o)

134

o\wn vec 0
\L\\( \ hsi

\\\Y fev n R
‘L \B plock \B\H‘.m Y\m\ \ P
T O yit \\oe\\e N

ﬁ Sﬂ’l oR
h(\f‘

y 10 vh}me\\
(o) AL

B
Mit vslsvfzc,’ ion 3.5 un.
"'é’:;,;',;fefis,,,,
Pl‘ogram::;;zmzw
ng

DA
TA BECKER







Wolf-Gideon Bleek
Martin Hecht
Uwe Litzkendorf

Das grofie GFA-BASIC-Buch
zum Amiga

DATA BECKER



Copyright © 1990 by DATA BECKER GmbH
Merowingerstr. 30
4000 Disseldorf 1

1. Auflage 1990
Umschlaggestaltung  Werner Leinhos

Textverarbeitung  Udo Bretschneider
und Gestaltung  Andreas Quednau

Text verarbeitet mit  Word 5.0, Microsoft
Ausgedruckt mit  Hewlett Packard LaserJet Il

Druck und
buchbinderische Verarbeitung  Graf & Pfliigge, Disseldorf

Alle Rechte vorbehalten. Kein Teil dieses
Buches darf in irgendeiner Form (Druck,
Fotokopie oder einem anderen Verfahren) ohne
schriftliche Genehmigung der DATA BECKER
GmbH reproduziert oder unter Verwendung
elektronischer Systeme verarbeitet,
vervielfaltigt oder verbreitet werden.

ISBN 3-89011-399-0



Wichtiger Hinweis

Die in diesem Buch wiedergegebenen Verfahren und Programme werden ohne Riicksicht
auf die Patentlage mitgeteilt. Sie sind ausschlieBlich fiir Amateur- und Lehrzwecke be-
stimmt und dirfen nicht gewerblich genutzt werden.

Alle technischen Angaben und Programme in diesem Buch wurden von den Autoren mit

groBter Sorgfalt erarbeitet bzw. zusammengestelit und unter Einschaltung wirksamer Kon-

trollmaBnahmen reproduziert. Trotzdem sind Fehler nicht ganz auszuschlieBen. DATA

BECKER sieht sich deshalb gezwungen, darauf hinzuweisen, daB8 weder eine Garantie

noch die juristische Verantwortung oder irgendeine Haftung fiir Folgen, die auf fehlerhafte

Angaben zuriickgehen, ibernommen werden kann. Fiir die Mitteilung eventueller Fehler
sind die Autoren jederzeit dankbar.






Vorwort

Endlich! Das GFA-BASIC gibt es jetzt auch fiir den Amiga.

Um allen Amiga-Usern, die mit dieser duBlerst gelungenen Pro-
grammiersprache arbeiten mdéchten, so schnell wie moglich eine
kompakte, ausfithrliche und gut verstindliche Dokumentation
zukommen zu lassen, haben wir uns iiberlegt, daB3 sich hierbei
zwei Erfahrungen zusammenbringen lassen. Uwe Litzkendorf,
der sicher allen ATARI ST-Besitzern bekannt ist, hatte mit sei-
nem GFA-BASIC-Buch zum ATARI ST einen groB3en Erfolg. Er
ist Kenner dieser Programmiersprache. Martin Hecht, ein
Amiga-Programmierer ohne Kompromisse, und Wolf-Gideon
Bleek bringt mit vielen Programmierkniffen, grofler Erfahrung
auf dem Gebiet der strukturierten Programmierung und Be-
triebssystemkenntnis all sein Wissen ein.

Mit diesem Drei-Autoren-Gespann 148t sich der Inhalt des Bu-
ches nur ahnen. Es wurden alle Befehle und Funktionen der
Version 3.0 des Amiga-GFA-BASIC dokumentiert, ausprobiert
und in Programmbeispielen erklirt. AuBBerdem bietet der grofe
Grundlagenteil am Anfang des Buches eine gute Voraussetzung
fiir jeden Einsteiger, der neu in der BASIC-Programmierung ist.
Ganz besonders freuen wir uns iiber das letzte Kapitel. Es zeigt
den gerade erst erschienenen GFA-BASIC Compiler, der uns
freundlicherweise von der Firma GFA-Systemtechnik GmbH,
Diisseldorf, schon wihrend der Testphase zur Verfiigung gestellt
wurde. Ohne die stindigen UpDates hitte dieses Buch nicht den
aktuellen Stand haben kénnen, der nun vor Thnen liegt.

Wir wiinschen jedem Leser dieses Buches viel Erfolg beim Ler-
nen dieser neuen Programmiersprache und gutes Gelingen bei
eigenen Programmen. Viel Spaf!

Grofhansdorf, Wolf-Gideon Bleek
im Februar 1990 Martin Hecht
Uwe Litzkendorf






Inhaltsverzeichnis

1. ZUdieSEM BUCK ... 13
2, DI AMIQA ..ottt sttt 17
3. Das GFA-BASIC ...ttt sse s esassenes 19
3.1 Noch einige Anmerkungen zura GFA-BASIC ... 21
3.2 Zum GFA-MeNl ..ot 22
33 Der RUN-Only-Interpreter ........oeeercenerneeneenns 24
3.4 Der GFA-EdItOr ..ot 24
4, BasSis-BASIC ...ttt 29
4.1 Computer-ABC ...t 30
4.2 Bits und Bytes ..ot 32
4.3 Bindr-Arithmetik . ettt ettt aenrann 34
4.4 Das HexadezimalSyStem .........ccccocouvecerrrrreeeenennennnnnnns 34
4.5 Codes und OpCodesS .......ooveeeeciieiiieeeeeeeeeenenenns 35
4.6 Words und Longwords .......ccceeeeeeeerereennnnnensinnennnns 37
4.7 Die Speicherorganisation ..........ccceceeeeeeereveeieenes 38
4.8 Bo00lIeSChe LOZiK ..ot 39
49 Bedingungen und Konsequenzen ..........ccoevvuennnes 45
410 FIaBS oottt et 48
4.11  Die Variablen ... 49
4.12 Matrix und VeKtor ... 55
4.13  ErkennungSdienst .........cocoooeeeveerereeeeeereresesee e 56
4.14 - Schleifenstrukturen ...........coeeeeeeveeeeeennereneeenns 58
4.15  Vergleichsoperationen ............o.ceeeveevererererennnnns 63
4.16  VorfahrtSregeln .........o.eeveeeecveeeeeeceeeeeeeee e 65
4.17  Fingeriibungen ............eeveeeneeeteeeneeenenns 66
5. Ein-/Ausgabebefehle ..., 75
5.1 Dateneingabe .........coveeeereeerercererenereesere e 75
5.2 Datenausgabe ..........oeeeeecereeeeee e, 83

5.3 Bildschirmoperationen ...........cceeeeeeeeveeeeeeeveeeenens 89



54 Diskettenoperationen ............eevereerereeeseresesennnne 92

5.5 Dateihandhabung ... 104
5.5.1 Funktionsweise einer Random-Access-Datei ...... 115
5.6 Port-Ein-/-Ausgabebefehle .........cocooeevivncnncnnenne 119
5.7 Die DOS-Bibliothek des Amiga .......ccocoeeveerecunenne 120
5.8 Drucker-AnweiSungen .............cceeeeeerereeerceesesesnennens 132
59 Sound- und Spracherzeugung ...........cccccoeenenccunnns 140
ProgrammstrukRUur ... 145
6.1 Schleifenkonstruktionen ............cooeeeeveceveveeeeeenennn. 145
6.2 Bedingte Verzweigungen ............ececnnrenns 149
6.3 BereichsdeK1aration .............veeeecieerenenenenenes 167
6.4 Variablendeklarationen .........ccoocooevvevererenererenerennnee. 170
6.5 UNterprogramine ...........ccoeceeveeererereresesesesssssssssesssssssesens 173
6.6 Assemler-/C-/PRG-Programmaufrufe .................. 186
Textoperationen ...t 193
7.1 String-Manipulationen ...........cccceeeeerveerveessennsresnennnns 193
7.2 StrNg-ANALYSE ..oovverreererereeeeeee s 194
7.3 String-Formatierung .................... ettt besenans 199
Arithmetik-Befehle ..ot 201
8.1 (0773 22170 (=) 1 R 201
8.2 Mathematische Operationen ...........eceeeeeeenn. 202
8.3 Numerische FunKtionen .............ccooeveeveeecrereenenees 206
8.4 Trigonometrische Funktionen ...........cocoooeevereeennnnn. 210
8.5 Vergleichsoperationen ..............oocooeeeeveeeeeenveeeecnnenee 214
8.6 Bit-Operationen ............eeeeeeeeeeereeeeeeeeerenenas 215
8.7 Zufallswert-ETrZeUgUNg ......ccocoeveevevereeereerenereeerennnes 223
GrafiK ... 225
9.1 Grafikdefinitionen ............eceeeeeeereeenennns 225
9.2 Objektgrafikbefehle ..., 238
9.3 Strich-/Punktgrafik .......ccccooomerverecerereereeerererns 246
9.4 Grafikoperationen ...............eereeereereerensenseresnne 255
9.4.1 Organisation eines PUT-Strings ..........cccoceveruerennee. 262
9.4.2 Organisation des Bildschirm-Speichers .................. 265

9.5 Objekt-Animation .........eeereerreeeereeeceeeeenes 268



10.

11.

12.

13.
14.

15.
16.
17.

Datenumwandlung ..... reeteusest ettt et ne et nes 279

10.1  Die ZahlenSySteme .........cccceeeeeveerrrrereesesrerscsennsensennns 280
Feld-, Speicher- und Zeigeroperationen ..............ccccceeevcvrnnenee. 291
11.1  Feldoperationen ............eeveerererereneesesesesssesssesenes 291
11.1.1 Aufbau eines mehrdimensionalen Feldes .............. 293
11.2  Speicheroperationen ...........eeveeevecereeceveneeerenenennns 305
11.3  Speicherverwaltung ............veeeveeeeeeeerereneeerererenenenns 310
11.4  Zeigeroperationen ............oeeeeeeresreeeesesssesesens 315
11.5 Die Exec-Bibliothek des Amiga ........cccooveeeerunce. 317
ProgrammKkontrolle ...t 331
12.1  Programmstart und -ende ..........ccccocevvrnnieirnrninenne 331
12.2  LOSChfunKktionen .............eeveeveeeeeeerereneeennnans 334
12.3  Zeitoperationen ............ceeeeeeeeeeeeerereeeneseseseseseseesesens 336
12.4  Fehlerbehandlung .........cccooovveieieierrinieceeecenens 341
12.5  AUSKUNSLLE oottt ene e 344
12.6 Multitasking ......ccccooevecerercereeeeeseeeeresesese e sssssessesens 347
12.7  DebUGEGING ..ottt seses 352
12,8 DIVEISES .eoveeererercececieeeeeeeeeeereeereetenesensesesesesesesesesesesesesssesens 355
Interaktionen (Programm/Benutzer) ............cccocovcvceuvcrncnncnee. 363
Window- und Screen-Programmierung ..............ccccooeeeevuvnnennes 375
14.1 Die Window-Befehle des GFA-BASIC ................ 375
14.2  Die Screen-Befehle des GFA-BASIC .................... 383
Meniiprogrammierung mit BASIC-Befehlen ........................... 389
Ereignis-Uberwachung mit BASIC-Befehlen ........................... 395
Der GFA-COMPIIET ...t ssaees 405
17.1 Beispiele und Ergebnisse ......coooeveeeereeceneveeenen. 412
17.2  Die Bedienung im Detail .......cccccoeeerereereererercrnnnnne. 415
17.2.1 Auf der Workbench ..........eeeeeecreeerceerereenenn. 416
17.2.2 VO CLI ..ot seans 424
17.2.3 Die Fehlermeldungen des Linkers ..........cccoeeuunne.. 428

17.3  Effektives Compiler-BASIC ........cooovevevereerernnen. 429



17.4  Fortgeschrittene Compiler-Nutzung ........................ 432

17.4.1 Erginzungen fiir die Compiler-Shell ...................... 434
18. Vektor- und Matrizenberechnungen ... 451
18.1  Grundbefehle zur Matrizenhandhabung ................ 545
18.2 Ein- und Ausgabe der Matrizendaten .................... 456
18.3 Rechnen mit Matrizen .........occooeeeenorncnuneccerencinenenne 464
19. Mehr Bedienkomfort ... 477
19.1  Mathematische Befehle ..o 477
19.2 Die neuen Editor-Kommandos ..........cccceeeeerreueunaee 481
Anhang A ASCII-Tabelle ... 483
Anhang B Fehlermeldungen ........ccocceovvvecenneeneenrereeccsresessseeenns 484
Anhang C DOS-Fehlermeldungen ..........cccoomeiennivrccenrecnennen. 489
Anhang D Verzeichnis der GFA-BASIC-Befehle ................... 493
Anhang E  QuellenhinWeis .........cccooooevereemueieinececrereeeee e 498

StIChWORVEIrZEICHNIS ..........o.eeieeeeeeeeeeeeeeee e 499



—— Zudiesem Buch 13

1. Zu diesem Buch

Das Anliegen dieses Buches ist es, die ca. 360 Befehle und
Funktionen, die nunmehr vom GFA-V3.03-Interpreter zur Ver-
fiigung gestellt werden, nach Schwerpunkten zu ordnen, um so
das Auffinden der gesuchten Befehlsbeschreibungen nach pro-
blemorientierten Gesichtspunkten zu ermdéglichen bzw. zu er-
leichtern. Um Ihnen eine einheitliche Darstellung zu bieten, ha-
ben wir uns an folgende Konventionen gehalten:

Jede Befehls- bzw. Funktionsbeschreibung beginnt mit einer
- Kopfzeile, die deutlich sichtbar den Befehlsnamen, seine mog-
liche Abkiirzung und eine (sehr knappe) Kurzbeschreibung ent-
hilt.

Daran anschlieend finden Sie die Syntax, in welcher der Be-
fehl/die Funktion einzusetzen ist. Auf die Beschreibung des Be-
fehls/der Funktion folgt dann gegebenenfalls ein Beispiel oder
ein Hinweis auf Beispiele an anderer Stelle.

Innerhalb des Textes wurden fiir bestimmte Situationen, Vor-
gaben und Optionen jeweils einheitliche Markierungen benutzt.

<> Wird bei einer Befehlsbeschreibung auf bestimmte
Tasten verwiesen, wird ihr Name zur besseren Kennt-
lichmachung in spitzen Klammern angegeben (z.B.
<Shift>, <A>, <Return> oder <Help>).

[1] Bei Befehlen, deren Syntax variabel ist, wird ein optio-
naler Befehlsteil in eckigen Klammern angegeben. Dies
bedeutet, dafl die Angabe (z.B. [;,’] oder [,Linge]) nur
dann im Befehl angegeben werden mufB3, wenn die da-
mit verbundene Option genutzt werden soll.

{) Viele GFA-BASIC-Befehle kénnen als Abkiirzung an-
gegeben werden. Der Interpreter erweitert diese dann
selbstindig auf die richtige Form. Sollte zu einem Be-



14

Das groBe GFA-BASIC-Buch ——

fehl eine Kurzschreibweise existieren, ist diese in der
Titelzeile und in der Quick-Referenz innerhalb von
geschweiften Klammern angegeben (z.B. { SYS } oder {
RET }). Diese geschweiften Klammern werden auch
von einigen BASIC-Befehlen (Speicherzugriffe wie
CHAR({)}, BYTE{} etc.) verwendet. Die Verwechslungs-
gefahr mit den hier gemeinten Abkiirzungsklammern ist
jedoch gering.

Soll eine Folge von Anweisungen innerhalb von Be-
fehlen verdeutlicht werden, geschieht dies anhand einer

Punktlinie (z.B. FOR...NEXT).

Grundsitzlich sind in der Syntax-Zeile alle Befehlsnamen in
‘GroBbuchstaben, alle Variablen, Parameter und Strings in nor-
maler Schreibweise dargestellt (z.B. OPENW Handle).

Bei den Parameterangaben wurden weitgehend einheitliche Be-
zeichnungen verwendet:

Adresse

Anz

Arg

Feld
Back=/Var=
Expr/Expr$
Index

Kanal
Nummer
Text
Var/Var$

Xpos/Ypos

Objektbaumadresse/sonst. Adressen (Adressen
werden grundsitzlich als 32-Bit-Integer ange-
geben).

Anzahl

Funktionsargument

Beliebige Feldbezeichnung
Riickgabedaten bei Funktionen
Numerischer/alphanumerischer Ausdruck
Index von Feldelementen
Datei-Identifikator
GFA-Window-Nummer

Beliebige Zeichenkette

Beliebiger Variablenname (nicht mit VAR
verwechseln!)

Bildschirmkoordinaten



—— Zudiesem Buch 15

Bei Dateiname, Programmname und Ordner ist davon auszu-
gehen, daf3 ein evtl. erforderlicher Suchpfad in den Namen ein-
zubinden ist. Unter dem Begriff Ausdruck (s.o. Expr) wird hier
eine beliebige Zusammenstellung von Konstanten, Formeln,
Texten, Funktionen und Variablen verstanden, die zusammen ein
Ergebnis liefern.

z.B. numerischer Ausdruck:

A%=B%+((23472/4.7)*12.95*%C%) "2.1317+aFunc(Abc%)

z.B. alphanumerischer Ausdruck:

A$="Text"+STR$(A%*B%)+SPACE$(10)+aFunc$(Abc$)+B$

In den Beschreibungen von Funktionen wird nicht explizit ange-
geben, daf3 die Ergebnisse aller (auch selbstdefinierter) Funktio-
nen auf verschiedene Weise ausgewertet werden koénnen, z.B.
Zuweisung:

Var%=aFunc -> Selbstdefinierte Funktion
Var%=FRE(0) -> BASIC-Funktion (z.B. FRE())

z.B. Ausgabe:

PRINT @Func -> Selbstdefinierte Funktion
PRINT FRE(O) -> BASIC-Funktion (z.B. FRE())

z.B. Abfrage:

IF @Func=X -> Selbstdefinierte Funktion
IF FRE(O0)=X -> BASIC-Funktion (z.B. FRE())

z.B. Dummy-Aufruf:

VOID aFunc -> Selbstdefinierte Funktion
VOID FRE(O) -> BASIC-Funktion (z.B. FRE())

In der Syntaxzeile von Funktionen wird in diesem Buch zur
Verdeutlichung die Zuweisungsvariante (Var=Funktion()) ver-
wendet. Funktionsaufrufe stehen immer stellvertretend fir einen
Wert oder String, den diese Funktion liefert. Sie konnen deshalb



16 Das groBe GFA-BASIC-Buch —

wie jeder beliebige Wert oder String verwendet und eingesetzt
werden. Alle Funktionen sind im Anhang unter "Alphabetische
Befehlsliste" mit einem vorangestellten (f) gekennzeichnet.

Bei allen Dateizugriffen (auBBer OUT und INP), die die Angabe
einer Kanal-Nummer erwarten, ist die Angabe des Nummern-
zeichens # optional. In der uns vorliegenden Version V3.0 kann
bei allen ON...GOSUB-Name-Befehlen der Teil GOSUB ver-
nachlissigt werden. Er wird vom Interpreter selbstindig hin-
zugefiigt (z.B. wird aus ON BREAK Name dann ON BREAK
GOSUB Name).



—— Der Amiga 17

2. Der Amiga

Der MC 68000 von Motorola, der Hauptprozessor der meisten
neuen "16-Bitter", wie z.B. Apple Mac, Atari ST, QL, aber eben
auch unseres Amiga, bietet im Vergleich zu den fritheren 8-Bit-
Prozessoren, wie z.B. dem 6502 im C64, eine Vielzahl an Ma-
schinenbefehlen, die erst durch die 16-Bit-Datenbreite ver-
wirklicht werden konnten und gleichzeitig die Fahigkeiten und
Geschwindigkeit eines 8-Megahertz-Takters voll zur Geltung
brachten.

Was hei3t 8 Megahertz? Hertz ist eine aus der Physik bekannte
Einheit fir Schwingungen pro Sekunde. Fernseher z.B. arbeiten
mit einer Bildwiederholungsfrequenz von 50 Hertz. D.h. jede
Bildschirmzeile wird innerhalb einer Sekunde 50mal neu aufge-
baut. Fur unseren Computer bedeutet das, daBB ein spezieller
Schwing-Quarz mit einer Frequenz von acht Millionen Hertz
(achtmillionenmal in der Sekunde!) schwingt und bei jeder
Schwingung ein Schalter-Zustand bearbeitet werden kann. In
Kombination mit 16 Daten- und 24 AdreBleitungen ergibt sich
daraus eine kaum noch zu erfassende Variabilitit.

Man stelle sich eine riesige Lagerhalle vor, in der Regale mit
insgesamt ca. 16 Millionen (!) Schubladen untergebracht sind. In
jeder dieser Schubladen lige eine Information, die bestimmte
Auskiinfte iiber die Arbeitssituation im Betrieb gibt. Nun soll
jemand innerhalb kiirzester Zeit erfassen, welche Information in
welcher Schublade liegt und welche Auswirkungen der Inhalt
dieser Schublade im Zusammenspiel mit vielen verschiedenen
anderen Schubladeninhalten auf die Organisation des Gesamtbe-
triebes hat.

Das ist, wenn man unser Gehirn als Vergleich nicht in Betracht
zieht, unzweifelhaft mit menschlicher Kraft nicht machbar - ein
Amiga, ob 2000er, 1000er oder 500er kann das. Da er jedoch
auch analysieren, rechnen und einordnen muB, wirde dies
langer als eine Sekunde dauern. Trotzdem reicht seine
Geschwindigkeit aus, um z.B. mit dem GFA-Interpreter in



18 Das groBe GFA-BASIC-Buch ——

weniger als einer 20tel Sekunde eine FOR-NEXT-Schleife mit
1000 Schritten zu durchlaufen. Innerhalb eines Schrittes dieser
Schleife muf3 er intern hunderte von Einzelschritten abarbeiten,
die Richtigkeit des Programms in seiner Grammatik iiberpriifen
und die verwendeten Befehle analysieren und zuordnen
(interpretieren). Wahrhaft eine gewaltige Leistung. War ein 8-
Bitter in seinen Kombinationsméglichkeiten noch einigermaflen
iiberschaubar, so ist ein 16-Bitter real kaum noch zu begreifen.



—— Das GFA-BASIC 19

3. Das GFA-BASIC

Zusammen mit dem Amiga wurde von Anfang an eine Pro-
grammiersprache ausgeliefert. Wihrend wir diese bei anderen
Home-Computern fest integriert vorfanden, war dies beim
Amiga keine Selbstverstindlichkeit mehr. Um so erfreuter zeig-
ten sich die Gesichter, als sie vom AmigaBASIC hoérten.

Ein wesentlich gr6Berer Befehlsschatz, strukturierte Program-
mierung und Ausnutzung der Libraries kiindeten ein neues, be-
quemeres Zeitalter der Programmierung an. Jedoch ein Wer-
mutstropfen blieb bei alledem erhalten: die Geschwindigkeit. Das
AmigaBASIC vertuschte an keiner Stelle, dafl es eine Interpre-
tersprache war, man glaubte teilweise sogar, daf3 es stolz darauf
war.

Sie als Amiga-Besitzer bekommen aber erst jetzt einen Begriff
von der Qualitit Thres Computers. Frank Ostrowski stellte vor
ca. zwei Jahren sein erstes GFA-BASIC vor. Es gibt wohl kaum
andere Programmiersprachen, mit denen auf so atemberaubend
einfache Weise selbst schwierige Probleme l6sbar sind wie in
GFA-BASIC. Uberzeugen Sie sich selbst, denn nun gibt es sie
auch fir den Amiga!

Wir haben nun einen Interpreter, der das Angebot eines MC
68000 in einer fiir viele nutzbaren Sprache zur Verfiigung stellt.
Er tritt damit in ernstzunehmende Konkurrenz mit der bis heute
favorisierten Compilersprache C. Zugegeben, in manchen Bezie-
hungen werden C- und Assemblerprogrammierung Vorrang be-
halten. Aber die Gruppe derer, die bereit sind, sich mit der
komplizierten Compiler- und Assemblertechnik auseinanderzu-
setzen, wird sich mehr und mehr in Grenzen halten, da dieses
BASIC hochsten Anforderungen mit Sicherheit Geniige tut.

Wie bei jeder Sprache mufl man auch hier erst einmal das ABC
lernen, um flieBend sprechen zu koénnen. D.h., man muf3 die
Grundstrukturen, an denen sich die Sprache orientiert, be-



20 Das groBe GFA-BASIC-Buch ——

herrschen, um vom Empfinger (in diesem Fall dem Interpreter)
richtig verstanden zu werden. Gliicklicherweise haben wir es
hier mit BASIC zu tun, dem ja der Ruf anhingt, ein Tausend-
sassa zu sein, was seine syntaktische Toleranz angeht.

Das GFA-BASIC zwingt - gliicklicherweise - zu einer struktu-
rierten Programmierung. Wer sich z.B. mit den Sprachen C, Mo-
dula oder Pascal beschiftigt hat, dem werden die Eigenarten der
strukturierten Programmierung nichts Neues sein.

In GFA-BASIC wird in jeder Zeile jeweils nur ein Befehl ak-
zeptiert. AuBlerdem werden die Zeilen vom Interpreter selbsttitig
in die entsprechende optische Struktur eingeordnet. Es ist eine
wahre Freude zu sehen, wie sauber und ordentlich ein derart
durchstrukturiertes Programm hinterher aussieht. Ein weiterer
wichtiger Aspekt ist aber, da3 dadurch bei der Fehlersuche eine
immens groB3e Zeitersparnis eintritt. Befehlszeilen sind ohne
Zeichen-Scrolling auf einen Blick erfaBbar. Zusiitzlich wird
durch das Einriicken der Zeilen sofort erkennbar, z.B. welches
ENDIF zu welchem IF oder welches NEXT zu welchem FOR
gehort.

Der vielleicht wichtigste Vorteil der Struktur-Programmierung
ist aber der, daBl beildufig wihrend der Programmerstellung im-
mer wieder kleine Unterroutinen abfallen, die in sich geschlos-
sen sind und dadurch die Moglichkeit bieten, nach und nach
eine umfangreiche Bibliothek an Hilfsprogrammen und allgemein
verwendbaren Prozeduren zusammenzustellen. Das wire prinzi-
piell in anderen Programmierarten genauso méglich, nur ergibt
sich hier die Gelegenheit dazu erheblich seltener. Komfortabel
wird es dann noch, wenn man diesen Prozeduren (wie in GFA-
BASIC) eine fast beliebig lange Parameterliste {ibergeben kann.
Effektiver geht es fast nicht mehr.

Die V3.0-Version hat gegeniiber den fritheren Versionen auf an-
deren Computern erhebliche Verinderungen erfahren. Das be-
ginnt bei der Variablen-Organisation (Einfithrung von Byte- und
Word-Variablen), geht iiber einen phantastischen Programm-



—— Das GFA-BASIC 21

Editor und endet nach vielen weiteren Anderungen bei wesent-
lich strafferen Strukturierungsmoglichkeiten (SELECT-CASE,
ELSE IF, FUNCTION etc.).

Aus diesen neuen Moglichkeiten ergibt sich eine erhebliche
Einsparung an Programmtext und zudem eine ebenso erhebliche
Steigerung der Geschwindigkeit im Programmlauf sowie bei der
Programm-Entwicklung. Einige neue Befehle ermoglichen eine
derart einfache Programmierung auch komplizierter Vorginge,
daB es fast zu einem Kinderspiel wird.

Wahrscheinlich das erste, was lhnen am neuen GFA-BASIC
auffallen wird, ist die rasante Geschwindigkeit des Editors beim
Suchen, Ersetzen, Blittern und Scrollen. Diesen Super-Editor
kann man schon fast als komplette Textverarbeitung bezeichnen.
Ein Suchvorgang durch den gesamten Text dauerte im Durch-
schnitt nicht linger als ein bis zwei Sekunden(!).

Last but not least sollen hier noch die neuen Editor-Funktionen
genannt werden, von denen vor allem <Control><U> (die zuletzt
durch <Control><y> geloschte Zeile restaurieren), die Funk-
tionstasten-Belegung, die interne Zeilennumerierung und der
History-Zeilenspeicher im Direktmodus hervorzuheben sind.

Man mag mir vorhalten, dafl ich nichts anderes kenne als das
GFA-BASIC, was vielleicht zum Teil stimmt, aber nach allem,
was ich kenne, ist das V3.0-GFA-BASIC mitsamt seinem Editor
die beste Programmiersprache, die es es fiir den Amiga zu kau-
fen gibt. Ich bin jedenfalls restlos begeistert und nehme an, daf
es den meisten von Thnen ganz genauso gehen wird.

3.1 Noch einige Anmerkungen zum GFA-BASIC

Zur Erstellung dieses Buches lag uns zuerst eine Testversion vor.
Diese besafl schon die Versionsnummer 3.0, hatte aber wesent-
lich weniger Befehle als die Version 3.0 auf dem Atari ST.



22 Das groBe GFA-BASIC-Buch ——

Auch bei weiteren Updates der Testversion wurden es nicht un-
bedingt so viele Befehle, wie auf dem Atari vorhanden sind.
Gleichermaflen traten Probleme bei der Funktion dieser Befehle
auf. So waren zwar viele Befehle vom Vorbild iibernommen,
hatten aber trotz angegebener Dokumentation nicht den Funk-
tionsumfang, wie er beschrieben war.

Auf der anderen Seite gab es auch keine dokumentierten Be-
fehle, die trotzdem implementiert waren, oder vom Interpreter
akzeptierte Befehle, die aber nicht bearbeitet wurden.

Sie sehen schon, dafl es nicht ganz einfach fiir uns war, das
GFA-BASIC auf dem Amiga zu dokumentieren. Wir haben
trotzdem versucht, mit vielen Tricks und Kniffen eine umfang-
reiche Beschreibung dieser Programmiersprache herauszugeben.
Wir hoffen weiterhin, da3 bei IThrer GFA-BASIC-Version die
von uns entdeckten Fehler nicht mehr vorhanden sind, so daB3
Sie ohne solche Sorgen leben konnen.

Dies wurde bei der Uberarbeitung der 1. Auflage bestitigt. Die
uns nun vorliegende Version 3.03 hat fast keine Fehler mehr
und sogar einige Befehle zusitzlich.

3.2 Zum GFA-Menii

In letzter Minute vor Erscheinen der endgiiltigen Version wurde
das erste Menii ins GFA-BASIC eingefiigt. Der Editor kann jetzt
also mit einigen Kommandos auch iiber ein Intuition-Menii und
den damit verbundenen Komfort bedient werden. Dieses Menii
erreichen Sie, wenn Sie die rechte Maustaste gedriickt halten
und mit dem Mauszeiger auf die Titelleiste des Editor-Screens
fahren. Es erscheinen 9 Punkte, die hier schnell erklirt werden
sollen:

LOAD

Lidt ein GFA-BASIC-Programm. Diese Funktion entspricht dem
Punkt LOAD der Leiste in der unteren Zeile und kann auch mit
F1 oder <Amiga>-L aufgerufen werden.



—— Das GFA-BASIC 23

SAVE

Speichert ein BASIC-Programm im GFA-Format. Die Funktion
gleicht der aus der oberen Zeile der Leiste und kann auch mit
<Shift>-F1 oder <Amiga>-S aufgerufen werden.

NEUE NAMEN / New Names

Diese Funktion schaltet die Abfrage nach neuen Variablen-Na-
men ein oder aus. Sie erhalten sonst bei Verwendung eines
neuen Variablen-Namens eine Request-Box, in der nach der
Richtigkeit gefragt wird. Dies ist nun unterbunden. Allerdings
gilt diese Einstellung nicht fiir den Direktmodus, da sonst alle
alten Variablen-Werte geloscht wiirden.

Diese Funktion kénnen Sie tiber die Tastatur mit <Amiga>-N
aufrufen.

RUN

Startet ein Programm. Auch aufzurufen mit <Amiga-R> oder
<Shift>-F10.

TASKPRI 0

Setzt die Prioritit des GFA-BASIC-Tasks auf 0. Damit wird an-
deren gleichzeitig laufenden Programmen mehr Zeit des Pro-
zessors zugeteilt. GFA-BASIC wird dadurch langsamer! Diese
Funktion kann auch mit <Amiga>-0 aufgerufen werden.

TASKPRI 1

Setzt die Prioritit des GFA-BASIC-Tasks auf 1, womit der In-
terpreter mehr Rechenzeit als andere Programme vom 68000er
erhilt. So werden die gesamte Programm-Bedienung, der Editor
und die Berechnungen beschleunigt. Allerdings werden andere
Programme dadurch wesentlich langsamer! Diese Funktion kann
auch mit <Amiga>-1 aufgerufen werden.

CLEANUP

Hiermit kann man ohne groBe Miihe die Sound-Ausgabe, die
BOB-Verwaltung und -Bewegung und das Sprite-Handling stop-



24 Das groBe GFA-BASIC-Buch —

pen. Man erspart sich dadurch das Eingeben vieler unterschied-
licher Befehle. Dieser Meniipunkt kann auch mit <Amiga>-C
aufgerufen werden.

SAVE ICON

Mit dieser Einstellung kénnen Sie bestimmen, ob das GFA-BA-
SIC zu Threm Programm ein Icon auf der Diskette anlegt.

NEWCLI

Startet ein neues CLI auf dem Workbench-Screen. Sie miissen so
nicht erst das CLI-Icon auf den Bildschirm holen. Allerdings
muf3 die Shell dann noch von Hand gestartet werden (Version
1.3 der Workbench).

3.3 Der RUN-Only-Interpreter

Zum GFA-BASIC-Paket gibt es einen RUN-Only-Interpreter,
der es ermoglicht, Thr GFA-BASIC-Programm ohne den eigent-
lichen Interpreter mit Editor laufen zu lassen.

Dies macht es moglich, ein Programm an Freunde oder Bekannte
weiterzugeben, die nicht im Besitz des Interpreters sind. Es wird
Ihnen von GFA gestattet, diesen RUN-Only-Interpreter beliebig
weiterzugeben. So ist es sogar moglich, kommerzielle Programme
im GFA-BASIC zu schreiben und diese zu verkaufen, wenn Sie
den RUN-Only-Interpreter kostenlos dazu weitergeben.

Nach dem Starten von der Workbench aus erscheint die Aus-
wahl-Box, von der aus Sie den File-Namen des Programms be-
stimmen konnen, das gestartet werden soll. Oder aber Sie geben
im CLI den File-Namen hinter dem Programm-Aufruf an.

3.4 Der GFA-Editor

Innerhalb des in die Programmiersprache integrierten Editors
stehen dem Anwender hilfreiche Funktionen zur Hand, mit



—— Das GFA-BASIC 25

denen die tidglichen Korrekturen im Programmtext leichter
durchgefithrt werden konnen. So gibt es zum einen das oben
schon besprochene Menii, in dem die wichtigsten Befehle leicht
erreichbar untergebracht sind. AulBlerdem kommen noch die
Funktionstasten hinzu, die mit den Befehlen belegt sind, die
man in der oberen zweizeiligen Leiste wiederfindet.

Wir wollen Thnen an dieser Stelle einen kurzen Uberblick da-
ritber geben, welche Befehle wo zu finden sind.

Die Control-Sequenzen (in alphabetischer Reihenfolge)

ctrl-b markiert den Blockanfang

ctrl-c eine Seite weiter

ctrl-cursor-hoch eine Seite zuriick

ctrl-cursor-links Anfang der Zeile

ctrl-cursor-rechts Ende der Zeile

ctrl-cursor-runter eine Seite weiter

ctrl-e sucht und ersetzt Text

ctrl-shift-e sucht und ersetzt Text mit vorhergehender

Eingabe

ctrl-f sucht Text

ctrl-shift-f sucht Text mit vorhergehender Eingabe

ctrl-g Zeile anspringen

ctrl-home Programmanfang anspringen

ctri-k Blockende markieren

ctrl-n Leerzeile einfligen

ctrl-q Blockmenu aufrufen

ctrl-r eine Seite zuriick

ctrl-tab Tabulator riickwaérts

ctrl-u fligt die geloschte Zeile (ctrl-y) wieder ein

ctrl-y I6scht eine Zeile

ctrl-z Programmende anspringen
Funktionstasten

Die beiden Befehlszeilen im oberen Teil des Editor-Screens sind
auch iiber die Funktionstasten zu erreichen. Dabei wird ein Be-
fehl in der unteren Zeile durch einfachen Druck auf eine Funk-
tionstaste und die Befehle in der dariiberliegenden Zeile durch
die gleichen Tasten in der Kombination mit Shift aufgerufen.



26

Das groBe GFA-BASIC-Buch

F1
Shift-F1
F2
Shift-F2
F3
Shift-F3
F4
Shift-F4
Fs
Shift-F5
F6
Shift-Fé
F7
Shift-F7
F8

Shift-F8

F9
Shift-F9
F10
Shift-F10

Load (Programm laden)

Save (Programm speichern)

Merge (ASCII-Programm einbinden)

Save,A (Programm in ASCII speichern)

Llist (Programm auf dem Drucker ausgeben PTR:)
Quit (GFA-BASIC beenden)

Block (ruft das Untermenii Block auf)

New (I6scht den Programmtext)

BIKEnd (setzt das Ende der Blockmarkierung)
BlkSta (setzt den Anfang der Blockmarkierung)
Find (sucht einen Text)

Replace (sucht und ersetzt einen Text)

Page down (blattert eine Seite tiefer)

Page up (blattert eine Seite hoher)
Insert/Overwr (wechsel zwischen Uberschreibe- und
Einfigemodus)

Normal/Interlace (wechsel in der Editor-Screen
zwischen 256 und 512 Zeilen)

ClkOn/CIkOff (schaltet die Uhr aus bzw. ein)
Direct (ruft die direkte Kommandozeile auf)
Test (testet die Programmstruktur)

Run (startet ein Programm)

Das Blockmenii

Innerhalb des Block-Meniis kénnen alle Befehle auch iiber ihren
Anfangsbuchstaben angesprochen werden.

Copy
Move
Write
Llist
Start
End
“Del
Hide

Kopiert den Bereich an die Kursor-Position
Verschiebt den Bereich an die Kursor-Position
Schreibt den Bereich im ASCII-Format auf Diskette
Druck den Bereich (auf PTR:)

Bewegt den Kursor an den Bereichsanfang
Bewegt den Kursor an das Bereichsende

Léscht den Bereich

Hebt die bestehende Markierung wieder auf




—— Das GFA-BASIC

27

Sondertasten
ESC ruft die direkte Kommandozeile auf
HELP versetzt die Editor-Zeile in den alten Zustand

Control-Shift-Alternate

Faltet PROCEDUREN/FUNCTIONen auf oder zu
Unterbricht ein laufendes Programm




28

Das groBe GFA-BASIC-Buch ——



—— Basis-BASIC 29

4. Basis-BASIC

Es ist unmoglich, in einem einzelnen Buch, das die Program-
mierung in einer bestimmten Programmiersprache erliutern soll,
allen Anspriichen gerecht 25 werden. Richtet es sich nach den
Interessen der Anfinger, wird es fiir den Fortgeschrittenen und
Profi langweilig. Richtet es sich dagegen nach den Bediirfnissen
der Konner, versteht der Anfinger nur noch wenig. Also mufl
versucht werden, einen Kompromif3 zu finden. Dieser besteht
darin, dem Anfinger die Grundlagen der Programmierung na-
hezubringen, ohne in Banalitiit zu versinken, und komplexe
Sachinhalte fiir Fortgeschrittene darzustellen, ohne in Fachchi-
nesisch abzudriften.

Um nun Anfingern die Moéglichkeit zu er6ffnen, mit GFA-BA-
SIC den Grundstein zu ihrer Programmierer-Karriere zu legen,
will ich hier die wesentlichen Grundlagen dieser Programmier-
sprache erliutern und zusitzlich eine Einfithrung in die Compu-
ter-Linguistik anbieten. Wer also der Meinung ist, er sei iiber
den Aufbau eines Computers, iiber Boolesche Logik, Zahlensy-
steme etc. bereits ausreichend informiert, kann dieses Kapitel
vernachlissigen.

Den Einsteigern mochte ich allerdings empfehlen, sich hier mit
dem nétigsten Rilstzeug auszustatten, denn ohne gewisse Grund-
kenntnisse kann man auch den bedienungsfreundlichsten Com-
puter nicht zu sinnvollen Betitigungen bewegen.

Dann wollen wir jetzt einsteigen: Ein Computer ist in erster Li-
nie ein duflerst dummer Zeitgenosse. Ob sich das in Zukunft mit
Bio- und Megachips, Transputern, Supraleitern u.i. wesentlich
dndern wird, bleibt abzuwarten. Da Computer der gegenwiirtigen
Generation nur die beiden Zahlen 0 und 1 unterscheiden kon-
nen, muf3l man manchmal gewaltige Anstrengungen unterneh-
men, um ihre Aufmerksamkeit zu erregen.



30 Das groBe GFA-BASIC-Buch ———

Unter normalen Umstinden begegnet ein Laie einem Computer
mit Skepsis, aber auch mit einer unleugbaren Faszination. Diese
Faszination ist der Grund dafiir, daB man manchmal vor lauter
Ehrfurcht den eigentlich simplen Charakter eines solchen Gerits
nicht erkennt. Das einzig Bewundernswerte daran sind die
mikroskopische Grofe der Schaltungen, die fast unfafBbare
Geschwindigkeit, mit der die verschiedenen Operationen durch-
gefihrt werden, und die genial geflochtenen Leiterbahnen auf
einem fingernagelgroflen Mikrochip.

In jedem Fall sind es kreative und mit einer #uflerst hohen ana-
lytischen Intelligenz begabte Menschen, die so ein Ding gebaut
haben. Wenn also Ehrfurcht, dann vor den Informatikern, Tech-
nikern und Physikern, nicht vor dem Gerit. Wenn Sie nimlich
die Stromzufuhr zu den Computer-Prozessoren unterbrechen, ist
Ihnen das Geriit hilflos ausgeliefert. Es ist in gewisser Weise so-
‘gar sehr wichtig, sich dieses zu vergegenwirtigen, da die
Chance, kreativ und produktiv mit einem Computer zu arbeiten,
steigt, je mehr man seine Ehrfurcht ihm gegeniiber abbaut.

Nach dieser Einleitung nun zur Technik. Es ist hier nicht mog-
lich, in die tieferen Sphiren der Computertechnik einzusteigen.
Deshalb will ich mich damit begniigen, Ihnen einige Begriffe zu
erliutern. Dabei werde ich mich auf solche Begriffe beschrian-
ken, die Ihnen in Ihrer Programmierer-Karriere oft begegnen
werden und deren Kenntnis zum Verstindnis des Computer-Jar-
gons hilfreich ist.

4.1 Computer-ABC

Jeder Computer verfiigt iiber eine zentrale Arbeitseinheit (CPU
= Central Processing Unit). Diese ist das eigentliche Herz des
Computers. Es handelt sich dabei um einen Prozessor (Arbeits-
Chip), der von den o.g. Informatikern so programmiert wurde,
daB er selbstiindig in der Lage ist, eingehende Befehle zu erken-
nen und auf diese entsprechend zu reagieren. Befehle werden im
allgemeinen iiber die Tastatur eingegeben oder als Programm
eingelesen. Im Amiga sind dazu die verschiedenen Schnittstellen



—— Basis-BASIC 31

durch ein Biindel von Leitungen mit der CPU verbunden. Dieses
Leitungsbiindel nennt man Bus. Es gibt Daten- ,Adref3- und
Steuerbusse. Wihrend uns der Steuerbus hier nicht ndher in-
teressieren soll, sind die Daten- und Adref3busse doch von er-
heblicher Bedeutung.

Der Datenbus wird dazu verwendet, Daten (Integer-Binidr-Werte)
zwischen den Einheiten auszutauschen. So ist es moglich, z.B.
einen Wert iiber die Tastatur an die CPU zu senden, die diesen
dann entsprechend der gewiinschten Operation verarbeitet und
ggf. im Speicher ablegt oder (was eigentlich dasselbe ist) auf
dem Monitor ausgibt. Unter dem Speicher versteht man eine
Ansammlung von Speicherchips, die ebenfalls durch Busse mit
der CPU in Verbindung stehen. Hier kommt der AdreBbus ins
Spiel. Um den gesamten Speicher organisieren zu konnen, wird
jedem einzelnen Speicher-Byte (8-Bit-Speicherplatz) eine eigene
Adresse zugewiesen. Durch Angabe dieser Adresse ist es also
moglich, auf jedes einzelne Byte des Speichers zuzugreifen. Zu
den Bits und Bytes kommen wir spiter. Zunichst sehen wir uns
noch einmal die Ubertragungsmoglichkeiten per Bus an.

Wie gesagt, der Bus ist ein Biindel von Leitungen. Die CPU ver-
fugt Giber eine Vielzahl von Pins (SteckfiiBe des Chips), von
denen beim Amiga genau 16 fir Daten-Codes und 23 fiir
Adref3-Codes verwendet werden. Diese Pins sind direkt mit den
Bussen verbunden. Da in der Digital-Technik eine Stromleitung
nur zwei Zustinde annehmen kann (an und aus), ist es nicht
moglich, iiber eine einzelne Busleitung andere Werte als 0 (fiir
aus) und 1 (fiir an) zu senden.

Wenn man sich nun eine Stromleitung vorstellt, in die iiber ei-
nen Schalter Strom eingeleitet wird, und man faf3t das freie En-
de dieser Leitung an, dann bekommt man einen Schlag. Genauso
geht es den Chips, die die jeweilige Information aufzunehmen
haben. Aufgrund dieses elektrischen Impulses "wei3" nun der
Empfanger, dal ihm etwas Bestimmtes iibermittelt werden soll.
Er ist darauf programmiert, entsprechend der eintreffenden In-
formationen einen bestimmten ProzeB auszuldsen, auszufithren
oder die Information einfach nur zu behalten (speichern). Aber



32 Das groBe GFA-BASIC-Buch ——

was kann man schon mit einer einzigen Leitung anfangen, die
entweder die Information "Ja" (1=an) oder "Nein" (0=aus) iiber-
mitteln kann. Ein Gespriachspartner, der auf die Dauer nur Ja
oder Nein sagt, wird schnell langweilig. Man mochte konkretere
Auskiinfte.

4.2 Bits und Bytes

Dazu benétigen wir mehrere Informationseinheiten (Bit = engl.
Abk. fiir Binary Digit), durch deren Kombination eine Vielfalt
an unterschiedlichsten Zustinden ausgedriickt werden kann.

Nimmt man nun zwei Stromleitungen, die unabhiingig von-
einander an- oder ausgeschaltet werden, sind schon vier ver-
schiedene Kombinationen denkbar. Stellen wir jede stromfiih-
rende Leitung als 1 und jede "leere" Leitung als 0 dar, dann
sieht das so aus:

00 Beide Leitungen fiihren keinen Strom
10 Leitung 1 = An/Leitung 2 = Aus

(1]] Leitung 1 = Aus/Leitung 2 = An

11 Beide Leitungen an

Dies ist also schon ein kleiner Schritt mehr in Richtung Kom-
munikation. Um es noch deutlicher zu machen, wird das Spiel
mit vier Stromleitungen wiederholt:

0000 Alle Leitungen aus

1000 Leitung 1an/2, 3 und 4 aus
0100 Leitung2an/1, 3 und 4 aus
0010 Leitung 3an/1, 2 und 4 aus
0001 Leitung 4 an/1, 2 und 3 aus
1100 Leitung 1und 2 an /3 und 4 aus
0110 Leitung2und 3 an /1und 4 aus
0011 Leitung3und 4 an /1 und 2 aus
1001 Leitung 1und 4 an /2 und 3 aus
1010 Leitung 1und 3 an /2 und 4 aus
0101 Leitung 2und 4 an /1 und 3 aus



—— Basis-BASIC 33

1110 Leitung 1, 2und 3 an/4 aus
0111 Leitung 2, 3und 4 an/1 aus
1011 Leitung 1,3 und 4 an/2 aus
1101 Leitung 1,2 und 4 an/3 aus
1111 Alle Leitungen an

Mit jeder weiteren Leitung verdoppelt sich die Anzahl der Dar-
st&l]ungsmbg]ichkeiten: ‘

Alle Leitungen aus = 0

1. Leitung an = 270 = 1
2. " an = 2™ = 2
3. " - an = 272 = 4
4. " an = 2"3 = 8
5. " an = 274 = 16
6. " an = 2°5 = 32
7. " an = 276 = 64
8. an = 277 = 128
Summe aller Moglichkeiten,

die mit einem BYTE (= 8 BIT)

- dargestellt werden kénnen = 256 (inkl. Null)

Ich habe diese Liste bewuf3t mit der Potenz 7 enden lassen, da
diese 8 Leitungen mit ihren 256 verschiedenen Aussagemoglich-
keiten eine Grundeinheit in der Computerlogik darstellen. Diese
Einheit wird Byte genannt. Ein Computer mit einem Arbeits-
speicher von 1 Million Byte kann also einmillionenmal unab-
hingig voneinander einen solchen Informationsblock (Byte) von
je 8 Bit aufnehmen.

Wie Ihnen vielleicht schon bekannt ist, verfiigt der Amiga iiber
256 verschiedene Schriftzeichen. Nach den letzten Ausfithrungen
wissen Sie, dafl diese Zahl kein Zufall ist. Warum nun als erste
Potenz eine Null gewihlt wird, das ist eine mathematische Fest-
legung. Jeder Wert, der mit dem Wert Null potenziert wird, er-
gibt den Wert Eins. Diese Eins ist in jedem Zahlensystem die
kleinste Einheit.



34 Das groBe GFA-BASIC-Buch ——

4.3 Binar-Arithmetik

Der Trick an der Sache ist der, daB3 jeder Zustand, der sich mit
diesen 8 Leitungen darstellen 148t, auch mit einem Wert belegt
werden kann. Es wurde nun ein Zahlensystem entwickelt, das
ausschlieBlich die Zustinde "An" und "Aus" zur Zahlendarstel-
lung verwendet.

Dabei geht man mathematisch genauso vor, wie wir es von un-
serem Dezimalsystem her kennen. Der einzige Unterschied ist
der, daB3 als Basis zur Potenz nicht der Wert 10, sondern der
Wert 2 genommen wird. Die niedrigste Stelle einer Biniirzahl (Bi
= griech: zwei) steht ebenso wie in einer Dezimalzahl rechts und
die hochste Stelle links.

Als Beispiel nehmen wir ein beliebiges Byte:

01011101 = 93

Dezimal: (10 hoch 0) * 3 = 3
+ (10 hoch 1) * 9 = 90

Ergebnis = 93

Binidr : (2 hoch 0) * 1 = 1
+ (2 hoch 1) * 0 = 0

+ (2 hoch 2) * 1 = 4

+ (2 hoch 3) * 1 = 8

+ (2 hoch 4) * 1 = 16

+ (2 hoch5) * 0 = 0

+ (2 hoch 6) * 1 = 64

+ (2 hoch7) * 0 = 0

Ergebnis = 93

4.4 Das Hexadezimalsystem

Wozu braucht man nun noch das Hexadezimalsystem? Wollte
man diese Bytes als Biniirzahl darstellen, miiBte man dazu je-



—— Basis-BASIC 35

desmal eine Zeichenkette von § Eigen und Nullen schreiben.
Um diese Zahlendarstellung zu vereinfachen, hat man sich die
Hexadezimalzahlen ausgedacht.

Dieses Zahlensystem hat alle Eigenschaften der anderen Systeme.
Der einzige Unterschied ist, daf3 als Basis zu den Potenzen weder
die 2 noch die 10 genommen wird, sondern der Wert 16. Das hat
den Vorteil, daB sich die Hilfte eines Bytes (auch Tetrade oder
Nibble genannt), also 4 Bit (maximal darstellbarer Wert = 15),
mit einer einzigen Hexadezimalziffer darstellen 14Bt. Da sich je-
doch mit den uns iiblicherweise bekannten Zahlen keine griéflere
Zahl als 9 einstellig schreiben 14Bt, muBten fiir die Zahlen 10 bis
15 Buchstaben gewihlt werden. Der Zahl 10 wird der Buchstabe
"A" zugeordnet, der Zahl 11 das "B", 12 = "C", 13 = "D", 14 =
"E", und die 15 erhilt den Buchstaben "F".

‘mig FAL
F mit nur 8 Ziffern
darstellen (7FFFFFFF). Im allgemeinen werden Hexadezimal-
zahlen gekennzeichnet, indem ihnen ein "$" (Dollar, z.B. $1AF7)
vorangestellt wird. Das GFA-BASIC- handhabt dieses jedoch an-
ders. Hier erhalten Zahlen im Hexa-Format das Kiirzel "&H"
(z.B. &H1AF7). Hexzahlen haben in erster Linie den Vorteil der
Zeit- und Platzersparnis. Weil unser GFA-BASIC aber "inter-
national" ist, versteht es auch die "$"-Schreibweise und formt
diese in seine richtige Syntax um.

Siehe hierzu auch unter "BIN$, HEXS$, OCTS$".

4.5 Codes und Opcodes

Ein Wert kann bei entsprechender Vorgabe stellvertretend als
numerisches Symbol fiir ein bestimmtes Wort, Zeichen oder
einen Befehl interpretiert werden.

Bei den Schriftzeichen (ASCII-Zeichen = American Standard
Code for Information Interchange; amerikanischer Standard-
Code fir Informationsaustausch) steht z.B. der Wert 65 fiir den



36 Das groBe GFA-BASIC-Buch ——

Buchstaben "A", der Wert 66 fiir "B", der Wert 67 fur "C" usw.
(ASCII-Tabelle siehe Anhang). Angenommen, der Wert 192
stiinde fiir "Gebe den im folgenden Byte enthaltenen ASCII-Wert
als Schriftzeichen an Cursor-Position auf dem Bildschirm aus".
Die Arbeitsweise sieht dann vereinfacht so aus, daf3 der Amiga
weil, wenn er den Wert 192 empfingt, soll er das ASCII-Zei-
chen auf dem Bildschirm ausgeben, das dem auf den Befehl fol-
genden Byte-Wert entspricht.

Der Befehl wiirde dann so aussehen:

Dezimal : 192 66
Binar : 11000000 10000010
Hexadezimal: CO 42

Es wiirde also das Zeichen "B" auf dem Bildschirm ausgegeben
werden. Immer dann, wenn wir auf Werte stoBen, die eine Ini-
tialisierungsfunktion haben, also als Ausléser fiir bestimmte
Prozesse dienen, haben wir es mlt Opcodes (Operatlon -Codes) zu
‘ als ein Befehl, der sym-

lisch~ 3 Zak .ereprasermer -wird. Alles, was den Pro-
zessor interessiert, sind Zahlen, die ihm in verschiedenen For-
maten als Bit-Hidppchen’ serviert werden.

Bei der Betriebssystem-Programmierung wurden also ver-
schiedene Funktionsabliufe vordefiniert, die nun z.B. von einem
Interpreter anhand solcher Opcodes aufgerufen werden koénnen.
Wenn Sie also in BASIC die Zeile

PRINT "B"

eingeben, wird lhre Eingabe vom Interpreter auf die oben be-
schriebene Weise in das Bindrformat gewandelt und dem Be-
triebssystem zur Weiterverarbeitung i{ibergeben. Genausogut
kénnte man

PRINT CHR$(66) ! (66 = ASCII-Wert fur "B")

schreiben, nur daf3 das etwas umstindlicher wiire.



—— Basis-BASIC 37

4.6 Words und Longwords

Um einen Sprung von den Bytes zu den Words zu machen,
braucht man keinen groBen Anlauf. Als Word wird eine Infor-
mationseinheit bezeichnet, die sich statt aus 8 Bit (1 Byte) aus 16
Bit zusammensetzt. Es konnen nicht nur 256 verschiedene, son-
dern 65536 (0+270+27 142724273427 4427 54276427 T+21 84279421
10+27 1142712427 l3+2A14+2"15) verschiedene Zustinde darge-
stellt werden.

Wie erwihnt, arbeltet der: 168000es - die Amiga-CPU - mit einer
Dateribreite von Es konnen also problemlos Werte im
Bereich von 0-655 “bis 2°16- 1) von ihm gelesen, verarbeitet
und zuriickgegeben werden. Doch es gibt noch eine Steigerung.
Wenn man nur Werte bis 65535 ausdriicken konnte, konnten
manche Leute nicht einmal ihre Steuererklirung damit bearbei-
ten. Deshalb ist der 68000er so programmiert, dafl er (wenn es
ihm gesagt wird) zwei 16-Bit-Words direkt nacheinander ver-
arbeitet und dann so vorgeht, als ob es ein 32-Bit-Wert gewesen
wire. Von diesen 32 Bits werden in GFA-BASIC allerdings nur
31 Bits zur Wertedarstellung verwendet. Das letzte (hochste) Bit
wird zur Kennzeichnung negativer Zahlen verwendet.

Die Zahlen, die sich damit ausdriicken lassen, diirften fir fast
jede erdenkliche Steuererkldrung ausreichen:

2 hoch 31 - 1 = 2147483647

j _v.Brem‘e wird als Longword bezeichnet. Die CPU ist
SO programmxert daB sie zwischen diesen drei verschiedenen
Datenbreiten unterscheiden kann. Ihr ist es also egal, in welchem
Format Daten iibergeben werden, solange man sagt, welches
Format gemeint ist. Bei den BASIC-Befehlen finden Sie deshalb
auch POKE/PEEK (Byte-Werte schrexben/lesen), DPOKE/
EPEEK (Words schreiben/lesen) und EPOKE/@PEEK (Long-
words schreiben/lesen).



38 Das groBe GFA-BASIC-Buch ——

4.7 Die Speicherorganisation

RAM

"Random Access Memory" - Freier Zugriffs-Speicher (der
Speicherbereich, in den Daten geschrieben und aus dem Daten
gelesen werden konnen).

Das RAM wird noch einmal in \M und Fast-RAM un-
terteilt. Dabei ist das Chip-RAM der Bereich, der von allen Cu-
stom-Chips angesprochen werden kann. Diese Chips unterstiitzen
den 68000er bei seiner Arbeit und sind z.B. fir Grafik oder
, Ausgabe zustindig. Es ist also wichtig, diesen Speicher
fur solche Daten freizuhalten.

Das Fast-RAM kann nur vom MC 68000 angesprochen werden
und ist deshalb schneller, weil keine Taktzyklen fiir andere
Chips vergeben werden miissen. Hier sollten aber nur Pro-
gramme oder interne Daten stehen, die nicht fiir Grafik oder
I/O benétigt werden.

ROM

"Read Only Memory" - Nur-Lese-Speicher (Speicherchips, in die
Daten unveridnderbar eingebrannt wurden. z.B.: das Kickstart =
im Amiga (500/2000) integriertes Betriebssystem).

Kickstart, das Amiga-Betriebssystem

Der Amiga verwaltet als Multi-Tasking-System seinen Speicher
fur jedes Programm einzeln. Da dies in zufilliger Reihenfolge
geschieht und zusitzlich die Menge des vorhandenen Speichers
zwischen 256 und 9728 KByte variieren kann (256 KByte beim
Amiga 1000 ohne Speichererweiterung und 9.5 MByte beim
Amiga 2000 mit 8-MByte-Karte), lit sich niemals mit
Bestimmtheit sagen, wo welche Speicherbereiche untergebracht
sind.

Trotzdem koénnen wir iiber einige Tatsachen etwas aussagen. So
ist der Speicherverbrauch besonders wichtig. SchlieBlich wollen



—— Basis-BASIC 39

Sie ja wissen, wieviel Speicher z.B. iibrigbleibt, wenn Sie GFA-
BASIC starten. Wir konnen folgendes festhalten:

Der Workbench-Screen verbraucht mit 2 BitPlanes und einer
Auflosung von 640 x 256 Bildpunkten 40 KByte alleine fiir den
Grafik-Speicher. Dazu kommt fiir jedes gedffnete Window und
die darin enthaltenen Icons weitere KBytes, die ausschlieBlich
vom Chip-RAM verbraucht werden, weil nur dort Grafik vom
Blitter angesprochen werden kann. Zusitzlich 6ffnet GFA-BA-
SIC einen Screen, auf dem der Editor sich befindet. Um hier
aber nicht noch einmal so viel Speicher zu verbrauchen, wurden
nur 2 Farben erlaubt, wodurch sich der Verbrauch auf die
Hilfte reduziert.

Und zum Schluf} ist GFA-BASIC ein weiterer grofler Speicher-
verbraucher. Allerdings reicht der verbleibende Speicher fiir alle
unsere Demonstrationen aus, denn wir haben darauf geachtet,
daB auch 500er-Besitzer in den Genuf3 unserer Programme
kommen.

4.8 Boolesche Logik

Um nun den Computer zu einer Arbeit zu bewegen, die Ergeb-
nisse liefert, mit denen wir etwas anfangen konnen, muflte ein
Verfahren entwickelt werden, das die Arbeitsweise des Com-
puters unserer eigenen angleicht. Es niitzt wenig, ihn stur ma-
thematische Aufgaben 16sen zu lassen, was ja seine Lieblings-
beschiftigung ist. Man will auch, daB unter bestimmten Bedin-
gungen Entscheidungen von ihm selbstindig getroffen werden.
Sonst wire er nichts weiter als ein besserer Taschenrechner.

Ein englischer Mathematiker namens 4 lekhat sich dazu
eine Form der Arithmetik ausgedacht, die daher auch Boolesche
Arithmetik oder Boolesche Algebra genannt wird. Seine Idee war
es, fur das Grundprinzip menschlicher Entscheidungen allge-
meine Regeln zu bestimmen und diese auf den Computer zu
iibertragen.



40 Das groBe GFA-BASIC-Buch ——

Wie entscheidet sich ein Mensch? Entscheidungen sind die Re-
aktion auf einzelne oder auch auf eine Folge von Bedingungen.
- Man nimmt eine Situation wahr, ordnet ihre Anforderungen in
ein vorhandenes Handlungsschema ein und trifft aufgrund von
Ubereinstimmungen oder auch Nichtiibereinstimmungen mit dem
vorhandenen Wertesystem die Entscheidung dariiber, was nun zu
tun ist. Wir wissen alle, was die Worte "und" und "oder" bedeu-
ten. Beispielsweise kénnten Sie folgende Aussagen machen:

1. Wenn es warm ist und ich Zeit habe, werde ich baden
gehen,

2. Wenn es kalt ist oder ich keine Zeit habe, werde ich nicht
baden gehen.

Wir verkniipfen mehrere Bedingungen miteinander, um danach
zu entscheiden, was zu tun oder zu lassen ist. Nichts anderes
bewirkt die Boolesche Logik. Dazu hat sich Boole mehrere sol-
cher Verkniipfungsmodi einfallen lassen.

Diese sind:

Wobei NOT eine Ausnahme darstellt. Hier handelt es sich nicht
um eine Verkniipfung, sondern um die Umkehrung der ein-
gehenden Information. Schauen wir uns an, wie sich diese Ver-
kniipfungen auf die Behandlung der eingehenden Informationen
auswirken. Dabei werden nacheinander von rechts ausgehend die
Bits des ersten Operanden mit den jeweils gleichrangigen Bits
des zweiten Operanden verkniipft.

AND:
11011001 (Byte 1)
AND 01101101 (Byte 2)
01001001 Ergebnis

PRINT BIN$(&X11011001 AND &X01101101)
PRINT &X11011001 AND &X01101101



—— Basis-BASIC 41

Im Ergebnis-Byte wird nur dann ein Bit gesetzt, wenn an der
gleichen Stelle im ersten UND im zweiten Ursprungs-Byte ein
Bit gesetzt ist.

OR:
11011001 (Byte 1)
OR 01101101 (Byte 2)
11111101 Ergebnis

PRINT BIN$(&X11011001 OR &X01101101)
PRINT &X11011001 OR &X01101101

Im Ergebnis-Byte wird immer dann ein Bit gesetzt, wenn ent-
weder im ersten ODER im zweiten ODER in beiden Ursprungs-
Bytes ein Bit gesetzt ist.

XOR:
11011001 (Byte 1)
XOR 01101101 (Byte 2)
10110100 Ergebnis

PRINT BIN$(&X11011001 XOR &X01101101)
PRINT &X11011001 XOR &X01101101

Im Ergebnis-Byte wird dann ein Bit gesetzt, wenn entweder im
ersten ODER im zweiten, ABER NICHT in beiden Ursprungs-
Bytes ein Bit gesetzt ist. XOR = exklusiv OR = exklusives (aus-
schlieBendes) Oder. Bei den folgenden drei Operationen ist zu
beachten, daf3 Vergleiche jeweils im LONG-Format (32 Bit)
durchgefithrt werden. Da das gesamte Langwort verkniipft wird,
ergeben sich bei diesen Beispielen aufgrund der Zweierkomple-
mentierung Minuswerte (sieche unter Variablen/Boole-Variable).

IMP:
11011001 (Byte 1)
IMP 01101101 (Byte 2)

1M1111111111111111111111101101111 Ergebnis

PRINT BIN$(&X11011001 IMP &X01101101)
PRINT &X11011001 IMP &X01101101



42 Das groBe GFA-BASIC-Buch ———

Im Ergebnis wird immer dann ein Bit gesetzt, wenn in beiden
Ursprungs-Bytes ein Bit gesetzt ist oder in beiden Ursprungs-
Bytes kein Bit gesetzt ist oder im ersten Byte kein Bit, aber im
zweiten Byte ein Bit gesetzt wird. Dies nennt man Implikation.
Das Ergebnis ist immer "unwahr" (also 0), wenn im ersten Byte.
ein Bit gesetzt ist, aber im zweiten keins. In allen anderen Fillen
ist das Ergebnis "wahr" (also 1).

EQvV:
11011001 (Byte 1)
EQV 01101101 (Byte 2)

1M1111111111111111111111101001011 Ergebnis

PRINT BIN$(&X11011001 EQV &X01101101)
PRINT &X11011001 EQv &Xx01101101

Dies ist das Gegenteil zu XOR. Im Ergebnis-Byte wird dann ein
Bit gesetzt, wenn in beiden Ursprungs-Bytes entweder ein Bit
gesetzt ist oder in beiden Ursprungs-Bytes kein Bit gesetzt ist.
Ist in einem der beiden Bytes ein Bit gesetzt, aber im anderen
nicht, ist das Ergebnis "unwahr" (also 0).

NOT:
NOT 11011001

MMIM11111111111111111100100110 Ergebnis

PRINT BIN$(NOT &X11011001)
PRINT NOT &X11011001

Im Ergebnis-Byte wird dann ein Bit gesetzt, wenn im Ur-
sprungs-Byte kein Bit gesetzt ist. Das Ergebnis ist also immer
das Negativ des Ursprungs-Bytes.

Mit Bindrmustern lassen sich auch - wie mit Normalzahlen -
Additionen, Subtraktionen, Multiplikationen und Divisionen
durchfiithren.

Addition: 11011001 (dez.=217)
+ 01101101 (dez.=109)
1.Bit 1+1 = 0 (Ubertrag=1)

2.Bit 0+0+Ubertrag= 1 (Ubertrag=0)



Basis-BASIC

3.Bit 0+1
4.Bit 1+1
5.Bit

1+0+Ubertrag=

6.Bit O+1+Ubertrag=

7.Bit
8.Bit
9.Bit = Ubertrag

1+1+Ubertrag=
1+0+Ubertrag=

1

101000110

PRINT BIN$(&X11011001+&X01101101)
PRINT &X11011001+&X01101101

Subtraktion:

.Bit 1-
.Bit 0-
.Bit 0-
.Bit 1-
.Bit 1-
.Bit 0-
.Bit 1-
.Bit 1-

O~NOUVMTHWN -

11011001

- 01101101

1
0
1
1-Ubertrag=
0-Ubertrag=
1 -
1-
0-

Ubertrag=
Ubertrag=

1101100

PRINT BIN$(&X11011001-&X01101101)
PRINT &X11011001-&X01101101

Multiplikation:

11011001 * 01101101

OP1/Bit1 * OP2= 01101101
OP1/Bit2 * 0OP2 +00000000
Zwischenergebnis = 001101101
OP1/Bit3 * OP2 +00000000
Zwischenergebnis = 0001101101
OP1/Bit4 * OP2 +01101101
Zwischenergebnis = 01111010101
OP1/Bit5 * OP2 +01101101
Zwischenergebnis = 101010100101
OP1/Bit6 * OP2 +00000000
Zwischenergebnis = 0101010100101
OP1/Bit7 * OP2 +01101101
Zwischenergebnis = 10010111100101
OP1/Bit8 * OP2 +01101101
101110001100101

PRINT BIN$(&X11011001*&X01101101)
PRINT &X11011001*&X01101101

(Ubertrag=0)
(Ubertrag=1)
(Ubertrag=1)
(Ubertrag=1)
(Ubertrag=1)
(Ubertrag=1)

(dez.=326)

(dez.=217)
(dez.=109)

(Ubertrag=0)
(Ubertrag=0)
(Ubertrag=1)
(Ubertrag=1)
(Ubertrag=0)
(Ubertrag=1)
(Ubertrag=1)
(Ubertrag=0)

(dez.=108)

(dez.: 217*109)

(Rang:
(Rang:

(Rang:
(Rang:
(Rang:
(Rang:
(Rang: 276)
(Rang: 2°7)

Ergebnis

43



44 Das groBe GFA-BASIC-Buch ——

Division (Integer):

Die bitweise Division ist ein relativ kompliziertes Unterfangen.
Aus diesem Grund wird hier nur ein einfaches Beispiel behan-
delt, dessen nihere Erliuterung zu weit fithren wiirde. Es kann
hier nur ein ganzzahliges Ergebnis entstehen, da die bitweise
Realzahl-Division auf diese Weise nicht machbar bzw. derart
aufwendig ist, da} das Thema mehrere Seiten fiillen wiirde.

11011001 7 10 = 1101100 Im wesentlichen kann

-10 — bei der Binar-Division

_ (ebenso wie bei +, -, *)
010 genauso verfahren werden

- 10 ' wie bei Dezimalrechnungen.

— Da jedoch in Zweierpotenzen
erweitert: 00011 gearbeitet wird, konnen

- 10 ' gebrochene Anteile nicht
_— exakt ermittelt werden.
010
- 10

erweitert: 0001 —M88 ———!
-10 —

M. 1111 (= -1, also Rest 1)

PRINT BIN$(&X11011001/&X01101101)
PRINT &X11011001/&X01101101

Bei all diesen Beispielen wurde das Format Byte gewihlt, da Th-
nen dieses Format am hiufigsten begegnen wird. Grundsitzlich
sind diese Operationen mit jedem Format durchfithrbar.

Die eben behandelte Thematik gehért nicht gerade zu den ein-
fachen Dingen in der Computerwelt. Eine Notwendigkeit, mit
logischen Operatoren und Bit-Arithmetik umzugehen, besteht
allerdings nur fir jene, die den Ehrgeiz haben, in die tieferen
Ebenen der Programmierung hinabzusteigen. Wenn Sie dazu Nei-
gung verspiren, ist es auf jeden Fall gut, etwas davon gehort
bzw. gelesen zu haben.



—— Basis-BASIC 45

4.9 Bedingungen und Konsequenzen

In einer anderen Beziehung ist es jedoch ausgesprochen ratsam,
sich zumindest mit den beiden Boole-Operatoren AND und OR
auseinanderzusetzen. Es gibt nimlich mehrere Befehle im BA-
SIC, die die Angabe einer Bedingung erforderlich machen.

Nehmen wir als Beispiel den Befehl IF...ELSE...ENDIF (siehe
dort). Dieses ist wohl der gebriduchlichste Befehl, um den Fort-
lauf des Programms von einer Bedingung abhiingig zu machen.
Weiter oben wurden zwei typische Bedingungen und ihre Konse-
quenzen vorgestellt, wie sie in dieser oder einer dhnlichen Art
im tiglichen Leben stindig vorkommen.

Wenn es warm ist und ich Zeit habe, werde ich baden gehen.
Wenn es kalt ist oder ich keine Zeit habe, werde ich nicht baden
gehen. Es werden in beiden Fillen zwei Bedingungen gestellt,
deren Erfiillung mit einer Konsequenz verbunden ist.

Um das nun in ein anwendbares Beispiel zur Programm-Ent-
scheidung i{ibertragen zu konnen, setzen wir fir einige Worte in
den beiden Sitzen Symbole ein. Fiir jeden Ausdruck, der etwas
bejaht, nehmen wir den Wert 1, und fir jeden Ausdruck, der
etwas verneint, setzen wir den Wert 0. Also:

ist = 1

haben = 1

gehen = 1

nicht haben = 0
nicht gehen = 0

In die Struktur einer IF-Bedingung eingefiigt, bekommen die
beiden Sitze nun folgende Form:

If warm=1 And Zeit=1 ! Wenn warm "ist" UND Zeit "haben"
Baden=1 ! dann baden "“gehen"

Endif ! Ende der Konsequenz

If Kalt=1 Or Zeit=0 ! Wenn kalt "ist" ODER Zeit "nicht haben"
Baden=0 ! dann baden "nicht gehen"

Endif ! Ende der Konsequenz



46 Das groBe GFA-BASIC-Buch ——

Sie merken, dafl bei Verwendung von Symbolen fir "Ja" und
"Nein" schon recht komplizierte Entscheidungen moglich sind.
Das kann man sogar noch wesentlich weiter fithren, wenn man
eine weitere Moglichkeit anwendet, die das GFA-BASIC bietet.
Man kann mehrere Bedingungen mit einer Klammer zusammen-
fassen und dazu alternativ weitere Bedingungen stellen. Eine
solche Alternative kénnte im obigen Beispiel sein:

...oder wenn die Badehalle auf ist,...

Der volistindige Satz wire dann:

Wenn es warm ist oder wenn die Badehalle auf ist und ich Zeit habe,
werde ich baden gehen.

Fiir die positive Eigenschaft "auf" setzen wir den Wert 1.

IF-Struktur:

If (Warm=1 Or Halle=1) And Zeit=1 ! Wenn (warm "ist" ODER
| Badehalle "auf")

1 UND Zeit "haben"

! dann baden *gehen"

! Ende der Konsequenz

Baden=1
Endif

Der Faktor "Zeit" bezieht sich hier auf beide vorangestellten Al-
ternativen. Wenn ich z.B. auch in die Badehalle gehen wiirde,
wenn ich keine Zeit hitte, miiBte die Klammer anders gesetzt
werden, da sich "Zeit" dann nur auf "warm" bezieht:

1f (warm=1 And Zeit=1) Or Halle=1 ! Wenn (warm "ist" UND
! Zeit "haben")
! ODER Badehalle "auf"
Baden=1 1
1

Endif

dann baden "gehen"
Ende der Konsequenz

Wenn im vorherigen Beispiel "warm" ODER "Badehalle" die Al-
ternativen waren, so sind es jetzt "(warm UND Zeit)" ODER
"Badehalle".

Zur IF-Struktur ist hier zu sagen, daf3 diese grundsitzlich mit
einem ENDIF abgeschlossen werden muf3, um dem Interpreter
kenntlich zu machen, welche Konsequenzen zu welcher Bedin-
gung gehodren.



—— Basis-BASIC 47

Es gibt auch die Moglichkeit, eine Alternativ-Konsequenz zu
formulieren. Wenn ich sage, dafl ich unter bestimmten Bedin-
gungen etwas tun werde, so folgt daraus implizit, daf3 ich dann,
wenn die Bedingungen nicht erfiillt sind, etwas anderes tun
werde. Im obigen Beispiel kénnte das sein:

Wenn es warm ist oder wenn die Badehalle auf ist und ich Zeit
habe, werde ich baden gehen. Andernfalls werde ich nicht baden
gehen und ein Buch lesen.

Fiir "lesen" (positiv) setzen wir hier wieder eine 1 und fiir "nicht
lesen" (negativ) eine 0.

1F-Struktur:
If (Warm=1 Or Halle=1) And Zeit=1 Wenn (warm "ist" ODER
Badehal le "“auf")

UND Zeit "haben"

1
1
!
Baden=1 ! dann baden "gehen"
Buch=0 ! dann Buch "nicht lesen"
Else ! sonst
Baden=0 ! baden "nicht gehen"
Buch=1 ! Buch *"lesen"
Endif ! Ende d. Alternativ-Konsequenz-!

Der Ausdruck ELSE steht hier fiir "andernfalls" oder auch
"sonst". ELSE ist also die konsequente Umkehrung der bei IF
gestellten Bedingungen. Die zwischen ELSE und ENDIF einge-
schlossenen Konsequenzen bekommen nur dann Giiltigkeit, wenn
keine der bei IF gestellten Bedingungen zutrifft.

Das hei3t wiederum, dafl immer dann, wenn das Programm auf
eine IF-Abfrage trifft, die mit einer ELSE-Anweisung verbun-
den ist, entweder die unter IF oder die unter ELSE eingebun-
denen Konsequenzen Giiltigkeit bekommen. Soll das nicht ge-
schehen, wird die ELSE-Anweisung einfach weggelassen. D.h.,
daB die Nichterfilllung der unter IF gestellten Bedingungen
keine weitere Konsequenz hat, als daf3 das Programm hinter der
zugehorigen ENDIF-Anweisung fortgesetzt wird.

Um nun nicht alle Bedingungen, die abgefragt werden sollen, in
eine einzige Programmzeile schreiben zu miissen oder um meh-
rere Folgebedingungen definieren zu kénnen, kénnen solche IF-



48 Das groBe GFA-BASIC-Buch ———

Abfragen auch verschachtelt werden. Den Begriff "Ver-schach-
teln" werden Sie weiter unten auch bei den Schleifen-Strukturen
wiederfinden. Damit ist gemeint, da z.B. in einer IF-Abfrage
weitere Abfragen auftreten konnen, so dafl auch Unterverzwel-
gungen moglich werden.

If Warm=1 Or Halle=1 ! Wenn warm "ist" ODER Halle Mauf" --.

If Zeit=1 ! UND Zeit "haben"
Baden=1 ! dann baden "gehen"
Else ! sonst
Baden=0 ! baden "nicht gehen"
Endif i Ende der Alternative '
Buch=0 ! in beiden Féllen "nicht lesen"
Else ! sonst
Buch=1 ! Buch "lesen"
Endif ! Ende d. 1. Alternativ-Konsequenz --

Dieses Beispiel entscheidet in zwei Stufen, welche Konsequenzen
die Erfillung zweier unabhingiger Bedingungen haben soll. Erst
wenn es warm ist oder die Badehalle auf ist, soll der Zeitfaktor
in Betracht gezogen werden. Ist es weder warm noch die Bade-
halle auf, so wird der Zeitfaktor von vorneherein vernachlissigt
und die Entscheidung "Buch lesen" getroffen.

Anhand dieser einfachen Beispiele ist die Ubertragbarkeit all-
taglicher Entscheidungen in die Logik der Computerwelt hof-
fentlich etwas deutlicher geworden. Mit Zunahme Threr Routine
wird auch die- Einsicht in die Maoglichkeiten dieser Ver-
kniipfungen wachsen. Es ist jedenfalls manchmal recht faszinie-
rend, wie sich durch komplexe Bedingungen unterschiedliche
Einfliisse so abfangen und verarbeiten lassen, daB3 schon der
Eindruck eines "intelligenten" Programms entsteht. Die Virtuosi-
tait im Umgang mit Bedingungen kennzeichnet den guten Pro-
grammierer.

4.10 Flags

Oben wurde noch ein weiteres Prinzip effektiver Programmie-
rung sichtbar. Man nennt es Flags (Flaggen). Diese Flags haben
eine sehr wichtige Funktion in jedem Programm, das nicht nur



—— Basis-BASIC 49

die Grundfunktionen und -strukturen verwendet, sondern dar-
iiber hinaus verschiedene Zustinde signalisieren kann, die dann
in die Entscheidungsfindung einbezogen werden sollen. Bemiihen
wir noch einmal unser Beispiel:

If Warm=1 Or Badehal le=1
Flag=1
Endif
. weiteres Programm ...
If Flag=1 And Zeit=1

Baden=1
Endif

Es kann also an irgendeiner Programmstelle ein Zustand ausge-
wertet werden, dessen Ergebnis erst spiter zur Wirkung kommen
soll. Es ist hier denkbar, da3 die in "Flag" gespeicherte Informa-
tion an mehreren Stellen im Programm ausschlaggebend sein soll.

Um nun nicht an jeder dieser Stellen die Entscheidung treffen
(und auch definieren) zu miissen, ob es warm ist oder ob die
Badehalle auf ist, kann man diese Entscheidung bei frithestmég-
licher Gelegenheit vornehmen und die Information, ob die Ent-
scheidung positiv oder negativ ausgefallen ist, in einer Variablen
speichern und diese dann bei weiteren Gelegenheiten abfragen.

Vielleicht weifl ich heute schon, da3l es morgen warm sein wird,
aber ich weifl heute noch nicht, ob ich morgen Zeit haben
werde, baden zu gehen. Also treffe ich die zweite Teilentschei-
dung erst dann, wenn die dazu erforderlichen Umstinde einge-
treten sind. Im Beispiel wurde der Variablenname "Flag" will-
kiirlich gewihlt. Sie koénnen dafiir natiirlich jeden beliebigen
Variablennamen verwenden.

4.11 Die Variablen

Variablen haben in einem Programm dieselbe Funktion, wie wir
sie aus der Mathematik kennen. Sie werden als Platzhalter fiir
GroBen oder Ausdriicke (numerische oder alphanumerische) ein-



50 Das groBe GFA-BASIC-Buch ——

gesetzt, deren Inhalte erst im Programmverlauf ermittelt und zu-
gewiesen werden und sich im weiteren Programm stindig verdn-
dern kénnen. Wir wissen also entweder zum Zeitpunkt der Pro-
grammentwicklung nur, "daB3" etwas in diesen Variablen abgelegt
wird, aber noch nicht "was", oder wir weisen ihnen im Pro-
gramm-Listing Inhalte zu, die wir an den gegebenen Stellen fir
notwendig halten.

Um keine MifBverstindnisse aufkommen zu lassen: Auf eine Art
wissen wir im ersten Fall schon, "was" diese Variablen aufzu-
nehmen haben, wir wissen nur nicht, welcher konkrete Inhalt es
sein wird. Denn eine Entscheidung hat man von vorneherein
selbst zu treffen und zwar, welcher Variablentyp einzusetzen ist.
Es gibt zwei 8 | hi » T von Variablen.
Das sind die i ) @ und die alpha-
numerischen bzw. Text- oder auch String-Variablen. Numerische
Variablen haben die Aufgabe, Werte zu speichern.

Hypo=SQR(22°2+1372) ! Hypo = Wurzel aus (22 hoch 2 + 13 hoch 2)

Ein Beispiel, das wohl alle aus der Schule kennen. Es werden die
beiden Kathetenlingen eines rechtwinkligen Dreiecks quadriert
und die Quadrate addiert. AnschlieBend wird nach dem Satz des
Pythagoras die Linge der Hypotenuse berechnet. Das Ergebnis
dieser Berechnung wird nun der Variablen "Hypo" zugewiesen.
Solange keine weiteren Werte an diese Variable iibergeben wer-
den, enthilt sie die Linge der Hypotenuse des angegebenen
Dreiecks. Dieser Wert kann im Laufe des Programms beliebig oft
erfragt oder auch durch Neuzuweisungen verindert werden.

Es gibt funf verschiedene Typen von numerischen Variablen.
‘Wenn wir eine Zahl speichern wollen, die auch Nachkommastel-
len beinhaltet, also eine sogenannte Realzahl, wird nur der reine
Variablenname angegeben. Diesen Typ haben wir im obigen
Beispiel kennengelernt. Er benoétigt zur Speicherung der ihm
tibergebenen Werte generell einen Speicherplatz von 8 Byte pro
Variable. Dadurch ist eine Genauigkeit von bis zu 13 Stellen
moglich. Wertezuweisungen, die iiber diese 13 Stellen hinaus-
gehen, werden automatisch auf die 13. Stelle gerundet:



—— Basis-BASIC 51

A=123.125237667231 ergibt A=123.12523767

Bei ganzzahligen Anteilen von mehr als 13 Stellen wird die
iibergebene Zahl automatisch in das Exponentialformat
umgewandelt:

A=642653017623.527 ergibt A=6.4265301762235E+11

Andererseits werden Wertzuweisungen, die als "Normal"-Zahl
darstellbar sind und im Exponentialformat angegeben wurden, in
das Normalformat umgewandelt:

A=1284.55E+5 ergibt A=128455000

Im Exponentialformat sind Wertzuweisungen im Bereich von-
2.22507385807E-308 bis 3.595386269725E+308 moglich. Eine
Exponentialzaht ist folgendermaflen zu lesen:

54.6341E+7 entspricht 54.6341 * (10 = 7)

Ein weiterer Typ ist die Integerzahl. Dies sind Zahlen, die keine
Nachkommastellen haben sollen. Es konnen ihnen also nur
Ganzzahlen zugewiesen werden. Um wieder einem Irrtum vorzu-
beugen: Es konnen natiirlich auch Realzahlen zugewiesen wer-
den. Diese werden in einer Integervariablen nicht als solche ge-
speichert, sondern die evtl. mit iibergebenen Nachkommastellen
werden einfach "vergessen™

A%=149.523
PRINT A%
==========> Ausgabe: 149

klarzumachen, daB er es hier mit einer Va-
ypsizu tun hat, muB dem Variablennamen ein
A / angehangt werden. Pro Variable benotlgt dieser
Typ einen Spencherplatz von 4 Bytes, woraus sich ein Integer-
Bereich von -2147483648 bis 2147483647 ergibt. Ferner gibt es
in der Version 3.0 noch die 1- und 2-Byte-Integervariable.

Der dritte numerische Typ ist die Boole-Variable. In ihr kénnen
ausschlieBlich zwei Werte abgelegt werden. Wenn Sie sich spiter



52 Das groBe GFA-BASIC-Buch ——

mit den einzelnen BASIC-Befehlen befassen werden, werden Ih-
nen mehrere Funktionen begegnen, die als Ergebnis ebenfalls
nur zwei verschiedene Werte liefern konnen. Der eine Wert ist
die Null. Dieser Wert gilt im Interpreter als der Wahrheitswert 0.
Auch wenn er Wahrheitswert genannt wird, ist dieser Wert stell-
vertretend fir die Feststellung "falsch". Der andere Wahrheits-
wert ist die Zahl -1. Dieser Wert steht grundsitzlich stellver-
tretend fiir die Feststellung "richtig".

Warum fiir die Feststellung "richtig" eine -1 steht, hat seinen
Grund in der sogenannten Zweierkomplement-Darstellung. In
einem Longword sind in diesem Fall alle Bits "gesetzt" (ange-
schaltet), also auch das hochste. Daraus ergibt sich ein Minus-
wert. Dieses Verfahren hier zu erliutern, wiirde den gesetzten
Rahmen sprengen. Als BASIC-Anfianger muf3 es Sie im allge-
meinen auch nicht nidher interessieren. Kluge Kopfe wurden
evtl. weiter oben bei Words und Longwords schon stutzig, wo als
maximaler Wertebereich 2#31-1 genannt wurde. Dieses liegt an
der Zweierkomplementierung, die das oberste Bit als Minus-
Identifikator verwendet. Sobald vor einer Zahl ein Minuszeichen
steht, wird das oberste Bit eines Longwords gesetzt und die Zahl
vorzeichenlos von 2731 abgezogen. Das daraus entstehende Bit-
Muster wird bei der Zweierkomlementdarstellung als Minuswert
interpretiert und dementsprechend zuriickgegeben.

PRINT BIN$(1)
========> Ausgabe: 00000000000000000000000000000001 (1 Bit)

PRINT BIN$(2°31-1)
========> Ausgabe: 1TMTTTM1T11111111111111111111111 (31 Bit)

PRINT BIN$(-2731)
========> Ausgabe: 10000000000000000000000000000000 (32 Bit)

PRINT BIN$(-2°31+1) L
========> Ausgabe: 10000000000000000000000000000001 (32 Bit)

PRINT BIN$(-2°31+2)
========> Ausgabe: 10000000000000000000000000000010 (32 Bit)

PRINT BIN$(-2731+2°15)
========> Ausgabe: 10000000000000001000000000000000 (32 Bit)



—— Basis-BASIC 53

PRINT BIN$(2°31-2715)
========> Ausgabe: 1111111111111111000000000000000 (31 Bit)

PRINT LPEEK(VARPTR(A%))
========> Ausgabe: 11111111111111111111111111111111 (32 Bit)

Zuriick zu den Wahrheitswerten. Nehmen wir dazu als Beispiel
den Befehl EXIST. Dieser hat die (oberflichlich gesehen) ein-
fache Aufgabe, festzustellen, ob eine bestimmte Datei auf der
Diskette existiert oder nicht. Existiert die Datei, liefert EXIST
den Wert -1. Andernfalls wird der Wert 0 zuriickgegeben. An-
dere Werte konnen von dieser Funktion nicht geliefert werden,
weil nur zwei Zustinde auftreten konnen. Entweder die Datei
existiert, oder sie existiert nicht. Daraus ist der eigentliche Sinn
der Boole-Variablen erkennbar. Uberall dort, wo aus einer Ent-
scheidungsfindung nur die Antworten "Ja" oder "Nein" bzw.
"richtig" oder "falsch" resultieren konnen, konnen Wahrheitswerte
in ihnen abgelegt werden.

Die Boole-Variable kann nur einen dieser beiden Werte auf-
nehmen. Selbst wenn Sie irgendeinen beliebigen Wert zuordnen,
wird der Interpreter immer nur zwischen "falsch" (0) und "rich-
tig" (-1) unterscheiden. Alle Werte, die diesem Variablentyp
iibergeben werden und ungleich 0 sind, werden automatisch als
*wahr’, also -1, interpretiert und abgespeichert. Dieser Vari-
ablentyp hat den Vorteil, da3 er zur Speicherung seiner Inhalte
nur 2 Byte pro Variable benotlgt Will man eine Variable als
, muBl man dem Variablen-

Janhiingen.

namen das Zelche 0

In Text- bzw. String-Variablen (String; engl.: Kette/
Reihe/Schnur/ Saite) werden dagegen keine Werte, sondern
Textzeichen abgelegt. Genaugenommen sind diese Zeichen
ebenfalls Werte, wie wir weiter oben schon kennengelernt haben
(ASCII-Zeichen). Nur bei dieser Art der Variablen "wei3" BA-
SIC, daB3 es die hier abgelegten Werte nicht als Zahlen, sondern
als ASCII-Zeichen zu interpretieren hat. Vorausgesetzt, es wurde
ihm klargemacht, daB es sich hier um eine String-Variable han-
delt. Das macht man, indem man dem Variablennamen ein '$’
(Dollarzeichen - z.B. Var$) anhiingt.



54 Das groBe GFA-BASIC-Buch ———

Eine String-Variable kann im GFA-BASIC eine Zeichenkette
mit einer Anzahl von 0 bis 32767 einzelner Textzeichen auf-
nehmen. Das hei3t nun nicht, dafl jede String-Variable einen
Speicherplatz von 32767 Byte (1 ASCII-Zeichen = 1 Byte) reser-
viert, sondern daf3 ein String mit maximal 32767 Zeichen iber-
geben werden kann. Die Linge, die eine solche Variable an-
nimmt, hiingt jeweils davon ab, wieviele Zeichen zugeordnet
wurden. An Speicherplatz benoétigt eine String-Variable soviel
Byte, wie Zeichen vorhanden sind. Zusidtzlich werden zu jeder
String-Variablen noch 6 Byte benétigt.

Zu jeder String-Variablen existiert nimlich ein sogenannter De-
scriptor (Beschreiber), der sich selbstindig die Adresse, also den
Standort der Variablen im Speicher, sowie ihre Linge "merkt"
(mehr dazu unter ARRPTR und "Variablenorganisation/-typen").

A$="BASIC"

PRINT “Der String hat eine Lange von ";LEN(A$);" Zeichen"

PRINT "Die Stringadresse ist ";VARPTR(A$)

PRINT "Der Descriptor fur A$ steht bei Adresse '";ARRPTR(A$)

PRINT "Das erste Byte des Strings hat den Wert ";PEEK(Varptr(A$))
PRINT "Der Wert ";PEEK(VARPTR(A$));" reprédsentiert das Zeichen ";
PRINT CHR$(PEEK(VARPTR(A$)))

Als erstes wurde hier der Variablen "A$" der String "BASIC"
iibergeben. AnschlieBend wird mit der BASIC-Funktion LEN
die Linge des Strings ermittelt. Um nun in Erfahrung zu brin-
gen, wo das erste Zeichen (Byte) dieses Textausdrucks im Spei-
cher zu finden ist, kann mit der BASIC-Funktion VARPTR
(was soviel wie "Variablenzeiger" heiBt) die Adresse erfragt wer-
den. Mit der Speicherlese-Funktion PEEK wird nun der Byte-
Wert des ersten Zeichens aus der mit VARPTR ermittelten
Adresse ausgelesen. Zum Schlufl wandelt die Textfunktion CHRS$
den so gelesenen Wert wieder zuriick in ein Textzeichen, das ge-
nau der erste Buchstabe des {ibergebenen Strings ist.

Zihlen Sie zu der mit VARPTR ermittelten Adresse eine 1
hinzu, dann haben Sie die Adresse des zweiten Zeichens. Ad-
dieren Sie eine 2, so erhalten Sie die Adresse des dritten Zei-
chens usw.



—— Basis-BASIC 55

A$="'BASIC"
PRINT "Das zweite Zeichen hat den ASCII-Wert ";PEEK(VARPTR(A$)+1)

Wenn Sie den ganzen Variableninhalt auf dem Bildschirm sehen
wollen, geben Sie .

PRINT A$

ein, und der String wird auf dem Bildschirm ausgegeben.

4.12 Matrix und Vektor

Das hort sich fast an wie der Titel eines Shakespeare-Dramas.
Da es ja nicht langweilig werden soll und man aufBlerdem ohne
sie nicht auskommen kann, gibt es noch eine weitere Gattung
der Variablentypen. Man nennt sie Felder oder Arrays (array =
Aufstellung/Reihe/Ordnung). Wer in der Schule gut aufgepal3t
hat, weif3, dal man zur Berechnung einer Funktionskurve min-
destens zwei Groflen benétigt. In den meisten Fillen werden dies
die GréBen "X" und "Y" gewesen sein. Der Berechnungsvorgang
ist der, daBB zu jeder angenommenen Gr6Be "X" anhand einer
Funktionsgleichung die Groflie "Y" zu ermitteln war. Aus den
Schnittpunkten dieser beiden GroBen ergaben sich dann die
Punkte der Kurve.

Diese beiden Werte stellten auf die jeweilige Funktion bezogen
ein Koordinatenpaar dar. Um nun mit den jeweils zusammenge-
horenden Ordinaten-Werten nicht durcheinanderzukommen,
kann man ein Feld einrichten. Dieser Vorgang ist nichts anderes
als das, was wohl die meisten unter dem Begriff Wertetabelle
kennen. Solch ein zweidimensionales Feld wird auch als Matrix
bezeichnet, wovon jede einzelne Dimension einen Vektor dar-
stellt.

allgemeinen Verstindnis) |
nd meist dazu verwendet wir



56 Das groBe GFA-BASIC-Buch ———

ner bestimmten Gruppe gehoren, unter einer gemeinsamen
"Uberschrift" (dem Variablennamen) zusammenfassen und ord-
nen zu kénnen.

Weitere Informationen zum Umgang mit Feldern finden Sie un-
ter DIM bzw. "Aufbau eines mehrdimensionalen Feldes". AuBler
den Boole-Variablen benétigen alle anderen Variablentypen in
einem Array denselben Speicherplatz, den sie auch als Einzelva-
riable beanspruchen. Die Boole-Variable benotigt dagegen in ei-
nem Array pro Element nur einen Speicherplatz von einem ein-
zigen Bit.

4.13 Erkennungsdienst

Mir ist immer wieder aufgefallen, dafl eines der groBten Pro-
bleme, eine Computersprache zu erlernen, darin besteht, daf3
man am Anfang in einem Listing nicht unterscheiden kann, was
denn nun Befehle (also feststehende Begriffe) und was Namen
(also frei bestimmbare Begriffe) sind. Dazu einige Grundregeln.

Die erste: Lernen Sie alle Befehlsnamen so schnell wie moéglich
auswendig. Alles andere konnen nur noch freie Begriffe sein!
Vorsicht: Ironie, aber auch etwas Wahres ist an diesem banalen
Satz dran.

Wenn das so einfach wire, wie es sich anhort. Gerade bei einer
Sprache wie GFA-BASIC, die in der Amiga-Version 3.0 ca. 360
verschiedene Befehle, Funktionen, reservierte Variablen und
Felder kennt, ist man schnell iiberfordert.

In GFA-BASIC kann man in der Amiga-Version problemlos
auch Befehlsnamen als Variablennamen verwenden. Es gibt also
bis auf reservierte Variablen (TIMER, DATES etc.) keine reser-
vierten Begriffe. Bei Prozeduren ist auch schon in anderen Ver-
sionen moglich gewesen, zur Namensbildung Befehlsnamen zu
verwenden, jedoch lassen sich diese relativ einfach von Befehlen
unterscheiden. Eine Prozedur beginnt immer mit der Kennung
PROCEDURE, eine Funktion immer mit der Kennung DEFFN,



—— Basis-BASIC 57

und ein Label steht immer allein bzw. evtl. mit einem Kom-
mentar (!Kommentar) versehen und endet mit einem Doppel-
punkt.

Data_label:

Oder

Xyz_label.1: !Kommentar abc....xyz

Prozedur-Aufrufe sind an dem vorangestellten GOSUB oder @
zu erkennen, wihrend Funktionsaufrufe immer mit FN oder
ebenfalls mit @ beginnen.

Gosub Proct oder aProc1
Xy#%=Fn Funk1 oder Xy%=aFunk1

Bei Labels sind nur solche Bezeichnungen méglich, die vom In-
terpreter nicht falsch verstanden werden konnen. Z.B. wird ein
Label mit dem Namen Save: in den Befehl SAVE ™" oder der
Name Fileselect: in FILES "elect:" umgewandelt.

Der Label-Name Print: ist z.B. also ohne weiteres moglich, sollte
jedoch zugunsten der besseren Uberschaubarkeit unterbleiben.

Wie vorn schon ausgefithrt, haben Variablen (bis auf Real-Va-
riablen ;optional "#") eine Endkennung. Integervariablen erhalten
ein %’ (Var%), Byte-Variablen ein "|" (Var|), Word-Variablen
ein "&" (Var&), Boole-Variablen ein °!" (Var!) und String-Vari-
ablen ein ’$’ (Var$). Diese sind also ebenfalls an ihren Kennun-
gen leicht auszumachen.

Als Namen kdénnen beliebig lange Bezeichnungen eingesetzt wer-
den, die sich aus den normalen Textzeichen (A-Z/a-z/0-9), so-
wie dem Tiefstrich _ und dem Punkt zusammensetzen konnen.
Bei Namen von Variablen und Funktionen muf3 das erste Zei-
chen allerdings ein Buchstabe sein.

V.aria_blen_name.1
Feld_ titel. xyz/(D1m1 Dim2,...)
1: <- Soll ein Label selnl



58 Das groBe GFA-BASIC-Buch —

PROCEDURE 1724_von_a.bis.z
DEFFN hardcopy=X%*Y%

Um allen Irritationen aus dem Wege zu gehen, schreibt der BA-
SIC-Editor alle Befehlsnamen grundsitzlich gro8. Fur den An-
fanger ist dies eine gewaltige Hilfe.

Wenn Sie sich einige Zeit mit GFA-BASIC beschiiftigt haben,
werden Sie diese Hilfe sicher nicht mehr bendétigen, da sich al-
lein aus der Logik der Syntax schon eine eindeutige Bestimmung
ergibt. Ein Name, hinter dem ein Gleichheitszeichen steht, kann
z.B. nur eine Variable sein, und ein Name, dem ein "@" voran-
gestellt ist und der direkt am Zeilenanfang steht, kann nur ein
Prozeduraufruf sein. Befindet sich dagegen vor einem Namen
mit vorangestelltem "@" ein Gleichheitszeichen, kann es sich nur
um einen Funktionsaufruf handeln usw.

Ich komme wieder auf den obigen "Spruch" zuriick. Setzen Sie
sich am Anfang zuerst mit den Grundlagen-Befehlen (PRINT,
INPUT, READ, DATA, PEEK, POKE, GOSUB etc.) auseinan-
der, und versuchen Sie, die iibrigen Komfort-Befehle und -
Funktionen erst einmal weitestgehend zu ignorieren. Wenn Sie in
den Grund-Befehlen sattelfest sind, erweitern Sie Ihren Sprach-
schatz nach und nach um die restlichen Befehle.

4.14 Schleifenstrukturen

Schleife nennt man jede Form von Programmstruktur, die be-
wirkt, daf3 ein ganz bestimmter Programmblock mehrmals nach-
einander durchlaufen wird. In GFA-BASIC sind vier solcher
Loops (Loop = Schleife) verwendbar.

FOR...NEXT-Schleife
DO...LOOP-Schleife
REPEAT...UNTIL-Schleife
WHILE...WEND-Schleife

bl S



——— Basis-BASIC 59

Untersuchen wir als erstes zwei Typen, die Bedingungsabfragen
implizit verwenden.

Die REPEAT...UNTIL-Schleife

Der Schleifendurchlauf wird durch die Anweisung REPEAT
eingeleitet. Im AnschluB3 an diese Anweisung folgt nun ein be-
liebig groBer Programmblock, der wiederholt ausgefiihrt werden
soll. Die Eigenart dieser Schleife ist eine Bedingungsabfrage am
Ende, also am Wendepunkt der Schleife.

Die dort gestellte Bedingung bestimmt, wie oft die Schleife
durchlaufen werden soll bzw. unter welchen Bedingungen die
Schleife nicht mehr durchlaufen werden soll. Der Schleifenwen-
depunkt heif3it hier UNTIL. Dieser Umkehr-Anweisung wird die
genannte Bedingung beigestellt.

REPEAT

INC A

B=SQR(A)

PRINT "Wurzel aus "“;A;» = ;B
UNTIL B=15 OR A=200

Innerhalb der Schleife wird hier ein Zihler (A) durch INC bei
jedem Durchlauf um 1 erhéht. AnschlieBend wird die Wurzel
daraus ermittelt, und die beiden Werte werden ausgegeben. Wie
Sie sehen, bestimmt die Bedingung B=15, dafl die Schleife so oft
durchlaufen wird, bis der Wurzelwert mit der Zahl 15 identisch
ist.

Wie auch bei IF-Abfragen kénnen hier die Bedingungen mit lo-
gischen Operatoren verkniipft werden. So wird hier die Schleife
auch (unabhingig von B) verlassen, wenn der Zihler den Wert
200 erreicht.

Die wesentliche Eigenart dieses Schleifentyps ist, daBl der
Schleifeninhalt auf jeden Fall mindestens einmal durchlaufen
wird, da die Bedingungsabfrage erst am Ende der Schleife er-
folgt.



60 Das groBe GFA-BASIC-Buch ———

Die WHILE...WEND-Schleife

Anders ist es bei der WHILE... WEND-Schleife. Diese wird dage-
gen gar nicht erst durchlaufen, wenn die Laufbedingung bereits
bei Erreichen der Schleife erfiillt ist.

A=11
WHILE A<10

INC A

PRINT SQR(A)
WEND

Der Programmblock innerhalb der Schleife wird nicht ausge-
fihrt. Der Schleifeneinstieg WHILE (wihrend/solange) sagt aus,
daB der Block solange durchlaufen werden soll, wie A kleiner
als 10 ist. Da A bereits vorher groBler ist, wird das Programm
sofort hinter dem Wendepunkt WEND fortgesetzt.

Fur den Fall, da3 die Schleife durchlaufen wird, wird bei jedem
Durchlauf gepriift, ob die bei WHILE gestellte Bedingung erfillt
ist. Ist sie das nicht, wird der Block nicht noch einmal ausge-
fithrt und das Programm hinter WEND fortgesetzt. Auch hier
konnen, bei Angabe mehrerer Bedingungen, diese logisch ver-
kniipft werden.

Die FOR...NEXT-Schleife

Eine sehr gebriuchliche Schleifenform, die FOR..NEXT-
Schleife, verwendet dagegen keine Bedingung dieser Art, son-
dern fiihrt die Schleife so oft aus, wie in einer Zihlanweisung
vorgegeben wird.

FOR A%=1 TO 225

B=SQR(A%)

PRINT "Wurzel aus ";A%;" = ";B
NEXT A%

In der FOR-Zeile wird eine beliebige Zihlvariable (hier A%)
angegeben, die im Verlauf der Schleife solange um den Wert 1
(hier beginnend mit 1) erh6ht wird, bis sie den Endwert (hier
225) erreicht hat. Der Schleifenwendepunkt wird durch die An-
weisung NEXT gekennzeichnet. Dieser Anweisung ist der Name



—— Basis-BASIC 61

der verwendeten Zihlvariablen beizustellen. Die FOR..NEXT-
Schleife verfiigt noch iiber einige Varianten, die Sie aus der
Befehlsbeschreibung zu FOR...NEXT entnehmen kdénnen.

Die DO...LOOP-Schileife

Eine Schleife ohne Bedingungsabfrage oder Zihler ist die
DO...LOOP-Schleife. Dieser Schleifentyp fithrt den zwischen DO
und LOOP eingeschlossenen Programmblock unendlich lange aus.
Es kann keine implizite Abbruchbedingung definiert werden.

DO

INC A%

B=SQR(A%)

PRINT "Wurzel aus ";A%;" = ";B
LOOP

Soll eine DO...LOOP-Schleife abgebrochen werden, hat man nur
die Moglichkeit, entweder die Tasten-Kombination <Control/
Shift/ Alternate> zu driicken oder eine spezielle Ab-
bruchbedingung zu stellen. Diese Abbruchbedingung heif3t EXIT
[F (siehe dort).

Bei allen Schleifenarten ist es moéglich, diese ineinander zu ver-
schachteln. Es kann also in einer Schleife eine weitere, gleich
welcher Art, aufgerufen werden.

WHILE 1%<10
INC 1%
FOR J=1 TO 10
REPEAT
INC K
PRINT "I% = ";1%;" J = “;J;" K = ";K
UNTIL K>1%*10
NEXT J
WEND

Bei Verschachtelungen dieser Art ist darauf zu achten, daB die
jeweiligen Schleifenwendepunkte (NEXT/UNTIL/LOOP/WEND)
in der umgekehrten Reihenfolge ihrer Startanweisungen (FOR/
REPEAT/ DO/WHILE) gesetzt werden.



62 Das groBe GFA-BASIC-Buch ——

Falsch: REPEAT Richtig: REPEAT
WHILE A<10 WHILE A<10
UNTIL A=10 WEND
WEND UNTIL A=10
Falsch: FOR I=1 To 10 Richtig: FOR I=1 To 10
FOR J=1 To 10 FOR J=1 To 10
NEXT I NEXT J
NEXT J NEXT I

Sollten Sie diese Reihenfolge nicht einhalten, wird Ihnen der
Interpreter beim Programmstart einen "Schwarzen Peter" iiber-
reichen.

Diejenigen, die es von anderen BASIC-Interpretern her gewohnt
sind, Schleifen anhand v<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>