ATARI
Floppy s'

Harddisk

S

Floppy
ond
Harddisk

ISBN 3-89011-132-7

Copyright © 1986 DATA BECKER GmbH
MerowingerstraBe 30
4000 Dusseldorf

Alle Rechte vorbehalten. Kein Teil dieses Buches darf in irgendeiner Form
(Druck, Fotokopie oder einem anderen Verfahren) ohne schriftiche Genehmi-
gung der DATA BECKER GmbH reproduziert oder unter Verwendung elektro-
nischer Systeme verarbeitet, vervielféltigt oder verbreitet werden.

Wichtiger Hinweis:

Die in diesem Buch wiedergegebenen Schaltungen, Verfahren und Pro-
gramme werden ohne Riicksicht auf die Patentlage mitgeteilt. Sie sind aus-
schlieBlich fiir Amateur- und Lehrzwecke bestimmt und dirfen nicht gewerb-
lich genutzt werden.

Alle Schaltungen, technischen Angaben und Programme in diesem Buch
wurden von dem Autoren mit gréBter Sorgfalt erarbeitet bzw. zusammenge-
stellt und unter. Einschaltung wirksamer KontrollmaBnahmen reproduziert.
Trotzdem sind Fehler nicht ganz auszuschlieBen. DATA BECKER sieht sich
deshalb gezwungen, darauf hinzuweisen, daB3 weder eine Garantie noch die
juristische Verantwortung oder irgendeine Haftung fir Folgen, die auf fehler-
hafte Angaben zuriickgehen, ibernommen werden kann. Fir die Mitteilung
eventueller Fehler ist der Autor jederzeit dankbar.

Inhaltsverzeichnis

2.1

2.1.1
2.2
2.2.1
222
2.3.
2.3.1
2.3.2
2.4
2.4.1
242
2.5
2.5.1
2.5.2
2.6

3.1
3.2
3.2.1
3.3.2
3.3
3.4
3.5
3.5.1
3.5.2
3.6

EInleitung .ccocovvieieirinieiioinseseniccasesicrecnsasssesacsssesnes 11

Files, Programme und Dateiencccoceevvivvnierannnnnnnns 13

Filestrukturén und Zugriff verschiedener

HoChSPIachen.......cuuueiiiiiriiiiiiiieeeeeeeieeee e 17
Die Funktionen des GEMDOS im Uberblick................ 17
Filezugriff von BASIC.......cocoovvmvieeeeeeeiieeieeeeeeeeeeeeeean 21
Die sequentielle Datei in BASICccccccecervverviennnennnen. 22
Die RANDOM-Datei in BASICcoovvvvveeeeiiiiiiinnnennns 24
Das Filehandling in PASCALcccccovvveieeeivieeeeenreeeenne 27
Die sequentielle Datei in PASCALcccoovvveevvvveccnnnnnnns 28
Random-Dateien in PASCAL........cccoovvvvverniirieeerennnn, 32
Der Dateizugriff von Cveeeieeeieeeiieiieieeiiieeiiiniieeneeeeees 34
Die sequentielle Datei in C.....coeveeeeeicciniveieeeeeeeeeeeiienes 38
Die Random-Datei in C.......oeevvviireieeininiciecciieeeeeeennn 40
Das Filehandling in FORTRANccooovviiiivvieeeeieeeenn. 43
Die sequentielle Datei in FORTRANccceeoevveinnnnne 44
Die RANDOM-Datei in FORTRANccoovvvvveeevereennn 45
Eine einfache Datenbank.......cc.cccccvvviiieiviirmeeniineeeereeeennen. 47
Datenstrukturen..ccicieereiciereereioceicecercesoressacessacessscess 57
Diskettenformat..........cceevvveverervrermmeeernerenreeerenns v 58
Der BOOt=-SEKLOT ...coevvriirerrriereieieereereereeeeeeeeeeaaeaes 60
Ein Formatierungsprogrammleeeevvevvvervvernennnnnnnnnnnns 64
Der BIOS-Parameter-Block BPB.........ccccooevviviiiiiiieeennnnnns 75
Das InhaltSverzeiChniS..........evuvevrvreriiriiiiieeeieieeeeeeeeeeeeenn 83
DI FAT oottt e et e e e e 87
Programmaufbaucooeeeevnvrriiiiereeeeeeeeccreeeee e 89
Der Programm-Header..........cccccuuuunnn... Cetrnneneeeererrnnaeanaeens 90
Die Relocation-Tabelleceeeeieeeeieciiiinirieieeeeeeeeeeennns 93

Festplattenformat.......cccccooeeeeiiinriereeeeeeeeeeecnnas eveeeeiaeeaaaans 94

4.1
4.2
4.2.1
4.2.1.1
42.1.2
4.2.1.3
4.2.1.4
4.2.2
4.3

9]

(Y RV RV R R e]
L e e s
A LN -

[Y N T S

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4

Die Diskettenlaufwerke cocooeveveviveeieiieieierieneereeeceennens 97

FUNKEION. ...uuieiiiccieeccceeeeeereeeeseeeeesee s e e e e eeeeeeseeeeesesaaaaanaes 98
Der DMA-CRID ..uuuieeiieieieeeiieeeieieeeeeeeeeeeeeeeeeeeeeeeereeeeaaaans 100
Der Disk-Controllercccocvvvvereeeeeeeeeeccicreereeeeeeeeeee e, 101
ANSChIUBDEIEEUNE ...ceveveivieiiiiieereeeeree s e 105
OrganiSationcccuveeveeeeeeeeeeeiieiirrereeeeeeeeeseennerreereeseeeeess 114
Kommando-Beschreibung.......ccceeveeeeeeeeeeeeieeeeieeeeeeenennens 127
Status-INterpretation....ccccveveeiieeereeerireeeeeieeneeerereeeeeeessnnnn 167
Die Floppy-SChnittStelleueevereeeeeneiireeireeeeeeereeeeeennnnns 173
Anschluf3 der Diskettenlaufwerke.......cccccvevevevencvreennnnn. 178
Die Festplatte SH204ccccceiiiiiierinirinececacececaences 181
Funktion und Aufbau......ccccceeviivieeieririeiieiiiiereeeeevviinnnn. 182
Der Harddisk-Controller........ccccceeviieeccinnreniieeeeeeeeeeennn. 184
BefehlSStrUKIUT . .uvvuiiiiiiciecieceeeeeeeeeeeeeeeeeeeeeerereeerereanaes 187
Liste der Befehle.......ceeeeeiiiiiiiiiriieeeeiecccccccereeeeeee, 195
HDC-TOOIS ccciuiiiiiiieieiennieireerresseseseseseseaseeeeaeaansenenens 203
Partitions-AnalySator.......coeevvvuvreiereeeeeiieeieriereeeeeeeeeeess 208
Anschluf3 der Festplattecooovvvveeiiiviiiiiiiiiieinieeieeen, 219
Komplettes Inhaltsverzeichnis ausdrucken.................. 222
Die RAM-DISK .iuivveiiiininieniiiernreereicacesececaseesceosnnns 231
Ein komfortables RAM-Disk-Programm.................... 234
Disk-t0-RAM-DIiSK CODY .ccovvvirrrrrrrrrrrrerereervnenrinnenn. 248
Programmieren in Maschinensprache am Beispiel

eines DisSKk-MoONItors ..c.ceeeeieceeiarereaceceecocescncsocnsoscnnes 255
Die TOS-Funktionen zum Floppy-Zugriff 256
Das Listing und die Bedienung des Disk-Editors....... 267
Das Hauptmenileeeeeeereennneniiiiieciirerisieseeeeeeeeeeseenneenens 385
Das Track-Menil......coooieuviiieeiiieiiiniiinee s ceenneeeeas 386
Das Track with Syncs-Menil........ccccevevvvrrevriireeevvenennnnn. 387

Das SeKtor-Menil......ccoovuiiviiiiiiiiciiiicieieeecee e e 387

7.2.5
7.2.6
7.2.7
7.2.8
7.3

7.3.1
7.3.2
7.33
7.4

8.1
8.2
8.2.1
822 -
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.3
8.3.1
8.3.2
8.3.3
8.3.4

8.3.5
8.4

Anhang

II
III

Das Cluster-Menilcceveeeeevereereeeeereeeeereeneeneenenereennnnnn.. 388
Das Format-Menilccoeeevievreieeniiirrennncineeeeerreeeinenneenns 389
Das GAP-MeNl.....cocovviiiiieeeereeeerinieveeinn e 390
Das OptionS=MENilccceeeeeereeeeeecerrereeeeeeeeeeerreeeeeeeens 391
Beispiele zur Benutzung des Disk-Editors 391
File-Allocation Table......cccccceerveevinenrereeeeeeeriienrneeeeense. 397
Subdirectories und Ordner auf Diskette........ccccceeeueen. 399
Formatieren im Nicht-ATARI-Format....................... 401
Das Assemblieren mit verschiedenen Assemblern...... 404
Maschinen-Hilfsprogramme fiir BASIC.................. 407
Aufruf und Parameteriibergabecccoevevvvvvevreeeeennnnn. 407
Einige BeiSpielprogrammeccccveeveeivrereiiieeeeriieeeeenenns 409
Schnittstelle BASIC/TOS..........ccovvvniiniiiiiiiiiciccie, 409
Directory auslesen Nereeteeteeteeeeesarrrrataraeeeesereasinnrrrnans 411
Sektoren lesen/sChreiben.....coeuvveviveemerveieerieeeveieeenns 416
Beliebige Diskettenformatierung........ccccceeeeeeuunvvveennnn... 418
Daten SUCHEN.....ccoiviiiiriiiieerr et eeeeraeee e 424
Daten SOTti€renccceeeeeveiiiieiiiieriereieeeeeeeeeeveeeenereeraaena——. 426
Datum und Uhrzeit formatiert auslesencc.u...... 428
Die Programmierung des FDC von Basic aus............. 432
Das BASIC/FDC-Interface-Programm 433
Demo 1 - Alle FDC-Kommandos im Griff................ 457
Demo 2 - Disketten kopieren.........ccoceevevveeveeenennnn.... 467
Demo 3 - Erzeugung von Standard- und

Fremd-Formaten.......cccceeeieriviiiieeereeeeriiiceneeeennneeneeeeeennes 472
Demo 4 - Konvertieren von Ein- nach Zweiseitig....480
Erstellung von BASIC-Laderncccocvcnvvvvivnieeenneennnn. 485
File-Maker fiir editor.toS.....cccceveevevevvvreveeeveneeerrereeenennnn. 491
ASCII-TabEIIE......uvereriiieeeeeereeiirrereeeeeeeeeeeerrrreeeeereees 519

StiChWOTItVErZEIiChIIS. ..uuveeieeeeiiiiieeeeeeeeeeeeee e eeeeeveee e 521

Einleitung 11

1. Einleitung

Die Rechner der ATARI ST-Serie sind mit ihrem schnellen
16/32-Bit-Prozessor und- ihrer hohen Speicherkapazitit fir pro-
fessionelle Anwendungen wie geschaffen. Doch wichtiger als der
interne Speicher ist die Moéglichkeit der externen Datenspeiche-
rung. Die hierfiir verwendeten Floppy-Disks und die Harddisk
sind sehr interessante und vielseitige Speichermedien, die mehr
kénnen als man im Handbuch findet.

Fir die optimale Anwendung eines solchen Computer-Systems
ist es wichtig, die F#higkeiten der Komponenten zu iiber-
schauen. Hierfiir ist dieses Buch ideal geeignet. Es gibt zunichst
einen Einblick in die Welt der Massenspeicher und beschreibt
die Vorgehensweise bei der Programmierung von Anwendungs-
programmen. Dann wird immer tiefer in die Geheimnisse der
ATARI-Floppys sowie der Harddisk und auch RAM-Disks ein-
gegangen.

All diese Kenntnisse der Soft- und Hardware versetzen Sie in
die Lage, die interessantesten Dinge mit diesen Speichern anzu-
fangen. Sie konnen die Kapazitit der Disketten erh6hen, einen
eigenen Kopierschutz fiir Thre Programme entwerfen, eine ei-
gene RAM-Disk nach Ihren Bediirfnissen erstellen und mit den
in diesem Buch enthaltenen Beispiel- und Hilfsprogrammen Ihre
Programme wesentlich schneller und effektiver auf Disketten
und/oder eine Harddisk zugreifen lassen.

Weiterhin finden Sie sehr niitzliche Programme, die z. B. ein
komlettes Inhaltsverzeichnis inclusive Ordnerinhalte iibersichtlich
auf dem Drucker ausgeben oder Disketten bzw. die Festplatte
analysieren.

Als besonderes Bonbon finden Sie ebenfalls einen kompletten
und sehr vielseitigen Diskettenmonitor, ein Programm, mit dem
Sie direkt auf die Disketten zugreifen und somit alle erworbenen
Kenntnisse direkt anwenden koénnen. So kénnen geléschte Da-
teien wieder gerettet, Fremd-Disketten gelesen werden usw.

12 ATARI ST Floppy und Harddisk

Sie werden in diesem Buch einige Dinge finden, die in keinem
Handbuch auftauchen. Diese Kommandos oder Zusammenhinge
sind in langwieriger Kleinarbeit zusammengetragen worden, so
daBl das Buch etwas spiter, aber auch mit sehr vielen Informa-
tionen erschienen ist. Sie werden feststellen, dafl die Floppies
und Harddisk wesentlich mehr kann, als Sie gedacht hatten!

Wir hoffen, daB3 Sie mit Hilfe dieses Buches alle Fragen beziig-
lich der Massenspeicher umfassend beantwortet bekommen. Und
nun, viel Spafl mit der Lektiire des Buches!

Files, Programme und Dateien 13

2. Files, Programme und Dateien

Die drei Begriffe der Kapiteliiberschrift stehen im Grunde fiir
einen: Computerdaten jeglicher Art auf einem externen Spei-
chermedium. Trotz groBBer werdender Hauptspeicher der Rech-
ner, der ATARI ST+ hat immerhin 1 Megabyte RAM, miissen
vom Rechner momentan nicht benétigte Daten, z.b. das Text-
verarbeitungs-Programm, die Einwohner der Stadt Koln oder die
Kakaopreise der letzten 50 Jahre, auf einem externen Speicher-
medium untergebracht werden, da sie sonst ja beim Ausschalten
des Rechners verloren gingen.

Als externes Speichermedium benutzt man heute Magnetbinder,
Disketten, Harddisks und neuerdings auch CD-ROMs. Bei allen
diesen sogenannten Massenspeichern werden die Daten erst in
irgendeiner Form auf das Medium iibertragen und anschlieBend
durch eine geeignete Leseelektronik wieder in den Hauptspei-
cher eingelesen. Unabhingig von der Art des Massenspeichers
bezeichnet man die Gesamtheit der gespeicherten Daten unter
einem Namen auf der Diskette (0.4.) als Datei oder File (engl.
Akte).

Ob als Daten nun Adressen, Brief- und Programmtexte oder
ausfithrbarer Programmcode gespeichert wird, ist fiir den An-
wender nebensichlich, fiir den Rechner jedoch von fundmenta-
ler Bedeutung.

Bei der Speicherung von Programmcode darf kein Trennzeichen
zwischen einzelnen Daten vorhanden sein. Anders sieht dies bei
abgespeicherten Texten aus, wo zwischen den einzelnen Sitzen
oft entsprechende Trennzeichen, z.B. einfach der der Return-
Taste entsprechende Code, eingesetzt werden.

Der Anwender erkennt den Typ einer Diskettendatei meist schon
an den drei zusitzlichen Buchstaben des Namens, dem Extender.
Das Betriebssystem des ATARI ST unterscheidet Programme
oder Dateien nur an diesem Extender. Benennt man also ein
Programm (.PRG) um und hingt statt PRG den Anhang DAT
an, so wird nach Anklicken dieses Programmes nur das bekannte

14 AT ARI ST Floppy und Harddisk

Auswahlfenster zum Ausdruck oder Ansehen der Datei erschei-
nen.

Die vom ATARI ST direkt unterschiedenen Extender sind:

.PRG kennzeichnet ein lauffihiges Maschinen-Programm,
welches mit GEM-Unterstiitzung laufen kann.

.TOS bedeutet ebenfalls, da3 dies ein Maschinen-Programm
ist, beim Ablauf dieses Programmes ist das GEM je-
doch abgeschaltet.

TITP gleicht .TOS, vor dem Aufruf des Programmes selbst
erscheint jedoch ein kleines Fenster, in dem man Para-
meter (z.B. Dateinamen fiir Editoren) eingeben kann.

ACC sind spezielle Maschinenprogramme, die nach dem
Einschalten des Rechners geladen werden. Diese Pro-
gramme bleiben stindig im Speicher und sind als Ac-
cessories aus dem DESK-Menii des Desktop aufrufbar.

INF ist als DESKTOP.INF fiir das Desktop wichtig. Hierin
sind die Informationen iiber die Positionen und GréfBen
der Fenster, die im Kontrolifeld eingesteliten Werte
usw. eingetragen. Diese Datei wird durch Anwahl des-
Meniipunktes ’Arbeit sichern’ im EXTRAS-Menil er-
stellt.

Die anderen Dateien wie z.B. BASIC-Programme mit dem Ex-
tender .BAS sind zwar standardmifBig mit diesem Extender aus-
gestattet, sind jedoch fiir das Betriebssystem des ST uninteres-
sant. Auflerdem kann man auch z.B. eine .TXT-Datei in den
BASIC-Interpreter laden, wenn sie den Text eines BASIC-Pro-
grammes enthdlt. Die weiteren Extender sind also nicht ent-
scheidend, sind jedoch fiir den Anwender eine groB3e Hilfe, um
seine Dateien zu unterscheiden.

Die eigentlichen Unterschiede zwischen den einzelnen Datei-
typen liegen in dem inneren Aufbau der Datei selbst. Die mei-
sten Hochsprachen unterscheiden bei der Dateibehandlung zwi-

Files, Programme und Dateien 15

schen verschieden Dateiformen, z.B. mit oder ohne Trennzeichen
zwischen Texten oder Zahlen, spezielle Textarten usw. Betrach-
ten wir nun erst einmal die reinen Daten-Files, die nur Texte
und Zahlen enthalten. Hier gibt es verschiedene Methoden, be-
stimmte Daten aus der Datei herauszufinden und zu bearbeiten.

Die Geschwindigkeit des Zugriffs auf bestimmte Daten von Dis-
kette oder Festplatte hiangt hauptsdchlich von der "Intelligenz"
des Dateiverwaltungssystems ab. Dies 148t sich am besten an ei-
nem konkreten Beispiel verdeutlichen:

In einer Datei seien z.B. die Adressen aller Einwohner Kolns
gespeichert. Die gesamten zu einer Adresse gehérende Informa-
tion wie Name, Vorname, Postleitzahl, Wehnort, Strafle und
Hausnummer bezeichnet man als Datensatz, die einzelne Infor-
mation wie z.B. der Name ist ein Datenfeld des Datensatzes. Die
einfachste Form der Dateiverwaltung ist die einer sequentiellen
Datei, bei der die Daten einfach der Reihe nach hintereinander
geschrieben werden. Das Programm, welches solche Daten aus
der Datei liest, muf3 das Ende eines Datensatzes selbst erkennen,
da ein Trennkennzeichen nur zwischen den einzelnen Daten-
feldern eingefiigt wird.

Jeder Datensatz hat meist eine unterschiedliche Linge. Mochte
man nun z.B. auf den 10. Datensatz zugreifen, muf3 man die
Datei von Anfang an bis zum 10. Datensatz durchlesen. Nun ist
dieses Verfahren fiir kleinere Datensidtze noch akzeptabel, doch
stellen Sie sich einmal vor man sucht in einer solchen sequenti-
ellen Datei mit den Adressen aller Bundesbiirger nach der von

Harry Hirsch aus Buxtehude.

Miissen grofle Datenmengen verwaltet werden, arbeitet man
meist mit festen Datensatzlingen und sogenannten RANDOM-
ACCESS Dateien (random= beliebig, access= Zugriff) mit wahl-
freiem Zugriff. In diesen Dateien steht jedem Datenfeld eines
Datensatzes eine bestimmte, vorher festgelegte GréfBBe zur Verfii-
gung, z.B. 13 Zeichen fiir den Namen, 13 fiir den Vornamen, 4
fiir die Postleitzahl, 15 fiir den Ortsnamen, 15 fiur den StraBen-
namen und 4 fir die Hausnummer, zusammen 64 Zeichen pro
Datensatz.

16 ATARI ST Floppy und Harddisk

Moéchte man nun auf den 10. Datensatz zugreifen, kann man den
Anfang des 10. Datensatzes relativ zum Anfang der Datei durch
einfaches Multiplizieren berechnen. Man braucht dann nur am
10¥64=640sten Byte der Datei zu lesen beginnen und hat direkt
die gewiinschten Daten parat. Die Rechnung gilt natiirlich nur,
wenn es auch einen nullten Datensatz gibt.

Dieser Trick funktioniert allerdings nur, wenn man auch direkt
an eine beliebige Stelle des Massenspeichers zugreifen kann, was
z.B. bei der Verwendung eines normalen Tonbandes nicht mog-
lich ist. Bei Disketten oder der Harddisk ist dies moglich, da
diese in einzelne Abschnitte (Sektoren) unterteilt sind, die
durchgehend nummeriert sind.

Zuriick zu unserem Beispiel der AdreBverwaltung. Wenn wir
wissen, auf welchem Sektor der nullte Datensatz beginnt, kénnen
wir auch ausrechnen, wo sich das 640. Byte der Datei befindet.
Nehmen wir als Beispiel an, unsere Datei beginnt in Sektor
Nummer 10. Beim ATARI ST enthilt jeder Sektor 512 Bytes,
also werden wir unseren 10. Datensatz bzw. das 640. Byte wohl
auf dem 11. Sektor finden, und zwar an der 640-512 =
128.Stelle.

Diese Rechnerei wird dem Programmierer allerdings erspart,
wenn er in einer Hochsprache arbeitet. Eine Hochsprache ist ei-
gentlich jede Programmiersprache aufler der Maschinensprache,
auch Assembler genannt. Assemblerprogrammierer kdénnen je-
doch auch diese Berechnungen von Sektoren dem Betriebssystem
des ATARI ST auftragen, da dieses solche Funktionen zur Ver-
fiigung stellt. Doch dazu mehr in Kapitel 7.

Auf dieses einfache Prinzip des Direktzugriffes aufbauend exi-
stieren noch einige Variationen von Dateiorganisations-

Techniken. So kann man z.B. die ganze Datei nach einem wich-
tigen Datenfeld, z.B. dem Namen, sortieren, die sortierten Na-
men in eine eigene Datei mit der jeweiligen Nummer des ent-
sprechenden Datensatzes schreiben. Eine solche Hilfs-Datei
nennt man Index-Datei. So entsteht eine aus zwei Dateien beste-
hende index-sequentielle Datei (Index-Datei mit sequentieller
Datei), fiir die es einige recht raffinierte Suchverfahren gibt.

Files, Programme und Dateien 17

Dadurch kann man sehr schnell einen bestimmten Datensatz fin-
den und auf ihn zugreifen.

2.1 Filestrukturen und Zugriff verschiedener Hochsprachen

Das Betriebssystem eines jeden Rechners stellt die Grundopera-
tionen zum Umgang mit Dateien (Files) zur Verfiigung, auf die
dann die verschiedenen Hochsprachen ihre Dateiformen auf-
bauen. Wie erwihnt unterstiitzt das Betriebssystem des ATARI
ST, TOS oder GEMDOS genannt, den Umgang mit RANDOM-
ACCESS-Dateien. Diese Dateifunktionen des GEMDOS sollen
nun kurz vorgestellt und im Anschlufl die Umsetztung in die
einzelnen Hochsprachen erliutert werden. Die Beispielpro-
gramme fiir die verschiedenen Hochsprachen, BASIC, PASCAL,
C und FORTRAN, machen alle exakt das gleiche: Anlegen und
Lesen einer sequentiellen sowie einer RANDOM-ACCESS-Datei.

2.1.1 Die Funktionen des GEMDOS im Uberblick

Jede Datei wird vom Anwender durch einen Namen gekenn-
zeichnet. Die maximale Linge des Dateinamens kann 11 Zeichen
betragen, wovon die ersten acht vor dem als Trennzeichen fun-
gierenden Punkt den eigentlichen Namen und die letzten 3 eine
Zusatzinformation zu dieser Datei (Extender) reprisentieren. Bei
der Anwendung von Hochsprache-Compilern, Programmen, die
den geschriebenen Programmtext in ein lauffihiges Programm
iibersetzen, ist die Verwendung von Extendern notwendig. Auf
dem Weg vom Programmtext zum fertigen Programm entstehen
ndmlich bis zu vier verschiedene Files mit gleichem Namen,
aber zur Unterscheidung verschiedenen Extendern. Man schreibt
z.B. ein C-Programm mit einem Textverarbeitungs-Programm
und bennennt das Textfile ’testl.c’. Beim Ubersetzen des Pro-
grammes entstehen dann Dateien mit den Namen ’testl.o’ und
*testl.prg’.

Zum Anlegen einer neuen Datei stellt das GEMDOS die Funk-
tion CREATE (Funktions-Nummer $3C) zur Verfiigung. Man
iibergibt dieser Funktion den gewiinschten Dateinamen und ein

18 ‘ ATARI ST Floppy und Harddisk

sogenanntes Modus-Wort, welches Informationen iiber die Art
der anzulegenden Datei enthdlt. Hat das Anlegen der Datei ge-
klappt (Diskette nicht schreibgeschiitzt o0.4.), erhdlt man vom
GEMDOS eine Dateinummer zuriick, iiber die nun alle folgen-
den Dateizugriffe ablaufen. Diese Nummer nennt man handle.

Die CREATE-Funktion mufl nur beim allerersten Zugriff auf
eine Datei aufgerufen werden, spitere Zugriffe auf eine schon
bestehende Datei konnen durch Aufruf der Funktion OPEN
($3D) vorbereitet werden. Beim Aufruf von CREATE wird also
auf dem aktuellen Laufwerk eine leere Datei mit dem iibergebe-
nen Dateinamen angelegt, die anschlieBend beschrieben werden
kann. Viele Hochsprachen iibernehmen die CREATE-Funktion
in ihre OPEN-Funktion, Beim Aufruf von OPEN, wenn in die
Datei geschrieben werden soll, wird dann die Datei neu ange-
legt, falls noch keine mit dem angegebenen Namen existiert.

Zum Schreiben in eine Datei iibergibt man der GEMDOS-Funk-
tion WRITE ($40) die bei CREATE oder OPEN erhaltene Datei-
nummer (handle), die Anzahl der zu schreibenden Zeichen und
natiirlich die zu schreibenden Zeichen selbst. Sind alle Daten in
die Datei geschrieben und soll in irgendeiner Form wieder auf
die Daten zugegriffen werden, muf3 die Datei vorher geschlossen
werden. Die Funktion CLOSE ($3E) iibernimmt diese Aufgabe.
Wird diese Funktion nicht aufgerufen, gehen meist Daten der
Datei verloren, da die Struktur bzw. die Aufteilung der Datei
auf der Diskette nicht richtig auf der Diskette vermerkt ist.

Nachdem die Datei durch CREATE angelegt, mittels WRITE
beschrieben und schlieBlich durch CLOSE wieder geschlossen
wurde mufl3 diese Datei zum Lesen wieder durch OPEN geoffnet
werden. Der OPEN Funktion ($3D) wird ebenso wie bei
CREATE der Filename i{ibergeben und zusitzlich noch ein Mo-
dus-Wort zwischen 0 und 2.

Eine als Modus iibergebene 0 6ffnet die Datei nur zum Lesezu-
griff, d.h. die beim Aufruf erhaltene Dateinummer (handle) er-
moglicht nur ein Lesen aus der Datei, versuchte Schreibzugriffe
werden mit Fehler abgebrochen. Ein Modus von 1 6ffnet die
Datei fiir Nur-Schreib-Zugriff und eine iibergebene 2 erlaubt

Files, Programme und Dateien 19

sowohl Schreib- als auch Lese-Zugriff. Gelesen wird nun mit
der Funktion READ ($3F),. der analog zu WRITE die Datei-
nummer aus dem OPEN Aufruf und die Anzahl der zu lesenden
Zeichen iibergeben werden.

Der Datei-Zugriff mittels READ und WRITE erfolgt rein se-
quentiell, d.h. beim Offnen der Datei durch CREATE erzeugt
das Betriebssystem einen Zeiger in die Datei, der bei jedem
Offnen und natiirlich auch beim Anlegen der Datei wieder auf
Null gesetzt wird. Dieser Zeiger weist immer auf die momentan
bearbeitete bzw. aktuelle Position innerhalb der Datei, damit
man sich leichter zurechtfindet.

Schreibt man nun mittels WRITE z.B. 14 Zeichen in diese Datei,
bewegt das Betriebssystem diesen internen Zeiger um 14 Positio-
nen weiter, so daB bei dem nichsten Schreibzugriff die neuen
Zeichen an das letzte geschriebene Zeichen angehidngt werden.
Der Anwender mufl also entweder pro Datenfeld eine bestimmte
Anzahl von Zeichen zulassen oder ein bestimmtes Zeichen zwi-
schen zwei Datenfelder einfiigen, damit beim Lesen das Ende
eines Datenfeldes erkannt werden kann.

Fiir eine AdreBdatei, die ja eine reine Textdatei darstellt, wer-
den nicht alle 256 durch 8-Bit darstellbaren Zeichen (sieche An-
hang) bendtigt, sondern nur die Klein- und Grof3-Buchstaben,
die Zahlen sowie die Satzzeichen. Daher existieren im soge-
nannten ASCII-Zeichensatz (ASCII= American Standard Code of
Information Interchange) einige Steuerzeichen, die z.B. das Ende
einer Datei oder das Ende eines Datenfeldes markieren.

Genau wie beim Schreiben wird auch beim Lesen von Zeichen
aus einer Datei der interne Dateizeiger um die Anzahl der gele-
senen Zeichen weiterbewegt. Man kann so zwar jedes Zeichen
lesen, muf3 aber zum Lesen des letzten Zeichens einer Datei alle
vorherigen Zeichen durchlesen. Die GEMDOS-Funktion LSEEK
($42) ermoglicht nun die Positionierung des internen Dateizei-
gers auf ein beliebiges Zeichen relativ zu Dateianfang, Datei-
ende oder momentanem Dateizeiger. Als Ubergabeparameter
mufB3 wieder die Dateinummer (handle) sowie ein Modus-Wort

20 ATARI ST Floppy und Harddisk

und natiirlich die gewiinschte Verinderung der Zeigerposition
iibergeben werden.

Hat dieses Modus-Wort einen Wert von 0, so wird die Position
relativ zum Dateianfang berechnet, bei einem Wert von 1 er-
rechnet sich die neue Position des Dateizeigers relativ zum jetz-
tigen Zeiger, d.h. es sind auch negative Werte erlaubt, damit
man auch den Zeiger um einige Zeichen zuriickbewegen kann.
Ubergibt man als Modus-Wort eine 2, zihlt die Position relativ
zum Dateiende, es sind folglich nur negative Werte erlaubt. Mit
dieser LSEEK -Funktion wird es moglich, eine RANDOM-AC-
CESS-Datei mit wahlfreiem Zugriff zu programmieren, indem
man feste Datenfeldlingen nimmt, z.B. 13 fiir den Namen und
64 Zeichen fiir einen gesamten Datensatz. Dadurch weif3 man,
um wieviele Zeichen man den internen Dateizeiger bewegen
mufl, um zum nichtsten oder vorherigen Datenfeld bzw. Daten-
satz zu gelangen.

Bei der bisherigen Beschreibung der GEMDOS-Funktione fehlen
noch drei fiir Dateihandling wichtige Funktionen:

SETDTA ($1A4) legt einen Puffer fiir die beiden Funktionen
SFIRST (34E) und SNEXT ($4F) fest, mit denen man alle Da-
teien einer Diskette aus dem Inhaltsverzeichnis lesen und die
jeweilige Lange dieser Dateien bestimmen kann.

Nach diesem globalen Einblick in das Betriebssystem des ATARI
ST kénnen wir uns nun den einzelnen Hochsprachen zuwenden
und die Moglichkeiten des Dateihandlings der jeweiligen Spra-
chen unter die Lupe nehmen. Diese Beispiele koénnen keine
Einfithrung in die jeweilige Sprache sein und auch keine kom-
plette Dateiverwaltung bieten. Sie sollen nur anhand eines kon-
kreten Beispieles zeigen, wie einach das Anlegen und der Zu-
griff auf eine Diskettendatei ist. Zum Erlernen der Sprache und
auch der Dateiorganisation findet man in der Literatur bereits
etliche gute Biicher.

Nach der halb theoretischen Betrachtung der Zugriffstechniken
finden Sie dann schlieB3lich im Kapitel 2.6 ein einfaches, aber
doch komplettes Datenbank-Programm in BASIC, an dem Sie

Files, Programme und Dateien 21

die praktische Anwendung der eben erworbenen Kenntnisse se-
hen kénnen.

2.2 Filezugriff von BASIC

Das beim ATARI ST mitgelieferte ATARI-BASIC bietet sowohl
den sequentiellen Zugriff auf Dateien als auch den wahlfreien
Zugriff. Nach dem Entfernen der Zeilennummern evt. mit dem
von GfA mitgelieferten ST-KILL-Programm funktionieren die
BASIC-Programme ohne Anderung auch mit dem BASIC-Inter-
preter von GfA.

BASIC-Befehlsiibersicht

Zum Anlegen einer Diskettendatei verwendet man die Funktion
OPEN, die drei verschiedene Optionen einer Datei bietet. Die
Syntax des Befehls:

OPEN "Modus",#Dateinummer,"Dateinamen",Datensatzlinge

Fiur Modus (unbedingt in GroBbuchstaben) existieren folgende
Optionen:

" Datei soll zum sequentiellen Lesen gedffnet werden.
"o Datei soll zum sequentiellen Schreiben geéffnet werden.
"R" Datei soll zum wahlfreien Zugriff ged6ffnet werden.

Die Dateinummer ist eine willkiirliche Zahl zwischen 1 und 15,
ebenso wie der Dateiname, der acht Buchstaben gefolgt von ei-
nem Punkt und drei weiteren Extension-Buchstaben enthalten
kann. Die Datensatzlinge spielt nur beim Offnen einer RAN-
DOM-Datei eine Rolle (Modus = "R") und gibt die GrofB3e jedes
Datensatzes in Bytes an. Im Gegensatz zu der Betriebssystem-
funktion muB man hier schon beim Offnen angegeben, ob eine

22 ATARI ST Floppy und Harddisk

sequentielle Datei oder eine solche mit wahlfreiem Zugriff an-
gelegt werden soll.

Die Verwendung von sequentiellen Dateien ist in diesem BASIC
allerdings stark eingeschrinkt, da keine Moéglichkeit besteht,
Daten an eine schon vorhandene Datei anzuhingen. Dies geht
nur mit einem recht unschénen Trick: Hat man z.B. eine se-
quentielle Adref3datei mit 100 Adressen gespeichert und mochte
nun die von Tante Frieda noch hinzufiigen, mufl man alle 100
Adressen lesen und zwischenspeichern, anschlieBend die neue
Adresse hinzufiigen und alle 101 Adressen wieder in die Datei
schreiben.

Jedes OPEN "QO" 16scht eine schon vorhandene Datei mit glei-
chem Namen und legt somit eine véllig neue, leere Datei auf der
Diskette an. Wegen dieser doch sehr eingeschrinkten Handha-
bung und da die maximale GroBe einer sequentiellen Datei von
der GréBe des Hauptspeichers des ATARI abhingig ist (was fiir
kleinere Datenbanken natiirlich kein Hindernis ist), moéchte ich
nur kurz auf sequentielle Dateien im ATARI-BASIC eingehen.

2.2.1 Die sequentielle Datei in BASIC

In eine sequentielle Datei konnen Zeichenketten (ASCII-Strings)
oder auch Zahlen geschrieben werden. Das Schreiben von ir-
gendwelchen Sonderzeichen kann Probleme geben, da dann evtl.
das Ende eines Datenfeldes nicht mehr zu finden wére. Eine
solche Datei wird z.B. durch folgenden Befehl zum Beschreiben
geOffnet:

OPEN "O",#1,"TEST1.DAT"

Das Schreiben in diese neu angelegte Datei mit dem Namen
TEST1.DAT iibernehmen die beiden Befehle WRITE#I und
PRINT#1, wobei WRITE zwischen die zu schreibenden Daten
ein Komma ausgibt, PRINT dagegen die gleichen Formatierzei-
chen wie bei der Ausgabe auf den Bildschirm (z.B. Leerzeichen
nach einem Komma) benutzt.

Files, Programme und Dateien 23

PRINT# und WRITE# besitzen die gleiche Schreibweise, und
Zwar;

PRINT#Dateinummer,Daten[,Daten,...]
WRITE#Dateinummer,Daten[,Daten,...]

Die Datei "TEST1.DAT" konnte man durch folgende Befehls-
folge zum Beschreiben 6ffnen und Testdaten hineinschreiben:

10 open "O",#1,"A:TEST1.DAT"
20 a$ = "Harry"

30 b$ = "Hirsch®

40 for i =1 to 10

50 write#1,a$

60 write#1,b$

70 next i

80 close #1

Dieses kleine Programm legt die Datei "TEST1.DAT" auf der
Diskette in Laufwerk A an und schreibt 10 mal "Harry" bzw.
"Hirsch" in die Diskettendatei.

Die WRITE-Funktion schreibt einen Text (String) in Anfiih-
rungszeichen und den Zeichen $0D (CR= Carriage Return) und
$0A (LF= Line Feed) als Ende einer Ausgabe auf die Diskette.
Das Zeichen $1A dient dem BASIC-Interpreter als Ende-der-
Datei Zeichen EOF (End of File) und bietet somit dem Pro-
grammierer eine Moglichkeit zur Erkennung des Datei-Endes.

Zum Lesen einer sequentiellen Datei existieren im ATARI-BA-
SIC zwei Befehle, die sich nur hinsichtlich der Behandlung von
Steuerzeichen im zu lesenden Text unterscheiden:

Die INPUT#-Funktion uberliest vorangestellte Leerzeichen CRs,
LFs und Sonderzeichen und liest ab dem ersten ASCII-Zeichen
bis zu einem Leerzeichen, dem Ende-der-Zeile Zeichen (EOL =
End of Line, besteht aus $0A und $0D, LF und CR), einem
Komma, dem EOF-Zeichen oder maximal 255 Zeichen. Die
LINE INPUT#-Funktion liest alle Zeichen vom ersten bis zum

24 ATARI ST Floppy und Harddisk

Ende-der-Zeile Zeichen oder bis zu 254 Zeichen. Beiden Be-
fehlen muf} eine Variable, in die gelesen werden soll, sowie die
Dateinummer der Datei tibergeben werden. INPUT #1,a8 liest
einen String aus der Datei mit der Nummer 1 in die Variable a$.

Das folgende kurze Programmfragment 6ffnet die eben angelegte
Datei "TEST1.DAT" zum Lesen und liest alle Strings bis zum
Ende der Datei Zeichen (EOF = $1A). Die Funktion
EOF(Dateinummer) dient zur Erkennung dieses Endes. Sie lie-
fert einen Wahrheitswert: TRUE (wahr), wenn das Dateiende
erreicht wurde und FALSE (unwahr), falls dies nicht der Fall
ist.

10 open "IM,#1,"A:TEST1.DAT"
20 if eof(1) goto 100

30 input #1,a$

40 print a$

50 goto 20

100 close #1

2.2.2 Die RANDOM-Datei in BASIC

Die Handhabung von RANDOM-Dateien mit wahlfreiem Zu-
griff ist im ATARI-BASIC wesentlich besser implementiert als
der sequentielle Zugriff. Allerdings miissen Sie erst einmal
mehrere Befehle kennenlernen, da das Anlegen und Bearbeiten
einer RANDOM-Datei auch wesentlich komplexer ist.

Das Offnen und Anlegen der Datei geschieht noch ohne wesent-
lichen Unterschied. OPEN #1,"R","TEST2.DAT",64 offnet die
Datei "TEST2.DAT" als Datei mit wahlfreiem Zugriff und ver-
einbart fiir diese Datei eine Datensatzlinge von 64 Zeichen bzw.
Bytes. Wenn Sie nachher mit GET# und PUT# auf die Datei zu-
greifen, geschehen diese Zugriffe immer in "Portionen" zu 64
Zeichen.

Die einzig erlaubten Zeichen dieser Dateiart sind ASCII-Zei-
chen. Deshalb miissen alle Zahlenwerte, die in eine RANDOM-
Datei geschrieben werden sollen, vor dem Schreiben in Zahl-

Files, Programme und Dateien 25

Zeichen (Ziffern) umgewandelt werden. Beim Lesen muf3 man
diese Zahl-Zeichen wieder in Zahlen zuriickwandeln. Aber keine
Sorge, firr diesen Zweck existieren mehrere BASIC-Funktionen.

Meistens sollen ja in einem Datensatz einer RANDOM-AC-
CESS-Datei mehrere Datenfelder angelegt werden, z.B. eines fiir
den Namen, eines fiir den Vornamen ect. (s.0.). Diese Einteilung
des vorhandenen Platzes, in diesem Fall der 64 Zeichen, iiber-
nimmt die Funktion FIELD #. Die Anweisung

FIELD #1, 13 AS a$, 13 AS b$, 4 AS c$, 15 AS d$,15 AS e$, 4 AS f$

reserviert im 64 Zeichen groflen Datensatz-Feld der Datei
Nummer eins (#1) 13 Zeichen fir a$ (Vorname), 13 fiir b$
(Name), 4 Zeichen fir c$ (Postleitzahl), 15 Zeichen fir d$
(Ortsname), 15 Zeichen fir e$ (StraBennamen) und 4 Zeichen
fiir £$ (Hausnummer).

Auf diese Stringvariablen sollte nicht direkt, sondern nur iiber
die Funktionen LSET und RSET zugegriffen werden. LSET a$
= "Harry" {ibertrigt den String "Harry" linksbiindig in die String-
variable a$, die laut obiger Definition 13 Zeichen aufnehmen
kann. Die restlichen Zeichen bis zum 13. werden durch Spaces
($20) belegt.

Der Befehl rset a$ = "Harry" fiillt die Puffervariable rechtsbiin-
dig, d.h der freie Platz pro Datenfeld wird mit fithrenden Spaces
aufgefilit.

Mochte man Zahlen in eine Random-Datei schreiben, miissen
diese zuerst in Byte-Strings umgewandelt werden. Die Funktio-
nen MKD§, MKI$ und MKS§ ubernehmen diese Aufgabe:
mki$(Zahl) gibt einen 2-Byte String aus (fiir Integer-Variablen)
mks$(Zahl) gibt einen 4-Byte String aus (fiir Real-Variablen)

mkd$(Zahl) gibt einen 8-Byte String aus (fiir doppelt genaue
Reals)

26 ATARI ST Floppy und Harddisk

Zahlen werden also vor der Ubertragung in die gewiinschte
Puffervariable der RANDOM-ACCESS-Datei durch eine dieser
Funktionen in einen ASCII-String umgewandelt und spiter beim
Lesen durch eine der Riickverwandlungs-Funktionen
(cvi,cvs,cvd) wieder in normal verarbeitbare Zahlen (Reals und
Integers) umgeformt.

Nachdem nun die gewiinschten Puffervariablen des Datensatzes
mittels FIELD angelegt wurden, Strings mit LSET, Zahlen nach
vorheriger Anwendung von MKD$ oder MKS$ ect. auch mit
LSET in diese Puffervariablen eingetragen wurden, kann der
gesamte Datensatz (Name, Vorname ...) mit einem einzigen Be-
fehl in die Datei eingetragen werden: mit PUT. PUT #5, 1 trigt
den in den Puffervariablen der Datei Nummer 5 enthaltenen
Daten als Datensatz Nummer 1 in die Datei Nummer 5 ein.

Das folgende kleine BASIC-Programm legt eine Random-Datei
mit Namen "TEST3.DAT" auf der in Laufwerk A eingelegten
Diskette an, spezifiziert 6 Datenfelder fiir die Puffervariable,
belegt diese Puffervariable mit Werten und schreibt diese Werte
schlieBlich als Datensatz Nummer 1 und 2 in die Random-Datei.

10 open "R™,#1,"A:DATEI3.DAT",64
20 field #1,13 as a$,13 as b$,4 as c$,15 as d$,15 as e3$,4 as f$
30 lset a$= "Harry"

40 lset b$= "Hirsch"

50 a = 2222

60 lset c$= mks$(a)

70 Llset d$= “Buxtehude"

80 lset e$= '""Meerweg"

90 b = 245

100 lset f$=mks$(b)

110 put #1, 1

120 put #1, 2

130 close #1

In Zeile 60 wird die Zahl 2222 vor der Zuweisung an die Puf-
fervariable ¢$ durch MKSS$ in einen 4-Byte-String umgewandelt.

Files, Programme und Dateien 27

Mochte man die Daten der Random-Datei schlieBlich wieder
lesen, geht man analog zum Schreiben vor, indem man die Datei
offnet, die Puffervariablen definiert und einen kompletten Da-
tensatz mit dem Befehl GET#1 einliest. Auf die einzelnen Da-
tenfelder kann dann direkt iiber die entsprechende Pufferva-
riable zugegriffen werden.

Bei Zahlen mufl man an die Riickwandlung denken, da Zahlen
ja als ASCII-Strings gespeichert sind. Das folgende kleine BA-
SIC-Programm offnet die eben angelegte Datei und liest alle
Datensiitze dieser Datei, welche dann auf dem Bildschirm ausge-
geben werden.

10 open "R",#1,"A:DATEI3.DAT", 64

20 field #1,13 as a$,13 as b$,4 as c$,15 as d$,15 as e$,4 as $
30 get #1,1

40 print a$,b$

50 print cvs(c$),d$

60 print e$,cvs(f$)

70 close 1

Die FeldgroBen der Puffervariablen diirfen beim Schreiben und
anschlieBendem Lesen natiirlich nicht voneinander abweichen,
d.h. wenn fir a$ vor dem Schreiben 13 Zeichen in der Puffer-
variablen reserviert wurden, miissen beim spiteren Lesen auch
13 Zeichen fiir die Puffervarable a$ reserviert werden.

2.3. Das Filehandling in PASCAL

Die Beschreibung der Dateifunktion fiir PASCAL bezieht sich
auf den PASCAL Compiler ST-PASCAL+ von CCD, der direkt
von Atari vertrieben wird und eine sehr gute, weit iiber den
PASCAL-Standard hinausgehende, Implementation der Sprache
PASCAL auf dem Atari ST darstellt. ST-PASCAL+ unterstiitzt
sowohl sequentielle wie auch RANDOM-ACCESS-Dateien.

28 ATARI ST Floppy und Harddisk

Fiir Dateien verwendet man den Datentyp ’file of’ oder den
schon vordefinierten Type TEXT, der allerdings nur fir se-
quentielle Dateien angewendet werden kann und dem Typ ’pac-
ked array of char’ entspricht. Als Beispiel deklariert

var dat: file of integer

eine Datei, die Integer-Zahlen aufnehmen kann und den dazu-
gehorigen Zeiger als Variable ’dat’, der auf das aktuell zuge-
griffene Zeichen innerhalb der Datei zeigt.

2.3.1 Die sequentielle Datei in PASCAL

Nach der Deklaration einer Dateivariablen vom Typ °file of’
wird eine neue Datei durch die Funktion rewrite (interner Da-
teiname, ’externer Name’), die dem BASIC-Befehl OPEN "O"
entspricht, angelegt. Durch diesen Befehl wird eine Datei mit
dem iibergebenen Dateinamen angelegt und einem externen Na-
men zugeordnet. Der Dateiname muf3 im Deklarationsteil als
Variable des Typs ’file of’ deklariert werden. Uber den Da-
teinamen bzw. die ebenfalls durch rewrite definierte Pufferva-
riable (gleicher Name mit angehingtem Hochpfeil ~) kann nun
auf die Datei zugegriffen werden.

Der interne Dateiname reprisentiert die Datei innerhalb des
PASCAL-Programms und der in Hochkommata stehende externe
Name reprisentiert die gleiche Datei auf einem Massenspeicher
(Diskettendatei). Deklariert man z.B. die Datei ’dat’ durch:

var dat: file of integer ;

und 6ffnet sie anschlieBend zum sequentiellen Beschreiben mit
rewrite (dat, ’a:sdatei.dat’), so wird gleichzeitig eine Pufferva-
riable dat® definiert, die eine Integerzahl aufnehmen kann und
auf das erste Dateielement zeigt. AuBBerdem wird auf der Dis-
kettenstation A eine Datei mit Namen "sdatei.dat" angelegt und
zum Beschreiben gedffnet. Alle folgenden Aus- und Eingaben
beziehen sich dann auf diese Diskettendatei.

Files, Programme und Dateien 29

Zum Lesezugriff auf eine schon bestehende Datei muf3 diese mit
reset (interner Dateiname, ’externer Name’) : wieder ge6ffnet
werden. Durch diesen Befehl wird eine schon existierende Datei
zum Lesen ge6ffnet und gleichzeitig der erste Datensatz in die
Puffervariable iibertragen. Sollte versucht werden, eine noch
nicht bestehende Datei zu 6ffnen, wird EOF() wahr.

Die Funktion EOF (interner Dateiname) : gibt einen Wahrheits-
wert vom Typ Boolean (TRUE, FALSE) zuriick. TRUE wird
zuriickgegeben wenn der Dateizeiger auf das Ende der Datei
zeigt.

EOL (Dateivariable) : ist ebenfalls eine Funktion vom Typ Boo-
lean, die jedoch nur auf Dateien des Typs ’packed file of char’
bzw. TEXT angewendet werden darf und TRUE zuriickgibt,
wenn das Ende einer Zeile erreicht wurde.

Der Zugriff auf die Daten einer Datei erfolgt schlieBlich iiber
put (interner Dateiname) : zum Schreibzugriff und get (interner
Dateiname) zum Lesezugriff.

put (dat) schreibt den Wert der Puffervariable dat* in die Datei.
Die Puffervariable stellt praktisch einen Zeiger in die Datei dar,
der bei jedem rewrite oder reset auf Null gesetzt und bei jedem
Zugriff mit get oder put um eins erhoht wird und somit auf das
nichste Element der Datei zeigt. Nach dem Offnen der Datei
zum Lesen durch reset (dat,’name’) wird schon das erste Dateie-
lement in die Puffervariable dat™ iibertragen. Ein nachfolgendes
get (dat) erhOht den Dateizeiger um eins und fbertriagt den
Wert, auf den der Zeiger dann zeigt, in die Puffervariable dat”.
Zum Erkennen des Dateiendes dient die Funktion eof (Dateiva-
riable), die einen +Wert vom Typ Boolean (TRUE,FALSE) lie-
fert.

Im Beispiel muf3 vor dem Zugriff mit get auf Dateiende getestet
werden, da get den Dateizeiger erhdht und das néchste Dateie-
lement in die Puffervarable iibertragen will. Bei Dateien vom
Typ TEXT besteht zusitzlich die Moglichkeit, das Zeilenende

30 ATARI ST Floppy und Harddisk

durch die Funktion eol (Dateivariable) zu erkennen, die ebenso
wie EOF einen Wert vom Typ Boolean zuriickgibt.

Als mogliche Dateielemente konnen siamtliche in PASCAL ver-
fiigbaren Datentypen dienen, selbstverstindlich auch RECORDS.
Nachdem eine Datei also mit rewrite geéffnet wurde, kann der
Puffervariablen ein Wert zugeordnet werden, der anschlieBend
durch put in die Datei geschrieben wird. Fiir reine Textdateien,
also solche vom Typ packed °file of char’ (TEXT), kann die zum
Schreiben eines Dateielementes eigentlich notige Befehlsfolge
(Zuweisung eines Wertes an die Puffervariable) durch dat® :=
wert; und Schreiben dieses Wertes in die Datei durch put(dat);
durch den einzelnen Befehl write (dat, wert); abgekiirzt werden.
Analog hierzu liest der Befehl read (dat, wert) aus einer TEXT-
Datei und ersetzt die Befehle wert ;= dat® und get (dat).

Das nun folgende kleine PASCAL-Programm legt eine Datei auf
der Diskette in Laufwerk A an und beschreibt diese mit 20
Strings. In CCD-PASCAL definiert string[20] eine Variable vom
Typ ’packed array of char’, die 21 Zeichen aufnehmen kann.
Der PASCAL-Compiler merkt sich die Linge jedes Strings, in-
dem er diesen Wert an den Anfang des Strings, also ins nullte
Zeichen einsetzt.

(* Schreiben einer sequentiellen Datei in PASCAL. U.B. 9.86 *)
program sdatei ;
var datl : file of string[20] ;

t1,t2 : string[20] ;
i : integer ;

begin
rewrite (dat1, 'a:seqdatei.dat');
t1 := 'Harry';

t2 := 'Hirsch';

for i:= 1 to 10 do
begin

Files, Programme und Dateien 31

dat1” := t1;
put (dat1);
dat1” := t2;
put (dat1);
end; (* for Schleife *)

end. (* Programm *)

Wenn Sie sich mit dem in Kapitel 7 vorgestellten Disk-Monitor
die angelegte Datei "seqdatei.dat" ansehen, so erkennen Sie deut-
lich das Organisationsschema einer sequentiellen PASCAL-Datei
mit Stringvariablen (21 Zeichen pro String reserviert, Linge des
Strings am Anfang des Strings). Zum Lesen der soeben angeleg-
ten Datei dient folgendes kleine Programm:;

(* Lesen einer sequentiellen Datei in PASCAL. U.B. 9.86 *)

program liesdatei ;

var datl : file of stringf20] ;
t1,t2 : stringl20] ;
i & integer ;

begin
writeln (' Datei lesen ');
reset (dat1,'a:seqdatei.dat');

while not eof(dat1) do
begin
t1 := dat1”;
get (dat1);
writeln (t1);
end; (* while Schleife *)
writeln;

32 ATARI ST Floppy und Harddisk

writeln (' Return- Taste betdtigen ');
readln (t2);

end. (* Programm *)

Nach dem Offnen der Datei mit reset(datl,’A:psequtl.dat’) wird
das erste Dateielement schon der Puffervariablen datl” zugeord-
net, so daB die Puffervariable schon direkt nach dem Offnen
der Datei einer Variablen verarbeitet werden kann. Diese Va-
riable muf83 natiirlich vom gleichen Typ wie die durch die De-
klaration der Dateivariable mitdefinierte Puffervariable sein,
sonst konnen Fehler auftreten. AuBlerdem darf kein Versuch
unternommen werden, Daten hinter dem Dateiende zu lesen, die
Funktion eof (datl) fragt ab, ob das Dateiende schon erreicht
ist; die Leseschleife wird in diesem Fall verlassen.

In PASCAL existiert ebenso wie in BASIC keine Moéglichkeit,
Daten ans Ende einer bestehenden sequentiellen Datei anzuhiin-
gen. Méchten Sie eine schon existierende Datei erweitern, bleibt
Ihnen nichts anderes iibrig, als die gesamte Datei zu lesen und
mit dem neuen Dateielement in eine neu anzulegende Datei zu
schreiben.

Das Anlegen und der Zugriff auf Dateien anderer Datentypen
(file of integer, file of real) geschieht analog zu obigem Beispiel.

2.3.2 Random-Dateien in PASCAL

Das Anlegen und Offnen zum Lesen von RANDOM-ACCESS
Dateien geschieht mit den gleichen Befehlen wie bei den se-
quentiellen Dateien (rewrite, reset), auch der Zugriff auf die
einzelnen Daten ist dhnlich. Es gibt nur einen zusitzlichen Pa-
rameter bei get und put, nimlich die Nummer des Datensatzes,
der geschrieben oder gelesen werden soll. Die Nummerierung
der Datensitze beginnt bei 0, wobei alle Datensitze zwischen 0
und der grof3ten Nummer erst angelegt werden miissen.

Wenn also z.B. der letzte Datensatz die Nummer 8 trigt, kann
danach kein Datensatz mit der Nummer 10 angelegt werden,

Files, Programme und Dateien 33

sondern es muf} zuerst der Datensatz Nummer 9 geschrieben
werden. An einem kleinen Beispielprogramm kann man die Fle-
xibilitat dieses Dateityps deutlich erkennen. Es wird hier eine
kleine AdreBdatei angelegt, in die 10 mal die gleiche Adresse
eingetragen wird.

(* Schreiben einer Random-Datei in PASCAL. U.B. 9.86 *)

program randatei ;

type adres =
record
vorname : stringl[12];
name : string[12];
plz : integer;
ort : string[14];
strasse : stringl[14];
nummer : integer;
end; (* record *)

var dat?1 : file of adres ;
t1,t2 : adres ;
i : integer ;

begin
rewrite (dat1,'a:randoml.dat');
t1.vorname := 'Harry';
t1.name := 'Hirsch';
tl.plz := 2222 ;
tl.ort := 'Buxtehude!;
t1.strasse := 'Meerweg';
t1.nummer := 245;

for i:= 0 to 9 do
" begin
dat1” := t1;

34 ATARI ST Floppy und Harddisk

put (dat1,i);
end; (* for Schleife *)

end. (* Programm *)

Mit dem Befehl datl”* := t1 wird also im CCD-PASCAL die ge-
samte AdreBstruktur mit Vorname, Name ect an die Pufferva-
riable iibergeben und anschlieBend mit put (datl,i) als jeweiliger
Datensatz Nummer i in die Datei geschrieben.

Wie Sie erkennen kénnen, werden wieder die Anzahl der Zei-
chen der einzelnen Strings vor dem ersten Zeichen des jeweili-
gen Strings gespeichert, einfache Ingegerzahlen werden als 2-
Byte Sedezimalzahlen gespeichert. Als Ende-der-Datei-Zeichen
verwendet PASCAL schlieBlich die Zahl $F5.

2.4 Der Dateizugriff von C

Die Sprache C ist sozusagen die Muttersprache des Atari ST.
GroBe Teile seines Betriebssystems sind in dieser Sprache ge-
schrieben worden. So ist es nicht verwunderlich, die in der
Einfithrung zu diesem Kapitel beschriebenen GEMDOS-Funk-
tionen zur Dateiverwaltung in der Sprachbeschreibung von C,
teils in abgewandelter Form, wiederzufinden.

C ist die aus Anwendersicht unvollkommenste Sprache, da viele
Funktionen selbst gebaut werden miissen. So auch die Funktio-
nen fir die Dateiverwaltung. Alle C-Compiler Anbieter liefern
jedoch den im C-Standardbuch von Kernighan & Ritchie be-
schriebenen Dateistandard als Include-Datei "STDIO.H" mit.

Zur Benutzung der Dateifunktionen muf3 diese Datei daher
durch den am Anfang eines C-Programmes stehenden Befehl
#include <stdio.h> ins eigene Programm integriert werden.

Als Hirde fir einen C-Anfidnger, neben den total<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>