar 83) Tracks
formatierbar.

sind Sektoren pro Track. Hier steht im Normalfall
eine 9, es sind jedoch 1 bis 10 Sektoren pro Track
formatierbar.

heißt Laufwerk. Mit dieser Variablen wird das zu

formatierende Laufwerk bestimmt, wobei eine 0

für Disk A und eine | für Disk B eingesetzt wer-
den muß. Bitte versuchen Sie nicht, durch Einset-

zen einer 3 für Laufwerk C Ihre RAM-Disk zu

formatieren; dies spricht beide Laufwerke (A und
B) gleichzeitig an...

Hier nun das Maschinen-Programm, welches die Parameter vom

BASIC annimmt, auswertet und die Diskette formatiert:

420 ATARI ST Floppy und Harddisk

:** BASIC-Unterprogramm: Formatierungs-Routine S.D. **

run:

move

cmp

bne

move. |

lea

move. l

move

move. |

move

move. |

move

move. |

move

move

subq

floop:

move

floop1:

bsr

bne

sub

bpl

sub

bpl

setboot:

clr

moveq

or

move

move. l

pea

4(sp),d0

#4 ,dO

quit

6(sp),a5

seiten(pc),a4

(a5)+,d1

di,(a4)

(a5)+,d1

d1,2(a4)

(a5)+,di

d1,4(a4)

(a5)+,d1

d1,6(a4)

tracks(pc),8(a4)

#1,8(a4)

seiten(pc), 10(a4)

fmttr

quit

#1,10¢a4)

floop1

#1 ,8(a4)

f loop

-(sp)

#2,d0

seiten(pc),dO

dO, -(sp)

#$ 1000000, - (sp)

12(a4)

‚4 Parameter?

‚nein => Abbruch

‚Zeiger auf Parameterblock

‚Seiten

‚Tracks

‚Sektoren pro Track

;Laufwerks- Nummer

‚Seite bestimmen

format Track

‚Seite -1

‚nächster Track

‚Execute-Flag

‚Disktyp, Seiten

;‚Seriennr. erstellen

‚Puffer-Adresse

Maschinen-Hilfsprogramme_ ftir BASIC 421

move

trap

add. l

lea

clr.l

cmp

beq

move.b

move

tst

beq

isl

sd11:

bsr

sok:

cmp

beq

move

tst

beq

isl

sdi2:

bsr

trok:

move

clr.l

move

move

clr.l

pea

move

trap

add. l

quit: rts

addsec:

#$12,-(sp)

#14

#14,sp

12(a4),a0

do

#9 ,4(a4)

sok

#10,24(a0,d0)

tracks(pc),di

(a4)

sd11

#1,d1

addsec

#80 ,2(a4)

trok

#18,d1

(a4)

sdi2

#1,d1

addsec

#1,-(sp)

-(sp)

#1,-(sp)

drive(pc),-(sp)

-(sp)

12(a4)

#9,-(sp)

#14

#20,sp

:Boot-Sektor erstellen

79 Sektoren pro Track?

‚ja
‚10 SPT einsetzen

3:1 Seite?

‚ja
‚sonst doppelter Zuwachs

sSEC + Anzahl der Tracks

80 Tracks?

;1 Seite?

‚ja
‚sonst doppelter Zuwachs

‚SEC + 2*9 oder 4*9

2:1 Sektor

‚Seite 0, Track 0

‚Sektor 1

‚Laufwerk

‚Puffer

;flopuwr

‚zurück zum BASIC

*SEC = SEC + D1

422 ATARI ST Floppy und Harddisk

move.b 20(a0,d0),d2 sHI

isl #8 ,d2

move.b 19¢a0,d0),d2 LO

add d1,d2

move.b d2,19¢a0,d0) ‚set LO

lsr #8 ,d2

move.b d2,20(a0,d0) ‚set HI

rts

fmttr: seinen Track formatieren

clr -(sp) ‚Virgin-Daten

move.l #%$87654321,-(sp) ;Magic-Zahl

move #1,-(sp) : interleave

move seite(pc),-(sp) ‚Seite

move tracksi(pc),-(sp) ;Track

move secptr(pc),-(sp) ;Sektoren/Track

move drive(pc),-(sp) ‚Laufwerk

clr.l -(sp)

pea 12¢a4)

move #10,-(sp)

trap #14 ;flopfmt

add. | #26,Sp

tst do sTest auf Error

rts

seiten: dc.w 1

tracks: dc.w 80

secptr: dc.w 9

drive: de.w 0

tracks1: dc.w 80

seite: dc.w 0

puffer: dc.b $200

Das Programm ist voll verschiebbar, d.h. es läuft so an jeder
beliebigen Speicheradresse. Die einzelnen Komponenten des Pro-

gramms sind bereits in diesem Buch erklärt, so daß es eigentlich
selbsterklärend ist.

Maschinen-Hilfsprogramme_für_BASIC 423

Nun folgt ein BASIC-Programm, welches die Formatierungsrou-
tine aufruft. Gleichzeitig ist ein Lader enthalten, welches das

Maschinen-Programm aus DATA-Zeilen generiert. Selbstver-
ständlich kann es auch von der Diskette geladen werden.

10 '** Formatierung einer Diskette **

15 'fullw 2

17 defdbl s

20 dim a%(400)

30 a=varptr(a%(0))

35s=0

40 for i=0 to 144: read a%(i)

45 s =s +a%(i) : next 1

46 if s <> 1033402 then ?"Fehler!":stop

50 print "Seiten, Tracks, Sektoren/Track, Laufwerk "

60 input s,t,spt,lw

80 call a (s,t,spt, lw)

90 '** Daten für BFORMAT.obj **

100 data &H302F ‚&H0004 ‚&HOC4O ,&H0004 , &H6600, &HOOCC ‚&H2A6F ‚,&HO006

110 data &HAYFA,&HO110,&H221D , &H3881 , &H221D ,&H3941,&H0002 ,&H221D

120 data &H3941,&H0004 , &H221D , &H3941 , &HO006, &H397A, &HOOF8, &H0008

130 data &H536C,&H0008, &H397A, &HOOEC , &SHOOOA, &H6100, &HOOBS , &H6600

140 data &H0096, &HO46C, &HO001 , SHOO0A, &H6A00, &HFFFO, &HO46C ,&HO001

150 data &H0008,&H6A00 ,&HFFEO,&H4267 ,&H7002 , &H807A, &HOOCG, &H3FOO

160 data &H2F3C,&H0100, &HOO00, &H486C , SHOOOC ,&H3F3C,&H0012 ,&H4E4E

170 data &HDFFC,&HO000, &HOODE , &8H41EC, &HOOOC, &H4280 , &HOCEC ,&H0009

180 data &H0004,&H6700,8&H0018,&H11BC, &HOOOA, &H0818,&H323A ,&H0096

190 data &H4A54,8&H6700 , &HO004 , &8HE3S49, &H6100, &HOOSE , &HOCEC , &HOO50

200 data &H0002,&H6700,&H0012 ,&H323C ,&H0012,&H4A54 , &H6700 , &HOO04

210 data &HE349,&H6100, &HO024 ‚&H3F3C,&H0001 ,&H42A7 ,&H3F3C,&HO001

220 data &H3F3A, &HO066, &H42A7, &H486C, &HOOOC, &SH3F3C, &HOO09, &H4E4E

230 data &HDFFC,&HO000,&H0014 , &H4E75, &H1430, &HO814 , SHE14A, &H1430

240 data &H0813,&HD441,&H1182,&H0813 ,&HEO4A, &H1182, &HO814 , &H4E75

250 data &H4267, &H2F3C , &H8765 ,&H4321,&H3F3C,&H0001 , SH3F3A, &HOOZE

260 data &H3F3A,&H0028,&H3F3A,&H0020 ,&H3F3A,&HOO1IE , &H42A7 , &H486C

270 data &HOOOC, &H3F3C, &HOO0A, &H4E4E , SHDFFC, &HOO00, &HOO1A, &H4A40

280 data &H4E75

424 ATARI ST Floppy und Harddisk

8.2.5 Daten suchen

Eine recht häufige Anwendung eines Maschinen-Unterprogrmms
ist das Durchsuchen von Listen. Eine solche Suche kann bei
größeren Listen so lange dauern, daß ein BASIC-Programm
nicht mehr sinnvoll ıst. Man denke sich nur eine Datenbank, die

zum Suchen einer Telefonnummer etliche Minuten braucht...

Ein Maschinenprogramm, welches diese Aufgabe übernimmt, ist

recht leicht zu schreiben. Es besteht nur aus drei Teilen:

1. Parameterübernahme vom BASIC

2. eine Suchschleife

3. Ergebnisrückgabe an das BASIC-Programm

Hier nun ein solches Programm:

2** Integer-Feld-Durchsuchung S.D. **

e** CALL A (Feldanfang,Anzahl,Suchwort) **

run:

cmp #3,4(sp) 73 Parameter?

bne quit ‚nein => Exit

move.l 6(sp),a5 ‚Zeiger auf Parameter

Lop1:

move.l (a5),a4 ‚Zeiger auf Parameterfeld

tst (a4)+ ‚auf f%(1) stellen

move.|l 4(a5),di Anzahl der Daten

move. 8(a5),d2 ;Suchwort

moveq #1,d3 ‚Index=1

Loop:

cmp (a4)+,d2 ‚Vergleich

beq ok1 ‚gefunden

addq #1,d3 : Index+1

cmp d3,d1 ‚Ende?

Maschinen-Hilfsprogramme ftir BASIC 425

bne Loop ‚nein

move #-1,d3 ‚nicht gefunden!

ok1:

move. l (a5),a5 ‚Adresse für Rückgabe

move d3, (a5) ;Index zurückgeben

quit:

rts ‚=> BASIC

Dieses kleine Programm erledigt die gesamte Suche in Bruchtei-
len von Sekunden und gibt die Nummer des gesuchten Eintrages

in das erste Element der Liste zurück. Daher ist zu beachten,

daß man nur die Elemente | bis n der Liste für die Daten ver-
wendet. Wird das Element nicht gefunden, so wird als Nummer
-1 übergeben.

Da es für dieses Programm viele Verwendungsmöglichkeiten
gibt, ıst das folgende Lade- und Beispielprogramm nur sehr

einfach. Das Prinzip der Routine und ihrer Verwendung wird
aber klar.

10 '** Durchsuchung eines Integer-Feldes S.D. **

30 dim a%(60), f$(1000)

40 a=varptr(a%(0))

50 defdbi s

60 s=0

70 for i=0 to 25 :read a%(i)

80 s=sta%(i) :next i

90 if s<> 211865 then ?"Fehler!! :stop

130 f=varptr(f%(0))

140 for i%=1 to 8

150 read f%(i%) :'Beispielwerte einlesen |

170 next 1%

200 input "Suchwort : ";s%

210 call a (f,i%,s%)

426 ATARI ST Floppy und Harddisk

220 if f4(0)=-1 then ?"** Nicht gefunden! **" :goto 200

230 ?s%;" ist der ";f%(0);". Eintrag." :goto 200

1000 '** Daten für Maschinenprogramm **

1010 data &HC6F,3,4,&H6600, &H2A, &H2AGF ,6, &H2855

1020 data &H4A5C,&H222D ,4, &H242D ,8, &H7601, &HB45C, &H6700

1030 data &HE,&H5243,&HB243, &H6600, &SHFFF4, &H363C, &HFFFF

1040 data &H2a55,&H3A83,&H4E75

1100 data 6,2,99,345,7,3,0,4

8.2.6 Daten sortieren

Die Sortierung von großen Datenmengen ist eine sehr zeitinten-

sive Sache. Ein BASIC-Programm, welches einige 1000 Daten
sortiern soll, macht dabei eine unangenehm lange Pause, die den

Programm-Ablauf empfindlich stören kann. Wesentlich schneller
ist dagegen ein Maschinen-Programm, welches diese Aufgabe
übernimmt.

Ein solches Programm soll nun vorgestellt werden. Es ist dafür
ausgelegt, ein beliebig großes Integer-Feld eines BASIC-Pro-
grammes aufsteigend zu sortieren. Dem Programm werden als
Parameter die Adresse des Feldanfangs und die Anzahl der zu
sortierenden Einträge übergeben. Dadurch kann auch ein Aus-

schnitt eines Feldes für sich sortiert werden.

Der in diesem Programm verwendete Algorithmus ist recht ein-
fach. Er ist zwar nicht der schnellste, aber das spielt bei der

sehr großen Geschwindigkeit des 68000-Prozessors keine wich-
tige Rolle.

Hier nun das Maschinenprogramm:

»%* Integer-Feld-Sortierung S.D. **

;*%* CALL A (Feldanfang, Anzahl) **

run:

cmp #2 ,4(sp) ‚2 Parameter?

Maschinen-Hilfsprogramme ftir BASIC 427

bne quit ‚nein => Exit

move.l 6(sp),a5 ;Zeiger auf Parameter

Lop1:

move.l (a5),a4 ‚Zeiger auf Parameterfeld

move.t 4la5),di ‚Anzahl der Daten

clr d3 :Tausch-Flag löschen

Lope:

move (a4) ,d0

cmp 2(a4),dO ‚Vergleich

ble ok1 ;OK

move 2(a4), (a4) ‚tauschen

move d0,2(a4)

st d3 ;Tausch-Flag setzen

ok:

addq.l #2,a4 ‚nächster Wert

subq.l #1,d1

bne Lop2

tst d3 ‚fertig?

bne Lop1 ‚nein => weiter

quit:

rts ‚=> BASIC

Nun wieder ein BASIC-Programm, welches in DATA-Zeilen das
Maschinen-Programm enthält und daraus in ein Feld einliest. In
ein anderes Feld werden danach irgendwelche Werte eingetragen.
Die Eingabe wird durch den Wert -1 beendet. Es wird nun das
Maschinenprogramm aufgerufen, welches die Daten des
gesamten Feldes sortiert. Danach werden die sortierten Werte
wieder ausgegeben.

Diese Art der Anwendung ist natürlich nur als Beispiel gedacht.

Interessant wird es erst bei großen Datenmengen, wo der
Geschwindigkeitsvorsprung gegenüber einem reinen BASIC-Pro-

gramm deutlich wird.

428 ATARI ST Floppy und Harddisk

10 '** Sortierung eines Integer-Feldes S.D. **

20 defdbl s

30 dim a%(200)

40 a=varptr(a%(0))

50 s=0

60 for 1=0 to 28 :read a%(i)

70 s=sta%(i) snext i

80 if s<> 280743 then ?"Fehler!":stop

100 dim f%C1000) :'Datenfeld vorbereiten

110 defint i

120 a=varptr(a%(0)) :'Adresse des Maschinen-Programms

130 f=varptr(f%(1)) :'Adresse der Daten

140 for i=1 to 1000

150 input "Eintrag : ";f%(i) :'Daten eingeben

160 if f%Ci)=-1 then 180 : "Ende?

170 next 1 :'nein, weitermachen

180 call a (f,i-2) :'sortieren

190 for j=1 toi

200 ?j;".: "sf%Cj) :'und wieder ausgeben

210 next j

1000 '** Daten für BASSORT **

1010 data &HC6F,2,4,&H6600, &H30, &H2A6F ,6,&H2855

1020 data &H222D,4,8&H4243, &H35014, &HBO6C, 2, &H6FOO, &HC

1030 data &H38AC,2,8&H3940,2,&H50C3, &H548C, &H5381 ,&H6600

1040 data &HFFE6, &H4A435 , &H6600, SHFFD8, &H4E75

8.2.7 Datum und Uhrzeit formatiert auslesen

Jede Datenbank, die im täglichen Leben angewandt werden soll,

muß u.a. auch das Datum und evtl. die Uhrzeit der Buchungen
bzw. Änderungen mitverarbeiten können. Leider enthält das
ATARI-BASIC keine entsprechende Funktion dafür, so daß wir

wieder ein Maschinenprogramm brauchen.

Das nun vorgestellte Programm liest die Uhrzeit und das Datum
aus dem Rechner ein und gibt beides an das aufrufende BASIC-

Maschinen-Hilfsprogramme ftir BASIC 429

Programm zurück. Zusätzlich werden diese Informationen noch
formatiert, damit sie direkt weiterverarbeitet werden können.

Der Aufruf geschieht einfach mit CALL A (A$), wobei in der
String-Variable A$ das Ergebnis stehen wird. Das verwendete
Format ist dabei folgendermaßen:

SS.MM.SS. TT.MM.JJJJ

rt to ot td
| | [| | +» Jahreszahl (z.B. 1986)

| | | | 7. Monat (z.B. 07 für Juli)

| | rennen Tag im Monat

| | nn Sekunden (in Zweierschritten)

| nn Minuten

we ee nennen Stunden (0 bis 23)

Der 3.7.1986 um 22 Uhr 16 und 30 Sekunden erscheint somit in

A§ als 22.16.30. 03.07.1986.

Hier nun das Maschinen-Programm, welches die Zeit bzw. das

Datum ausliest und formatiert an das BASIC-Programm zurück-
gibt:

;** Uhrzeit formatiert auslesen S.D. **

>* Aufruf mit CALL A (AS) ergibt in A$ *

»*% SS.MM.SS. TT.MM.JJJJ., Uhrzeit und Datum *

run:

cmp #1,4(sp) ‚ein Parameter?

bne quit ‚nein => Abbruch

move.l 6(sp),a5 ‚Zeiger auf Parameterliste

move. lt (a5),a5 ‚Zeiger auf String

go:

move #$2c,-(sp)

trap #1 ;get_time-Funktion des BIOS

430 ATARI ST Floppy und Harddisk_

addq.l #2,sp

and. #Sf fff ,d0 ‚untere Wort ausblenden

move d0,d1

isr #8, d1

lsr #3,d1 ‚Stunden

bsr set2b ‚Stunden setzen

move. dO,di

Isr #5,d1

and #%111111,d1

bsr set2b ‚Minuten setzen

move. dO,di

isl #1,d1 ‚Sekunden *2

and #53 f,d1 ‚und ausblenden

bsr set2b ‚Sekunden setzen

move.b #! ',(a5)+ ‚Trenn-Blank setzen

move #$2a,-(Sp)

trap #1 ;get_date-Funktion des BIOS

addq.l| #2,sp

and. l #3 f fff ,d0 untere Wort ausblenden

move.l d0,d1

and #411111,d1 :Tag ausblenden

bsr set2b ‚Tag setzen

move. d0,d1

(sr #5,d1

and . #%11111,d1 ‚Monat ausblenden

bsr set2b ‚Monat setzen

move.t d0,d1

lsr #8 ,d1

lsr #1,d1

and #%~1111111,d1 ‚Jahr ausblenden

Maschinen-Hilfsprogramme für BASIC 431

add #80, d1 korrigieren

move.b #'1',(a5)+

move.b #'9'! (a5)+ »1900 vorbereiten

bsr set2b ‚Jahr setzen

quit:

rts ‚fertig!

set2b: ;D1 mit zwei Zeichen ausgeben

divu #10,d1

add. l #$300030,d1 sASCII-Wert korrigieren

move.b d1,(a5)+ sHI-Nibble

swap d1

move.b di,(a5)+ ;LO-Nibble

move.b #'.' (a5)+ ‚Trenn-Punkt setzen

rts

Und nun wieder das dazugehörige BASIC-Programm, welches

das Maschinen-Programm erstellt und gleich eine kleine Anwen-
dungs-Demonstration darstellt:

10 '** GET_TIME-Realisierung S.D. **

20 defdbl s

30 dim a%(200)

40 a=varptr(a%(0))

50 s=0

60 for i=0 to 76 :read a%(1)

70 s=s+ta%(i) :next 1

80 if s<> 399794 then ?"Fehler!":stop

90 t$=space$(20)

100 call a (t$)

110 ? "Heute ist der "; right$(t$,10)

120 ? "Die Zeit : "; left$(t$,8)

990 '** Daten für GETTIME **
1000 data &HOC6F, 1,4, &H6600, &H7A, &H2A6F , 6, &H2A55
1010 data &H3F3C, &H2C,&H4E41, &H548F, &H280, 0, &HFFFF, &H3200

432 ATARI ST Floppy und Harddisk

1020 data &HE049, &HE649, &H6100, &H5E ,&H2200,&HEA4I,&H241,&H3F

1030 data &H6100, &H52, &H2200, &HE349, &H241 , RH3F , &H6100 , &H46

1040 data &H1AFC,&H20, &H3F3C, &H2A, &H4E41 , &HS48F , &H280, 0

1050 data &HFFFF,&H2200,&H241,&H1F,&H6100, &H2A, &H2200, &HEA4I

1060 data &H0241,&H1F,&H6100,&H1E ,&H2200,&HE049, &HE2Z49 , &H241

1070 data &HOO7F,&H641,&H50, &SH1IAFC,&H31, &HIAFC, &H39, &H6100

1080 data 4,&H4E75, &H82FC, &HA, &H681 , &H30, &H30, &H1AC1

1090 data &H4841,&H1AC1,&H1AFC,&H2E , &H4E75

8.3 Die Programmierung des FDC von BASIC aus

Für den ATARI ST gibt es mittlerweile eine Vielzahl an Disk-
monitoren. Leider werden von den uns bekannten nur die
Maschinen-Routinen benutzt, die das Betriebssystem bereitstellt.

Das ist für die meisten Anwendungen zwar ausreichend, wer
aber genau wissen möchte, welche Informationen sonst noch auf
einer Diskette verborgen sind benötigt einige Funktionen, die
nur durch direkte Programmierung des Floppy-Disk-Controllers
zu erreichen sind.

Gemeint sind solche Funktionen wie z.B. die ID-Felder einer

Spur lesen, eine komplette Spur lesen oder eine Spur nach Belie-

ben zu formatieren.

Unser Vorschlag: Schreiben Sie doch einfach einen Disk-Moni-
tor, der solche Möglichkeiten bietet. In BASIC? Ja, warum denn

nicht! Wenn einem die Funktionen des Floppy-Controllers zur

Verfügung stehen, so ist das in BASIC durchaus möglich. Nur -
über das Betriebssystem können diese nicht erreicht werden.

GEMDOS, BIOS und XBIOS helfen hier also nicht weiter.

Um Abhilfe zu schaffen haben wir eine Routinensammlung
erstellt die in ein BASIC-Programm eingebunden werden kann
und alle Kommandos, die der FDC bereitstellt, leicht erreichbar

machen.

Die Zeiten, in denen Sektoren nicht lesbar waren, weil das

Betriebssystem mit ’raffinierten’ ID-Feldern überlistet wurde,
gehören damit der Vergangenheit an. Wenn Sie also vom

Betriebsystem eine Meldung der Form ’Floppy A: antwortet

Maschinen-Hilfsprogramme_für _ BASIC 433

nicht ..." erhalten, können Sie die Diskette auf ’Herz und Nieren’
untersuchen und feststellen weshalb etwas nicht funktionierte.

Natürlich bedarf es einiger Erfahrung, die Ergebnisse, die von
den weniger gebräuchlichen Befehlen des FDC geliefert werden,
zu interpretieren. In dem ausführlichen Kapitel über den

Floppy-Controller WD1772 werden Sie aber alle dazu notwendi-
sen Informationen finden, so daß einer Disketten-
Analyse nichts mehr im Wege steht.

Es gibt aber noch weitere Vorteile, die die Flexibilität unserer

BASIC/FDC-Schnittstelle ausmachen. Es ist jederzeit möglich
die Kommandowörter zu ändern. So sind in diesen immer einige
’Option-Bits’ enthalten, mit denen die Ausführung der einzelnen

Kommandos beeinflußt werden kann. Ferner können - falls
nicht gerade diese Kommandoworte geändert wurden - durch

einen FDC-Aufruf max. alle Sektoren einer Spur, gelesen oder

geschrieben werden. Es ist auch möglich z.B. nur einen Teil
einer Spur zu formatieren. Das kann der Erzeugung eines beson-
deren Kopierschutzes dienlich sein.

Doch eines nach dem anderen. Wir benötigen zunächst einmal
die FDC-Schnittstelle. Die Anwendungsmöglichkeiten werden
dann später noch hinreichend erläutert.

8.3.1 Das BASIC/FDC-Interface-Programm

Beginnen wir mit dem Maschinenprogramm, welches unsere

Schnittstelle zum FDC darstellt.

Um dieses zu erhalten gibt es drei Möglichkeiten:

1. Das Assembler-Source-Listing eingeben (die hier ge-

druckte Version wurde mit dem SEKA-Macro-

Assembler erstellt) und assemblieren.

2. Das BASIC-Listing eingeben und mit RUN starten.

434 ATARI ST Floppy und Harddisk

3. Die Diskette zum Buch bestellen.

Falls Sie sich für die ersten beiden Möglichkeiten entschieden
haben - viel SpaB beim Tippen.

Als erstes nun das Assembler-Listing, welches Aufschluß dar-

über gibt, wie unsere FDC/BASIC-Schnittstelle intern arbeitet.

Wer neben BASIC- auch noch Assembler-Erfahrung besitzt, fin-
det hier alle Routinen, mit denen man dem FDC im allgemeinen
zu Leibe rückt. Durch die Dokumentation dürfte es keine
Schwierigkeit sein, einzelne Routinen auszukoppeln und in eige-

nen Programmen zu verwenden.

Die BASIC-Programmierer - denen dieses Kapitel ja schließlich

gewidmet ist - mögen uns diesen Ausflug in die Welt der
Maschinensprache verzeihen. Da eine direkte Programmierung
des FDC aber auch von allgemeinem Interesse ist, fühlen wir
uns dazu verpflichtet, auch das Assembler-

Listing zu offenbaren.

Wen also nur das fertige Programm interessiert bzw. nur über
ST-BASIC verfügt, der möge bitte den folgenden Teil über-
springen und mit dem BASIC-Lader ’FDCCREAT.BAS’, durch
welchen das Maschinenprogramm erzeugt wird, fortfahren.

KEKE ICE TITTEN

Krk LISTING => FDCINTER.S KArK
KHAKI ERECT

eKKKKKKEKEAKKEKEEKREKERREEKKEEEEKEKEEEEREKKEEEEEEKEEEEREEERKERRERKERKEE
a

Fiese hekehe; FDC/BASIC-SCHNITTSTELLE HHKRKKKK

A HKAKKKKEEKEKEKEKEEKEEEKEEEEKEEREKEEEEREEKKEEREREREEKEEKREKRKEKRRRKEKE
,

;Hardware-Register

dmamode = $ff8606

dmascnt = $ff8604

dmalow = $ff860d

dmamid = $ff860b

dmahigh = $ff8609

Maschinen-Hilfsprogramme fiir BASIC 435

giselect

giwrite

mfp

$f f8800

$f f8802

$fffa01

:Steuerworte für den DMA-Controller (DMA-Datenrichtung => READ)

sremd

srtrk =

srsec =

srdat =

srent

$80 ;

$82 ;

$84 ;

$86 ;

$90 >

Command-Register selektieren

Track-Register selektieren

Sector-Register selektieren

Data-Register selektieren

DMA-Sectorcount-Register selektieren

»Steuerworte für den DMA-Controller (DMA-Datenrichtung => WRITE)

swemd

swtrk

swsec

swdat

swent

$180 ; Bedeutung wie bei => READ

$182

$184

$186

$190

KRRKRKHKTTH KT TITTEN TRENNT TU

even

st:

bra.s run ; zum Programm-Start

SKRKKKKKTTKTTTTTTTTTENIC - KERN ET ; Kommando -Worte

rest: dc

see: de

stp: de.

stpi: dc

stpo: dc.

rsec: dc.

wsec: dc

radr: dc.

rtrk: dc.

wtrk: dc.

forc: dc.

-wW $01

.w $11

w $31

~w $51

w $71

w $90

-w $b0

w $c0

w $e0

w $f0

w $d0

.
‘

s

s

.
‘

Restore MO, 3ms Step-Rate

Seek MO, 3ms Step-Rate

Step MO, 3ms Step-Rate, Update Trackreg.

Step-in MO, 3ms Step-Rate, Update Trackreg.

Step-out MO, 3ms Step-Rate, Update Trackreg.

Read-Sector MO, multiple

Write-Sector MO, multiple, Write-Precompensation

Read-Address MO,

Read-Track MO,

Write-Track MO, Write-Precompensation

Force- Interrupt

436 ATARI ST Floppy und Harddisk

ERKENNE Übergabe-Parameter KAKKKKKKKEKKKKKKKKTCKCKTII

prm: dc.w 00 ; Funktions-Nummer

dc.w 00 ; Laufwerks-Nummer

dc.w 00 ; Spur-Nummer

dc.w 00 ; Sektor-Nummer

dc.w 00 ; Anzahl zu übertragender Bytes

dc.w 00 ; Anzahl zu lesender ID-Felder

dc.w 00 ; FDC-Status

dc.w 00 ; DMA-Status

dc.w 00 ; Timeout? (1=timeout)

dc.w 00 ; Anzahl der übertragenen Bytes

dc.l 00 ; DMA-Start-Adresse

dc.l 00 ; DMA-End-Adresse

dc.l 00 ; Adresse des Spur-Puffers

dc.l 00 ; Adresse des Sektor-Puffers

dc.l 00 ; Adresse des ID-Puffers

dc.! 00 ; Adresse des ID-Status-Puffers

=e

=
a

no
.

=

2 RKKKKHKRKEKAREREE H 1 er geht | sr 1 cht 1 g los kkkkkkhkkkkkekkkeak

run:

tst.w 4(sp) ; wurden Parameter übergeben?

bne exit ; ja, zurück zum BASIC

‚Da nur die Quelle PC-relativ adressiert werden darf, nehmen wir

;A3 als Programm-Zähler.

lea st(pc),a3 * Programm-Start ins Adress-Reg.3

movem.| dO-d7/a0-a6,savreg-st(a3) ; Register retten

RR Set Supervisor-Mode KRKKKKKKKEKRKKKKHHTH TI KICK

clr.l -(sp) ; Userstack => Superv.Stack

move.w #820, -(sp) ; Command => Super

trap #1

addq.| #6,sp ; Stack korrigieren

move. dO,savstack-st(a3) ; alten Stackpointer retten

2s*kk einige Flags löschen und absolute Adresse der gewünschten ***

-*k* Funktion berechnen. ***

Maschinen-Hilfsprogrammıe_für BASIC 437

lea prm-st(a3),a5

move.w #1,$43e

move.w #0,16(a5)

move.w #0,dma-st(a3)

move.w #0, vbl flag-st(a3)

move.w 0(a5),d0

and.l #$0f,dO

lsl.l #2,d0

lea functab-st(a3),a4

move.l 0¢a4,d0),d0
=
e

o
m

|
m
e

=
e

m
e

=
e

m
.

™
e

Zeiger auf Parameter-Block

Floppy-VBL sperren

Timeout-Flag löschen

DMA-Flag löschen

VBL-Rücksetzflag löschen

Funktionsnr. holen

es gibt nur 16 Funktionen (0-15)

mal 4 = functab-Offset

- func-Table-Adresse

Relative Start-Adresse der Routine
=
.

jsr 0(a3,d0) +Programmstart=abs. Adr.

=
e

tst.w vblflag-st(a3)

beq letoff ; nein

move.w #0,$43e

» VBL einschal. (nach deselektieren)?

=

einschalten -
 a

letoff:

2 EHKKKKKEKKEKRERERR ER zurück in den User -Mode KEKKKKKKKKKKK KHK

move.l savstack-st(a3),d0 ; alten Stackpointer zurückholen

move.l d0,-(a7)

move.w #$20, -(sp)

trap #1

addq.l #6,sp

; alten Stackpointer Ubergeben

Command => Super m
.

; Stack korrigieren

movem.| savreg-st(a3),d0-d7/a0-a6 ; Register zurückholen

exit:

rts ‚ zurück zum BASIC

; Das war's! Es folgen (nur). noch die eigentlichen Routinen

KKKKKKKKKKKAKKKTK KICK CK IK KRRKKKKKKKKKKKKTICTC TITTEN U ; Restore FDC

438 ATARI ST Floppy und Harddisk

restore:

move.w #srcmd, dmamode

move.w rest-st(a3),d’

bsr wrt1772

bsr fdcwait

rts

‘

Command-Reg. selektieren

Command => Restore

Kommando übergeben

- Warten, bis FDC fertig

a KEKKKEKKKERKEREKEEEEEEE KEKKKKKKKKKEKKKKTH KK KT KKK : SEEK TRACK

seek:

move.w #srdat , dmamode

move.w 4(a5),d7

bsr wrt1772

move.w #srcmd, dmamode

move.w see-st(a3),d7

bsr wrt1772

bsr fdcwait

rts

m
s

=
s

ns
.

n
n

=
=

m
.

n
s
 Daten-Reg. selektieren

Tracknr. in d?

Tracknr. schreiben

Command-Reg. selektieren

Command => Seek

Command schreiben

Warten, bis FDC fertig

SKRTKKKKKKTTKTTC TITTEN NK Step KEUKKKKKKKHKK TH KT TC TI TITTEN ET NK
'

step:

move.w #srcmd, dmamode

move.w stp-st(a3),d7

bsr wrt1772

bsr fdcwait

rts

s RERKREREREREREREREREREEREE Step in

stepin:

move.w #srcmd, dmamode

move.w stpi-st(a3),d’

bsr wrt1772

bsr fdcwait

FDC-Commandreg. selektieren

Command => Step

Command schreiben

warten, bis FDC fertig

KRRKKRKHTKTTKTTTTT TITTEN IC

FDC-Commandreg. selektieren

Command => Step in

Command schreiben

warten, bis FDC fertig

Maschinen-Hilfsprogramme fiir BASIC 439

rts

u EKER EREEAKKEK Step out KERIKERI

stepout:

move.w #srcmd, dmamode » FDC-Commandreg. selektieren

move.w stpo-st(a3),d’ ; Command => Step out

bsr wrt1772 » Command schreiben

bsr fdcwait ; warten, bis FDC fertig

rts

aKKKKKKKKKKKKK KK KK KK kkk KKK KKK kk RK

? ** Force Interrupt ** aK IK

Force:

move.w forc-st(a3),d’ : Command => Force Interrupt

bsr wrt1772 » Command schreiben

move.w #$100,d7 : Verzögerungsschleife

wtfre:

dbra d/7,wtfre

rts

2 2 772272 77777232 127272720212 127772770 HIKARI RIKKI KEK ENTE 12 277720212777 F READ SECTOR(S)

readsector:

move.t 32(a5),d7

bsr setdma

DMA-Adresse auf Sektor-Buffer

=
e

DMA-Flag setzen

DMA-R/W toggeln

move.w #1,dma-st(a3)

move.w #srcnt,dmamode

move.w #swent , dmamode

move.w #srcnt,dmamode

m
e

=
a

* DMA-Sectorcount selektieren

=

move.w #$0c,d7 : mit 12 laden (entspricht 6kB)

bsr wrt1772 » DMA-Scnt laden

move.w #srsec , dnamode ; Sector-Reg. selektieren

move.w 6(a5),d/7/ : Sektor-Nr. in d?

bsr wrt1772 : Sektor-Nr. schreiben

440 ATARI ST Floppy und Harddisk

move.w #srcmd, dmamode ; Command-Reg. selektieren

move.w rsec-st(a3),d/ ; Command => Read multiple Sectors

bsr wrt1772 ; Command schreiben

bsr fdcwait ; warten, bis FDC fertig

bsr readstat ; Status und Anzahl der Bytes lesen

rts

a KREKEEEKEEREEKKEKKEKKEKE KRAEKKKKEKKKKRKKK KKK KK ; Read Address

readaddress:

move.l 40(a5),a4 Adresse des Statusbuffers laden

move.| 36(a5),d7 : DMA-Adresse auf ID-Feld-Buffer

bsr setdma

move.w #srent ‚dmamode

move.w #swent , dmamode

m
u

DMA-R/W toggeln =
e

move.w #srcnt ,dmamode :; DMA-Sectorcount selektieren

move.w #501,d7 > mit 1 laden (entspricht 512 Byte)

bsr wrt1772

move.w #srcmd, dmamode > FDC-Commandreg. selektieren

move.w 10(a5),d4 ; #1D-Felder in D4

and.w #$7f,d4 ‚ aber nur max. 128

idloop:

move.w radr-st(a3),d7 ; Command => Read Address

bsr wrt1772 ; Command schreiben

bsr fdcwait ; warten, bis FDC fertig

move.b dO, (a4)+ : Status in Buffer retten

tst.w 16(a5)

dbne d4, idloop

bsr readstat

rts

; Timeout?

‚ nein, nächstes ID-Feld lesen

Status und Anzahl der Bytes lesen m
e

2 KKK AKIRA 32 1777723277702 77 KAKI IKI AKIRA EIR RIA IIA ION ; READ TRACK

readtrack:

move.l 28(a5),d7 » DMA-Adresse auf Track-Buffer

bsr setdma

Maschinen-Hilfsprogramme fiir BASIC 441

move.w #1,dma-st(a3)

move.w #srent ‚dmamode

move.w #swent ‚dmamode

move.w #srcnt,dmamode

move.w #$0e,d/7

bsr wrt1772

move.w #srcmd, dmamode

move.w rtrk-st(a3),d7

bsr wrt1772

bsr fdcwait

bsr readstat

rts

a KEKE KE
'

writesector:

move.l 32(a5),d7

bsr setdma

move.w #1,dma-st(a3)

move.w #swent , dmamode

move.w #srcnt,dmamode

move.w #swent , dmamode

move.w #50c,d/

bsr wrt1772

move.w #swsec, dmamode

move.w 6(a5),d’

bsr wrt1772

move.w #swemd, dmamode

move.w wsec-st(a3),d7

bsr wrt1772

fdcwait

readstat

bsr

bsr

rts

=
e

m
s

=
e

m
a

=
a

DMA-Flag setzen

DMA-R/W toggeln

DMA-Sectorcount selektieren

mit 14 laden (entspricht 7kB)

Command-Reg. selektieren

Command => Read Track

Command schreiben

warten, bis FOC fertig

Status und Anzahl der Bytes lesen

WRITE SECTOR(S) REKKKEKKKKKKKKKK RE
o
e

|
=
s

=
e

=
e

=
e

=
e

=
s

=
e

=
e

=
p

m
e

m
e

w
e

DMA-Adresse auf Sektor-Buffer

DMA-Flag setzen

DMA-R/W toggeln

DMA-Sectorcount selektieren

mit 12 laden (entspricht 6kB)

DMA-Scnt schreiben

Sector-Reg. selektieren

Sektornr. in d?

Sektor-Reg. schreiben

Command-Reg. selektieren

Command => Write multiple Sectors

Command schreiben

warten bis FDC fertig

Status und Anzahl der Bytes lesen

IE TE 277727127212 12127232 1257723272727 BZ 1222 12127212 322722 37 N22 127721277722 12777277 7 ; WRITE TRACK

writetrack:

442 ATARI ST Floppy und Harddisk

move. 28(a5),d’

bsr setdma

move.w #1,dma-st(a3)

move.w #swent , dmamode

move.w #srcnt,dmamode

move.w #swent , dmamode

move.w #$0e,d/

bsr wrt1772

move.w #swemd, dmamode

move.w wtrk-st(a3),d7

bsr wrt1772

bsr fdcwait

bsr readstat

rts

: DMA-Adresse auf Track-Buffer

; DMA-Flag setzen

: DMA-R/W toggeln

: DMA-Sectorcount selektieren

; mit 14 laden (entspricht 7kB)

DMA-Scnt schreiben

Command-Reg. selektieren

Command => Write Track

Command schreiben

warten, bis FDC fertig

Status und Anzahl der Bytes lesen a

=
e

=
.

=
e

=
e

=
e

AKKKKKKERAKEEREEEREKRREREKREREKEEERREKERRERERRERKRERERERARRERRERERRREERER
'

a HHKKKEKEKKECKEKEEKEKEEEEERERE EERE KERR RTREEREEERRRRREKE
1

;Das waren die Routinen, Uber welche die Kommandos des WD1772

‚angesprochen werden.

‚Es folgen nun weitere Unter-Routinen, die zum Teil von den

‚Haupt-Routinen und zum Teil direkt vom BASIC aus (z.B. setdrive)

‚aufgerufen werden.

er Sector-Register

rsecreg:

move.w #srsec , dmamode

bsr read1772

and.w #$ff,dO

move.w d0,6(a5)

move.w #srcmd, dmamode

rts

lesen KkkkkaKKKKKK KKK KE

Sektor-Reg. selektieren

und lesen

nur unteres Bytes

ins FDC-Array

Command-Reg. selektieren

=
e

m
e

n
o

m
e

u
s

IKT Track-Register lesen KkKKKKKKKKK KKK

rtrkreg:

move .W #srtrk,dmamode ; Spur-Reg. selektieren

Maschinen-Hilfsprogramme_für BASIC 443

bsr read1772

and.w #$ff,d0

move.w d0,4(a5)

move.w #srcmd, dmamode

rts

rstareg:

move.w #sremd, dmamode

bsr read1772

and.w #$ff,d0

move.w d0,12(a5)

rts

und lesen

nur unteres Byte

ins FDC-Array

Command-Reg. selektieren

lesen HRKAEKKKEKREKKKRKEEEKKEKEEKE

‘

‘

a

- Status-Reg. selektieren

» und lesen

- Status im unteren Byte

» ins FDC-Array

UT Spur-Reg. schreiben KEKE

wtrkreg:

move.w #srtrk,dmamode

move.w 4(a5),d/7/

and.w #$ff,d7/

bsr wrt1772

move.w #srcmd, dmamode

rts

’

a

8

Spur-Reg. selektieren

Spur-Nr. holen

= und schreiben

» Command-Reg. selektieren

HH Set DMA-Transfer Adresse kkkkRKKKKKKKK KKK

setdma:

move.l d7,20(a5)

move.b d7,dmalow

lsr.l #8,d7

move.b d/7,dmamid

lsr.l #8,d7

move.b d/,dmahigh

move.l 20(a5),d7

clr.lt d6

Start-Adresse in FDC-Array retten

erst das Low-Byte

dann das Mid-Byte

und zuletzt das High-Byte schreiben

Start-Adresse zurückholen

444 ATARI ST Floppy und Harddisk

move.w 8(a5),d6

add.l d6,d7/

move.l d7,24(a5)

; Anzahl der zu Ubertr. Bytes

: beides Addieren

; = erwartete Endadresse

rts

;**%* DMA-Status lesen; Anzahl der übertragenen Bytes errechnen ***

readstat:

move.w dmamode, dO ; DMA-Status lesen

and.w #357,d0 ; nur die unteren 3 Bit nehmen

move.w d0,14(a5) ; und nach fdcout

clr.t di

move.b dmahigh,d1

isl.l #8,d1

move.b dmamid,d1

Isl.l #8,d1

move.b dmalow,d1

» DMA-Endadresse lesen

move. | d1,24(a5) ; End-Adresse ins Array

sub.l 20(a5),di ; End-Adr. minus Start-Adr.

move.w d1,18(a5) ‚ =Anzahl der Bytes

rts

2 RTTTTTTTITN FDC-Register schreiben Kkkkkkkhkkk kkk

wrt1772:

bsr wait

move.w d7,dmascnt » FDC-Reg. bzw. DMA-Sectorcount

bsr wait

rts

RITTER FDC-Register lesen KkKKKKKKKKKKKKKKKK KK

read1772:

bsr wait

move.w dmascnt,d0 : FDC-Reg. bzw. DMA-Sectorcount lesen

Maschinen-Hilfsprogramme ftir BASIC 445

bsr wait

rts

KRITIK Warten, bis FDC fertig KREKKRUKKKEKKKTTTKKCHK

fdcwait:

move.l #$180,d5

Litlwt:

dbra d5,litlwt

move.l #%40000,d5

cmp.w #$9,0(a5)

bne readmfp

move.l #$28000,d5

readmfp:

btst #5,mfp

beq fdcready

~subq.l #1,d5

beq timeout

tst.w dma-st(a3)

beq readmfp

move.b dmahigh, temp+1-st(a3)

move.b dmamid, tempt2-st(a3)

move.b dmalow, temp+3-st(a3)

move.| temp-st(a3),d/

cmp.l 24(a5),d7

blt readmfp

bsr force

move.w #0,dma-st(a3)

bra fdcready

timeout:

a

U

etwas warten, bis Busy gesetzt

d5 als Timeout-Zähler

READ - ADDRESS - Kommando?

ja, kürzerer Timeout

» ist das Kommando beendet?

ja

nein, Timeout-Zähler dekrementieren

falls abgelaufen

Kommando mit Datenübertragung?

» nein, weiter testen

- ist die erwartete DMA-Endadresse

= schon erreicht?

nein, weiter testen

wenn ja, dann Kommando abbrechen

dma-Flag löschen

und Routine normal beenden

446 ATARI ST Floppy und Harddisk

Status vor dem Abruch lesen

oberes Byte ausblenden

und ins Array

move.w dmascnt,d0

and.w #$ff,d0

move.w d0,12(a5)

m
e

m
e

m
.

=
.

=
e

bsr force Kommando abbrechen

move.w #1,16(a5) Timeoutflag setzen

rts

fdcready:

move.w dmascnt,d0 ; Status lesen .

and.w #5ff,d0 : oberes Byte ausblenden

move.w dQ, 12(a5) ‚ und ins FDC-Array

rts

RR warten, bis Motor ausgeschaltet kKkkkkkkkkkhkkkkkkk

motoroff:

move.w #srcmd, dmamode ; Statusreg. selektieren

test:

bsr read1772 ‚ und lesen

btst #7,d0 ; Motor-on gesetzt?

bne test ; ja, weiter warten

rts

eK Wait KkKkkkkkkkkkkhkhkkkkkkekkkhkhk kkk kee
f

wait:

move.w sr,-(a/) ; Status retten

move.w #$20,d5 ‚ d5 als Zähler

wt2:

dbf d5,wt2

move.w (a7)+,sr ; Status zurückholen

rts

eKREKKHREREARERERR Laufwerk & Seite selektieren REKKKKKEKKKKKKKK

setdrive:

Maschinen-Hilfsprogramme für BASIC 447

clr.l d7

move.w 2(a5),d7/7

bne set

bsr motoroff

move.w #1,vblflag-st(a3)

set:

eor.b #7,d/

and.b #7,d7

move.w sr,-(a/)

w
i
:

m
e

Drive-Nr.holen

falls 0, erst desel. wenn Motor aus

VBL-Rücksetzflag setzen

Bits für Hardware invertieren

nur die 3 Low-Bits beeinflussen

Status retten

-
n

m
.

=
e

n
s

or.w #%700,sr

move.b #$e,giselect

move.b giselect,d0

and.b #$f8,d0

or.b d0,d7

move.b d/,giwrite

move.w (a7)+,sr

rts

Interrupts ausschalten

> Port A des Sound-Chips selektieren

Port A lesen

Bits 0-2 löschen

neue Bits setzen

und auf Port A schreiben

restore Status

=
e

=

=
no

.
=
a

m
e

KKK TI TITTEN
f

AKAIKE 7 KKEKKKKKKKKKKEKKKK KEK : Variablen und Tabellen
KKK KKKAKKHEKEAAKHKEKEEKERAEKCEEEEECKRKEEKEKEKEEEKKEEREERREKKEKEEKKEKKRK KKK
,

even

savreg: blk.l 16,0

savprm: dc.l 0

savstack: dc.l 0

vbl flag: dc.w 0

dma: dc.w 0

temp: dc.l 0

functab: dc.l restore-st,seek-st

dc.l step-st,stepin-st

dc.| stepout-st,readsector-st

de.| writesector-st,readtrack-st

dc.| writetrack-st,readaddress-st

dc.|l force-st,setdrive-st

dc.l rsecreg-st,rtrkreg-st

dc. rstareg-st,wtrkreg-st

448 ATARI ST Floppy und Harddisk

even

KAKKKKKKKKKKKKKETKICK KT A KK KK ENDE KEKE
'

Doch kommen wir nun zum Listing des BASIC-Programms
"FDCCREAT.BAS’. Durch dieses Programm wird das File
’FDCINTER.IMG’ erzeugt, welches später in ein BASIC-Pro-

gramm eingebunden werden kann. Das funktioniert natürlich
nicht nur mit dem ST-BASIC, sondern auch (oder gerade des-

halb?!) mit einem ’vernünftigen’ BASIC (z.B. GfA-BASIC).

KKK ERE RAKE CT KT KT KT KT KK KK KT KK N KA KA KU

Krk Krk

KRRK LISTING => FDCCREAT.BAS RRR
kik kK

KEKRKEKREKCEEKEREEREEKEKEKREREKEREEREREAEKKKEEKREEEREKKEEEKRKKKEEE

10 CKREKKKKKKKKKKKK FDCCREAT.BAS A.S. KeEEKKKKKKKK KEK

15 !

20 ?:fullw 2:clearw 2:gotoxy 0,0

25 ? "File >> fdcinter.img << wird erzeugt":2?:7:?

30 dim c%(688):cs#=0

35 for 1=0 to 688

40 read a$:c%(1)=val ("&H"+a$)

45 check#=check#+(c%(i))

50 next i

55 if check#= 2458472.96 then 70
60 ?"Geht leider noch nicht, da etwas mit den DATAs nicht stimmt."

65 goto 80

70 bsave "fdcinter.img",varptr(c%(0)), 1378

75 ? "Das Programm >> fdcinter.img << ist nun geschrieben."

80 ?:?:?7:?"Bitte Taste drucken": a=inp(2):end

85 !

90 IRAK DATAS für fdcinter.img *******xx

95 !

100 DATA 6042,0001,0011,0031,0051,0071,0090, 00B0

Maschinen-Hilfsprogrammıe für BASIC 449

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

00C0,00E0,00F0,0000,0000,0000,0000,0000
0000,0000,,0000,0000,0000,0000,0000,0000
0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000
0000, 0000, 4A6F ‚0004 ‚6600 ,0074 ,47FA,FFB2
48EB, 7FFF,04D2,42A7, 3F3C, 0020, 4E41, 5C8F
2740, 0516, 4BEB, 0018, 33FC, 0001, 0000, 043E
3B7C, 0000, 0010,377C, 0000, 051C,377C, 0000
051A,302D ‚0000, 0280, 0000, OOOF ,E588, 49EB
0522, 2034, 0800, 4EB3, 0800, 4A6B, 051A, 6700
000A, 33FC, 0000, 0000, 043E, 202B, 0516, 2F00
3F3C,0020,4E41,5C8F,4CEB, 7FFF,04D2,4E75
33FC, 0080, OOFF ‚8606 ‚3E2B ,0002,6100 ,02EA
6100,0306,4E75 ,33FC ‚0086, 00FF ‚8606 ‚3E2D
0004 ,6100,0204 ,33FC ‚0080 ,00FF ‚8606 ,3E2B
0004 ,6100,02C4,6100,02E0,4E75,33FC, 0080
OOFF ‚8606 ‚3E2B ,0006,6100 ,02AE ‚6100 ,02CA
4E75 ,33FC, 0080, OOFF, 8606, 3E2B ,0008,6100
0298, 6100, 0284, 4E75, 33FC, 0080, OOFF, 8606
3E2B, 000A, 6100, 0282, 6100, 029E , 4E75, 3E2B
0016,6100, 0274, 3E3C,0100,51CF, FFFE,4E75
2E2D ,0020,6100,0202,377C,0001,051C,33FC
0090, OOFF , 8606, 33FC, 0190, OOFF , 8606, 33FC
0090, OOFF , 8606, 3E3C, 000C, 6100, 023C, 33FC
0084, OOFF , 8606, 3E2D ,0006, 6100, 022C, 33FC
0080, OOFF , 8606, 3E2B, 000C 6100, 021C, 6100
0238, 6100, 01E0, 4E75, 286D , 0028, 2E2D ‚0024
6100, 01A6,33FC, 0090, OFF, 8606, 33FC, 0190
OOFF, 8606, 33FC, 0090, OOFF ,8606, 3E3C, 0001
6100, 01E6,33FC, 0080, OFF, 8606, 382D , O00A
0244, 007F ,3E2B,0010,6100,01CE,6100, 01EA
18C0, 4A6D ,0010,56CC, FFEC, 6100, 0188, 4E75
2E2D ,001C, 6100, 0152,377C, 0001, 051C, 33FC
0090, OOFF, 8606, 33FC,0190, OOFF , 8606, 33FC
0090, OOFF ‚8606 ,3E3C ‚000E ,6100,018C, 33FC
0080, OOFF , 8606, 3E2B,0012,6100,017C, 6100
0198, 6100,0140,4E75, 2E2D ,0020,6100, 010A
377C , 0001 ,051C,33FC, 0190, OOFF ‚8606 ,33FC
0090, OOFF , 8606, 33FC, 0190, OOFF , 8606, 3E3C
000C,6100,0144, 33FC, 0184, OOFF , 8606, 3E2D
0006,6100,0134,33FC,0180, OOFF, 8606, 3E2B

450 ATARI ST Floppy und Harddisk

141 DATA O00E,6100,0124,6100,0140,6100, 00E8,4E75
142 DATA 2E2D,001C, 6100, 00B2,377C, 0001, 051C,33FC
143 DATA 0190, 00FF ,8606,33FC,0090, OOFF ,8606,33FC
144 DATA 0190, 00FF, 8606, 3E3C, 000E, 6100, 00EC, 33FC
145 DATA 0180, 00FF, 8606, 3E2B,0014,6100,00DC, 6100
146 DATA O0F8,6100, 00A0, 4E75, 33FC, 0084, OOFF , 8606
147 DATA 6100, 00D6, 0240, OOFF,3B40,0006,33FC, 0080
148 DATA OOFF, 8606, 4E75, 33FC, 0082, OOFF , 8606, 6100
149 DATA 00B8, 0240, 00FF,3B40,0004,33FC, 0080, OOFF
150 DATA 8606,4E75,33FC, 0080, OOFF,8606,6100, 009A
151 DATA 0240, 00FF,3B40, 000C, 4E75, 33FC, 0082, OOFF
152 DATA 8606, 3E2D, 0004, 0247, OOFF ,6100,006C,33FC
153 DATA 0080, 00FF, 8606, 4E75, 2B47,0014, 13C7, FFFF
154 DATA 860D,E08F, 13C7, FEFF,860B,E08F, 13C7, FFFF
155 DATA 8609, 2E2D ,0014, 4286, 3C2D , 0008 ,DE86, 2B47
156 DATA 0018,4E75 , 3039, OOFF, 8606, 0240, 0007, 3B40
157 DATA OO0E, 4281, 1239, FFFF, 8609, £189, 1239, FFEF
158 DATA 860B,E189, 1239, FFFF, 860D , 2B41,0018, 92AD
159 DATA 0014,3B41,0012, 4E75, 6100, 00CA,33C7, OOFF
160 DATA 8604,6100,00C0,4E75, 6100, 00BA, 3039, OOFF
161 DATA 8604,6100, 0080, 4E75, 2A3C,0000,0180,51CD
162 DATA FFFE,2A3C, 0004, 0000, 0C6D , 0009, 0000, 6600
163 DATA 0008, 2A3C, 0002, 8000, 0839, 0005, OOFF, FAO’
164 DATA 6700,005C,5385,6700, 003C, 4A6B,051C, 6700
165 DATA FFE8, 1779, FEFF, 8609, 051F, 1779, FFEF, 8608
166 DATA 0520, 1779, FFFF,860D, 0521, 2E2B,051E, BEAD
167 DATA 0018, 6D00, FFC4,6100, FD06,377C,0000,051C
168 DATA 6000,001C, 3039, OOFF,8604,0240, OFF, 3B40
169 DATA 000C,6100, FCEA, 3B7C, 0001, 0010, 4E75, 3039
170 DATA OOFF,8604, 0240, OOFF, 3B40, 000C,4E75, 33FC
171 DATA 0080, OOFF, 8606, 6100, FF50, 0800, 0007, 6600
172 DATA FFF6,4E75,40E7, 3A3C, 0020,51CD, FFFE, 46DF
173 DATA 4E75, 4287, 3E2D ,0002, 6600, 000C 6100, FFDO
174 DATA 377C,0001,051A, 0A07, 0007, 0207, 0007, 40E7
175 DATA 007C,0700, 13FC, OOOE, OOFF, 8800, 1039, OOFF
176 DATA 8800,0200,00F8, 8E00, 13C7, OOFF, 8802, 46DF
177 DATA 4E75,0000, 0000, 0000, 0000, 0000, 0000, 0000
178 DATA 0000,0000, 0000, 0000, 0000, 0000, 0000, 0000
179 DATA 0000,0000, 0000, 0000, 0000, 0000, 0000, 0000
180 DATA 0000, 0000, 0000, 0000, 0000, 0000, 0000, 0000

Maschinen-Hilfsprogramme für BASIC 451

181 DATA 0000,0000,0000,0000,0000,0000,0000,0000

182 DATA 0000,0000,00C0,0000,0006,0000,00FC,0000

183 DATA 0112,0000,0128,0000,0150,0000,0248,0000

184 DATA 0200,0000,02A0,0000,01A8,0000,013E ,0000

185 DATA 0492,0000,02E8,0000,0306,0000,0324 , 0000

186 DATA 033A

Falls ihnen bei der Eingabe des Listings keine Fehler unterlau-
fen sind, verfügen nun über das Maschinen-Programm ’FDCIN-
TER.IMG’, welches es ermöglicht, alle FDC-Kommandos (und

noch einiges mehr) aufzurufen.

Wie die Einbindung in ein BASIC-Programm stattfindet, ist den
Kommentaren im ersten Teil des im nächsten Kapitel folgenden
Listings zu entnehmen. Das ist so einfach und unproblematisch,

daß es hier keiner weiteren Erklärung dazu bedarf. Man kann
diesen Teil sogar noch verkürzen. Wenn z.B. nicht alle Informa-

tionen einer Spur gleichzeitig zur Verfügung stehen müssen,
reicht es aus, an den Stellen, wo die Start-Adressen der einzel-

nen Puffer übergeben werden, jeweils die Start-Adresse des sel-

ben Puffers einzutragen.

Die Übergabe der Parameter an ’FDCINTER.IMG’

Bevor nun Demo-Programme folgen, möchten wir Sie umfassend
mit dem Maschinen-Programm vertraut machen. Wir gehen

. davon aus, daß Sie dieses Programm, vielleicht auch nur einzel-

ner Funktionen wegen, in ihre BASIC-Programme integrieren
möchten. Für ein solches Vorhaben ist es zu mühselig, die dazu

nötigen Informationen in irgendwelchen Listings zu suchen. Eine
gute Beschreibung des Maschinen-Programms macht eine solche
Suche überflüssig.

Beginnen wir mit einem Überblick, der darlegt, für welche
Kommandos welche Parameter übergeben werden und fügen
diesem einige Erklärungen an.

452 ATARI ST Floppy und Harddisk

KEKE REREKREREERREKKKKRRRRR KK

*kk Tabelle: "Eingabe-Parameter; Disk-File:EINGABE.GEM ***
HEKEKKEKEAKEEKEKHEEKRERKEAEKEAEATKREREKEKEKKREKERCEKEKKEKKRRRKKK

(1) In FDC%(15) wird die Nummer des ersten zu lesen-
den bzw. des ersten zu schreibenden Sektors einge-

tragen. Beachten Sie dabei bitte, daß sich diese An-
gabe immer auf die Spur bezieht, über der sich der

Schreib/Lese-Kopf momentan befindet. Falls es ihr

Wunsch ist, mit ’logischen’ Sektor-Nummern zu ar-

beiten, so müssen diese zuerst ın absolute

Spur/Sektor-Adressen umgerechnet werden.

(2) Die Anzahl der zu lesenden oder zu schreibenden
Sektoren wird indirekt, über die Angabe der zu

übertragenden Bytes, in FDC%(16) eingetragen. Das
erscheint zunächst etwas umständlich, hat aber den

Vorteil, daß auch Formate mit unterschiedlichen

Sektorgrößen korrekt gelesen oder geschrieben wer-

den können.

Sollen z.B. 5 Sektoren des ATARI-Formats übertra-
gen werden, so trägt man einen Wert von 5*512 in
FDC%(16) ein. Bei einem Format mit einer Sektor-
größe von 256 Bytes würde bei gleicher Anzahl der
Sektoren, 5*256 übergeben. Es ist auch möglich die-
sen "multiplen Sektorzugriff’? bei Formaten, in denen

unterschiedliche Sektorgrößen in einer Spur vor-

kommen, anzuwenden. Wenn z.B bei einem ’Kopier-
schutz-Format’, 4 aufeinanderfolgende Sektoren ge-

lesen werden sollen, deren Sektorgrößen 1024, 512,

256 und 128 Bytes betragen (egal in welcher Rei-

henfolge) so reicht die Übergabe von
’1024+512+256+128’ in FDC%(16). Es ist auch mög-
lich, z.B. nur die Hälfte eines Sektors zu lesen oder

zu schreiben. Die entsprechende Anzahl zu übertra-

gender Bytes braucht nur eingetragen werden.

Maschinen-Hilfsprogramme fiir BASIC 453

8)

(4)

Das gleiche betrifft die Kommandos READ-TRACK
und WRITE- TRACK. Soll durch den Aufruf eine
komplette Spur bearbeitet werden, so übergeben Sie

einen Wert >6300. Mit einem geringeren Wert kann

man erreichen das z.B. nur ein Teil einer Spur for-

matiert wird. Durch mehrfaches Formatieren lassen
sich Besonderheiten ın der Spur erzeugen, die in den
Kreisen der ’Software-Cracker?r den Kommen-
tar:"wieder ein neuer, mieser Trick" hervorrufen.

>>> Sehr wichtig <<< : Werden Daten geschrieben
(WRITE- SECTOR, WRITE-TRACK) muß zu der
Anzahl zu übertragender Bytes, unbedingt 32 ($20)
addiert werden. Der DMA- Controller holt sich
nämlich vorsorglich, um auf die Datenübertragung
vorbereitet zu sein, 32 Byte in seine internen Regi-
ster. So sind z.B. die Daten für zwei Sektoren (2*512
Byte= $400) erst übertragen, wenn die DMA-End-
Adresse gegenüber der DMA-Start-Adresse um $420

erhöht ist.

Die Anzahl der zu lesenden ID-Felder ıst auf 128
begrenzt. Das reicht im allgemeinen aus, um auch

bei den ’merkwürdigsten’ Formaten alle Id-Felder

lesen zu können. In FDC%(17) wird immer die An-
zahl-1 eingetragen. Es müssen mindestens 3 Felder
gelesen werden, bevor durch den DMA-Controller
Daten in den Puffer transferiert werden. Damit die
gesamte ID-Information in den Speicher gebracht
wird, muß der Wert - #ID-Felder*6 - durch 16 teil-
bar sein.

(siehe auch: ’FDC-Kommandobeschreibung: READ-
ADDRESS’)

Die Start-Adressen der Puffer müssen nicht bei je-
dem Aufruf angeben werden. Im allgemeinen ge-

schieht das - wie in unserem Demo-Programm - nur
einmal. Sollen die Informationen von mehreren Spu-

ren gleichzeitig im Speicher gehalten werden, so di-

454 ATARI ST Floppy und Harddisk

mensionieren Sie einfach weitere Arrays, deren
Start-Adresse vor Aufruf übergeben wird. Da bei
den Adressen immer ’Langworte’ übergeben werden,
erreicht man dies sehr einfach durch ’POKE’. Neh-
men wir z.B. einen zweiten Sektor-Puffer, dann sieht

das folgendermaßen aus:

dim sec2%(3200):def seg=0:poke fdc#+56,varptr(sec2

%(0))

Die Ausgabe der Parameter von ’FDCINTER.IMG’

Natürlich erhalten wir von dem Maschinenprogramm zahlreiche
Parameter zurück. Diese haben wir ebenfalls in einer Tabelle

aufgeführt. |

KEKKKKKKTKKTT TI TI TCKTTTTTITETTTK TETTERI CK &T

kk eek

ake Tabelle "AUSGABEPRM." ; Disk-File:AUSGABE.GEM wee

kek . kK

REKEN KR

In dieser Übersicht finden Sie die beiden Array-Elemente
FDC%(14) und FDC%(15), die schon bei der Übergabe Verwen-
dung fanden, wieder. Diese bilden bei der Parameter-Behand-
lung die einzige Ausnahme. Ansonsten sind Ein- und Ausgabe-
Prm. streng voneinander getrennt. D.h.: Die Übergabe-Parameter
werden, außer bei ’Sektor-Register lesen’ und ’Spur-Register

lesen’, in keiner Weise von dem Maschinenprogramm geändert.

Zum FDC-Status [FDC%(18)] empfehlen wir, die erforderlichen
Informationen dem Kapitel "Der FDC-Status nach Kommandos’

zu entnehmen. Natürlich hilft hier auch die allgemeine Beschrei-
bung der FDC-Kommandos weiter.

Der DMA-Status [FDC%(19)] ist leicht zu erklären. Hier sind
nur 3 Bits interessant. Bit 0 ist gesetzt wenn kein Fehler bei dem

Maschinen-Hilfsprogramme fiir BASIC 455

DMA-Transfer auftrat. Bit 1 ist gesetzt wenn der Inhalt des

’Sector-Count-Registers® im DMA-Controller nicht auf 0 her-

untergezählt wurde. Dem DMA-Controller wird über dieses
Register mitgeteilt, welche maximale Anzahl von Daten ab der
Start-Adresse gerechnet übertragen werden dürfen. Um diese

Angabe brauchen Sie sich jedoch nicht zu kiimmern, da diese
Aufgabe der Maschinen-Routine zufällt. Bit 2 ist eine ’Kopie’
des DRQ-Ausgangs des FDC. Nach einem Kommando mit
Daten-Transfer sind, bei fehlerfreier Ausführung, Bit 0 und Bit

1 gesetzt. Sie finden in FDC%(19) also eine °3’. Falls das einmal
nicht der Fall sein sollte, werden Sıe im FDC-Status gleichzeitig
auch das LOST-DATA-Bit gesetzt finden.

Die DMA-Start-Adresse enthält jeweils die Adresse des aktuel-

len Puffers. Nach einem READ-SECTOR-Kommando würde

hier demnach die Start-Adresse des Sektor-Puffers zu finden

sein.

Die DMA-End-Adresse spiegelt den Puffer-Zeiger des DMA-
Controllers wider. Diese Adresse minus der Start-Adresse wird

als Anzahl der übertragen Bytes in FDC%(21) ausgegeben. Der
Interpretation dieser Angaben ist erhöhte Aufmerksamkeit zu

schenken. In Lese-Richtung wird der Zeiger nach Erhalt von 16
($10) Daten-Bytes um diesen Wert erhöht und die Daten-Bytes,
die bis zu diesem Zeitpunkt im DMA-Controller zwischenge-
speichert wurden, in den Puffer transferiert. In Schreib-Rich-
tung werden vor dem Daten-Tranfer 32 ($20) Bytes in diese

. internen Zwischenspeicher geholt und der Puffer-Zeiger um

diesen Wert erhöht. |

Ein Timeout (FDC%(20)=1) dürfte eigentlich selten auftreten, da
die Wartezeit der Maschinen-Routine großzügig bemessen wurde
und der FDC in dieser Zeit schon selbsttätig ein Kommando -

im Fehlerfall - abgebrochen hat. Da der FDC dies erst nach ca.
1,5 s veranlaßt, wurde die Wartezeit für das READ-ADDRESS-

Kommando jedoch kürzer ausgelegt. Der Grund dafür ist fol-
sender: Sie möchten 100 ID-Felder lesen (ob das sinnvoll ist
lassen wir dahingestellt) und übergeben deshalb vor Aufruf des
READ-ADDRESS-Kommandos in FDC%(17) den Wert ’99°. Das

Maschinen-Programm führt das READ-ADDRESS-Kommando

456 ATARI ST Floppy_ und Harddisk

demnach 100 mal aus, bevor es zum BASIC zurückkehrt. Falls

der FDC keine ID-Felder finden sollte (und das 100 mal)
müßten Sie über 2 min. auf diese Rückkehr warten. So etwas

verleitet zum Ausschalten des Rechners und das möchten wir

nicht provozieren. Sollte der FDC nicht in angemessener Zeit ein
ID-Feld lesen können wird er mittels FORCE-INTERRUPT

unterbrochen und das Maschinenprogramm kehrt zum BASIC

zurück.

Die Kommandoworte für den FDC

Ein weiterer Punkt, der unserer FDC-Interface erst richtig uni-
versell macht, wurde bis jetzt nur am Rande erwähnt. Es geht
um die Kommandoworte, die dem FDC übergeben werden. Es

wäre schade, könnte man diese nicht den eigenen Wünschen

entsprechend anpassen. Doch auch diese Möglichkeit haben wir

vorgesehen. Wo sich die Kommando-Worte befinden und mit
welchen Werten sie initialisiert sind zeigt die Übersicht.

RESTORE | FDC%(1) | $01
SEEK | FDC%(2) | $11
STEP | FDC%(3) | $31
STEP-IN | FDC%(4) | $51
STEP-OUT | FDC%(5) | $71
READ-SECTOR | FDC%(6) | $90
WRITE-SECTOR | FDC%(7) | $B0
READ-ADDRESS | FDC%(8) | sco
READ-TRACK | FDC%(9) | $E0
WRITE-TRACK | FDC%C10) | SFO
FORCE-INTERRUPT | FDC%(11) | $D0

Die genaue Bedeutung der ’Option-Bits’ in den Kommando-

Worten, kann in der Kommandobeschreibung des FDC nachge-

Maschinen-Hilfsprogramme fiir BASIC 457

lesen werden. Beachten Sie, das bei READ-SECTOR und

WRITE-SECTOR das m-Bit (für multi-Sektor-Read/Write)
gesetzt ist. Wenn Sie hier Änderungen vornehmen und dieses Bit
dabei löschen, wird nur noch jeweils ein Sektor bearbeitet.

8.3.2 Demo 1 - Alle FDC-Kommandos im Griff

Nach soviel Information zu einer vergleichsweise kleinen
Maschinen-Routine ist es endlich an der Zeit, zu sehen ob sie

auch tatsächlich unseren Ansprüchen gerecht wird.

Wie schon im vorherigen Kapitel erwähnt, besteht dieses Listing
aus zwei Teilen, wobei der erste Teil nur zeigen soll, wie ein-
fach die Einbindung in eigene Programme erfolgt. Wenden wir
uns also dem zweiten Teil zu.

Dieser Teil des Listings ist ein Programm, welches die Aufgabe
hat, in der Praxis zu zeigen, wie die Parameter, vor dem Aufruf

einer Funktion, an die Maschinen-Routine übergeben werden.
Ferner hat es einen echten ’Demo-Charakter’, da es den direkten
Zugriff auf alle Kommandos des FDC erlaubt und im Anschluß
an einem solchen die vollständige Information - vom Status bis

zu den Daten - anzeigt. Sie können also nach Herzenslust mit
dem Floppy-Controller experimentieren. Wenn Fragen irgend-

welcher Art auftauchen - das Kapitel über den FDC enthält mit

Sicherheit die Antwort darauf.

Das Programm besteht in der Hauptsache aus einem ’Info-Bild-
schirm’ der in zwei Teile gegliedert ist:

1. In dem oberen Teil sind 20 Funktionen aufgeführt,

von denen die ersten sechszehn (0-15) jene sind,
welche unsere FDC-Schnittstelle in der Lage ist
auszuführen.

Bevor ein FDC-Kommando (Funktionen 0-10) auf-
gerufen wird, muß zuerst ein Laufwerk selektiert
werden. Dies geschieht über die Funktion 11. Der
Übergabe-Wert dazu ist:

458 ATARI ST Floppy und Harddisk

2 => für Laufwerk A, Seite 0

3 => für Laufwerk A, Seite 1
4 => für Laufwerk B, Seite 0

5 => für Laufwerk B, Seite 1

oder 0 => für deselektieren

Wenn Sie das Programm über Funktion 19 (Ende)
beenden, wird das deselektieren der Laufwerke au-

tomatisch ausgeführt.

Da von einigen Funktionen Daten übertragen wer-
den, wäre es schade, wenn man sich diese nicht an-

schauen könnte. Es wurden deshalb noch die Menü-

punkte 16-18 zugefügt, wodurch ein Betrachten der

Daten ermöglicht wird.

Nebenbei bemerkt; erweitern Sie dieses ’Demo-Pro-

gramm’ doch um die Funktion, die Puffer-Daten än-

dern zu können. Sie besitzen damit einen Disk-Mo-

nitor, der mit ’Features’ aufwartet, die Sie woanders

wahrscheinlich vergeblich suchen.

Der untere Teil des Bildschirms enthält sämtliche
Parameter die an die Unter-Routine bzw. von der
Unter-Routine übergeben werden. Obendrein werden

noch die Start-Adressen aller Puffer angezeigt.

Auf den ersten Blick ist diese ’geballte’ Information
etwas verwirrend und läßt die Aufrufe des Maschi-
nen-Programms komplizierter erscheinen als sie
tatsächlich sind. Wenn Sie die Tabellen der Ein- und
Ausgabe-Parameter zu Rate ziehen und die, für
einen Aufruf relevanten Parameter betrachten, wer-
den Sie erkennen, daß neben der Funktions-Nr. nur

höchstens zwei weitere Parameter - läßt man die
Start-Adressen der Puffer einmal außer acht - über-
geben werden müssen. Für die Hälfte der Funktio-

Maschinen-Hilfsprogramme für BASIC 459

nen reicht sogar die Übergabe der Funktions-Num-
mer vollkommen aus. Einfacher geht es wohl kaum.

Als letzte Programm-Information dazu ist noch zu sagen, daß

die Parameter, die für die einzelnen Funktionen benötigt wer-
den, vom Programm abgefragt werden, wobei die vorherigen
Werte angezeigt werden. Sollen diese nochmals Verwendung fin-
den, so reicht ein Druck auf die ’Return’-Taste dazu aus.

KARKKHKKKEEAKKKEKEKEEKEKEEEREEKRERAEERKEEKEEKEEEEEREEEKEEEERKKKE

kKkKK kkk

ARE Listing: FDCINTER.BAS wir

kk kkk

KEKKEKKEKKEKEKEKEEKKREKEEKEEKREKKEEKKEKKREKKREKKKEKRERKERKEREERKREKE

1000 LHRHKAKKKEAREKEKEEEREERHKEEEEKKKKEERKEEEEREKREKREEREKREEEREEKREEERERRERREKS

1010 '***** FDC-Interface für BASIC (Teil 1) A.S. (7/86) KR
1020 N KKKKKKKKKKTK TRICK TE TEN KT KT TC CT TC TI KK KK KU

1030 !

1040 ' Es gibt nur wenig vorzubereiten, um die FDC-Routinen installieren

1050 ' zu können. Auf jeden Fall benötigen wir etwas Speicher, in den

1060 ' zum einen die Routinen selbst und zum anderen die Daten, welche

1070 ' für die Disketten-Operationen nötig sind, abgelegt werden. Dazu

1080 ' dimensionieren wir ein paar Integer-Arrays und holen uns deren

1090 ' Start-Adressen.

1100 !

~ 1110 dim fdc%(700) :fdc# =varptr(fdc%(0))

1120 dim trk%(3200):trk# =varptr(trk%(0))

1130 dim sec%(2600):sec# =varptr(sec%(0))

1140 dim adr%(768) :adr# =varptr(adr%(0))

1150 dim stat%(64) :stat#=varptr(stat%(0))

1160 !

1170 ' In das fdc%-Array werden die Floppy-Routinen geladen

1180 ! |
1190 bload "fdceinter. img", fdc#

1200 !

1210 * und die Start-Adressen der anderen Arrays eingePOKEt.

1220 '!

460

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520 ?

1530

1540

1550

1560

1570

1580

1590

1600

1610

1620

ATARI ST Floppy und Harddisk

def seg = 0 :' Wir POKEn Langworte

1}

poke fdc#+52,trk# :' Spur-Puffer

poke fdc#+56,sec# :' Sektor-Puffer

poke fdc#+60,adr# :' ID-Feld-Puffer

poke fdc#+64,stat#:' ID-Status-Puffer
i

' Das war schon alles! Wie man nun die einzelnen Funktionen auf-

' ruft, wird im folgenden Teil erklart.
i

LHKAKKKKKEKEKEKKEEEKREKERKKERE KEK EKKEEKRERKEEREERREKEEEKREEKKKKKK KKK

LHKKEKEKEKEEKERKKRERKKKK TEIL 2 KRKKKKKKKKKKKKKTKTTKTK TI KK KK

IKKKKKKKKTKTKK TICKET KT KT TI TI KT TECK US

IDies ist nur ein kleines Demo, welches wir aber dennoch nicht all-

'Zu spartanisch gestalten möchten. Beginnen wir mit einem kleinen

'Menü, das die einzelnen Funktions-Nr. und alle Parameter anzeigt.

'Die Funktionen 0-15 sind die, die von der Maschinen-Routine bear-

'beitet werden, während 16-18 nur zum Betrachten der Puffer dienen.

Diese Funktionen können Sie natürlich weitaus komfortabler gestal-

‘ten. Funktion 19 beendet dieses Demo und deselektiert die Lauf-

'werke.

t

|

fullw 2 : width 255

Menu:

? : clearw 2 : gotoxy 0,0

t

DM wr ewer eee rere eer ener eee Verfügbare Funktionen ------------ us
Oy rT}

2" 0 => Restore 1 => Seek 2 => Step "

2" 3 => Step-in | 4 => Step-out 5 => Read-S!;

?Nector!"

2?" 6 => Write-Sector 7 => Read-Track 8 => Write-";

?"Track"

7" 9 => Read-Address 10=> Force-Interrupt 11=> Select";

?" Drive"

2?" 12=> Sektorreg. lesen 13=> Spurreg. lesen 14=> Status";

?"reg. lesen!

?" 15=> Spur-Reg. schreiben 16=> Spur-Puffer zeigen 17=> Sektor";

Maschinen-Hilfsprogramme ftir BASIC 461

1630 ?"-Puffer zeigen"

1640 2?" 18=> ID-Felder zeigen 19=> Programm beenden":?

1650 !

1660 2M ------ cere errr ere eee Anzeige aller Parameter ----------- Me

1670 2M------------- "

1680 !

1690 ?" Funktion : FDC-Status :$ Spur-Puffer ‚5

1700 ?" Laufwerk : DMA-Status :$ Sektor-Puffer :$"

1710 ?" Spur Timeout :$ ID-Feld-Puffer :$"

1720 ?" Sektor DMA-Start :$ 1D-Feld-Status :$"

1730 ?" #Bytes :$ DMA-Ende :$"

1740 2" #Id's -1 #DMA-Bytes :$"

1750 DM none TEE Ws

1760 ?M------------- "

1770 !

1780 main:

1790
|

1800 gotoxy 06,10 :?right$(" "+str$Cfdcäk(12)),4)

1810 gotoxy 06,11 :?right$l" "+str$(fdc%(13)),4)

1820 gotoxy 06,12 :?right$l" !+str$Cfdc%(14)),4)

1830 gotoxy 06,13 :?right$(" "+str$¢(fdc%(15)),4)

1840 gotoxy 06,14 :?right$c" "+hex$(fdc%(16)),4)

1850 gotoxy 06,15 :?right$(" = "+str$(fdc%(17)),4)

1860 gotoxy 17,10 :?right$c" "'+hex$(fdc%(18)) , 6)

1870 gotoxy 17,11 :?right$¢" "+hex$(fdc%(19)),6)

1880 gotoxy 17,12 :?rightS¢" "+hex$(fdc%(20)),6)

1890 gotoxy 17,13 :?rightS¢" "+hex$(fdc%(22))+hex$(fdc%(23)) , 6)

1900 gotoxy 17,14 :?right$¢" "+hex$(fdc%(24))+hex$(fdc%(25)),6)

1910 gotoxy 17,15 :?right$¢" N+hex$(fdc%(21)),6)

1920 gotoxy 30,10 :?rightS¢" "+hex$(fdc%(26))+hex$(fdc%(27)),6)

1930 gotoxy 30,11 :?right$¢" "+hex$(fdc%(28))+hex$(fdc%(29)) , 6)

1940 gotoxy 30,12 :?right$¢" "+hex$(fdc%(30))+hex$(fdc%(31)),6)

1950 gotoxy 30,13 :?rightS(" "+hex$(fdc%(32))+hex$(fdc%(33)),6)

1960 !

1970 gotoxy 0,17:?spc(220);

1980

1990

2000

2010

key:

gotoxy 1,17:?spc(50)

gotoxy 1,17:input " Welche Funktion"; func$: func=val (func$)

if func<O or func>19 then menu

462 ATARI ST Floppy und Harddisk

2020 func=func+1

2030 if func=20 then fdc%(12)=11: fdce%(13)=O:call fdc#:end

2040 !

2050 if func<17 then 2110

2060 reset

2070 func=func-16:clearw 2:

2080 on func gosub dumptrk,dumpsec,dumpid

2090 openw 2:goto key

2100 !

2110 on func gosub a,b,c,d,e,f,g9,h,i1,j,k,l,m,n,o,p

2120 gotoxy 1,19:?"Funktion ausführen (j/n) ?";

2130 if chr$Cinp(2))<>"j" then main

2140 call fdc#

2150 goto main

2160 ! |
2170 IKKRKKKTKKKTTTT TI TC TC TITTEN TITTEN TI KK KK KR

2180 EHKKKKKHKKKKEKEKEKKKEEEKRREERERREREKRERREKEEREEERERKRAEREEEERREREEREREESE

2190 !

2200 'Es folgen die 16 Funktionen, welche von unserer Maschinen-Routine

2210 'unterstutzt werden. Hier sehen Sie, welche Parameter vor dem Auf-

2220 'ruf "call fdc#" gesetzt werden müssen. In vielen Fällen reicht es

2230 'aus, die Funktionsnr. in fdc%(12) zu übergeben.

2240 !

2250 !

2260 ! RESTORE

2270 a:

2280 fdc%(12)=0

2290 gotoxy 1,17:?"RESTORE - keine Parameter notig";:return:

2300 !

2310 ! SEEK

2320 b:

2330 fdc%(12)=1

2340 gotoxy 1,17:?"SEEK - Welche Spur-Nr.(alt=>";

2350 ?fdck 14);")"; input v$:if len(v$)=0 then return

2360 fdc% 14)=val(v$):return

2370 !

2380 ! STEP

2390 c:

2400 fdc%(12)=2

2410 gotoxy 1,17:?"STEP - keine Parameter nötig";:return

Maschinen-Hilfsprogramme für BASIC 463

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

I

' STEP_IN

d:

fdc%(12)=3

gotoxy 1,17:?"STEP IN - keine Parameter nötig";:return
|

! STEP_OUT
e:

fdce%(12)=4

gotoxy 1,17:?"STEP OUT - keine Parameter nötig";:return

|

! READ_SECTOR(s)
f:

fdc%(12)=5

gotoxy 1,17:?"READ SECTOR - Welcher Startsektor (alt=>";

?fde% 15);")"; input v$:if len(v$)=0 then 2590

fdc%(15)=val (v$)

gotoxy 1,18:?"Anzahl der Bytes (alt=>$":shex$(fdc%(16));")"

input v$:if len(v$)=0 then return

fdc% 16)=val(v$):return

I

' WRITE SECTOR(s)

g:

fdc%(12)=6

gotoxy 1,17:?"WRITE SECTOR - Welcher Startsektor (alt=";

2">" > £dc%(15) 7") "2: input vs: if len(v$)=0 then 2690

fdc%(15)=val (v$)

gotoxy 1,18:?"Anzahl der Bytes (alt=>$":hex$(fdc%(16));")":

input v$:if len¢v$)=0 then return

fdc%(16)=val (v$):return

|

READ_TRACK
h:

fdc%(12)=7

gotoxy 1,17:?"READ TRACK - Anzahl der Bytes (alt=>$";

?hex$(fdc%k 16));")"; input vS:if len¢(v$)=0 then return

fdc% 16)=val(v$):return

! WRITE TRACK

i:

464 ATARI ST Floppy und Harddisk

2820 fdc%(12)=8

2830 gotoxy 1,17:?"WRITE TRACK - Anzahl der Bytes (alt=>$!;

2840 Phex$(fdcä 16));")"; input v$:if len(v$)=0 then return

2850 fdc%(16)=val(v$):return

2860 !

2870 ! READ_ADDRESS
2880 j:

2890 fdc%(12)=9

2900 gotoxy 1,17:?"READ ADDRESS - Anzahl der ID-Felder-1 (alt=>":

2910 ?fdc% 17);"y"; input v$:if len(v$)=0 then return

2920 fdc%(17)=val(v$):return

2930 !

2940 ! FORCE INTERRUPT ===

2950 k:

2960 fdc%(12)=10

2970 gotoxy 1,17:?"FORCE INTERRUPT - keine Parameter nötig";:return

2980 !

2990 ! Laufwerk selektieren

3000 lL:

3010 fdc% 12)=11:gotoxy 1,17

3020 ?"(X=Lfw/Seite) : 2=A/0; 3=A/1; 4=B/0; 5=B/1; O=deselektieren"

3030 gotoxy 1,18:?"Welches Laufwerk (alt=>";fdc%(13);")";

3040 input v$:if len(v$)=0 then return

3050 fdc%(13)=val(v$):return

3060 !

3070 ! Sektor-Register lesen

3080 m:

3090 fdc%(12)=12

3100 gotoxy 1,17:?"SEKTOR-REGISTER LESEN - keine Parameter nötig";

3110 return

3120 !

3130 ! Spur-Register lesen

3140 n:

3150 fdc%(12)=13

3160 gotoxy 1,17:?"SPUR-REGISTER LESEN - keine Parameter nötig";

3170 return

3180 !

3190 ! Status-Register lesen

3200 o:

3210 fdc%(12)=14

Maschinen-Hilfsprogramme fiir BASIC 465

3220 gotoxy 1,17:?"STATUS-REGISTER LESEN - keine Parameter nötig";

3230 return

3240 !

3250 ! Spur-Register schreiben

3260 p:

3270 fdc%(12)=15 .

3280 gotoxy 1,17:?"SPUR-REGISTER SCHREIBEN - Welche Spur-Nr.(alt=>";

3290 ?fdc% 14); "3"; input v$:if len(v$)=0 then return

3300 fdc%(14)=val (v$):return

3310 !
3320 VERKKHKTTHKTTTHTHTT THH T TTHH KTH LCL LLe LLL. KK K K 243

3330 IKKKAKKKKKKKKTHT KK TI IK I KK TI RK KEK

3340 !

3350 'Die folgenden Funktionen (16-18) haben nichts mit der Maschinen-

3360 "Routine zu tun, sondern sollen nur die Puffer-Inhalte auflisten.

3370 !
3380 ! Spur-Puffer anzeigen

3390 dumptrk:

3400 gotoxy 0,0:?"SPUR-PUFFER ZEIGEN (alle Werte=>hex, (w)eiter, ";

3410 ?"(e)nde)":?

3420 ?" PUFFER 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 01234";

3430 ?"56789ABCDEF"

3440 DM wn nen nn ne rer een en Henn u-

5450 2"----------- "

3460 ch$=" "

3470 !

3480 lent=0

3490 for id = 1 to (fdc%(16)+1)-16 step 16

3500 lent=lent+1

3510 id%l1)=id-1:?" +":right$¢("0000"+hex$(1d4(1)),4)7" "3

3520 for by=0 to 15:def seg =id+tby:1d%(1)=peek(trk#- 1)

3530 ?right$("00"+hex$(1d%(1)),2);"" "3

3540 if 1d4(1)=7 or 1d4(1)=10 or 1d%(1)=15 then 1d%(1)=20

3550 mid$(ch$, by+1, 1)=chr$(1d%(1)):next by:?" !!;ch$

3560 !

3570 if lent<10 then 3610

3580 lcnt=0:dum=inp(2)

3590 if chr$(dum)="e! then id=70000:goto 3610

3600 if chr$(dum)<>"w" then 3580

3610 next id

466 ATARI ST Floppy und Harddisk

3620

3630

3640

3650

3660

3670

3680

3690

3700

3710

3720

3730 ?

3740

3750

3760

3770

3780

3790

3800

3810

3820

3830

3840

3850

3860

3870

3880

3890

3900

3910

3920

3930

3940

3950

3960 7

3970

3980

3990

4000

4010

?"Fertig! Bitte Taste drücken...";

dum=inp(2):return
Li

' Sektor-Puffer anzeigen

dumpsec:

Lcnt=0

gotoxy 0,0:?"SEKTOR-PUFFER ZEIGEN (alle Werte=>hex, (w)eiter,":

2?" Ce)nde)":?

2?" PUFFER 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 01234":

2"56789ABCDEF"
au ee ee nn nenne 1

ee | Beer n

i

ch$=ı

for id = 1 to (fdc%(16)+1)-16 step 16
Lent=lent+1

1d4(1)=1d-1:22" 4+"2right$("0000"+hex$(1d%(1)),4);" "3

for by=0 to 15:def seg =id+by:1d%(1)=peek(sec#-1)

Pright$("00"+hex$(id%(1)),2);" ";

if 1d%(1)=7 or 1d4(1)=10 or 1d%(1)=13 then 1d%(1)=20

mid$(ch$, by+1, 1)=chr$(1d%(1)):next by:?" "sch$

||

if lent<10 then 3880

Lent=0:dum=inp(2)

if chrS(dum)="e" then id=70000:goto 3880

if chr$(dum)<>"w" then 3850

next id

?"Fertig! Bitte Taste drücken...";

dum=inp(2):return
I

. ID-Felder anzeigen

dumpid:

gotoxy 0,0:?"ID-FELDER ZEIGEN (alle Werte=>hex, (weiter, (e)nde)"

2:2" PUFFER SPUR SEITE SEKTOR LANGE CRC1 CRC2 FDC-Status"

Lcnt=0

for id = 1 to (fdc%(17)+1)*6 step 6

Lent=lent+1

id% 1)=i1d- 1:2" +"sright$("00"+hex$(1d%(1)),2);" ";

Maschinen-Hilfsprogramme_für BASIC 467

4020 for by=0 to 5:def seg =id+by:id%(1)=peek(adr#-1)

4030 ?right$("00"'+hex$(1d%(1)),2);" "senext by

4040 def seg=id/6+1:id%C1)=peek(stat#-1)

4050 ?" "sright$("00"+hex$(1d%(1)),2)

4060 !

4070 if Lent<9 then 4110

4080 lcnt=0:dum=inp(2)

4090 if chr$(dum)="e" then id=1000:goto 4110

4100 if chr$(dum)<>"w" then 4080

4110 next id

4120 ?"Fertig! Bitte Taste drticken...";

4130 dum=inp(2):return

4140 !

4150 ! ENDE

8.3.3 Demo 2 - Disketten kopieren

Mit dem folgenden kleinen BASIC-Programm möchten wir
Ihnen eine andere Anwendung unserer FDC-Maschinen-Routi-
nen zeigen und damit demonstrieren, wie einfach der direkte
Zugriff auf den Floppy-Controller, von BASIC aus geschehen

kann. Das Ergebnis ist ein Kopierprogramm, mit dem Sie eine

zweiseitige Diskette in ca. <<< 85 Sekunden >>> duplizieren
können!

Der Aufwand, ein solches Programm zu schreiben, ist wirklich

nicht der Rede wert. Die Einschränkung bei diesem Programm
ist allerdings, daß es nur mit zwei Laufwerken funktioniert. Das

liegt darin begründet, daß wir (der Umstände wegen) nicht zu

viele Puffer benutzen wollten. Denn in ST-BASIC darf die
Größe eines Arrays maximal 32-kB betragen.

Das verhindert natürlich ein ’dim sec%(79,2303)’, womit man
Platz für die Hälfte einer doppelseitigen Diskette hätte. Man

könnte das gleiche natürlıch mit ’dim sec1%(2303), sec2%(2303),
.. erreichen, wozu wir aber keine Lust verspürten. Es sollte ja
schließlich ein ’Demo’ entstehen und die Programmierfreude,
Bestehendes noch erheblich zu verbessern, wollten wir ihnen

nicht nehmen.

468 ATARI ST Floppy und Harddisk

Aber sei’s drum. Wir speichern jedenfalls nur die Information
von zwei Spuren (jeweils Vor- und Riickseite) und schreiben

diese auf die gleiche Spur der Ziel-Diskette. Dieser Ablauf

würde, bei Verwendung eines Laufwerks, 80 Diskettenwechsel

zur Folge haben. Das ist natürlich unzumutbar.

Das DESK-TOP benötigt für das Kopieren einer zweiseitigen
Diskette ca.195 Sekunden. Diese Zeit ist damit um 50% höher,

als unser Programm (130 Sek.) für die Erledigung der gleichen
Aufgabe braucht. |

Dieser Wert ist erstaunlich gering, wenn man berücksichtigt, daß
ständig die aktuelle Spur angezeigt wird. In der FDC-Unterrou-
tine besteht ferner ein ’Overhead’, der bei jedem Aufruf durch-
laufen wird (z.B. ein- und ausschalten des SUPERVISOR -
MODE). Letztendlich verschlingt auch das ständige Umselektie-
ren der beiden Laufwerke einige Zeit. Trotz dieser widrigen

Umstände sind 130 sek. doch wirklich akzeptabel.

Ein echtes "Tune Up’ läßt sich erreichen, wenn die, 1m Ver-

gleich zur Kopierzeit, extrem langsamen PRINT-Befehle (Zeile

60, 66, 76 und 82) aus der Kopierschleife entfernt werden. In

diesem Fall bedeutet der Verzicht auf den Anzeige-Komfort,
einen Zeitgewinn von 45 Sekunden! Anders ausgedrückt; die

Kopierzeit beträgt nur noch 85 Sekunden!

In diesem Programm tritt ein Fall ein, der ein Ändern des
Kommando-Wortes, zumindest aber ein Schreiben des Spur-

Registers erforderlich macht.

Beginnen wir im Ablauf des Programms bei Spur-0. Im An-
schluß an das Lesen dieser Spur (Vor- und Rückseite) wird für

Laufwerk A ein STEP-IN ausgeführt. Der Schreib/Lese-Kopf

befindet sich in diesem Laufwerk danach über Spur-1 und auch

das Spur-Register des FDC enthält eine ’1’.

Nun soll die zuvor gelesene Spur-0 auf Laufwerk B geschrieben

werden. Wird an dieser Stelle nicht korrektiv eingegriffen,

geschieht schlicht und ergreifend folgendes:

Maschinen-Hilfsprogramme_für_BASIC 469.

Der FDC wird das WRITE-SECTOR-Kommando mit

’Record-not-found-Error’ abbrechen, da das Spur-Register

auf ’1’ steht, die ID-Felder, als Wert für die Spur-Nr., je-

doch eine °0’ enthalten.

Abhilfe kann hier auf zwei Arten geschaffen werden:

1) Bei dem STEP-IN-Kommando fiir Laufwerk A wird
im Kommandowort das ’u-Bit’ gelöscht, was bedeu-

tet, daß das Spur-Register nicht verändert wird.

2) Nach dem STEP-IN für Laufwerk A, wird das Spur-

Register wieder mit dem vorherigen Wert beschrie-
ben. In unserem Programm könnte das in der Form:

fdc%(12)=15 : fdc%(14)=spur : call fdc#

geschehen.

Wir haben uns für die erste Möglichkeit entschieden. Es muß

allerdings für jeden STEP-IN das Kommando-Wort geändert
werden, da bei Laufwerk B ein Step-IN wieder mit ’Update’

erfolgen muß. Ein Schreiben des Spur-Registers bräuchte nur

einmal zu erfolgen - es wäre aber ein zusätzliches ’call fdc#’
nötig. Die Lösung mit dem Ändern des Kommandowortes ist,
auch wenn sie zweimal ausgeführt werden muß, schneller.

Eine letzte Bemerkung - man kann es nicht oft genug wieder-
holen - zur Anzahl der zu übertragenden Bytes: In Lese-Rich-

tung wird immer die gewünschte Anzahl eingegeben. Für die 9

Sektoren (4 512 Bytes) einer Spur also: 9 * $200 = $1200. Das
sieht ganz logisch aus und würde wohl von jedem so gehand-
habt. In Schreib-Richtung sıeht die Sache etwas anders aus. Die

Anzahl muß hier 9 * $200 + $20 betragen.

KEKE TEE I EU

KARK Listing: FDCCOPY.BAS KARK

KKKKKKKKKKKKKKKKHKK KK KK KK KKK

470 ATARI ST Floppy und Harddisk
v
r

W
h

1xkk* Kopierprogramm für 2 Lfw. und zweiseitige Disketten A.S. ****

IWir brauchen 3 Array's, für das Maschinen-Programm und als Sek-

'tor-Puffer für Spur-0 und Spur-1

dim fdc%(700) ,sec0%(2400) ,sec1%(2400):def seg=0

7 i

8 'Laden des Maschinen-Programms

9 [

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

fdc#=varptr(fdc%(0)):bload "fdcinter. img", fdc#

‘Die Start-Adressen der beiden Puffer holen

|

sec0#=varptr(sec0%(0)):sec1#=varptr(sec1%(0))

ıDie Anzahl zu Ubertragender Bytes (Lesen-$1200,Schreiben-$1220)

'tund die Kommandoworte für STEP-IN (mit und ohne Update)

anzlesen=&H1200::anzschr=&H1220:stpi=&H49:stpiu=&H59

ıwir beginnen in jeder Spur mit Sektor-1 und POKEn Langworte

|

fdc% 15)=1:def seg=0

|

kopieren:

?:fullw 2:clearw 2:gotoxy 0,1

2" Kopier-Programm für zweiseitige Disketten und 2 Laufwerke"

222:7:2" Quell-Diskette in Laufwerk A"

2:2" und Ziel-Diskette in Laufwerk B einlegen."

2:2:2:2" k => kopieren : andere Taste => Programm beenden"

if chr$Cinp(2))<>"k" then end
)

init:

clearw 2:gotoxy 0,2

fdc% 12)=11:fdc% 13)=4:call fdc#

fdc%(12)=0:call fdc#

Maschinen-Hilfsprogramme für BASIC 471

40

41

42

43

44

45

46

47

48

49

20

51

52

53

54

55

56

57

58

>9

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

if fdc%(18) < &HA7 then goto kopi

2?" Diskette in Lfw.B ist schreibgeschützt! Bitte den Schreib-";

24 schutz entfernen.":?

2?" u => weiter ; andere Taste => neu starten!

fdc% 12)=11:fdc%l13)=0:call fdc#

if chr$Cinp(2))="w" then init

goto kopieren

verses Lfw.A Restore --- een.

fdc%l 12)=11:fdc% 13)=2:call fdc#

fdc% 12)=0:call fdc#

for spur = 0 to 79 : fdce%(16)=anzlesen

Seite A/O lesen und Status anzeigen ----

fdc%(12)=5:poke fdc#+56,secO#:call fdc#

gotoxy 10,2:?"Spur";spur;"Seite DO lesen "

gosub checkstat

Seite A/1 lesen und Status anzeigen ----

fdc% 12)=11:fdc% 13)=3:call fdc#

fdc%(12)=5:poke fdc#+56,secl#:call fdc#

gotoxy 10,2:?"Spur";spur;"Seite 1 lesen "

gosub checkstat

-- Lfw.A Step-In ohne "Update! ---------

fdc% 12)=3:fdc%(4)=stpi:call fdc#

fdc%(16)=anzschr

fdce%(12)=11: fde%(13)=4:call fdc#

fdc%(12)=6:poke fdc#+56,secO#:call fdc#

gotoxy 10,4:?"Spur";spur;"Seite 0 schreiben "

gosub checkstat

472 ATARI ST Floppy und Harddisk

80 fdc%(12)=11: fde%(13)=5:call fdc#

81 fdc%(12)=6:poke fdc#+56,secl#:call fdc#

82 gotoxy 10,4:?"Spur":spur;"Seite 1 schreiben "

83 gosub checkstat

84 !

85 I--- errr eee ee eee -- Lfw. B Step-In mit Update -----------------------

86 fdc%(12)=3: fdex~(4)=stpiu:call fdc#

87 !

88 !--- nennen und wieder A/O selektieren -------------------..-

89 fdc%l12)=11:fdc% 13)=2:call fdc#

90 !

91 next spur

92 !

93 fdc%(12)=11: fde%(13)=O0:call fdc#

94 7:7:?"Fertig | „un... (r)estart oder (e)nde ?"

95 if chr$Cinp(2))<>"r" then end

96 goto kopieren
97 ! mee ew ewe wre we wee we we eee ee ew ew ew wee wwe ee

98 checkstat:

99 if fdc%(18)=8&H80 and fdc%(19)=3 and fdc%(20)=0 then return

100 gotoxy 0,7:?" FDC-STATUS :$";hex$(fdc%(18))

101 ?" DMA-STATUS :$":hexS(fdc%(19))

102 2?" #DMA-BYTES :$'';hex$(fdc%(21))

103 2?" TIMEOUT :$";hex$(fdc%(20)):?

104 !

105 ?" Aufgrund eines Fehlers wurde der Kopiervorgang abgebrochen."

106 ?:?" Bitte Taste drucken..."

107 fdc%(12)=11:fde%(13)=O0:call fdc#

108 key=inp(2):goto kopieren

8.3.4 Demo 3 - Erzeugung von Standard- und Fremd-Formaten

Das folgende Programm, zum beliebigen Formatieren von Dis-
ketten, soll eine weitere Anwendung der FDC-Maschinen-Rou-
tinen zeigen.

Das Programm hat einen zweifachen Nutzen. Zum einen wird
hier deutlich, wie ein Spur-Puffer - der mittels WRITE-

TRACK auf die Diskette geschrieben das ’Format’ darstellt -

Maschinen-Hilfsprogramme fiir BASIC 473

aufbereitet wird, zum anderen ist man in der Lage, Disketten so

zu formatieren, daß sie auch auf anderen Computersystemen

(deren Laufwerke ebenfalls durch einen WD1772 - oder kompa-
tiblen - gesteuert werden) gelesen und beschrieben werden kön-

nen. Das Gegenteil ist natürlich auch möglich. Es kann durchaus

passieren, daß ein Format nicht den Anforderungen des FDC

genügt und er seine Aufgabe, Sektoren in dieses Format zu
übertragen, verweigert. Den folgenden Absatz sollte man sich
deshalb zu Herzen nehmen.

Wichtig! Das Erstellen eines Formates ist eine Aufgabe,
die eine genaue Kenntnis des WRITE-
TRACK-Kommandos voraussetzt. Das Ändern
der Parameter muß mit größter Sorgfalt erfol-
gen. Es funktioniert zwar vieles, aber eben

nicht alles. Kurz gesagt: Falsche Werte ergeben

falsche Formate. Nehmen Sie deshalb bitte die
Beschreibung der FDC-Kommandos zur Hand.
Dort finden Sie beschrieben, welche Änderun-
gen die einzelnen Komponenten in der Spur,

erfahren dürfen. Für die ersten ’Geh-Versuche’
in der Format-Erstellung eignen sich die
’Fremd-Formate’, die am Ende der WRITE-

TRACK -Beschreibung aufgeführt sind.

Beschreiben wir nun aber, welche Möglichkeiten das Programm
bietet.

1) Ein Spur-Puffer kann, durch zahlreiche Parameter -
in weiten Grenzen - beeinflußbar, aufbereitet wer-

den. Um überhaupt einen Überblick zu gewinnen
welche Werte normalerweise Verwendung finden,
sind die Parameter mit den Werten des ATARI-For-
mates initialisiert. Die Parameter können auch je-
derzeit wieder auf diese Werte zurückgesetzt werden.

Der Puffer ist groß genug bemessen, um neben dem

Spur-Format, alle eingegebenen Parameter aufzu-

nehmen. Natürlich kann der aufbereitete Puffer

474 ATARI ST Floppy und Harddisk

2)

3)

4)

nicht komplett sein. Es gibt einige Werte, die von

Spur zu Spur bzw. von Seite zu Seite verschieden

sind. Z.B. wird als Spur-Angabe im ID-Feld die
Spur-Nummer eingesetzt, die der zu formatierenden

Spur entspricht. Während eine Diskette formatiert

wird, muß eine solche Information also ständig an-
gepaßt werden. Die dazu notwendigen Adressen der
ID-Felder, werden ebenfalls im Spur-Puffer unter-

gebracht.

Sie brauchen sich keine Werte zu notieren, um sie

bei jedem Programm-Start neu einzugeben und dann
den Puffer in gewünschter Weise aufbereiten lassen.
Ein ’formatierter’ Puffer kann als File auf eine Dis-
kette geschrieben werden. Sıe können sich also eine
kleine ’Format-Bibliothek’ mit Standard- und Ko-

pierschutz-Formaten anlegen.

Wozu den Puffer-Inhalt retten, wenn er später nicht

wieder geladen werden kann? Ein, auf Diskette be-

findliches Format-File, kann natürlich in den Spur-

Puffer geladen werden.

Es ist wohl selbstverständlich, daß die Möglichkeit,

eine Diskette zu formatieren nicht vergessen wurde.

Diese Formatierungs-Routine übernimmt die An-
passung der Spur-Nummer in den ID-Feldern. Sie

können noch einen ’Offset’ angeben, der zur Spur-

Nummer addiert wird. Dies ıst im allgemeinen aber
nur einem Kopierschutz dienlich.

KERKKKKKKKKKTTKTTCKTTTET TC IT TITTEN U

kK

KKK

kkk

kkk

Listing: FDCFRMT.BAS Kr

„rk

KKKKKKKKKKKKKTKKKTK CT KT CK KT KK KK TH KT N CK TC N U

Maschinen-Hilfsprogramme_für_BASIC 475

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

30

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

LAKRKKKKEEKEKEKEKKEKKR EKER KKK TI TH TITTEN TI TI N N I REE

VERKK Disketten beliebig formatieren A.S. (7/86) Krk
IKRKKHTHTTTTTTTTTTT RT KT TH TITTEN

dim fdc%(700) :fdc# =varptr(fdc%(0))

dim trk%(3200):trk# =varptr(trk%(0))

bload "fdeinter. img", fdc#

def seg=0:poke fdc#+52,trk#
EHKKKEKKEKEKEKEREKRKEEKREREREEKEKERECKEKEREEEREEREKREREREKREKREEREEKEKEKEREREEEKEE

gosub default: 'Standard-Werte für ATARI-FORMAT lesen

menue:

?:fullw 2: clearw 2:gotoxy 0,0:width 80
I

?" a) GAP1 ändern |"

?" b) GAP2 ändern ["

2" c) GAPS (Teil 1) ändern |"

2" d) GAP3 (Teil 2) ändern |"

2" e) GAP4 ändern |"

2?" f) DATEN-FELD ändern |"

2?" g) SYNC-Bytes (vor dem ID-Feld) ändern ["

2?" h) SYNC-Bytes (vor dem Daten-Feld) ändern |"

?" 7) DATA-ADDRESS-MARK ändern |"

2?" J) START-SEKTOR ändern j"

2?" k) SEKTOR-LÄNGE (im ID-FELD) ändern |"

2" L) RECORD-ANZAHL ändern |"

2?" m) GAP5 ändern |"

2" 1»
au

2?" n) Spur-Puffer aufbereiten us

2?" q) Werte auf ATARI-FORMAT setzen!

2?" 0) Spur-Puffer von Disk laden Ns

?" r) Diskette formatieren"

2?" p) Spur-Puffer als File speichern ";

721 Ss) Programm beenden!"

i

for prm=0 to 15 Step 2

gotoxy 21,prm/2:?"Anzahl:";trk%4(3150+prm);" "

gotoxy 30,prm/2:?"Wert:$ "shex$(trk4(3151+prm));" "snext prm

for prm=16 to 20

gotoxy 30,prm-8:?"Wert:$ ";hex$Ctrk%(3150+prm));" "snext prm

taste:

476 ATARI ST Floppy und Harddisk

92 gotoxy 0,18:?spc(60):gotoxy 0,18:?" Welche Funktion?";

94 key=inp(2):if chr$(key)<"a" or chr$(key)>"s" then 94

96 wahl=key+1-asc("a"")

98 if wahl=19 then end

100 if wahl<9 then goto zweiwerte

102 if wahl<14 then goto einwert

104 wahl=wahl-13:

106 on wahl gosub aufbereiten, laden, speichern,default, formatieren

108 goto menue

110 !

112 ! Anzahl und Wert eingeben

114 zweiwerte:

116 gotoxy 0,18:?spc(60):gotoxy 0,18

118 2" >> "schr$(key);'" << Bitte neue Anzahl eingeben: ";:input anz$

120 if len(anz$)=0 then goto zwei

122 trk%(3148+wahl*2)=val(anz$):gotoxy 21,wahl-1:?"Anzahl:":

124 ?trk%(3148+wahl*2);" "

126 zwei:

128 gotoxy 0,18:?spc(60):gotoxy 0,18

130 2?" >> "schr$(key);" << Bitte neuen Wert eingeben: ";:input w$

132 if len(w$)=0 then goto taste

134 trk%(3149+wahl*2)=val(w$):gotoxy 30,wahl -1:?"Wert:$ ";

136 ?hex$(trk%(3149+wahl*2));" "sgoto taste

138 !

140 ! Wert eingeben

142 einwert:

144 gotoxy 0,18:?spc(60):gotoxy 0,18

146 2?" >> "schrS(key);" << Bitte neuen Wert eingeben: ";:input w$

148 if len(w$)=0 then goto taste

150 trk%(3157+wahl)=val (wS):gotoxy 30,wahl-1:?"Wert:$ ";

152 ?hex$(trk%(3157+wahl));" ":goto taste

154 !

156 ! SPUR-PUFFER AUFBEREITEN

158 aufbereiten:

160 clearw 2:gotoxy 12,0:?"Spur-Puffer aufbereiten":?

162 |------ nennen nen GESAMTLÄNGE TESTEN -------------- un 0nn-

164 gesamt=0

166 for i=3152 to 3164 step 2:gesamt=gesamt+trk%(i):next 1

168 gesamt=(gesamt+9)*trk4%Z(3169)+trk%Z(3150)

170 if gesamt <= 6234 ther goto weiter

Maschinen-Hilfsprogramme für BASIC 477

172

174

176

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

216

218

220

222

224

226

228

230

232

234

236

238

240

242

244

246

248

250

if gesamt >6250 then ?:?:?" Spur-Information zu lang":goto fail

2:2?" Für GAP5 (Spur-Nachspann) bleiben nur'';6250-gesamt;

2" Byte übrig.":?:?" Das ist zu wenig!"

fail:

27:2?" Bitte Taste drücken ...":key=inp(2):return

weiter:

oe PUFFER SCHREIBEN ----- + Henne
offset=1:?" Spur-Vorspann (";trk%(3150);'"Byte)

anzahl=trk%(3150) :wert=trk%(3151):gosub bufpoke:

for record = 1 to trk%(3169):?" Record:";record

anzahl=trk%(3152) :wert=trk%(3153):gosub bufpoke:

anzahl=trk%(3162) :wert=trk%(3163):gosub bufpoke:

def seg=offset:trk%(3170+record)=offset:'ID-Adr.

poke trk#-1,&Hfe:'!

poke trk#+2,record- 1+trk%(3167):'

poke trk#+3, trk%(3168):!

poke trk#+4,&Hf/7:offset=offset+é: !

anzahl=trk%(3154) :wert=trk%(3155):gosub bufpoke:

anzahl=trk%(3156) :wert=trk%(3157):gosub bufpoke:

anzahl=trk%(3164) :wert=trk%(3165):gosub bufpoke:

def seg=offset:poke trk#-1,trk%(3166):'

offset=offset+1

anzahl=trk%(3160) :wert=trk%(3161):gosub bufpoke:

def seg=offset:poke trk#-1,&Hf7:offset=offset+1:

anzahl=trk%(3158) :wert=trk%(3159):gosub bufpoke:

next record

?" Spur-Nachspann (";6250-offset;"Byte)"

GAP1

GAP2

SYNC

merken

ID-AM

START-SEKTOR

SEKTOR - LÄNGE

ID-CRC

GAP3

GAP3

SYNC

DAM

SEKTOR -DATEN

DATA-CRC

GAP4

anzahl=6300-offset:wert=trk%(3170):gosub bufpoke:' GAP5

27:72:72" Puffer ist aufbereitet!":pready=1:return

bufpoke:

For i = 0 to anzahl-1:def seg=offset+i:poke trk#-1,wert:next i

of fset=offsettanzahl:return

' STANDARD-WERTE FUR ATARI -FORMAT

default:

restore 406:for i=3150 to 3170:read standard:trk%(1)=standard

next i: pready=0:return
I

478 ATARI ST Floppy und Harddisk

252 ! SPUR-PUFFER AUF DISK SCHREIBEN

254 speichern:

256 clearw 2:gotoxy 12,2:?"Spur-Puffer auf Disk schreiben"':?:?:?

258 if pready=1 then goto speich2

260 ?" Spur-Puffer ist noch leer. Vor dem Speichern zuerst Puffer ";

262 ?"aufbereiten!":?:?" Bitte Taste drücken ...":key=inp(2):return

264 speich2:

266 ?:?2:?" Puffer-Daten als Disk-File speichern (j/n) ?":?:?

268 if chr$Cinp(2))<>"j" then return

270 input " Bitte File-Namen für die Format-Daten eingeben :'",file$

272 bsave file$,trk#,6402:return

274 °

276 ! SPUR-PUFFER VON DISK LADEN

278 laden:

280 clearw 2:gotoxy 12,2:?"Spur-Puffer von Disk laden!!:?:?:?

282 ? " Unter welchem Programm-Namen ist das fertige Format abge";

284 ? "speichert? ":?:input files

286 open"R",1,file$,1:test=lof(1):close 1

288 if test=6402 then bload file$,trk#:pready=1:return

290 ?:2:? " Dies ist kein Datenfile !!! Bitte Taste drücken"

292 a=inp(2):return

294 ! DISKETTE FORMATIEREN

296 formatieren:

298 clearw 2:gotoxy 12,2:?"Diskette formatieren!!:?:?:?

300 if pready=1 then goto frmt2

302 ?" Spur-Puffer ist noch leer. Bitte zuerst den Spur-Puffer ";

304 ?"aufbereiten!":?:?" Bitte Taste drücken „..":key=inp(2):return

306 frmt2:

308 2" Soll eine Diskette formatiert werden (j/n) ?"

310 if chrSCinp(2))<>"j" then return

312 !

314 7:27:22" Bitte zu formatierende Diskette in Lfw. A einlegen.":?

316 input " Ab welcher Spur ?",a$:a=val(a$):if a<O or a>82 then 316

318 input " Bis zu welcher Spur ?",a$:b=val(a$)

320 if b<0O or b>82 then 318:if b<a then 316

322 ?:?" Welchen Offset sollen die Spur-Numern in den ID-Feldern ";

324 2"erhalten ?":?" Es ist ein Wert von DO bis":244-b;" möglich."

326 2?" Normalerweise ist der Offset jedoch >> 0 <<":?

328 input " Offset? ",a$:if valla$)<0 or val(a$)>244-b then 328
330 off=val(a$)

Maschinen-Hilfsprogramme ftir BASIC 479

332 7:2?" Welche Seite soll formatiert werden ?"

334 7:2?" (0)=Vorderseite oder (1)=RUckseite"

336 key=inp(2)

338 if chr$(key)=!0" then drive=2:goto format

340 if chr$(key)="1"" then drive=3:goto format

342 goto 336

344 format:

346 ?:?" Letzte Möglichkeit zum Abbruch! (f)ormatieren (q)uit"

348 key=inp(2):if chr$(key)="q"" then goto formatieren

350 if chr$(key)<>"f" then 348

352 I--- oe formatieren ------------ een

354 fdc%(12)=11: fde%(135)=drive:call fdc#:' Laufwerk selektieren

356 nochmal:

358 fdc%l12)=0:call fdc#:'RESTORE

360 if fdc%(18)<&Ha7 then goto sek

362 27:2?" *** FEHLER! Die Diskette ist schreibgeschutzt!"

364 2:2?" (w)iederholen oder (q)uit ?"

366 key=inp(2):if chr$(key)="q"" then goto frmt

368 if chr$(key)="f" then fdc%(12)=10:call fdc#:goto nochmal

370 goto 366

372 sek:

374 fdc%(12)=1: fde%(14)=a:call fdc# :' S/L-Kopf auf Start-Spur

376 !

378 fdc%(16)=6400

380 for spur=a to b

382 for record=1 to trk%(3169)

384 def seg=trk%(3170+record):poke trk#,spur+off

386 poke trk#+1,drive-2:next record

388 !

390 fdc%l 12)=8:call fdc# :' WRITE-TRACK

392 if fdc%(18)<>&H80 or fdc%(19)<>3 then ?" *** FEHLER! Spur:"sspur

394 fdc%l 12)=3:call fdc# :' STEP-IN

396 next spur

398 frmt:

400 fdce%(12)=11: fdce%(13)=O:call fdc#:goto formatieren: 'deselektieren

402 end

404 I---- on -- Werte für ATARI-FORMAT ------------------000-

406 data 60,78,12,0,22,78,12,0,40,78,512,229,3,245,3,245,251,1,2,9,78

480 ATARI ST Floppy und Harddisk

8.3.5 Demo 4 - Konvertieren von Ein- nach Zweiseitig

Als letztes Beispiel zur Anwendung der FDC-Maschinenrouti-
nen, folgt nun ein, fiir Besitzer von zweiseitigen Laufwerken,
überaus nützliches Programm.

Wenn Sie eine einseitig formatierte Diskette kopieren möchten,

so stellt das natürlich kein Problem dar. Aber wenn Sie versu-
chen, diese auf eine zweiseitig formatierte Diskette zu kopieren,

wird ihnen das DESK-TOP eine Fehlermeldung ausgeben. Sinn-

gemäß bedeutet diese Meldung, daß Quell- und Ziel-Diskette

nicht das gleiche Format besitzen und ein Kopieren aus diesem
Grund nicht möglich ist. Als Besitzer von zweiseitigen Laufwer-
ken sind Sie natürlich bestrebt, die doppelte Speicherkapazität

auszunutzen. In diesem Fall bleibt ihnen nur die Möglichkeit,
alle Dateien einzeln auf die zweiseitige Diskette zu kopieren.

Solange sich nur einige Dateien auf der Quell-Diskette befinden,
ist diese Form des Kopierens sogar schneller als ein komplettes
Kopieren der Diskette. Zeitintensiv wird die Sache allerdings,

wenn sehr viele Dateien kopiert werden müssen. Es ist wirklich

keine Seltenheit, daß sich auf solchen Disketten fünfzig (oder
noch mehr) Dateien befinden. Der Zeitbedarf für eine derartige
Kopier-Session ist schon beträchtlich. Aber Sie werden schon

richtig vermuten: Die bei solchen Gelegenheiten immer wieder
zitierte "Tasse Kaffee’ läßt sich umgehen.

Wie schon erwähnt wurde, ist das DESK-TOP nicht in der Lage,
die gesamte Diskette zu kopieren, wenn nicht Quell- und Ziel-

Diskette das gleiche Format besitzen. Das es nicht möglich sein
kann, eine zweiseitige auf eine einseitige Diskette zu kopieren,

ist ja zu verstehen. Denn die 720 kB einer zweiseitigen Diskette,
wird man auf einer einseitigen Diskette (360 kB) wohl kaum
unterbringen können. Im umgekehrten Fall (der hier beschrieben

wird) paßt die gesamte Information einer einseitigen Diskette
jedoch bequem auf eine zweiseitige Diskette. Speicherplatzpro-
bleme werden hier also nicht auftreten.

Bei diesen Betrachtungen darf man allerdings nicht vergessen,

daß auf jeder Diskette Bereiche reserviert sind, in denen sich

Maschinen-Hilfsprogramme_für_ BASIC 481

wichtige Informationen befinden (Directory, FAT, Boot-Sektor).
Eine genaue Erklärung dazu finden Sıe in Kapitel 3. Es muß

sichergestellt sein, daß sich diese Informationen nach dem
Kopieren auch an der Stelle befinden, wo das Betriebssystem sie

erwartet.

Teilt man eine Diskette, so wıe es das Betriebssystem macht, in

logische Sektoren’ ein, so besteht zwischen ein- und zweiseiti-
gen Disketten lediglich ein Unterschied in deren Anzahl. Wäh-
rend eine einseitige Diskette in 720 logische Sektoren eingeteilt
ist, befinden sich auf einer zweiseitigen Diskette 1440 logische
Sektoren. Glücklicherweise sind die logischen Sektor-Adressen
für FAT, Directory und Boot-Sektor für beide Formate iden-
tisch. Der reservierte Platz für diese Komponenten besitzt

ebenfalls die gleiche Größe.

Die Aufgabe des Programms reduziert sich somit auf das
Umrechnen von logischen, in physikalische Sektor-Adressen.

Dazu ein kleines Beispiel:

Die Numerierung der logischen Sektoren beginnt mit °0’. Das
Directory beginnt im logischen Sektor 11, also dem 12. Sektor
auf der Diskette. Doch wo ist auf einer Diskette der 12. Sektor?
Genau diese Information enthält die physikalische Sektor-

Adresse. Auf einer einseitigen Diskette befindet sich der logi-
sche Sektor 11 auf Seite 0/Spur 1/Sektor 3. Auf der zweiseitigen

Diskette ist dieser Sektor jedoch auf Seite 1/Spur 0/Sektor 3 zu

finden.

Nach soviel Vorrede kommen wir jetzt endlich zu dem Pro-
gramm. Die wichtigsten Schritte im Programmablauf sollen aber
zuvor noch erläutert werden.

1. Die einseitige Quell-Diskette wird in Lfw. A und die
zweiseitig formatierte Ziel-Diskette in Lfw. B ein-
gelegt.

2. Der Boot-Sektor der Ziel-Diskette wird ’gerettet’.

482 ATARI ST Floppy und Harddisk

3. Es werden nun jeweils zwei aufeinanderfolgende
Spuren der Quell-Diskette gelesen und auf eine Spur

(Vorder-/Rückseite) der Ziel-Diskette geschrieben,
bis achtzig Spuren kopiert sınd.

4. Der Boot-Sektor wird wieder zurückgeschrieben.

Nach diesem Konvertieren befinden sich alle Programme der
einseitigen Diskette auf der zweiseitigen Diskette.

10

20

30

40

50

60

'** Konvertieren von Ein- nach Zweiseitig A.S. 10/86 **

ıLaden des Maschinen-Programms

dim fdc%(700) : fdc#=varptr(fdc%(0)) : bload "fdceinter. img", fdc#

'Wir benötigen 3 Puffer und deren Start-Adressen

70 dim sec0%(2400) : secO#=varptr(sec0%(0))

80 dim sec1%(2400) : sec1#=varptr(sec1%(0))

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

280

290

dim bootsec%(512) : bootsec#=varptr(bootsec%(0))

def seg=0 :' Wir POKEn Langworte

|

anzlesen=&H1200 :' READ_SECTOR => 9 * 512 Byte

anzschr =&H1220 :' WRITE_SECTOR => 9 * 512 + 32 Byte
|

fdc%(15)=1 :' Wir beginnen in jeder Spur mit Sektor 1

| kkk START HEKKKKEKKKEKEKEAKHEEKEKKKEEEEKEEEKCREEKEKKEKRKEKEEKKKRKRKKKKEK

start:

? : fullw 2 : clearw 2 : gotoxy 0,1

? " Konvertieren von Einseitigen in zweiseitige Disketten!

2:7:2:2 " Einseitige Quell-Diskette in Laufwerk A"

72:7? " und zweiseitige Ziel-Diskette in Laufwerk B einlegen."

2:7:2:72 " k => konvertieren : andere Taste => Programm beenden!"

if chr$Cinp(2))<>"k" then end
]

init:

clearw 2 : gotoxy 0,2

Maschinen-Hilfsprogramnmıe_für BASI C 483

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

. 580

590

600

610

620

630

640

650

660

670

680

690

'*** Lfw. B => Restore und Write-Protect testen *****eeKHKERKRKE
|

fdc%l12)=11 : fdc%l 13)=4 : call fdc#

fdce%(12)=0 : call fdc#

if fdc%(18) < &HA7 then goto convert
' |

? " Diskette in Lfw.B ist schreibgeschützt! Bitte den Schreib-";

? " schutz entfernen.":?

? "w => weiter ; andere Taste => neu starten!

fdce%(12)=11 : fdc%(13)=0 : call fdc#

if chr$Cinp(2))="w" then init

goto start
t

convert:

2" Konvertierung läuft. Bitte etwas Geduld

|

kkk Lfw.B => Bootsektor lesen KEITH TITTEN ET

fdc%(16)=&H200 : fdc%(12)=5 : poke fdc#+56,bootsec# : call fdc#

gosub checkstat

|

1%%% Lfw.A => Restore KRKKKKKKKKKKKRTKT IKT EC INK

fdce%(12)=11 : fdc%l13)=2 : call fdc#

fdc%(12)=0 : call fdc#

'*** Spur 0-79 (Lfw.A) nach Spur 0-39 (Lfw.B) kopieren *********
ı

trackcnta=0 : trackentb=0 :' Spurzähler für Lfw.A und Lfw.B

loop: |
’ :

ikkk Lfw.A => Spur X lesen (X=trackcnta) RRARKKKRKKKRK aK RK

Li

fdc%(12)=11 : fdc%l13)=2 : call fdc# :' Lfw.A/O selektieren

fdc%12)=15 : fdc%(14)=trackenta : call fdc# :' Spurreg. schr.

fdc%(16)=anzlesen

fdc%(12)=5 : poke fdc#+56,sec0# : call fdc# :' READ_SECTOR

gosub checkstat

fdc%(12)=3 : call fdc# :' STEP_IN

484 ATARI ST Floppy und Harddisk

700 !
710 1% Lfw.A => Spur X+4 lesen kaKKKhKKKKR KK KKK KKK KT CT KK KEK

720 !

730 fdc%(12)=5 : poke fdc#+56,sec1# : call fdc# :' READ SECTOR

740 gosub checkstat

750 fdc%(12)=3 : call fdc# :' STEP_IN

760 trackcnta=trackcntat2

770 !

780 '*** Lfw.B => Spur X auf Seite 0 schreiben HR

790 !

800 fdc%(12)=11 : fde%(13)=4 : call fdc# :' Lfw. B/O selektieren

810 fFdc%l12)=15 : fdce%(14)=trackcntb : call fdc# :' Spurreg. schr.

820 fdc%(16)=anzschr

830 fdc%(12)=6 : poke fdc#+56,secO# : call fdc# :' WRITE_SECTOR

840 gosub checkstat

850 !

860 '*** Lfw.B => Spur x+1 auf Seite 1 schreiben Kari

870 !

880 fdc%(12)=11 : fdce%(13)=5 : call fdc# :' Lfw. B/1 selektieren

890 fdc%(12)=6 : poke fdc#+56,secl# : call fdc# :' WRITE_SECTOR

900 gosub checkstat

910 fdc%(12)=3 : call fdc# :' STEP_IN

920 trackentb=trackentb+1

930 ! |

940 '*** Testen, ob schon 80 Spuren geschrieben wurden ********keeKK

950 !

960 if trackcntb<40 then goto loop

970 ! |

980 '*** Lfw.B => Restore und Boot-Sektor zurückschreiben *******xx*

990 !

1000 fdce%(12)=11 : fdc%(13)=4 : call fdc# :' Lfw. B/O selektieren

1010 fdc%(12)=0 : call fdc# :' RESTORE

1020 fdc%(16)=&H220

1030 fdc%(12)=6 : poke fdc#+56,bootsec# : call fdc# :' WRITE SECTOR

1040 gosub checkstat

1050 ! |

1060 '*** Lfw.A => Restore und deselektieren FXXRHRHAHHKEKKKEKEEKEEKKK

1070 ! .

1080 fdc%(12)=11 : fde%(13)=2 : call fdc# :' Lfw. A/O selektieren

1090 fdc%(12)=0 : call fdc# :' RESTORE

Maschinen-Hilfsprogramme fiir BASIC 485

1100 fdce%(12)=11 : fdc%(13)=0 : call fdc# :' deselektieren

1110 !
1120 IK KK FERTIG KERKKKKKKKKKKTTT TI KIT I KT TI KT TI TI TI KT I TI TE TI TI KKK

1130 !

1140 ?:2:? " Fertig ! (r)estart oder (e)nde ?"

1150 if chr$Cinp(2))<>"r" then end

1160 goto start

1170 !
1180 kkk Status testen KREEKKKRKKEKKKEKEKTKKT KT CK KT IC I IT TI I CK N

1190 !

1200 checkstat:

1210 if fdc%(18)=8&H80 and fdc%(19)=3 and fdc%(20)=0 then return

1220 gotoxy 0,7 : ? " FDC-STATUS :$';hex$(fdc%(18))

1230 ? " DMA-STATUS :$"shex$(fdc%(19))

1240 ? " #DMA-BYTES :$":hex$(fdc%(21))

1250 ? " TIMEOUT :$";hex$(fdc%(20)):?

1260 !

1270 ? " Aufgrund eines Fehlers wurde das Konvertieren abgebrochen."

1280 ?:? " Bitte Taste drücken..."

1290 fdc%(12)=11 : fdc%(15)=0 : call fdc# :' Deselektieren

1300 key=inp(2) : goto start

1310 !
1320 EHIKKKKKKKKKKKKEKRKREEKEKREKEKERKEEK ENDE KEKKEKAEKEKEKEEEKEEKEEKRERKKEREKE

8.4 Erstellung von BASIC-Ladern

Dieses Kapitel hat nur indirekt mit der Floppy zu tun. Es han-

delt sich hier vielmehr um ein einfaches, aber dennoch sehr

nützliches ’Tool’ für welches wohl viele eine Verwendung haben.
Es sollen sich dazu die Assembler-Freaks, die für alles die pas-

sende Maschinensprache-Lösung parat haben, ın besonderem

Maße angesprochen fühlen. Es muß nicht immer ein komplettes
’Public-Domain-Programm’ sein, welches man der Allgemeinheit
zur Verfügung stellt. Oft kann man schon mit ’Kleinigkeiten’
anderen eine Freude machen. Aber lesen Sie selbst.

Es lassen sich viele Programmierprobleme - recht komfortabel

und schnell - durch ein BASIC-Programm lösen. Die Grenzen

dieser Sprache sind jedoch dann erreicht, wenn es auf höchste

486 ATARI ST Floppy_ und Harddisk

Geschwindigkeit ankommt. Es sınd meist nur Kleinigkeiten, die
einen daran hindern, eine gute Programmidee in BASIC zu ver-
wirklichen. Wenn es z.B darum geht, eine bewegte Grafik für
ein Spielprogramm zu erzeugen, muß der reine BASIC-Pro-

grammierer passen. Sicher - auch eine umfangreiche Dateiver-
waltung läßt sich vollständig in BASIC schreiben. Aber wehe,
wenn es an das Sortieren großer Datenmengen geht.

Doch kommen wir zum eigentlichen Punkt. Es gibt Assembler-
programmierer unter uns, die nützliche kleine Maschinen-Routi-
nen am Fließband produzieren. Oft erstellen dieselben Leute

ebenfalls BASIC-Programme. Die Geschwindigkeitsprobleme des
reinen BASIC-Programmierers scheinen für sie nicht zu existie-
ren. Es ist ja auch ganz klar; die Programmstellen für die sich
der BASIC-INTERPRETER zu viel Zeit läßt, werden flugs
durch eine Maschinen-Routine ersetzt. Die Einbindung dieser ist
ja ausgesprochen einfach. Ein simples ’call ...” wird später dann
die vorherigen Probleme beseitigen.

Es wäre schön, wenn diese Routinen auch denen zur Verfügung
ständen, die keinen ASSEMBLER besitzen. Es liegt selten daran,

daß die Maschinen-Routine nicht preisgegeben werden soll.
Aber - es muß ein BASIC-Programm geschrieben werden, wel-

ches die Daten der Maschinen-Routine enthält und diese entwe-
der in den Speicher POKEt oder einen Datenfile (zwecks späte-
ren ’bload’) auf der Diskette erzeugt. Aber weshalb sollte sich
jemand ’für andere’ eine solche Arbeit machen? Für den eigenen
Gebrauch ist es schließlich nicht nötig. Im Besitz des Maschi-
nenfiles ist man ja bereits - der ASSEMBLER hat diese Auf-
gabe schon erledigt.

Wenn aber ein Programm - um ein solches geht es hier - die
Erstellung des Datenfiles übernimmt, ist es dann noch ein großer
Aufwand, den reinen BASIC-Programmierern die Unter-Routi-
nen zur Verfügung zu stellen? Wir sind überzeugt, das diese für
eine ’ready-to-hack-in’ Lösung dankbar sein werden.

Das BASIC-Programm erledigt die Aufgabe einer ASSEMBLER-
BASIC-ASSEMBLER-Konvertierung. Es wird nach Programm-

Maschinen-Hilfsprogramme fiir BASIC 487

Start der Name des zu konvertierenden Files erwartet. Danach
miissen noch zwei weitere Filenamen eingegeben werden.

1. Der Name des zu erzeugenden BASIC-Laders. Dieses

Programm wird wohl in den meisten Fällen, in Form
eines Listings, an andere weitergegeben. Da bei der

Eingabe, besonders wenn viele DATA-Zeilen ent-
halten sind, schon mal Fehler auftreten, ist eine

Prüfsumme hierin enthalten.

2. Der Name des Files, den der BASIC-Lader später
erzeugen soll. Der Lader testet, ob die Prüfsumme
der Summe aller DATAs entspricht. Ist das der Fall,

so wird ein File auf die Diskette geschrieben, der
mit dem ursprünglich konvertierten, identisch ist.

KUERKKKKTTTTKTT TFT TITTEN TE TC TC I I KT

kkk kak

KERK Listing: DATAMAKE.BAS balahahel
kk wk

KEKE

10 BHA K KH TAKER KERR EKER

20 LRRKKKKKKKKKKE Data-Maker A.S. 10/86 kkkkkkkkkkhkekekk

30 DHAKA KEKE REE KICK N!

40 ! .

50 'Erzeugt aus einem beliebigen File ein BASIC-Programm. Wird

60 'dieses später mit 'RUN' gestartet, so wird ein File geschrie-

70 'ben, das mit dem zuvor Ubergebenen identisch ist.

80 !
90 PHAKIC HHA AK KA KER EKER EERE REE

100 !

110 ?:fullw 2:clearw 2:gotoxy 0,0

120 input "Aus welchem File sollen DATA's erzeugt werden "; prg$

130 ! oe
140 open"R",#1,prg$, 1:bytes=lof(1):close: feldlen=cint(bytes/2-1)

150 ?:?"INFO --> Die Länge von >> ";prg$;"" << beträgt ";bytes;" Byte"

160 27:7:?

170 !

488 ATARI ST Floppy_ und Harddisk

180

190

200

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

370

380

390

400

410

420

430

440

450

460

470

480

490

500

510

520

530

540

550

560

570

input "Wie soll das Ausgabe-File heißen ";bas$:?:?
I

2"In das File >> ":bas$:" << wird ein Lader integriert, der"

?:?"aus den DATA's ein File erstellt, das dem"

?:?"Eingabe-File >> ";prg$;'" << entspricht.'":7:2:?

input "Bitte auch hierfür einen Namen eingeben ";make$
? . DWHK HHH 2 2 2 2 20202 202 202.2 2.2 202 2 2 E02 2 2 2 2 202 2 2 2 2.2.2 202 212.2 2 20202. 2.2.2 2 2.2.2022. 2.2 202.2.21

27:2"Jetzt gehts los! Gegen Langeweile gibt's einige Informationen"

?"zu den einzelnen Vorgängen!"

?:2:?"Ein Integer-Array (c%) wird mit ";feldlen;'" dimensioniert"

dim c%(Cfeldlen)

?

?"Das Eingabe-File >> ";prg$;" << wird nach varptr(c%(0)) geladen"

bload prg$,varptr(c%(0))
|

2:?"Das Ausgabe-File >> ";bas$;" << wird geöffnet"

open!'O!",1,bas$
1

?:?:?"Der Inhalt des c%-Array's wird nun, in Form von Data-Zeilen,"

2"in dieses File geschrieben."

2:27:2"Bitte etwas Geduld "

check#=0: z=0:zl=100

if z mod 8 =0 then print #1:print #1,str$(zl);" DATA ";:zl=zl+1

print #1,right$(c"0000"+hex$(c%(z)),4);
I

check#=check#+cX%(z):z=z+1

if z=feldlen+1 then 510

if z mod 8 <> 0 then print #1,",";

goto 420

222:2"So, jetzt nur noch das Lade-Programm anhängen"

I

print #1

print #1,str$(10);" "KRrARARRRR File-Maker A.S. ***eeeRKKU

print #1,str$(15);" '"

print #1,str$(20);" ?:fullw 2:clearw 2:gotoxy 0,0"

print #1,str$(25);" ? ";chr$(34);"File >> ":make$;

Maschinen-Hilfsprogramme_für_BASIC 489

580

590

600

610

620

630

640
u

650

660

670

680

690

700

710

720

730

740

750

760
Ibe

a

770
780
790
800
810
820

830
840
850
860
870
880
890
900
910
920

print #1," << wird erzeugt":chr$(34);"27:7:2"

print #1,str$(30);" dim c%AC";str$Cfeldlen);"):cs#=0"

print #1,str$(35);"

print #1,str$(40);"

print #1,str$(45);"

print #1,str$(50);"

print #1,str$(55);"

print #1,str$(60);"

for i=0 to ";str$(feldlen)

read a$:c%(i)=val ("schr$(34) ;"&H";chr$(34) ;""+a$)

check#=check#+(c%(1))"

next i"

if check#=";str$(check#);'" then ";str$(70)

?"-chr$(34);"Geht leider noch nicht, ";

print #1,"da etwas mit den DATA's nicht stimmt.";chr$(34)

print #1,str$(65);"

print #1,str$(70);"

print #1,str$(bytes)

print #1,str$(75);"

goto 80"

bsave ";chr$(34) ;make$; chr$(34);",varptr(c%(0)),

? "schr$(34);"Das Programm >> ":make$;

print #1," << ist nun geschrieben.";chr$(34)

print #1,str$(80);"

print #1,":a=inp(2)

print #1,str$(85);"

print #1,str$(90);"

print #1,str$(95);"

72727227"2chr$(34);"Bitte Taste drucken": chr$(34)

send"!

LRRKKKKKEK DATA's für "»make$;!" KEKKKKKKKKU

7:72:71 ..das Ausgabe-File schließen und ...

close #1

|

?:?"das Programm >> ";bas$;'" >> ist fertig."

?:?"Bitte Taste drucken":a=inp(2):end

490 | ATARI ST Floppy_ und Harddisk

Anhang 491

Anhang | - File-Maker für editor.tos

10 IKKKKKKKKK Fi le-Maker A.S. KkkkkkKKEK

15 I

20 ?:fullw 2:clearw 2:gotoxy 0,0

25 ? "File >> editor << wird erzeugt":?:?:?

30 dim c% 8444):cs#=0

35 for i=0 to 8444

40 read a$:c%(1)=val ("&H"+a$)

45 check#=check#+(c%(1))

50 next i

55 if check#= 81578547.2 then 70

60 ?"Geht leider noch nicht, da etwas mit den DATA's nicht stimmt."

65 goto 80

70 = bsave "editor.tos",varptr(c%(0)), 16890

75 ? "Das Programm >> editor << ist nun geschrieben."

80 7:7:7:?"Bitte Taste druicken":a=inp(2):end

85 =!
90 IKKRKKKKKKK DATA ı S für edi tor KERKKKHKKKKK

95 !

100 DATA 601A,0000,2FF6,0000,0DDC,0000,90D28,0000

101 DATA 0000,0000,0000,0000,0000,0000,2A4F ‚2A6D

102 DATA 0004,202D,000C,DOAD,0014,DOAD,O01C,DOBC

103 DATA 0000,1100,220D ,D280,C2BC,FFFF,FFFE,2E41

104 DATA 2F00,2F0D,3F00,3F3C,004A,4E41,DFFC,0000

105 DATA 000C,3F3C,0003,3F3C,000B,3F3C,0023,4E4E

106 DATA 5C8F,6108,2F3C,0000,0000,4E41,6100, 2A1A

107 DATA 6100,2EAC,6100,2DD6,610A,6100,01F4,6100

108 DATA OOEA,4E75,6100,2E08,6100, 2DC2,33FC,0000

109 DATA 0000,3DE2,33FC,0000,0000,3DE6,33FC,0000

110 DATA 0000,3DE8,33FC,0001,0000,3DE4,303C, 0000

111 DATA 33FC,0006,0000,3DF0,33FC,0001,0000,3DF2

112 DATA 33FC,004F,0000,3DEC,33FC,0009,0000,3DEE

113 DATA 33FC,0009,0000,3E5A,13FC,0030,0000,32C1

114 DATA 13FC,0039,0000,32C2,33FC,05DC,0000,3DF4

115 DATA 23FC,0000,AC1A,0000,3E60,6102,4E75,6100

116 DATA 2E1E,33FC,0014,0000,3E02,33FC,000A, 0000

117 DATA 3E04,6100,2DAE,207C,0000,3083,6100,293C

118 DATA 33FC,0014,0000,3E02,33FC,000C,0000,3E04

492 ATARI ST Floppy und Harddisk

119 DATA 6100,2D90, 207C, 0000, 30B5, 6100, 291E, 33FC
120 DATA 0014,0000, 3E02,33FC, 000E, 0000, 3E04,6100
121 DATA 2D72,207C, 0000, 30E7, 6100, 2900,6100, 2DF2
122 DATA 6100,2CEA, 6100, 2DB8, 4E75,6100, 2090, 4A80
123 DATA 67F8,4840,B03C, 0044 ,672A,B03C, 004B, 6604
124 DATA 6140,60E6,B03C ,004D , 6604, 6158, 60DC, BO3C
125 DATA 0050,6604,611E,60D2,B03C, 0048, 6602,6106
126 DATA 60C8,508F ,4E75, 23F9,0000,3E18,0000, 3DDE
127 DATA 615A,4E75,23F9, 0000, 3E1C, 0000, 3DDE,614C
128 DATA 4E75,2039,0000, 3DDA,5380, 6708, 23C0, 0000
129 DATA 3DDA, 600A, 23F9, 0000, 3DD6, 0000, 3DDA, 6100
130 DATA 2A3C,4E75, 2039, 0000, 3DDA, 5280, B0B9, 0000
131 DATA 3DD6,6E08, 23C0, 0000, 3DDA, 600A, 23FC, 0000
132 DATA 0001,0000, 3DDA, 6100, 2A14,4E75, 6100, 2010
133 DATA 2079,0000, 3DDE, 2039, 0000, 3DDA, 5380, E588
134 DATA 2270,0800,4ED1,33FC, 000A, 0000, 3E02,33FC
135 DATA 0002,0000,3E04,6100, 2C8A, 6100, 2C04, 302F
136 DATA 0004 ,4440,B07C,001D ‚6004 ,303C,001D,E548
137 DATA 227C,0000, 3BC4, 2071, 0000, 6100, 27FE,6100
138 DATA 2CFO,6100, 2BDC, 6100, 2C46, 205F ‚548F ‚4EDO
139 DATA 6100, 2BDA, 23FC, 0000, 0007, 0000, 3DD6, 23FC
140 DATA 0000,0001,0000,3DDA, 23FC, 0000, 3012, 0000
141 DATA 3DD2, 23FC, 0000, 2FF6, 0000, 3E18, 23FC, 0000
142 DATA 2FF6,0000, 3E1C,6100, 2974, 4E75, 6100, 2B9E
143 DATA 23FC,0000,3296, 0000, 3DD2, 23FC, 0000, 0008
144 DATA 0000, 3DD6, 23FC, 0000, 0005, 0000, 3DDA, 23FC
145 DATA 0000,3256, 0000, 3E18, 23FC, 0000, 3276, 0000
146 DATA 3E1C,6100, 2938,6100, 2BB2, 207C, 0000, 32E7
147 DATA 6100, 2768, 4E75 , 23FC, 0000, 0006, 0000, 3DD6
148 DATA 23FC,0000,0004,0000,3DDA, 23FC, 0000, 3354
149 DATA 0000,3E18, 23FC, 0000, 336C, 0000, 3E1C, 23FC
150 DATA 0000,3384,0000, 3DD2,6100, 28F2,6100, 2B6C
151 DATA 207C,0000,32FA, 6100, 2722, 4E75,6100, 2B0E
152 DATA 23FC,0000,315A, 0000, 3DD2, 23FC, 0000,311A
153 DATA 0000,3E18, 23FC, 0000, 313A, 0000, 3E1C, 23FC
154 DATA 0000,AC1A,0000,3E60, 23FC, 0000, 0008, 0000
155 DATA 3DD6,23FC, 0000, 0005, 0000, 3DDA, 6100, 289E
156 DATA 6100, 2B18, 207C, 0000, 321B, 6100, 26CE, 4E75
157 DATA 6100,092A,6100,098C, 23FC, 0000, 0008, 0000
158 DATA 3DD6,23FC, 0000, 0003, 0000, 3DDA, 23FC, 0000

Anhang 493

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

33FC, 0000, 3DD2, 23FC, 0000, 33BC, 0000, 3E18
23FC,0000,33DC, 0000, 3E1C, 6100, 2ACE, 207C
0000, 3449, 6100, 2684, 6100, 2842, 4E75, 6100
2A6C, 23FC, 0000, 3786, 0000, 3002, 23FC, 0000
0008, 0000, 3DD6, 23FC, 0000, 0003, 0000, 3DDA
23FC,0000,3746, 0000, 3E18, 23FC, 0000, 3766
0000,3E1C, 6100, 2806 ,6100 ,2A80 ,207C ‚0000
3AD0, 6100, 2636, 4E75, 6100, 2A22, 23FC, 0000
3A64 , 0000, 3DD2, 23FC, 0000, 0007, 0000, 3DD6
23FC, 0000, 0001, 0000, 3DDA, 23FC, 0000, 3A2C
0000, 3E18, 23FC, 0000, 3A48, 0000, 3E1C, 6100
27BC, 6100, 2036, 207C, 0000, 3AEA,6100, 25EC
4E75 , 23FC,0000, 0006, 0000, 3DD6, 23FC, 0000
0004, 0000, 3DDA, 23FC, 0000, 38C6, 0000, 3E18
23FC, 0000, 38DE ,0000, 3E1C, 23FC, 0000, 38F6
0000, 3002, 6100, 2776, 6100, 29F0, 207C ‚0000
3954, 6100, 25A6, 4E75, 3039, 0000, 3DE8, BO79
0000, 3DF0, 6D06, 303C, 0000, 6002, 5240,33C0
0000, 3DE8,D03C, 0030, 13C0, 0000, 3182, 6100
273C ‚4E75 , 3039, 0000, 3DE8,B07C, 0000, 6F04
5340, 6006, 3039, 0000, 3DF0,33C0, 0000, 3DE8
DO3C, 0030, 13C0, 0000, 3182,6100, 2710, 4E75
3039, 0000, 3DE6,B07C, 0001, 6D06, 303C, 0000
6004, 303C,0001, 33C0, 0000, 3DE6, D03C, 0030
13C0,0000,318C, 6100, 26E4, 4E75, 3039, 0000
3DE6, BO7C, 0000, 6F06, 303C , 0000, 6004, 303C
0001,33C0, 0000, 3DE6,D03C, 0030, 13C0, 0000
318C, 6100, 26B8, 4E75 , 3039, 0000, 3DE2, BO79
0000, 3DEC,6D06,303C ,0000, 6002 ,5240,33Cc0

0000, 3DE2,48C0, 80FC, 000A ,DO3C, 0030, 13C0
0000,3197,4840,D03C, 0030, 13C0, 0000, 3198
6100, 267A, 4E75 , 3039, 0000, 3DE2, BO7C, 0000
6F04,5340, 6006, 3039, 0000, 3DEC, 33C0, 0000
3DE2, 48C0, 80FC, 000A ,D03C, 0030, 13C0, 0000
3197,4840,D03C, 0030, 13C0, 0000, 3198, 6100
263C ‚4E75 , 3039, 0000, 3DE4,B079, 0000, 3DEE
6D06, 303C 0000, 6002,5240,33C0, 0000, 3DE4
48C0, 80FC, 000A, D03C, 0030, 13C0,0000,31A4
4840,D03C,0030, 13C0,0000,31A5, 6100, 25FE
4E75 , 3039, 0000, 3DE4,B07C, 0000, 6F04,5340

494 ATARI ST Floppy und Harddisk

199 DATA 6006,3039,0000 ‚3DEE ‚33C0 ‚0000 ,3DE4 ‚48C0
200 DATA 80FC,000A,D03C,0030,13C0,0000,31A4 ‚4840
201 DATA DO3C,0030, 13C0,0000,31A5, 6100, 25C0, 4E75
202 DATA 3039,0000, 3848, 323C, 0001, B07C, 0400, 6604
203 DATA 323C, 0002, 3F01,3F39, 0000, 3DE6, 3F39, 0000
204 DATA 3DE2,3F39,0000, 3DE4,3F39, 0000, 3DE8,42A7
205 DATA 2F3C,0000,AC1A, 3F3C, 0008, 4E4E , DFFC, 0000
206 DATA 0014,4A40,6B04,6118,4E75, 3F00, 6100, FB78
207 DATA 6100,27E8, 207C, 0000, 3218, 6100, 239E, 4E75
208 DATA 33FC,0000,0000,3E08,23F9, 0000, 3E60, 0000
209 DATA 3DF6,33FC,001F,0000,3E14,33FC, 0012, 0000
210 DATA 3E12,33FC,0000,0000,3EA4,33FC, 00D0,0000
211 DATA 3EA6,3039,0000,3B48,B07C, 0400, 6618, 33FC
212 DATA 0200,0000,3EA4,33FC,02D0, 0000, 3EA6, 33FC
213 DATA 003F,0000,3E14,6102,4E75, 6100, 2792,6100
214 DATA 27FE,33FC,0000, 0000, 3E08, 33F9, 0000, 3E08
215 DATA 0000,3E06,6100, 2548, 6100, 27E4,6100, 2770
216 DATA 6100,27BA,4840,B03C, 0019, 6700, OOAA, BO3C
217 DATA 0048,6724,B03C,0050,675C,B03C,001C,6712
218 DATA BO3C,0048,670C,B03C,004D, 66D4,6100, FA76
219 DATA 6004,6100, FA4E ‚4E75 , 3039, 0000, 3E08, BO7C
220 DATA 0000,672E,B079, 0000, 3EA6, 6714, 0479, 0100
221 DATA 0000,3E08, 0489, 0000, 0100, 0000, 3DF6,6012
222 DATA 0479,00D0, 0000, 3E08, 0489, 0000, 00D0, 0000
223 DATA 3DF6,6000, FF76, 3039, 0000, 3E08,B079, 0000
224 DATA 3EA6,672E,B079, 0000, 3EA4, 6614, 0679, 00D0
225 DATA 0000,3E08, 0689, 0000, 00D0, 0000, 3DF6, 6012
226 DATA 0679,0100, 0000, 3E08, 0689, 0000,0100, 0000
227 DATA 3DF6,6000, FF36,33FC, 0000, 0000, 3A1C,48F9
228 DATA 38F8,0000, 3E64, 2A7C, 0000, 317A, 3E3C, 002D
229 DATA 101D,3F00,6100,2720,51CF, FFF6, 2A7C, 0000
230 DATA 341C,3E3C,000D, 101D, 3F00,6100, 270A, 51CF
231 DATA FFF6,6100, 2630,6100, 262C, 2879, 0000, 3DF6
232 DATA 2A4C,33F9, 0000, 3E08, 0000, 3E06, 363C, OOOF
233 DATA 3803,3A39,0000, 3E14, 3604, 6100, 24€4,6100
234 DATA 24E4 ‚3604 ,284D , 3E3C, 0005, 3F3C, 0020,6100
235 DATA 26C6,51CF, FFF6,6100, 24F2,DBFC, 0000, 0010
236 DATA 0679,0010,0000,3E06,6100,25DA,51CD, FFCA
237 DATA 6100, 268C, 4CF9, 38F8, 0000, 3E64, 33FC, 0002
238 DATA 0000,3A1C, 6000, FE9A,4E75,6100, 25EE, 207C

Anhang 495

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

0000 ,322F ‚6100 ,21A4 ,33FC ,0000,0000 ,3E02
33FC,0004,0000,3E04 ,6100,25F8,6100,25A8
3039, 0000, 3B48,B07C, 0400, 6612, 33FC, 0200
0000, 3EA4, 33FC,02D0, 0000, 3EA6, 6010, 33FC
0000, 0000, 3EA4,33FC, 00D0, 0000, 3EA6, 33FC
0012, 0000, 3E12,23FC, 0000, AC1A, 0000, 3E60
6134,6100, F8AE,6100, F8AA, 33FC, 0002, 0000
3E04,6100, 259E 6100, 2518, 6100, 256E ‚207C
0000, 321B, 6100, 2124, 6100, 2554, 6100, FD82
6100, 25DC, 4E75, 48E7, 1F1E, 23F9, 0000, 3E60
0000, 30F6,33FC, 0000, 0000, 3E08, 33FC, 0000
0000, 3E06,6100, 2318, 6100, 25B4, 33FC, 0007
0000, 3E02,33FC, 0004, 0000, 3E04,6100, 2544
6100, 2500, 2F3C, 0000, 3E16, 6100, 25CE, 6100
24FE,4A79, 0000, 3E16, 6B4C, 3039, 0000, 3E04
5940,£948, 3439, 0000, 3602,5F42,48C2, 84FC
0003 ,D042, 3239, 0000, 3E16, 2679, 0000, 3DF6
1781, 0000,6100,23D4,0C79,0034,0000,3E02 —

6D08,33FC,0004,0000,3E02,5679,0000,3E02

6100,24E0,609A,2039,0000,3EAC , 4840, B03C

004B ,673A,B03C,004D ,675A,B05C ,0050,6700

007A,B03C,0048,6700,011C,B05C,0052,6700

01BC,B03C,0072,6700,0184,B03C,001C,'6700

O1AC,6100,2376,6100, 249A, 6000, FF54, 3039

0000, 3E02,B07C, 0007, 6E08,33FC, 0037, 0000

3E02,5779, 0000, 5E02,6100,2478,6100, 24D0

6000, FF2E,3039,0000, 3E02,B07C , 0034 ,6D08

33FC, 0004, 0000, 3E02,5679, 0000, 3E02,6100

2452,6100,24AA, 6000, FF08,6100, 2412, 3039

0000, 3E04,B07C,0016,6D00, 0088 , 3039, 0000

3E08 ,B079, 0000, 3EA4 , 6638, 0679, 00D0 , 0000

3E08 , 06B9, 0000, 0000 , 0000, 3DF6,33F9, 0000

3E02 ,0000,3E10,6100,21C6,33F9,0000,3E10

0000 ,3E02,33FC,0005 ,0000,3E04 ,6100, 23F4

604A ,B079, 0000, 3EA6, 6742, 0679, 0100, 0000

3E08 , 06B9,0000,0100, 0000, 3DF6,33F9, 0000

3E02,0000,3E10,6100,2186,33F9,0000,3E10

0000,3E£02,33FC,0006,0000,3E04,6100,23B4

600A ,5279, 0000, 3E04,6100, 23A8,6100, 2400

6000, FE5E,, 6100, 2368, 3039, 0000, 3E04,B07C

496 ATARI ST Floppy_ und Harddisk

279 DATA 0004 ,6600,0086,3039,,0000,3E08,B07C,0000
280 DATA 6700,0082,B079, 0000, 3EA6, 6738, 0479, 0100
281 DATA 0000,3E08,04B9,0000,0100, 0000, 3DF6,33F9
282 DATA 0000,3E02,0000,3E10,6100, 2114, 33F9, 0000
283 DATA 3E10,0000, 3E02,33FC, 0013, 0000, 3E04,6100
284 DATA 2342,6040,0479, 00D0, 0000, 3E08, 0489, 0000
285 DATA 00D0,0000, 3DF6, 33F9, 0000, 3E02, 0000, 3E10
286 DATA 6100, 20DC,33F9, 0000, 3E10,0000,3E02, 33FC
287 DATA 0013,0000, 3E04,6100, 230A, 5379, 0000, 3E04
288 DATA 6100,2300,6100, 2358, 6000, FDB6, 33FC, 0000
289 DATA 0000,3E02,33FC, 0004, 0000, 3E04,6100, 22E4
290 DATA 4CDF,78F8,4E75,48E7, 1F1E, 33FC, 0000, 0000
291 DATA 3E02,33FC, 0002, 0000, 3E04,6100, 2206, 207C
292 DATA 0000,31CD,6100, 1E54,267C, 0000, 317A, 363C
293 DATA 002D,101B,3F00,6100,231E,51CB, FFF6, 207C
294 DATA 0000,31E9,6100, 1E34,6100, 22F4, 6100, 2322
295 DATA B03C,0079,6706, BO3C , 0059, 6660, 3039, 0000
296 DATA 3B48,B07C,0400,6700,0440,323C,0001,3F01
297 DATA 3F39, 0000, 3DE6,3F39, 0000, 3DE2, 3F39, 0000
298 DATA 3DE4,3F39,0000, 3DE8,42A7, 2F3C,0000,AC1A
299 DATA 3F3C,0009, 4E4E,DFFC,0000,0014,4A40, 6834
300 DATA 6100,21BE,6100, 2298,6100,2210,207C, 0000
301 DATA 321B8,6100, 1DC6, 4CDF, 78F8,4E75, 6100, 21A2
302 DATA 207C,0000,31FB,6100, 1DB2,6100, 2272, 6100
303 DATA 22A0,60CC,3F00,6100, F56E,60C4, 3039, 0000
304 DATA 3DE8,3F39, 0000, 3DE8, 3F3C, 0007, 4E4D ‚588F
305 DATA 4A80,6608,3F00,6100, F54E, 6044, 2040, 33D8
306 DATA 0000,3E34,33D8, 0000, 3E36,33D8, 0000, 3E38
307 DATA 33D8, 0000, 3E3A, 33D8, 0000, 3E3C, 3308, 0000
308 DATA 3E3E,3308, 0000, 3E40,33D8,0000,3E42,33D8
309 DATA 0000,3E44,33D8, 0000, 3E4E, 33D8, 0000, 3E4E
310 DATA 4E75,3F39, 0000, 3DE8, 3F39, 0000, 3E3E, 3F39
311 DATA 0000,3E3C,2F3C, 0000, 5DFA,3F3C, 0002, 3F3C
312 DATA 0004,4E4D ,DFFC, 0000, OO0E ,4A40, 6B02, 4E75
313 DATA 3F00,6100,F4D2, 60F6, 3F39, 0000, 3DE8, 3039
314 DATA 0000,3E3C,E348,5240, 3F00, 3F39, 0000, 3E3A
315 DATA 2F3C,0000,3EBA, 3F3C,0002,3F3C, 0004, 4E4D
316 DATA DFFC,0000,000E, 4A40,6B802,4E75,3F00,6100
317 DATA F496,60F6, 3039, 0000, 3DEC,B07C, 0063, 6D06
318 DATA 303C,0000,6002,5240,33C0, 0000, 3DEC, 48C0

Anhang 497

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350:

351

352

353

354

355

356

357

358

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

80FC,000A,D03C ‚0030, 13C0,0000,391A, 4840
D03C, 0030, 13C0,0000,391B,6100, 1E50,4E75
3039, 0000, 3DEC,B07C, 0000, 6F04,5340, 6004
303c, 0063,33C0, 0000, 3DEC, 48C0, 80FC, 000A
DO3C, 0030, 13C0, 0000, 391A, 4840,D03C, 0030
13C0, 0000, 3918, 6100, 114, 4E75 , 3039, 0000
3DEE , BO7C, 0063 ‚6006 303C,, 0000, 6002, 5240
330, 0000, 3DEE , 48C0, 80FC, 000A ,D03C, 0030
13C0, 0000, 392B, 4840 ,D03C, 0030, 13C0, 0000
392C, 6100, 1DD8, 4E75 , 3039, 0000, 3DEE, BO7C
0000, 6F 04,5340, 6004 , 303C, 0063, 33C0, 0000
3DEE, 48C0, 80FC, 000A ,D03C, 0030, 13C0, 0000
392B , 4840,D03C, 0030, 13C0,0000,392C, 6100
1D9C, 4E75, 6100, FE36, 6100, FE98, 6100, FECA
6106, 6100, F32E, 4E75, 33FC, 0004, 0000, 3E04
33FC, 000A, 0000, 3E02, 6100, 2018, 207C, 0000
396D ,6100, 1BA6, 33FC, 002A, 0000, 3E50,33FC
0006, 0000, 3E04 ,33FC, 000C, 0000, 3E02, 6100
1FF2,207C, 0000, 358F ‚6100, 1880,6100,2010
3F39, 0000, 3E34,6100, 1€12,5279, 0000, 3E04
33FC, 000C, 0000, 3E02, 6100, 1FC8, 207C, 0000
35A4,6100, 1B56,6100, 1FE6,3F39, 0000, 3E36
6100, 1BE8, 5279, 0000, 3E04 ,33FC,000C, 0000
3£02,6100, 1F9E, 207C, 0000, 35BB, 6100, 1B2C
6100, 1FBC,3F39, 0000, 3E38,6100, 1BBE ‚5279
0000, 3E04,33FC, 000C, 0000, 3E02,6100, 1F74
207C,0000,35D1,6100, 1B02,6100, 192, 3F39
0000, 3E3A, 6100, 1894 ,5279 ‚0000 ‚3604 ,33FC
000C ‚0000 ,3E02,6100,1F4A,207C,0000 ,35EA
6100, 1AD8, 6100, 1F68, 3F39, 0000, 3E3C, 6100
1B6A,5279, 0000, 3E04, 33FC, 000C, 0000, 3E02
6100, 1F20,207C, 0000, 35FD, 6100, 1AAE , 6100
1F3E, 3F39, 0000, 3E3E, 6100, 1840,5279, 0000
3E04,33FC,000C, 0000, 3E02,6100, 1EF6, 207C
0000, 3618,6100, 1A84,6100, 1F14, 3F39, 0000
3E40,6100, 1B 16,5279, 0000, 3E04,33FC, 000C
0000, 3E02,6100, 1ECC, 207C , 0000, 3637, 6100
1A5A,6100, 1EEA, 3F39, 0000, 3E42,6100, 1AEC
5279, 0000, 3E04, 33FC, 000C , 0000, 3E02, 6100
1EA2, 207C, 0000, 364E, 6100, 1430, 6100, 1ECO

498 ATARI ST Floppy und Harddisk

359 DATA 3F39,0000,3E4E ,6100, 1AC2,5479, 0000, 3E04

360 DATA 33FC,000A,0000,3E02,6100,1E78,207C,0000

361 DATA 3662,3039,0000,3E4E,B07C,0002,6606,207C

362 DATA 0000,36A1,6100,19F4,6100, 1EB4,6100, 1EE2

363 DATA 6100, 1E28,6100, 1DCA,6100, 1E20,207C, 0000

364 DATA 3954,6100,19D6,4E75,6100,04AA, 50F9, 0000

365 DATA 043E,6100,0544,6100,04E8,6100,0688,6150

366 DATA 51F9,0000,043E,6100, 1E76,6100, IDEE,6100

367 DATA 1D90,6100,04CC,6100,04A0, 207C ,0000, 3B0E

368 DATA 6100, 1998,6100, 1E8A,6100,046A,6100,0550

369 DATA 6100,0486,6100,1DC4,6100, 1D66,6100, 1DBC

370 DATA 207C,0000,3B833,6100,1972,4CDF, 78F8,4E75

371 DATA 6100,0680,33FC,0190,00FF,8606,33FC,0090

372 DATA OOFF,8606,33FC,0190,00FF,8606,3C3C , 0004

373 DATA 6100,04A2,33FC,0184,00FF,8606,3C39,0000

374 DATA 3DE4,6100,0490,33FC,0180,00FF,8606,3C3C

375 DATA 00A0,6100,0480,2E3C,0005,0000,0839,0005

376 DATA OOFF,FAO1,6716,5387,66F2,3F3C,FFF7,6100

377 DATA FOD6,6100, 1D46,6100, 1CE8,4E75,6100,0466

378 DATA 3039,0000,3A2A,0800,0006,6602,4E75,3F3C

379 DATA FFF8,6100,F0B2,6100, 1D22,6100,1CC4,4E75

380 DATA 303C,0200,C0F9,0000,3E5A,33C0,0000,3E2E

381 DATA 3F39,0000,3E5A,3F39, 0000, 3DE6,3F39, 0000

382 DATA 3DE2,3F3C,0001,3F39,0000,3DE8,42A7,2F3C

383 DATA 0000,AC1A,3F3C,0008,4E4E,DFFC,0000,0014

384 DATA 4A40,6B06,6100,0136,4E75,3F00,6100, F058

385 DATA 6100, 1D4C,6100, 1D7A,6100,1CC0,207C,0000

386 DATA 32E7,6100,1876,6100, 1C4C, 60DC, 3039, 0000

387 DATA 3E5A,B079,0000, 3DEE ,6006, 303C ,0000, 6002

388 DATA 5240,33C0,0000,3E5A,48C0, 80FC,000A,D03C

389 DATA 0030,13C0,0000,32C1,4840,D03C, 0030, 13C0

390 DATA 0000,32C2,6100,19F6,4E75,3039,0000,3E5A

391 DATA B07C,0000,6F04,5340,6006,3039,0000,3DEE

392 DATA 33C0,0000,3E5A,48C0,80FC,000A,D03C,0030

393 DATA 13C0,0000,32C1,4840,D03C,0030,13C0,0000

394 DATA 32C2,6100,19B8,4E75,33FC,0000,0000, 3EA4

395 DATA 33FC,00D0,0000,3EA6,33FC,0012,0000,3E12

396 DATA 2039,0000,3DF6,90BC,0000,AC1A,80FC,0200

397 DATA 4840,4A40,670A,04B9,0000,0100,0000,3DF6

398 DATA 23F9,0000,3DF6,0000,3E60,33FC,0000,0000

Anhang 499

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

DATA 3E08,33FC,0014,0000,3E02,33FC,0002, 0000

DATA 3E04,6100,1BFE,207C,0000,322F ,6100,178C

DATA 6100, F674,6100,1BC4,6100, 1B66,6100, 1BBC

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

207C, 0000, 32E7, 6100, 1772, 6100, EED6, 6100
EED2,6100, 1BBA, 6100, 1B7E, 4E75, 33FC, 0000
0000, 3E08, 23FC, 0000, AC1A, 0000, 3DF6, 33FC
0000, 0000, 3E4C, 33FC, OOF, 0000,3E12,33FC
0002, 0000, 3E04,33FC,003B, 0000, 3E02,6100
1B92, 207C, 0000, 3317,6100, 1720, 4240, 303C
0001, 3F00,6100, 17B4, 207C, 0000, 3324, 6100
170A ,33FC, 0004, 0000, 3E04,33FC, 0000, 0000
3E02,6100, 1B5E,6100, 1B0E, 6100, 1BB2,6100
190E ,6100, 1888, 4840, BO3C , 0048, 672E, BO3C
0050, 6700, 0092,B03C,001C,6700, 00FC, BO3C
004B ,6710,B03C ,004D ,6702,60D6,6100,EE46

6000, 00E6,6100,EE1C, 6000, OODE , 3039, 0000

3E08,B07C,0000,6712,0479,0100,0000,3E08

0489,0000,0100,0000,3DF6,3039,0000,3E08

E048,E248,5240,33C0, 0000, 3EB4,33FC,0038B

0000 ,3E02,33FC,0002,0000,5E04,6100, 1AD4

207C ,0000,3317,6100, 1662 ,3F39,0000,3EB4

6100, 16F8,207C ,0000,3324,6100, 164E ,6100

1A24, 6000, FF5A, 3039, 0000, 3E08, 3239, 0000

3E2E ,927C,0100,B041,6712,0679,0100, 0000

3E08 , 0689, 0000,0100, 0000, 3DF6, 3039, 0000

3E08,E048,E248,5240,33C0,0000,3EB4 ,33FC

003B ,0000,3E02,33FC,0002,0000,3E04,6100

1A62,207C ,0000,3317,6100, 15F0,3F39, 0000

3EB4 ,6100, 1686, 207C ,0000,3324,6100, 15DC

6100, 19B2,6000, FEE8,6100, 1A94,4E75,2F0C

33FC,0002,0000,3E04,6100, 1A28, 6100, 19A2

207C,0000, 3328, 6100, 15B2,343C,0021,287C

0000,317A,101C,3F00,6100, 1A7C,51CA, FFF6

207C ,0000 , 3342, 6100, 1592,6100, 1A52,6100

1A80,B03C,0059,6706,B03C,0079, 6634, 3F39

0000, 3E5A,3F39, 0000, 3DE6,3F39, 0000, 3DE2

3F3C,0001,3F39,0000,3DE8,42A7,2F3C, 0000

AC1A,3F3C, 0009, 4E4E ,DFFC,0000,0014,4A40

6B1A,6100, 1986,6100,1928,6100, 197E,207C

0000,32E7,6100, 1534, 285F ,4E75,3F00,6100

500 ATARI ST Floppy und Harddisk

439 DATA ECF6,60E6, 2F3C, 0000, 0001, 3F3C, 0020, 4E41
440 DATA SC8F,4A40,6610,42A7, 3F3C, 0020,4E41,5C8F
441 DATA 23C0,0000,3E20,4E75, 2F3C,0000,0001,3F3C
442 DATA 0020,4E41,5C8F,4A40,670E, 2F39, 0000, 3E20
443 DATA 3F3C,0020,4E41,5C8F,4E75,51CF, FFFE,4E75
444 DATA 61B2,33FC, 0080, 00FF,8606,3C3C, 00D0,6124
445 DATA 3E3C,0028,61E4,4E75, 619A, 3639, OOFF, 8604
446 DATA 4E71,40E7,3F07,3E3C, 0028,51CF, FFFE, 3E1F
447 DATA 46DF,4E75,6100, FF7E,61E8,33C6, OOFF, 8604
448 DATA 61E0,4E75,6100, FF6E,61D8,33F9, OOFF, 8604
449 DATA 0000,3A2A,61CC,4E75, 6100, FF5A, 3039, 0000
450 DATA 3DE8,B07C, 0001, 6E34,5200, £308, 8079, 0000
451 DATA 3DE6,0A00,0007,C03C, 0007, 40E7,007C, 0700
452 DATA 13FC,000E, OOFF,8800, 1239, OOFF,8800,C23C
453 DATA OOF8,8200, 13C1,00FF, 8802, 46DF, 4E75,6100
454 DATA FF14,33FC, 0080, OOFF,8606, 103C,0007,61CA
455 DATA 4E75,6100, FFOO,42B9, 0000, 3E2A, 40F9, 0000
456 DATA 3EB4,46FC,2700,33FC, 0090, OOFF ,8606,33FC
457 DATA 0190, OOFF ,8606,33FC, 0090, OOFF , 8606, 3C3C
458 DATA 0016,343C,0200,C4C6,33C2, 0000, 3E2E ,D4BC
459 DATA 0000,AC1A, 23C2, 0000, 3E5C, 6100, FF38, 203C
460 DATA 0000,AC1A, 13C0, OOFF, 860D ,E088, 13C0, OOFF
461 DATA 860B,E088, 13C0, OFF, 8609, 33FC, 0080, OOFF
462 DATA 8606,3C3C, 00E8,6100, FFOC, 2E3C, 0005, 0000
463 DATA 2A79,0000,3E5C,303C, 0200,51C8, FFFE, 0839
464 DATA 0005, 00FF, FA01,672A,5387, 6756, 13F9, OOFF
465 DATA 8609,0000,3E2B, 13F9, OOFF,860B, 0000, 3E2C
466 DATA 13F9,00FF,860D ‚0000 ,3E2D ,BBF9, 0000, 3E2A
467 DATA 6ECC,33FC,0090, OOFF , 8606, 3A39, OOFF, 8606
468 DATA 33C5,0000,3E28,0805 , 0000, 6714, 33FC, 0080
469 DATA OOFF,8606,6100, FEAE, 46F9, 0000, 3EB4,4E75
470 DATA 60F6,60F4,6100, FEOE, 6142, 33FC, 0086, OOFF
471 DATA 8606,3C39, 0000, 3DE2,6100, FE7A, 33FC, 0080
472 DATA OOFF,8606, 3C3C,001B, 6100, FE6A, 2E3C, 0006
473 DATA 0000,5387,670C , 0839, 0005, OOFF, FA01, 66F2
474 DATA 4E75,3F3C, FFF9,6100, EABE , 4E75, 3C39, 0000
475 DATA 3A26,CC7C, 0003, 2E3C, 0005, 0000, 33FC, 0080
476 DATA OOFF,8606,6100, FE2E ,5387,670C, 0839, 0005.
477 DATA OOFF,FAO1,66F2,4E75, 3F3C, FFF9,6100, EA88
478 DATA 4E75,203C,0000,AC1A, 13CO, OFF, 8600, E088

Anhang 501

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

>00

501

502

503

504

505

506

507

508

>09

510

511

512

513

514

515

516

517

518

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

13C0 ‚OOFF ‚8608 ,E088,13C0 ‚OOFF ‚8609 ,4E75
48E7, 1F1E,6100, 16D4 ‚6100, 1676,6100, 16CC
207C, 0000, 32FA, 6100, 1282, 33FC, 0012, 0000
3E12,6100, FD50,50F9, 0000, 043E,6100, FDEA
6100, FD8E, 6100, FF2E, 6100, FE38,6100, FE34
6100, FD7E, 6100, FD52,6118,6100, FD28,6100
FEOE ,51F9, 0000, 043E, 6100, FD3E, 4CDF, 78F8
4E75 ,33FC, 0000, 0000, 3E08, 23FC, 0000, ACA
0000, 3DF6,33FC, 0012, 0000, 3E12, 33FC, 0064
0000, 3E14,33FC, 1E00, 0000, 3EA4, 33FC, 1ED0
0000, 3EA6,6100, 1658,6100, 161C, 6100, EEBC
6100, 16BC, 4E75, 6100, 1632,6100, 15D4, 207C
0000, 3BC0, 6100, 11E4,3039, 0000, 3DE8, BO7C
0002, 6E00, 008A, 6100, FCAC, 6100, FD4C, 6100
FCFO, 6100, FE90,6100, FE8C, 6100, FF06,611A
6100, FCDE, 6100, FCB2, 6100, 006E , 6100, FC86
6100, FD6C, 6100, FCA2, 4E75, 6100, FC78, 33FC
0090, OOFF , 8606, 33FC, 0190, OOFF, 8606, 33FC
0090, OOFF , 8606, 3C3C, 0001, 6100, FCD8, 33FC
0080, OOFF , 8606, 383C,0018,3C3C, 00C8, 2E3C
0004, 0000, 6100, FCBE, 0839, 0005, OOFF, FA01
6706 ,5387,6708,60F0,51CC, FFEO, 4E75, 3F3C
FFFA,6100,E912,4E75, 6100, 1580,6100, 1522
207C, 0000, 3854, 6100, 1132, 6100, 1582, 3A3C
0011,267C, 0000, AC1A, 383C, 0002, 3F3C, 0020
6100, 15F4, 1018, 3F00, 6100, 11B0, 3F3C, 0020
6100, 15E4,3F3C,0020,6100, 15DC,51CC, FFE6
3F3C, 0020, 6100, 1500, 3F3C,0020,6100, 15C8
101B, 4880 , 323C, 0080, B07C, 0000, 6718, 323C
0100,B07C, 0001, 670E ,323C, 0200, B07C, 0002
6704, 323C,0400,3F01,6100, 1160, 3F3C, 0020
6100, 1594, 207C, 0000, 3BB4, 6100, 10AE, 101B
3F00,6100, 1008, 101B, 3F00,6100, 1000 ,3F3C
000D ,6100, 1572, 3F3C, 000A, 6100, 156A, 51CD
FF68,6100, 157C,4E75, 6100, 14C0, 6100, 1462
33FC, 0014, 0000, 3E02, 33FC, 0002, 0000, 3E04
6100, 14D0, 207C ‚0000 ,322F ‚6100, 105E, 33FC
0200, 0000, 3EA4, 33FC, 02D0, 0000, 3EA6, 23FC
0000, AC1A, 0000, 3E60,6100,EF2C, 6100, 147C
6100, 141E, 6100, 1474, 207C, 0000, 3449, 6100

502 ATARI ST Floppy und Harddisk

519 DATA 102A,6100,E78E,6100,E78A,6100,E786,6100
520 DATA O3AA,4E75,3F3C, FFFF,3F3C, 000B, 4E4D , 588F
521 DATA 0800, 0000, 660C 0800, 0001 , 6606, 343C, 0001
522 DATA 6004,343C, 000A, 3039, 0000, 3DEA, 9042, BO7C
523 DATA 0000, 6002, 6006 , 3039, 0000, 3DF4,33C0, 0000
524 DATA 3DEA,48CO0, 80FC,03E8,D03C, 0030, 13C0,0000
525 DATA 3424,4840,48C0, 80FC, 0064 ,D03C, 0030, 13C0
526 DATA 0000,3425,4840,48C0, 80FC, 000A,D03C, 0030
527 DATA 13C0,0000,3426, 4840 ,D03C, 0030, 13C0, 0000
528 DATA 3427,6100, 1158, 4E75, 3F3C, FFFF,3F3C,000B
529 DATA 4E4D,588F ,0800, 0000, 660C, 0800, 0001, 6606
530 DATA 343C,0001, 6004, 343C, 000A, 3039, 0000, 3DEA
531 DATA D042,B079, 0000, 3DF4, 6004, 303C, 0000, 33C0
532 DATA 0000,3DEA, 48C0, 80FC, 03E8,D03C, 0030, 13C0
533 DATA 0000,3424,4840,48C0, 80FC, 0064 ,D03C, 0030
534 DATA 13C0,0000,3425,4840,48C0, 80FC, 000A,D03C
535 DATA 0030, 13C0, 0000, 3426, 4840, DO3C, 0030, 13C0
536 DATA 0000,3427,6100, 10D6, 4E75, 3039, 0000, 3DEA
537 DATA 33C0,0000,3E52,6148, 3039, 0000, 3E54,4A40
538 DATA 6722,B07C, OFF8,6C1C,5340, 33C0, 0000, 3DEA
539 DATA 23FC,0000, 0003, 0000, 3DDA, 6100, FF4C, 6100
540 DATA 015A,4E75,6100, 1314, 3F3C, FFED ,6100, £698
541 DATA 6100, 1308, 207C, 0000, 3449, 6100, OEBE, 60E2
542 DATA 207C,0000, 5DFA, 3039, 0000, 3E52, 323C, 0003
543 DATA C2C0,E249,0800,0000,6616, 1030, 1001,£148
544 DATA 8030, 1000,C07C, OFFF,33C0,0000,3E54,6016
545 DATA 1030, 1001,E148, 1030, 1000, £848, CO7C, OFFF
546 DATA 33C0,0000,3E54,4E75,48E7, 1C1C,33FC, 0000
547 DATA 0000,3E02,33FC, 0002, 0000, 3E04,6100, 1204
548 DATA 207C,0000,3572,6100,0E52, 267C,0000,317A
549 DATA 363C,0009, 1018, 3F00,6100, 131C,51CB, FFF6
550 DATA 267C,0000,341C,363C,000C, 101B,3F00, 6100.
551 DATA 1306,51CB, FFF6,207C, 0000, 31E9,6100, 0E1C
552 DATA 6100, 12DC, 6100, 130A, B03C 0079, 6706, BO3C
553 DATA 0059, 6660,3F39, 0000, 3DE8, 3039, 0000, 3DEA
554 DATA 5540,C1F9, 0000, 3E36,D079, 0000, 3E40, 3F00
555 DATA 3F39,0000,3E36, 2F3C, 0000, AC1A, 3F3C, 0003
556 DATA 3F3C,0004,4E4D ,DFFC, 0000, 000E,4A40,6B1C
557 DATA 6100, 1208,6100, 11AA, 6100, 1200, 207C, 0000
558 DATA 3449,6100, ODB6, 4CDF, 3838, 4E75, 3F00, 6100

Anhang 503

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

E576,60DC,6100,11E4,6100, 1186,6100, 11DC

207C,0000,31FB, 6100, 0092 ,6100, 1252, 6100

1280,6100,116C,60B8,4E75,48E7,1F1E,3F39

0000,3DE8,3039,0000,3DEA,5540,C1F9,0000

3E36,D079,0000,3E40,4A40,6A04 ,303C , 0000

33C0,0000,3E58,3F00,3F3C,0002,2F3C,0000

AC1A,3F3C,0000,3F3C,0004,4E4D,DFFC,0000

000E ,‚4A40,6B5C,3039,0000,3E58,81FC,0009

4840 ,5240,33C0,0000,3DE4 ,4840,3400,33FC

0000,0000,3DE6,3239,0000,3E4E ,B27C,0002

6610,E248,0802,0000,6708,33FC,0001,0000

3DE6,33C0,0000,3DE2,612A,6100,007E ,6100

112A,207C,0000,3449,6100,0CEO,4CDF,78F8

4E75,6100,EF38,4A80,6600,FF54,3F00,6100

E496,60DA,3039,0000,3DE6,D03C,0030,13C0

0000,318C,3039,0000,3DE4,48C0,81FC,000A

DO3C, 0030, 13C0,0000,31A4,4840,D03C , 0030

13C0,0000,31A5,3039,0000,3DE2,48C0,81FC

000A,D03C,0030,13C0,0000,3197,4840,DO3C

0030, 13C0,0000,3198,4E75,33FC,0000,0000

3E08,33FC,0012,0000,3£12,33FC,003F ,0000

3E14,23FC,0000,AC1A,0000,3DF6,33FC,0200

0000, 3EA4 ,33FC,02D00,0000,3EA6,6100, 1090

6100, 1054 ,33FC,0000,0000,3E02,33FC,0018

0000,3E£04,6100, 108C,207C,0000,345E ,6100

OC1A,6100,E806,4E75,48E7,1F1C,6100,EE6E

6100,EEDO,6100,EF02,33FC,0000,0000,3E02

33FC,0002,0000,3E04,6100, 1058,207C,0000

34CF ,6100, 0BE6,33FC,0011,0000,3E12,6100

OFB4,267C ,0000,3EBA, 284B, 23CB,0000, 3DF6

23CB,0000,3DFA,6100,1016,6100,027E ,6100

100E ,23FC,0000,3EBA,0000,3DF6,6100,0F6E

6100,0334 ,6100,0F72,6100,1042,4840,BO3C

001C,6700,0182,B03C,0048,6724,BO3C, 0050

6700, O0AA,B03C,004B,670E,B03C,004D ‚66D8

6100, £302 ,6000,0144,6100,E2D8,6000,013C

3039 ,0000,3E04,B07C ,0004,6F30,33FC,0000

0000, 3£02,6100,0FBC,6100,02DC,5379, 0000

3E04 ,33FC, 0000, 0000, 3E02,6100, 0FA6,6100

OEFC,6100,02C2,6100,0F00,604C, 0CB9, 0000

504 ATARI ST Floppy und Harddisk

599 DATA 3EBA,0000,3DF6,6740, 2039, 0000, 3DF6, 3039
600 DATA 0000,3E12,5240,C1FC,0020,9189, 0000, 3DF6
601 DATA 6100,01C8, 33FC, 0015, 0000, 3E04, 33FC, 0000
602 DATA 0000,3E02,6100,0F5C, 6100, 0EB2, 6100, 0278
603 DATA 6100, 0EB6,6100, OFA8, 6000, FF3E, 3039, 0000
604 DATA 3E04,B07C,0014,6E50,3039, 0000, 3E04,5240
605 DATA 5940,48C0,EB88, 2C79, 0000, 3DF6, 1036, 0800
606 DATA 6700,0084,33FC, 0000, 0000, 3E02,6100, 0F14
607 DATA 6100,0234,5279, 0000, 3E04,33FC, 0000, 0000
608 DATA 3E02,6100, 0EFE,6100,0E54,6100,021A,6100
609 DATA 0E58,6100, OEEE, 604E , 3039, 0000, 3E04,5240
610 DATA 5940,48C0,EB88, 2C79, 0000, 3DF6, 1036, 0800
611 DATA 6734,3039, 0000, 3E12,5240,C1FC, 0020, DOB9
612 DATA 0000,3DF6,23C0, 0000, 3DF6, 6100, OEA2, 6100
613 DATA 010A,6100, 0E9A,6100,0E04,6100,01CA,6100
614 DATA 0E08,6100, OFFA, 6000, FE90, 6100, OE6E, 6100
615 DATA 0E10,6100, 0E66, 207C, 0000, 3449, 6100, OAIC
616 DATA 4CDF,38F8, 4E75, 2079, 0000, 3DF6, 3039, 0000
617 DATA 3E€04,5940,48C0, EB88, 1230, 0808, B23C, 0010
618 DATA 6726,3039, 0000, 3E56,5340,33C0, 0000, 3DEA
619 DATA 23FC,0000,0003,0000,3DDA, 6100, FASC, 60AA
620 DATA 6100,ECD6, 6000, 0086, 4A79, 0000, 3E56, 67F0
621 DATA 3039,0000, 3E56, 23FC, 0000, 3EBA, 0000, 3EB6
622 DATA 4243,3039, 0000, 3E56, 3F39, 0000, 3DE8, 5540
623 DATA C1F9,0000, 3E36,D079, 0000, 3E40, 3F00, 3F3C
624 DATA 0002, 2F39, 0000, 3EB6, 3F3C, 0002, 3F3C, 0004
625 DATA 4E4D,DFFC,0000,000E , 440, 6834, 0689, 0000
626 DATA 0400,0000, 3EB6, 33F9, 0000, 3E56, 9000, 3E52
627 DATA 6100, FAAE, 3039, 0000, 3E54,33C0, 0000, 3E56
628 DATA 4A40,6708,B07C, OFF8,6C02, 6096, 6000, FD4A
629 DATA 3F00,6100,E112,6000, FF12, 33FC, 0000, 0000
630 DATA 3E4A,6100, 0D8A,6100, OD4E, 2A79, 0000, 3DF6
631 DATA 3E39,0000, 3E12, 103C, 0020, 3F00, 6100, ODF8
632 DATA 103C,0020,3F00,6100, ODEE, 4284, 3C3C, 0009
633 DATA 1035,4800,6700 , 0086 , 5284 ,3F00, 6100, 0008
634. DATA 1035,4800,5284,3F00,6100,0DCC,51CE, FFF2
635 DATA 33FC,0014,0000,3E50,6100,0D74,6100, 015E
636 DATA 33FC,0028, 0000, 3E50,6100,0D64,6100, OODC
637. DATA 33FC,0037,0000,3E50,6100,0D54,6100,0104
638 DATA 33FC,0000, 0000, 3E02,5279, 0000, 3E04, 6100

Anhang 505

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

0D12,DBFC, 0000, 0020,51CF, FF7C,33FC, 0000
0000, 3E02,33FC, 0018, 0000,3E04,6100, OCF4
207C , 0000, 3520,6100, 0882, 4E75, 33FC, 0001
0000, 3E4A,60D6, 2679, 0000, 3DF6, 33FC, 0000
0000, 3E4A, 3639, 0000, 3E04, 5943, 48C3, EB8B
183C,0020,3F04,6100, OD2E, 3F04,6100, 0D28
1033, 3800, 674A, 3F00, 6100, 0D1C,5283, 3C3C
0009, 1033, 3800, 5283, 3F00,6100, OD0A, 51CE
FFF2,33FC,0014, 0000, 3E50,6100, 0CB2,6100
009C,33FC, 0028, 0000,3E50,6100, 0CA2, 611A
33FC, 0037,0000,3E50,6100,0C94,6144, 4E75
33FC,0001,0000,3E4A, 60F4, 103C, 0020, 3F00
6100, 0CC4,3039, 0000, 3E04,5940,48C0, EB88
1233, 081B,E149, 1233, 081A, 33C1, 0000, 3E56
3F01,6100, 0866, 103C, 0020, 3F00,6100, 0098
4ET5 ‚3639 , 0000, 3E04,5943,48C3, EB8B, 4281
2679, 0000, 3DF6, 1233, 381F,£189, 1233, 381E
E189, 1233, 381D, E189, 1233, 381C, 2F01,6100
O8B2,3F3C,0020,6100, OC5E ‚4E75 ‚3639 ‚0000
3604 ,5943 ‚4803 ‚EB8B ‚2679, 0000, 3DF6, 1233
3800 ,B23C ‚0065 ‚6758, 1233 ‚3808 ,B23C ‚0010
672A ‚B23C ,0001,6730 ,B23C , 0002, 6736, B23C
0008 ,670C ,207C ‚0000 ,36F1,6100,,073E ‚4E75
207C ‚0000 ,3735 ‚6100 ,0732,60F2,207C,,0000
36E0, 6100, 0726, 60E6, 207C, 0000, 3702, 6100
071A, 60DA, 207C, 0000, 3713,6100, O70E ‚60CE
207C, 0000, 3724, 6100, 0702, 60C2,6100, 0B3C
6100, OADE, 6100, OBB8, 207C ‚0000 ,37E4 ‚6100
O6EA, 3F39, 0000, 3DE2,6100, 0780, 207C, 0000
382E , 6100, 0606, 3F39, 0000, 3DE6, 6100, 076C
207C , 0000, 3839, 6100, 06C2, 3F39, 0000, 3DE8
6100, 0758, 207C, 0000, 37EF,6100, 06AE ‚6100
OBAO,B03C, 0079, 671£, B03C, 0059, 6718, 6100
0A80,6100, 085A, 207C, 0000, 380C, 6100, 068C
6100, OB7E , 603E, 3F3C, E5E5, 2F3C, 8765, 4321
3F3C, 0001, 3F39, 0000, 3DE6,3F39, 0000, 3DE2
3F39, 0000, 3E5A, 3F39, 0000, 3DE8,42A7, 2F3C
G000, 703A, 3F3C, OOOA, 4E4E ,DFFC, 0000, 001A
4A40,6B1C, 6100, 0A84,6100,0A26,6100, 0A7C
207C, 0000, 37CA, 6100, 0632, 6100, DDB8, 4E75

506 ATARI ST Floppy und Harddisk

679 DATA 3F00,6100,DDF2,60DC, 33FC, 0001, 0000, 3A24
680 DATA 247C,0000, 7D3A, 3039, 0000, 3B4A, 3E3C, 004E
681 DATA 6100,00D4, 3039, 0000, 3B4C, 3E3C, 0000, 6100
682 DATA 00C6,303C, 0003, 1E3C,00F5,6100,00BA, 14FC
683 DATA OOFE,3039, 0000, 3DE2, 14C0, 3039, 0000, 3DE6
684 DATA 14C0,3039, 0000, 3A24, 14C0,3039, 0000, 3B48
685 DATA BO7C,0400,671E,B07C,0200,6712,B07C, 0100
686 DATA 6706,323C,0000,6010,323C, 0001, 600A,323C
687 DATA 0002, 6004,323C, 0003, 14C1, 14FC, OOF7, 3039
688 DATA 0000,3B4E, 3E3C, 004E ,615C,3039, 0000, 3B4C
689 DATA 3E3C,0000,6150,303C, 0003, 3E3C, 00F5, 6146
690 DATA 14FC,00FB, 3039, 0000, 3B48, 1E3C, 00E5, 6136
691 DATA 14FC,00F7,3039, 0000, 3B50,3E3C, 004E, 6126
692 DATA 3039,0000,3A24,5240,33C0, 0000, 3A24,B079
693 DATA 0000,3E5A, 6F00, FF3E, 3039, 0000, 3852, 3E3C
694 DATA 004E,6102,4E75,5340, 14C7,51C8, FFFC,4E75
695 DATA 203C,0000, 7D3A, 13CO, OOFF , 860D , E088, 13C0
696 DATA OOFF,860B,E088, 13C0, OOFF,8609,4E75,33FC
697 DATA 0190, 00FF,8606,33FC,0090, OOFF, 8606, 33FC
698 DATA 0190, 00FF,8606,3C3C, 001F,6100, F048,33FC
699 DATA 0180, 00FF,8606,3C3C, 00F8, 6100, F038, 2E3C
700 DATA 0006,0000,5387,670C , 0839, 0005, OOFF, FA01
701 DATA 66F2,4E75,3F3C, FFE8, 6100 ,DC8C, 4E75 , 48E7
702 DATA 1F1E,6100, 08F6, 6100, 0898, 207C, 0000, 3845
703 DATA 6100,04A8, 6100, 0968, 6100, 0996, B03C, 0079
704 DATA 6708,B03C, 0059, 6600, 0064,6100, EF68, 50F9
705 DATA 0000,043E,6100, F1CC, 6100, EFFE, 6100, EFA2
706 DATA 6100,F142,6100, FO4C, 6100, FF46,6100, FE4A
707 DATA 6100, F132, 6100, FF58,6100,0924,6100,089C
708 DATA 6100, 083E,6100,EF7A, 6100, EF4E, 207C, 0000
709 DATA 388D,6100,0446,6100,0938,6100,EF18,51F9
710 DATA 0000,043E ,6100,EFF8,6100 ,EF2E ‚6100 ,086C
711 DATA 6100,080E , 6100, 0864 ,207C ‚0000 ,3AD0 ‚6100
712 DATA 041A, 4CDF, 78F8, 4E75,BO7C, 0063, 6D06, 303C
713 DATA 0000, 6002,5240, 4E75 , 3039, 0000, 3B4A, 61E8
714 DATA 33C0,0000,3B4A, 80FC, 000A ,D03C, 0030, 13C0
715 DATA 0000,3A87,4840,D03C , 0030, 13C0, 0000, 3A88
716 DATA 6100,059A, 4E75, 3039, 0000, 3B4C, 61BA, 33C0
717 DATA 0000,3B4C, 80FC, 000A,D03C , 0030, 13C0, 0000
718 DATA 3A92,4840,D03C, 0030, 13C0, 0000, 3A93, 6100

Anhang 507

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

056C, 4E75, 3039, 0000, 3B4E,618C, 33C0, 0000
3B4E, 80FC, 000A, D03C, 0030, 13C0, 0000, 3A9D
4840 ,D03C, 0030, 13C0, 0000, 3A9E, 6100, 053E
4E75 ,3039,0000,3850,6100, FF5E, 33C0, 0000
3B50, 80FC, 000A ,D03C, 0030, 13C0, 0000, 3AA8
4840 ,D03C, 0030, 13C0, 0000, 3AA9, 6100, 050E
4E75, 3F3C, FFFF,3F3C,000B, 4E4D , 588F , 323C
000A, 0800, 0000, 660A , 0800, 0001, 6604 ,323C
0001 , 3039, 0000, 3852,D041,B07C, 03E7, 6F04
303c,0000,33C0,0000,3852, 48C0, 81FC, 0064
DO3C, 0030, 13C0, 0000, 3AB3, 4840, 48C0,81FC
000A ,D03C, 0030, 13C0, 0000, 3AB4, 4840, DO3C
0030, 13C0,0000, 3AB5, 6100, 04A2,4E75,B07C
0000, 6F04,5340, 6004, 303C , 0063, 4E75 , 3039
0000, 3B4A,61E8, 33C0, 0000, 3B4A, 80FC, 000A
D03C ,0030, 13C0, 0000, 3A87, 4840, D03C, 0030
13C0, 0000, 3A88, 6100, 0464, 4E75, 3039, 0000
3B4C,61BA, 33C0, 0000, 3B4C, 80FC, 000A ,DO3C
0030, 13C0, 0000, 3A92, 4840 ,D03C, 0030, 13C0
0000, 3A93,6100, 0436, 4E75 , 3039, 0000, 3B4E
618C,33C0, 0000, 3B4E, 80FC, 000A, DO3C ‚0030
13C0, 0000, 3A9D ,4840, D03C, 0030, 13C0, 0000
ZA9E , 6100, 0408, 4E75 , 3039, 0000, 3850,6100
FF5E,33C0, 0000, 3850, 80FC, 000A ,D03C, 0030
13C0, 0000, 3AA8, 4840, D03C, 0030, 13C0, 0000
3AA9, 6100, 03D8, 4E75, 3F3C, FFFF, 3F3C, 000B
4E4D , 588F ,323C, 000A, 0800, 0000, 660A, 0800
0001, 6604, 323C, 0001, 3039, 0000, 3852, 9041
6A04,303C, 03E7, 33C0, 0000, 3852, 48C0,81FC
0064 ,D03C, 0030, 13C0, 0000, 3AB3, 4840, 48C0
81FC,000A,D03C, 0030, 13C0, 0000, 3AB4 , 4840
D03C, 0030, 13C0, 0000, 3A85 , 6100, 0370, 4E75
3039, 0000, 3848, BO7C , 0080, 6732, B07C,0100
6752, B07C, 0200, 6772, 303C, 0080, 13FC, 0030
0000, 3AC3, 13FC, 0031, 0000, 3AC4, 13FC, 0032
0000, 3AC5, 13FC, 0038, 0000, 3AC6,6070, 303C
0100, 13FC, 0030, 0000, 3AC3, 13FC, 0032, 0000
3AC4, 13FC, 0035, 0000, 3AC5, 13FC, 0036, 0000
3AC6, 604A, 303C, 0200, 13FC, 0030, 0000,3AC3
13FC, 0035, 0000, 3AC4, 13FC, 0031, 0000, 3AC5

508 ATARI ST Floppy und Harddisk

759 DATA 13FC,0032,0000,3AC6, 6024, 303C, 0400, 13FC
760 DATA 0031,0000,3AC3, 13FC, 0030, 0000, 3AC4, 13FC
761 DATA 0032,0000,3AC5, 13FC, 0034, 0000, 3AC6,33C0
762 DATA 0000,3B48, 6100, 02B6, 4E75, 3039, 0000, 3348
763 DATA BO7C,0080,6732,B07C, 0100, 6752, B07C, 0200
764 DATA 6772,303C, 0200, 13FC, 0030, 0000, 3AC3, 13FC
765 DATA 0035,0000,3AC4, 13FC, 0031, 0000, 3AC5, 13FC
766 DATA 0032,0000,3AC6, 6070, 303C, 0400, 13FC, 0031
767 DATA 0000,3AC3, 13FC, 0030, 0000, 3AC4, 13FC, 0032
768 DATA 0000,3AC5, 13FC, 0034, 0000, 3AC6,604A,303C
769 DATA 0080, 13FC, 0030, 0000, 3AC3, 13FC, 0031, 0000
770 DATA 3AC4,13FC,0032,0000,3AC5, 13FC, 0038, 0000
771 DATA 3AC6,6024,303C,0100, 13FC, 0030, 0000, 3AC3
772 DATA 13FC,0032,0000,3AC4, 13FC, 0035, 0000,3AC5
773 DATA 13FC,0036,0000,3AC6, 33C0, 0000, 3B48,6100
774 DATA O1FC,4E75, 2079, 0000, 3EA8, 317C, 0000, 0026
775 DATA 317C,0014,0028,317C,027F , 002A,317C,0001
776 DATA 0018,317C, 0000, 0024,217C, 0000, 3DD0,002E
777 DATA 317C,0000, 0032, A004, 4E75, 2F08,3F3C, 0009
778 DATA 4E41,5C8F,4E75, A000, 23C8, 0000, 3EA8,317C
779 DATA 0000,0020,317C, FFFF,0022,317C, 0000, 0024
780 DATA 317C,0001,0018,4E75, 61DC, 4E75 , 322F ‚0004
781 DATA C27C, OOFF,33C1, 0000, 3EB0, E849, 4881, C27C
782 DATA OOFF,B27C, 0009, 6E04, 6120, 6002,6132,3239
783 DATA 0000,3E80,C27C ‚000F ,B27C, 0009, 6E04,610A
784 DATA 6002,611C,205F ,548F , 4ED0,D27C, 0030,3F01
785 DATA 3F39,0000,3A1C, 3F3C, 0003, 4E4D, SC8F, 4E75
786 DATA 927C,000A,D27C,0041,3F01, 3F39,0000,3A1C
787 DATA 3F3C,0003,4E4D , SC8F , 4E75, 33FC, 0000, 0000
788 DATA 3E48,362F,0004,48C3,87FC, 2710,6708, 33FC
789 DATA FFFF,0000,3E48,614E, 4843, 48C3,87FC,03E8
790 DATA 6708,33FC, FFFF,0000, 3E48, 613A,4843,48C3
791 DATA 87FC,0064,6708,33FC, FEFF, 0000, 3E48,6126
792 DATA 4843,48C3,87FC, 000A, 6708, 33FC, FFFF, 0000
793 DATA 3E48,6112,4843,33FC, FFFF, 0000, 3E48, 6106
794 DATA 205F,548F,4ED0,4A79, 0000, 3E48, 6608, 103C
795 DATA 0020,3F00,6006,D63C, 0030, 3F03,6100, 03B8
796 DATA 4E75,33FC, 0000, 0000, 3E48, 262F ,0004, 2803
797 DATA 87FC,2710,48C3,87FC, 000A, 3A03, 4A43, 6708
798 DATA 33FC,FFFF,0000,3E48,61BC, 3605, C7FC, 000A

Anhang 509

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

C7FC,2710,9883 , 2604, 87FC, 2710, 6708, 33FC
FFFF, 0000, 3E48,619E, 4843, 48C3, 87FC, 03E8
6708, 33FC, FFFF, 0000, 3E48, 618A, 4843, 48C3
87FC, 0064,6708, 33FC, FFFF, 0000, 3E48,6100
FF76, 4843, 48C3,87FC, 000A, 6708, 33FC, FFFF
0000,3E48, 6100, FF60,4843, 33FC, FFFF, 0000
3E48, 6100, FF52, 205F ‚588F , 4EDO, 33FC, 0000
0000, 3E02,33FC, 0000, 0000, 3E04, 6100, 0294
2079, 0000, 3DD2, 2C39, 0000, 3DDA, 5386, 670C
5386, 205E, 6100, FE14,51CE, FFF8, 6100, 01CE
205E , 6100, FE06, 6100, 01D0, 2E39, 0000, 3DD6
9EB9, 0000, 3DDA, 670C, 5387, 205E, 6100, FDEC
51CF, FFF8,6100, FDAE,6100,01BA, 4E75, 48F9
38F8, 0000, 3E64, 2879, 0000, 3DF6, 2A4C, 33F9
0000, 3E08, 0000, 3E06, 363C, OOOF , 3803, 3A39
0000, 3E12,33FC, 0004, 0000, 3E04,33FC, 0004
0000, 3E0A, 33FC, 0000, 0000, 3E02,6100, 0204
33FC, 0000, 0000, 3E02, 33F9, 0000, 3E0A, 0000
3E04, 3604, 6100, 01EC, 6146, 6168, 3604, 284D
33FC, 003B, 0000, 3E02, 33F9, 0000, 3E0A, 0000
3E04,6100,01CE, 6100, 0072,DBFC, 0000, 0010
5279, 0000, 3E0A, 0679, 0010, 0000, 3E06,51CD
FFBO, 6100, 020A, 4CF9, 38F8, 0000, 3E64,4E75
3039, 0000, 3E06, EOE, 3F06, 6100, FD60 ,3F39
0000, 3E06, 6100, FD56, 1C3C, 003A, 3F06,6100
01F6,4E75, 3F3C, 0020,6100, O1EC, 3F3C, 0020
6100, 01E4, 1E1C, 3F07, 6100, FD32, 3F3C, 0020
6100,01D4,51CB, FFEE,4E75, 1E3C, 003A, 3F07
6100,01C4,3F3C,0020,6100,01BC, 1E1C, BE3C
0020, 6E04, 1E3C, 002E , 4887, CE7C, OOFF ‚3F07
6100,01A4,51CB, FFE6, 4E75 , 33F9, 0000, 3E02
0000,3E10,33FC, 0000, 0000, 3E02,6100,0114
33F9, 0000, 3E10, 0000, 3E02, 363C, OOOF , 3803
2879, 0000, 3DF6, 4280, 3039, 0000, 3E04,5940
E948, 3200,D079, 0000, 3E08, 33C0, 0000, 3E06
48C1,D9C1,2A4C, 6100, FF38,6100, FF58, 33F9
0000, 3E02, 0000, 3E10,33FC, 0038, 0000, 3E02
6100, 00C0, 3604, 284D ‚6100, FF60, 33F9, 0000
3E10, 0000, 3E02, 6100, OOAA, 4E75, 207C, 0000
3B8E ‚6100, FC36, 4E75, 207C, 0000, 3891, 6100

510 ATARI ST Floppy und Harddisk

839 DATA FC2A,4E75,207C, 0000, 3888, 6100, FCIE, 4E75
840 DATA 207C,0000, 3BA8, 6100, FC12, 4E75, 207C, 0000
841 DATA 3B9C,6100, FC06,4E75, 207C, 0000, 3B99, 6100
842 DATA FBFA,4E75,3F3C,001C,6100, OOCC, 3F3C, 000A
843 DATA 6100,00C4,4E75,207C, 0000, 3888, 6100, FBDC
844 DATA 4E75,207C,0000,3BB1,6100, FBDO, 4E75, 207C
845 DATA 0000,3BAE,6100, FBC4,4E75 , 33FC, OO1E, 0000
846 DATA 3E02,33FC,0002, 0000, 3E04,6116,4E75, 33FC
847 DATA 0000,0000, 3E02,33FC, 0004, 0000, 3E04,6102
848 DATA 4E75,207C, 0000, 3894, 5488, 3039, 0000, 3E04
849 DATA DO7C,0020, 10C0, 3039, 0000, 3E02,D07C , 0020
850 DATA 10C0,207C,0000,3B94,6100, FB70,4E75 , 33F9
851 DATA 0000,3E50,0000,3E02,61C8, 4E75 ‚3F3C ‚0002
852 DATA 3F3C,0001,4E4D , 588F ,4A40, 6AOE, 3F3C, 0002
853 DATA 3F3C,0002,4E4D, 588F , 4E75, 7000, 4E75, 3F3C
854 DATA 000B,4E41,548F,4A40, 670A, 3F3C,0007,4E41
855 DATA 548F ‚60EA,4E75 ‚302F ,0004, 3F00,3F39, 0000
856 DATA 3A1C,3F3C,0003,4E4D, 5C8F, 205F ‚548F ‚4EDO
857 DATA 3F3C,0001,4E41,548F, 4E75 ,61F4,23C0, 0000
858 DATA 3EAC,B03C,0066,6E00, 0078, BO3C, 0061, 6D0A
859 DATA 903C,0061,D03C, 000A, 6010, BO3C, 0030, 6D60
860 DATA B03C,0039,6E60,903C, 0030,E948,33C0, 0000
861 DATA 3EB0,61BC, 23C0, 0000, 3EAC, BO3C, 0066, 6E40
862 DATA B03C,0061,6D0A,903C, 0061,D03C, 000A, 6010
863 DATA B03C,0030,6D2A,B03C, 0039, 6£40,903C, 0030
864 DATA 3239,0000,3EB0,8041, 4880, CO7C, OOFF,33C0
865 DATA 0000, 3EB2, 206F ,0004, 3080, 205F, 588F,4EDO
866 DATA 303C, FFFF,60EE,B03C, 0046, 6EF4,B03C,0041
867 DATA 6DEE,903C, 0041 ,D03C, 000A, 608E ‚BO3C ‚0046
868 DATA 6EDE,B03C,0041,6DD8, 903C, 0041,D03C, 000A
869 DATA 60AE,0000, 0290, 0000, 02DA, 0000, 0320, 0000
870 DATA 0374,0000,03C2,0000, 0456, 0000, 0186,0000
871 DATA 302E,0000, 3038, 0000, 3046, 0000,3050,0000
872 DATA 305B,0000,306E , 0000, 307A, 2020,5452,4143
873 DATA 4B20, 2000, 2054, 5241, 434B, 2F53,594E ,4353
874 DATA 2000,2053,4543,544F ‚5220 ,2000 ,2043 ‚4055
875 DATA 5354 ‚4552, 2020 ,0020 ,464F ‚524D ‚4154 ‚2020
876 DATA 0020,2046,4154 ,5320 ,2000,,2020 ,4F50,5449
877 DATA 4F4E,5320, 2000, 2020, 454E, 4445, 2020, 0018
878 DATA 7020,2041,204C,4954,544C,4520,4449,534B

Anhang 511

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

2055 ,5449 ,4049 ,5459,2020,2028,4329,2055

2E20 ,4272,6175,6E20,3139, 3836, 2020, 1871

001B, 7020, 2020, 2020,4441 ,5441, 2042, 4543

4B45 ,5220,464C,4F50,5059,2042,5543 ,4820

469A ,5220,4154,4152,4920,5354, 2020, 2020

1B71,001B, 7020, 2020, 2020,5365 ,6C65 ,6374

204D ,656E , 7565, 2049, 7465, 6D73, 2077, 6974

6820 ,4375, 7273 ,6F72,2D4B, 6579, 7320, 2020

2020, 1B71,0000,0000,049C ,0000,04F4, 0000

054C ,0000, 05C8 ,0000 , 0644 ,0000, OBCA, 0000

088E ,0000, 0254 ,0000,04C8 ,0000, 0520, 0000

058A, 0000, 0606, 0000, 0644 ,0000, OBCA, 0000

088E , 0000, 0254 ,0000,317A,0000, 3185 , 0000

318F ,0000,319B ,0000,31A8,0000,31B1,0000

31BB,0000,31C4, 2064, 7269, 7665, 3A20, 3020

0020, 7369 , 6465 ,3A20, 3020, 0020, 7472 ,6163

6B3A, 2050, 3020, 0020, 7365 ,6374,6F72,3A20

3031, 2000, 2020,5245,4144,2020,0020, 2057

5249 ,5445 , 2020, 0020, 2045 ,4449,5420, 2000

2020 ,4241,434B,2020,001B, 7020,5772,6974

6520, 7468 6973 ,2053,6563, 746F , 7220, 746F

3A20,1871,001B, 7020, 203C, 7965, 732C, 6E6F

3E20,3F20,1B71,001B, 7020, 4E6F , 7420, 7772

6974 , 7465 ,6E2E,2020,3C70, 7265, 7373, 2068

6579, 3E20, 1B71 ,001B, 7020, 2053, 4543, 544F

5220, 4D4F ,4445, 2020, 1B71,001B, 7020, 2045

4449 ,5420,4D4F,4445,3A20,203C,2072,6574

7572, 6E20,3E20,3A3D, 2045, 4544 ,4520, 1B71

0000,0000,049C,0000,04F4,0000,054C,0000

11D0,0000, 1164,0000,1472,0000, 124C,0000

0254,0000,04C8,0000,0520,0000,058A,0000

120E ,0000, 1164,0000, 1472,0000, 124C,0000

0254,0000,317A,0000,3185,0000,318F ,0000

32B6,0000,32C5 , 0000, 32CD ,0000,32D5 , 0000

32E0, 2053, 6563, 2F54, 7261, 635A, 2030,3920

0020,5245,4144,2020,0020,5752,4954 ,4520

0020,4544 ,4954 ,2054 ,722E ‚2000, 2042,4143

4B20 ,001B8, 7020, 2054 ,5241 ,434B, 204D ,4F44

4520,201B, 7100, 1B70,2020,5452,4143,4B20

5749 ,5448, 2053, 594E ,4353, 204D ,4F44,4520

512 ATARI ST Floppy_und Harddisk

919 DATA 1B71,001B, 7020, 2053, 6563, 746F, 723A, 2000
920 DATA 201B,7100, 1B70, 2057, 7269, 7465 , 2074, 6869
921 DATA 7320,5472,6163,6B20, 746F, 201B, 7100, 1B70
922 DATA 203C,2079,6573, 2F6E, 6F20, 3E20, 1B71, 0000
923 DATA 0000,049C, 0000, 04F4,0000,054C, 0000, 17A4
924 DATA 0000, 184A, 0000, 0254, 0000, 048, 0000, 0520
925 DATA 0000,058A, 0000, 17A4,0000, 184A, 0000, 0254
926 DATA 0000,317A, 0000, 3185, 0000,318F, 0000, 339C
927 DATA 0000,33AE,0000,32E0, 2052,4541,4420,5749
928 DATA 5448, 2053,594E, 4353, 2000, 2041,4444,522E
929 DATA 2046,4945,4C44, 2000, 0000, 049C, 0000, 1AAC
930 DATA 0000, 1CBE, 0000, 1B2E, 0000, 1BCC, 0000, 19BC
931 DATA 0000, 1E2C,0000, 0254, 0000, 04C8, 0000, 1A28
932 DATA 0000, 1CBE, 0000, 1B2E, 0000, 1BCC, 0000, 19BC
933 DATA 0000, 1E2C,0000,0254,0000,317A,0000,341C
934 DATA 0000,31A8, 0000, 342B, 0000, 3181, 0000, 3442
935 DATA 0000,3434,0000,31C4, 2043, 4C55 ‚5354 ‚3420
936 DATA 3030,3030, 2020, 0020, 204E, 4558,5420, 2000
937 DATA 2053,5441,5254, 6F66, 4649, 4C45, 2000, 2045
938 DATA 4449,5420,001B, 7020, 2043, 4€55 ,5354,4552
939 DATA 204D,4F44,4520, 2018, 7100, 1B70, 2020, 5768
940 DATA 656E,206C, 6561, 7669, 6E67, 2043, 455 , 5354
941 DATA 4552, 204D,4F44, 452C, 206C, 6173, 7420, 7265
942 DATA 6164,2043,6C75, 7374, 6572, 2069, 7320, 7570
943 DATA 6461,7465, 7420, 696E, 2053, 4543, 544F ‚5220
944 DATA 4D65,6E75,6520,201B, 7100, 1B70, 2020, 5468
945 DATA 6973, 2077, 6173, 2074, 6865, 206C, 6173, 7420
946 DATA 4375, 7374,6572, 2020, 1B71,001B, 7020, 2046
947 DATA 696C,656E , 616D , 653A, 2020, 2020, 2020, 2020
948 DATA 2020,2046,696C, 6561, 7474, 7269, 6275, 743A
949 DATA 2020, 2020, 2020,5374,6172, 7463, 6C75, 7374
950 DATA 6572,3A20, 2020, 204E, 756D ‚6265 ‚7220 ,6F66
951 DATA 2042,7974,6573, 3A20, 201B, 7100, 1B70, 2020
952 DATA 5374,6172, 742D , 436C, 7573, 7465, 7220, 6069
953 DATA 7420,3C52,4554,5552, 4E3E, 2069, 6E73, 204D
954 DATA 656E, 7565, 2081, 6265, 726E , 6568, 6D65, 6E2C
955 DATA 206C,6573,656E, 2064, 7572, 6368, 203C, 7570
956 DATA 3E2C, 203C, 646F, 776E, 3E2E, 201B, 7100, 1B70
957 DATA 2057, 7269, 7465, 2074, 6869, 7320, 436C, 7573
958 DATA 7465,7220, 746F, 3A20, 1871, 0020, 2042, 7974

Anhang 513

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

6573, 2070 ,6572, 2053 , 6563, 746F, 723A, 2000
2020 , 5365 , 6374, 6F72, 2070, 6572, 2043, 6C75
7374, 6572, 3A20, 0020, 2042, 7974, 6573, 2070
6572, 2043, 6C75, 7374, 6572, 3A20, 0020, 2053
6563, 746F, 7220, 7065, 7220, 4469, 7265, 6374
6F72, 793A, 2000, 2020, 5365, 6374, 6F72, 2070
6572, 2046,4154, 3A20, 0020, 2053, 656B, 746F
726E , 756D , 6265, 7220, 7365 , 636F , 6E64, 2046
4154, 3A00, 2020 , 5365, 6374, 6F72, 206F , 6620
6669, 7273, 7420, 4461, 7465 ,636C, 7573, 7465
723A, 0020, 204E, 756D ,6265, 7220, 6F66, 2063
6C75, 7374, 6572, 733A, 2000, 2020, 4E75 , 6062
6572, 206F ,6620, 7369, 6465, 733A, 2000, 1B70
2020, 4669, 7273, 7420 , 4469, 7265 , 6374, 6F72
792D , 7365, 6874, 6F72, 206F , 6E20, 5369, 6465
3A20, 3020, 2054, 7261, 636B, 3A20, 3120, 2053
6563, 746F , 723A, 2033, 2020, 1B71, 0018, 7020
2046, 6972, 7374, 2044, 6972, 6563, 746F ‚7279
2073, 656B, 746F , 7220, 6F6E, 2053, 6964, 653A
2031, 2020,5472, 6163, 683A, 2030, 2020, 5365
6374, 6F72,3A20, 3320, 201B, 7100, 2020, 5375
6264, 6972, 6563, 746F, 7279, 2020, 0020, 2052
6561, 642F ,5772, 6974, 6520, 2020, 2000, 2020
5265 ,6164, 206F , 6E6C, 7920, 2020, 2020, 0020
2048, 4944,4445 , 4E20, 4669, 6C65, 2020, 2000
2020, 4465, 6C65, 7465 ,6420, 2020, 2020, 2020
0020, 2044, 6973, 6865, 7474, 656E , 6£61, 6D65
2000, 0000, 049C, 0000, 04F4, 0000, 054c, 0000
11D0, 0000, 2340, 0000, 2582, 0000, 040c , 0000
0254, 0000, 04C8, 0000, 0520, 0000, 058A, 0000
120E , 0000, 2340, 0000, 2582, 0000, 040C ‚0000
0254,0000,317A,0000,3185, 0000, 318F , 0000
3286, 0000, 37A6, 0000, 37AF, 0000, 37B9, 0000
3701, 2046, 4F52,4D41,5420,0020,5846,4F52
4D41,5420, 0020, 2047,4150,5320,0020, 2042
4143, 4B20, 2000, 1B70, 2020, 466F , 726D ,6174
2054, 7261, 636B, 204D , 6F64, 6520, 201B, 7100
1B70, 2020, 5472,6163, 6B3A, 0020, 666F, 726D
6174, 6965, 7265 , 6E20, 3F20, 203C, 7965, 732F
6E6F , 3E20, 2018, 7100, 1870, 2020, 4E6F, 7420

514 ATARI ST Floppy und Harddisk

999 DATA 666F,726D,6174, 7465 ,6420,2020,2020, 203C

1000 DATA 5461, 7374,653E,201B, 7100, 2020, 6F6E, 2053

1001 DATA 6964,653A, 0020, 206F ,6620,4472,6976,653A

1002 DATA 001B, 7020,5265,616C,6C79, 2066,6F72,6D61

1003 DATA 7420,7769, 7468, 206E ,6577,2047,4150, 6073

1004 DATA 2062,6574,7765,656E , 2054, 7261,636B, 7320

1005 DATA 616E ,6420,5365,6374,6F72,733F ,203C, 7965

1006 DATA 732F,6E6F ,3E20,1871,0018,7020,5761,6974

1007 DATA 2061,2073,6563,6F6E ,642C,2074,6865 ‚6E20

1008 DATA 7072,6573,7320,6B65, 7920, 1B71,0000, 2020

1009 DATA 466F,726D,6174,2054, 7261, 636B, 2020, 0000

1010 DATA 0000,0000,049C ,0000,0D78, 0000, ODFO, 0000

1011 DATA 0E68,0000,0E7C,0000,0254 ,0000,04C8, 0000

1012 DATA O0DB4,0000,0E2C,0000,0E68,0000,0E7C,0000

1013 DATA 0254,0000,317A,0000,390E ,0000,391E , 0000

1014 DATA 392F,0000,393E,0000,394B,2020,4041,5854

1015 DATA 5241,434B,3A20,3739, 2000, 2020,4D41,5853

1016 DATA 4543,544F ,5235A,2030,3920,0020, 2049, 4E49

1017 DATA 5420,4452,4956, 4520, 2000, 2020,5348,4F57

1018 DATA 2042,5042,2020,0020,2042,4143,4B20, 2000

1019 DATA 1B70,2020,494E ,4954, 2044 ,5249,5645, 204D

1020 DATA 454E,5545,2020,1B71,001B, 7020, 2042, 696F

1021 DATA 7320,5061,7261,6D65, 7465, 7220,426C, 6F63

1022 DATA 6B20,6F66,2061,6374,6976,6520,6472,6976

1023 DATA 6520,2020,203C, 2070, 7265, 7373,206B,6579

1024 DATA 203E,2020,1B71,001B, 7020, 2020,4469, 7265

1025 DATA 6374,6F72,7920, 7374,6172, 7473, 2061, 7420

1026 DATA 5369,6465,3A20,3020,5472,6163,6B3A,2031

1027 DATA 2053,6563, 746F , 723A,2033,2020,1B71,001B

1028 DATA 7020,2020,4469, 7265,6374,6F72,7920, 7374

1029 DATA 6172,7473,2061, 7420,5369, 6465 ,3A20,3120

1030 DATA 5472,6163,6B3A,2030,2053,6563, 746F , 723A

1031 DATA 2033,2020,1B71,0000,0002,0000, 0000, 0000

1032 DATA 0000,0003,0000,0000,0000,263C, 0000, 266A

1033 DATA 0000, 2698,0000, 26C6,0000, 26F6,0000, 2894

1034 DATA 0000,03C2,0000,2772,0000,27A0,0000,27CE

1035 DATA 0000,27FC,0000,282C, 0000, 294E , 0000, 03C2

1036 DATA 0000, 3A80,0000, 3A8B , 0000, 3A96, 0000, 3AA1

1037 DATA 0000,3AAC,0000,3AB8,0000,3AC9, 2047,4150

1038 DATA 313A,2036,3020,0020,4741 ,5032,3A20,3132

Anhang 515

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

2000 ,2047,4150,333A ‚2032 ,3220 ‚0020 ‚4741
5034 ‚3A20 ‚3430 ‚2000 ,2047 ,4150,,353A ‚2036
3634, 2000, 2042, 7974, 652F ‚5365 ‚6B3A ‚2030
3531, 3220, 0020, 4241, 434B, 2000, 1870, 2020
4472 ,6976, 6520, 466F , 726D ,6174, 204D , 6F64
6520,201B, 7100, 1B70, 2020, 4368, 616E ,6765

2047 ,6170, 7320, 6265, 7477, 6565 ,6E20,5365

6B74 , 6F72,7320,201B, 7100, 1B70, 2020,5761

6974, 2061, 2073, 6563, 6F6E ,642C, 2074, 6865

6E20, 7072,6573, 7520, 6B65, 7920, 1B71,001B

7020, 2053 ,4543 , 544F ,5220, 4D4F ‚4445 , 2020

1871,0000,0200,003C,000C,0016,0028,0298

1B70, 2054, 7261, 636B,3A20,2020,5369, 6465

3A20, 2053 ,656B, 746F , 723A, 2020,4279, 7465

733A, 2020, 4368, 6563, 7375 ,6028 , 6865 , 7829

201B, 7100, 1B4A,001B, 4800, 1B70,001B, 7100

1B59,2121,001B,4800, 1845, 001B,4100, 1B42

001B,4C00, 1B6C ,001B, 7700, 1B66,001B,6500

2020, 2020, 2020, 2020, 2020, 2000, 1B4A, 0000

0000,3C38,0000,3C4C,0000,3C73,0000,3C7C

0000,3C85,0000,3C8F ,0000,3C99,0000,3CB7

0000,3CC1,0000,3CD7,0000,3CE1,0000,3CEB

0000,3CF5,0000,3D00,0000,3D20,0000,3D2B

0000,3036,0000,3D40,0000,3D4B,0000,3056

0000,3D6C,0000,3077,0000,3D82,0000,3D8D

0000,3098,0000,3DA3,0000,3DAE,0000,3DB9

0000,3DC4,1B70,204E ,4F20,424F ,4F54,5345

4354,4F52,201B, 7100, 1870, 2044 ,6972,6563

746F , 7279, 2053 ,6563, 746F , 7273, 2064,6566

6563, 7420, 2020,3C6B,6579,3E20, 1B71,0020

6665 , 686C , 6572, 3300, 2066, 6568,6C65, 7234

0020, 6665 , 686C ,6572,3520, 0020, 6665 , 686C

6572 ,3620,001B, 7020, 4E6F ‚2044 ,6973 ,6B20

2F20, 4E6F , 2073, 7563 ,6820 ,5472,6163, 6B20

1B71 , 0020, 6665 , 686C , 6572 ,3820,001B, 7020

4E6F , 2073, 7563 ,6820 ,5365,6374,6F 72,2021

1B71,0020, 6665 , 686C ,6572,3130,0020, 6665

686C ,6572,3131,0020,6665 , 686C ,6572,3132

0020, 6665.,686C ,6572,3133,2000,1B70, 2020

4469, 736B , 2069, 7320, 7772,6974,6570, 726F

516 ATARI ST Floppy und Harddisk

1079 DATA 7465,6374,6564, 2E20,201B, 7100, 2066, 6568
1080 DATA 6C65,7231,3520, 0020, 6665, 686C, 6572,3136
1081 DATA 2000,2066, 6568, 6C65, 7231, 3700, 2066, 6568
1082 DATA 6C65,7231,3820, 0020, 6665, 686C, 6572, 3139
1083 DATA 2000, 1B70, 204E,6F20,6D6F, 7265, 2043,6C75
1084 DATA 7374,6572,201B, 7100, 2066 ,6568, 6C65, 7232
1085 DATA 3120,0020, 6665, 686C, 6572, 3232, 2000, 2066
1086 DATA 6568,6C65, 7232, 3320, 0020, 6665, 686C, 6572
1087 DATA 3234, 2000, 2066, 6568, 6C65, 7232, 3520, 0020
1088 DATA 6665,686C,6572,3236, 2000, 2066, 6568, 6C65
1089 DATA 7232,3720,0020, 6665, 686C, 6572, 3238, 2000
1090 DATA 2066,6568,6C65, 7232,3920, 0000, FFFF, 0000
1091 DATA 0074,0808, 080C, 0808 , 0808, 0808, 0806, 0410
1092 DATA 080A,0C08, 0A0C, 080A, 5404, 0A04, OADA, 0804
1093 DATA 0C08,080C, 1006, 1208, 2028, 0A06, 0406, 0406
1094 DATA 0410,040A,0A06,0406,040E, 100A, 0604, 0604
1095 DATA 0604,0E10,0406, 0406, 0406, 040A, OADE, 180A
1096 DATA 0604,0604,0604,0A14,040A,0A06, 0406, 040E
1097 DATA 1004,0A0A, 0604, 0604, 0E10, 0A06, 0406, 0406
1098 DATA 040E,0C06, 100A,0C10,060A,0C16, OAOC, 160A
1099 DATA 0C06,1010,0C0C, 1006, 100C, 0C06, 1010,0C0C
1100 DATA 1006, 100C,0C16, 0606, 0608, 240E , 0604, 0808
1101 DATA 0808, 060E, 0808, 1406,044A, 0COA, OAOA, OAOA
1102 DATA 0608, 0A0A, 0A0A, 0CO8, 0616, 1E08, 040C, 3014
1103 DATA 0810,0C08, OEDE, 080A, 0808 , 0604, 1212, 1C04
1104 DATA 0808, 1008, OE0E, 080A, 1006, 100A, 060C, 480E
1105 DATA 0612,0E06, 160E,060A,0A06,040A,0408, OCOA
1106 DATA 0A06,040A,0408, 0C16, OEOE, OAOA, 0604, 0A04
1107 DATA O80E,0A06,040A,0408,0A14,0816, 080A, 0A16
1108 DATA 1E14,0606, 0608, 2214, 1006, 1C06, 0606 , 0606
1109 DATA 0606, 0606, 0608, 0606, 0624, 060C, 0624, 1410
1110 DATA OCOC, 1410, 0COC, 1410, 0COC, 1410, 0C22, 080A
1111 DATA 0C08, 080A, 0E0A, 080A, 0EOA, 080A, 0E0A, 080A
1112 DATA OEOA, 080A, 0E0A, 080A, 0E0A, 080A, 0E0A, 080A
1113 DATA OEOA, 080A, 0E0A, 080A, 060C, 1E3E, 2630, 4424
1114 DATA 0606,0606,0A08, 2E10,0610, 100C,0C10,0610
1115 DATA OCOE, 0808, 0606, 1406,0408, 0808, 0A1A, 1E06
1116 DATA 0408,0808, 080A, 160C, 0850, 0E0A, 060C, 0808
1117 DATA OAOA,0A12, 0610, 0A06,0C08, 080A, 0A0A, 1COE
1118 DATA 0E12, 1E06, 060A, 0822,321A,640E, 104A, 062C

Anhang 517

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

0606, 0A32, 200A, 0A06, 1618, 1A3A, 362E, 0C48
0604, 0808, 0808, 200A, A812, 723E , 080A, 0C08
0604, 163E, 1006, 1012, 120C, 2E08, 0C10, 1212
OCOC, 0608, 120A, 200C, 0622, 180E, 080A, 0A16
161E , 0608, 0608 , 0626, 241E, 0608, 060E,OC1A
OEOC, 0616, 0610, 220A, 0610, 0C06, 100C, 0AD8
0806 , 0408, 0810, 080A, 2208, OAOC, OA08, 0612
044A, OEE, 0818, 0408, 060C, 0C08, 1E0C ,0E10
0E08, 1COE, OCOC , 0632, 1006, 1608, 0A14 , 0806
0408, 0608, 060C, 1E06, 040A, 0622, 0E06, 4210
1010, 0616, 080A, 0E08, 0806,4010,0E10, 1216
180E, 2COC, 2COC, OCOC, OCOC, 180A, OAOA, OADA
0A22, 1E06, 0606 , 0822, 1406, 060E, 1E08, 0808
340C, 1A10, 0C08, 060A, 187A, 622C, 2008, 0EOC
0C08, OE0C, 0CO8, OE0C, OCOA, OFC, 2612, 1012
OC1C, O80E, OCOC, O80E , OCOC, O80E , OCOC, OADE
0C2C,0E10, 120C, 0C1E , 0808 , 080E , 0808 , O80E
0808 , O80E , 0808 , 0806, 0C1E, 0808 , O80E , 0808
080E , 0808, O80E , 0808, 0806 , 0C24, 202C, 1A22
1A12, 1414, 1414, OCOE, 1E1E, 1E14, 1416, 0E12
080A, 0624, 0620, 0608, 040C, 0808, 080C , 0604
1606, 0414, 0810, 080E , 6C04, 080A, 040C , 080C
0614,0408, 1204, 0C0C, OCOC, OCOC, 1E0C ‚OCOE
080C , 080A, 080C, OCOC, 044A, 2030, 082C ‚0E42
0404 ‚0404 ‚0404 ‚0404 ‚0404 ‚0404 ,04F0 ‚0404
0404 ‚0404 ‚0404 ‚0404 ‚0404 ‚0404 ,0404 ‚0404
0404 ,0404,04E0, 0404, 0404 ‚0404 ‚0404 ,0404
0404 ‚0404 ‚0404 ‚0404 ‚0404 ‚0404 ,04A2 ‚0404
0404 ‚0404 ‚0404 ‚0404 ‚0404 ‚0404 0404 ‚0424
0404 ‚0404 ‚0404 ‚0404 ‚0404 ‚0404 ‚0404 ‚0404
0404 ‚0404 ‚0404 ,0401,0101,3404 ‚0404 ‚0404
0404 ‚0404 ‚0404 ‚0404 ‚0404 ‚0404 ‚0404 ‚0404
0404 ‚0126 ,0404 ‚0404 , 0404 ‚0404 ‚0404 ‚0404
0404 ‚0404 ‚0401 ‚2404 ,0404 ‚0404 ,0404 ‚0404
0404 ‚0404 ‚0404 ‚0404 ,0404 ‚0401 ,4A04 ‚0404
0404 ‚0404 ,0404 ‚0404 ,0404 ‚0404 ,0404 ‚0404
0404 ‚0404 ‚0404 ‚0404 ,0400

518 ATARI ST Floppy und Harddisk

Anhang 519

Anhang Il - ASCII- Tabelle

Die nun folgende Tabelle stellt alle auf dem ATARI ST
darstellbaren ASCII-Zeichen in Form einer Tabelle dar. Den
entsprechenden Zahlenwert (ASCII-Wert, zu ermitteln durch die

ASC("")-Funktion in BASIC) erhalten Sie, indem Sie die
Sedezimal-Ziffer am oberen Rand und diejenige des linken
Randes zusammensetzen. So ist z.B. der ASCIH-Wert des
Buchstabens ’A’ $41.

Diese Tabelle wurde mit dem folgenden GfA-BASIC-Programm

erstellt, im Anschluß daran finden Sie die Tabelle.

Hier nun das Programm, mit dem Sie sich diese Tabelle auch

selbst ausdrucken können (Hardcopy):

Cls

For 1=0 To 15

Print At(1*3+7,3);Hex$(I)

Print At(4,1+4);Hex$(1)

Deftext 1,0,0,13

For J=0 To 15

Text 1*24+50,J*16+61,Chr$(1*16+J)

Next J

Next I

Deftext 1,0,0,4

Text 92,56, "SPC"

For I=1 To 18

Draw 18,1*16+15 To 424,1*16+15

Draw 1*24-7,31 To 1*24-7,303

Next I

Draw 17,31 To 40,47

Repeat

Until Mousek

Edit

520 ATARI ST Floppy und Harddisk

i

„serien Ei b_

2 ot ES |

Fa) Pe OR AG o>) ©

gh by loti OO) SITU chic

if u - fe \ } ! fe 7 i In ! i ie

j a a " H 4 : : P ‘ T
 u 5 |

ser älter es a oe me

ih Mi iL N u a ki i ci S I Hd lan toe”

= 4 Be Fi eis Wem

Fe | Bhar We et CE st DE lek La Fe

OH palo ak plane RSPR PERSE een y ul

KH Dior + A i 7

id ei en En Be nan
t r

E E lb A N iu 1 El wd
 5 a 5 u

y
a
 I ka 1 L. L Li ft L. 1 a Gi cl (

a J ti 2 E ne % Sods HH “ils Il = th hi

Anhang 521

Anhang Ill - Stichwortverzeichnis

ACCESSOLYcccececesccevcccscscscucscesseecccessessnvacucsceesesetesssessceeecncnseeseaseeees 6.1

ASCII oo. .c ccc ceccscceccsccecceccsccecsecsccecesccecssescescesceseseeeseeseeeees 2, Anhang I

BASIC-Befehle für Disk... ccc cecceeceecscceccescscuscessenseeeecs 2.2

BASIC-Lader nu... cccccccecesceccscscssescesescsccsccececevevesscecesescesescesescucens 8.4

BOOt-Se@Ktor.......ccccccecccececcecsssccscescssescsceseuseccscessecesessescscescscescusesascess 3.2

Boot-Vorgangcccscececsccecscsccecscssceeecsesceueesececececcnsseeeeesceseeescacens 3.2

BPB, BIOS-Parameter-Block 000... ccccscceceececeseececeececeesesenens 3.2

C-Funktionen ou... ceccecceseeccecsccsceccnceeceececescevcescsesseucusseccuscusenses 2.4

CIUStOL eee ceeceececcccsccececececceceseseceseesscesessesesesseescsesenesseseecsasuseeses 3.1

Controllerc.cccc cece cececececescccccscscssscvescncucvccceccscssseees 4.2.2, 5.1.1, 8.3

Date l..........ccccccceccsccscscescsscecseecescecssesceseecesesceseseeueseeseeceeeesessesesseeeseeeess 2

Daten Dankcccccccccccscscscscccsescsceveveeceseesssescsesescseceseeseesessssesseseucs 2.6

Datenfeld oo... cccccccescscssccscsccevcnseucescecscceeescesescssessescescsesseseescucens 2

Date nSatZ..........ccccccscsccscecccecssccscscssceseseeveecseceecscssssesdseeesessseesesecscuseseees 2

DILOCtOLy.......ccceccsvcceccecesscnseccssescenceeceseeccessscesccessecceceesencees 3.3, 8.2.2

DMA uu. cccccecsecscceccscsccscnscecsescssecsesesseeesevesceseeseseeseessseuaecesens 4.2.1, 5.1

DTA uuu cece ccc cececcecssceccscsesccccsccscecesccesscaussceseecevenseseesuseecusesseseesuseesess 3.3

Extender oo... cc cccccecsccccecscccscscsesccceeucesucsstecseeesesescscesesaceseeessseuseeeesss 2.1

FAT, File Allocation Tablecc ccc ccccecesccscscceccscesceseecescseneees 3.4

Festplatte oo... ccc ccccecccscsececscncceesssscseeeeenceesscececesscseeseesscseeeeetsaseueess 5

File o.oo... ec. cecescecsccccecsccececccscscscscescscsssusscaccecseecssaecsescsceseecesesesaucseseees 2

File-Attribute ccc cccccsccececscccvececvevevesccccvessscssesesenseseeeesesesevenss 3.3

File-Headerrc cc ccceccecsccscsscscescscscsccecscasencestscssessesesseseecusseses 3.5.1

Filenamen 2.0... ec cece cc cccecececevscncecccscececscsevececcsccececcesescsaseucecusuceecucess 3.3

FLOCK. ooo cc ce ccccccceccecsccccsccccccecsscscsssseseesescevcececeseeseseesusessesesces 5.1.1

Formatierungc.cccccsecsescecceccsscnecesceseeeccecencs 3.1, 3.2, 7.3, 8.2, 8.3

FORTRAN-Funktionen...........csnsessssesensennnennnnnnennnnennnnnsennnnnnnnennnn 2.5

Fremdlaufwerkeccccsccscsscssecscsceecescssceceecescscscessescescaseeseececs 4.3

GEMDOS/TOS-Funktionen2sssssessessnnennnnnnnnennnnennnenn 2.1, 8.2.1

522 ATARI ST Floppy und Harddisk

Handle .nn........c cece ececscscscscscccccecsecccscscseccssscscecscecsssasesscacsesceesesaceeecs 2.1

Harddiskcccccccecsccscsceccsccccccsoscecscesescscaeasescasessscssesssescssaceseseseecess 5

Harddisk-Treiberc.cccccececeececsceccscsceccscscaccscscscaccscscecesacesceens 5.2

HDC-Kommando-Block ccc ec ccscececscescccsceacecscscsccecscssceceaees 5.1

index-sequentielleDatei ccc cceceecescesccsscescescesceseescescescescescenees 2

Inhaltsverzeichnsscccsceccecsceccscececscecsctscscecesescscecesaceecs 3.3, 8. 2.2

Interleaveccccccececscscsccecccccvscscscccecscesssceccnsscecsceeseceucscecssessess 5.1.1

NM658ccccccscscscececececsscscvcceess IEPPEBETPPLELSLSULTETPETSESELSPRTERIPRFEFFLFRE 3.5.2

Partitionecceseeseneensessenennsosenennnnnnonnnennnnnnnnnnnnnannnnnnunnnnnnnnenan 3.6, 5.1

PASCAL -Funktionen..............ccccccececscsceces Veecececscscscecececccaccecnseseses 2.3

RAM-DISK..... oo. cc cece cccecsccececccecescecsccececscscncecescscecesescscscssecesasencecatess 6

RANDOM-ACCESS-= Datel...............ccccecsccscscscscecscsccscscecscesescseececess 2

Relocationcccscsccscscsccscscscscescscececaccscscsscscscesaseecssesescecssecasaceecs 3.5.2

Schreib-/Lesekopfc ccc eccccscccssccsecesssececceseesseesceessusscenscs 4.1, 5.1

Sektorencccccececescsscescncsecscaseeseucescsseecesseseessasesceeceseeseeceeeess 3.1, 4.1

sequentielle Datedccccccecccesccsccesccesscsssecescesscsecseuceeescessesscenseeuss 2
SHIPPiINGY—-POSItIONccceccessccssceesccusceucccucceseseusceccesceeccuaceueees 5.1.1

SHUGART-Schinittstelle. nw... cc sccecsccecscsccccscscscecscecsceceeeecs 4.2.3

Sortieren von Datenc cece cecececcscsccccscecscscececacescscscucseces 2.6, 8.2.5

Suchen von Daten ou... cece ceecscsscscscceccvcscccesccceseeescesuscscusees 2.6, 8.2.5

Symbol-Tabelle ec eeccseceeccscceeccesccnccnsccecesceeesensceecenceseeeecs 3.5.2

text, data, DSS oc. ccececescescsscsccecescseeseucescesesesseeseeesescesenees 3.5.2

Tracksccccccccccccscccccscscscsccccccscscscscucecssecsssssencececesssasecscscsasars 3.1, 4.1

Uhrzeit/Datum cc cescceeccsecceeesccnscesecceescceusceesceesseeecees 3.3, 8.2.7

eee Bücher zum ATARI ST

Dieser INTERN-Band ist das Standardbuch zur Programmie-
rung der Atari-ST-Computer. Sie finden alle Informationen
zum Aufbau und zur Funktion Ihres Rechners, die zur profes-
sionellen Programmierung unentbehrlich sind.

Aus dem Inhalt:

a Brückmann — Der 68000-Prozessor
Englisch — Funktion der Customer-Chips

— Der /O-Controller MFP 68901
| @ — Der Soundgenerator YM-2149

ATARI — Alles-uber die Schnittstellen des ST
— Was ist GEMDOS?
— Die Aufgabe von BIOS und XBIOS

SI — Grafikprogrammierung des ATARI ST

Intern

nam psomrsucn’/ il

Brückmann, Englisch, Gerits
ATARI ST Intern
Hardcover, 512 Seiten, DM 69,-
ISBN 3-89011-119-X

Ms Bücher zum ATARI ST

Eine riesige Fundgrube wirkungsvoller Tips & Tricks rund um
den neuen ATARI ST. Alle Programme sind gut erklärt und kön-
nen in eigene Anwendungen eingebaut werden. Diese Routi-
nen sind wirklich absolut neu.

Aus dem Inhalt:

Wa Brücken - BASIC und GEM
Gerits — Der VDISYS-Befehl

Wealkowrick — BASIC und Maschinensprache
® — Automatische Hardcopy

ATARI — Druckertreiber fur EPSON-Drucker
— RAM-Disk für ATARIST —

| | — Druckerspooler
— Automatisches Starten von

. TOS-Anwendungen
Tips & Tricks — C und Maschinensprache

— Hardcopy in Farbe
— GEM intern

J / — GEM-Anwendungen
EIN DATA BECKER BUCH il — CP/M, Funktionsweise und Aufbau

| — CP/M-Emulatoren
und vieles mehr

Brückmann, Englisch, Gerits, Walkowiak
ATARIST Tips & Tricks
Hardcover, 362 Seiten, DM 49,-
ISBN 3-89011- 118-1

eee Bücher zum ATARI ST

Dieses Buch bietet eine leichtverstandliche Einfuhrung in die
Maschinensprache des 68000-Prozessors. Die unglaubli-
chen Fähigkeiten dieses 16/32-Bit-Prozessors können Sie mit
diesem Buch endlich voll ausschöpfen.

Das
Maschinen

sprache
buch
zum

ATARI

VE:

aw

Grohmann, Seidler, Slibar

Aus dem Inhalt:

— Logische Operationen &
Bitmanipulation

— Ablauf der Programmerstellung
Aufbau eines Mikrocomputers
Der 68000 im Atari ST
Registerstruktur
Betriebszustände
Befehlssatz
Adressierungsarten
Programm- und Speicherstrukturen
Prozeduren und Funktionen
Betriebssystem und Programme
Grundlagen der Assemblerprogram-
mierung
Editor/Assembler und Debugger
Programmieren Schritt für Schritt
Tips zum Einbinden von
Assemblerprogrammen in
Hochsprachen
Lösung typischer Probleme

Das Maschinensprachebuch zum ATARI ST
336 Seiten, DM 39,—
ISBN 3-89011-120-3

Pees Bücher zum ATARI ST

Schlagen Sie dem Betriebssystem Ihres ATARI ST ein
Schnippchen. Wie? Mit PEEKS & POKES natürlich! Dieses
Buch erklärt leichtverständlich den Umgang mit einer riesigen
Anzahl wichtiger POKES und ihren Anwendungsmöglichkei-
ten. Nebenbei wird der interne Aufbau Ihres neuen ATARI ST
prima erklärt.

| Aus dem Inhalt:

n — Ein-Blick in den ATARI ST
Innere Konfiguration und

| Schnittstellen

ATARI
Die intelligente Tastatur

Peeks & Pokes

Die Maus als Maistift

scours pucra pen |

Die internen Speicher
Zeiger und Stacks
Diskettenhandling
Computer-1x1
Das TOS
GEM
Interpreter/Compiler
Programmiersprachen
Ein-/Ausgaben

Dittrich

Peeks & Pokes zum ATARI ST
198 Seiten, DM 29,—
ISBN 3-89011- 148-3

eee Bücher zum ATARI ST

Ein Buch für jeden, der das Betriebssystem der Zukunft ver-
stehen und anwenden und die gigantische GEM-Bibliothek
nutzen will! Von grundlegenden Informationen wie der Organi-
sation des GEM im ATARI ST über die verwendbaren Pro-
grammiersprachen bis zu den Funktionen des Virtual Device
Interface und des Application Environment System ist alles
sehr gründlich und exakt erklärt!

Y
pv /,

f

EIN DATA BECKER BUCH | —_

Szczepanowski, Günther

Aus dem Inhalt:

Die Grundstrukturen der
GEM-Komponenten VDI und AES
Die Wahl der richtigen Programmier-
sprache
Einführung in C und Assembler
Beschreibung und Benutzung des
Entwicklungspaketes
Der Editor
Der C-Compiler
Der Assembler
Der Linker
Aufbau, Funktion und Programmie-
rung des VDI und AES
Beispielprogramme in C und
Assembler

Das groBe GEM-Buch zum ATARI ST
470 Seiten, DM 49,—
ISBN 3-89011-125-4

a
n
n

e
e
e

