
| BLEEK - HECHT - LITZKENDORF

| Das große Buch zu

Wolf-Gideon Bleek
Martin Hecht

Uwe Litzkendorf

Das große GFA-BASIC- Buch
zum Amiga

DATA BECKER

Copyright © 1990 by DATA BECKER GmbH

Merowingerstr. 30

4000 Düsseldorf 1

1. Auflage 1990

Umschlaggestaltung Werner Leinhos

Textverarbeitung Udo Bretschneider

und Gestaltung Andreas Quednau

Text verarbeitet mit Word 5.0, Microsoft

"Ausgedruckt mit Hewlett Packard LaserJet Il

Druck und

buchbinderische Verarbeitung Graf & Pflügge, Düsseldorf

Alle Rechte vorbehalten. Kein Teil dieses

Buches darf in irgendeiner Form (Druck,

Fotokopie oder einem anderen Verfahren) ohne

schriftliche Genehmigung der DATA BECKER

GmbH reproduziert oder unter Verwendung

elektronischer Systeme verarbeitet,

vervielfältigt oder verbreitet werden.

ISBN 3-89011-399-0

Wichtiger Hinweis

Die in diesem Buch wiedergegebenen Verfahren und Programme werden ohne Rücksicht

auf die Patentlage mitgeteilt. Sie sind ausschließlich für Amateur- und Lehrzwecke be-

stimmt und dürfen nicht gewerblich genutzt werden.

Alle technischen Angaben und Programme in diesem Buch wurden von den Autoren mit

größter Sorgfalt erarbeitet bzw. zusammengestellt und unter Einschaltung wirksamer Kon-

trollmaßnahmen reproduziert. Trotzdem sind Fehler nicht ganz auszuschließen. DATA

BECKER sieht sich deshalb gezwungen, darauf hinzuweisen, daß weder eine Garantie

noch die juristische Verantwortung oder irgendeine Haftung für Folgen, die auf fehlerhafte

Angaben zurückgehen, übernommen werden kann. Für die Mitteilung eventueller Fehler

sind die Autoren jederzeit dankbar.

Vorwort

Endlich! Das GFA-BASIC gibt es jetzt auch für den Amiga.

Um allen Amiga-Usern, die mit dieser äußerst gelungenen Pro-
grammiersprache arbeiten möchten, so schnell wie möglich eine

kompakte, ausführliche und gut verständliche Dokumentation

zukommen zu lassen, haben wir uns überlegt, daß sich hierbei
zwei Erfahrungen zusammenbringen lassen. Uwe Litzkendorf,

der sicher allen ATARI ST-Besitzern bekannt ist, hatte mit sei-

nem GFA-BASIC-Buch zum ATARI ST einen großen Erfolg. Er
ist Kenner dieser Programmiersprache. Martin Hecht, ein
Amiga-Programmierer ohne Kompromisse, und Wolf-Gideon
Bleek bringt mit vielen Programmierkniffen, großer Erfahrung
auf dem Gebiet der strukturierten Programmierung und Be-
triebssystemkenntnis all sein Wissen ein.

Mit diesem Drei-Autoren-Gespann läßt sich der Inhalt des Bu-
ches nur ahnen. Es wurden alle Befehle und Funktionen der

Version 3.0 des Amiga-GFA-BASIC dokumentiert, ausprobiert

und in. Programmbeispielen erklärt. Außerdem bietet der große
Grundlagenteil am Anfang des Buches eine gute Voraussetzung
für jeden Einsteiger, der neu in der BASIC-Programmierung ist.
Ganz besonders freuen wir uns über das letzte Kapitel. Es zeigt

den gerade erst erschienenen GFA-BASIC Compiler, der uns

freundlicherweise von der Firma GFA-Systemtechnik GmbH,
Düsseldorf, schon während der Testphase zur Verfügung gestellt

wurde. Ohne die ständigen UpDates hätte dieses Buch nicht den
aktuellen Stand haben können, der nun vor Ihnen liegt.

Wir wünschen jedem Leser dieses Buches viel Erfolg beim Ler-
nen dieser neuen Programmiersprache und gutes Gelingen bei
eigenen Programmen. Viel Spaß!

Großhansdorf, — Wolf-Gideon Bleek
im Februar 1990 | Martin Hecht

Uwe Litzkendorf

Inhaltsverzeichnis

1. _ Zu diesem Buch sjanveaceesseasenevsnsevevesssvssensesvesenenssaseusseasevee

2. Der Amiga0 ee sesaeesaeesseeescessuecsaeesseeeseesseenees

3. Das GFA-BASIC ooo cccscssessesecssesscssessessessesseseeseessesees

3.1 Noch einige Anmerkungen zum GFA-BASIC
3.2 Zum GFA-Menüusssessesssessesseeseessenneennennnenennneenennenn
3.3 Der RUN-Only-Interpreter seseessseseeees
3.4 Der GFA-Editor seuecessesseesseescesssesssesscessenssesscenees

4. Basis-BASIC ooo ecscscssessesseseseesseassscsecseessesesseeeenensens

4.1 Computer-ABCnenenensenesesenesensenensensesensenenseneanenn

4.2 Bits und Bytesessesseessessessaeseessensnenennsnnnnennennnennennennenn
4.3 Binär- Arithmetik.............uccsennneseneeseeeeneenenn kersenenen
4.4 Das Hexadezimalsystem........uunssesessesessneseeneennenenn

4.5 Codes und Opcodes0..... assnnnsnnnnsnnnnsnnnnssnnnsnnnn

4.6 Words und Longwordsuseessesseeseeseesseensessnenensenennnnenn
4.7 Die Speicherorgamisation ou... seneeseeeseenes
4.8 Boolesche Logik wie cccssscsscsscsecesscssesssessessesseeees
4.9 Bedingungen und Konsequenzen:cccccceeneees
4.10 Flags wwe sessssesesessecesessssssssssssessscssasesenesessesessseess
4.11 Die Variablen oo... cccccccssesecsscssessessesssssesseseseees
4.12 Matrix und Vektorueessesssessessessseseesineneenennnnenenenennennn
4.13 Erkennungsdienstuncnsseeseessesseessesnesennnnnnnnnnenneenennn
4.14 Schleifenstrukturenucsssseesseeseessenseseesennnenennennennenn
4.15 Vergleichsoperationen kensssnssssensensessnsssessensnennnnn
4.16 Vorfahrtsregeln seeseesesesssssessseseseescs
4.17 Fingertibungen ooo. cc cscsscsscsscsscssesssssssessseseseees

5. Ein-/Ausgabebefehlle0u0u000seeeneneeenennnennnnnennn sevens

5.1 Dateneingabe ou... cccccccscsscscssssssssscssssscessesssssssscees
5.2 Datenausgabe sessesceeseeseessccaeessesesescseesseeseens
5.3 Bildschirmoperationen oo... cece ceeccsseceeeeccsseceeceeees

5.4 Diskettenoperationenunsessseeseesseeseennneseeeneessennsennennnn 92

5.5 Dateihandhabung sesasesecnncesececsessseeeesacessessceesees .. 104
5.5.1 Funktionsweise einer Random- Access-Datei 115

5.6 Port-Ein-/-Ausgabebefehlee 119
5.7 Die DOS-Bibliothek des Amiganneenen 120
5.8 Drucker-Anweisungenuusssssesseesssesenenenseenenenennenenenene 132
5.9 Sound- und Spracherzeugungeeeeeen 140

Programmstruktur.....................222220422422040002008000ennnnnnnensnnnsanenennnennnn 145

6.1 Schleifenkonstruktionen..........usseseeeeseeseeseeneenenseensnnn 145
6.2 Bedingte Verzweigungen ...uunnenesesseseeseesennnseennennnn 149
6.3 Bereichsdeklarationueseesesseeseeseeneeensenensseeneenennnnn 167
6.4 Variablendeklarationen.uecceesesseeseeeseenneesseeneennnenn 170
6.5 Unterprogrammeuseeseesseessesssesseeseensennnnnnenenennsnensennenen 173

6.6 Assemler-/C-/PRG-Programmaufrufe 186

Textoperationen | ree 193

7.1 String-Manipulationen 00. eee Kanne 193
7.2 String-Analyseussessssesssesesssesnessnsnesennnenennnnnnnsensnenennenn 194
7.3 String-Formatierungunsesseseeseesesesnennennennensnnnennnn 199

Arithmetik-Befehle0u00000000eeeeenseenenensnnnenneenneenne . 201

8.1 Operatoren ...unsessssessnnnsnesssnnennenennnessnnnnnnnnsnunnnnnensnennanensannn 201

8.2 Mathematische Operationencccsenseeeneeneeneennennn 202

8.3 Numerische Funktionenuesnssassneeseeseeseseeseeneenennnn 206
8.4 Trigonometrische Funktionen esesessssecesseees 210
8.5 Vergleichsoperationenssennseseeseesenseeneenennnennnnnnennenn 214
8.6 Bit-Operationenusccsessesseessesnesseenensnennennnnnnnnnnnnnnnnennnn 215
8.7 Zufallswert-Erzeugunguseseessessenneesennennensennnennnn 223

Grafik ...nennnnenennn 225
9.1 Grafikdefinitionen eeesessesessesssssesessesesseaseaseess 225
9.2 Objektgrafikbefehle oo... ccc cecscceetectscreceeees 238

9.3 Strich-/Punktgrafik _..........nsnenensensenensenennenn 246

9.4 Grafikoperationenuesesseseesesesseseenesnnnenneeneennnennnenennennen 255
9.4.1 Organisation eines PUT-Strings woe 262
9.4.2 Organisation des Bildschirm-Speichers 265

9.5 Objekt-Animationeeen sesseeseneesees 268

10.

11.

12.

13.

14.

15.

16.

17.

Datenumwandlung ec eeeeseseeseeeceeecesessceeseessesesesenseneneess 279

10.1 Die Zahlensysteme seecsesscueevesecsccusasussecaesscassneceauesusseenenses 280

Feld-, Speicher- und Zeigeroperationen 291

11.1 Feldoperationen on... ceccsccsecssscsseseseeeees kennen 291
11.1.1 Aufbau eines mehrdimensionalen Feldes 293

11.2 _Speicheroperationen .. seseeessessesssessesessssceceressascnscssouss 305
11.3 Speicherverwaltung setessessessesscsessessessessescassessess 310
11.4 Zeigeroperationen ou... ccecesscsssetsesscessersessesseeseees 315
11.5 Die Exec-Bibliothek des Amiga... 317

Programmkontrolle sesseesacesneessesasecaeesesaseneceaceneeeeeesseens 331

12.1 Programmstart und -ende uu... ceeseseeeeeereeees 331
12.2 Léschfunktionen sesuesaeecsessesceuscessesscessesssessessessseseessenes 334
12.3 Zeitoperationen sesseessessesssesecsscesecsseasessesees 336
12.4 Fehlerbehandlungseeseeeseesseeneensennenneennennn 341
12.5 Auskünfte woe ccteetseesessesteetscnsesseesecsseseeeseeeaes 344
12.6 Multitasking ow. seveeseeesseseceecesscesscesesscsesestenes 347
12.7 Debugging sseeaseaeescssseesscescectcessesseesaeesscessesacesetesseeseesseens 352
12.8 Diverses o..e.eeeeeeeccecessessesscscscssessccesssscssessscssessessssesesscesseneeees 355

Interaktionen (Programm /Benutzer)- 363

Window- und Screen-Programmierungeeeeeeee 375

14.1 Die Window-Befehle des GFA-BASIC 375
14.2 Die Screen-Befehle des GFA-BASIC 383

Menuprogrammierung mit BASIC-Befehlen 389

Ereignis-Uberwachung mit BASIC-Befehlen 395

Der GFA-Compiler ee 405

17.1 Beispiele und Ergebnisse... 412

17.2 Die Bedienung im Detail cesses 415
17.2.1 Auf der Workbenchuuessesesesessesenneseenenneneennn 416
17.2.2 Vom CL woe cc cccccssscssssscssssscsscssssssssscsssssssscsessees 424
17.2.3 Die Fehlermeldungen des Linkers.......eene 428

17.3 Effektives Compiler-BASIC oon 429

17.4 Fortgeschrittene Compiler-Nutzung 432
17.4.1 Ergänzungen für die Compiler-Shell..................... 434

18. Vektor- und Matrizenberechnungen. ... 451

18.1 Grundbefehle zur Matrizenhandhabung 545
18.2 Ein- und Ausgabe der Matrizendaten. 456
18.3 Rechnen mit Matrizenuseenseseesesneneesnnnennnnne 464

19. Mehr Bedienkomfort2.222240042022020020000nenenenenennnnen 477

19.1 Mathematische Befehlenennnneeeeeeeeeeen 477
19.2 Die neuen Editor-Kommandoseeeeeeee 481

Anhang A ASCII-Tabelle kansssssnssssssssssssessessessansensessssenssessessnseesenn 483
Anhang B Fehlermeldungen.uuuseseeseeeeessennenennnneenennnnnnnnn 484
Anhang C DOS-Fehlermeldungeneuneeeeene 489
Anhang D Verzeichnis der GFA-BASIC-Befehle 493

Anhang E Quellenhinweisuneeseesssesnsesnnneeneeenesnennenenenannnnnn 498

Stichwortverzeichnisccccccccccsccccssscccessscccessssccsscccccsssscecessacees 499

—— Zu diesem Buch | 13

1. Zu diesem Buch

Das Anliegen dieses Buches ist es, die ca. 360 Befehle und
Funktionen, die nunmehr vom GFA-V3.03-Interpreter zur Ver-
fügung gestellt werden, nach Schwerpunkten zu ordnen, um so

das Auffinden der gesuchten Befehlsbeschreibungen nach pro-
blemorientierten Gesichtspunkten zu ermöglichen bzw. zu er-
leichtern. Um Ihnen eine einheitliche Darstellung zu bieten, ha-

ben wir uns an folgende Konventionen gehalten:

Jede Befehls- bzw. Funktionsbeschreibung beginnt mit einer
 Kopfzeile, die deutlich sichtbar den Befehlsnamen, seine mög-

liche Abkürzung und eine (sehr knappe) Kurzbeschreibung ent-

hält. |

Daran anschließend finden Sie die Syntax, in welcher der Be-

fehl/die Funktion einzusetzen ist. Auf die Beschreibung des Be-
fehls/der Funktion folgt dann gegebenenfalls ein Beispiel oder

ein Hinweis auf Beispiele an anderer Stelle.

Innerhalb des Textes wurden für bestimmte Situationen, Vor-

gaben und Optionen jeweils einheitliche Markierungen benutzt.

<> Wird bei einer Befehlsbeschreibung auf bestimmte
Tasten verwiesen, wird ihr Name zur besseren Kennt-

lichmachung in spitzen Klammern angegeben (z.B.
<Shift>, <A>, <Return> oder <Help>).

[] Bei Befehlen, deren Syntax variabel ist, wird ein optio-

naler Befehlsteil in eckigen Klammern angegeben. Dies
bedeutet, daß die Angabe (z.B. [;,’] oder [‚Länge]) nur
dann im Befehl angegeben werden muß, wenn die da-
mit verbundene Option genutzt werden soll.

{ } Viele GFA-BASIC-Befehle können als Abkürzung an-

gegeben werden. Der Interpreter erweitert diese dann

selbständig auf die richtige Form. Sollte zu einem Be-

14 Das große GFA-BASIC-Buch ———

fehl eine Kurzschreibweise existieren, ist diese in der

Titelzeile und in der Quick-Referenz innerhalb von
geschweiften Klammern angegeben (z.B. { SYS } oder {
RET }). Diese geschweiften Klammern werden auch
von einigen BASIC-Befehlen (Speicherzugriffe wie
CHAR({), BYTE{} etc.) verwendet. Die Verwechslungs-
gefahr mit den hier gemeinten Abkürzungsklammern ist
jedoch gering.

Soll eine Folge von Anweisungen innerhalb von Be-
fehlen verdeutlicht werden, geschieht dies anhand einer

Punktlinie (z.B. FOR...NEXT).

Grundsätzlich sind in der Syntax-Zeile alle Befehlsnamen in
GroBbuchstaben, alle Variablen, Parameter und Strings in nor-

maler Schreibweise dargestellt (z.B. OPENW Handle).

Bei den Parameterangaben wurden weitgehend einheitliche Be-
zeichnungen verwendet:

Adresse

Anz

Arg

Feld

Back= /Var=

Expr/Expr$

Index

Kanal

Nummer

Text

Var/Var$

Xpos/Ypos

Objektbaumadresse/sonst. Adressen (Adressen

werden grundsätzlich als 32-Bit-Integer ange-
geben).

Anzahl

Funktionsargument

Beliebige Feldbezeichnung

Rückgabedaten bei Funktionen

Numerischer/alphanumerischer Ausdruck

Index von Feldelementen

Datei-Identifikator

GFA-Window-Nummer

Beliebige Zeichenkette

Beliebiger Variablenname (nicht mit VAR
verwechseln!)

Bildschirmkoordinaten

—— Zu diesem Buch 15

Bei Dateiname, Programmname und Ordner ist davon auszu-

gehen, daß ein evtl. erforderlicher Suchpfad in den Namen ein-

zubinden ist. Unter dem Begriff Ausdruck (s.o. Expr) wird hier
eine beliebige Zusammenstellung von Konstanten, Formeln,
Texten, Funktionen und Variablen verstanden, die zusammen eın

Ergebnis liefern.

z.B. numerischer Ausdruck:

AR=B%+((234° 2/4.7)*12.95*C%)"2.1317+aFunc(Abc%)

z.B. alphanumerischer Ausdruck:

AS="Text"+STRS(A%*B%)+SPACES(10)+aFunc$(Abc$)+B$

In den Beschreibungen von Funktionen wird nicht explizit ange-

geben, daß die Ergebnisse aller (auch selbstdefinierter) Funktio-

nen auf verschiedene Weise ausgewertet werden können, z.B.

Zuweisung:

Var%=aF unc -> Selbstdefinierte Funktion

VarZ=FRE(O) -> BASIC-Funktion (z.B. FRE())

z.B. Ausgabe:

PRINT aFfunc -> Selbstdefinierte Funktion

PRINT FREC(O) -> BASIC-Funktion (z.B. FRE())

z.B. Abfrage:

IF adFunc=X -> Selbstdefinierte Funktion |

IF FRECO)=X -> BASIC-Funktion (z.B. FRE())

z.B. Dummy-Aufruf:

VOID @Func -> Selbstdefinierte Funktion

VOID FRE(Q) -> BASIC-Funktion (z.B. FRE())

In der Syntaxzeile von Funktionen wird in diesem Buch zur
Verdeutlichung die Zuweisungsvariante (Var=Funktion()) ver-
wendet. Funktionsaufrufe stehen immer stellvertretend für einen
Wert oder String, den diese Funktion liefert. Sie können deshalb

16 Das große GFA-BASIC-Buch ————

wie jeder beliebige Wert oder String verwendet und eingesetzt

werden. Alle Funktionen sind im Anhang unter "Alphabetische
Befehlsliste" mit einem vorangestellten (f) gekennzeichnet.

Bei allen Dateizugriffen (außer OUT und INP), die die Angabe
einer Kanal-Nummer erwarten, ist die Angabe des Nummern-
zeichens # optional. In der uns vorliegenden Version V3.0 kann
bei allen ON...GOSUB-Name-Befehlen der Teil GOSUB ver-
nachlässigt werden. Er wird vom Interpreter selbständig hin-
zugefügt (z.B. wird aus ON BREAK Name dann ON BREAK

GOSUB Name).

——— Der Amiga 17

2. Der Amiga

Der MC 68000 von Motorola, der Hauptprozessor der meisten

neuen "16-Bitter", wie z.B. Apple Mac, Atari ST, QL, aber eben

auch unseres Amiga, bietet im Vergleich zu den früheren 8-Bit-
Prozessoren, wie z.B. dem 6502 im C64, eine Vielzahl an Ma-
schinenbefehlen, die erst durch die 16-Bit-Datenbreite ver-

wirklicht werden konnten und gleichzeitig die Fähigkeiten und
Geschwindigkeit eines 8-Megahertz-Takters voll zur Geltung

brachten.

Was heißt 8 Megahertz? Hertz ist eine aus der Physik bekannte
Einheit für Schwingungen pro Sekunde. Fernseher z.B. arbeiten
mit einer Bildwiederholungsfrequenz von 50 Hertz. D.h. jede

Bildschirmzeile wird innerhalb einer Sekunde 50mal neu aufge-

baut. Für unseren Computer bedeutet das, daß ein spezieller

Schwing-Quarz mit einer Frequenz von acht Millionen Hertz
(achtmillionenmal in der Sekunde!) schwingt und bei jeder

Schwingung ein Schalter-Zustand bearbeitet werden kann. In

Kombination mit 16 Daten- und 24 Adreßleitungen ergibt sich
daraus eine kaum noch zu erfassende Variabilität.

Man stelle sich eine riesige Lagerhalle vor, in der Regale mit

insgesamt ca. 16 Millionen (!) Schubladen untergebracht sind. In
jeder dieser Schubladen läge eine Information, die bestimmte
Auskünfte über die Arbeitssituation im Betrieb gibt. Nun soll
jemand innerhalb kürzester Zeit erfassen, welche Information in
welcher Schublade liegt und welche Auswirkungen der Inhalt

dieser Schublade im Zusammenspiel mit vielen verschiedenen

anderen Schubladeninhalten auf die Organisation des Gesamtbe-

triebes hat.

Das ist, wenn man unser Gehirn als Vergleich nicht in Betracht
zieht, unzweifelhaft mit menschlicher Kraft nicht machbar - ein

Amiga, ob 2000er, 1000er oder 500er kann das. Da er jedoch
auch analysieren, rechnen und einordnen muß, würde dies

länger als eine Sekunde dauern. Trotzdem reicht seine
Geschwindigkeit aus, um z.B. mit dem GFA-Interpreter in

18 Das große GFA-BASIC-Buch ————

weniger als einer 20tel Sekunde eine FOR-NEXT-Schleife mit

1000 Schritten zu durchlaufen. Innerhalb eines Schrittes dieser
Schleife muß er intern hunderte von Einzelschritten abarbeiten,

die Richtigkeit des Programms in seiner Grammatik überprüfen
und die verwendeten Befehle analysieren und zuordnen
(interpretieren). Wahrhaft eine gewaltige Leistung. War ein 8-
Bitter in seinen Kombinationsmöglichkeiten noch einigermaßen
überschaubar, so ist ein 16-Bitter real kaum noch zu begreifen.

—— Das GFA-BASIC 19

3. Das GFA-BASIC

Zusammen mit dem Amiga wurde von Anfang an eine Pro-
grammiersprache ausgeliefert. Während wir diese bei anderen
Home-Computern fest integriert vorfanden, war dies beim
Amiga keine Selbstverständlichkeit mehr. Um so erfreuter zeig-
ten sich die Gesichter, als sie vom AmigaBASIC hörten.

Ein wesentlich größerer Befehlsschatz, strukturierte Program-
mierung und Ausnutzung der Libraries kündeten ein neues, be-
quemeres Zeitalter der Programmierung an. Jedoch ein Wer-
mutstropfen blieb bei alledem erhalten: die Geschwindigkeit. Das
AmigaBASIC vertuschte an keiner Stelle, daß es eine Interpre-

tersprache war, man glaubte teilweise sogar, daß es stolz darauf

war.

Sie als Amiga-Besitzer bekommen aber erst jetzt einen Begriff
von der Qualität Ihres Computers. Frank Ostrowski stellte vor
ca. zwei Jahren sein erstes GFA-BASIC vor. Es gibt wohl kaum
andere Programmiersprachen, mit denen auf so atemberaubend

einfache Weise selbst schwierige Probleme lösbar sind wie in
GFA-BASIC. Überzeugen Sie sich selbst, denn nun gibt es sie

auch für den Amiga!

Wir haben nun einen Interpreter, der das Angebot eines MC

68000 in einer für viele nutzbaren Sprache zur Verfügung stellt.

Er tritt damit in ernstzunehmende Konkurrenz mit der bis heute

favorisierten Compilersprache C. Zugegeben, in manchen Bezie-

hungen werden C- und Assemblerprogrammierung Vorrang be-

halten. Aber die Gruppe derer, die bereit sind, sich mit der

komplizierten Compiler- und Assemblertechnik auseinanderzu-
setzen, wird sich mehr und mehr in Grenzen halten, da dieses

BASIC höchsten Anforderungen mit Sicherheit Genüge tut.

Wie bei jeder Sprache muß man auch hier erst einmal das ABC

lernen, um fließend sprechen zu können. D.h., man muß die

Grundstrukturen, an denen sich die Sprache orientiert, be-

20 Das große GFA-BASIC-Buch ——

herrschen, um vom Empfänger (in diesem Fall dem Interpreter)

richtig verstanden zu werden. Glücklicherweise haben wir es
hier mit BASIC zu tun, dem ja der Ruf anhängt, ein Tausend-
sassa zu sein, was seine syntaktische Toleranz angeht.

Das GFA-BASIC zwingt - glücklicherweise - zu einer struktu-
rierten Programmierung. Wer sich z.B. mit den Sprachen C, Mo-

dula oder Pascal beschäftigt hat, dem werden die Eigenarten der
strukturierten Programmierung nichts Neues sein.

In GFA-BASIC wird in jeder Zeile jeweils nur ein Befehl ak-
zeptiert. Außerdem werden die Zeilen vom Interpreter selbsttätig
in die entsprechende optische Struktur eingeordnet. Es ist eine

wahre Freude zu sehen, wie sauber und ordentlich ein derart

durchstrukturiertes Programm hinterher aussieht. Ein weiterer

wichtiger Aspekt ist aber, daß dadurch bei der Fehlersuche eine

immens große Zeitersparnis eintritt. Befehlszeilen sind ohne
Zeichen-Scrolling auf einen Blick erfaßbar. Zusätzlich wird

durch das Einrücken der Zeilen sofort erkennbar, z.B. welches

ENDIF zu welchem IF oder welches NEXT zu welchem FOR

gehört. |

Der vielleicht wichtigste Vorteil der Struktur-Programmierung
ist aber der, daß beiläufig während der Programmerstellung im-
mer wieder kleine Unterroutinen abfallen, die in sich geschlos-

sen sind und dadurch die Möglichkeit bieten, nach und nach
eine umfangreiche Bibliothek an Hilfsprogrammen und allgemein

verwendbaren Prozeduren zusammenzustellen. Das wäre prinzi-

piell in anderen Programmierarten genauso möglich, nur ergibt

sich hier die Gelegenheit dazu erheblich seltener. Komfortabel

wird es dann noch, wenn man diesen Prozeduren (wie in GFA-

BASIC) eine fast beliebig lange Parameterliste übergeben kann.
Effektiver geht es fast nicht mehr.

Die V3.0-Version hat gegenüber den früheren Versionen auf an-
deren Computern erhebliche Veränderungen erfahren. Das be-

ginnt bei der Variablen-Organisation (Einführung von Byte- und
Word-Variablen), geht über einen phantastischen Programm-

—— Das GFA-BASIC 21

Editor und endet nach vielen weiteren Änderungen bei wesent-

lich strafferen Strukturierungsmöglichkeiten (SELECT-CASE,
ELSE IF, FUNCTION etc.).

Aus diesen neuen Möglichkeiten ergibt sich eine erhebliche
Einsparung an Programmtext und zudem eine ebenso erhebliche

Steigerung der Geschwindigkeit im Programmlauf sowie bei der

Programm-Entwicklung. Einige neue Befehle ermöglichen eine
derart einfache Programmierung auch komplizierter Vorgänge,

daß es fast zu einem Kinderspiel wird.

Wahrscheinlich das erste, was Ihnen am neuen GFA-BASIC
auffallen wird, ist die rasante Geschwindigkeit des Editors beim
Suchen, Ersetzen, Blättern und Scrollen. Diesen Super-Editor

kann man schon fast als komplette Textverarbeitung bezeichnen.

Ein Suchvorgang durch den gesamten Text dauerte im Durch-

schnitt nicht länger als ein bis zwei Sekunden(!).

Last but not least sollen hier noch die neuen Editor-Funktionen

genannt werden, von denen vor allem <Control><U> (die zuletzt
durch <Control><y> gelöschte Zeile restaurieren), die Funk-
tionstasten-Belegung, die interne Zeilennumerierung und der
History-Zeilenspeicher im Direktmodus hervorzuheben sind.

Man mag mir vorhalten, daß ich nichts anderes kenne als das

GFA-BASIC, was vielleicht zum Teil stimmt, aber nach allem,

was ich kenne, ist das. V3.0-GFA-BASIC mitsamt seinem Editor
die beste Programmiersprache, die es es für den Amiga zu kau-

fen gibt. Ich bin jedenfalls restlos begeistert und nehme an, daß
es den meisten von Ihnen ganz genauso gehen wird.

3.1 Noch einige Anmerkungen zum GFA-BASIC

Zur Erstellung dieses Buches lag uns zuerst eine Testversion vor.
Diese besaß schon die Versionsnummer 3.0, hatte aber wesent-
lich weniger Befehle als die Version 3.0 auf dem Atari ST.

22 | Das große GFA-BASIC-Buch ——

Auch bei weiteren Updates der Testversion wurden es nicht un-

bedingt so viele Befehle, wie auf dem Atari vorhanden sind.

Gleichermaßen traten Probleme bei der Funktion dieser Befehle

auf. So waren zwar viele Befehle vom Vorbild übernommen,

hatten aber trotz angegebener Dokumentation nicht den Funk-

tionsumfang, wie er beschrieben war.

Auf der anderen Seite gab es auch keine dokumentierten Be-
fehle, die trotzdem implementiert waren, oder vom Interpreter

akzeptierte Befehle, die aber nicht bearbeitet wurden.

Sie sehen schon, daß es nicht ganz einfach für uns war, das
GFA-BASIC auf dem Amiga zu dokumentieren. Wir haben
trotzdem versucht, mit vielen Tricks und Kniffen eine umfang-
reiche Beschreibung dieser Programmiersprache herauszugeben.
Wir hoffen weiterhin, daß bei Ihrer GFA-BASIC-Version die

von uns entdeckten Fehler nicht mehr vorhanden sind, so daß

Sie ohne solche Sorgen leben können.

Dies wurde bei der Überarbeitung der 1. Auflage bestätigt. Die

uns nun vorliegende Version 3.03 hat fast keine Fehler mehr

und sogar einige Befehle zusätzlich.

3.2 Zum GFA-Menü

In letzter Minute vor Erscheinen der endgültigen Version wurde

das erste Menü ins GFA-BASIC eingefügt. Der Editor kann jetzt
also mit einigen Kommandos auch über ein Intuition-Menü und.
den damit verbundenen Komfort bedient werden. Dieses Menü

erreichen Sie, wenn Sie die rechte Maustaste gedrückt halten

und mit dem Mauszeiger auf die Titelleiste des Editor-Screens
fahren. Es erscheinen 9 Punkte, die hier schnell erklärt werden

sollen:

LOAD

Lädt ein GFA-BASIC-Programm. Diese Funktion entspricht dem
Punkt LOAD der Leiste in der unteren Zeile und kann auch mit
Fl oder <Amiga>-L aufgerufen werden.

—— Das GFA-BASIC 23

SAVE

Speichert ein BASIC-Programm im GFA-Format. Die Funktion

gleicht der aus der oberen Zeile der Leiste und kann auch mit

<Shift>-Fl oder <Amiga>-S aufgerufen werden.

NEUE NAMEN / New Names

Diese Funktion schaltet die Abfrage nach neuen Variablen- Na-

men ein oder aus. Sie erhalten sonst bei Verwendung eines

neuen Variablen-Namens eine Request-Box, in der nach der

Richtigkeit gefragt wird. Dies ist nun unterbunden. Allerdings
gilt diese Einstellung nicht für den Direktmodus, da sonst alle
alten Variablen-Werte gelöscht würden.

Diese Funktion können Sie über die Tastatur mit <Amiga>-N
aufrufen.

RUN

Startet ein Programm. Auch aufzurufen mit <Amiga-R> oder
<Shift>-F10.

TASKPRI 0

Setzt die Priorität des GFA-BASIC-Tasks auf 0. Damit wird an-
deren gleichzeitig laufenden Programmen mehr Zeit des Pro-
zessors zugeteilt. GFA-BASIC wird dadurch langsamer! Diese
Funktion kann auch mit <Amiga>-0 aufgerufen werden.

TASKPRI 1

Setzt die Priorität des GFA-BASIC-Tasks auf 1, womit der In-

terpreter mehr Rechenzeit als andere Programme vom 68000er

erhält. So werden die gesamte Programm-Bedienung, der Editor

und die Berechnungen beschleunigt. Allerdings werden andere

Programme dadurch wesentlich langsamer! Diese Funktion kann

auch mit <Amiga>-1 aufgerufen werden.

CLEANUP
Hiermit kann man ohne große Mühe die Sound-Ausgabe, die
BOB-Verwaltung und -Bewegung und das Sprite-Handling stop-

24 Das große GFA-BASIC-Buch ————

pen. Man erspart sich dadurch das Eingeben vieler unterschied-
licher Befehle. Dieser Menüpunkt kann auch mit <Amiga>-C
aufgerufen werden.

SAVE ICON

Mit dieser Einstellung können Sie bestimmen, ob das GFA-BA-
SIC zu Ihrem Programm ein Icon auf der Diskette anlegt.

NEWCLI

Startet ein neues CLI auf dem Workbench-Screen. Sie müssen so
nicht erst das CLI-Icon auf den Bildschirm holen. Allerdings
muß die Shell dann noch von Hand gestartet werden (Version
1.3 der Workbench).

3.3 Der RUN-Only-Interpreter

Zum GFA-BASIC-Paket gibt es einen RUN-Only-Interpreter,
der es ermöglicht, Ihr GFA-BASIC-Programm ohne den eigent-

lichen Interpreter mit Editor laufen zu lassen.

Dies macht es möglich, ein Programm an Freunde oder Bekannte
weiterzugeben, die nicht im Besitz des Interpreters sind. Es wird

Ihnen von GFA gestattet, diesen RUN-Only-Interpreter beliebig
weiterzugeben. So ist es sogar möglich, kommerzielle Programme

im GFA-BASIC zu schreiben und diese zu verkaufen, wenn Sie

den RUN-Only-Interpreter kostenlos dazu weitergeben.

Nach dem Starten von der Workbench aus erscheint die Aus-
wahl-Box, von der aus Sie den File-Namen des Programms be-

stimmen können, das gestartet werden soll. Oder aber Sie geben

im CLI den File-Namen hinter dem Programm-Aufruf an.

3.4 Der GFA-Editor

Innerhalb des in die Programmiersprache integrierten Editors

stehen dem Anwender hilfreiche Funktionen zur Hand, mit

—— Das GFA-BASIC 25

denen die täglichen Korrekturen im Programmtext leichter
durchgeführt werden können. So gibt es zum einen das oben

schon besprochene Menü, in dem die wichtigsten Befehle leicht
erreichbar untergebracht sınd. Außerdem kommen noch die
Funktionstasten hinzu, die mit den Befehlen belegt sind, die
man in der oberen zweizeiligen Leiste wiederfindet.

Wir wollen Ihnen an dieser Stelle einen kurzen Überblick da-
rüber geben, welche Befehle wo zu finden sind.

Die Control-Sequenzen (in alphabetischer Reihenfolge)

ctri-b markiert den Blockanfang

ctri-c eine Seite weiter

ctrl-cursor-hoch eine Seite zurück

ctrl-cursor-links Anfang der Zeile

ctrl-cursor-rechts Ende der Zeile

ctrl-cursor-runter eine Seite weiter

ctrl-e sucht und ersetzt Text

ctrl-shift-e sucht und ersetzt Text mit vorhergehender

Eingabe |

ctrl-f sucht Text

ctri-shift-f sucht Text mit vorhergehender Eingabe

ctrl-g | Zeile anspringen

ctrl-home Programmanfang anspringen

ctri-k Blockende markieren

ctri-n Leerzeile einfügen

ctri-q Blockmenu aufrufen
ctri-r eine Seite zurück

ctri-tab Tabulator rückwärts

ctri-u fügt die gelöschte Zeile (ctrl-y) wieder ein

ctri-y löscht eine Zeile

ctri-z Programmende anspringen

Funktionstasten

Die beiden Befehlszeilen im oberen Teil des Editor-Screens sind

auch über die Funktionstasten zu erreichen. Dabei wird ein Be- |
fehl in der unteren Zeile durch einfachen Druck auf eine Funk-
tionstaste und die Befehle in der darüberliegenden Zeile durch
die gleichen Tasten in der Kombination mit Shift aufgerufen.

26

Das Blockmenü

Das große GFA-BASIC-Buch

Fi

Shift-F1

F2

Shift-F2

F3
Shift-F3

F4

Shift-F4

F5

Shift-F5

F6

Shift-F6

F7

Shift-F7

F8

Shift-F8

F9

Shift-F9

F10

Shift-F10

Load (Programm laden)

Save (Programm speichern) |

Merge (ASCIl-Programm einbinden)

Save,A (Programm in ASCII speichern)

Llist (Programm auf dem Drucker ausgeben PTR:)

Quit (GFA-BASIC beenden)

Block (ruft das Untermenü Block auf)

New (löscht den Programmtext)

BikEnd (setzt das Ende der Blockmarkierung)

BlkSta (setzt den Anfang der Blockmarkierung)

Find (sucht einen Text)

Replace (sucht und ersetzt einen Text)

Page down (blättert eine Seite tiefer)

Page up (blättert eine Seite höher)

Insert/Overwr (wechsel zwischen Überschreibe- und

Einfügemodus)

Normal/Interlace (wechsel in der Editor-Screen

zwischen 256 und 512 Zeilen)

CIkOn/CIkOff (schaltet die Uhr aus bzw. ein)
Direct (ruft die direkte Kommandozeile auf)

Test (testet die Programmstruktur)

Run (startet ein Programm)

Innerhalb des Block-Menüs können alle Befehle auch über ihren

Anfangsbuchstaben angesprochen werden.

Copy

Move

Write

Llist

Start

End

“Del

Hide

Kopiert den Bereich an die Kursor-Position

Verschiebt den Bereich an die Kursor-Position

Schreibt den Bereich im ASCII-Format auf Diskette

Druck den Bereich (auf PTR:)

Bewegt den Kursor an den Bereichsanfang

Bewegt den Kursor an das Bereichsende

Löscht den Bereich

Hebt die bestehende Markierung wieder auf.

—— Das GFA-BASIC 27

Sondertasten

ESC ruft die direkte Kommandozeile auf

HELP versetzt die Editor-Zeile in den alten Zustand

- Control-Shift-Alternate

L | Faltet PROCEDUREn/FUNCTIONen auf oder zu
Unterbricht ein laufendes Programm

28 Das große GFA-BASIC-Buch

—— Basis-BASIC 29

4. Basis-BASIC

Es ist unmöglich, in einem einzelnen Buch, das die Program-

mierung in einer bestimmten Programmiersprache erläutern soll,

allen Ansprüchen gerecht zu, werden. Richtet es sich nach den

Interessen der Anfänger, wird es für den Fortgeschrittenen und
Profi langweilig. Richtet es sich dagegen nach den Bedürfnissen
der Könner, versteht der Anfänger nur noch wenig. Also muß
versucht werden, einen Kompromiß zu finden. Dieser besteht
darin, dem Anfänger die Grundlagen der Programmierung na-
hezubringen, ohne in Banalität zu versinken, und komplexe
Sachinhalte für Fortgeschrittene darzustellen, ohne in Fachchi-

nesisch abzudriften. |

Um nun Anfängern die Möglichkeit zu eröffnen, mit GFA-BA-
SIC den Grundstein zu ihrer Programmierer-Karriere zu legen,

will ich hier die wesentlichen Grundlagen dieser Programmier-
sprache erläutern und zusätzlich eine Einführung in die Compu-
ter-Linguistik anbieten. Wer also der Meinung ist, er sei über

den Aufbau eines Computers, über Boolesche Logik, Zahlensy-

steme etc. bereits ausreichend informiert, kann dieses Kapitel

vernachlässigen.

Den Einsteigern möchte ich allerdings empfehlen, sich hier mit
dem nötigsten Rüstzeug auszustatten, denn ohne gewisse Grund-

kenntnisse kann man auch den bedienungsfreundlichsten Com-
puter nicht zu sinnvollen Betätigungen bewegen.

Dann wollen wir jetzt einsteigen: Ein Computer ist in erster Li-
nie ein äußerst dummer Zeitgenosse. Ob sich das in Zukunft mit
Bio- und Megachips, Transputern, Supraleitern u.ä. wesentlich

ändern wird, bleibt abzuwarten. Da Computer der gegenwärtigen
Generation nur die beiden Zahlen 0 und | unterscheiden kön-
nen, muß man manchmal gewaltige Anstrengungen unterneh-

men, um ihre Aufmerksamkeit zu erregen.

30 Das große GFA-BASIC-Buch ———

Unter normalen Umständen begegnet ein Laie einem Computer

mit Skepsis, aber auch mit einer unleugbaren Faszination. Diese

Faszination ist der Grund dafür, daß man manchmal vor lauter

Ehrfurcht den eigentlich simplen Charakter eines solchen Geräts
nicht erkennt. Das einzig Bewundernswerte daran sind die
mikroskopische Größe der Schaltungen, die fast unfaßbare

Geschwindigkeit, mit der die verschiedenen Operationen durch-
geführt werden, und die genial geflochtenen Leiterbahnen auf
einem fingernagelgroßen Mikrochip.

In jedem Fall sind es kreative und mit einer äußerst hohen ana-
lytischen Intelligenz begabte Menschen, die so ein Ding gebaut

haben. Wenn also Ehrfurcht, dann vor den Informatikern, Tech-

nikern und Physikern, nicht vor dem Gerät. Wenn Sie nämlich
die Stromzufuhr zu den Computer-Prozessoren unterbrechen, ist

Ihnen das Gerät hilflos ausgeliefert. Es ist in gewisser Weise so-
gar sehr wichtig, sich dieses zu vergegenwärtigen, da die
Chance, kreativ und produktiv mit einem Computer zu arbeiten,
steigt, je mehr man seine Ehrfurcht ihm gegenüber abbaut.

Nach dieser Einleitung nun zur Technik. Es ist hier nicht mög-
lich, in die tieferen Sphären der Computertechnik einzusteigen.

Deshalb will ich mich damit begnügen, Ihnen einige Begriffe zu
erläutern. Dabei werde ich mich auf solche Begriffe beschrän-

ken, die Ihnen in Ihrer Programmierer-Karriere oft begegnen
werden und deren Kenntnis zum Verständnis des Computer-Jar-

gons hilfreich ist.

4.1 Computer-ABC

Jeder Computer verfügt über eine zentrale Arbeitseinheit (CPU
= Central Processing Unit). Diese ist das eigentliche Herz des
Computers. Es handelt sich dabei um einen Prozessor (Arbeits-
Chip), der von den o.g. Informatikern so programmiert wurde,

daß er selbständig in der Lage ist, eingehende Befehle zu erken-
nen und auf diese entsprechend zu reagieren. Befehle werden im
allgemeinen über die Tastatur eingegeben oder als Programm
eingelesen. Im Amiga sind dazu die verschiedenen Schnittstellen

——— Basis-BASIC. | 31

durch ein Bündel von Leitungen mit der CPU verbunden. Dieses
Leitungsbündel nennt man Bus. Es gibt Daten- ‚Adreß- und

Steuerbusse. Während uns der Steuerbus hier nicht näher in-

teressieren soll, sind die Daten- und Adreßbusse doch von er-

heblicher Bedeutung.

Der Datenbus wird dazu verwendet, Daten (Integer-Binär-Werte)
zwischen den Einheiten auszutauschen. So ist es möglich, z.B.

einen Wert über die Tastatur an die CPU zu senden, die diesen
dann entsprechend der gewünschten Operation verarbeitet und

ggf. im Speicher ablegt oder (was eigentlich dasselbe ist) auf
dem Monitor ausgibt. Unter dem Speicher versteht man eine
Ansammlung von Speicherchips, die ebenfalls durch Busse mit
der CPU in Verbindung stehen. Hier kommt der Adreßbus ins
Spiel. Um den gesamten Speicher organisieren zu können, wird
jedem einzelnen Speicher-Byte (8-Bit-Speicherplatz) eine eigene
Adresse zugewiesen. Durch Angabe dieser Adresse ist es also
möglich, auf jedes einzelne Byte des Speichers zuzugreifen. Zu
den Bits und Bytes kommen wir später. Zunächst sehen wir uns
noch einmal die Übertragungsmöglichkeiten per Bus an.

Wie gesagt, der Bus ist ein Bündel von Leitungen. Die CPU ver-
fügt über eine Vielzahl von Pins (Steckfüße des Chips), von
denen beim Amiga genau 16 für Daten-Codes und 23 für
Adreß-Codes verwendet werden. Diese Pins sind direkt mit den
Bussen verbunden. Da in der Digital-Technik eine Stromleitung
nur zwei Zustände annehmen kann (an und aus), ist es nicht

möglich, über eine einzelne Busleitung andere Werte als O (für
aus) und | (für an) zu senden.

Wenn man sich nun eine Stromleitung vorstellt, in die über ei-
nen Schalter Strom eingeleitet wird, und man faßt das freie En-
de dieser Leitung an, dann bekommt man einen Schlag. Genauso

geht es den Chips, die die jeweilige Information aufzunehmen
haben. Aufgrund dieses elektrischen Impulses "weiß" nun der
Empfänger, daß ihm etwas Bestimmtes übermittelt werden soll.
Er ist darauf programmiert, entsprechend der eintreffenden In-
formationen einen bestimmten Prozeß auszulösen, auszuführen
oder die Information einfach nur zu behalten (speichern). Aber

32 Das große GFA-BASIC-Buch ————

was kann man schon mit einer einzigen Leitung anfangen, die
entweder die Information "Ja" (l=an) oder "Nein" (O=aus) über-
mitteln kann. Ein Gesprächspartner, der auf die Dauer nur Ja

oder Nein sagt, wird schnell langweilig. Man möchte konkretere
Auskünfte.

4.2 Bits und Bytes

Dazu benötigen wir mehrere Informationseinheiten (Bit = engl.

Abk. für Binary Digit), durch deren Kombination eine Vielfalt
an unterschiedlichsten Zuständen ausgedrückt werden kann.

Nimmt man nun zwei Stromleitungen, die unabhängig von-
einander an- oder ausgeschaltet werden, sind schon vier ver-
schiedene Kombinationen denkbar. Stellen wir jede stromfüh-
rende Leitung als I und jede "leere" Leitung als 0 dar, dann
sieht das so aus:

00 Beide Leitungen führen keinen Strom

10 Leitung 1 = An/Leitung 2 = Aus

01 Leitung 1 = Aus/Leitung 2 = An

11 Beide Leitungen an

Dies ist also schon ein kleiner Schritt mehr in Richtung Kom-
munikation. Um es noch deutlicher zu machen, wird das Spiel

mit vier Stromleitungen wiederholt:

0000 Alle Leitungen aus

1000 Leitung 1 an/2, 3 und 4 aus

0100 Leitung 2 an/1, 3 und 4 aus

0010 Leitung 3an/1, 2 und 4 aus

0001 Leitung 4 an/1, 2 und 3 aus

1100 Leitung 1 und 2 an /3 und 4 aus

0110 Leitung 2und 3 an /1 und 4 aus

0011 Leitung 3 und 4 an /1 und 2 aus

1001 Leitung 1 und 4 an /2 und 3 aus
1010 Leitung 1 und 3 an /2 und 4 aus

0101 Leitung 2 und 4 an /1 und 3 aus

——— Basis-BASIC 33

1110 Leitung 1, 2 und 3 an/4 aus

0111 Leitung 2,3 und 4 an/1 aus

1011 Leitung 1,3 und 4 an/2 aus

1101 Leitung 1, 2und 4 an/3 aus

1111 Alle Leitungen an

Mit jeder weiteren Leitung verdoppelt sich die Anzahl der Dar-

stellungsmöglichkeiten: |

Alle Leitungen aus = 0

1. Leitung an = 2°0 = 1

2. " an = 2*1 = 2

3. " - an = 2°2 = 4

4. " an = 2°3 = 8

5. " an = 2°4 = 16

6. " an = 2°5 = 32

7. " an = 2°6 = 64

8. " an = 2°7 = 128

Summe aller Möglichkeiten,

die mit einem BYTE (= 8 BIT)

: dargestellt werden können = 256 (inkl. Null)

Ich habe diese Liste bewußt mit der Potenz 7 enden lassen, da
diese 8 Leitungen mit ihren 256 verschiedenen Aussagemöglich-

keiten eine Grundeinheit in der Computerlogik darstellen. Diese

Einheit wird Byte genannt. Ein Computer mit einem Arbeits-
speicher von | Million Byte kann also einmillionenmal unab-
hängig voneinander einen solchen Informationsblock (Byte) von
je 8 Bit aufnehmen.

Wie Ihnen vielleicht schon bekannt ist, verfügt der Amiga über
256 verschiedene Schriftzeichen. Nach den letzten Ausführungen
wissen Sie, daß diese Zahl kein Zufall ist. Warum nun als erste

Potenz eine Null gewählt wird, das ist eine mathematische Fest-

legung. Jeder Wert, der mit dem Wert Null potenziert wird, er-

gibt den Wert Eins. Diese Eins ist in jedem Zahlensystem die
kleinste Einheit.

34 Das große GFA-BASIC-Buch ———

4.3 Binär-Arithmetik

Der Trick an der Sache ist der, daß jeder Zustand, der sich mit

diesen 8 Leitungen darstellen läßt, auch mit einem Wert belegt

werden kann. Es wurde nun ein Zahlensystem entwickelt, das
ausschließlich die Zustände "An" und "Aus" zur Zahlendarstel-

lung verwendet.

Dabei geht man mathematisch genauso vor, wie wir es von un-
serem Dezimalsystem her kennen. Der einzige Unterschied ist
der, daß als Basis zur Potenz nicht der Wert 10, sondern der |
Wert 2 genommen wird. Die niedrigste Stelle einer Binärzahl (Bi
= griech: zwei) steht ebenso wie in einer Dezimalzahl rechts und
die höchste Stelle links.

Als Beispiel nehmen wir ein beliebiges Byte:

01011101 = 93

Dezimal: (10 hoch 0) * 3 = 3

+ (10 hoch 1) * 9 = 90

Ergebnis = 93

Binar : (2 hoch 0) * 1 = 1

+ (2 hoch 1) * 0 = 0

+ (2 hoch 2) * 14 = 4

+ (2 hoch 3) * 1 = 8

+ (2 hoch 4) * 1 = 16
+ (2 hoch 5) * 0 = 0
+ (2 hoch 6) * 1 = 64
+ (2 hoch 7) * 0 = 0°

Ergebnis = 93

4.4 Das Hexadezimalsystem

Wozu braucht man nun noch das Hexadezimalsystem? Wollte

man diese Bytes als Binärzahl darstellen, müßte man dazu je-

———- Basis-BASIC 35

desmal eine Zeichenkette von 8 Einsen und Nullen schreiben.

Um diese Zahlendarstellung zu vereinfachen, hat man sich die

Hexadezimalzahlen ausgedacht.

Dieses Zahlensystem hat alle Eigenschaften der anderen Systeme.

Der einzige Unterschied ist, daß als Basis zu den Potenzen weder

die 2 noch die 10 genommen wird, sondern der Wert 16. Das hat
den Vorteil, daß sich die Hälfte eines Bytes (auch Tetrade oder

Nibble genannt), also 4 Bit (maximal darstellbarer Wert = 15),
mit einer einzigen Hexadezimalziffer darstellen läßt. Da sich je-
doch mit den uns üblicherweise bekannten Zahlen keine größere
Zahl als 9 einstellig schreiben läßt, mußten für die Zahlen 10 bis
15 Buchstaben gewählt werden. Der Zahl 10 wird der Buchstabe
"A" zugeordnet, der Zahl 11 das "B", 12 = "C", 13 = "D", 14 =

"E", und die 15 erhält den Buchstaben "F".

{BAS -# mit nur 8 Ziffern

darstellen (7FFFFFFF). Im allgemeinen werden Hexadezimal-

zahlen gekennzeichnet, indem ihnen ein "$" (Dollar, z.B. $1AF7)

vorangestellt wird. Das GFA-BASIC:- handhabt dieses jedoch an-
ders. Hier erhalten Zahlen im Hexa-Format das Kürzel "&H"
(z.B. &HIAFT). Hexzahlen haben in erster Linie den Vorteil der

Zeit- und Platzersparnis. Weil unser GFA-BASIC aber "inter-

national" ist, versteht es auch die "$"-Schreibweise und formt

diese in seine richtige Syntax um. |

Siehe hierzu auch unter "BIN$, HEX$, OCT$".

4.5 Codes und Opcodes

Ein Wert kann bei entsprechender Vorgabe stellvertretend als

numerisches Symbol für ein bestimmtes Wort, Zeichen oder
einen Befehl interpretiert werden.

Bei den Schriftzeichen (ASCII-Zeichen = American Standard
Code for Information Interchange; amerikanischer Standard-
Code für Informationsaustausch) steht z.B..der Wert 65 für den

36 Das große GFA-BASIC-Buch ————

Buchstaben "A", der Wert 66 für "B", der Wert 67 für "C" usw.

(ASCIH-Tabelle siehe Anhang). Angenommen, der Wert 192
stünde für "Gebe den im folgenden Byte enthaltenen ASCII-Wert
als Schriftzeichen an Cursor-Position auf dem Bildschirm aus".
Die Arbeitsweise sieht dann vereinfacht so aus, daß der Amiga
weiß, wenn er den Wert 192 empfängt, soll er das ASCII-Zei-

chen auf dem Bildschirm ausgeben, das dem auf den Befehl fol-
genden Byte-Wert entspricht.

Der Befehl würde dann so aussehen:

Dezimal >: 192 66

Binar : 11000000 10000010

Hexadezimal: CO 42

Es würde also das Zeichen "B" auf dem Bildschirm ausgegeben

werden. Immer dann, wenn wir auf Werte stoßen, die eine Ini-

tialisierungsfunktion haben, also als Auslöser für bestimmte
Prozesse dienen, haben wir es mit Opcodes, een Codes) 2 zu

ch eine ind. Alles, “was den Pro-

zessor interessiert, sind Zahlen, die ihm in verschiedenen For-

maten als ’Bit-Häppchen’ serviert werden.

Bei der Betriebssystem-Programmierung wurden also ver-
schiedene Funktionsabläufe vordefiniert, die nun z.B. von einem

Interpreter anhand solcher Opcodes aufgerufen werden können.
Wenn Sie also in BASIC die Zeile

PRINT "B"

eingeben, wird Ihre Eingabe vom Interpreter auf die oben be-

schriebene Weise in das Binärformat gewandelt und dem Be-
triebssystem zur Weiterverarbeitung übergeben. Genausogut

könnte man |

PRINT CHR$(66) 1 (66 = ASCII-Wert für "B")

schreiben, nur daß das etwas umständlicher wäre.

——— Basis-BASIC 37

4.6 Words und Longwords

Um einen Sprung von den Bytes zu den Words zu machen,

braucht man keinen großen Anlauf. Als Word wird eine Infor-
mationseinheit bezeichnet, die sich statt aus 8 Bit (1 Byte) aus 16

Bit zusammensetzt. Es können nicht nur 256 verschiedene, son-
dern 65536 (0+2*0+2*1+2*2+2*3+2*4+2*5+2*6+277+278+2*9+2N
10+2*11+2*12+2* 13+2*14+2°15) verschiedene Zustände darge-
stellt werden.

Wie erwähnt, arbeitet der.:6800084
Datenbreite von : tj Es können also problemlos Werte im
Bereich von 0- 65535 (0 bis 2*16-1) von ihm gelesen, verarbeitet
und zurückgegeben werden. Doch es gibt noch eine Steigerung.

Wenn man nur Werte bis 65535 ausdrücken könnte, könnten

manche Leute nicht einmal ihre Steuererklärung damit bearbei-
ten. Deshalb ist der 68000er so programmiert, daß er (wenn es

ihm gesagt wird) zwei 16-Bit-Words direkt nacheinander ver-
arbeitet und dann so vorgeht, als ob es ein 32-Bit-Wert gewesen

wäre. Von diesen 32 Bits werden in GFA-BASIC allerdings nur
31 Bits zur Wertedarstellung verwendet. Das letzte (höchste) Bit

wird zur Kennzeichnung negativer Zahlen verwendet.

st - die Amiga-CPU - mit einer

Die Zahlen, die sich damit ausdrücken lassen, dürften für fast
jede erdenkliche Steuererklärung ausreichen:

2 hoch 31 - 1 = 2147483647

Diese ‚32 te wird als Longword bezeichnet. Die CPU ist
so programmiert, daß sie zwischen .diesen drei verschiedenen

Datenbreiten unterscheiden kann. Ihr ist es also egal, in welchem
Format Daten übergeben werden, solange man sagt, welches

Format gemeint ist. Bei den BASIC-Befehlen finden Sie deshalb
auch POKE/PEEK (Byte- Werte schreiben een DPOKE/

words schreiben / lesen).

38 Das große GFA-BASIC-Buch ———

4.7 Die Speicherorganisation

RAM

"Random Access Memory" - Freier Zugriffs-Speicher (der
Speicherbereich, in den Daten geschrieben und aus dem Daten

gelesen werden können).

Das RAM wird noch einmal in Ct ip-RAM und Fast-RAM un-
terteilt. Dabei ist das Chip-RAM der Bereich, der von allen Cu-

stom-Chips angesprochen werden kann. Diese Chips unterstützen

den 68000er bei seiner Arbeit und sind z.B. für Grafik oder
Sound-Ausgabe zuständig. Es ist also wichtig, diesen Speicher
für solche Daten freizuhalten.

Das Fast-RAM kann nur vom MC 68000 angesprochen werden
und ist deshalb schneller, weil keine Taktzyklen für andere

Chips vergeben werden müssen. Hier sollten aber nur Pro-
gramme oder interne Daten stehen, die nicht für Grafik oder
I/O benötigt werden.

ROM

"Read Only Memory" - Nur-Lese-Speicher (Speicherchips, in die

Daten unveränderbar eingebrannt wurden. z.B.: das Kickstart =
im Amiga (500/2000) integriertes Betriebssystem).

Kickstart, das Amiga-Betriebssystem

Der Amiga verwaltet als Multi-Tasking-System seinen Speicher
für jedes Programm einzeln. Da dies in zufälliger Reihenfolge
geschieht und zusätzlich die Menge des vorhandenen Speichers
zwischen 256 und 9728 KByte variieren kann (256 KByte beim
Amiga 1000 ohne Speichererweiterung und 9.5 MByte beim
Amiga 2000 mit 8-MByte-Karte), läßt sich niemals mit

Bestimmtheit sagen, wo welche Speicherbereiche untergebracht

sind.

Trotzdem können wir über einige Tatsachen etwas aussagen. So
ist der Speicherverbrauch besonders wichtig. Schließlich wollen

——— Basis-BASIC Ä 39

Sie ja wissen, wieviel Speicher z.B. übrigbleibt, wenn Sie GFA-
BASIC starten. Wir können folgendes festhalten:

Der Workbench-Screen verbraucht mit 2 BitPlanes und einer
Auflösung von 640 x 256 Bildpunkten 40 KByte alleine für den
Grafik-Speicher. Dazu kommt für jedes geöffnete Window und
die darin enthaltenen Icons weitere KBytes, die ausschließlich
vom Chip-RAM verbraucht werden, weil nur dort Grafik vom
Blitter angesprochen werden kann. Zusätzlich öffnet GFA-BA-
SIC einen Screen, auf dem der Editor sich befindet. Um hier

aber nicht noch einmal so viel Speicher zu verbrauchen, wurden

nur 2 Farben erlaubt, wodurch sich der Verbrauch auf die

Hälfte reduziert. |

Und zum Schluß ist GFA-BASIC ein weiterer großer Speicher-

verbraucher. Allerdings reicht der verbleibende Speicher für alle
unsere Demonstrationen aus, denn wir haben darauf geachtet,

daß auch 500er-Besitzer in den Genuß unserer Programme

kommen.

4.8 Boolesche Logik

Um nun den Computer zu einer Arbeit zu bewegen, die Ergeb-
nisse liefert, mit denen wir etwas anfangen können, mußte ein
Verfahren entwickelt werden, das die Arbeitsweise des Com-

puters unserer eigenen angleicht. Es nützt wenig, ıhn stur ma-
thematische Aufgaben lösen zu lassen, was ja seine Lieblings-
beschäftigung ist. Man will auch, daß unter bestimmten Bedin-
gungen Entscheidungen von ihm selbständig getroffen werden.
Sonst wäre er nichts weiter als ein besserer Taschenrechner.

Ein englischer Mathematiker namens G hat sich dazu

eine Form der Arithmetik ausgedacht, die daher auch Boolesche
Arithmetik oder Boolesche Algebra genannt wird. Seine Idee war
es, für das Grundprinzip menschlicher Entscheidungen allge-
meine Regeln zu bestimmen und diese auf den Computer zu
übertragen. |

40 Das große GFA-BASIC-Buch

Wie entscheidet sich ein Mensch? Entscheidungen sind die Re-
aktion auf einzelne oder auch auf eine Folge von Bedingungen.
Man nimmt eine Situation wahr, ordnet ihre Anforderungen in
ein vorhandenes Handlungsschema ein und trifft aufgrund von
Übereinstimmungen oder auch Nichtübereinstimmungen mit dem
vorhandenen Wertesystem die Entscheidung darüber, was nun zu
tun ist. Wir wissen alle, was die Worte "und" und "oder" bedeu-

ten. Beispielsweise könnten Sie folgende Aussagen machen:

l. Wenn es warm ist und ich Zeit habe, werde ıch baden

gehen.

2. Wenn es kalt ist oder ich keine Zeit habe, werde ich nicht

baden gehen.

Wir verknüpfen mehrere Bedingungen miteinander, um danach
zu entscheiden, was zu tun oder zu lassen ist. Nichts anderes

bewirkt die Boolesche Logik. Dazu hat sich Boole mehrere sol-

cher Verknüpfungsmodi einfallen lassen.

Diese sind:

Wobei NOT eine Ausnahme darstellt. Hier handelt es sich nicht
um eine Verknüpfung, sondern um die Umkehrung der ein-
gehenden Information. Schauen wir uns an, wie sich diese Ver-
knüpfungen auf die Behandlung der eingehenden Informationen
auswirken. Dabei werden nacheinander von rechts ausgehend die

Bits des ersten Operanden mit den jeweils gleichrangigen Bits
des zweiten Operanden verknüpft.

AND: |
11011001 (Byte 1)

AND 01101101 (Byte 2)

01001001 Ergebnis

PRINT BIN$C&X11011001 AND &X01101101)
PRINT &X11011001 AND &X01101101

—— Basis-BASIC 41

Im Ergebnis-Byte wird nur dann ein Bit gesetzt, wenn an der
gleichen Stelle im ersten UND im zweiten Ursprungs-Byte ein

Bit gesetzt ist.

OR:

11011001 (Byte 1)

OR 01101101 (Byte 2)

11111101 Ergebnis

PRINT BINS(&X11011001 OR &X01101101)
PRINT &X11011001 OR &X01101101

Im Ergebnis-Byte wird immer dann ein Bit gesetzt, wenn ent-
weder im ersten ODER im zweiten ODER in beiden Ursprungs-

Bytes ein Bit gesetzt ist.

XOR:

11011001 (Byte 1)
XOR 01101101 (Byte 2)

10110100 Ergebnis

PRINT BINS(&X11011001 XOR &X01101101)
PRINT &X11011001 XOR &X01101101

Im Ergebnis-Byte wird dann ein Bit gesetzt, wenn entweder im
ersten ODER im zweiten, ABER NICHT in beiden Ursprungs-

Bytes ein Bit gesetzt ist. XOR = exklusiv OR = exklusives (aus-
schließendes) Oder. Bei den folgenden drei Operationen ist zu

beachten, daß Vergleiche jeweils im LONG-Format (32 Bit)
durchgeführt werden. Da das gesamte Langwort verknüpft wird,
ergeben sich bei diesen Beispielen aufgrund der Zweierkomple-

mentierung Minuswerte (siehe unter Variablen/Boole-Variable).

IMP:
11011001 (Byte 1)

IMP 01101101 (Byte 2)

VII13111111119119191111101107191 Ergebnis

PRINT BINS(&X11011001 IMP &X01101101)
PRINT &X11011001 IMP &X01101101

42 Das große GFA-BASIC-Buch ————_

Im Ergebnis wird immer dann ein Bit gesetzt, wenn in beiden
Ursprungs-Bytes ein Bit gesetzt ist oder in beiden Ursprungs-
Bytes kein Bit gesetzt ist oder im ersten Byte kein Bit, aber im
zweiten Byte ein Bit gesetzt wird. Dies nennt man Implikation.
Das Ergebnis ist immer "unwahr" (also 0), wenn im ersten Byte.
ein Bit gesetzt ist, aber im zweiten keins. In allen anderen Fällen
ist das Ergebnis "wahr" (also 1).

EQV: |

11011001 (Byte 1)
EQV 01101101 (Byte 2)

19111111111111111111111101001011 Ergebnis

PRINT BIN$C&X11011001 EQV &X01101101)
PRINT &X11011001 EQV &X01101101

Dies ist das Gegenteil zu XOR. Im Ergebnis-Byte wird dann ein
Bit gesetzt, wenn in beiden Ursprungs-Bytes entweder ein Bit
gesetzt ist oder in beiden Ursprungs-Bytes kein Bit gesetzt ist.
Ist in einem der beiden Bytes ein Bit gesetzt, aber im anderen

nicht, ist das Ergebnis "unwahr" (also 0). |

NOT:

NOT 11011001

11111131 111199111111111100100110 Ergebnis

PRINT BIN$CNOT &X11011001)
PRINT NOT &X11011001

Im Ergebnis-Byte wird dann ein Bit gesetzt, wenn im Ur-

sprungs-Byte kein Bit gesetzt ist. Das Ergebnis ist also immer
das Negativ des Ursprungs-Bytes.

Mit Binärmustern lassen sich auch - wie mit Normalzahlen -

Additionen, Subtraktionen, Multiplikationen und Divisionen
durchführen.

Addition: 11011001 (dez.=217)
+ 01101101 (dez.=109)

1.Bit 1+1 = 0 (Übertrag=1)
2.Bit 0+0+Ubertrag= 1 (Übertrag=0)

—— 2 Basis-BASIC

3.Bit
4.Bit
5.Bit
6.Bit
7.Bit
8.Bit
9.Bit

0+1

1+1
1+0+Ubertrag=
0+1+Ubertrag=
1+1+Ubertrag=
1+0+Ubertrag=
= Ubertrag = 1

101000110

PRINT BINS(&X11011001+&X01101101)
PRINT &X11011001+8&X01101101

Subtraktion:

‚Bit 1
‚Bit 0

.Bit 0

„Bit 1-

‚Bit 1

-Bit 0

„Bit 1

„Bit 1 O
n

oO

U
R

W
P

-

11011001
- 01101101

-Ubertrag=

-Ubertrag=

1101100

PRINT BIN$C&X11011001-&X01101101)
PRINT &X11011001-&X01101101

Multiplikation: 11011001 * 01101101

OP1/Bit1 * OP2= 01101101

OP1/Bit2 * OP2 +00000000

Zwischenergebnis = 001101101

OP1/Bit3 * OP2 +00000000

Zwischenergebnis = 0001101101

OP1/Bit4 * OP2 +01101101

Zwischenergebnis = 01111010101

OP1/Bit5 * OP2 +01101101

Zwischenergebnis = 101010100101

OP1/Bit6 * OP2 +00000000

Zwischenergebnis = 0101010100101

OP1/Bit7 * OP2 +01101101

Zwischenergebnis = 10010111100101

OP1/Bit8 * OP2 +01101101

101110001100101

PRINT BINS(&X11011001*8&X01101101)
PRINT &X11011001*8&X01101101

(Ubertrag=0)
(Ubertrag=1)
(Uber trag=1)
(Ubertrag=1)
(Uber trag=1)
(Ubertrag=1)

(dez.=326)

(dez.=217)

(dez.=109)

(Ubertrag=0)
(Ubertrag=0)
(Ubertrag=1)

(Uber trag=1)
(Ubertrag=0)
(Ubertrag=1)

(Ubertrag=1)
(Ubertrag=0)

(dez.=108)

(dez.: 217*109)

(Rang:

(Rang:

(Rang:

(Rang:

(Rang:

(Rang:

(Rang: 2°6)

(Rang: 2°7)

Ergebnis

43

44 Das große GFA-BASIC-Buch ———

Division (Integer):

Die bitweise Division ist ein relativ kompliziertes Unterfangen.
Aus diesem Grund wird hier nur ein einfaches Beispiel behan-
delt, dessen nähere Erläuterung zu weit führen würde. Es kann
hier nur ein ganzzahliges Ergebnis entstehen, da die bitweise

Realzahl-Division auf diese Weise nicht machbar bzw. derart
aufwendig ist, daß das Thema mehrere Seiten füllen würde.

11011001 / 10 = 1101100 Im wesentlichen kann
a - 10 bei der Binär-Division

— (ebenso wie bei +, -, *)
010 genauso verfahren werden

- 10 y wie bei Dezimalrechnungen.

— Da jedoch in Zweierpotenzen

erweitert: 00011 gearbeitet wird, können
- 10 ' gebrochene Anteile nicht

— exakt ermittelt werden.

010

- 10

erweitert: 0001
- 10)

11...111111111911 (= -1, also Rest 1)

PRINT BINS(&X11011001/&X01101101)
PRINT &X11011001/&X01101101

Bei all diesen Beispielen wurde das Format Byte gewählt, da Ih-
nen dieses Format am häufigsten begegnen wird. Grundsätzlich
sind diese Operationen mit jedem Format durchführbar.

Die eben behandelte Thematik gehört nicht gerade zu den ein-
fachen Dingen in der Computerwelt. Eine Notwendigkeit, mit
logischen Operatoren und Bit-Arithmetik umzugehen, besteht

allerdings nur für jene, die den Ehrgeiz haben, in die tieferen
Ebenen der Programmierung hinabzusteigen. Wenn Sie dazu Nei-
gung verspüren, ist es auf jeden Fall gut, etwas davon gehört
bzw. gelesen zu haben.

—— Basis-BASIC 45

4.9 Bedingungen und Konsequenzen

In einer anderen Beziehung ist es jedoch ausgesprochen ratsam,
sich zumindest mit den beiden Boole-Operatoren AND und OR
auseinanderzusetzen. Es gibt nämlich mehrere Befehle im BA-

SIC, die die Angabe einer Bedingung erforderlich machen.

Nehmen wir als Beispiel den Befehl .IF...ELSE...ENDIF (siehe

dort). Dieses ist wohl der gebräuchlichste Befehl, um den Fort-
lauf des Programms von einer Bedingung abhängig zu machen.

Weiter oben wurden zwei typische Bedingungen und ıhre Konse-
quenzen vorgestellt, wie sie in dieser oder einer ähnlichen Art
im täglichen Leben ständig vorkommen.

Wenn es warm ist und ich Zeit habe, werde ich baden gehen.
Wenn es kalt ist oder ich keine Zeit habe, werde ich nicht baden

gehen. Es werden in beiden Fällen zwei Bedingungen gestellt, |

deren Erfüllung mit einer Konsequenz verbunden ist.

Um das nun in ein anwendbares Beispiel zur Programm-Ent-
scheidung übertragen zu können, setzen wir für einige Worte in

den beiden Sätzen Symbole ein. Für jeden Ausdruck, der etwas

bejaht, nehmen wir den Wert 1, und für jeden Ausdruck, der

etwas verneint, setzen wir den Wert 0. Also:

ist = 1

haben = 1

gehen = 1

nicht haben = 0

nicht gehen = 0

In die Struktur einer IF-Bedingung eingefügt, bekommen die
beiden Sätze nun folgende Form:

If warm=1 And Zeit=1 I Wenn warm "ist" UND Zeit "haben"

Baden=1 ! dann baden "gehen"

Endif I Ende der Konsequenz
If Kalt=1 Or Zeit=0 I Wenn kalt "ist" ODER Zeit "nicht haben"

Baden=0 ı dann baden "nicht gehen"

Endif I Ende der Konsequenz

46 Das große GFA-BASIC-Buch ——

Sie merken, daß bei Verwendung von Symbolen für "Ja" und
"Nein" schon recht komplizierte Entscheidungen möglich sind.
Das kann man sogar noch wesentlich weiter führen, wenn man
eine weitere Möglichkeit anwendet, die das GFA-BASIC bietet.
Man kann mehrere Bedingungen mit einer Klammer zusammen-

fassen und dazu alternativ weitere Bedingungen stellen. Eine
solche Alternative könnte im obigen Beispiel sein:

...oder wenn die Badehalle auf ist,...

Der volistandige Satz ware dann:

Wenn es warm ist oder wenn die Badehalle auf ist und ich Zeit habe,

werde ich baden gehen.

Für die positive Eigenschaft "auf" setzen wir den Wert 1.

IF-Struktur:

If (Warm=1 Or Halle=1) And Zeit=1 I Wenn (warm "ist" ODER

I Badehalle "auf")
I UND Zeit "haben!"
I dann baden "gehen"

! Ende der Konsequenz
Baden=1

Endif

Der Faktor "Zeit" bezieht sich hier auf beide vorangestellten Al-
ternativen. Wenn ich z.B. auch in die Badehalle gehen würde,
wenn ich keine Zeit hätte, müßte die Klammer anders gesetzt
werden, da sich "Zeit" dann nur auf "warm" bezieht:

If (warm=1 And Zeit=1) Or Halle=1 I Wenn (warm "ist" UND

I Zeit "haben"')

ı ODER Badehalle "auf"
Baden=1 1

N Endif

dann baden "gehen"

Ende der Konsequenz

Wenn im vorherigen Beispiel "warm" ODER "Badehalle" die Al-

ternativen waren, so sind es jetzt "(warm UND Zeit)" ODER

"Badehalle".

Zur IF-Struktur ist hier zu sagen, daß diese grundsätzlich mit
einem ENDIF abgeschlossen werden muß, um dem Interpreter

kenntlich zu machen, welche Konsequenzen zu welcher Bedin-

gung gehören.

—— Basis-BASIC 47

Es gibt auch die Möglichkeit, eine Alternativ-Konsequenz zu

formulieren. Wenn ich sage, daß ich unter bestimmten Bedin-
gungen etwas tun werde, so folgt daraus implizit, daß ıch dann,

wenn die Bedingungen nicht erfüllt sind, etwas anderes tun
werde. Im obigen Beispiel könnte das sein:

Wenn es warm ist oder wenn die Badehalle auf ist und ich Zeit
habe, werde ıch baden gehen. Andernfalls werde ich nicht baden

gehen und ein Buch lesen.

Für "lesen" (positiv) setzen wir hier wieder eine I und für "nicht
lesen" (negativ) eine 0.

IF-Struktur:

If (Warm=1 Or Halle=1) And Zeit=1 ! Wenn (warm "ist" ODER 1

I Badehalle "auf")

I UND Zeit "haben"

Baden=1 I dann baden "gehen"

Buch=0 ! dann Buch "nicht lesen"

Else I sonst

Baden=0 ! baden "nicht gehen"

Buch=1 ! Buch "lesen"

Endi f I Ende d. Alternativ-Konsequenz-

Der Ausdruck ELSE steht hier fiir "andernfalls" oder auch
"sonst". ELSE ist also die konsequente Umkehrung der bei IF

gestellten Bedingungen. Die zwischen ELSE und ENDIF einge-

schlossenen Konsequenzen bekommen nur dann Gültigkeit, wenn
keine der bei IF gestellten Bedingungen zutrifft.

Das heißt wiederum, daß immer dann, wenn das Programm auf
eine IF-Abfrage trifft, die mit einer ELSE-Anweisung verbun-
den ist, entweder die unter IF oder die unter ELSE eingebun-
denen Konsequenzen Gültigkeit bekommen. Soll das nicht ge-
schehen, wird die ELSE-Anweisung einfach weggelassen. D.h.,
daß die Nichterfüllung der unter IF gestellten Bedingungen
keine weitere Konsequenz hat, als daß das Programm hinter der

zugehörigen ENDIF-Anweisung fortgesetzt wird.

Um nun nicht alle Bedingungen, die abgefragt werden sollen, ın
eine einzige Programmzeile schreiben zu müssen oder um meh-

rere Folgebedingungen definieren zu können, können solche IF-

48 Das große GFA-BASIC-Buch ———

Abfragen auch verschachtelt werden. Den Begriff "Ver-schach-

teln" werden Sie weiter unten auch bei den Schleifen-Strukturen
wiederfinden. Damit ist gemeint, daß z.B. in einer IF-Abfrage
weitere Abfragen auftreten können, so daß auch Unterverzwei-
gungen möglich werden.

If Warm=1 Or Halle=1 ! Wenn warm "ist" ODER Halle "auf!" --.

If Zeit=1 ! UND Zeit "haben"

Baden=1 i dann baden "gehen" .

Else I sonst

Baden=0 ! baden "nicht gehen!

Endif i Ende der Alternative '

Buch=0 I in beiden Fällen "nicht lesen"

Else I sonst

Buch=1 ! Buch "lesen"

Endi f ! Ende d. 1. Alternativ-Konsequenz --

Dieses Beispiel entscheidet in zwei Stufen, welche Konsequenzen

die Erfüllung zweier unabhängiger Bedingungen haben soll. Erst
wenn es warm ist oder die Badehalle auf ist, soll der Zeitfaktor

in Betracht gezogen werden. Ist es weder warm noch die Bade-

halle auf, so wird der Zeitfaktor von vorneherein vernachlässigt

und die Entscheidung "Buch lesen" getroffen.

Anhand dieser einfachen Beispiele ist die Übertragbarkeit all-
täglicher Entscheidungen in die Logik der Computerwelt hof-
fentlich etwas deutlicher geworden. Mit Zunahme Ihrer Routine
wird auch die Einsicht in die Möglichkeiten dieser Ver-
knüpfungen wachsen. Es ıst jedenfalls manchmal recht faszinie-
rend, wie sich durch komplexe Bedingungen unterschiedliche
Einflüsse so abfangen und verarbeiten lassen, daß schon der
Eindruck eines "intelligenten" Programms entsteht. Die Virtuosi-

tät im Umgang mit Bedingungen kennzeichnet den guten Pro-

grammierer.

4.10 Flags

Oben wurde noch ein weiteres Prinzip effektiver Programmie-
rung sichtbar. Man nennt es Flags (Flaggen). Diese Flags haben
eine sehr wichtige Funktion in jedem Programm, das nicht nur

—— 2 Basis-BASIC | 49

die Grundfunktionen und -strukturen verwendet, sondern dar-
über hinaus verschiedene Zustände signalisieren kann, die dann
in die Entscheidungsfindung einbezogen werden sollen. Bemühen
wir noch einmal unser Beispiel:

If Warm=1 Or Badehalle=1

Flag=1

Endif

. weiteres Program ...

If Flag=1 And Zeit=1

Baden=1

Endi f

Es kann also an irgendeiner Programmstelle ein Zustand ausge-
wertet werden, dessen Ergebnis erst später zur Wirkung kommen

soll. Es ist hier denkbar, daß die in "Flag" gespeicherte Informa-
tion an mehreren Stellen im Programm ausschlaggebend sein soll.

Um nun nicht an jeder dieser Stellen die Entscheidung treffen
(und auch definieren) zu müssen, ob es warm ist oder ob die

Badehalle auf ist, kann man diese Entscheidung bei frühestmög-

licher Gelegenheit vornehmen und die Information, ob die Ent-
scheidung positiv oder negativ ausgefallen ist, in einer Variablen
speichern und diese dann bei weiteren Gelegenheiten abfragen.

Vielleicht weiß ich heute schon, daß es morgen warm sein wird,
aber ich weiß heute noch nicht, ob ich morgen Zeit haben
werde, baden zu gehen. Also treffe ich die zweite Teilentschei-
dung erst dann, wenn die dazu erforderlichen Umstände einge-
treten sind. Im Beispiel wurde der Variablenname "Flag" will-
kürlich gewählt. Sie können dafür natürlich jeden beliebigen
 Variablennamen verwenden.

4.11 Die Variablen

Variablen haben in einem Programm dieselbe Funktion, wie wir
sie aus der Mathematik kennen. Sie werden als Platzhalter für
Größen oder Ausdrücke (numerische oder alphanumerische) ein-

50 Das große GFA-BASIC-Buch ————

gesetzt, deren Inhalte erst im Programmverlauf ermittelt und zu-
gewiesen werden und sich im weiteren Programm ständig verän-
dern können. Wir wissen also entweder zum Zeitpunkt der Pro-
grammentwicklung nur, "daß" etwas in diesen Variablen abgelegt

wird, aber noch nicht "was", oder wir weisen ihnen ım Pro-

gramm-Listing Inhalte zu, die wir an den gegebenen Stellen für
notwendig halten.

Um keine Mißverständnisse aufkommen zu lassen: Auf eine Art

wissen wir im ersten Fall schon, "was" diese Variablen aufzu-

nehmen haben, wir wissen nur nicht, welcher konkrete Inhalt es
sein wird. Denn eine Entscheidung hat man von vorneherein

selbst zu treffen und zwar, welcher Variablentyp einzusetzen ist.

Es gibt zwei grundl d hied T von Variablen.
Das sind die Büne 3 und die alpha-
numerischen bzw. Text- oder auch String-Variablen. Numerische
Variablen haben die Aufgabe, Werte zu speichern.

Hypo=SQR(22°2+13°2) ! Hypo = Wurzel aus (22 hoch 2 + 13 hoch 2)

Ein Beispiel, das wohl alle aus der Schule kennen. Es werden die

beiden Kathetenlängen eines rechtwinkligen Dreiecks quadriert
und die Quadrate addiert. Anschließend wird nach dem Satz des
Pythagoras die Länge der Hypotenuse berechnet. Das Ergebnis
dieser Berechnung wird nun der Variablen "Hypo" zugewiesen.

Solange keine weiteren Werte an diese Variable übergeben wer-

den, enthält sie die Länge der Hypotenuse des angegebenen

Dreiecks. Dieser Wert kann im Laufe des Programms beliebig oft
erfragt oder auch durch Neuzuweisungen verändert werden.

Es gibt fünf verschiedene Typen von numerischen Variablen.
Wenn wir eine Zahl speichern wollen, die auch Nachkommastel-
len beinhaltet, also eine sogenannte Realzahl, wird nur der reine

Variablenname angegeben. Diesen Typ haben wir im obigen
Beispiel kennengelernt. Er benötigt zur Speicherung der ihm

übergebenen Werte generell einen Speicherplatz von 8 Byte pro

Variable. Dadurch ist eine Genauigkeit von bis zu 13 Stellen
möglich. Wertezuweisungen, die über diese 13 Stellen hinaus-
gehen, werden automatisch auf die 13. Stelle gerundet:

—— Basis-BASIC 51

A=123.125237667231 ergibt A=123.12523767

Bei ganzzahligen Anteilen von mehr als 13 Stellen wird die
übergebene Zahl automatisch in das Exponentialformat
umgewandelt:

A=642653017623.527 ergibt A=6.4265301762235E+11

Andererseits werden Wertzuweisungen, die als "Normal"-Zahl
darstellbar sind und im Exponentialformat angegeben wurden, in
das Normalformat umgewandelt:

A=1284 .55E+5 ergibt A=128455000

Im Exponentialformat sind Wertzuweisungen ım Bereich von-
2.22507385807E-308 bis 3.595386269725E+308 möglich. Eine
Exponentialzahl ist folgendermaßen zu lesen:

54.634 1E+7 entspricht 54.6341 * (10 ° 7)

Ein weiterer Typ ist die Integerzahl. Dies sind Zahlen, die keine
Nachkommastellen haben sollen. Es können ihnen also nur

Ganzzahlen zugewiesen werden. Um wieder einem Irrtum vorzu-
beugen: Es können natürlich auch Realzahlen zugewiesen wer-

den. Diese werden in einer Integervariablen nicht als solche ge-
speichert, sondern die evtl. mit übergebenen Nachkommastellen

werden einfach "vergessen":

AZ=149 .523
PRINT A%
===2=======> Ausgabe: 149

klarzumachen, daß er es hier mit einer Va-
‘zu tun hat, muß dem Variablennamen ein

& a . angehängt werden. Pro Variable benötigt dieser

Type einen Speicherplatz von 4 Bytes, woraus sich ein Integer-
Bereich von -2147483648 bis 2147483647 ergibt. Ferner gibt es
in der Version 3.0 noch die 1- und 2-Byte-Integervariable.

Der dritte numerische Typ ist die Boole-Variable. In ihr können
ausschließlich zwei Werte abgelegt werden. Wenn Sie sich später

52 Das große GFA-BASIC-Buch ————

mit den einzelnen BASIC-Befehlen befassen werden, werden Ih-

nen mehrere Funktionen begegnen, die als Ergebnis ebenfalls
nur zwei verschiedene Werte liefern können. Der eine Wert ist
die Null. Dieser Wert gilt im Interpreter als der Wahrheitswert 0.
Auch wenn er Wahrheitswert genannt wird, ist dieser Wert stell-
vertretend für die Feststellung "falsch". Der andere Wahrheits-
wert ist die Zahl -1. Dieser Wert steht grundsätzlich stellver-
tretend für die Feststellung "richtig".

Warum für die Feststellung "richtig" eine -1 steht, hat seinen
Grund in der sogenannten Zweierkomplement-Darstellung. In
einem Longword sind in diesem Fall alle Bits "gesetzt" (ange-
schaltet), also auch das höchste. Daraus ergibt sich ein Minus-
wert. Dieses Verfahren hier zu erläutern, würde den gesetzten
Rahmen sprengen. Als BASIC-Anfänger muß es Sie im allge-
meinen auch nicht näher interessieren. Kluge Köpfe wurden

evtl. weiter oben bei Words und Longwords schon stutzig, wo als

maximaler Wertebereich 2*31-1 genannt wurde. Dieses liegt an

der Zweierkomplementierung, die das oberste Bit als Minus-
Identifikator verwendet. Sobald vor einer Zahl ein Minuszeichen
steht, wird das oberste Bit eines Longwords gesetzt und die Zahl
vorzeichenlos von 2°31 abgezogen. Das daraus entstehende Bit-
Muster wird bei der Zweierkomlementdarstellung als Minuswert
interpretiert und dementsprechend zurückgegeben.

PRINT BINS(1)
=====2==> Ausgabe: 00000000000000000000000000000001 (1 Bit)

PRINT BIN$(2°31-1)
========> Ausgabe: 1111111111111111111111111111111 (31 Bit)

PRINT BIN$(-2°31)
========> Ausgabe: 10000000000000000000000000000000 (32 Bit)

PRINT BIN$C-2°31+1) |
========> Ausgabe: 10000000000000000000000000000001 (32 Bit)

PRINT BINS(-2°31+2)
======2=> Ausgabe: 10000000000000000000000000000010 (32 Bit)

PRINT BIN$C-2°31+2°15)
========> Ausgabe: 10000000000000001000000000000000 (32 Bit)

——— Basis-BASIC 53

PRINT BINS(2°31-2°15)
========> Ausgabe: 1111111111111111000000000000000 (31 Bit)

A%=-1
PRINT LPEEK(VARPTR(A%))
========> Ausgabe: 11111111111111111111111111111111 (32 Bit)

Zurück zu den Wahrheitswerten. Nehmen wir dazu als Beispiel

den Befehl EXIST. Dieser hat die (oberflächlich gesehen) ein-
fache Aufgabe, festzustellen, ob eine bestimmte Datei auf der
Diskette existiert oder nicht. Existiert die Datei, liefert EXIST

den Wert -1. Andernfalls wird der Wert 0 zurückgegeben. An-
dere Werte können von dieser Funktion nicht geliefert werden,
weil nur zwei Zustände auftreten können. Entweder die Datei
existiert, oder sie existiert nicht. Daraus ist der eigentliche Sinn

der Boole-Variablen erkennbar. Überall dort, wo aus einer Ent-
scheidungsfindung nur die Antworten "Ja" oder "Nein" bzw.

"richtig" oder "falsch" resultieren können, können Wahrheitswerte
in ihnen abgelegt werden.

Die Boole-Variable kann nur einen dieser beiden Werte auf-
nehmen. Selbst wenn Sie irgendeinen beliebigen Wert zuordnen,
wird der Interpreter immer nur zwischen "falsch" (0) und "rich-
tig" (-1) unterscheiden. Alle Werte, die diesem Variablentyp
übergeben werden und ungleich 0 sind, werden automatisch als

’wahr’, also -1, interpretiert und abgespeichert. Dieser Vari-

ablentyp hat den Vorteil, daß er zur Speicherung seiner Inhalte

.2_ Byte pro Variable benötigt. Will man eine Variable als
BERNER

In Text- bzw. String-Variablen (String; engl: Kette/
Reihe/Schnur/ Saite) werden dagegen keine Werte, sondern
Textzeichen abgelegt. Genaugenommen sind diese Zeichen
ebenfalls Werte, wie wir weiter oben schon kennengelernt haben
(ASCH-Zeichen). Nur bei dieser Art der Variablen "weiß" BA-
SIC, daß es die hier abgelegten Werte nicht als Zahlen, sondern

als ASCII-Zeichen zu interpretieren hat. Vorausgesetzt, es wurde
ihm klargemacht, daß es sich hier um eine String-Variable han-

delt. Das macht man, indem man dem Variablennamen ein ’$’

(Dollarzeichen - z.B. Var$) anhängt.

54 Das große GFA-BASIC-Buch ~————

Eine String-Variable kann im GFA-BASIC eine Zeichenkette
mit einer Anzahl von 0 bis 32767 einzelner Textzeichen auf-
nehmen. Das heißt nun nicht, daß jede String-Variable einen

Speicherplatz von 32767 Byte (1 ASCII-Zeichen = | Byte) reser-
viert, sondern daß ein String mit maximal 32767 Zeichen über-
geben werden kann. Die Länge, die eine solche Variable an-

nımmt, hängt jeweils davon ab, wieviele Zeichen zugeordnet

wurden. An Speicherplatz benötigt eine String-Variable soviel
Byte, wie Zeichen vorhanden sind. Zusätzlich werden zu jeder
String- Variablen noch 6 Byte benötigt.

Zu jeder String-Variablen existiert nämlich ein sogenannter De-
scriptor (Beschreiber), der sich selbständig die Adresse, also den
Standort der Variablen im Speicher, sowie ihre Länge "merkt"

(mehr dazu unter ARRPTR und "Variablenorganisation/-typen").

AS="BASIC"

PRINT "Der String hat eine Länge von ";LEN(A$);" Zeichen"

PRINT "Die Stringadresse ist ":VARPTR(AS)

PRINT "Der Descriptor für A$ steht bei Adresse ";ARRPTR(AS)
PRINT "Das erste Byte des Strings hat den Wert ";PEEK(Varptr(A$))
PRINT "Der Wert ";PEEKCVARPTR(CA$));'" repräsentiert das Zeichen ";

PRINT CHRSCPEEKCVARPTRCA$)))

Als erstes wurde hier der Variablen "A$" der String "BASIC"
übergeben. Anschließend wird mit der BASIC-Funktion LEN
die Länge des Strings ermittelt. Um nun in Erfahrung zu brin-

gen, wo das erste Zeichen (Byte) dieses Textausdrucks im Spei-

cher zu finden ist, kann mit der BASIC-Funktion VARPTR
(was soviel wie "Variablenzeiger" heißt) die Adresse erfragt wer-
den. Mit der Speicherlese-Funktion PEEK wird nun der Byte-
Wert des ersten Zeichens aus der mit VARPTR ermittelten
Adresse ausgelesen. Zum Schluß wandelt die Textfunktion CHR$
den so gelesenen Wert wieder zurück in ein Textzeichen, das ge-

nau der erste Buchstabe des übergebenen Strings ist.

Zählen Sie zu der mit VARPTR ermittelten Adresse eine |
hinzu, dann haben Sie die Adresse des zweiten Zeichens. Ad-

dieren Sie eine 2, so erhalten Sie die Adresse des dritten Zei-
chens usw.

Basis-BASIC 55

A$="BASIC"

PRINT "Das zweite Zeichen hat den ASCII-Wert ";PEEK(VARPTR(A$)+1)

Wenn Sie den ganzen Variableninhalt auf dem Bildschirm sehen
wollen, geben Sie

PRINT A$

ein, und der String wird auf dem Bildschirm ausgegeben.

4.12 Matrix und Vektor

Das hört sich fast an wie der Titel eines Shakespeare-Dramas.

Da es ja nicht langweilig werden soll und man außerdem ohne

sie nicht auskommen kann, gibt es noch eine weitere Gattung
der Variablentypen. Man nennt sie Felder oder Arrays (array =

Aufstellung/Reihe/Ordnung). Wer in der Schule gut aufgepaßt

hat, weiß, daß man zur Berechnung einer Funktionskurve min-
destens zwei Größen benötigt. In den meisten Fällen werden dies
die Größen "X" und "Y" gewesen sein. Der Berechnungsvorgang
ist der, daß zu jeder angenommenen Größe "X" anhand einer

Funktionsgleichung die Größe "Y" zu ermitteln war. Aus den
Schnittpunkten dieser beiden Größen ergaben sich dann die
Punkte der Kurve.

Diese beiden Werte stellten auf die jeweilige Funktion bezogen
ein Koordinatenpaar dar. Um nun mit den jeweils zusammenge-

hörenden Ordinaten-Werten nicht durcheinanderzukommen,
kann man ein Feld einrichten. Dieser Vorgang ist nichts anderes
als das, was wohl die meisten unter dem Begriff Wertetabelle

kennen. Solch ein zweidimensionales Feld wird auch als Matrix
bezeichnet, wovon jede einzelne Dimension einen Vektor dar-
stellt.

56 Das große GFA-BASIC-Buch ————

ner bestimmten Gruppe gehören, unter einer gemeinsamen
"Überschrift" (dem Variablennamen) zusammenfassen und ord-
nen zu können.

Weitere Informationen zum Umgang mit Feldern finden Sie un-
ter DIM bzw. "Aufbau eines mehrdimensionalen Feldes". Außer
den Boole-Variablen benötigen alle anderen Variablentypen in
einem Array denselben Speicherplatz, den sie auch als Einzelva-

riable beanspruchen. Die Boole-Variable benötigt dagegen in ei-
nem Array pro Element nur einen Speicherplatz von einem ein-

zigen Bit.

4.13 Erkennungsdienst

Mir ist immer wieder aufgefallen, daß eines der größten Pro-
bleme, eine Computersprache zu erlernen, darin besteht, daß

man am Anfang in einem Listing nicht unterscheiden kann, was
denn nun Befehle (also feststehende Begriffe) und was Namen

(also frei bestimmbare Begriffe) sind. Dazu einige Grundregeln.

Die erste: Lernen Sie alle Befehlsnamen so schnell wıe möglıch
auswendig. Alles andere können nur noch freie Begriffe sein!
Vorsicht: Ironie, aber auch etwas Wahres ist an diesem banalen

Satz dran.

Wenn das so einfach wäre, wie es sich anhört. Gerade bei einer

Sprache wie GFA-BASIC, die ın der Amiga-Version 3.0 ca. 360

verschiedene Befehle, Funktionen, reservierte Variablen und

Felder kennt, ist man schnell überfordert.

In GFA-BASIC kann man in der Amiga-Version problemlos
auch Befehlsnamen als Variablennamen verwenden. Es gibt also
bis auf reservierte Variablen (TIMER, DATES etc.) keine reser-
vierten Begriffe. Bei Prozeduren ist auch schon in anderen Ver-
sionen möglich gewesen, zur Namensbildung Befehlsnamen zu
verwenden, jedoch lassen sich diese relativ einfach von Befehlen
unterscheiden. Eine Prozedur beginnt immer mit der Kennung
PROCEDURE, eine Funktion immer mit der Kennung DEFFN,

——— Basis-BASIC | 57

und ein Label steht immer allein bzw. evtl. mit einem Kom-
mentar (!Kommentar) versehen und endet mit einem Doppel-

punkt. |

Data_label:

Oder

Xyz_label.i: ! Kommentar abc....xyZ

Prozedur-Aufrufe sind an dem vorangestellten GOSUB oder @
zu erkennen, während Funktionsaufrufe immer mit FN oder

ebenfalls mit @ beginnen.

Gosub Proc1 oder aProc1

Xy%=Fn Funk! oder Xy%=aFunk1

Bei Labels sind nur solche Bezeichnungen möglich, die vom In-
terpreter nicht falsch verstanden werden können. Z.B. wird ein
Label mit dem Namen Save: in den Befehl SAVE ":" oder der
Name Fileselect: in FILES "elect:" umgewandelt.

Der Label-Name Print: ist z.B. also ohne weiteres möglich, sollte
jedoch zugunsten der besseren Uberschaubarkeit unterbleiben.

Wie vorn schon ausgeführt, haben Variablen (bis auf Real-Va-
riablen ;optional "#") eine Endkennung. Integervariablen erhalten
ein ’°%’ (Var%), Byte-Variablen ein "|" (Var|), Word-Variablen
ein "&" (Var&), Boole-Variablen ein ’!’ (Var!) und String-Vari-
ablen ein ’$’ (Var$). Diese sind also ebenfalls an ihren Kennun-
gen leicht auszumachen.

Als Namen können beliebig lange Bezeichnungen eingesetzt wer-
den, die sich aus den normalen Textzeichen (A-Z/a-z/0-9), so-

wie dem Tiefstrich _ und dem Punkt zusammensetzen können.
Bei Namen von Variablen und Funktionen muß das erste Zei-
chen allerdings ein Buchstabe sein.

V.aria_blen_name.1
Feld_titel.xyz%(Dim1,Dim,...)
1: <- Soll ein Label sein!

58 Das große GFA-BASIC-Buch ———

PROCEDURE 1724_von_a.bis.z
DEFFN hardcopy=X%*Y%

Um allen Irritationen aus dem Wege zu gehen, schreibt der BA- |

SIC-Editor alle Befehlsnamen grundsätzlich groß. Für den An-

fänger ist dies eine gewaltige Hilfe.

Wenn Sie sich einige Zeit mit GFA-BASIC beschäftigt haben,
werden Sie diese Hilfe sicher nicht mehr benötigen, da sich al-

lein aus der Logik der Syntax schon eine eindeutige Bestimmung
ergibt. Ein Name, hinter dem ein Gleichheitszeichen steht, kann

z.B. nur eine Variable sein, und ein Name, dem ein "@" voran-

gestellt ist und der direkt am Zeilenanfang steht, kann nur ein
Prozeduraufruf sein. Befindet sich dagegen vor einem Namen
mit vorangestelltem "@" ein Gleichheitszeichen, kann es sich nur
um einen Funktionsaufruf handeln usw.

Ich komme wieder auf den obigen "Spruch" zurück. Setzen Sie
sich am Anfang zuerst mit den Grundlagen-Befehlen (PRINT,
INPUT, READ, DATA, PEEK, POKE, GOSUB etc.) auseinan-

der, und versuchen Sie, die übrigen Komfort-Befehle und -

Funktionen erst einmal weitestgehend zu ignorieren. Wenn Sie in
den Grund-Befehlen sattelfest sind, erweitern Sie Ihren Sprach-

schatz nach und nach um die restlichen Befehle.

4.14 Schleifenstrukturen

Schleife nennt man jede Form von Programmstruktur, die be-
wirkt, daß ein ganz bestimmter Programmblock mehrmals nach-
einander durchlaufen wird. In GFA-BASIC sind vier solcher
Loops (Loop = Schleife) verwendbar.

FOR...NEXT-Schleife

DO...LOOP-Schleife

REPEAT...UNTIL-Schleife

WHILE...WEND-Schleife >

w
D

=

—— Basis-BASIC | 59

Untersuchen wir als erstes zwei Typen, die Bedingungsabfragen

implizit verwenden.

Die REPEAT...UNTIL-Schleife

Der Schleifendurchlauf wird durch die Anweisung REPEAT
eingeleitet. Im Anschluß an diese Anweisung folgt nun ein be-
liebig großer Programmblock, der wiederholt ausgeführt werden
soll. Die Eigenart dieser Schleife ıst eine Bedingungsabfrage am
Ende, also am Wendepunkt der Schleife.

Die dort gestellte Bedingung bestimmt, wie oft die Schleife
durchlaufen werden soll bzw. unter welchen Bedingungen die

Schleife nicht mehr durchlaufen werden soll. Der Schleifenwen-
depunkt heißt hier UNTIL. Dieser Umkehr-Anweisung wird die
genannte Bedingung beigestellt.

REPEAT

INC A

B=SQR(A)

PRINT "Wurzel aus ";A;" = "2B

UNTIL B=15 OR A=200

Innerhalb der Schleife wird hier ein Zähler (A) durch INC bei

jedem Durchlauf um 1 erhöht. Anschließend wird die Wurzel
daraus ermittelt, und die beiden Werte werden ausgegeben. Wie
Sie sehen, bestimmt die Bedingung B=15, daß die Schleife so oft
durchlaufen wird, bis der Wurzelwert mit der Zahl 15 identisch

ist.

Wie auch bei IF-Abfragen können hier die Bedingungen mit lo-
gischen Operatoren verknüpft werden. So wird hier die Schleife

auch (unabhängig von B) verlassen, wenn der Zähler den Wert
200 erreicht.

Die wesentliche Eigenart dieses Schleifentyps ist, daß der
Schleifeninhalt auf jeden Fall mindestens einmal durchlaufen
wird, da die Bedingungsabfrage erst am Ende der Schleife er-
folgt.

60 Das große GFA-BASIC-Buch ————

Die WHILE...WEND-Schleife

Anders ist es bei der WHILE...WEND-Schleife. Diese wird dage-

gen gar nicht erst durchlaufen, wenn die Laufbedingung bereits
bei Erreichen der Schleife erfüllt ist. —

A=11

WHILE A<10

INC A

PRINT SQR(A)
WEND

Der Programmblock innerhalb der Schleife wird nicht ausge-
führt. Der Schleifeneinstieg WHILE (während/solange) sagt aus,
daB der Block solange durchlaufen werden soll, wie A kleiner
als 10 ist. Da A bereits vorher größer ist, wird das Programm
sofort hinter dem Wendepunkt WEND fortgesetzt. |

Für den Fall, daß die Schleife durchlaufen wird, wird bei jedem

Durchlauf geprüft, ob die bei WHILE gestellte Bedingung erfüllt
ist. Ist sie das nicht, wird der Block nicht noch einmal ausge-
führt und das Programm hinter WEND fortgesetzt. Auch hier
können, bei Angabe mehrerer Bedingungen, diese logisch ver-
knüpft werden.

Die FOR...NEXT-Schleife

Eine sehr gebräuchliche Schleifenform, die FOR...NEXT-
Schleife, verwendet dagegen keine Bedingung dieser Art, son-
dern führt die Schleife so oft aus, wie in einer Zählanweisung
vorgegeben wird. |

FOR A%=1 TO 225

B=SQR(A%)

PRINT "Wurzel aus !";A%;" = "2B

NEXT A%

In der FOR-Zeile wird eine beliebige Zahlvariable (hier A%)
angegeben, die im Verlauf der Schleife solange um den Wert 1
(hier beginnend mit 1) erhöht wird, bis sie den Endwert (hier
225) erreicht hat. Der Schleifenwendepunkt wird durch die An-
weisung NEXT gekennzeichnet. Dieser Anweisung ist der Name

—-— 2 Basis-BASIC 61

der verwendeten Zählvariablen beizustellen. Die FOR...NEXT-
Schleife verfügt noch über einige Varianten, die Sie aus der
Befehlsbeschreibung zu FOR...NEXT entnehmen können.

Die DO...LOOP-Schleife

Eine Schleife ohne Bedingungsabfrage oder Zähler ist die
DO...LOOP-Schleife. Dieser Schleifentyp führt den zwischen DO
und LOOP eingeschlossenen Programmblock unendlich lange aus.
Es kann keine implizite Abbruchbedingung definiert werden.

DO
INC A%
B=SQR(A%)
PRINT "Wurzel aus ";A%;" = "2B

LOOP

Soll eine DO... LOOP-Schleife abgebrochen werden, hat man nur

die Möglichkeit, entweder die Tasten-Kombination <Control/

Shift/ Alternate zu drücken oder eine spezielle Ab-

bruchbedingung zu stellen. Diese Abbruchbedingung heißt EXIT
IF (siehe dort). |

Bei allen Schleifenarten ist es möglich, diese ineinander zu ver-
schachteln. Es kann also in einer Schleife eine weitere, gleich
welcher Art, aufgerufen werden.

WHILE 1%<10
INC 1%
FOR J=1 TO 10

REPEAT
INC K
PRINT "1% = "1%" Jo = "se" K = eK

UNTIL K>1%*10
NEXT J

WEND

Be1 Verschachtelungen dieser Art ist darauf zu achten, daB die
jeweiligen Schleifenwendepunkte (NEXT/UNTIL/LOOP/WEND)
in der umgekehrten Reihenfolge ihrer Startanweisungen (FOR/

REPEAT/ DO/WHILE) gesetzt werden. |

62 Das große GFA-BASIC-Buch ———

Falsch: REPEAT Richtig: REPEAT
WHILE A<10 WHILE A<10

UNTIL A=10 WEND
WEND UNTIL A=10

Falsch: FOR I=1 To 10 Richtig: FOR I=1 To 10
FOR J=1 To 10 FOR J=1 To 10

NEXT I NEXT J
NEXT J NEXT I

Sollten Sie diese Reihenfolge nicht einhalten, wird Ihnen der
Interpreter beim Programmstart einen "Schwarzen Peter" über-

reichen.

Diejenigen, die es von anderen BASIC-Interpretern her gewohnt
sind, Schleifen anhand von GOTO-Anweisungen zu konstruie-

ren, sollten sich frühzeitig angewöhnen, dafür eine der obigen
Schleifen-Konstruktionen einzusetzen. Dieses hat einen wesent-

lichen Vorteil. GOTO-Anweisungen werden in GFA-BASIC
nicht als Struktur-Elemente anerkannt. D.h. also, daß Schleifen

nicht auf Anhieb erkennbar wären, während man GFA-Loops

sofort an der Zeileneinrückung erkennen kann.

Standard-BASIC :

10 A=A+1:Print A;:If A<20 Then Goto 10

GFA-BASIC:

Label: ! In diesem Fall wurde man
INC A I! natürlich eine FOR...NEXT-

PRINT A; I Schleife verwenden. Hier
IF A<20 i sollen jedoch nur die

GOTO Label ! verschiedenen Strukturen

ENDIF I von Schleifen aufgezeigt werden.

Besser:

WHILE A<20 oder DO oder REPEAT

INC A - INC A INC A

PRINT A; PRINT A; PRINT A;

WEND ' EXIT IF A=>20 UNTIL A=>20

LOOP

Basis-BASIC 63

4.15 Vergleichsoperationen

Bei der vorangegangenen Beschreibung der Schleifenstrukturen
wurden mehrfach sogenannte Vergleichsoperatoren verwendet.

= Gleich

== Ungefähr gleich (28-Bit-Vergleich)
< Kleiner

> Größer

<> bzw. >< Ungleich

<= bzw. = Kleiner oder gleich

>= bzw. = Größer oder gleich

Diese Operatoren können eingesetzt werden, um zwei Werte oder
Textausdrücke miteinander zu vergleichen.

PRINT "ABC">"BCD"

oder

A$=""eins"

BS="Zwei"

PRINT A$<>B$

oder

PRINT 123=234

oder

A%=17356
B=651423.241
PRINT A%<B

Diese Beispiele wirken etwas seltsam, erhalten jedoch dann einen

Sinn, wenn man weiß, daß .als 1

3 würden demnach eine er Dee (falsch) als Ergebnis ausgegeben,
da der String ABC nicht größer ist als der String BCD und auch

der Wert 234 nicht gleich dem Wert 123 ist. Die Beispiele 2 und

64 Das große GFA-BASIC-Buch ————

4 liefern dagegen eine -1 (wahr), da A$ und B$ tatsächlich un-
gleich (<>) und "A%" kleiner als "B" ist.

Auch hier ist eine sinnvolle Anwendung der Boole-Variablen
denkbar, indem man die ermittelten Wahrheitswerte an eine

solche Variable übergibt.

Sie werden sich evtl. fragen, wie man denn Textausdrücke auf
"srößer" oder "kleiner" prüfen kann. Das geht folgendermaßen
vor sich: Sollen zwei Textausdrücke verglichen werden, geht das
BASIC der Reihe nach alle Zeichen der beiden Ausdrücke durch
und ermittelt, welches der beiden verglichenen Zeichen den
größeren ASCII-Wert besitzt. Der Ausdruck, der in einer der
verglichenen Positionen das Zeichen mit dem größeren ASCII-
Wert enthält, ist somit der "größere" String. Beim Vergleich

zweier Strings auf "kleiner" wird das gleiche Verfahren ange-
wandt. Nur ist hier eben der "kleinere" String der, der zuerst ein
Zeichen enthält, dessen ASCII-Wert kleiner ıst als der des ver-

glichenen Zeichens des anderen Strings.

Haben die beiden Strings ungleiche Längen und hat der Ver-

gleich bis zum Ende des kürzeren Strings keine Unterschiede
zwischen beiden Strings aufgewiesen, so ıst beim Vergleich auf
"srößer" der längere String auch der größere bzw. beim Ver-
gleich auf "kleiner" der kürzere String der kleinere.

Beim Vergleich von Textausdrücken ist allerdings darauf zu
achten, daß alle "normalen" Textzeichen einmal in großge-

schriebener Form (A-Z/ASCIH 65-90) und einmal kleingeschrie-
ben (a-z/ASCIH 97-122) existieren. Um also einen tatsächlich
gültigen Vergleich auf alphabetische Reihenfolge durchzuführen,

müßten beide Textausdrücke vorher vollständig entweder in

Groß- oder Kleinschrift übertragen werden (siehe UPPER$).

PRINT “"ABC'<"ABCD"="abc">"abcd"

Dieses fiktive Beispiel ist sicher nicht auf Anhieb zu verstehen.

Zuerst werden die ersten beiden Ausdriicke getestet. Da ABC

kleiner ist als ABCD, ergibt sich daraus der Wahrheitswert -1.
Anschließend ergibt sich aus dem Vergleich abc > abcd der

——— Basis-BASIC 65

Wahrheitswert 0. Diese beiden Wahrheitswerte werden nun auf
Gleichheit getestet. Da sie ungleich sind, wird der Wert 0 (=
falsch) geliefert.

Enthalten die Strings auch andere Zeichen als die von A-Z
(Ziffern, Leerzeichen, Satzzeichen), werden diese nach dem-
selben Schema in den Vergleich einbezogen. Siehe dazu auch
unter MAX bzw. MIN.

4.16 Vorfahrtsregein

Richtig heißt es natürlich Vorrangregeln oder Prioritäten. Ge-
meint ist damit die Reihenfolge, in der die verschiedenen
arithmetischen Operationen ausgeführt werden. Aus der Mathe-

matik werden wohl den meisten Konstrukte wie das folgende
oder ähnliche bekannt sein:

X=Sqr(12°3+(36-22°1.2)-(€-4/3))*Sin(13)

Formeln dieser Art werden nach folgender Rangfolge aufgelöst:

Funktionen: Sqr, Tan, Atn etc. sowie DEFFN-Funktionen.

Klammern: () Erst innere, dann äußere Klammern.

Potenzierung: *

Negation: -

Multiplikation/Division: *, / |

Modulo/Ganzahldivision: MOD, DIV od. \

Addition/Subtraktion: +, - N
A
A

s
u
n

Da auch Vergleichsausdriicke und logische Verknüpfungen in
dieser Form angegeben werden können, werden diese in die
Rangfolge mit eingeordnet:

8. Vergleichsoperatoren: =, ==, <>, >, <, =>, <=

9. Logische Operatoren: AND,OR,NOT,XOR,IMP,EQV

66 Das große GFA-BASIC-Buch ——

PRINT (12°3+(36-22°1.2)-(-4/3))*3>14 3

oder

A=(12°3+(36-22°1.2)-(-4/3))*3 AND 14°3

Werden innerhalb eines arithmetischen Ausdrucks nur gleich-
wertige Operatoren verwendet, werden diese der Reihe nach von

links nach rechts ausgeführt. Wollen Sie diese Reihenfolge
durchbrechen, können Sie die Berechnungen, die zuerst behan-
delt werden sollen, in Klammern einfassen. In einer Klammer

werden die Operationen wieder in der üblichen Rangfolge be-
arbeitet.

4.17 Fingerübungen

Im bisherigen Verlauf dieses Kapitels wurden schon einige BA-

SIC-Befehle vorgestellt. Da ihre Verwendung sich aus dem je-
weiligen Zusammenhang ergab, gehe ich davon aus, daß hier |

eine Vorstellung der wichtigsten Grundlagenbefehle und ihrer
Verwendungsmöglichkeiten angebracht ist.

Wie in Programmier-Lehrbüchern üblich, besteht das erste Pro-
gramm eines Computerneulings darin, den Satz "Hello World" auf

dem Bildschirm auszugeben. Ich möchte hier nicht nachstehen,
wobei ich der Meinung bin, daß in BASIC die Bildschirmaus-
gabe eines beliebigen Textes derart leicht ist, daß ein erheblicher
Lernerfolg daraus nicht herzuleiten ist.

Die Initialisierung und Bedienung des Computers wird Ihnen
wohl dank der Amiga-Bedienungsanleitung mittlerweile geläufig
sein. Wie der GFA-Interpreter gestartet wird bzw. welche Be-
dienungsfunktionen zu beachten sind, wurde Ihnen ja bereits
weiter oben erläutert. Sie haben nun - bis auf die zwei Menü-
zeilen am oberen Bildrand - einen leeren Editor-Bildschirm vor
sich. Der Cursor - das ist das kleine weiße Rechteck oben links

—— Basis-BASIC 67

in der Ecke - zeigt Ihnen an, wo bei der nächsten Tastenbedie-

nung ein Schriftzeichen erscheinen wird. Geben Sıe nun bitte
über die Tastatur ein

p "Hello World

und drücken Sie anschließend die <Return>-Taste. Hier begegnet

Ihnen gleich ein wesentlicher Vorteil des GFA-BASICs. Die
meisten Befehle können anhand von Kürzeln eingegeben werden.

Sie werden bemerkt haben, daß der Interpreter selbständig die

Eingabe auf |

PRINT "Hello World"

erweitert hat. Dieser Komfort hat bei einigen Befehlen erheb-
liche Wirkung, da es mit Sicherheit wesentlich schneller geht,

z.B. statt GRAPHMODE einfach nur "gr" zu schreiben.

Probieren Sie es aus: Schreiben Sie einfach in die nächste Zeile

"sr 1", drücken Sie die <Return>-Taste, und schon steht da

GRAPHMODE 1. Fahren Sie nun mit der Cursor-Taste Pfeil
aufwärts den Cursor eine Zeile aufwärts auf die Graphmode-

Zeile, drücken Sie <Control>+<y> gleichzeitig, und schon ist die
zweite Zeile auf Nimmerwiedersehen verschwunden.

Außerdem müssen bei Texteingaben nur die Einführungszeichen
gesetzt werden, BASIC erkennt das Textende selbständig.

PRINT "Text

oder

A$="Text

Wir haben es bei dem GFA-BASIC-Interpreter mit einem
äußerst komplexen Programm zu tun, dessen Leistungen erst bei
längerer Arbeit deutlich werden.

Ich vergleiche es immer mit einem Qualitätsauto. Der Unter-
schied zwischen drei bestimmten deutschen Autofirmen und ih-

68 Das große GFA-BASIC-Buch ———

ren Konkurrenten besteht meistens in den fast unmerklichen

Kleinigkeiten - und wenn es nur das Geräusch des Türöffnens
ist. Bei der einen Marke tut man es, weil man einsteigen will.
Bei der anderen macht man die Tür wieder zu, um sie noch

einmal Öffnen zu dürfen - das Geräusch ist so schön! Dieses
Beispiel ist natürlich stark übertrieben, macht jedoch das Wesen

der Qualität deutlich: Auf die Kleinigkeiten kommt es an. Sie
werden bei der Arbeit mit GFA-BASIC immer wieder auf sol-
che angenehmen Kleinigkeiten stoßen, und es sollte Ihnen bei
der Entwicklung Ihrer eigenen Programme naheliegen, auf diese
Kleinigkeiten zu achten.

Aber weiter mit unserem ersten Programm. Sie haben nun meh-
rere Möglichkeiten, Ihr kleines Programm zu starten.

1. Sie können mit dem Mauszeiger nach rechts oben in die
Bildschirmecke auf "Run" fahren und die linke Maustaste
drücken.

2. Sie können die <Shift>-Taste und <F10> gleichzeitig
drücken.

3. Sıe schalten in den Direktmodus um und geben dort den
Befehl "ru" (Abk. für "Run") ein, gefolgt von der <Return>-
Taste.

In jedem dieser Fälle wird der Bildschirm gelöscht, Ihr freund-
licher Gruß oben lınks auf den Bildschirm geschrieben und eine
sogenannte Alert-Box mit dem Hinweis "Programmende" ausge-
geben. Nachdem Sie nun die <Return>-Taste gedrückt oder mit

dem Mauszeiger auf "Return" geklickt haben, kehrt der Inter-
preter wieder zum Eingabe-Editor zurück. Damit dürfte eigent-

lich der Grundstein für Ihre Programmiererkarriere gelegt sein.

Alles andere ist nur Übung.
C

Das Spiel, das wir oben veranstaltet haben, ist im eigentlichen
Sinne noch nicht als Programm zu bezeichnen. Bei einer ein-
fachen PRINT-Anweisung handelt es sich lediglich um einen

—— Basis-BASIC | 69

einzelnen Programmschritt. Erst das sinnvolle Aneinanderreihen

von mehreren Programmschritten bildet ein Programm.

Für den Anfang kann es jedoch nützlich sein, sich nach und

nach mit den Möglichkeiten vertraut zu machen. Um ein wenig
zu probieren, klicken Sie mit dem Mauszeiger im Menükopf des
Editors das Feld "Direct" an. Sie sehen jetzt am linken unteren
Bildrand die Eingabeaufforderung "OK >". Dies ist der soge-
nannte Direkt- oder Kommandomodus. Auf dieser Ebene haben

Sie nicht die Möglichkeit, Programme zu schreiben, sondern Sie
können jeweils nur eine Befehlszeile (max. 255 Zeichen) ein-
geben, die nach Druck auf die <Return>-Taste direkt ausgeführt
wird. Geben Sie bitte ein:

OK >p "Hello World

Im Ausgabefenster erscheint nun:

Hello World

Sie sehen, daß jeder Befehl sofort nach <Return> ausgeführt
wird. Im Direktmodus haben Sie also eine gute Möglichkeit, erst

_ einmal einige Befehle in Ruhe auszuprobieren. Es gibt zwar Be-
fehle, die hier nicht ausführbar sind (Befehle, die mehr als eine
Zeile für ihre korrekte Struktur benötigen), aber zur Übung ist
der Direktmodus bestens geeignet. Versuchen Sie es noch einmal:

OK >a 1,"Meine erstelAlert-Box",1," Na Itoll",a

und nun <Return> drücken. So einfach ist das! Wenn Sie genug
geübt haben, gelangen Sie durch <Esc> oder durch Drücken der

Abbruchtasten <Control/Shift/Alternate> wieder zurück in den
Editor.

Wieder ım Editor? Gut, dann schreiben Sie nun Ihr erstes richti-

ges Programm. Das wichtigste an einem Programm sind in jedem _
Fall die Eingabe- und Ausgabe-Anweisungen. Sicher sind andere
Befehle auch wichtig, aber ohne die E/A-Befehle (in Engl.: I/O
= Input/Output) geht gar nichts. Also werden wir damit begin-
nen:

70 Das große GFA-BASIC-Buch

REPEAT

CLS

INPUT "Wie heissen Sie ";Name$
INPUT "Wie alt sind Sie ";Alter%
PRINT "Drücken Sie bitte <Return>"

UNTIL INKEY$=CHR$(C13)

PRINT "Ihr Name ist also ":Name$

PRINT "Sie sind ";Alter%;" Jahre alt."

Innerhalb der REPEAT...UNTIL-Schleife wird Ihr Name und

Alter erfragt. Zuvor wird durch CLS der Bildschirm gelöscht
und der Cursor in die linke, obere Bildschirmecke gebracht. Im
Anschluß an die Eingaben, die jeweils durch <Return> abzu-
schließen sind, werden die Daten in Variablen gespeichert: der
Name als STRING in einer String-Variablen und das Alter als
numerischer Wert in einer Integervariablen. Danach werden Sie
durch den PRINT-Befehl aufgefordert, nochmals <Return> zu
drücken. In die UNTIL-Bedingungsabfrage wurde ein zweiter

Eingabe-Befehl eingebunden, der auf eine einzelne Taste wartet.
Wird nun <Return> (ASCI-Wert = 13) gedrückt, wird die
Schleife verlassen und Ihre Eingabe - mit einem Kommentar
versehen - wieder ausgegeben. Drücken Sie eine andere Taste,

wird die Schleife wiederholt, indem zuerst der Bildschirm wie-

der gelöscht wird und das Spiel von vorn beginnt. |

An den beiden abschließenden PRINT-Befehlen ist zu erkennen,

daß die Ausgabe variiert werden kann. Durch das Format-Sym-

bol ’;’ können PRINT-Ausgaben verkettet werden. Dabei ist es
egal, in welcher Reihenfolge die Ausdrücke stehen. Eine
PRINT-Zeile kann z.B. auch so aussehen:

A$S="Text"

PRINT LENCAS)'"! "AS?" in GFA-"=CHRS(66);"ASIC", CRSCOL'INKEYS;

Eine solche Zeile kann also sehr bunt gemischt sein. Oben wird

zuerst die Variable A$ mit dem Text "Text" initialisiert. Mit
LEN(A$) wird die Länge des in A$ gespeicherten Textes, der
Inhalt von A$ selbst, ein direkter String-Ausdruck (in GFA-),
ein einzelnes ASCII-Zeichen (ASCII 66 = B), wieder ein Direkt-
String (ASIC), die aktuelle Cursor-Position (CRSCOL) und zu
guter Letzt eine Tastaturabfrage (INKEY$) in die Zeile einge-
bunden. Während(!) der Textausgabe werden die integrierten

—— Basis-BASIC 71

Funktionen bearbeitet, und nach Erledigung wird ihr Ergebnis
ebenfalls ausgegeben. So wird die Tastaturabfrage INKEY$ erst
bearbeitet, nachdem schon der übrige Text angezeigt wurde. Es
sind generell alle Funktionen (ergebnisliefernde Operationen) in
einer PRINT-Zeile einsetzbar.

Zur Verkettung der Ausdrücke wurden außerdem noch zwei

weitere Format-Symbole verwendet. Ein Komma zwischen den
Ausdrücken bewirkt, daß die darauffolgende Ausgabe an der
nächsten von 5 Tabulatorpositionen erfolgt (siehe PRINT). Ein
Apostroph dagegen gibt nur ein einzelnes Leerzeichen an der

Position aus, an der es im Ausdruck steht. Das Semikolon haben
Sie oben schon kennengelernt. In diesem Fall wurde es ganz am
Ende der Zeile eingesetzt, um zu erreichen, daß die nächste

PRINT-Ausgabe (bzw. auch OUT und WRITE) oder INPUT-
Eingabe (oder auch INP, INPUTS etc.) direkt hinter dem zuletzt
angezeigten Text positioniert wird. Durch

PRINT AT(10,10);
INPUT "Eingabe: ",A$

können Sie also auch die Position von Eingabe-Anweisungen
bestimmen, wobei jedoch nach erledigter Eingabe der Cursor
generell an den Anfang der nächsten Zeile zurückspringt. Im
letzten Beispiel habe ich Ihnen wieder zwei neue Varianten vor-

gestellt. Durch den Zusatz AT(X,Y) kann die Cursor-Position
beliebig auf dem Bildschirm bestimmt werden (siehe PRINT).
Außerdem habe ich in der INPUT-Zeile ein Komma hinter den
Eingabekommentar eingesetzt, um damit zu erreichen, daß die

Eingabe ohne Frage- und Leerzeichen direkt hinter dem Kom-
mentar beginnt. Vergleichen Sie:

INPUT "Eingabe: ";A$
INPUT "Eingabe: ",A$

Unter den Befehlsbeschreibungen finden Sie noch weitere E/A-
Befehle, die an Möglichkeiten fast keine Wünsche mehr offen
lassen. Versuchen wir uns nun ein wenig an der Grafik.

72 Das große GFA-BASIC-Buch ————

Möchten Sie lieber Kreise oder Rechtecke zeichnen? Oder viel-
leicht eine Freihandlinie? Alles kein Problem! Fortschrittliche
BASIC-Dialekte haben selbstverständlich ein reichhaltiges Ange-
bot an grafischen Befehlen. Das ist ganz und gar nicht so selbst-

verständlich, wie es uns heutzutage erscheint. Vor nur wenigen
Jahren mußten die Algorithmen dazu noch per Hand geschrieben
werden - und wer weiß schon aus dem Stegreif, wie ein Kreis
oder eine Ellipse konstruiert wird.

Wir haben es da einfach. In der Befehlsliste im Anhang finden
Sie eine Fülle von Grafikbefehlen, deren Bedienung denkbar
einfach ist. Unser Bildschirm ist ın Hires (Hıgh Resolution =
hohe Auflösung) in 640 Bildpunkte horizontal und 256 Bild-
punkte vertikal eingeteilt. Der Bildpunkt mit der Koordinate 0/0

liegt üblicherweise (siehe OPENW) in der äußersten linken,
oberen Bildschirmecke. Durch dieses Wissen läßt sich nun jeder
einzelne Bildschirmpunkt auch einzeln benennen. Sıe müssen

sich also nur entscheiden, an welcher Bildschirmposition Sie ein

Grafik-Objekt sehen möchten, übergeben dem Befehl die ent-

sprechenden Koordinaten, und schon erscheint das Objekt. Die

folgende Zeile zeichnet eine Ellipse, deren Zentrum ziemlich

genau in der Mitte des Bildschirms liegt:

ELLIPSE 310,120,300,110

Die ersten beiden Parameter bestimmen die Position, der dritte

den horizontalen Radius und der vierte den vertikalen Radius
der Ellipse. Diese Koordinatenangaben beziehen sich - wie ge--

sagt - auf Hires. Beim Amiga gibt es aber zwei Auflösungs-
stufen. Die zweite ist Lowres (Low Resolution = niedrige Auf-
lösung) mit 320 horizontalen und 256 vertikalen Punkten. Mit
diesen Informationen und den Beschreibungen der Befehle wer-
den Sıe sicherlich keine größeren Probleme mit der Grafik ha-
ben.

Malen Sie doch mal ein kleines Bild mit dem folgenden Pro-
gramm. |

——— Basis-BASIC 73

DEFFILL ‚2,4 Füllmuster einstellen N

DO I Hauptschleifenstart
REPEAT ! 1. REPEAT-Schleife .
UNTIL MOUSEK ı wartet auf Mausklick '
MOUSE x,y,K ! Mauskoordinaten in X,Y
REPEAT ı 2. REPEAT-Schlei fe ————

MOUSE xx,yy,k I Neue Koordinaten in Xx,Yy
IF MOUSEK=1 t Linke Maustaste?

LINE xX,y,XxX,Yy I Dann Linie zeichnen
X=XX I Neue Koordinaten werden
y=yy I Alte Koordinaten >

ENDIF I |
IF MOUSEK=2 I Rechte Maustaste?

flag!=TRUE I merken

GRAPHMODE 3 ı Grafikmodus XOR
BOX x,y,XX,YY I Box zeichnen
BOX x,y,XX,YY ! Box löschen
GRAPHMODE 1 ~ 1 Grafikmodus Replace

ENDIF !
IF MOUSEK=3 ! Beide Maustasten?

f lag!=FALSE I Merker löschen

FILL xx,yy ! Ab Mausposition füllen
ENDIF !

UNTIL MOUSEK=0 I Maustaste losgelassen? --

IF flag!=TRUE I Merker für Maustaste 2?

flag!=FALSE It Merker löschen

BOX x,Y,XX,YY ! Box nochmal zeichnen

ENDIF !

I Zurück zum Anfang y LOOP

Hier finden Sie gleich ein Beispiel für den Einsatz von Flags.
Flag! ist hier eine völlig beliebige Boole-Variable, die die Auf-
gabe hat, sich zu merken, ob in der 2. REPEAT-Schleife die
rechte Maustaste gedrückt wurde. Wurde sıe das, wird im XOR-
Modus zweimal eine Box auf dieselbe Stelle gezeichnet. Das hat
den Effekt, daß die Box bei jedem Durchlauf nur für einen
kurzen Moment zu sehen ist. Wird die rechte Maustaste wieder
losgelassen, wird anschließend die Box noch einmal im RE-

PLACE-Modus (siehe GRAPHMODE) gezeichnet.

Achten Sie bitte darauf, daß Sie, wenn Sie den Füllprozeß mit
beiden Maustasten gleichzeitig auslösen wollen, zuerst die rechte
und dann die linke Taste drücken, da sonst im Linienmodus
schon ein Punkt gezeichnet wird, ehe der Füllprozeß beginnt.
Dazu eine kleine Spielerei:

74 Das große GFA-BASIC-Buch

Linienstart

10tel-Step-Schleife
Radius vergrößern

X-Koordinate

Y-Koordinate

Linie zeichnen

Nächster Schritt

PLOT 320,128
FOR i=0 TO 200 STEP 0.1

ADD a,0.1
x%=320+C0S(i)*a*1.6
y%=128+SINCi)*a
DRAW TO x%,y%

NEXT i

Beachten Sie hier, daB die FOR...NEXT-Schleife mit einer Re-
alvariablen (I) läuft, da Integervarialen nur Ganzzahlen auf-
nehmen können. Mit einer Integer-Zählvariablen würde das Pro-
gramm lediglich eine gerade Linie zeichnen und unendlich wei-
terlaufen, da die Zahlvariable immer wieder auf Null gesetzt
würde. Die Linie ergibt sich dann ausschließlich aus der Erhö-
hung des Radius durch den Real-Faktor "A".

Soweit zur Einführung in die Programmiersprache GFA-BASIC
und in die Hintergründe und Grundlagen der Computer-Pro-
grammierung. Es ist mir nicht immer leicht gefallen, die richti-
gen Worte zu finden, um ein Thema auch - und gerade - für

den Computer-Anfänger verständlich und durchschaubar werden

zu lassen. Ich habe es jedenfalls nach besten Kräften versucht
und hoffe, daß Ihnen dieses Rüstzeug auf Ihrem weiteren Weg

in der "hohen Schule" der Programmierkunst ein Stück helfen
wird.

Sie finden zudem im Verlauf des Buches immer wieder kleine

Einschübe, die dazu beitragen sollen, Ihre hier erworbenen

Kenntnisse zu vertiefen. Noch ein kleiner Tip zum Schluß. Set-
zen Sie sich in der Anfangszeit so viel wie möglich mit fremden
Programmen auseinander. Achten Sie dabei darauf, daß diese in

ihrer Komplexität ungefähr Ihrem Wissensstand entsprechen,

und verändern Sie sie geringfügig.

——— Ein-/Ausgabebefehle 75

5. Ein-/Ausgabebefehle

5.1 Dateneingabe

FORM INPUT{F} | | Formatierte Sting-Eingabe |

FORM INPUT Anz,Var$

Eine Kombination aus INPUT- und INPUT$-Befehl ist der
FORM INPUT-Befehl. Sie können damit eine maximale Länge
des einzugebenden Textes vorherbestimmen. Die größtmögliche
Länge des Strings liegt bei 255 Zeichen. Wird vom Anwender

die vorgesehene String-Länge erreicht, bleibt der Cursor an der
letzten Stelle stehen. Die Eingabe kann also nur durch <Return>
abgeschlossen werden. Veränderungen am Text sind auf die
gleiche Art und Weise möglich, wie unter INPUT beschrieben.
Das gleiche gilt für die Eingabe von Sonderzeichen. Die Angabe
einer Variablenliste oder eines vorangestellten Textes ist hier al-
lerdings nicht möglich. Es wird generell der Cursor auf die erste
Stelle des Eingabebereichs gesetzt. Beispiel:

FORM INPUT 32,Textvar$

Positionieren können Sie den Eingabebereich übrigens, wie auch
bei INPUT und LINE INPUT, indem Sie mit

PRINT AT(XP,YP);

den Cursor an die Stelle bringen, an der das erste Zeichen der
Eingabe erscheinen soll. Durch das dem PRINT-Befehl nachge-
stellte Semikolon wird der Wagenrücklauf (CR = Carriage Re-
turn) und der Zeilenvorschub (LF = Line Feed) unterdrückt. Das
nächste Zeichen einer Ausgabe wird dann an die Position direkt
hinter dem zuletzt ausgegebenen Zeichen gesetzt.

76 Das große GFA-BASIC-Buch ~————

FORM INPUT AS Formatierte String-Eingabe m. Vorgabe

{ F AS }
FORM INPUT Anz AS Var$

Hier gilt grundsätzlich das gleiche wie bei FORM INPUT. Nur
daß hier der Inhalt einer String-Variablen auf dem Bildschirm
ausgegeben und die nachträgliche Edition des darin enthaltenen
Strings (oder eines Teils davon) ermöglicht wird. "Anz" enthält
die Anzahl der Zeichen ab Anfang des Vorgabe-Strings, die zur

Edition ausgegeben werden sollen. Nach erneuter Eingabe und
Bestätigung durch <Return> wird der neu entstandene String in
die Variable übernommen. Der vorherige Variableninhalt wird
komplett ersetzt. Wird mit ’Anz’ die Lange der angegebenen Va-
riablen nicht überschritten, muß vor der Edition anhand der

<Delete>-Taste Platz zur Eingabe geschaffen werden. Bei An-
gabe einer Leervariablen erfüllt dieser Befehl dieselbe Funktion

wie FORM INPUT. Beispiel: (in Verbindung mit MID$()= und
MID$)

A$="String vor der Eingabe!" ı Beliebiger String

B$=Mid$(A$,8,3) ! 3 Zeichen austrennen
Print At(10,10);"=> ";A$;" => "; 1 Eingabe positionieren
Form Input 7 As B$ I 8 Zeichen zur Eingabe
Mid$(A$,8,Len(B$))=B$ I Eingabe einfügen
Print At(10,10);"=> ";A$;Spc(15) ! String ausgeben

INKEY$ Einzelzeichen von Tastatur holen

Zeichen$=INKEY$ => Zeichen-Zuweisung

CIF/WHILE/UNTIL] LENCINKEY$) => Bedingung: Inkey$ >!"

CIF/WHILE/UNTIL] INKEY$="Z" => Bedingung: "Z" gedrückt

Mit INKEY$ können nicht nur die normalen Tastenbelegungen
erfragt werden, sondern auch alle Sondertasten (z.B. Fl - F10

und Cursor-Block). Zusätzlich werden fast alle Kombinationen
von <Control>, <Shift> oder <Alternate> mit anderen Tasten re-

——— Ein-/Ausgabebefehle 77

gistriert. So lassen sich die Funktionstasten in Kombination mit
der <Shift>-Taste doppelt belegen. Die Funktion schaltet intern

auf einen anderen Modus um, sobald Sondertasten bzw. ıhnen

entsprechende Tastenkombinationen gedrückt werden. Im
Normalfall wird ein Ein-Zeichen-String zurückgegeben, der das
der gedrückten Taste entsprechende ASCII-Zeichen beinhaltet.

Bei Sondertasten wird dagegen ein Mehr-Byte-String zurückge-
geben, der die sogenannte CSI-Sequenz der Taste enthält. Diese
wird durch ein CHR$(155) eingeleitet, gefolgt von ein bis drei
weiteren Zeichen. Wird im Moment der INKEY$-Abfrage keine
Taste gedrückt, wird ein Leer-String ("") geliefert. Beispiel:

PRINT "Testen Sie beliebige Tasten und Tastenkombinationen"

PRINT " (Abbruch durch <Esc>)"

DO Große Schleife

REPEAT Eingabeschleife

key$=INKEYS Abfrage

UNTIL key$>"" bis Taste gedrückt ist
PRINT ATC10,10);" n

PRINT AT(10,10); Ausgabe positionieren
IF LEN(key$)=1 Ein-Byte-Code

PRINT "ASCII : ";
PRINT ASC(key$)

ELSE I Mehr-Byte-Code

PRINT "CSI-Sequenz : us

FOR i%=1 TO LEN(key$)
PRINT ASC(MID$Ckey$, i%));" "3

NEXT 1%

ENDIF

EXIT IF key$=CHR$(27) I Abbruch bei <Esc>
LOOP I Schlei fenende

Da gibt es allerdings ein Problem. Der Tastatur-Puffer hat die -
manchmal unangenehme - Eigenart, sich die Tasten, die ge-
drückt wurden, zu merken. Und zwar alle! Das führt dazu, daß

- wenn man ganz kontrolliert nur einen Tastendruck zulassen

will - über INKEY$ alle Zeichen ausgegeben werden, die im
Tastaturspeicher evtl. durch einen Dauertastendruck gespeichert

wurden. Dieses Problem läßt sich beseitigen, indem man nach
der INKEY$-Abfrage eine kleine Schleife einbaut, die den Ta-
staturpuffer leert.

Repeat

Until Inkey$=""

78 Das große GFA-BASIC-Buch ————

Um eine Einzeltastenabfrage durch INKEY$ zu realisieren (z.B.
in einem alphanumerisch indizierten Menü), kennt man aus an-

deren BASICs die Variante:

100 A$=Inkey$:If A$="" Then Goto 100

Diese Konstruktion wird in GFA-BASIC ersetzt durch:

Repeat

Until Len(Inkey$)

oder

Repeat

Until Inkey$<>""

Sie hat die gleiche Aufgabe, nämlich darauf zu warten, daß ir-

gendeine Taste auf dem Keyboard gedrückt wird. Um eine be-

stimmte Taste zu erfragen, gibt es in anderen BASIC-Dialekten
die altbekannte Möglichkeit:

100 A$=Inkey$:If A$<>"b" Then Goto 100

Das gleiche in GFA-BASIC:

Repeat Until Inkey$="'b"

Damit kann also kontolliert werden, ob eine bestimmte Taste

(hier: b) gedrückt wurde. Wird eine andere Taste gedrückt,
bleibt das Programm in der Warteschleife.

INPUT { INP } Dateneingabe

INPUT [("Text";,] Var1 [,Var2,...]

INPUT #Kanal,Var1 [,Var2,...]

Dieses ist der noch am meisten verwendete Befehl zur Eingabe
von Werten oder Strings an das Programm. Im Anschluß an die-

——— Ein-/Ausgabebefehle 79

sen Befehl kann eine Text-Konstante angegeben werden, die vor

der ersten Eingabestelle erscheinen soll.

Nach einem Komma oder Semikolon wird dann die Werte- oder
Textvarıable angegeben, die die eingegebenen Daten aufzu-

nehmen hat. Der Unterschied zwischen der Angabe eines Kom-

mas oder eines Semikolons ist der, daß bei einem Semikolon

nach dem Befehl bzw. nach dem eingefügten Text ein Leer- und
ein Fragezeichen erscheint, während beim Komma direkt nach

dem Befehl oder Text der Cursor erscheint und dort die Eingabe
beginnen kann.

Sollen mehrere Werte oder Strings über einen Input-Befehl ein-
gegeben werden, können Sie durch Kommas getrennt eine Liste
der dafür vorgesehenen Variablen anfügen. Der Befehl ıst dann
erst abgeschlossen, wenn für jede angegebene Variable die ent-
sprechenden Daten eingegeben wurden. Dabei ist es sogar mög-

lich, verschiedene Variablentypen zu verwenden. Sie können so-

mit also mit einem Input-Befehl gleichzeitig Werte und Text er-
fragen. Weisen Sie jedoch dem angegebenen Variablentyp nicht
die entsprechenden Daten zu (bei numerischen Variablen Text
oder umgekehrt), wird ein akustisches Signal ausgegeben (außer-
dem blinkt der Bildschirm kurz auf), und die Eingabe kann
wiederholt werden. |

Jede einzelne Eingabe kann bei Mehrfach-INPUT entweder
durch <Return> abgeschlossen werden, oder Sie können die Da-
ten innerhalb einer Zeile jeweils durch ein Komma voneinander

trennen. Bei Trennung durch <Return> wird dann allerdings der
Cursor an den Anfang der nächsten Bildschirmzeile gesetzt und
dort auf die nächste Eingabe gewartet.

Möchten Sie Kommas in der Eingabezeile verwenden, ohne daß
dadurch zur nächsten Variablen weitergeschaltet wird, erreichen
Sie dies, indem Sie die betreffende Antwort in Anführungs-
striche setzen. Bei Verwendung einer einzelnen String-Auf-
nahmevariablen und Verwendung von Kommas, ohne daß die
Antwort in Anführungsstriche gesetzt wurde, wird die Antwort

80 Das große GFA-BASIC-Buch ————

bei dem ersten auftretenden Komma abgeschnitten und nur die-
ser vordere String-Teil der Variablen zugeordnet. Beispiel:

Print At(10,10);
Input "Eingabe Wert,String,Wert: ",A%,B$,C%

Print A%,B$,C%

Bei String-Eingaben sind Strings mit einer Länge von bis zu 255
Zeichen möglich. Während der Eingabe können Sie die schon
eingegebenen Daten auf verschiedene Weise korrigieren:

<Backspace> Zeichen links vom Cursor löschen

<Delete> Zeichen unter dem Cursor löschen

<Pfeil-links> Cursor um eine Stelle nach links

< Pfeil-rechts > Cursor um eine Stelle nach rechts

(sofern er nicht am Zeilenende steht)

< Pfeil-hoch> Cursor zum Zeilenanfang

< Pfeil-runter > Cursor zum Zeilenende

Wollen Sie bei der Eingabe Sonderzeichen verwenden, gibt es

dazu zwei Möglichkeiten:

l. <Alternate> und andere <Taste>

2. <Amiga> und andere <Taste>

Wie bei PRINT gibt es auch hier die Kanal-Variante. Mit IN-
PUT # und der daran anschlieBenden Nummer des gewiinschten

Datenkanals können auch Daten aus Diskettendateien bzw. über
die Schnittstellen (siehe OPEN) bezogen werden. Beispiel:

Open "I", #1,"DATEI.DAT"

Input #1,A$,B$,C$

oder:

Open "#1, ""CON:"
Input #1,A$,B$,C$

——— Ein-/Ausgabebefehle 81

Bei diesen Beispielen muß allerdings gewährleistet sein, daß die
aus der Datei gelesenen Daten auch zu den vorgegebenen Vari-
ablentypen passen.

INPUT$() Zeichenketteneingabe

A$=INPUT$(Anz)

A$=INPUT$(Anz ,#Kanal)

Wollen Sie, daß Strings "verdeckt" eingegeben werden, können

Sie das mit dieser Eingabe-Funktion erreichen. Anders als bei
allen anderen Input-Arten wird hier die aufnehmende Variable

nicht dem Befehl nachgestellt, sondern der String wird einer
Variablen zugewiesen (A$=INPUT$(10)), direkt nach Abschluß
der Eingabe ausgegeben (PRINT INPUT$(10)) oder in eine Ab-
frage eingebunden (IF INPUT$(4)="xxxx").

Der Funktion wird in Klammern eine Zahl übergeben, die an-

gibt, wie viele Zeichen maximal eingegeben werden können.
Wird diese Zeichenanzahl erreicht, wird das Programm, ohne auf

die Betätigung der <Return>-Taste zu warten, fortgesetzt. Der
eingegebene Text ist während der Eingabe nicht zu sehen. Kor-

rekturen an der Eingabe sind auf dieselbe Art wie bei INPUT
möglich.

Auch hier gibt es die Kanal-Variante (A$=INPUT$(10,#1)).
Dieser Befehl eignet sich besonders dazu, eine bestimmte Da-

tenmenge aus einer Diskettendatei zu lesen. Um zum Beispiel

eine ganze Datei in einen String einzulesen (vorausgesetzt, sie ist
nicht länger als die maximale String-Länge von 32767 Byte),
können Sie folgendes Mini-Programm verwenden (siehe auch
BGET# bzw. LINE INPUT#):

Open "I" #1 "Datei Dat"
A$=Input$(Min(32767, Lof (#1)),#1)
Close #1

Print AS

82 Das große GFA-BASIC-Buch ————

Sie müssen hierbei die Länge der Datei nicht kennen, da sie
durch LOF() ermittelt wird. Um die maximal mögliche String-
Länge (32767 Zeichen) nicht zu überschreiten, wird die einzu-
lesende Zeichenanzahl durch MIN() auf diese maxımale Anzahl
begrenzt.

LINE INPUT { LI } Zeichenketteneingabe

LINE INPUT ["Text":,] Var$ [Var2$,...]

LINE INPUT #Kanal, Var$ [Var2$,...]

Der LINE INPUT-Befehl ist ein direkter Nachkomme des nor-

malen INPUT-Befehls. Sie unterscheiden sıch dadurch, daß

LINE INPUT ausschließlich für die Texteingabe zu verwenden
ist, und daß bei Angabe einer Variablenliste die Eingaben alle
einzeln mit <Return> abgeschlossen werden müssen. Während bei

INPUT durch die Eingabe eines Kommas kenntlich gemacht
wird, daß nun die nächste Variable in der Liste bedient wird,

wird hier das Komma als Textzeichen innerhalb des einge-

gebenen Strings anerkannt. Genauso wie bei INPUT kann auch
hier ein Text-String übergeben werden, der dann vor dem ersten
einzugebenden Zeichen erscheint.Beispiel:

Line Input "Bitte Text eingeben: ",Aa$,Bb$,Cc$

Durch Verwendung eines Kommas oder Semikolons zwischen
dem Befehl (bzw. Text) und der Variablen (bzw. Variablenliste)

kann auch hier bestimmt werden, ob ein Leerzeichen und ein

Fragezeichen vor der ersten Eingabestelle erscheinen soll oder
nicht. Editionsmöglichkeiten wie bei INPUT.

Die zweite Syntaxform liest die Daten aus der ın Kanal ange-
gebenen Datei oder Schnittstelle (siehe OPEN). Hier erklärt sich
auch, warum dieser Befehlsname mit LINE beginnt. Befinden

sich nämlich innerhalb des eingelesenen Textes keine CRs oder
LFs, bzw. zwischen einem CR/LF und dem nächsten liegen
mehr als 254 Zeichen, wird der Text nach maximal 254 Zeichen

——— Ein-/Ausgabebefehle 83

automatisch abgeschnitten und der betreffenden Variablen zuge-
ordnet. Texteingaben mit mehr als 254 Zeichen (254+CR+LF =
256 = max. Zeilenlänge) sind nicht möglich.

Sind im Text Zeichen mit einem ASCII < 32 enthalten, die keine

Zeilentrennzeichen (CR/LF) sind, sind Fehleingaben möglich.

Etwas verwirrend ist, daß ın Fällen, in denen nur ein Carriage
Return zur Zeilentrennung verwendet wurde, dies zwar insoweit
erkannt wird, daß nur der vordere Teil des Textes bis zum er-

sten CR an die Variable übergeben wird, jedoch der File-Poin-
ter um die gesamte Anzahl der gelesenen Zeichen weitergesetzt
wird.

Folgerung: LINE INPUT# ist nur für ASCII-Text (ASCH > 31)
- mit CR+LF als Zeilentrennung - korrekt einsetzbar.

5.2 Datenausgabe

PRINT { ? oder P } | Daten ausgeben

PRINT [CAT(S,2)](,']"Text"(C;,']Var(;,'JExpr...7]

PRINT [#Kanal, [;]] "Text"[L;,'JVar[L;, "lExpr...;)

Mit PRINT läßt sich fast alles auf den Bildschirm schreiben. Er
ist einer der Tausendsassa-Befehle die man in BASIC kennt. Um
seinen Variantenreichtum ausloten zu können, wird es Ihnen

nicht erspart bleiben, ihn in verschiedenen Fällen bei der Arbeit
zu beobachten. Probieren Sie ihn also fleißig aus. Beispiel:

A%=1
AS=""- Demo"

Print At(1,12);
Print Chr$(27);"p";" PRINT"'AS,AZ,"Taste: ";
Print "'"sChr$(27);"q":At(1, 13);
Print String$(40,LeftS(A$))

84 Das große GFA-BASIC-Buch ——

In diesen bunt zusammengesetzten PRINT-Befehlen haben die
einzelnen Komponenten folgende Bedeutung:

At(XP, YP)

Mit diesem wahlfreien Zusatz können Sie bestimmen, an welcher

Cursor-Position die Ausgabe erfolgen soll. Das Ausgabefenster
besteht, von der Home-Position aus gezählt, aus 77 Spalten und

28 Zeilen (XP= 1-77/YP= 1 - 28).

Dasselbe wird auch durch LOCATE erreicht (siehe dort).
AT(XP,YP) kann - wie im Beispiel gezeigt - auch innerhalb der
Ausgabezeile eingesetzt werden, wodurch mit einem PRINT
verschiedene Bildschirmpositionen bestimmbar sind.

; (Semikolon)

Dieses Zeichen dient dazu, verschiedene Ausdrücke miteinander

zu verbinden. Der nach diesem Zeichen stehende Ausdruck wird

dann direkt an den vorhergehenden angeschlossen. Wenn das

Semikolon als Schlußzeichen eingesetzt wird, wird auch der erste
Ausdruck des nächsten PRINT-Befehls an den zuletzt ausge-

gebenen PRINT-Ausdruck angehängt, da Carriage Return und
Line Feed (CR/LF = Wagenrücklauf/neue Zeile) in diesem Fall
unterdrückt werden.

, (Komma)

Wird das Komma eingesetzt, dann wird der folgende Ausdruck
an den nächsten von 5 Tabulatorpunkten hinter der letzten Aus-

gabe gesetzt. Diese Punkte haben die X-Positionen 1,17,33,49,65.

’ (Apostroph)

Ein Apostroph steht als Leerzeichen. Es werden also in der

Bildschirmausgabe tiberall dort Leerzeichen gesetzt, wo sie durch
dieses Zeichen vorgegeben wurden.

Außerdem wurden String- und numerische Funktionen in die
Zeilen eingebaut, um zu zeigen, daß Funktionen problemlos di-

——— Ein-/Ausgabebefehle 85

rekt in die PRINT-Ausgabe integriert werden können. Beachten

Sie dazu die jeweilige Funktionsbeschreibung unter CHR$(),
STRING$(O, LEFT$(etc.

Ein direkt angegebener Text ist vor dem ersten Textzeichen mit

Anführungszeichen zu versehen (Print "text), da sonst der Text
ggf. als Variable ohne Inhalt interpretiert wird. Folgt auf den
Text nichts mehr, setzt der Interpreter die Ausführungszeichen
am Ende selbständig.

Ein einzelner PRINT-Befehl ohne nachgestellte Ausdrücke be-
wirkt den Ausdruck einer Leerzeile (CR/LF). Eine Variante des
PRINT-Befehls ist PRINT #. In diesem Fall folgt auf das Num-
mernzeichen eine Zahl, die den anzusprechenden Datenkanal an-
gibt. Wenn Sie also ın eine geöffnete Diskettendatei etwas hin-
einschreiben möchten, ist das hiermit möglich (z.B. Print#1;"BA-
SIC").

PRINT USING { P USING } Daten formatiert ausgeben

PRINT USING "format",Expr [,Var,...] [3]

PRINT USING Format$,Expr [,Var,...1[;]

PRINT #Kanal,USING "format",Expr [,Var,...1[;]

Durch diesen Befehl kann ein Ausgabeformat fiir Werte und
Strings bestimmt werden. Ihm folgt als erstes ein String oder
eine String-Variable, in der das gewiinschte Format angegeben
wird. Als nächstes werden nach einem Komma die Ausdrücke
oder Variablen übergeben, die diesem Format entsprechen sollen.
Werden mehrere Ausdrücke angegeben, müssen diese durch
weitere Kommas getrennt werden. Als Formatierungszeichen
sind vorgesehen:

Platzhalter für eine Ziffer:

Print Using "####4##" Int(31421/3)

Aursgabe: 10473

86 Das große GFA-BASIC-Buch

Position des Dezimalpunktes:

Print Using "HHHHHR HERR" 31421/4

Ausgabe: 7855.2500

Ausgabe auch des positiven Vorzeichens:

Print Using "+#####H#.####" 31421/4

Ausgabe: + 7855.2500

Platzhalter für negatives Vorzeichen:

Print Using "HAHHR #HHHHH" 31421/-4

Ausgabe: - 7855.250000

Füllzeichen für alle angegebenen Vorkommastellen, die nicht
von dem auszugebenden Wert belegt werden. Sonst wie #.

Print Using "*###### .####" 31421/1.4

Ausgabe:**22443.5714

Hinter dem Dezimalpunkt verwendet, werden so viele * ausge-

geben, wie angegeben sind, und die auszugebende Zahl wird real

auf die gewünschte Stelle gerundet.

Print Using "*####H#.#****" 31421/1.4

Ausgabe:**22443 .6****

Voranstellung eines $:

Print Using "S####H#. HH" 31421/1.4

Ausgabe: $22443.57 |

Einfügen eines Kommas (Tausendertrennung):

Print Using "HH ###, ###.###", 3142*2781.71

Ausgabe: 8,740,132.820

——— Ein-/Ausgabebefehle 87

2° Ausgabe im Exponentialformat. Führende # stehen hier
für die Stellen des Basis-Anteils und * für die Exponen-

tenstellen (E+xxxx). Überflüssige Basis-Stellen werden mit
0 gefüllt. Der Exponent wird den Vorkommastellen ange-

paßt.

Print Using "#. HHHHHHHRE"""13711*64

Ausgabe:8.77504000E+05

! Das erste Zeichen eines Strings wird ausgegeben:

Print Using "!sing In IFA", "Uhu" "igitt" "Gaga"

Ausgabe:using in GFA

& Gesamt-String wird ausgegeben:

Print Using "&hausen" "Enten"

Ausgabe: Entenhausen

\-.\ Ausgabe von so vielen Zeichen des Strings, wie Länge von

\..\ (inkl. Backslashs):

Print Using "\..\ingen" "Hattu Möhren?"

Ausgabe: Hattingen

(Tiefstrich) Interpretiert das hierauf folgende Using-
Formatzeichen nicht als solches, sondern gibt es als ASCII-
Zeichen aus:

Print Using "Channel ### _\ &",44,"XxYz"

Ausgabe: Channel #44 \ XYZ

Die Formatvorgabe und die String- und/oder Werte- und/oder
Ausdrucksliste kann in beliebiger Reihenfolge gegliedert sein,
solange die Parametertypen in ihrer Reihenfolge der Formatvor-
gabe entsprechen. Wird die Reihenfolge nicht korrekt eingehal-

ten bzw. trifft der Interpreter auf unlogische Formate, wird ein

Fragezeichen an der betreffenden Stelle ausgegeben. Bei nume-
rischen Formaten wird dem ausgegebenen Wert ein Prozent-

88 Das große GFA-BASIC-Buch —

zeichen vorangestellt, wenn die Stellenanzahl des Wertes das da-

für vorgesehene Format überschreitet. Werden außerdem bei nu-

merischen Werten im Format weniger Nachkommastellen ange-
geben als vorhanden sind, werden die übrigen Nachkommastellen

integriert.

Außerdem haben Sie die Möglichkeit, zwischen Dezimalpunkt |

und -komma zu wählen (siehe MODE). Durch Nachstellen eines
Semikolons (Print Using "....",Expr,Liste....;) kann - wie bei
PRINT - die Ausgabe von CR/LF unterdrückt werden.

Mit Angabe eines Datenkanals (Print #1,Using...) können die
Ausgaben auch auf diesen Kanal umgeleitet werden. Die oben
angeführten Syntaxregeln sind auch dann gültig.

WRITE {WR} Daten ausgeben

WRITE [#Kanal,] ["Text" [,Var,Expr;...1]

Das ist ein Ausgabe-Befehl, der in erster Linie zur Daten-
speicherung in sequentiellen Dateien gedacht ist. Dieser Befehl
kann aber auch zur Text- bzw. Datenausgabe auf dem Bild-
schirm verwendet werden. Er ist dem PRINT-Befehl sehr ähn-
lich, hat jedoch einen anderen syntaktischen Aufbau. Außerdem
werden hier die Anführungszeichen eines übergebenen Strings
(Ausdruck oder Variable) sowie die Kommas, mit denen hier die
einzelnen Ausdrücke voneinander getrennt werden, ebenfalls

ausgegeben.

Seinen eigentlichen Sinn zeigt dieser Befehl jedoch erst, wenn
mit einem INPUT#-Befehl mehrere Werte oder Strings gleich-
zeitig aus einer Datei eingelesen werden sollen. Dazu müssen die
Einzeldaten durch Kommata voneinander getrennt sein. Da

WRITE# Kommata an den entsprechenden Platz in der Datei
schreibt, können die Daten beim Einlesen mit INPUT# unter-
schieden und den dabei angegebenen Variablen zugeordnet wer-
den. Beispiel:

——— Ein-/Ausgabebefehle 89

Open "0",#1,"Friends"
Restore N_amen

For 1%=1 To 4 |
Read Name$,Beruf$,Telefon$
Write #1,Name$,Beruf$, Telefon$

Datei zur Ausgabe offnen

Data-Zeiger setzen

4 Zeilen

Je 3 Datas

in die Datei schreiben

Next 1% Nächste Zeile
Close #1 Datei schließen
N_amen:
Data " Elizabeth "," Königin "u London/ 112233 au
Data " Kashogghi "," Milliardär "u Riad/1.000.000.000 "
Data " Boris "u The lost Winner ",! Leimen/666666 "
Data " Yeti " Schneemensch "u Himalaya/XY-ungelöst "
Open "1",#1, "Friends" I Datei zum Einlesen öffnen
Print "Meine besten Freunde:";Chr$(13);Chr$(10) I Bla...

Print "Datei-Inhalt ohne Format:";Chr$(13);Chr$(10) ! ...bla
A$=Input$(Lof(#1),#1) I Kompletten Datei-Inhalt lesen
Print A$ I Unformatiert ausgeben

Seek #1,0 I File-Pointer wieder auf Anfang

Print "Mit WRITE ausgegeben: ";Chr$(13);Chr$(10)
For 1%=1 To 4 I 4 Zeilen

Input #1,N.ame$,B.eruf$,T.elefon$! Je 3 Ausdrücke
Write N.ame$,B.eruf$,T.elefon$ I mit WRITE ausgeben

Next I%
Seek #1,0 I File-Pointer wieder auf Anfang

Print Chr$(10);'"Mit PRINT ausgegeben: ";Chr$(13);Chr$(10)

For 1%=1 To 4 I 4 Zeilen

Input #1,N.ame$,B.eruf$,T.elefon$! Je 3 Ausdrücke

Print N.ame$,B.eruf$,T.elefon$ I mit PRINT ausgeben

Next I%

Close #1 I Datei schließen

5.3 Bildschirmoperationen

HTAB { HT} Aktuelle Cursor-Spalte bestimmen
Le

HTAB Spalte

Ein Befehl, der vor allem der Kompatibilitat zu anderen BASIC-

Dialekten und der Zusammenarbeit mit CRSCOL dient.

90 | Das große GFA-BASIC-Buch —————

LOCATE { LOCAT } Cursor positionieren

LOCATE S,Z

Positioniert den Zeichen-Cursor auf Spalte "S" und Zeile "Z",

analog zu PRINT AT(S,Z). Weiteres siehe dort.

POS() Cursor-Spalte ermitteln

Var=P0S (Dummy)

POS liefert Ihnen die Zahl der seit dem letzten Wagenrücklauf

(CR) am Bildschirm ausgegebenen Zeichen AND 255. Es muß
ein in Klammern nachgestelltes numerisches Scheinargument an-
gegeben werden. Diese Zahl kann beliebig gewählt werden und
hat keinen weiteren Einfluß auf die Funktion. |

Da eine Bildschirmzeile maxımal 80 Zeichen aufnehmen kann,

muß der von POS zurückgelieferte Wert nicht unbedingt mit der
tatsächlichen Spaltenposition des Cursors übereinstimmen. Geben

Sie zum Beispiel eine 150 Zeichen lange Zeichenkette aus, so
liefert POS den Wert 150, der Cursor steht jedoch in Spalte 70.

Ist in der letzten Ausgabe eines der Steuerzeichen CHR$(8)
(Backspace) oder CHR$(13) (Carriage Return) enthalten ge-

wesen, haben diese Einfluß auf die POS()-Position:

Backspace (BS=Chr$(8)) Vermindert POS() um 1
Carriage Return (CR=Chr$(13)) Setzt POSC) auf Null

——— Ein-/Ausgabebefehle 91

SPC() Leerzeichen ausgeben

PRINT SPC(Anz)

PRINT [Ausdrücke;Werte;etc.;] SPC(Anz) [;etc.]

SPC ist ein Befehl, der nur im Zusammenhang mit PRINT ver-
wendet werden kann. Der in Klammern angegebene Ausdruck
Anz steht für die Anzahl an Leerzeichen (SPaCe = 0 - 255), die
an der aktuellen Cursor-Position ausgegeben werden sollen.
Beispiel:

Print "==>";Spc(20) ;"'Ende!
Ausgabe : ==> Ende

Nicht möglich ist:

AS=""==>"'4+Spc(20)+"Ende"

Es wird ein Syntaxfehler angezeigt. Für solche Konstrukte eignet

sich SPACE$(20).

TAB() | _ Tabulator setzen

TAB(Position)

PRINT [Ausdrücke;Werte;etc.;] TAB(Anz) [;etc.]

Es kann eine Tabulatorposition bestimmt werden, an welcher der

Cursor dann positioniert wird. Diese Position kann im Bereich

von 0 bis 255 liegen. Größere Werte werden mit MOD 256 auf
diesen Bereich zurückgerechnet. Befindet sich der Cursor in ei-
ner Zeile hinter der zuletzt angegebenen Tabulatorposition und
der Wert einer sich anschließenden TAB-Anweisung liegt zwi-
schen 256 und der aktuellen Cursor-Position, so wird dieser Ta-

bulator in derselben Zeile ausgeführt. Ist der TAB-Wert kleiner
als die aktuelle Cursor-Position, wird die Anweisung in der

92 Das große GFA-BASIC-Buch ————

nächsten Zeile ausgeführt. TAB ist ebenso wie SPC nur in Ver-
bindung mit PRINT ausführbar. String-Konstrukte mit TAB
sind nicht möglich. Beispiel:

For J%=0 To 11 ı 12 mal
Restore T_ext ! Data-Zeiger setzen

For 1%=1 To 2 ! 4 Datas...

Read A$,A% I „..lesen...

Print Tab(J%*6);A$'!"ıııa% I „.. und ausgeben
Next 1% ı Nächstes Data

Next J% ı Nächste Position

T_ext:

Data GFA-,1,BASIC,2

VTAB { VT} Aktuelle Cursor-Zeile bestimmen

VTAB Zeile

VTAB und HTAB (siehe dort) haben im Vergleich zu LOCATE
und PRINT AT den Vorteil, daß sich mit ihnen der Cursor für

Zeile und Spalte getrennt positionieren läßt.

5.4 Diskettenoperationen

Bei allen Diskettenoperationen, denen ein Dateiname zu über-

geben ist, besteht die Möglichkeit, einen Suchpfad zu definieren,

über den der Dateizugriff ausgeführt werden soll. Dieser setzt
sich (entsprechend den Konventionen von AmigaDOS) aus drei

Komponenten zusammen:

[Diskettenname | Laufwerk 1: [Verzeichnisname/.../Verzeichnisname/]
Dateiname

Diskettenname | Laufwerk:

Ganz am Anfang des Pfads steht entweder der Name der anzu-
sprechenden Diskette oder die Bezeichnung des gewünschten

——— Ein-/Ausgabebefehle 93

Laufwerks, beides gefolgt von einem Doppelpunkt. Als Lauf-

werksbezeichnung sind die folgenden Namen zulässig:

DFO:, DF1:,DF2:,DF3: für die (maximal) vier Diskettenlaufwerke

DHO:, DH1:, ...: für die Partitions auf einer Amiga-seitigen Harddisk

JHO:, JH1:, ...: für die Amiga-Partitions auf einer PC-seitigen Hard
disk

RAM: für evtl. vorhandene RAM-Disk

Die Angabe des Laufwerks kann auch entfallen. In diesem Fall
wird dann auf dem aktuellen Laufwerk gesucht.

Verzeichnisname:

An zweiter Stelle folgt der Name des Verzeichnisses (Ordners),
in dem die Dateı abgelegt ist. Verzeichnisse dürfen beliebig
verschachtelt werden, (mehr als drei Ebenen sind jedoch aus

Gründen der Übersichtlichkeit nicht ratsam). Die einzelnen Na-
men müssen in diesem Fall durch Schrägstriche (/) voneinander
getrennt werden. Jeder Name darf maximal 30 Zeichen ent-
halten.

Dateiname:

Der Dateiname (von den Verzeichnisnamen durch einen

Schrägstrich getrennt) darf ebenfalls bis zu 30 Zeichen lang sein.

Beispiele:

DF1:UTILITY/OUTPUTS/DRUCKE .WAS

sucht im Laufwerk DFI im Unterordner OUTPUTS des Ordners

UTILITY nach der Datei DRUCKE.WAS.

PROGRAMME :GFA-BASIC/GRAFIK.LST

sucht auf der Diskette PROGRAMME im Ordner GFA-BASIC

nach der Datei GRAFIK.LST.

dhO:BEISPIELE

sucht auf der Amiga-seitigen Harddisk-Partition 0 nach der
Datei BEISPIELE. Der Pfadname kann unter GFA-BASIC in

94 Das große GFA-BASIC-Buch ————

den meisten Fällen als String-Ausdruck, als String-Variable oder
als Kombination von beidem übergeben werden. |

Im folgenden wird Ihnen öfter der Begriff "#Kanal" begegnen.
Damit ist bei Datei-relativen Diskettenoperationen der Identi-fi-
kator (0 - 99) der jeweils angesprochenen Datei gemeint.

BLOAD {BL} Datei in Speicherbereich laden

 BLOAD "Dateiname" [,Start]

Mit BLOAD kann eine beliebige Datei komplett vom Fest-spei-

cher (Diskette/Hard-Disk/RAM-Disk) an eine beliebige RAM-
Adresse geladen werden.

In "Dateiname" wird die Dateibezeichnung (ggf. inkl. Pfad)
übergeben, und durch den Parameter "Start" wird die Adresse

angegeben, ab welcher die Daten abgelegt werden sollen. Wird

"Start" ausgelassen, wird jene Adresse als Ziel verwendet, die

beim letzten BSAVE-Aufruf als Quelle gedient hat. Beide Para-
meter können auch in Variablen übergeben werden.

Vor einem BLOAD-Aufruf sollten Sie sicherstellen, daß die zu

ladende Datenmenge auch tatsächlich ab der angegebenen Spei-

cherstelle untergebracht werden kann, ohne in wichtige Bereiche

hineinzuschreiben. In den meisten Fällen wird dies durch das
Einrichten eines ausreichend großen Puffers in Form einer
Stringvariablen erledigt.

——— Ein-/Ausgabebefehle 95

BSAVE {BS} Speicherbereich auf Disk speichern

BSAVE "Dateiname", Start, Anz

Das ist ein sehr komfortabler Befehl, auf den man sicher immer

wieder zurückkommen wird. Er bietet die Möglichkeit, eine be-
liebige Anzahl von Bytes als gesamten Block (BSAVE = Block-
SAVE) auf Diskette zu speichern. Es muß der Name der Datei

angegeben werden, die diesen Block aufnehmen soll. Nach einem
Komma folgt die Adresse, in welcher das erste Byte des Blocks

steht, und abschließend wieder nach einem Komma die Anzahl

(Anz) der Bytes, die gespeichert werden sollen.

CHAIN { CHAI } Programm laden (Autostart)

CHAIN "Programmname"

Dieser Befehl ist eigentlich identisch mit LOAD. Allerdings wird
das hiermit geladene Programm nach dem Laden automatisch
gestartet. Da bei diesem Programmstart - wie sonst auch - alle
Variablen und Felder gelöscht werden, können diese zwischen
den "gechainten" Programmen nicht ausgetauscht werden. Hier

hat man nun folgende Möglichkeit:

Sie können alle wichtigen Daten, die von dem aufrufenden Pro-
gramm übergeben werden sollen, in eine Datei schreiben (siehe
PRINT#/WRITE#), diese am Programmanfang des CHAIN-Pro-
gramms einlesen (siehe INPUT#) und die Puffer-Datei dann

wieder löschen. Der Vorteil ist hier, daß die übergebene Daten-
menge nur durch den freien Disk-Speicherplatz begrenzt ist.

Beispiel:

Programm 1:

A%=1025 I Beliebige Variable

B=399.22 ! " "

96 Das große GFA-BASIC-Buch ——

C$="BASIC" i n u

Open "0",#1,"Vars.Dat" ! Puffer-Datei öffnen
Write #1,A%,B,C$ I Daten übergeben
Close #1 I Datei schließen

I Chain "Program2.GFA"

Programm 2 (Program.GFA):

Open "I",#1,"Vars.Dat"

Programm 2 aufrufen

Puffer-Datei öffnen i

Input #1,A%,B,C$ I Daten einlesen
Close #1 + Datei schließen

Kill "Vars.Dat" i Puffer-Datei löschen

Print "Variablen aus Programm 1 : ":AZ''B!'CS

Im Interpreter-Betrieb wird durch CHAIN auch der BASIC-Ar-

beitsspeicher samt Inhalt (aufrufendes Programm) vorher ge-

löscht. Wenn Sie kein PSAVE-geschütztes Programm aufgerufen
haben, finden Sie nach Programmende das nachgeladene Pro-

gramm auch ım Editor.

CHDIR { CHD } Ordner wechseln

CHDIR "Ordner"

Hiermit wird das aktuelle Verzeichnis (Ordner) neu festgelegt.

Dieses Verzeichnis gilt im weiteren Programm (bis zur nächsten
Änderung) als voreingestellt, d.h. bei Diskettenzugriffen wird
immer auf dieses Verzeichnis zugegriffen. Dem Befehl wird
einfach der Zugriffspfad übergeben, über den das Verzeichnis
zu erreichen ist (Pfadstruktur siehe Kapitelanfang). Diese Be-
zeichnung kann wieder entweder in einer Variablen enthalten
sein (Chdir Ordner$) oder als Textkonstante übergeben werden

(Chdir "UTILITY").

Besteht die Pfadangabe nur aus einem Doppelpunkt, greift

CHDIR danach nicht auf einen Ordner, sondern auf das

Hauptverzeichnis zu.

Außerdem besteht die Möglichkeit, durch einen Schrägstrich (/)
in das jeweils übergeordnete Verzeichnis zu wechseln. Ange-
nommen, das aktuelle Verzeichnis ’Ordnerl’ liegt im Verzeichnis
’Chef Ordner’. Ebenfalls in diesem Über-Ordner befindet sich

——— Ein-/Ausgabebefehle 97

noch ein weiteres Verzeichnis ’Ordner2’, zu dem gewechselt
werden soll. Anstatt in diesem Fall CHDIR "Chef _Ordner/Ord-
ner2" zu schreiben, genügt ein CHDIR "/Ordner?".

DFREE() Freien Disketten-Speicherplatz ausgeben

Var=DFREE(0)

DFREE(0) liefert den momentan freien Speicherplatz des aktu-
ellen (über CHDIR gewählten) Laufwerks. Der Wert 0 ist ein
Dummy-Wert und hat keine weitere Bedeutung.

DIR Directory ausgeben

DIR ["Pfad"] [TO "Datei"]

Durch DIR lassen sich auf verschiedene Weise Inhaltsverzeich-
nisse entweder einer beliebigen Diskettenstation oder eines be-
stimmten Ordners ausgeben. Dabei ist es auch möglich, diese
Directories in eine bestimmte Diskettendatei zu schreiben oder

auf dem Drucker ausdrucken zu lassen. Zur Pfadangabe können
sämtliche am Kapitelanfang beschriebenen Spezifikationen ver-

wendet werden.Beispiele:

DIR "DFO:PROGRAMME" |

gibt alle Dateien aus, die sich im Laufwerk DFO: im Verzeichnis
PROGRAMME befinden.

DIR "DF1:" TO "PRT:"

gibt alle Dateien des Laufwerks DFl: auf dem Drucker aus.

98 Das große GFA-BASIC-Buch ————

DIR$() Aktuellen Zugriffspfad ermitteln

Var$=DIR$(0)

Mit dieser Funktion kann der momentan gültige (über CHDIR
festgelegte) Zugriffspfad ermittelt werden. Ist kein Ordner ge-

öffnet, wird ein Leer-String zurückgegeben.

EXIST() Existenz einer Datei priifen

Var=EXIST(Dateiname)

Ermittelt, ob die Datei (oder auch der Ordner) "Dateiname" vor-
handen ist. Es wird entweder eine 0 (= FALSE -> nicht vorhan-
den) oder -!| (= TRUE -> vorhanden) zurückgegeben. Die An-

gabe eines Suchpfades erfolgt ggf. gemäß der am Kapitelanfang
beschriebenen Struktur.Beispiel:

If Exist("DF1:Datei.Dat") I Datei.Dat auf DF1?

Open "1",#1,'"DF1:Datei.Dat" ! Ja, dann öffnen

'...weiteres Programm
Else

Print "Datei.Dat existiert nicht!"

Endi f

FILES Directory (erweitert) ausgeben |

FILES ["Pfad"] [TO "Datei"]

Genügen Ihnen die reinen Dateinamen nicht, die mit DIR
ausgegeben werden, können Sie mittels dieses Befehls auch

weitere Attribute der einzelnen Dateien erfahren. So haben Sie
die Möglichkeit, zusätzlich die Größe der Dateien sowie das

Datum und die Uhrzeit ihrer Erstellung in Erfahrung zu

——— Ein-/Ausgabebefehle 99

bringen. Im übrigen wird dieser Befehl exakt genauso
angewendet wie DIR (FILES z.B. listet alle Dateien der aktuellen
Disk außerhalb von Ordnern sowie alle Ordner auf).

‘KILL { K } Disk-Datei löschen

KILL "Dateiname"!

Möchten Sie eine Datei auf dem Festspeicher (Diskette/Hard-
Disk/RAM-Disk) löschen, können Sie das mit diesem Befehl

tun. Dazu wird in "Dateiname" der Name der zu löschenden Da-

tei (Pfad siehe ggf. Kapitelanfang) angegeben.

LIST { LIS } Programm listen/speichern (ASCIl)

LIST ["Dateiname!)

Möchten Sie das im Arbeitspeicher befindliche Programm auf

dem Monitor auflisten oder als ASCII-File auf Diskette ab-

speichern, hilft Ihnen dieser Befehl. Geben Sie im Direktmodus
oder als Programmzeile nur den Befehlsnamen ohne Angabe ei-
nes Dateinamens ein, wird das gesamte Programm auf dem Aus-

gabebildschirm ausgegeben. Das Listing kann jederzeit durch die
GFA-Abbruchtastenkombination <Control><Shift><Alter-nate>

unterbrochen werden. Wollen Sie das Listing als sogenanntes

ASCII-File auf Diskette abspeichern, übergeben Sie dem Befehl

(in Anführungsstrichen) den Namen der Datei, in welcher das
Listing abgelegt werden soll. Dieser Befehl ist identisch mit der
Editor-Funktion Save,A. Sie können also hiermit abgespeicherte
Programme jederzeit mit der Editor-Funktion Merge ın ein an-
deres im Arbeitsspeicher befindliches Programm einbinden. Die
Anführungsstriche zum Dateinamen können vernachlässigt wer-

den, da sie vom Interpreter - falls nicht vorhanden - selbsttätig

gesetzt werden. Die Extension zum Dateinamen kann ebenfalls

100 Das große GFA-BASIC-Buch ————

vernachlässigt werden. Auch sie wird vom Interpreter gesetzt
(.LST - falls nicht anders vorgegeben). Befindet sich bereits ein
Programm gleichen Namens auf der Diskette, wird es automa-

tisch auf Programmname.BAK umbenannt.

Ein ASCII-File ist eine Datei, in die jedes einzelne Text- und
Steuerzeichen des zu speichernden Textes in der Reihenfolge
seines Auftretens als entsprechender ASCII-Wert (0 - 255) ge-

schrieben wird. Die meisten textverarbeitenden Programme bie-
ten die Möglichkeit, ASCI-Files zu speichern und zu laden.
D.h., daß Texte dieser Art unter den verschiedenen Program-
men, Systemen und Computern austauschbar sind, soweit diese

sich an den American Standard Code for Information Inter-
change halten (ASCII = Amerikanischer Standard-Code zur In-

formationsübertragung). Dateien mit anderen Formaten, wie z.B.

die .GFA-Dateien werden nach einem anderen Schema kodiert.
Dieser Token-Code wird vom Programmierer selbst entwickelt,
um zum Beispiel eine höhere Lade- oder Speichergeschwindig-
keit, einen speziellen Effekt oder eine erschwerte Lesbarkeit zu

erreichen (siehe PSAVE). Diese Dateien sind dann allerdings
nicht mehr mit anderen Programmen (Interpretern etc.) aus-
tauschbar. Sie sind nicht mehr kompatibel (compatibility =

Vereinbarkeit/Verträglichkeit).

Zur Ausgabe des Listings auf dem Drucker haben Sie auch die
Möglichkeit, 1n Dateiname den Drucker-Port PRT: anzugeben.

Diese Variante ist dann identisch mit dem Befehl LLIST, wobei

jedoch Punkt-Befehle (siehe Editor-Funktion Llist) unberück-
sichtigt bleiben.

LOAD { LOA } Programm in Arbeitsspeicher laden

LOAD “Programmname"

Mit LOAD kann ein beliebiges GFA-BASIC-Programm in den
Arbeitsspeicher geladen werden. Prinzipiell verhält sich dieser
Befehl so, als würden Sie den Menüpunkt Load im Editormenü

———— Ein-/Ausgabebefehle 101

anklicken oder im Editor die Taste <Fl> drücken. Auch hier ist
die am Kapitelanfang beschriebene Pfadstruktur zu verwenden.
"Programmname" ist der Name des zu ladenden Programms. Wird
dem Programmnamen keine Extension beigefügt, wird vom In-
terpreter selbständig .GFA angehängt, z.B.:

Load "Utility/Drei_d"

Das aktuelle Programm wird beendet und das Programm
Drei _d’ nachgeladen. Dieses muß nun durch Run im Direkt-
modus, <Shift><F10> oder Klick auf Run im Editormenü ge-

startet werden. Bei durch PSAVE gespeicherten Programmen ist
dies jedoch nicht nötig, da diese automatisch gestartet werden.

MKDIR { MK } Ordner erzeugen

MKDIR "Ordner"

Mit MKDIR können auf einer beliebigen Station im Haupt-Di-
rectory oder innerhalb eines vorhandenen Ordners weitere Ord-

ner angelegt werden. Dabei wird ggf. wieder die am Kapitel-
anfang beschriebene Pfadstruktur verwendet. Als Überblick folgt
eine Auflistung verschiedener Varianten dieses Befehls.

Mkdir "AKTE"

erzeugt einen neuen Ordner mit dem Namen AKTE auf der ak-
tuellen Station entweder im Haupt-Directory oder. in dem Ord-
ner, der gerade geöffnet ist. Ä

Mkdir "DFO:FACH_A/AKTE"

erzeugt einen neuen Ordner mit Namen AKTE auf Station DFO:
im vorhandenen Ordner FACH_A. Ist bereits ein Ordner mit
derselben Pfadbezeichnung vorhanden, wird eine Fehlermeldung
ausgegeben.

102 Das große GFA-BASIC-Buch

NAME { NAAS} Datei umbenennen

NAME "Name_alt" AS "Name_neu"

Ermöglicht die nachträgliche Änderung eines Dateinamens. Die-
ser Befehl erwartet zwei Parameter. Der erste davon (Name_alt)
ist der Dateiname, der verändert werden soll. Nach einem ange-

hängten AS wird ein weiterer Name (Name_ neu) übergeben, der

nun an die Stelle des alten Namens tritt. Beide Namen können
entweder als String-Ausdruck, als String-Variable oder als
Kombination aus beidem übergeben werden. Am Kapitelanfang
finden Sie die Pfadstruktur, die ggf. auch hier zu verwenden ist.
Zu beachten ıst bei diesem Befehl, daß eine eventuelle

Laufwerksvorgabe (z.B. DFO:) bei beiden Namen identisch an-
zugeben ist. Ist beim alten Namen eine Diskettenstation angege-

ben und ist diese Station auch die aktuelle, dann kann beim

neuen Namen die Spezifikation entfallen. Innerhalb einer Station

kann auch ohne weiteres eine im Haupt-Directory verzeichnete
Datei durch eine entsprechende Pfadangabe im neuen Namen in
einen schon existierenden Ordner verlegt werden und
umgekehrt.

~

| PSAVE { PS } Programm speichern (listgeschiitzt)

PSAVE “Programmname"

Für diesen Befehl gilt die gleiche Ausführung wie bei SAVE. Er
bietet nur eine kleine Besonderheit, die aber in ihrer Wirkung
sehr beeindruckend ist. Das P in diesem Befehlsnamen steht für
protected (geschützt). Die GFA-Programme, die hiermit abge-
speichert wurden:

> können nicht mehr gelistet werden.

> werden sofort nach dem Laden gestartet (Autostart, s.
LOAD). |

—— Ein-/Ausgabebefehle 103

> können nicht bearbeitet werden. Wird versucht, mit dem

Interpreter das - unsichtbare - Listing zu bearbeiten, wird

man früher oder später mit einem Total-Absturz belohnt. Der

Interpreter verfügt bei PSAVE-Programmen nicht mehr über

die notwendigen Zeiger auf die Variablennamen, und beim
Versuch, diese zu finden, gibt es Adressen-Wirrwarr.

RENAME {REN} Datei umbenennen |

RENAME "Name_alt" AS "Name_neu"

Entspricht exakt dem Befehl NAME (weiteres siehe dort).

RMDIR { RM } | Ordner löschen |

RMDIR "Ordner"

Die Syntax dieses Befehls ist identisch mit der von CHDIR, nur
daß der angegebene Ordner nicht geöffnet, sondern gelöscht
wird. Befinden sich allerdings noch Dateien in dem Ordner,
kann dieser Befehl nicht ausgeführt werden, und es erscheint
eine Fehlermeldung. Ggf. sind die enthaltenen Dateien vorher
durch KILL zu löschen.

SAVE {SA} | Programm speichern (codiert)

SAVE "Programmname"

SAVE speichert das im Programmspeicher befindliche Programm
unter dem angegebenen Namen im Token-Format auf dem
Festspeicher (Diskette/Hard-Disk) bzw. RAM-Disk (zur Pfad-

104 Das große GFA-BASIC-Buch ——

angabe siehe ggf. Kapitelanfang). Die Anführungsstriche zum
Dateinamen können vernachlässigt werden, da sie vom Inter-
preter - falls nicht vorhanden - selbsttätig gesetzt werden. Die
Extension zum Dateinamen kann ebenfalls vernachlässigt wer-
den. Auch sie wird vom Interpreter gesetzt (.GFA - falls in Pro-
grammname keine andere Extension vorgegeben wurde). Befin-
det sich bereits ein Programm gleichen Namens auf der Diskette,
wird es automatisch auf Programmname.BAK umbenannt.

5.5 Dateihandhabung

BGET {BG} Teildatei lesen

BGET [#]Kanal,Start,Anz

Kanal ist der Identifikator einer mit OPEN "I" oder "U" geöf-
‚fneten Datei. Ab File-Pointer-Position werden Anz Bytes dieser
Datei in den Arbeitsspeicher - beginnend mit der Adresse Start

- gelesen. Wird die Datei anschließend nicht mit CLOSE ge-
schlossen, bleibt der File-Pointer auf der dem gelesenen Teil

folgenden Byte-Position stehen. Der nächste Dateizugriff
(BGET#, INP(#), INPUT#, PRINT#, OUT# etc.) bezieht sich
dann auf diese Position. Beispiel:

Open "0" ,#1,"df0:Test.Dat"
Print #1;"GFA-BASIC";

Close und wieder schließen
A$=Space$(5) Kleinen Puffer setzen

I Output-Datei öffnen
!
I

I

Open "I", #1,"df0:Test.Dat" 1! Datei für Eingabe öffnen
I
!

N
N

String hineinschreiben

Seek #1,4 4 Bytes überspringen
Bget #1,Varptr(A$),5 5 Bytes in Puffer lesen
Close Datei schließen
Print A$ String ausgeben

—— Ein-/Ausgabebefehle 105

BPUT {BP} Teildatei schreiben

BPUT [#1Kanal ‚Start, Anz

Es werden Anz Bytes ab der Adresse Start gelesen und - begin-
nend mit der File-Pointer-Position - in eine mit OPEN "O" bzw.
"U" geöffnete Datei mit dem Identifikator Kanal geschrieben. Im
Gegensatz zu BSAVE können hiermit auch Teile einer Datei
überschrieben oder an diese angefügt werden. Wird die Dateı
anschließend nicht mit CLOSE geschlossen, bleibt der File-Poin-
ter auf der dem geschriebenen Teil folgenden Byte-Position ste-

hen. Der nächste Dateizugriff (BGET#, INP(#), INPUT#,
PRINT#, OUT# etc.) bezieht sıch dann auf diese Position.

CLOSE { CL} Datenkanal schließen

CLOSE [#Kanal]

Alle mit OPEN geöffneten Kanäle müssen mit CLOSE #Kanal

geschlossen werden, um ihre Kanal-Nummer fir eine andere
Datei verwenden zu können. Wird CLOSE ohne #Kanal verwen-
det, werden damit sämtliche Kanäle gleichzeitig geschlossen. Ein

Kanal, der noch nicht mit CLOSE #Kanal geschlossen wurde

und nochmals mit OPEN angesprochen wird, verursacht eine
Fehlermeldung. Im Interpreter-Betrieb können nach Program-
mende von der Direkt-Ebene aus alle offenen Dateien weiterhin
angesprochen werden, solange im Editor keine Frogrammände-

rung vorgenommen wurde.

106 Das große GFA-BASIC-Buch ———

EOF() Datei auf Dateiende prüfen

Var=EOF (#Kanal)

Mit dieser Funktion kann festgestellt werden, ob sich der File-

Pointer hinter dem letzten Byte der mit #Kanal angegebenen

Datei - also am Dateiende (EndOfFile) - befindet. Ist dies der

Fall, dann erhält man den Wert -1 (TRUE), andernfalls eine

Null (FALSE). Die wohl wichtigste Anwendung dieser Funktion
ist die Vermeidung der Fehlermeldung "File-Ende erreicht".
Beispiel:

File zum Lesen öffnen
Solange File-Ende nicht erreicht <--.

Einzelnes Byte lesen und ausgeben

Wieder von vorn > '

Open "I" #1,"Dateiname"
While Eof(#1)=False

Print Inp(#1)
Wend

FIELD { Fl AS bzw. FIAT } Datensatz in Felder unterteilen

FIELD #Kanal,Anz AS Var1$ [,Anz AS Var2$,...]

FIELD #Kanal,Anz AT(Adr1) [,Anz AT (Adr2),...]

Teilt die Datensätze der mit Kanal# angegebenen Random-Datei
in so viele Einträge auf, wie durch die Menge der Anz AS
Var$-Komponenten vorgegeben wird. Es wird jeweils die in
Anz angegebene Anzahl an Bytes der nach AS folgenden String-
Variablen (Varl$, Var2$ etc.) zugeordnet und die Variable
gleichzeitig mit Leerzeichen gefüllt. Um numerische Daten nicht
durch MKI$ etc. in Strings umwandeln zu müssen, kann die
zweite Syntax-Variante verwendet werden. Dabei enthält Anz
die Anzahl an Bytes, die ab der zugehörigen - hinter AT in
Klammern gesetzten - Adresse gelesen werden sollen. Beispiel:

a%=673123
b%=VARPTR (a%)
c&=1000
d=61234.1231
FIELD #1,4 AT(b%),2 AT(*c&),8 AT(*d)

——— Ein-/Ausgabebefehle 107

AT- und AS-Komponenten können in einer FIELD-Zeile belie-

big gemischt werden (z.B. FIELD #1,20 AS a$,2 AT(*b&)....).
Außerdem kann die FIELD-Aufteilung für eine Datei auf meh-
rere Programmzeilen verteilt sein. Diese werden dann als zu-
sammengehörig angenommen. Siehe weiteres Beispiel unter 5.5.1
"Funktionsweise einer Random-Access-Datei".

GET # Datensatz lesen

GET #Kanal [,Satznummer]

Kanal gibt die R-Datei (siehe OPEN) an, aus welcher der in
Satznummer angegebene Datensatz gelesen werden soll. Bei der

Zuordnung von Datensätzen zu einer R-Datei ıst jedem Satz eine
Nummer zuzuteilen. Durch deren Angabe kann der ent-
sprechende Datensatz mit GET# wieder in die mit FIELD spe-

zifizierten String-Variable(n) zurückgelesen werden. Fehlt "Satz-
nummer", wird jeweils der nächste bzw. der durch RECORD
ggf. gesetzte Datensatz gelesen. Beispiel unter 5.5.1 "Funktions-

weise einer Random-Access- Datei".

‘Loc () File-Pointer-Position

Var=LOC(#Kanal)

LOC (Abk. f. Location) liefert die aktuelle Position des Schreib-

und Lesezeigers (File-Pointer) der durch #Kanal bestimmten
Datei. Die gelieferte Byte-Position wird ab Dateianfang gezählt.
Beispiel: |

108 Das große GFA-BASIC-Buch ——

Vv

> Byte-Folge einer beliebigen Datei

| Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | etc. ...
| | k i t | i

a

Angenommen: Aktueller Pointer zeigt auf Byte 4: \

Pointer%=-Loc (#1) I Liefert dann in Pointer% den Wert 4

LOF() Dateilänge ermitteln |

Var=LOF(#Kanal)

Durch LOF (Abk. f. Length Of File) ist es bei Disketten- bzw.
Hard-Disk-Dateien möglich - sofern sıe überhaupt einen Inhalt
haben - ıhre Byte-Länge zu ermitteln. Der Funktion wird dazu

in Klammern die #Kanal-Nummer der betreffenden Datei über-

geben. Beispiel:

Zuerst Datei öffnen

Variante 1: Direktausgabe

Variante 2: Zuweisung

Variante 3: Bedingungsabfrage

Open "U", #1,"Dateiname!""

Print Lof(#1)
A%=Lof(#1)
If Lof(#1)>32767
A$=Input$(32767,#1)

Else

A$=Input$(Lof(#1),#1) ! Variante 4: Einbindung
Endif |

wee etc.

OPEN {0} Datenkanal sten |

OPEN "Modus", #Kanal,"Dateiname" [,Satzlange]

Dieser Befehl öffnet eine Datei - und Ihnen damit die bunte
Welt der Dateiverwaltung. Seine Syntax ist auf den ersten Blick
etwas kompliziert. Nach näherem Kennenlernen gewinnt man
ihn jedoch schnell lieb. Die Möglichkeiten, die sich Ihnen mit
den Befehlen zur Dateiverwaltung bieten, sind schier unüber-
schaubar.

— Ein-/Ausgabebefehle 109

Modus:

"0" Output öffnet eine Datei bzw. installiert sie neu. Existiert
die angegebene Datei (auf Disk bzw. Hard-Disk) bereits,
wird deren Länge auf Null gesetzt. In diesem Modus sind
nur Schreibzugriffe zulässig.

" Input öffnet eine vorhandene Datei zum Herauslesen von

Daten. Der File-Pointer wird auf das erste Byte der Datei
gesetzt. Die Dateilänge bleibt durch Lesezugriffe unver-
ändert. In diesem Modus sınd nur Lesezugriffe zulässig.

"A" Append Öffnet eine vorhandene Datei und setzt den File-

Pointer auf das Dateiende. Alle an diese Datei auszugeben-
den Daten werden an das Dateiende angehängt (append =

anhängen/hinzufügen).

"U" Update öffnet eine Datei für gleichzeitigen Schreib- und
Lesezugriff. Dabei bleibt die ursprüngliche Länge erhalten.

Es sei denn, bei der Datenausgabe wird über das aktuelle
Dateiende hinaus geschrieben.

"R" Random öffnet eine Random-Access-Datei. Maximal sind
65535 Datensätze pro Datei möglich. Genauere Informa-
tionen hierzu finden Sie unter Kapitel 5.5.1. "Funktions-

weise einer Random-Access- Datei".

#Kanal:

Es können gleichzeitig max. 100 Dateien geöffnet sein. Bei der

Offnung wird zur Identifikation jeder Datei eine Zahl zuge-
wiesen. Unter Angabe dieser Zahl hinter dem Nummernzeichen

kann nun z.B. durch Befehle wie PRINT#, INPUT#, BGET#

etc. auf jede einzelne dieser Dateien zugegriffen werden. Die
angegebene #Kanal-Nummer muß im Bereich von 0 bis 99 lie-
gen.

110 Das große GFA-BASIC-Buch ——

Dateiname:

Bezeichnet den Namen der Datei, die mit dem betreffenden

Zugriffsmodus geöffnet werden soll. Hier kann wieder die schon
erwähnte Pfadstruktur (siehe Kapitelanfang) verwendet werden.

Ausnahme:

Sie können mit fast allen #-Dateibefehlen auch die ver-
schiedenen Schnittstellen Ihres Amiga ansprechen. Dazu wird
ebenfalls eine Quasi-Datei (virtuelle Datei) geöffnet. Mit Datei
ist in diesem Fall jedoch nicht eine Disketten- bzw. Hard-Disk-
Datei gemeint, sondern der jeweilige Port. Es stehen Ihnen vier
solcher Ports zur Auswahl:

CON Console-Device

PRT Drucker-Port. Dadurch wird der in Preferences eingestellte
Drucker angesprochen. Sämtliche Steuerzeichen werden
durch den zuständigen Druckertreiber konvertiert.

PAR Parallele Schnittstelle. (Evtl. auch Druckeranschluß. Im
Gegensatz zu PRT: keine Steuerzeichenkonvertierung.)

SER Serielle Schnittstelle mit den in Preferences eingestellten

Parametern.

Der Ausdruck vor dem Gleichheitszeichen (inkl. Doppelpunkt)
wird in diesem Fall als Dateiname an OPEN übergeben. Die An-
gabe von Modus kann bei Verwendung dieser Schnittstellen-Va-
rıante entfallen.

Satzlänge:

Mit Random-Access-Dateien ist es möglich, eine Reihe von
Datensätzen innerhalb einer Datei anzulegen, die dann durch
Identifikatoren angesprochen werden können. Der OPEN-Befehl
erweitert sich ggf. hierfür um den Parameter Satzlänge. Darunter
ist ein Wert zu verstehen, den Sie als Dateiverwalter selbst be-

stimmen können. Und zwar gibt er die Anzahl der Bytes an, die

——— Ein-/Ausgabebefehle 111

Sie den Datensätzen einer Datei zukommen lassen wollen. Wird

diese Angabe bei OPEN unterlassen, wird vom Interpreter eine
Datensatzlänge von 128 Byte vorgesehen. Weitere Informationen

zu diesem Thema finden Sie unter 5.5.1 "Funktionsweise einer

Random-Access-Datei".

Die Eingabe der OPEN-Zeile kann extrem verkürzt werden. So
wird z.B. o I 1 Name.Lst vom Editor in OPEN "T",#1,"Name.Lst"

und z.B. o o 1 Name$ in OPEN "o",#1,Name$ umgewandelt. Alle
An- und Ausführungsstriche, das Nummernzeichen sowie die
Trennkommas können vernachlässigt werden, sofern zwischen
den einzelnen Komponenten ein Leerzeichen angegeben wird.

PUT#{PU} | Datensatz schreiben

PUT #Kanal [,Satznummer]

Es wird der durch Satznummer definierte Datensatz aus den mit
FIELD spezifizierten String-Variablen bzw. Adressen in die R-
Datei mit der Nummer #Kanal geschrieben. Wird keine Satz-
nummer angegeben, wird der jeweils nächste bzw. der durch
RECORD gef. gesetzte Datensatz gelesen. Genauere Informa-

tionen hierzu finden Sie unter 5.5.1 "Funktionsweise einer Ran-
dom-Access-Datei".

RECALL { RECA } String-Feld aus Datei lesen

RECALL #Kanal, Feld$(),..... ‚Zeilenvar

In Verbindung mit STORE# ein wahrlich gewaltiger Befehl, der
es zum Vergnügen werden läßt, z.B. eine Textverarbeitung zu
programmieren. Wer sich schon einmal mit einem solchen Pro-
gramm angelegt hat, wird wissen, was ich meine.

112 Das große GFA-BASIC-Buch ———

RECALL liest Anz Textzeilen aus der zuvor geöffneten Datei

mit der Kennung Kanal in das String-Feld Feld$(). Carriage
Return (CHR$(13))/Line Feed (CHR$(10)) wird dabei als

Zeilenendemarkierung interpretiert.

Den Elementen des Feldes werden der Reihe nach ab Element 0

(OPTION BASE 0) bzw. ab Element 1 (OPTION BASE 1) je
eine Zeile zugeordnet. Ist das Feld zu kurz (die Elementeanzahl
ist dann kleiner als die Anzahl gelesener Zeilen), wird der Lese-
prozeß beim letzten Element ohne Meldung abgebrochen. Wird
das File-Ende erreicht, wird ebenfalls ohne Meldung abge-
brochen. Zeilenvar ist eine numerische Rückgabevariable (Fließ-
komma- oder 32-Bit-Integer), die nach Abschluß die Anzahl der
tatsächlich gelesenen Zeilen enthält.

Statt Anz kann auch der Ausdruck von TO Bis angegeben wer-

den. Es werden dann die Zeilen ab dem Element von der Feld-

variable bis zum Element Bis abgelegt.

Der Lesezeiger bleibt nach RECALL bei nicht geschlossenen
Dateien auf dem Anfang der nächsten Zeile stehen. Das heißt,

daß bei weiteren RECALL-Aufrufen ab dieser File-Position
nur noch der verbleibende Dateirest gelesen wird. Soll wieder ab
Datei-Beginn gelesen werden, ist der File-Pointer durch SEEK
#Kanal,0 wieder auf den Datei-Anfang zu richten.

RECORD { REC } Satz-Pointer für GET#/PUT# setzen

RECORD [#] Kanal, Satznummer

Setzt den Satz-Zeiger für den nächsten GET#- oder PUT#-Zu-

griff auf eine R-Datei. Wird beim nächsten GET# oder PUT#
der Parameter "Satznummer" ausgelassen, wird der durch RE-
CORD# aktualisierte Satz gelesen bzw. geschrieben.

———— Ein-/Ausgabebefehle 113

RELSEEK { REL } File-Pointer verschieben

RELSEEK #Kanal,[-1] Offset

RELSEEK (relativ Seek) verschiebt den File-Pointer der Datei
mit der Kennung #Kanal relativ zur aktuellen Pointer-Position
entweder in Richtung File-Ende oder File-Anfang um die mit
"Offset" bestimmte Anzahl von Bytes. Im zweiten Fall (Richtung
File-Anfang) ist dem Offset-Wert ein Minuszeichen voranzu-
stellen. Beispiel:

Datei öffnen

Der File-Pointer zeigt nun

auf das Byte in der Dateimitte

Der Zeiger wird in Richtung File-Ende

um drei Byte weitergesetzt

Der Zeiger wird in Richtung File-Anfang

sechs Byte zurückgesetzt. Er befindet

sich nun 3 Byte vor der durch SEEK

bestimmten Mittelposition.
Weiteres Programm

Open. "U", #1,"Dateiname""

Seek #1, Int(Lof(#1)/2)

Relseek #1,3

Relseek #1,-6

. etc.

Bei den Befehlen SEEK und RELSEEK ist darauf zu achten,

daß nicht versucht wird, den Zeiger auf eine Position zu setzen,
die in der angegebenen Datei nicht vorhanden ist, bzw. nicht
vorhanden sein kann (kleiner Null oder größer File-Ende). Wird
dies versucht, erscheint die Fehlermeldung "Seek falsch?".

SEEK {SEE} File-Pointer setzen

SEEK #Kanal, [-] Offset

Mit diesem Befehl kann der File-Pointer der Datei mit der Ken-
nung "#Kanal" auf ein durch "Offset" bestimmtes beliebiges Byte
gesetzt werden. Diese neue Position bezieht sich entweder abso-
lut auf den File-Anfang oder auf das File-Ende. Im zweiten Fall

114 Das große GFA-BASIC-Buch ———

(relativ zum File-Ende) ist dem Offset-Wert ein Minuszeichen
voranzustellen. Eine Anwendungsmöglichkeit finden Sie im
RELSEEK -Beispiel.

TOUCH { TOU } Datei-Zeiteintrag aktualisieren

TOUCH #Kanal

Schreibt die aktuelle System-Zeitangabe (siehe TIME$) in die
dafür vorgesehene Position des betreffenden Directory-Eintrags.

#Kanal gibt dabei die Kennung der durch OPEN geöffneten
Datei an. -

STORE { STOR } String-Feld in Datei ablegen

STORE #Kanal,Feld$() [,Anz]

STORE speichert die Elemente eines durch Feld$() bestimmten
String-Feldes der Reihe nach in der Datei mit der Kennung
#Kanal. Als Endmarkierung wird jeder geschriebenen Zeile ein
CR/LF (Carriage Return/Line Feed = CHR$(13)/CHR$(10)) an-
gehängt. Durch den optionalen Parameter Anz kann bestimmt
werden, wie viele Elemente maximal in der Datei gesichert wer-
den sollen. Wird dieser Parameter ausgelassen, wird das kom-

plette Feld gespeichert.

Statt Anz kann wie beim RECALL-Befehl auch der Ausdruck

Von TO Bis angegeben werden, so daß nur ein Teilfeld abge-

speichert wird.

——— Ein-/Ausgabebefehle 115

5.5.1 Funktionsweise einer Random-Access-Datei

Wie die Behandlung von Variablenfeldern eine Sonderstellung
einnimmt, so sind auch die Befehle zur Behandlung von Ran-
dom-Access-Dateien (random access = wahlfreier Zugriff) eine
besondere Erklärung wert.

Alle anderen Zugriffsvarianten auf Disketten- bzw. Hard-Disk-

Dateien arbeiten grundsätzlich seriell, d.h. der Reihe nach. Es
wird also eindimensional Zeichen für Zeichen nacheinander ge-
lesen bzw. geschrieben. Diese Reihenfolge ist nur durch SEEK
und RELSEEK veränderbar.

Eine R-Datei ist vergleichbar mit einem zweidimensionalen
Speicherfeld. Es können mehrere Datenblöcke unter einem ge-

meinsamen Oberbegriff - hier der Dateiname - zusammengefaßt

werden. Während die Elemente eines Variablenfeldes durch die

Indizes repräsentiert werden, können hier die Datenblöcke (Ele-

mente der 1. Dimension) durch die Satznummer angesprochen

werden. Innerhalb eines Blocks befinden sich dann die zusam-

mengehörigen Einträge (Elemente der 2. Dimension). Um eine
solche Dateı anzulegen, muß sie zuerst geöffnet werden. Ihr
Sonderstatus wird dabei durch den Arbeitsmodus R kenntlich
gemacht.

Open "R",#1,Dateiname, Satzlange

Nachdem dieses getan wurde, kann mit dem Befehl FIELD be-

stimmt werden, in wieviel einzelne Einträge ein Satz unterteilt
sein soll. Gleichzeitig wird angegeben, wie viele Zeichen (Bytes)

jedem einzelnen dieser Einträge zuzuteilen sind. Da die Länge

des gesamten Datensatzes durch die Angabe von Satzlänge ım

OPEN-Befehl bestimmt wird, ist es einleuchtend, daß die
Summe der Zeichen der angegebenen Einträge insgesamt nicht
größer sein darf als die Satzlänge. Sie darf aber kleiner sein. Die
einmal so bestimmte Größe eines Satzes und seine Einteilung
sollte von nun an nicht mehr verändert werden. Tun Sie es den-
noch, ist die korrekte Übergabe der Daten an die zugeordneten
Variablen nicht mehr gewährleistet. Natürlich können Sie neue
Datenfelder in einen neu definierten Datensatz mit demselben

116 Das große GFA-BASIC-Buch ——

Dateinamen einsetzen, nur sind dann die vorher darin enthal-

tenen Daten nicht mehr zu erreichen.

Zum anderen dürfen die durch PUT# in die Feldeinteilung ge-
schriebenen Datensätze ın ihrer Größe nicht mehr verändert
werden, da sonst Daten des folgenden Satzes mit Daten des ak-
tuellen Satzes kollidieren. Um die festgelegten Satz- und Ein-
tragslängen immer einzuhalten, werden zur Vorbereitung der
Einträge die Befehle LSET und RSET verwendet. Diese fügen
die übergebenen Texte in die definierten FIELD-String-Vari-
ablen ein, ohne deren Länge zu verändern.

Es ist problemlos möglich, eine installierte Random-Access-Da-

tei zu erweitern oder zu ändern, indem man der Datei einfach

weitere Sätze per PUT#-Anweisung anhängt bzw. in diese ein-
fügt. Einmal geschriebene Sätze lassen sich jedoch nicht bzw.

nur über Umwege wieder entfernen. Sie könnten z.B. ein solches
File komplett über RECALL einlesen, dann durch INSERT oder

DELETE bearbeiten und abschließend durch STORE wieder

zurückschreiben.

Erweiterungen innerhalb des Satzgefüges (z.B. zusätzliche Ein-
träge) sind nur möglich, indem eine neue Datei mit anderem
FIELD-Aufbau eingerichtet wird und die Datensätze der alten
Datei nach dem Eimerketten-Prinzip gelesen, erweitert und dann
komplett an die neu eingerichtete R-Datei weitergeleitet werden.

Achten Sie darauf, daß bei jedem OPEN für eine schon einge-
richtete Datei dieser Art immer exakt dieselbe Datensatzlänge

angegeben wird bzw. die neu angegebene Satzlänge größer als

die vorhandene ist. Wird nämlich keine Satzlänge genannt, wird
diese vom Interpreter selbsttätig auf 128 Bytes festgelegt. Falls

Sie die angesprochene Datei vorher größer dimensioniert hatten,
wird beim Versuch, ein Feld anzusprechen, das mit seiner Länge

über die angegebene Satzlänge hinausreicht, die Fehlermeldung
"File-Ende erreicht" ausgegeben. |

——— Ein-/Ausgabebefehle

Eine Grafik soll das Prinzip verdeutlichen:

< 1. Datensatz >

<!Satzlänge! z.B. 45 Byte>

< 2. Datensatz >

< Satzlänge wie vor >

< n. Datensatz

Eintrag!

z.B.
10 Byte

Eintrag?

z.B.

20 Byte

Eintrag3

z.B.

15 Byte

Eintrag!

wie vor:

10 Byte

Eintrag2
wie vor:

20 Byte

Eintrag3
wie vor:

15 Byte
>

Die Anzahl der Sätze, die Größe der einzelnen Einträge sowie
die Satzlänge können von Ihnen frei bestimmt werden. Einge-
schränkt werden Sie nur durch eine maximale Datensatzlänge
von 65535 Byte und durch den Umstand, daß die Summe aller
Eintragslängen die angegebene Satzlänge nicht überschreiten
darf.

Zum tieferen Verständnis folgt nun ein Beispielprogramm, das

Ihnen als Anregung zu eigenen Experimenten dienen soll. Dieses
Programm besteht aus vier voneinander unabhängigen Blöcken.

Im ersten Block wird eine Random-Access-Datei mit einer
Satzlänge von 90 Byte installiert. Diese 90 Byte werden mit der
FIELD-Anweisung in drei Einträge (40/30/20 Byte) unterteilt.
Gleichzeitig werden die für die Aufnahme der Einträge vorge-
sehenen String-Variablen mit Leerzeichen gefüllt. Im Anschluß
daran werden in der FOR/NEXT-Schleife sechs Datensätze ein-
gelesen. Nach der Eingabe der jeweiligen Einträge werden die
Inhalte der INPUT-Variablen durch LSET linksbündig in die
vorgesehenen - und vorbereiteten - Puffer-Strings eingesetzt. Zu
guter Letzt wird dann dieser Datensatz mit PUT# unter Angabe
der Datensatznummer (hier der Schleifenindex I%) in die Datei
geschrieben. |

Block 2 demonstriert das Erweitern und Ändern einer bestehen-
den Datei. Hier sind die Texte willkürlich vorgegeben und kön-
nen natürlich von Ihnen frei bestimmt werden. Die letzten bei-
den Programmblöcke zeigen zwei Möglichkeiten, die einzelnen
Sätze aus der Datei wieder herauszulesen und auszugeben. Bei-
spiel: |

' Schreib-Variante 1:

' (Datei-Erröffnung)

OPEN "R",#1,"Adress.Dat",90

Das große GFA-BASIC-Buch

I R-Datei erstmals öffnen

FIELD #1, 40. AS zeile.1$, 30 AS zeile.2$,20 AS zeile.3$

FOR i%=1 TO 6
PRINT AT(20,11);"Name
FORM INPUT 40,n$
PRINT AT(20,12);"Vorname :

FORM INPUT 30,v$
PRINT AT(20,13);"Telefon :";

FORM INPUT 20,t$
CLS

LSET zeile.1$=n$

LSET zeile.2$=v$

LSET zeile.3$=t$

PUT #1,1%

NEXT 1%

CLOSE #1

' Schreib-Variante 2:

I Satz einrichten

I 6 Sätze >
ells
nr |

I Eintrag 1 eingeben
Ho

! Eintrag 2 eingeben
No

! Eintrag 3 eingeben

! Bildschirm klar

! Eintrag 1 linksbündig einfügen
b eff. 2 All. “li.

| "N. 53

I Datensatz in R-File eintragen
ı nächster Satz <

I R-File schließen

®° (nachträgliches An-/Einfügen)

OPEN "R",#1,"Adress.Dat",90 | öffnen (Satzlänge beachten)
FIELD #1 ‚40° AS zeile.1$, 30 AS zeile.2$,20 AS zeile.3$

Lser zeile.1$="Satz 7/Zeile
LSET zeile.2$="Satz 7/Zeile

LSET zeile.3$="Satz 7/Zeile

PUT #1,7

LSET zeile.1$="Satz

LSET zeile.2$="Satz

LSET zeile.3$="Satz

PUT #1,2

CLOSE #1

' Lese-Variante 1:

' (seriell Einlesen)
I

2/Zeile

2/Zeile

2/Zeile

! Satzeinteilung wie oben

1" ı Eintrag 1 linksbündig
FAL J „li. 2 ell.

zu l wil. 3

I neuen Datensatz nachtragen

1" ı Eintrag 1 linksbündig
a 1 awit. 2 = |

zu I ~ il. 3

! 2. Datensatz überschreiben

! und wieder schließen

OPEN "R",#1,"Adress.Dat", 90 ı Öffnen (Satzlänge beachten)
FIELD #1,40 AS zeile.1$,30 AS zeile.2$,20 AS zeile.3$

FOR i%=1 TO 7
GET #1,1%

i]

PRINT “Name

PRINT "Vorname

PRINT "Telefon

PRINT

NEXT 1%

CLOSE #1

CLS

PAUSE 200

' Lese-Variante 2:

: U» zeile.

: W-zeile.
: Ws zeile.

I Satzeinteilung wie oben
ı 7 Datensätze > .

I lesen und die Einträge den

I FIELD-Variablen zuweisen

1$! Eintrag 1 ausgeben
2$ i ll. 2 alle

3$! oH = 3

I Leerzeile

I Nächster Satz < '

I File schließen
N

i
1 Bildschirm klar

I Kleine Pause

——— Ein-/Ausgabebefehle | 119

' (wahlfrei Einlesen)
|

OPEN "R" #1 ,"Adress.Dat",90 ! Öffnen (Satzlänge beachten)

FIELD #1, 0 AS eintrag1$, 30 AS eintrag2$,20 AS eintrag3$

' I Satzeinteilung wie gehabt

DO | Lese-Schleife > .
PRINT AT(20,11);"Satznummer eingeben (O=Abbruch): "
REPEAT ı Eingabe-Schleife >

INPUT satz% I Satznummer holen |

EXIT IF satz%=0 I A-Z-Taste oder 0 gedrückt?

N

UNTIL satz%<8 I Bis gültige Satznummer <--'
i

GET #1,satz% I Gewünschten Datensatz lesen
PRINT AT(20, 10); "Name : Meintragi$! Eintrag 1 ausgeben
PRINT AT(20,11);"Vorname : ";eintrag2$! a —N-
PRINT AT(20,12);"Telefon : ";eintrag3$! N 5 —N-
PRINT AT(20,15)7"<Taste>"
REPEAT | i Warte ... > -

UNTIL LENCINKEY$) I... auf Taste <——'

CLS I Bildschirm klar
LOOP I Wieder von vorn <

5.6 Port-Ein-/-Ausgabebefehle

INP | Daten byteweise von Peripherie lesen

Var=INP(#Kanal)

Diese Funktion dient dazu, ein einzelnes Byte aus einer Datei zu

lesen. In der nachgestellten Klammer wird die Nummer des zu-

gehörigen Datenkanals übergeben.

OUT {OU} Daten byteweise an Peripherie ausgeben

OUT #Kanal,Bytel [,Byte2 [,Byte3,...]]

Der Befehl OUT stellt das Gegenstück zu INP() dar. Hiermit
lassen sıch einzelne Byte-Werte an einen bestimmten Datenkanal
senden. Beispiel:

120 Das große GFA-BASIC-Buch ————

Out #1,65

schreibt den ASCII-Wert des Zeichens A (ASCII 65) an die ak-

tuelle File-Pointer-Position der Dateı mit der Kanalnummer].

5.7 Die DOS-Bibliothek des Amiga

Die DOS-Bibliothek (englisch: DOS-Library) stellt - ebenso wie
die anderen Bibliotheken des Amiga - eine Sammlung von Rou-
tinen dar, die dem Programmierer in jeder Programmiersprache
zur Verfügung stehen. Die Routinen der DOS-Bibliothek sind
hauptsächlich zur Vereinfachung des Zugriffs auf die verschie-
denen Peripheriegeräte, speziell auf die Massenspeicher (Floppy,

Harddisk usw.), implementiert worden.

Zum Glück enthält GFA-BASIC ja eine Vielzahl sehr kom-
fortabler Ein-/Ausgabebefehle. Warum dann überhaupt noch mit
der DOS-Bibliothek arbeiten? Nun, in einigen Situationen, zum

Beispiel dann, wenn Sie das Directory einer Diskette analysıeren
möchten, kann die DOS-Bibliothek überaus nützlich sein, da
GFA-BASIC keine vergleichbaren Befehle zur Verfügung stellt.

Auf der anderen Seite gibt es aber auch einige Routinen, die
man in GFA-BASIC guten Gewissens vergessen kann, nicht zu-

letzt, weil sie zum Teil als wesentlich komfortablere GFA-BA-

SIC-Befehle implementiert sind. Trotzdem möchte ich Ihnen

diese Routinen nicht vorenthalten. Die Erklärungen beschränken

sich in diesem Fall allerdings auf das Notwendigste. Nähere In-
formationen zu diesen Routinen (und natürlich auch zu allen an-
deren) finden Sie zum Beispiel in Amiga Intern, Intern 2 oder

ım großen AmigaDOS-Buch, beide von DATA BECKER.

Wie kann man nun auf die Routinen der DOS-Bibliothek zu-
greifen? Dies gestaltet sich - im Gegensatz etwa zu AmigaBASIC
- erfreulich einfach: Alle Routinen stehen (ohne irgendwelche
Öffnungszeremonien) jederzeit als GFA-BASIC-Funktionen zur
Verfügung!

——— Ein-/Ausgabebefehle 121

Vom GFA-BASIC-Editor wird sogar die korrekte Syntax der
Funktionen überprüft. Fehlermeldungen des Betriebssystems
(aufgrund semantisch unkorrekter Angaben) können in der Regel
allerdings nicht abgefangen werden, d.h. Sie bekommen ent-
weder eine AmigaDOS-Fehlermeldung oder - im schlimmsten
Fall - eine sog. Guru-Meditation, nach der in der Regel nur
noch ein Reset hilft. Also Vorsicht! Doch schauen wir uns die
Routinen im einzelnen an; 31 sind es insgesamt.

Anmerkung: Bei allen Funktionen, die keine Rückgabewerte
liefern, verwenden Sie zum Aufruf am besten den Befehl VOID

(siehe auch Kapitel 12).

Allgemeine Ein-/Ausgabefunktionen

Open Datei öffnen

Filehandle = Open (Name, Modus)

Öffnet die Datei, auf deren Name der Parameter ’Name’ zeigt.
Achtung: Der Namensstring muß mit einem Nullbyte abge-

schlossen sein! Diese sog. C-Konvention für Strings gilt für
praktisch alle Stringübergaben an Betriebssystemfunktionen.

Modus enthält wahlweise den Wert 1005 (eine bestehende Datei

wird zum Schreiben oder Lesen geöffnet), 1006 (eine neue Datei
wird erzeugt und zum Schreiben geöffnet. Achtung: Eine evtl.
bereits existierende Datei gleichen Namens wird dabei über-
schrieben!) oder 1004 (wie 1005, aber diese Datei kann dann
nicht mehr von anderen Programmen geöffnet werden, solange
bis diese wieder geschlossen wird; Sie haben dann also exklusi-
ven Zugriff auf diese Datei). |

In Filehandle wird ein Zeiger auf die sog. Filehandle-Struktur
der Datei übergeben. Diese enthält wichtige Informationen über
die Datei, die aber im Normalfall nur für die interne Verwal-
tung von AmigaDOS von Bedeutung sind. Konnte die Funktion
nicht ausgeführt werden, enthält Filehandle den Wert Null.

122 Das große GFA-BASIC-Buch ————

Bei den weiteren Dateifunktionen hat Filehandle dieselbe Funk-

tion wie die Dateinummer in GFA-BASIC: Sie dient zur Kenn-

zeichnung und leichteren Identifizierung der Datei.

Close | Datei schließen
VOID Close (Filehandle)

Schließt die mit Open geöffnete Datei. Filehandle enthält den
bei Open erhaltenen Zeiger auf die Filehandle-Struktur.

Read Daten lesen

Anzahl = Read (Filehandle, Puffer, Länge)

Read liest aus der durch Filehandle bezeichneten Datei bis zu

’Länge’ Bytes und legt sie im Speicher ab Adresse ’Puffer’ ab. In
’Anzahl’ wird die Anzahl der tatsächlich gelesenen Bytes zurück-
gegeben. Ist dieser Wert gleich -1, so trat während des Lesevor-

gangs ein Fehler auf.

Wrte Daten schreiben

Anzahl = Write (Filehandle, Puffer, Länge)

Write schreibt in die durch Filehandle bezeichnete Datei ’Länge’
Bytes aus dem Speicher ab der Adresse ’Puffer’. In ’Anzahl’ wird
die Anzahl der tatsächlich geschriebenen Bytes zurückgegeben.
Ist dieser Wert gleich -1, so trat während des Schreibvorgangs
ein Fehler auf.

Seek Datenzeiger positionieren

Position = Seek (Filehandle, Abstand, Modus)

Seek positioniert bzw. verstellt den internen Zeiger der mit File-
handle bezeichneten Datei. Dieser Zeiger zeigt jeweils auf das
nächste zu lesende oder zu schreibende Byte der Datei.

——— Ein-/Ausgabebefehle 123

’Modus’ gibt an, ob der in ’Abstand’ angegebene Wert den Zei-
ger relativ zum Dateianfang (Modus=-1), zur aktuellen Position
(Modus=0) oder zum Dateiende (Modus=1) verstellen soll. Dabei

sind in ’Abstand’ auch negative Werte zugelassen; der Zeiger
wird dann rückwärts verschoben.

In ’Position’ wird die nach Ausführung der Funktion aktuelle
Position des Zeigers zurückgegeben. Um die momentane Position

des Zeigers zu erhalten, stellt man ’Modus’ einfach auf 0
(=Verschiebung relativ zur aktuellen Position) und gibt als Ab-

stand 0 Bytes an: |

Input Standard-Eingabekanal ermitteln

Position=Seek(Filehandle,0,0)

Filehandle = Input()

Gibt das Filehandle des Standard-Eingabekanals zurück.

Output Standard-Ausgabekanal ermitteln

Filehandle = Output()

Gibt das Filehandle des Standard-Ausgabekanals zurück.

WaitForChar Auf Empfang eines Zeichens warten

Status = WaitForChar (Filehandle, Timeout)

WaitForChar wartet die in Timeout angegebene Anzahl von Mi-
krosekunden auf den Empfang eines Zeichens aus der mit File-
handle bezeichneten Datei.

Wird in dieser Zeit kein Zeichen empfangen, so erhält Status
den Wert 0, andernfalls den Wert -1. Das Zeichen kann dann

mit der Funktion Read ausgelesen werden.

124 Das große GFA-BASIC-Buch ———

Isinteractive Kanal-Typ ermitteln

Status = IsInteractive (Filehandle)

IsInteractive ermittelt, ob es sich bei der durch Filehandle be-

zeichneten Datei um eine interaktive Datei (Ein- und Ausgaben

sind möglich) handelt (Status=-1) oder nicht (Status=0).

loErr Ein-/Ausgabefehlernummer ermitteln

Fehler = IoErr ()

In ’Fehler’ wird die Nummer des zuletzt (bei der Abarbeitung
einer der anderen Funktionen) aufgetretenen Fehlers zurückge-
geben.

Bei den anderen Funktionen selbst wird ein aufgetretener Fehler

meist durch eine Null als Rückgabewert signalisiert. Mit Hilfe
von loErr erfährt man dann die genaue Fehlerursache.

Disketten- und Dateiorganisation

Lock Zugriffsstatus bestimmen

Lockstruktur = Lock (Name, Modus)

Lock sucht nach einer Datei oder einem Unterdirectory mit dem

Namen, auf den ’Name’ zeigt, und erzeugt dafür eine sog. Lock-

Struktur, deren Adresse in der Variablen ’Lockstruktur’ über-

geben wird. Diese Lock-Struktur (bzw. deren Adresse) wird bei

den folgenden Funktionen benötigt, um auf eine Datei (oder ein
Unterdirectory) überhaupt zugreifen zu können.

’Modus’ gibt an, welcher Art der Zugriff auf die betr. Datei sein
soll. Modus=-2 bedeutet, daß aus der Datei von mehreren Pro-
grammen aus gelesen werden kann; Modus=-1 bestimmt, daß die
Datei nur vom aktuellen Programm aus beschrieben werden
kann.

—— Ein-/Ausgabebefehle 125

DupLock Lock-Struktur kopieren

Lockstruktur2 = Duplock (Lockstruktur1)

DupLock kopiert eine durch ihre Adresse bezeichnete Lock-
Struktur (Lockstrukturl’) und übergibt in ’Lockstruktur2’ die
Adresse der Kopie. Wichtig: Es können nur Lock-Strukturen ko-
piert werden, die zum Lesen zugelassen sind (Modus=-2 bei
Lock, siehe dort).

UnLock Lock-Struktur entfernen

VOID UnLock (Lockstruktur)

UnLock entfernt eine mit Lock oder DupLock erzeugte Lock-
Struktur aus dem Speicher. In ’Lockstruktur’ wird dazu die

Adresse der Lock-Struktur übergeben.

Haben Sie bis hierher durchgehalten? Ja, dann werden Sie gleich
sehen, daß es sıch gelohnt hat. Während die zuvor besprochenen

Funktionen doch wohl mehr etwas für den Spezialisten waren,

bringen Ihnen die nun folgenden Funktionen ganz handfeste
Informationen, die man so direkt von GFA-BASIC aus nicht er-

halten kann.

Info Disketteninformationen holen

Status = Info (Lockstruktur,. Infoadresse)

Info erzeugt im Speicher ab ’Infoadresse’ einen Infoblock mit
diversen Informationen über die durch ’Lockstruktur’ bezeich-
nete Diskette. ’Lockstruktur’ muß entweder auf den Namen der
Diskette oder auf eine Datei oder ein Unterdirectory der Dis-
kette zeigen. Anstelle des Diskettennamens kann auch eine
Laufwerksbezeichnung genommen werden (siehe Beispiel).

Achtung: Bei ’Infoadresse’ muß es sich unbedingt um eine
Adresse handeln, die durch 4 teilbar ist! Zur Reser-
vierung des Speicherplatzes für die Infotabelle sollten
Sie daher immer die Funktion MALLOC verwenden,

da durch MALLOC reservierte Bereiche grundsätz-

Das große GFA-BASIC-Buch ————

erzeugte Infoblock hat folgenden

126

lich an einer durch 8 teilbaren Adresse beginnen.
Der durch Info
Aufbau:

Byte Bedeutung

0-3 Anzahl der Diskettenfehler

4-7 installierte Disketteneinheit

8-11 Diskettenstatus: 80 Diskette ist schreib-

geschützt / 82 Diskette ist beschreibbar.

12-15 Gesamtanzahl der Diskblöcke

16-19 Anzahl der belegten Blöcke

20-23 Anzahl der Bytes je Block

24-27 Diskettentyp: -1 Keine Diskette eingelegt

/ BAD Diskette unlesbar / DOS DOS-Diskette

28-31 Zeiger auf Diskettenna@en

32 Diskette aktiv (< >0) / inaktiv (0)

Um an die einzelnen Informationen zu gelangen, verwenden Sie

entweder PEEK und Co. oder einen der Speicherzugriffsbefehle

aus Kapitel 12 (CARD{} usw.). Am interessantesten dürfte die

Möglichkeit sein, zu erfahren, ob eine in einem Laufwerk ein-
gelegte Diskette schreibgesch

mit einem entsprechenden Sy

ützt ist. Zwar reagiert AmigaDOS
stem-Requester auf einen Schreib-

zugriff auf eine Diskette mit aktiviertem Schreibschutz. Wenn
man den Schutzstatus aber schon vor dem Schreibzugriff ermit-
telt, kann man natürlich ganz individuell darauf reagieren. Zu
diesem Zweck habe ich die folgende Funktion geschrieben:

FUNCTION disktest(drive$)

LOCAL drive%, lock%, adr%, status%

drive$=dr ive$+CHR$(0)

drive%=VARPTR(drive$)

Lock%=Lock(drive%, -2)
adr%=MALLOC(36,1)
VOID Info(lock%, adr%)
status%=PEEK(adr%+11)

VOID MFREE(adr%, 36)

IF status%=82 THEN

RETURN TRUE

ELSE

RETURN FALSE

ENDIF

ENDFUNC

Idrive$ enthält Laufwerksbezeichnung

Ilokale Variablen

IString muß mit O0 enden

IZeiger auf Stringanfang

ILockstruktur (lock% enthält Adresse)

136 Byte für Infostruktur reservieren
ıInfo-Funktion aufrufen
IDiskettenstatus holen

Ireservierten Speicher freigeben
IDiskette beschreibbar?

ja, dann -1 zurückgeben
IDiskette schreibgeschützt

'0 zurückgeben

— Ein-/Ausgabebefehle 127

Wie nutzt man nun ’Disktest’”? Nehmen wir einmal an, Sie

möchten feststellen, ob die in Laufwerk DFO: eingelegte Diskette
beschreibbar ıst. Das könnte dann zum Beispiel so aussehen:

IF adisktest("DFO:")=FALSE THEN

ALERT 0,"Bitte Schreibschutz entfernen!",1,"OK",d%

ENDIF

' Schreibzugriff

CreateDir neues Verzeichnis erzeugen

Lockstruktur = CreateDir (Name)

Erstellt im aktuellen Directory ein neues Unterdirectory mit dem
Namen, auf den ’Name’ zeigt. Dabei wird - analog zu der
Funktion Lock - eine Lock-Struktur erzeugt, deren Adresse in
’Lockstruktur’ zurückgegeben wird.

CurrentDir Aktuelles Verzeichnis bestimmen

alte_Lockstruktur = CurrentDir (Lockstruktur)

Erhebt das durch seine Lock-Struktur bezeichnete Unterdirec-
tory zum aktuellen Directory. Zurückgegeben wird die Adresse
der Lock-Struktur des zuvor aktuellen Directories.

ParentDir Übergeordnetes Verzeichnis ermitteln

neue_Lockstruktur = ParentDir (Lockstruktur)

Ermittelt das übergeordnete Directory des durch seine Lock-
Struktur bezeichneten Unterdirectories und übergibt die Adresse
dessen Lock-Struktur.

Examine | Fileinformationen holen

Status = Examine (Lockstruktur, Infoadresse)

Examine erzeugt im Speicher ab ’Infoadresse’ einen Infoblock

mit diversen Informationen über die/das durch ’Lockstruktur’
bezeichnete Datei/Directory.

Der Infoblock hat folgenden Aufbau:

128 Das große GFA-BASIC-Buch ———

Byte Bedeutung

0-3 Diskettennummer

4-7 Eintragstyp (>0: Directory; sonst: Datei)

8-115 Eintragsname (nur 30 Byte nutzbar)

116-119 | Zugriffsstatus (siehe auch Funktion SetProtection)

Bit 0: Datei nicht loschbar

Bit 1: Datei nicht ausfuhrbar

Bit 2: Datei nicht Uberschreibbar

Bit 3: Datei nicht lesbar

120-123 | Eintragstyp (siehe oben)

124-127 | Dateilange in Bytes

128-131 | Anzahl der belegten Blocks

132-143 | Erstellungsdatum

144-259 | Kommentar (nur 80 Byte nutzbar)

Um die Informationen auszulesen, gehen Sie wie folgt vor:

' dname$ enthält Directory-/Dateinamen
dname$=dname$+CHR$(0) IString muß mit 0 enden

dname%=VARPTR(dname$) IZeiger auf Stringanfang

Lock%=Lock (dname%, -2) ILockstruktur erzeugen
infoadr%=MALLOC(260, 1) 1260 Byte für Infoblock reservieren
VOID Examine(lock%, infoadr%) ! Funktion aufrufen

Nun können Sie leicht auf die einzelnen Daten zugreifen:

laenge%=Cinfoadr%+124} !Dateilänge

~ kom$=CHARCinfoadr%+144)} !Kommentar USW.

Zum Schluß vergessen Sie bitte nicht, den durch MALLOC be-
legten Speicher mit

“VOID MFREE(infoadr%, 260)

wieder freigeben zu lassen! Examine läßt sich übrigens auch

dazu verwenden, den Namen einer Diskette zu ermitteln. Das
kann zum Beispiel dann sehr nützlich sein, wenn Sie festellen
wollen, ob die richtige Diskette in das Laufwerk eingelegt ist.
Dazu übergeben Sie in dname$ einfach die Laufwerksbezeich-
nung (z.B. DFO:). Mit |

——— Ein-/Ausgabebefehle 129

disk$=CHAR{infoadr%+8}

erhalten Sie dann den Namen der Diskette.

ExNext Nächsten Directory-Eintrag ermitteln

Status = ExNext (Lockstruktur, Infoadresse)

ExNext ermittelt den jeweils nächsten Eintrag eines durch seine
Lock-Struktur bezeichneten Directories und legt die Informa-
tionen über diesen Eintrag in dem durch ’Infoadresse’ bezeich-

neten Infoblock ab (siehe Examine). Mit ExNext läßt sich nach
und nach das gesamte Inhaltsverzeichnis einer Diskette auslesen.
Ist kein weiterer Eintrag vorhanden, wird in ’Status’ eine Null
zurückgegeben.

DeleteFile Datei loschen

Status = DeleteFile (Name)

Löscht eine Datei oder ein Unterdirectory. (Name’ enthält die
Adresse des Namens.) Wichtig: Ein zu löschendes Unterdirectory
darf keine Dateien mehr enthalten! Diese müssen gegebenenfalls

zuvor - mit DeleteFile - einzeln gelöscht werden.

Rename | Datei umbenennen

Status = Rename (alter_Name, neuer_Name)

Benennt die Datei oder das Directory ‘alter Name’ in
’neuer Name’ um. |

SetProtection | _- Dateistatus setzen

Status = SetProtection (Name, Modus)

Verändert den Zugriffsstatus der Datei oder des Unterdirectories

’Name’. In ’Modus’ haben nur die untersten vier Bits eine Be-
deutung (jeweils, wenn gesetzt):

130 Das große GFA-BASIC-Buch ————

BitO: Datei nicht loschbar

Bit 1: Datei nicht ausfuhrbar

Bit 2: Datei nicht uberschreibbar

Bit 3: Datei nicht lesbar

Beispiel:

dname$="Dateiname"+CHR$(0) Ibeliebiger Name
dname=VARPTR(dname$) IZeiger darauf

modus=2°0 OR 2°2 IDatei nicht löschbar/nicht

überschreibbar

Status=SetProtection(dname,modus) !Modus setzen

Trat kein Fehler auf, enthält ’Status’ anschließend den Wert

TRUE (-1).

SetComment Dateikommentar setzen

Status = SetComment (Name, Kommentar)

Versieht die Datei oder das Unterdirectory ’Name’ mit einem
Kommentar, der bis zu 80 Zeichen lang sein darf. Beispiel:

dname$="Dateiname"+CHRS(0) Ibeliebiger Name

dname=VARPTR(dname$) IZeiger darauf

kom$="Kommentar"+CHR$(0) !beliebiger Kommentar bis 80 Zeichen

kom=VARPTR(kom$) IZeiger darauf

status=SetComment(dname,kom) !Kommentar setzen

Lief alles glatt, so enthält ’Status’ anschließend den Wert TRUE

(-1). Zum Lesen der an eine Datei angehängten Kommentare

verwenden Sie das CLI-Kommando List. List muß dazu mit dem
GFA-BASIC-Befehl EXEC aufgerufen werden. Zum Beispiel
listet EXEC "list df0:",0,0 alle Dateien der Diskette im Laufwerk

df0: samt ihren evtl. vorhandenen Kommentaren auf. Die Aus-
gabe erfolgt dabei in ein CLI-Fenster (nicht in das GFA-BA-

SIC-Ausgabefenster).

——— Ein-/Ausgabebefehle 131

Prozeß-Organisation

CreateProc Neuen Prozeß erstellen

Prozess = CreateProc(Name, Prior, Segment, Stack)

Erstellt unter dem Namen, auf den ’Name’ zeigt, eine neue
Prozeß-Struktur.

DeviceProc Den I/O verwendenden Prozeß ermitteln

Prozeß = DeviceProc(Name)

Übergibt in ’Prozeß’ die Identifikationsnummer des Prozesses,
der im Moment den mit ’Name’ angegebenen Ein-/Ausgabekanal
verwendet.

Delay aktuellen Prozeß anhalten

VOID Delay (Zeit)

Hält den aktuellen Prozeß um die in ’Zeit’ angegebene Anzahl
von 1/50 Sekunden an.

Exit Prozeß beenden

VOID Exit (Parameter) |

Beendet den laufenden Prozeß (bzw. das laufende Programm)
und gibt die dem Prozeß zugeteilten Speicherbereiche wieder

frei.

LoadSeg _ Programmdatei laden

Segment = LoadSeg (Name)

Lädt die Programmdatei ’Name’ in den Speicher. In Segment’
wird die Adresse des ersten Programm-Moduls zurückgegeben.

132 Das große GFA-BASIC-Buch ———

UnLoadSeg Geladene Programmdatei löschen

VOID UnLoadSeg (Segment)

Löscht eine mit LoadSeg geladene Programmdatei und gibt den

verwendeten Speicherplatz wieder frei. ’Segment’ enthält die
Adresse des ersten Programm-Moduls (siehe auch LoadSeg).

DateStamp Datum und Uhrzeit ermitteln

VOID DateStamp (Adresse)

Ubergibt in drei Langworten (auf die ’Adresse’ zeigt) das aktu-
elle Datum im AmigaDOS-Format.

Execute CLI-Kommando ausführen

Status = Execute (Kommando, Input, Output)

Execute führt ein beliebiges CLI-Kommando aus. Dazu wird ın

’Kommando’ ein Zeiger auf den Kommandotext übergeben. In-
put und Output enthalten das Filehandle des gewünschten Ein-

bzw. Ausgabekanals.

Anmerkung: Die DOS-Funktionen GetPacket und QueuePacket
sind im Augenblick von GFA-BASIC aus nicht di-
rekt ansprechbar.

5.8 Drucker-Anweisungen

HARDCOPY { H } (Teil-) Bildschirm auf Drucker ausgeben

HARDCOPY

HARDCOPY Rastport, Colormap, Modi, Abst_l, Abst_r, Breite, Hohe, Spal-

ten, Zeilen, Flags

HARDCOPY Flags

HARDCOPY erzeugt einen Grafikausdruck des aktuellen Screens

auf dem Drucker. Dabei werden die Druckereinstellungen aus

——— Ein-/Ausgabebefehle 133

den Preferences verwendet. Damit HARDCOPY einwandfrei ar-
beitet, muß auf dem betr. Screen mindestens ein Fenster geöff-
net sein. Die zweite und dritte Syntaxversion erlaubt es, den

Ausdruck auf vielfaltigste Art und Weise zu beeinflussen.
Schauen wir uns die Parameter im einzelnen an:

Rastport: Adresse des Rastports, von dem die Hardcopy

gemacht werden soll.

Colormap: Adresse der Colormap, in der die Farben des Bil-
des enthalten sind.

Modi: Enthält die Auflösungsmodi, wie in der View-
port-Struktur angegeben.

Abst I: Abstand zum linken Rand des Rastports.

Abst r: Abstand zum rechten Rand des Rastports.

Breite: Breite des auszudruckenden Bereichs.

Hohe: Hohe des auszudruckenden Bereichs.

Spalten: Anzahl der zu druckenden Spalten.

Zeilen: Anzahl der zu druckenden Zeilen.

Flags: Hier sind nur die untersten 12 Bit des Wertes von
Interesse. Jedes Bit hat eine andere Bedeutung:

Bit Bedeutung, wenn gesetzt

0 Der Wert in 'Spalten’ gilt als 1/1000- Zoll- Angabe.

1 Der Wert in Zeilen’ gilt als 1/1000- Zoll-Angabe.

2 Es wird in Maximalbreite gedruckt.

3 Es wird in Maximalhöhe gedruckt.

4 Der Wert in Spalten’ wird als ein Teiler der Maximalbreite angesehen.

5 Der Wert in ‘Zeilen’ wird als ein Teiler der Maximalhöhe angesehen.

6 Bewirkt eine zentrierte Ausgabe des Druckbildes.

7 Das Seitenverhältnis auf dem Papier soll dem Seitenverhältnis auf dem

Bildschirm entsprechen.

8-10 | Mit diesen Bits läßt sich festlegen, in welcher Auflösung die Hardcopy

ausgegeben werden soll. ‘001’ druckt in der niedrigsten Auflösung des

Druckers, ’'111’ in der höchsten.

11 Der Seitenvorschub am Ende der Ausgabe wird unterdrückt. Dadurch

lassen sich mehrere Hardcopies ‘nahtlos’ aneinanderfügen.

134 Das große GFA-BASIC-Buch ————

Anmerkung: Was ein Rastport, ein Viewport oder eine Colormap

ist und wie Sie deren Adressen und sonstigen Werte
ermitteln können, erfahren Sie im Grafikkapitel.
Beispiel:

OPENW 5 . Kleines, zentriertes BASIC-Fenster

GRAPHMODE 1 IGrafikmodus einstellen

ELLIPSE 150,160,50,40 !Zwei Ellipsen

ELLIPSE 150,160,80,25 !zeichnen

HARDCOPY IWorkbench-Screen ausdrucken

CLOSEW 5 IFenster schließen

Das Programm zeichnet eine kleine Grafik auf den Bildschirm
und bringt dann den gesamten Workbench-Screen zu Papier.

LLIST { LL } Programm-Listing ausdrucken

LLIST

Soll das aktuelle Programm-Listing auf den Drucker übertragen
werden, kann das durch LLIST erreicht werden (vgl. Editor-
Funktion Llist). Die Ausführung dieses Befehls kann durch die
GFA-Break-Funktion (<Control/Shift/Alternate>) unterbrochen
werden. Der Interpreter ıst dann wieder arbeitsbereit, und es

wird nur noch der Inhalt des Druckerpuffers ausgedruckt.

Die im Programm befindlichen Punkt-Befehle (siehe Erklärung
zur Editor-Funktion Llist) werden auch hier berücksichtigt.

LPOS() Druckkopfposition ermitteln

Var=LPOS(Dummy)

Mit dieser Funktion können Sie den aktuellen Standort des

virtuellen Druckkopfes im Zeichenpuffer Ihres Druckers ermit-
teln (max. 255). Da dieser nicht mit der aktuellen Position des

——— Ein-/Ausgabebefehle 135

physikalischen Schreibkopfes (der, der den Lärm macht) über-
einstimmen muß, kann es unter Umständen wichtig sein, die
gerade im Speicher aktuelle Position zu erfahren. Nach einem
Carriage Return (LPRINT) beginnt die Zählung wieder bei Null.
Es wird in Klammern ein beliebiger Wert übergeben, der für die
Funktion ohne Bedeutung ist (dummy; engl. für: Attrap-
pe/Schwindel). Beispiel:

Lprint "VIRTUELLE DRUCKKOPF-POSITION"

For I=1 To 150

Lprint Lpos(0)'
Next I

A=Lpos(0)
Print A

LPRINT { LPR } Daten an Drucker ausgeben

LPRINT (,'] "Text" [[;,'] Var1 [;,'] Expr...]

Grundsätzlich arbeitet LPRINT genauso wie PRINT. Die Syntax
ist bis auf die AT(Xpos,Ypos)-Variante mit PRINT vergleichbar.
Ein Unterschied ist, daß LPRINT die gewünschten Zeichen,

Strings und Werte nicht auf dem Bildschirm, sondern auf dem
Drucker ausgibt. Zu einem leidigen Problem bei der Druckeran-
steuerung wird häufig die Einstellung der verschiedenen Son-
derfunktionen mit Hilfe sogenannter Steuerzeichen. Zwar halten
sich mittlerweile die meisten Drucker an den sog. EPSON
ESC/P-Standard, trotzdem kommt es aber immer wieder vor,

daß der Drucker nicht das macht, was er eigentlich tun sollte.

Etwa wenn es darum geht, auf einen bestimmten Zeichensatz
umzuschalten oder einen anderen Zeilenabstand einzustellen.

Im Vergleich zu anderen Rechnern hat man es hier beim Amiga
etwas leichter: Der Amiga verfügt über eıne Standard-Steuer-
zeichen-Tabelle. Diese Standard-Steuerzeichen werden - sofern
sie über das logische Gerät PRT: gesendet werden, was bei
LPRINT der Fall ist - von der in den Preferences eingestellten
Druckeranpassung ın die Steuercodes des jeweils angewählten

136 Das große GFA-BASIC-Buch

Druckers übersetzt. Der Vorteil liegt klar auf der Hand: Solange
Sie sich beim Programmieren nur an die Standard-Steuercodes
halten, ist es völlig egal, welcher Drucker jeweils an dem Amiga
angeschlossen ist. Hauptsache, die richtige Druckeranpassung ist
eingestellt.

Eines sollten Sie aber immer beachten: Der angeschlossene

Drucker muß auch in der Lage sein, die mit dem betreffenden.
Steuerzeichen verbundene Aktion auszuführen. Bei einem
Drucker, der zum Beispiel über keinen französischen Zeichensatz

verfügt, nützt natürlich auch das entsprechende Standard-Steu-

erzeichen nur sehr wenig. Bitte informieren Sie sich also gegebe-
nenfalls in Ihrem Druckerhandbuch, über welche Sonderfunk-

tionen Ihr Drucker verfügt.

Welche Standard-Druckersteuerzeichen gibt es nun? Schauen Sie
dazu bitte in die folgende Tabelle. Sie enthält eine Übersicht al-

ler verfügbaren Steuersequenzen:

CHR$(27) +"c"
CHR$(27) +"#1"
CHR$(27) +"D"
CHR$(27) +"E"
CHR$(27) +"M'
CHR$(27) +"[Om"
CHR$(27) +"[1m"
CHR$(27) +"[22m"
CHR$(27) +"[3m"
CHR$(27) +"[23m"
CHR$(27) +"[4m"
CHR$(27) +"[24m"
CHR$(27) +"["+x$+"m"

CHR$(27) +"[Ow"
CHR$(27) +"[2w"
CHR$(27) +"[1w"
CHR$(27) +"[4w"
CHR$(27) +"[3w"
CHR$(27) +"[6w"
CHR$(27) +"[5w"
CHR$(27) +"[2"+ CHR$(34) +"z"
CHR$(27) +"[1"+ CHR$(34) +"z"

Drucker initialisieren

Abschaltung aller Sondermodi

Zeilenvorschub

Zeilenvorschub + Wagenrücklauf

eine Zeile zurück

normale Zeichendarstellung

Fettdruck ein

Fettdruck aus

Kursiv ein

Kursiv aus

Unterstreichen ein

Unterstreichen aus

Vordergrundfarbe (x$ zwischen " 30" und "39");

Hintergrundfarbe (x$ zwischen "40" und "49")

normale Schriftgröße

Elite-Schrift ein

Elite-Schrift aus

Schmalschrift ein

Schmalschrift aus

Breitschrift ein

Breitschrift aus

NLO ein

NLQ aus

———— Ein-/Ausgabebefehle

CHR$(27) +"[4"+ CHR$(34) +"z"

CHR$(27) +"[3"+ CHR$(34) +"z"

CHR$(27) +"[6"+ CHR$(34) +"z"

CHR$(27) +"[5"+ CHR$(34) +"z"

CHR$(27) +"[2v"

CHR$(27) +"[1v"

CHR$(27) +"[4v"

CHR$(27) +"[3v"

CHR$(27) +"L"

CHR$(27) +"K"

CHR$(27) + "[Ov"

CHR$(27) + "[2p"

CHR$(27) +"[1p"

CHR$(27) +"[Op"

CHR$(27) +"["+x$+"E"

CHR$(27) + "[5F"

CHR$(27) +"[7F"

CHR$(27) +"[6F"
CHR$(27) + "[OF"
CHR$(27) +"[3F"

CHR$(27) +"[1F"

CHR$(27) +"[0z"

CHR$(27) +"[1z"

CHR$(27) + "["+x$+'t"
CHR$(27) +"["+x$+"q"

CHR$(27) +"[0q"
CHR$(27)+"(B" .
CHR$(27) +"(R"

CHR$(27) +"(K"

CHR$(27) +"(A"

CHR$(27) +"(E"

CHR$(27) +"(H"

CHR$(27) +"(Y"

CHR$(27) +"(Z'

CHR$(27) +"(J"

CHR$(27) +"(6"

CHR$(27) +"(C"

CHR$(27) +"#9"

CHR$(27) +"#0"

CHR$(27) +"#8"

CHR$(27) +"#2"

CHR$(27) +"#3"

CHR$(27) +"["+x$+"5"+y$+'r'

CHR$(27) +"["+x$+"s"+y$)+"s"

137

Doppeldruck ein

Doppeldruck aus

Schattenschrift ein

Schattenschrift aus

Superscript ein

Superscript aus

Subscript ein

Subscript aus

Hochstellen (Halbschritt)

Tiefstellen (Halbschritt)

zuruck zu Normalschrift

Proportionalschrift ein

Proportionalschrift aus

Proportionalabstand löschen

Proportionalabstand = x$

links ausrichten

rechts ausrichten

Blocksatz

Blocksatz aus

Buchstabenbreite justieren

zentrieren

Zeilenabstand 1/8 Zoll

Zeilenabstand 1/6 Zoll

Seitenlange auf x$ Zeilen einstellen

Perforation um x$ Zeilen uberspringen

Perforation uberspringen aus

amerikanischer Zeichensatz

französischer Zeichensatz

deutscher Zeichensatz

englischer Zeichensatz

dänischer Zeichensatz (Nr. 1)

schwedischer Zeichensatz

italienischer Zeichensatz

spanischer Zeichensatz

japanischer Zeichensatz

norwegischer Zeichensatz

dänischer Zeichensatz (Nr. 2)

linken Rand setzen

rechten Rand setzen

oberen Rand setzen

unteren Rand setzen

Ränder löschen

Seitenkopf x$ Zeilen von oben und Seitenfuß y$

Zeilen von unten

linken Rand (x$) und rechten Rand (y$) setzen

138 Das große GFA-BASIC-Buch ————

CHR$(27) +"H" horizontalen Tabulator setzen

CHR$(27) +"J" vertikalen Tabulator setzen

CHR$(27) +"[0g" horizontalen Tabulator löschen

CHR$(27) +"[3g" alle horizontalen Tabulatoren loschen

CHR$(27) +"[1g" vertikalen Tabulator löschen

CHR$(27) +"[Ag" alle vertikalen Tabulatoren löschen

CHR$(27) +"#4" alle Tabulatoren löschen

CHR$(27) +"#5" Standard-Tabulatoren setzen

Sind bei den Steuersequenzen Werte anzugeben, so sind diese als

Zeichenfolge anzugeben (z.B.:x$="123") und nicht etwa als Zei-
chen mit dem entsprechendem ASCII-Code!

Nun ist es natürlich auch nicht jedermanns Sache, sıch eine

Steuersequenz wie zum Beispiel ’CHR$(27)"[Im"” zum Umschal-
ten auf Fettschrift auswendig zu merken. Und jedesmal ın der
Tabelle nachschauen ist vielleicht auch etwas mühsam. Da sollte

einmal Nachschauen schon genügen. Aber wozu gibt es schließ-

lich die Möglichkeit, selbstdefinierte Funktionen zu pro-

grammieren?:

DEFFN fett_ein$ = CHR$(27)+"[1m"

Wenn Sie jetzt auf Fettschrift umschalten wollen, genügt ein
LPRINT @fett_ein$. Das läßt sich doch schon viel leichter mer-
ken! Deshalb mein Vorschlag: Suchen Sie sich aus der Tabelle all

die Steuersequenzen heraus, die Sie höchstwahrscheinlich einmal
brauchen werden und definieren Sie sie - mit einprägsamen

Namen - als Funktionen. Anschließend speichern Sie das Ganze

als separates Programm (vielleicht unter dem Namen
’DRUCKERCODES.LST’) auf Diskette. Wenn Sie nun in Ihren
Programmen auf den Drucker zugreifen wollen, verwenden Sie
einfach die gewählten Namen und mergen dann zum Schluß
’DRUCKERCODES.LST’ hinten an Ihr Programm.

Die Standard-Steuerzeichen-Tabelle ist zwar eine feine Sache,
doch was macht man, wenn der eigene Drucker über Fähigkeiten
verfügt, deren Einstellung in der Tabelle überhaupt nicht vor-
gesehen ist? Man denke nur an Schriftvarianten wie ’Outline’,

——-— Ein-/Ausgabebefehle 139

die mittlerweile bei einigen Druckern zum Standard gehören. In
der Steuerzeichen-Tabelle werden Sie diese dagegen vergeblich
suchen. |

Für solche Fälle verfügt der Amiga über eine zweite Drucker-
Schnittstelle: das logische Gerät PAR:. Dieses macht im Grunde
genommen nichts anderes als PRT:: Es steuert die parallele

Schnittstelle (auch Centronics-Schnittstelle genannt) des Amiga

an. Im Gegensatz zu PRT: findet bei PAR: jedoch keine Steuer-
zeichenübersetzung statt, d.h. die Steuerzeichen werden ’unge-
filtert? (unter Umgehung der in den Preferences eingestellten
Druckeranpassung) direkt an den angeschlossenen Drucker ge-
sendet. Wie sieht das Ganze nun konkret aus? Zunächst müssen
Sie mit

OPEN "O",#1,"PAR:"

eine logische Datei zu PAR: öffnen. Anschließend senden Sie die

erforderliche Steuersequenz mit

PRINT #1,CHR$(27).....

an den Drucker. Die weiteren Daten (also den auszudruckenden

Text) können Sie nun mit

PRINT #1,.......

ausgeben lassen. Dabei gelten dieselben Syntaxregeln wie bei
LPRINT. Zum Schluß vergessen Sie bitte nicht, die Datei mit

CLOSE #1

wieder zu schließen. Sollte Ihr Drucker zu jenen Exoten gehö-
ren, die an der seriellen Schnittstelle des Amiga angeschlossen

werden wollen, so hilft Ihnen die dritte Drucker-Schnittstelle
des Amiga: das logische Gerät SER:. Die Vorgehensweise ist da-
bei genau dieselbe wie bei PAR:. Also zuerst mit ’OPEN
"0", #1,"SER:" eine logische Datei öffnen, dann mit ’PRINT #1’

die Steuerzeichen und sonstigen Daten senden und zum Schluß
die Datei mit "CLOSE #1’ wieder schließen.

140 Das große GFA-BASIC-Buch ————

5.9 Sound- und Spracherzeugung

SOUND {SO} Ton erzeugen

SOUND Frequenz, Dauer [,Lautstärke] [,Kanal]

Der Befehl SOUND erzeugt einen Ton, dessen Frequenz zwi-
schen 20 Hertz und 15000 Hertz frei wählbar ist. Der Parameter
Dauer ist eine 16-Bit-Zahl, die angibt, wie oft die sog. Hüllkur-

ve des Tones (siehe WAVE) wiederholt wird. Die optional ein-
stellbare Lautstärke kann Werte von 0 (= aus) bis 255 (= volle
Lautstärke) annehmen. Die Einteilung ist linear, d.h. ein Wert
von 127 ergibt eine mittlere Lautstärke. Dieser Wert ist auch
voreingestellt. Mit Kanal läßt sich festlegen, über welchen der
vier Tonkanäle des Amiga (Kanal = 0 - 3) der Ton ausgegeben
werden soll. Voreingestellt ist der Kanal 0. Jeder Tonkanal läßt

sich einzeln ansprechen, d.h. Sie können bis zu vier Töne gleich-

zeitig spielen. Bei Stereoausgabe stehen die Kanäle 0 und 3 für
den linken, die Kanäle I und 2 für den rechten Tonausgang.

Neben dem Erzeugen einfacher Töne ist natürlich vor allem ei-
nes interessant: das Abspielen von Noten oder ganzen Musik-
stücken. Dazu muß man die den einzelnen Noten zugeordneten
Tonfrequenzen kennen:

Note Frequenz (Hz)

Cc 261.6

c# 277.2

d 293.7
d# 311.2
e 329.7
f 349.3

f# 370.0
g 392.0
g# 415.3
a 440.0
a# 466.2

h 493.9

——— Ein-/Ausgabebefehle 141

Die Tabelle gibt Ihnen Aufschluß über die Frequenzen der 2.
Oktave. Die Frequenzen anderer Oktaven lassen sich daraus

denkbar einfach berechnen: Mit jeder Oktave verdoppelt sich

die Frequenz einer Note! Die Note a in der 3. Oktave hat also

die Frequenz 2*440=880 Hertz, in der 4. Oktave entspricht ihr
die Frequenz 2*880=1760 Hertz usw. Für alle, denen das
Ausrechnen zu mühsam ist, habe ich die folgende Tabelle

zusammengestellt. Sie enthält die gebräuchlichsten Noten und
ihre zugehörigen Frequenzen (in Hz):

Oktave: 1 2 3 4 5

c 130.8 | 261.6 5232 | 1046.4 | 2092.8
c# 138.6 | 277.2 5544 | 11088 | 2217.6
d 146.9 | 293.7 587.4 | 11748 | 2349.6
d# 1556 | 311.2 6224 | 12448 | 2489.6
e 164.9 | 329.7 | 659.4 | 13188 | 2637.6
f 1747 | 349.3 698.6 | 1397.2 | 2794.4

f# 185.0 | 370.0 | 740.0 | 1480.0 | 2960.0
g 196.0 | 392.0 784.0 | 1568.0 | 3136.0
g# 207.7 | 415.3 830.6 | 1661.2 | 3322.4
a 220.0 | 440.0 | 880.0 | 1760.0 | 3520.0
a# 233.1 466.2 | 932.4 | 1864.8 | 3729.6
h 247.0 | 493.9 987.8 | 1975.6 | 3951.2

WAVE { WA } Hüllkurve festlegen

WAVE Kanal, Hüllkurve()

Mit WAVE läßt sich für jeden der vier Tonkanäle des Amiga
(Kanal = 0 bis 3) eine sog. Hüllkurve festlegen. Diese bestimmt
den Klangverlauf des über diesen Kanal ausgegebenen Tones.
Die Daten der Hüllkurve werden in dem 256 Elemente umfas-

senden Integerfeld Hüllkurve() übergeben. Jedes Element des
Feldes darf nur Werte zwischen -128 und +127 annehmen. Daher
verwendet man am besten ein Byte-Integerfeld (Prefix |).

142 Das große GFA-BASIC-Buch ———

Wird der Befehl SOUND ohne vorheriges WAVE angewendet, so

wird für den angesprochenen Kanal eine Sinusschwingung er-

zeugt. Diese können Sıe auch mit WAVE über das Schlüsselwort
SIN() einstellen (WAVE Kanal,SIN()).

SAY Text sprechen

SAY Sprech$ [,Modi%()]

Der Befehl SAY dient dazu, einen zuvor mit der Funktion

TRANSLATES in einen sog. Phonem-Code übersetzten Text zu
sprechen. Der Phonem-Code wird dazu in Sprech$ übergeben.

SAY und TRANSLATES$() lassen sich auch kombinieren: SAY
_ TRANSLATES("HALLO").

Durch das sieben Elemente umfassende Feld Modi%() können
Sie die ’Stimme’ des Amiga auf verschiedene Art und Weise mo-

difizieren:

Modi%(0) Enthält die Frequenz und damit die Höhe der
Stimme. Möglich sind Werte von 65 (tiefe Stimme)
bis 320 (hohe Stimme). Voreingestellt ist 110.

Modi%(1) Legt die Modulation der Stimme fest. Zur Wahl
stehen ’betont’ (0) und ’monoton’ (1). Voreinstel-
lung: 0.

Modi%(2) Enthält die Sprechgeschwindigkeit in Wörtern pro
Minute (40 - 400). Voreingestellt ist 150.

Modi%(3) Legt fest, ob die Stimme männlich (0) oder weib-
lich (1) klingen soll. Voreingestellt ist 0.

Modi%(4) Enthält die Sampling-Frequenz, die vor allem
Auswirkungen auf die Stimmhöhe hat. Möglich
sind Werte zwischen 5000 (tief) und 28000 (hoch).
Voreinstellung: 22000.

———— Ein-/Ausgabebefehle 143

Modi%(5) Legt die Lautstärke der Stimme fest. Erlaubt sind
Werte von 0 (nichts zu hören) bis 64 (volle Laut-
stärke). Voreingestellt ist 64.

Modi%(6) Bestimmt, über welchen der vier Tonkanäle des
Amiga (Nummern 0 bis 3) die Stimme zu hören
ist. Dabei sind alle Kombinationen möglich:

Kanal 0

Kanal 1

Kanal 2

Kanal 3

Kanäle O und 1

Kanäle 0 und 2

Kanäle 3 und 1

Kanäle 3 und 2

Kanäle 0 und/oder 3

Kanäle 1 und/oder 2

10 Jedes freie Kanalpaar (Grundeinstellung)

11 Jeder freie Kanal

O
N

Oa

a
a
A

ND

=
©

©

Die Vielzahl der Parameter ist auf den ersten Blick vielleicht
etwas verwirrend. Um die Werte jeweils bequem ändern zu kön-

nen, ist es am einfachsten, wenn man sich alle Werte für

Modi%() in einer DATA-Zeile ablegt und dann dort die erfor-

derlichen Änderungen vornimmt:

FOR z%=0 TO 9

READ Modi%(z%) ILeseschleife

NEXT z%

IAbgelegte Werte

DATA 110,0,150,0,22000,64,10

Um die Stimme zum Beispiel von männlich auf weiblich umzu-

stellen, ändern Sie den vierten Wert auf 1.

Achtung: SAY benötigt für seine Arbeit im DEVS-Ordner der
Boot-Diskette das sog. ’Narrator-Device’. Beim
Aufruf von SAY sollte sich die Boot-Diskette also ın
einem der angeschlossenen Laufwerke befinden. An-
dernfalls erhalten Sie einen System-Requester, der

Sie zum Einlegen der Diskette auffordert.

144 Das große GFA-BASIC-Buch ———

TRANSLATE$() Text zur Sprachausgabe übersetzen |

_ Sprech$=TRANSLATES("Text")

TRANSLATE$ übersetzt einen natürlichsprachlichen Text in

einen für den SAY-Befehl verständlichen Phonem-Code. Das

Ganze hat allerdings einen Haken: TRANSLATE$ ist im Mo-
ment nur in der Lage, englischen Klartext zu bearbeiten, d.h.

jeder Text wird nach englischen Ausspracheregeln umgeformt!
Deutsche Texte werden dadurch mitunter fast unverständlich.

Eine mögliche Abhilfe besteht darin, den Text so umzu-
schreiben, daß er - englisch ausgesprochen - deutsch klingt.

Zwei Beispiele: Aus einem ’Wie’ wird ein ’Vee’, ein ’sch’ wird zu

*sh’. Leider lassen sich dabei aber keine allgemeingültigen Um-

formungsregeln aufstellen. Im Einzelfall hilft nur Ausprobieren.

——— Programmstruktur 145

6. Programmstruktur

6.1 Schleifenkonstruktionen

DO..LOOP{DO..L}

Endlosschleife DO [WHILE Bed] [UNTIL Bed] ...Doppelt bedingte Schleife

LOOP [WHILE Bed} [UNTIL Bed]

DO

auszuführende Programmteile

LOOP

oder:

DO [WHILE Bedingung] [UNTIL Bedingung]

auszuführende Programmteile, wenn DO-Bedingung

wahr ist bzw. solange LOOP-Bedingung wahr ist.

LOOP [WHILE Bedingung] [UNTIL Bedingung]

Eine DO...LOOP-Schleife bricht im Normalfall nur dann ab,
wenn sie auf eine Abbruch-Anweisung (END, EDIT, STOP)
trifft, eine EXIT IF-Anweisung findet und die Abbruchbedin-
gung wahr ist, eine GOTO-Anweisung innerhalb der Schleife zu
einem Label außerhalb der Schleife verzweigt oder die Break-
Funktion verwendet wird.

Außerdem ist es möglich, eine DO... LOOP-Konstruktion mit
Ein- und Ausgangsbedingungen zu versehen. Dazu kann sowohl
bei DO als auch bei LOOP entweder eine WHILE- oder eine
UNTIL-Bedingungsabfrage hinzugefügt werden (siehe WHILE...
WEND bzw. REPEAT... UNTIL).

Wenn allein DO...LOOP eingesetzt wird, ist es möglich, statt
LOOP auch ENDDO zu verwenden (wird vom Interpreter dann
durch LOOP ersetzt).

146 Das große GFA-BASIC-Buch ——

DO... LOOP kann - wie alle anderen Schleifen auch - beliebig
tief verschachtelt werden. Beachten Sie bitte das Beispiel zu

EXIT IF.

FOR ... NEXT {F...N} Zählschleife

FOR Zaehl=Start TO [DOWNTO] Ende [STEP Schritt]

auszuführende Programmteile

NEXT Zaehl

Mit der Konstruktion FOR...NEXT wird eine indizierte Wieder-
holungschleife angelegt.

Die Kopfzeile der Schleife enthält den Anfangswert Start und
den Endwert Ende. Die numerische Zählvariable Zaehl wird bei
Schleifenbeginn mit dem Wert Start belegt und dann bei jedem

Durchlauf solange erhöht bzw. vermindert, bis sie den Wert
- Ende erreicht hat. Dabei werden alle Programmzeilen, die zwi-
schen FOR und dem dazugehörigen NEXT eingeschlossen sind,
bei jedem Durchlauf ausgeführt. Nach Erreichen des Ende-
Wertes wird das Programm mit der auf die NEXT-Anweisung
folgenden Programmzeile fortgesetzt.

Wird nur FOR..TO..NEXT ohne die Option STEP verwendet,
beträgt die Schrittweite immer +1. Bei Verwendung von
FOR..DOWNTO..NEXT ist der Anfangswert größer als der
Endwert anzugeben, da in diesem Fall die Schrittweite immer -1

beträgt. Die Verwendung von STEP ist hier nicht zulässig. Die
Option STEP (nur bei TO-Schleifen) bewirkt, daß der nach
STEP angegebene Wert oder Ausdruck als Schrittweite ange-

nommen wird. Hier sind auch negative Werte möglich, wobei

dann sinnvollerweise - wie bei DOWNTO - der Endwert kleiner
als der Startwert zu wählen ist.

Ist bei Verwendung von STEP der Wertebereich von Start bis
Ende nicht glatt durch den STEP-Wert Schritt teilbar, errechnet

sich der zuletzt verarbeitete Zählwert aus:

— Programmstruktur | 147

Abs(Ende-Start)-((Abs(Ende-Start)) Mod Abs(Schritt))

Ist bei positiven Schleifen Start größer als Ende bzw. bei nega-

tiven Schleifen Ende größer als Start, so wird die Schleife trotz-
dem mindestens einmal mit dem Start-Wert durchlaufen.

Statt NEXT Var kann auch ENDFOR Var angegeben werden.

REPEAT ... UNTIL { REP ... U } Bedingte Schleife

REPEAT

auszuführende Programmteile

UNTIL Bedingung

Die REPEAT...UNTIL-Schleife kann immer dann angewendet

werden, wenn die Anzahl der Schleifendurchläufe nicht durch

das Erreichen eines Endwertes (FOR...NEXT) festgelegt ist und
die Schleife mindestens einmal durchlaufen werden soll.

Die Bedingung zum Verlassen der Schleife wird hier am
Schleifenende geprüft. D.h., daß die Schleife mindestens einmal

bis zu der in UNTIL vereinbarten Bedingung durchlaufen wird.
Es sei denn, daß innerhalb der Schleife eine EXIT IF-Bedingung
mit "wahr" beantwortet wird (siehe EXIT IF). Ist "Bedingung"
wahr, wird das Programm mit der nächsten auf UNTIL folgen-
den Zeile fortgesetzt.

Diese Konstruktion läßt sich bestens dazu verwenden, um

mehrfach kombinierte Abbruchbedingungen zu stellen. So kön-

nen z.B. gleichzeitig ein bestimmter Tastatur-, Maus- und/oder
Mausknopf-Status, der Inhalt von Variablen und/oder das Er-
reichen bestimmter Limits als Bedingung(en) angegeben werden.

Angenommen, für den Abbruch einer REPEAT...UNTIL-
Schleife sollen die folgenden Bedingungen ausschlaggebend sein:

148 Das große GFA-BASIC-Buch ——

Mausklick rechts und Zählwert größer 100,

oder

<Esc>-Taste gedrückt,

oder es sind mehr als 10 Sekunden vergangen. Die Schleifen-
konstruktion sieht dann so aus:

T%=Timer I Timer festhalten
Repeat I Schleifenstart

Inc A% ı Zähler +1
K=Mousek I Maustasten-Abfrage

Key%=Asc(Right$(Inkey$)) ! Tastatur-Abfrage
Until (K=2 And A%>100) Or Key%=27 Or (Timer-T%)>2000

Mit den Booleschen Operatoren AND/OR/NOT/XOR/IMP/EQV

lassen sich diese Bedingungen auf das Abenteuerlichste mit-
einander verknüpfen. Statt UNTIL kann auch ENDREPEAT

verwendet werden. Der Interpreter wandelt diesen Ausdruck
dann selbständig in UNTIL um.

WHILE ... WEND {W...WE} Bedingte Schleife

WHILE Bedingung

auszuführende Programmteile ...

WEND

Die WHILE...WEND-Schleife hat die Eigenschaft, daß die Ab-
frage der Lauf-Bedingung bereits am Anfang der Schleife statt-
findet.

So kann es sein, daß die Schleife zwar ın der ersten Zeile betre-
ten wird, jedoch das Programm sofort hinter dem dazugehörigen
WEND fortgesetzt wird. Dann nämlich, wenn die Bedingung
bereits bei Betreten der Schleife nicht erfüllt ist. In diesem Fall
werden die zwischen WHILE und WEND eingeschlossenen Pro-
grammzeilen also nicht ausgeführt. Beachten Sie hierzu bitte das
Beipiel zu EOF().

——— Programmstruktur 149

Statt WEND kann auch ENDWHILE verwendet werden. Der In-

terpreter wandelt diesen Ausdruck dann selbständig in WEND
um.

6.2 Bedingte Verzweigungen

EXIT IF { EX } Bedingter Schleifenabbruch

EXIT IF Bedingung

Das ist ein sehr nützlicher Befehl, wenn es darum geht, inner-
halb von FOR...NEXT-, DO...LOOP-, REPEAT...UNTIL- oder
WHILE...WEND-Schleifen an beliebigen - und beliebig vielen -
Stellen zusätzliche Abbruchbedingungen stellen zu können.

Eine solche Schleife kann unabhängig von ihrem Zustand je-
derzeit verlassen werden, sobald darin eine durch EXIT IF ge-

stellte Bedingung mit "wahr" beantwortet wird. Das Programm

wird dann mit der auf den zugehörigen Schleifenwendepunkt
folgenden Programmzeile fortgesetzt. Dabei ist zu beachten, daß
das Programm direkt vom auslösenden EXIT IF hinter den Wen-

depunkt springt. Zwischen dem auslösenden EXIT IF und dem

Wendepunkt stehende Programmzeilen werden also nicht noch
einmal ausgeführt.

Das Beispiel zu REPEAT... UNTIL läßt sich nun anhand einer

DO...LOOP-Schleife und EXIT IF folgendermaßen umstruktu-
rieren:

T%=Timer Timer festhalten

Do Schleifenstart

Exit If (Timer-T%)>2000 10 Sekunden vergangen?

Inc A% zähler +1

K=Mousek Maustasten-Abf rage

Key%=Asc(Right$(Inkey$))
Exit If Key%=27
Exit If K=2 And A%>100
I

Tastatur-Abfrage

<Esc>-Taste gedrückt?

Mausklick rechts und

Zähler größer 100?

Loop

150 Das große GFA-BASIC-Buch ———

Die - oben schon erwähnte - Besonderheit ıst hier, daß die
Schleife direkt verlassen wird, sobald 10 Sekunden vergangen
sind und bis dahin keine der beiden anderen Abbruchbedin-
gungen erfüllt wurde. In diesem Fall heißt das, daß der vor dem

auslösenden Timer-Abbruch gültige Maustasten- und Tastatur-
status sowie der Zähler A% erhalten bleiben und ggf. weiterver-

wertet werden können. |

EXIT IF kann auch innerhalb von IF..ENDIF- oder SE-
LECT...ENDESELECT-Blöcken eingesetzt werden. Das Pro-

gramm wird dann ggf. hinter der Schleife fortgesetzt, ın der
diese Befehle stehen. 2.

IF [ELSE] ENDIF {1... [E...] EN } Bedingungsabfrage |

ELSEIF{E} | Unter-Bedingungsabirage |

IF Bedingung [THEN]

auszuführende Programnteile,

wenn Bedingung wahr ist

[ELSE

auszuführende Programnteile,

wenn Bedingung unwahr ist]

ENDIF

oder:

IF Bedingung1 [THEN]

auszufUhrende Programmteile,

wenn Bedingung1 wahr ist

[ELSE IF Bedingung2

auszufUhrende Programmteile, wenn Bedingung!

unwahr und Bedingung2 wahr ist.]

[ELSE IF Bedingung

auszuführende Programmteile, wenn alle

vorherigen Bedingungen unwahr waren,

Jedoch Bedingung3 wahr ist.]

ggf. weitere ELSE IF-Abfragen

— Programmstruktur 151

[ELSE

auszuführende Programmteile, wenn alle

vorherigen Bedingungen unwahr waren.]

ENDIF

In GFA-BASIC ist es möglich, die Ausführung auch umfang-

reicher Programmteile allein von der Erfüllung einer einzigen
Bedingung abhängig zu machen. Die Folge an Befehlen, die ab-

hängig von einer IF-Bedingung ausgeführt werden sollen, wird
hier nur von dem zugehörigen ENDIF (bzw. ELSE) eingegrenzt.

Ist die Bedingung wahr, werden die zwischen IF und dem zuge-
hörigen ENDIF bzw. ELSE stehenden Programmteile ausgeführt.
Bei Verwendung der Option ELSE werden die zwischen ELSE
und dem zugehörigen ENDIF eingeschlossenen Befehle ausge-

führt, wenn die Bedingung sich als unwahr erweist. Ist ein IF-
oder ELSE-Block ausgeführt, wird das Programm mit der auf
das zugehörige ENDIF folgenden Programmzeile fortgesetzt.

IF-Abfragen können beliebig tief verschachtelt werden. Der op-
tionale Zusatz THEN hinter IF ist zur Kompatibilität mit ande-

ren BASIC-Dialekten gedacht. Er kann in GFA-BASIC ver-

nachlässigt werden.

Durch den Zusatzbefehl ELSE IF ist es möglich, sich Ver-
schachtelungen folgender Art zu ersparen:

If Bedingung]

. Programmblock 1 >

Else

If Bedingung?

. Programmblock 2 >

Else

If Bedingung

. Programmblock 3 >

Else

. Programmblock 4 >--.

Endif |
< 1.

Endi f

Endif
an)

152 Das große GFA-BASIC-Buch ———

Mit ELSE IF sieht dieselbe Struktur so aus:

If Bedingung!

... Programmblock 1 >

Else If Bedingung?

. Programmblock 2 >

Else If Bedingung3

. Programmblock 3 >

Else

. Programmblock 4 >--.

Endif |
< | ee ee aX

Ist hier die Eingangs-IF-Bedingung unwahr und trifft das Pro-
gramm auf eine ELSE IF-Abfrage, deren Bedingung wahr ist,
wird nur der darunter angegebene Programmblock abgearbeitet
und nach dessen Ausführung zu der auf das zugehörige ENDIF
folgenden Programmzeile gesprungen. Wird als Abschluß die
Option ELSE verwendet und keine der vorangegangenen ELSE

IF-Bedingungen wurde mit wahr beantwortet, wird auch hier
die unter ELSE angegebene Programmfolge alternativ zu allen
Vorbedingungen ausgeführt.

Bei folgender Abfrage werden mehrere Bedingungen durch AND
so miteinander verknüpft, daß der dahinterstehende Programm-

block nur dann ausgeführt wird, wenn alle Bedingungen der
Abfrage erfüllt sind. Statt des oben verwendeten Ausdrucks Be-
dingung setze ich hier den Ausdruck Case ein, der jedoch nichts
mit der CASE-Abfrage zu tun hat.

If Casel=True And Case2=True And Case3=False

auszuführender Programmblock

Endif

Eine solche Struktur ließe sich mit derselben Wirkung auch in
mehrere IF-Abfragen auflösen:

.— If Case1=True
J

— If Case2=True <——!
|)

.— If Case3=False <——!

—— Programmstruktur 153

auszuführender Programmblock >——.

Endif
(> < |

ore

Endi f

>.

|
Endif
>

Auch hier wird der Block nur ausgeführt, wenn alle Abfragen
wahr sind. Auf den ersten Blick mag die zweite Version etwas
aufwendiger erscheinen. Sie hat jedoch den Vorteil, daß nach
jeder Einzel-Abfrage auf die Erfüllung der einzelnen Bedingung
reagiert werden kann.

Fileselect "auswahl", "Laden", "df0:",F$
If F$>"" I Case1

Print "Okay-Box oder Doppelklick" ! Reaktion
If Right$(F$,4)=".DAT" ! Case2

1

1

!

Print "Korrekte Extension I Reaktion
i

N

!

If Len(F$)>4 I Case3

Print "Dateiname ";Left$(F$,Len(F$)-4) ! Block..
Print "Extension = .DAT" I „..ausführen

Endif
Endif

Endif

Ähnliches läßt sich auch mit mehreren ELSE IFs anstatt einer
OR-Kette realisieren. Bei der OR-Kette wird die Abfrage pas-

siert und der Programmblock ausgeführt, sobald nur eine Bedin-

gung der Kette wahr ist. Hier wurden - um einen Vergleich mit
der oben beschriebenen AND-Kette zu ermöglichen - die Be-
dingungen negiert.

If Casel<>True Or Case2<>True Or Case3<>False

Eu eaktion auf Negation der Bedingungen

auszuführender Programmblock

Endif

154 Das große GFA-BASIC-Buch ————

Mit der ELSE IF-Struktur kann jede der drei OR-Bedingungen
einzeln abgefragt werden und dann auf die Erfüllung der jewei-
ligen Bedingung separat reagiert werden:

< If Casel<>True

Reaktion auf Case >

.<===> Else If Case2<>True

| Reaktion auf Case2 >
.<===> Else If Case3<>False

Reaktion auf Case3 >

Else

' > .. auszuführender Programmblock >--.

Endif |
< i-.ı.1.1

In der Praxis könnte das dann so aussehen:

Fileselect "auswahl", "laden", "df0:", FS

If Fg="" I Case

Print "Abbruch-Box angeklickt" I Reaktion

Else If Right$(F$,4)<>".DAT" I Case2

i

N

l

Print "Falsche Extension (kein .DAT) ! Reaktion
'

!

1

Else If Len(F$)=4 I Case3

Print "Kein vollständiger Dateiname " ! Reaktion

Else I Keine der Bedingungen ist

wahr!

Print "Korrekte Dateiauswahl!! I Block...

Endif I...ausführen

Der wesentliche Unterschied zwischen der Normal-IF-Struktur
und der ELSE IF-Struktur ist, daß beim Normal-IF nach jedem
Programmblock die ENDIFs der vorangegangenen Abfragen

noch passiert werden. Daraus ergibt sich die Möglichkeit,
abhängig von dem ausgeführten Block weitere Programmteile

ausführen zu lassen, die mit den vorangegangenen Abfragen in
Bezug stehen. Die Notwendigkeit zu Raffinessen dieser Art ist

zwar äußerst gering, kann jedoch nicht absolut ausgeschlossen

werden. Beispiel:

A%=3

If A%=1

Print 1! >

Else

If A%=2 Obwohl hier weder die

Print 2! > . erste noch die zweite

Else Bedingung zutrifft, werden

If A%=3 die vor ihren ENDIF's.

———— Programmstruktur 155

Print 3' > . stehenden Zeilen Print 5

Else und Print 6 ausgeführt.

Print 4' > . Wäre AZ = 2, würde die
Endif | Zeile Print 5 nicht mehr
.< 1 ausgeführt werden. Bei A% = 0

Print 5! würden außer der letzten

Endif ELSE-Anweisung Print 4

.< ebenfalls noch Print 5 und

Print 6! Print 6 ausgeführt werden.

Endif
er

Diese Möglichkeit ist bei der ELSE IF-Struktur nicht gegeben,
da dort einfach kein Platz für die Zeilen Print 5 und Print 6
wäre.

Gemeinsam ist beiden Strukturen, daß immer dann, wenn eine

Bedingung zutrifft, die nachfolgenden Abfragen übersprungen,
also ausgeschlossen werden.

Bei IF-Verschachtelungen

If Bedingung]!

.. >—.

.< '
If Bedingung2

. >.

.< '

Endif

Endif

oder IF-Verkettungen:

If Bedingung!

... > .

Endif |
.< '

If Bedingung2

... > .

Endif |
es

ist dieser Ausschluß nicht gewährleistet, da mit einem Fall auch
mehrere Bedingungen gleichzeitig erfüllt sein können.

Sie werden sich evtl. fragen, wie denn überhaupt die Entschei-

dung wahr oder unwahr getroffen wird. Bei einfachen Abfragen,
wie z.B. If A%=1, ist das leicht zu erklären. Hat die Variable

156 Das große GFA-BASIC-Buch ———

A% den Wert 1, wird die Bedingung mit wahr (TRUE = -1)
beantwortet, andernfalls mit unwahr (FALSE = 0). Geben Sie
bitte im Direktmodus ein:

Print 1=1

Der Interpreter vergleicht nach dem Booleschen Verfahren

"logisch" die beiden gegenübergestellten Werte 1 und 1. An-
schließend liefert er Ihnen den Wahrheitswert -1 (TRUE). Wie
das Ganze maschinenintern durch sogenannte Gatter geregelt

wird, soll uns hier nicht interessieren. Wichtig ist, daß Sie wis-
sen, daß es so ist. Schauen Sie sich bitte dazu die Bedeutung der
einzelnen Operatoren in Kapitel 8.1 sowie die Vorrang-Regelung

der Operatoren untereinander an.

Bei komplizierteren Verknüpfungen gibt es schon einige Pro-
bleme. Hier ist es wichtig, auf eine exakte und logisch richtige
Klammersetzung zu achten. So können sich aus (oberflächlich
gesehen) immer demselben Ausdruck mehrere Resultate ergeben:

Print (2°2=4)+((7-1)>3) Ausgabe:

Print 2*2=4+ ((7-1)>3) Ausgabe:

Print (2°2=4)+(7-1)>3 Ausgabe:

Print (2°2=4)+7-(1>3) Ausgabe: o
O
A
O
o
m

Verblüffend, oder? - Die Klammersetzung macht es möglich!
Nun die Erklärung: In der ersten Zeile wird der Ausdruck
(2*2=4) zusammengefaßt. Dasselbe geschieht mit ((7-1)>3). Beide
Ausdrücke werden - jeder für sich - auf ihren Wahrheitsgehalt
geprüft. Der erste Ausdruck ergibt TRUE (-1), da die zweite
Potenz von 2 tatsächlich 4 ist. Der zweite Ausdruck liefert
ebenfalls TRUE (-1), da 7 minus | (also 6) tatsächlich größer als
3 ıst. Durch das Plus-Zeichen werden nun beide Wahrheitswerte
addiert. Und das ergibt (-1)+(-1)= -2.

In der zweiten Zeile habe ich einfach die Klammer um den er-
sten Ausdruck weggelassen. Daraus ergibt sich eine völlig andere

Konstellation. In diesem Fall wird zuerst das Ergebnis von 2%2
berechnet (4). Das Gleichheitszeichen wird hier allerdings nicht
als zum ersten Ausdruck zugehörig erkannt, sondern stellt den

———— Programmstruktur 157

Verknüpfungs-Operator zum zweiten Ausdruck dar. Dieser lie-

fert - wie in der ersten Zeile - wieder TRUE (-1). In der end-
gültigen Auswertung ergibt sich also 4=(-1). Da 4 nun aber nicht
-] ist, liefert die Zeile den Unwahrheitswert FALSE, also 0.

In der dritten Zeile haben wir als ersten Ausdruck wieder
(2*2=4). Hier ist die Änderung beim zweiten Ausdruck zu fin-
den. Es fehlt die äußere Klammer. 2 hoch 2 ist 4 - stimmt! Also
erhalten wir aus dem ersten Ausdruck wieder TRUE (-1). Der

zweite Ausdruck ist in diesem Fall jedoch auf (7-1) reduziert.
Das ergibt 6. Als nächstes werden die beiden Ausdrücke addiert.

6+(-1) ist 5. Dieses Additionsergebnis wird nun abschließend
daraufhin geprüft, ob es größer als 3 ıst. Da 5 tatsächlich größer

als 3 ist, erhalten wir als Gesamtergebnis dieser Zeile ein TRUE

(-1).

Die vierte und letzte Zeile hat immer noch - oberflächlich ge-

sehen - eine frappierende Ähnlichkeit mit ihren Vorgängerin-

nen. Hier habe ich einfach die 7 aus dem zweiten Ausdruck aus-
geklammert und (1>3) zusammengefaßt. Der erste Ausdruck ist
uns schon bekannt. Er liefert - wie ın Zeile I und Zeile 3 - den

Wert -1 (TRUE). Da die Klammersetzung absoluten Vorrang vor
allen anderen Operatoren hat, berechnen wir als nächstes den

Ausdruck (1>3). Sehr wahrscheinlich wissen Sie so gut wie ich,

daß 1 nicht größer als 3 ist. Also erhalten wir den Wert 0

(FALSE). Mit etwas mathematischer Vorkenntnis lassen sich die
drei Faktoren nun folgendermaßen zusammenfassen: (-1)+7-(0) =.

6.

So weit, so gut - wenn da nicht noch die logischen Operatoren
wären.

Print 10*10 And 14 Or 3<>2 Ausgabe: -1

Print 10*10 And (14 Or 3)<>2 Ausgabe: 100

Print 10*(10 And 14 Or 3<>2) Ausgabe: -10

Drei neue Zeilen, die - für den Laien - fast identisch sind, und
trotzdem verschiedene Ergebnisse liefern.

158 Das große GFA-BASIC-Buch ————

Des Rätsels Lösung: In Zeile 1 finden Sie keine Klammer. Daher
eignet sie sich besonders dazu, die Prioritäten der verwendeten
Operatoren zu erläutern. Als erstes wird in diesem Fall die

Punkt-Rechnung durchgeführt, also 10*10. Das ergibt 100. Als

nächstes kommt die Vergleichsoperation <> dran. Alle Vergleiche
haben Vorrang vor logischen Operatoren. Es soll hier festgestellt
werden, ob 3 ungleich 2 ist. Da es das ist, erhalten wir hieraus
den Wert -1 (TRUE). Zum Schluß bearbeiten wir in dieser Zeile
die Booleschen Operatoren. Da beide auf derselben Ebene liegen,

ergibt sich die Frage, welche Operation von beiden zuerst dran
kommt - AND oder OR? In solchen Fällen gilt die goldenen
Regel: immer von links nach rechts! Ich setze nun voraus, daß

Sie sich über das Verfahren der logischen Verknüpfungen im
Kapitel 4 "Basis-BASIC" eingehend informiert haben.

100 -> Binär: 01100100
AND 14 -> Binar: 00001110

00000100 -> Dezimal: 4 >--.

t-> 4 -> Binär: 100
OR -1 -> Binär: 1...111111

1...111111 -> Dezimal: -1

Als Ergebnis der ersten Zeile erhalten wir den Wert -1 (TRUE).

In Zeile 2 habe ich hier nichts weiter gemacht, als (14 Or 3) zu

einem Ausdruck zusammenzufassen. Da - wie gesagt - die
Klammerrechnung Vorrang hat, erhalten wir daraus:

14 -> Binärz 00001110
OR 3 -> Bindr: 00000011

1111 -> Dezimal: 15

Wie in Zeile I erhalten wir auch hier aus 10*10 den Wert 100.
Weil auch hier wieder der Vergleich <> Vorrang vor AND hat,
beziehen wir nun daraus den Wert -1 (TRUE), da der Klam-
merwert 15 tatsächlich ungleich 2 ist. Zum Schluß verknüpfen
wir die beiden Teilergebnisse im AND-Modus:

—— Programmstruktur 159

100 -> Binärz 01100100
AND -1 -> Binär: 1..1111111

01100100 -> Dezimal: 100

Das Ergebnis der zweiten Zeile heißt 100.

Die dritte Zeile ist wiederum nur geringfügig variiert. Wie ge-
sagt, es wird erst einmal die Klammer berechnet. Darin finden
wir als höchste Priorität den Ungleich-Vergleich <>. Ist drei un-
gleich zwei? Ja, also erhalten wir TRUE (-1). Als zweites stehen
sich eine AND- und eine OR-Verknüpfung gleichwertig gegen-
über. Ich fange links an:

10 -> Binär: 00001010
AND 14 -> Binär: 00001110

00001010 -> Dezimal: 10 >-.

'-> 10 -> Binär: 1010
OR -1 -> Binär: 1...111111

1...111111 -> Dezimal: -1

Als Ergebnis des Klammerausdrucks erhalten wir wieder -1

(TRUE). Diese -1 wird nun mit dem Wert 10 multipliziert, und

siehe da - es ergibt sich der Negativ-Wert -10.

Ich hoffe, daß es mir anhand dieser zwei kleinen Beispiele ge-

lungen ist, Ihr kritisches Auge im Umgang mit Verknüpfungen
dieser Art etwas geschärft zu haben. Nun wissen Sie wenigstens
ungefähr, was Ihnen an Verwirrungen bevorstehen kann, und

über Bedingungen wie die folgende wundern Sie sich dann hof-
fentlich nicht mehr all zu sehr.

If c10*C10 And 14 Or 3<>2))=-10

Print "Heurekat"

Endif

Als Leckerbissen folgt nun ein kleines Programm, das Ihnen als
Anregung für die Lösung sogenannter Kniffel-Aufgaben dienen
soll.

160 Das große GFA-BASIC-Buch ——

Stellen Sie sich bitte vor, Sie hätten folgende Aufgabe zu lösen:

XX * X Eine zweistellige Zahl ist mit einer

einstelligen Zahl zu multiplizieren.

XX Das Ergebnis muß wieder zweistellig sein.

+ XX Dazu wird ein zweistelliger Wert addiert,

und das Ergebnis der Rechnung muB wieder

= XX zweistellig sein.

Der Witz an der Sache ist nun, daß für alle neun möglichen
Stellen alle neun Ziffern von 1 bis 9 je einmal verwendet wer-
den müssen. Es darf also jede Ziffer nur einmal vorkommen. Es
ist nur ein einziges korrektes Ergebnis möglich.

Das nun folgende Programm löst diese Aufgabe völlıg "un-
mathematisch", und es sind natürlich wesentlich elegantere ma- ©
thematische Lösungen vorstellbar. Da diese jedoch extrem kom-

pliziert sind und von Ihnen nicht erwartet werden kann, sich in

die höhere Mathematik zu vertiefen, habe ich die "logische" Lö-
sung gewählt. Mathematiker mögen mir verzeihen. Ich habe es

mit der Algebra versucht, mußte jedoch nach mehreren er-
folglosen Ansätzen aufgeben.

Ein weiterer Effekt dieses Programms ist der, daß daran her-

vorragend der zeitliche Aufwand verschiedener Konstellationen
nachvollzogen werden kann. Versuchen Sie dazu einmal, das

Programm so zu variieren, daß trotz der Änderung der Algo-

rithmus logisch erhalten bleibt. Beispielsweise kann die vorletzte
IF-Abfrage

If Len(Ergebnis$+B$)=9

ohne weiteres um drei Zeilen - direkt unter B$=Str$(B%) - ver-

setzt werden. Außerdem könnte man die String-Umwandlung
1$=Str$(I%) streichen und den Ausdruck Str$(I%) statt I$ direkt
einsetzen. Oder Sie verwenden statt der 4-Byte-Integer 1%, J%,
K%, A%, B% und C% einfach Realvariablen. Der Zeitaufwand

wird sich in allen drei Fällen erhöhen. In der Wahl der Varian-
ten lassen Sie bitte Ihre Phantasie spielen. Das Wissen um den

——— Programmstruktur 161

jeweiligen Zeitaufwand wird Ihnen später bei der Entwicklung
und Optimierung eigener Programme sehr von Nutzen sein.

T%=Timer

For
t

1I%=12 To 98 i
Start-Timer festhalten

Zahlschleife für ersten

zweistelligen Wert

If (1% Mod 11)>0 And (1% Mod 10)>0 ! Ist 1% durch 11 oder 10

ı glatt teilbar, so kann es sich nur um Schnapszahlen
' (22, 33 etc.) oder Nullzahlen (20, 30 etc.) handeln und

' die können wir hier nicht gebrauchen.

1$=Str$(1%)

12$=Str$(1% Mod 10) N

13$=Str$(1% Div 10) !

For J%=1 To 9 i

J$=Str$(J%) !
If Instr(1$,J$)=0 i

' N

N A%=1%*J%

If A%>11. And A%<99 I

if (A% Mod 11>0) And (A% Mod 10>0) ! glatt durch 11 oder

ct i

A$=Str$(A%) I

A2$=Str$(A% Mod 10) 1
A3$=Str$(A% Div 10) i
C%=Instr(A$, 13%) !
C%=Max(C%, Instr(A$, 12$)) !
C%=Max(C%, Instr(A$, J$)) |
If Len(I$+J$+A$)=5 And C%=0 1

For K%=12 To 98
|

i

r C%

bisherigen Rechnung =
verwendeten Ziffern in einer

|

j

K$=Str$(K%) - !

K2$=Str$(K% Mod 10) I
K3$=Str$(K% Div 10) i
Ergebniss=1$+JS+A$+K$ l

|

1 tf Len(Ergebnis$)=7

If (K% Mod 11>0) And (K% Mod

1% in String umwandeln

Einerstelle von 1%

I Zehnerstelle von 1%

! Einstellige Schleife

J% in String umwandeln

! Ist Ziffer J% in den

1%-Ziffern enthalten?

Nein, dann multiplizieren.
Ergebnis zweistellig und

10 teilbar? (s.o.)

i INSTR-Positionsspeicher klar

A% in String umwandeln

! Einerstelle von A%

i Zehnerstelle von A%

Zehnerstelle von 1% in A%?

I Einerstelle von 1% in A%?

I 3% in A% enthalten?

ı Ziffernanzahl der

5 und keine der bisher

anderen enthalten?

ı Schleife für die zu

! addierende Zahl

! K% in String umwandeln
Einerstelle von K%

I Zehnerstelle von K%

! Ziffernanzahl der bisherigen

I Rechnung feststellen

Anzahl = 7?

10>0) ! ist KZ%

' durch 10 oder 11 glatt teilbar? (s.o.)

C%=Instr(A$,K3$) !
C%=Max(C%, Instr(A$,K2$)) |!

C%=Max(C%,Instr(1$,K3$)) |!
C%=Max(C%,Instr(1$,K2$)) |!
C%=Max(C%,Instr(K$,J$)) |
If C%=0 I

ı Ziffern in einer anderen
B%A=A%+K% I

B$=Str$(B%) 1
If B%>11 And B%<99 i

Zehnerstelle von K% in AX?

! Einer von K% in A%?

I Zehner von K% in 1%?

I Einer von K% in 1%?

J% in K% enthalten?

I Keine der bisherigen

Zahl enthalten?

I Multiplikationsergebnis
I und K% addieren

B% in String umwandeln

! Ergebnis zweistellig?

162 Das große GFA-BASIC-Buch ———

If (B% Mod 11>0) And (B% Mod 10>0) ! Ist es

ı weder durch 10 noch 11 teilbar? (s.o.)

If Len(Ergebnis$+B$)=9 ! Anzahl aller

ı verwendeten Ziffern = 9?

C%=Instr(B$,13$) ! . Prüfen, ob
C%=Max(C%,Instr(B$,12$)) 1! eine der
C%=Max(C%, Instr(B$,A3$)) 1! bisherigen
C%=Max(C%,Instr(B$,A2$)) ! Ziffern im
C%=Max(C%, Instr(B$,K3$)) ı Endergebnis

C%=Max(C%,Instr(B$,K2$)) 1! enthalten
C%=Max(C%,Instr(B$,J$)) !--' sind
If C%=0 I Nein?

Print "Sek. : ";(Timer-T%)/200
Print

Print "I; * us ide ı dann

Print " I Lösung

Print " ".A% I ausgeben

Print " + ";K% I...
Print " " I...
Print " = ";B% I...
End ! und Ende !!

Endif
Endif ! Für die, die nichts mit der Funktion

Endi f I MAXC) in den INSTR-Abfragen anfangen

Endif ı können:

Endif ı Durch INSTR soll festgestellt werden,
Endif ! ob eine der jeweils verwendeten Ziffern

Endif ! schon vorher verwendet wurde.

Next K% ı Da mehrere INSTR-Abfragen hintereinander

Endif I stehen und anschließend auf Null getestet

Endi f ! wird, kann eine hintenstehende Abfrage den
Endif i C%-Wert einer vorangegangenen mit Null

Endif ı überschreiben. Um evtl. schon gefundene

Next J% I Positionen zu erhalten, wird sie durch
Endif ! MAX() in die jeweils nächste INSTR-Abfrage

Next 1% ! hinübergerettet.

SELECT [CONT] CASE [TO] [DEFAULT] ENDSELECT

{ S }{ CON 3 CA It DEFA It ENDS }

Fall-Entscheidung

SELECT Expr

CASE Konstantel [TO Konstante2 [,[...] TO [...]]]

auszufUhrende Programmteile, wenn Expr gleich

Konstantel, bzw. - bei Option TO - wenn Expr

innerhalb des Bereichs von Konstantel bis

——— Programmstruktur 163

Konstante2 liegt.

[CONT]

[CASE Konstante1 [,Konstante2 [,Konstante3 [,...]]]

auszuführende Programmteile, wenn Expr gleich

Konstante oder gleich Konstante? oder

gleich Konstante3 oder ... oder ...]

ggf. weitere CASE-Entscheidungen

[CONT]

[DEFAULT

auszuführende Programmteile, wenn keine der

vorhergehenden Abfragen zugetroffen hat.]

ENDSELECT

Diese Fallentscheidung bietet die Möglichkeit zu einer Expr-ab-
hängigen Verzweigung (select = auswählen/case = falls). Viele
werden diese Konstruktion aus der Sprache C kennen (Switch/
Case). Expr kann ein beliebiger numerischer oder alphanumeri-
scher Ausdruck sein, dessen Ergebnis ggf. vorher ermittelt wird.
Es ist auch die Angabe von Variablen oder Konstanten möglich.

Wird ein(e) alphanumerischer Ausdruck, Konstante oder Va-

riable in Expr verwendet, werden davon nur die ersten vier

Zeichen zum Vergleich herangezogen. Diese werden dann intern
in einen 4-Byte-Wert umgewandelt.

Hinter CASE wird bei Werte-SELECT in Konstante ein nume-
rischer Wert oder ein max. vier Zeichen langer Text als Kon-

stante oder String- Variable angegeben, der dann daraufhin über-

prüft wird, ob Expr ihm entspricht. Bei Werte-SELECT ange-.

gebene Strings werden auf Gültigkeit geprüft, indem der SE-
LECT-Wert mit den ASCII-Werten der ersten vier Zeichen des
Textes (sofern vorhanden) verglichen wird. Beispiel:

AZ=ASC(inkey$)*2°24+ASC(inkey$)*2" 16+ASC(inkey$)*2"8+ASC(inkey$)

SELECT A%

CASE "abcd!!

PRINT "abcd wurde eingegeben!!!

DEFAULT

PRINT "irgendwas!"

ENDSELECT

In diesem Fall werden vier Tasten abgefragt. Der ASCII-Wert
aller einzelnen Tasten wird zu einen Gesamt-4-Byte-Wert ver-

164 Das große GFA-BASIC-Buch ————

knüpft. Auf dieselbe Art analysiert CASE beı Werte-SELECT
einen angegebenen String. Es wird also ein MKL$-, MKI$- oder
CHR$-String gebildet (je nach Länge des angegebenen CASE-
Strings), der dann mit Expr verglichen wird.

3-Zeichen-Strings:

(ASCII-Wert des 1. Zeichens) * (2°16)

+ (ASCII-Wert des 2. Zeichens) * (2°8)

+ (ASCII-Wert des 3. Zeichens)

2-Zeichen-Strings:

(ASCII-Wert des 1. Zeichens) * (2°8)

+ (ASCII-Wert des 2. Zeichens)

etc.

Bei String-SELECT ist ebenfalls nur die Angabe eines maxımal
vier Zeichen langen Strings hinter CASE zulässig.

Entspricht Expr der CASE-Auswahl, wird die darauffolgende

Programmsequenz ausgeführt und daran anschließend direkt zu

der auf das zugehörige ENDSELECT folgenden Programmzeile
gesprungen. Evtl. weitere CASE-Abfragen derselben Gruppe
bleiben dann also unberücksichtigt. Hier ıst die SELECT...
CASE-Konstruktion mit IF...ELSE IF vergleichbar. Der wesent-
liche Unterschied ist der, daß der Interpreter die Kontrolle über

die Gültigkeit der Auswahl-Vorgaben bei CASE automatisch
vornimmt. Die ELSE IF-Konstruktion

A%=Random(120)

Print A%,

If A%>5 And A%<44

Print "innerhalb" >

Else If A%<6 Or A%>43 And A%<100

Print "außerhalb < 100" >

Else If A%>100

Print "außerhalb > 100" >

Else

Print "100" >—,

Endif |
< | ee ee

e

sieht mit SELECT...CASE folgendermaßen aus:

02 Programmstruktur | 165

A%=Random(120)

Print A%,
Select A%

Case 6 To 43
Print "innerhalb"

Case To 6,44 To 99
Print "außerhalb < 100" >

Case 101 To

Print "außerhalb > 100" >

Default

Print "100" >—.,

Endselect |
< i_.i!.1.1
™~

Vv

Die Verzweigungskriterien hinter CASE sind im Vergleich zu
den >-, AND- und OR-Bedingungen der ELSE IF-Struktur
durchschaubarer, da sie der Formulierung von Bedingungen im

normalen Sprachgebrauch eher entsprechen. Eine weiterer Vor-
teil gegenüber ELSE IF ist der erhebliche Geschwindigkeits-
gewinn:

T%=Timer

For 1%=1 To 10000 ! 10.000 Durchläufe

Select I%

Case 20000 ! 1. Abfrage

Case 20000 ! 2. Abfrage

Endselect

Next I%

Print "CASE-Abfrage : ";(Timer-T%)/200;" Sek."

T%=Timer

For 1%=1 To 10000 i 10.000 Durchläufe

If 1%=20000 ! 1. Abfrage

Else if 1%=20000 ! 2. Abfrage

Endif

Next 1%

Print "ELSE IF-Abfrage : ";(Timer-T%)/200;'' Sek."

An den Sprunglinien im obigen Struktur-Vergleich können Sie

erkennen, daß, wenn eine CASE-Bedingung erfüllt ıst, an-
schließend keine der folgenden CASE-Bedingungen durchlaufen
wird. So wird im folgenden Beispiel nur die Zeile PRINT "A"
ausgeführt, obwohl die folgende CASE-Bedingung "A" To "Z"
ebenfalls zutrifft.

Yg=ngn

Select X$

Case "Al

166 Das große GFA-BASIC-Buch ———

Print "AN >
Case an To uzu

Print "A bis zZ"

Endselect
< i] es

Durch die optionale Angabe von TO kann ein ganzer Bereich
angegeben werden (z.B. CASE 1 TO 10/CASE "a" TO "z" oder

CASE "abc" TO "xyz"), innerhalb dessen Grenzen ’Expr’ liegen
muß, um die zugehörige Sequenz zu durchlaufen. Wird die erste
(kleinere) Bereichsgrenze vor TO oder die zweite (größere) Be-
reichsgrenze nach TO weggelassen, wird intern automatisch die
kleinstmögliche bzw. größtmögliche Grenze angenommen. Durch
Verwendung eines Kommas als Trennzeichen können auch
mehrere Einzelangaben zusammengefaßt werden (z.B. CASE

a,h,j,m oder CASE 1,33,7). Es ıst möglich, die CASE-Bedin-

gungsformate in einer CASE-Zeile beliebig zu vermischen (z.B.

CASE TO "b","ABC" TO "X YZ",65,66,67,"Ä").

Wurden sämtliche angegebenen CASE-Anweisungen ohne Wahr-
Ergebnis passiert, kann am Ende des SELECT-Blocks DE-

FAULT eingesetzt werden, was dazu führt, daß der zwischen

DEFAULT und ENDSELECT liegende Programmteil ausgeführt
wird (vergleichbar mit ELSE bei IF-Abfragen).

Wird direkt vor einer CASE-Anweisung am Ende einer Ver-

zweigung die Option CONT verwendet, bewirkt dies, daß die
direkt danach stehende CASE-Abfrage übersprungen wird und
die dieser CASE-Abfrage unterstellte Sequenz zusätzlich zur

schon ausgeführten Verzweigung ebenfalls ausgeführt wird.
Nach Erledigung dieser Folgesequenz wird - sofern nicht auch
diese mit CONT abgeschlossen wurde - zur ersten Zeile hinter

ENDSELECT gesprungen. CONT kann ggf. auch direkt vor DE-
FAULT eingesetzt werden, was bewirkt, daß - vorausgesetzt,

der vor DEFAULT stehende Programmblock wurde ausgeführt -
die unter DEFAULT eingefügte Alternativ-Sequenz zusätzlich
abgearbeitet wird. Steht CONT nicht direkt vor CASE oder DE-
FAULT, wird es als CONT zur Programmfortsetzung nach eı-

nem STOP-Befehl interpretiert.

——— Programmstruktur 167

Übrigens ist es zwecklos, Programmzeilen zwischen SELECT
und dem ersten CASE unterbringen zu wollen, da diese Zeilen
vom BASIC nicht registriert werden.

Statt DEFAULT kann auch OTHERWISE { OT } geschrieben

werden. Dieser Ausdruck wird vom Interpreter in DEFAULT
umgewandelt.

6.3 Bereichsdeklaration

I Kommentar innerhalb einer Befehlszeile

Befehlszeile ! Kommentartext

Grundsätzlich hat dieses Ausrufungszeichen die gleiche Aufgabe
wie der Befehl REM. Der darauf folgende Text wird als Pro-
gramm-Kommentar deklariert und von BASIC bei der Inter-
pretation "übersehen". Sie sind dieser Form der Kommentar-De-
klaration bei den Beispielprogrammen hier im Buch schon häufi-

ger begegnet.

Der Unterschied zwischen ! und REM besteht darin, daß durch !

der Kommentartext direkt an eine Befehlszeile angehängt wer-
den kann. In DATA-Zeilen ist diese Abgrenzung allerdings nicht
möglich, da sie hier als Text-DATA angesehen würde. Beispiel:

Input A$ I String einlesen
Print A$ I String ausgeben

Edit I Programmende

Am Anfang einer Zeile verwendet, wird ! in die REM-Abkür-
zung (’) umgewandelt.

168 Das große GFA-BASIC-Buch ————

DATA { D } Daten-Speicher deklarieren

DATA (Wertedatas [,["] Textdatas ["],...]]

Der Anweisung wird ggf. eine Liste durch Kommata getrennter

Werte oder Texte übergeben. Sie dient dazu, einem auftretenden

READ-Befehl die entsprechende Anzahl von Daten zur Verfü-

gung zu stellen.

Wie bei RESTORE beschrieben, kann ein DATA-Zeiger auf
eine bestimmte Marke (Label) gerichtet werden. READ liest
dann der Reihe nach die DATAs, die auf die angegebene Marke

folgen. Wird kein RESTORE verwendet, werden vom Program-
manfang aus nacheinander so viele DATAs eingelesen, wie
READ-Anweisungen vorhanden sind. Werden mehr READ-An-
weisungen eingesetzt als DATAs bis zum Programmende vorhan-
den sind, wird eine entsprechende Fehlermeldung ausgegeben.

Eine Besonderheit des GFA-BASICs ist es, daß Text-DATAs

nicht zwischen An- und Abführungsstriche gesetzt werden
müssen. Es sei denn, daß in Text-DATAs Kommas vorkommen.

In diesem Fall würde das Text-Komma als Trenn-Komma zum
nächsten String-Teil gewertet werden. Werden die An-
/Abführungzeichen vernachlässigt, liest der Interpreter alle vor-
kommenden Zeichen (auch Leerzeichen), die zwischen den ein-
schließenden Kommas aufgeführt sind.

Numerische READ-Anweisungen sind darauf angewiesen, auch
numerische DATAs vorzufinden. Diese können dann allerdings
auch in der binären, hexadezimalen oder oktalen Schreibweise
angegeben sein. Liest ein Text-READ ein numerisches Zeichen,
so wird es einfach als Textzeichen interpretiert. Variablen kön-
nen in den DATAs nicht übergeben werden. Kommen im Pro-
gramm keine READ-Anweisungen vor, kann in DATA-Zeilen
beliebiger Text stehen. Dieser Text bleibt dann - wie bei REM

- vom Programm unberücksichtigt. Schauen Sie sich hierzu bitte
auch die Beispiele zu WRITE und TAB() an.

— Programmstruktur 169

READ {REA} DATA-Werte auslesen

READ Var (,Var2,Var$,Var2$,...]

Der/den angegebenen Variablen Var werden die jeweils gelese-
nen DATA-Einträge zugeordnet. Wird kein RESTORE Label-
name verwendet, werden der Reihe nach vom Programmanfang
aus so viele DATAs eingelesen (falls vorhanden), wie READ-

Anweisungen ausgeführt werden. Weiteres siehe unter DATA.

REM { R oder’ oder! } Kommentar einfiigen

REM [Kommentar]

Möchten Sie Ihr Programm zur besseren Verständlichkeit mit
Kommentar versehen, können Sie mit der Anweisung REM an
beliebiger Programmstelle eine beliebige Kommentarzeile ein-
fügen. Diese Kommentarzeilen bleiben vom Interpreter im Pro-

grammverlauf unberücksichtigt. Als Abkürzung können Sie für
REM auch das Hochkomma (Apostroph) verwenden.

Außerdem kann auch ein Ausrufungszeichen (Kommentar-Mar-

ker innerhalb einer Befehlszeile) eingesetzt werden. Dieses wird
- sofern es sich am Zeilenanfang befindet - in das REM-Zei-
chen ’ umgewandelt.

Es ist empfehlenswert, diese Möglichkeiten zur Kommentierung
ausgiebig zu nutzen. Bei größeren Programmen erleichtert es Ih-
nen das Auffinden von bestimmten Programmteilen. Außerdem
machen kleine Bemerkungen die Logik Ihrer Programmführung
und evtl. die Zusammenhänge auch für andere überschaubarer.

170 Das große GFA-BASIC-Buch ———-

RESTORE { RES } DATA-Zeiger setzen |

RESTORE [Labelname]

RESTORE ohne Angabe einer Marke bewirkt, daB der DATA-
Zeiger grundsätzlich auf den ersten aller im Programm enthalte-
nen DATA-Einträge gerichtet wird. Durch RESTORE Label-
name kann der DATA-Zeiger auf das erste DATA gerichtet
werden, das auf das angegebene Label folgt.

Ab dort werden dann die vorhandenen DATAs eingelesen, bis
ein neuer RESTORE-Befehl eingesetzt wird oder das letzte aller
DATAs gelesen wurde. Weitere Informationen hierzu finden Sie
unter DATA.

6.4 Variablendeklarationen

DEFBIT { DEFBI } Boole-Variable(n) dektrieren |

DEFBIT Defstring$

DEFxxx-Befehle dienen der globalen Deklaration von Vari-
ablentypen. Es können verschiedene Definitions-Strings verwen-

det werden, die alle Variablen mit der darin angegebenen
Namensspezifikation dem entsprechenden Variablentyp zu-

ordnen.

Diese Deklaration wird üblicherweise zu Programmbeginn aus-
geführt, da sonst eine Unterscheidung zwischen deklarierten und
frei definierten Variablen erschwert wird. Wird jedoch innerhalb
des Programms eine neue Deklaration ausgeführt, ist die vorher-
gehende damit ungültig. Nach einer Deklaration ist es nicht
mehr nötig, die dadurch betroffenen Variablennamen mit einem

———— Programmstruktur 171

sogenannten Postfix (Erkennungssymbol, z.B. % für 4-Byte-Inte-

ger, ! für Boole-Variablen oder $ für String-Variablen) zu ver-
sehen.

Es ist trotzdem jederzeit möglich, einzelne Variablen separat zu
definieren, auch wenn sie dieselbe Namensspezifikation wie eine

globale Deklaration aufweisen. Dazu ıst dem separaten Vari-
ablennamen das entsprechende Postfix hinzuzufügen. Damit wird
die so unmißverständlich gekennzeichnete Variable von der De-
klaration ausgeschlossen. Separat gekennzeichnete Variablen ha-
ben generell Vorrang vor den globalen Deklarationen.

Defstring$ ist ein String (Konstante, Variable oder Ausdruck),
durch den die Namensspezifikation festgelegt wird. Bei den fol-
genden Definitionsbeispielen sind die verwendeten Defstring$
beliebig austauschbar.

Definitionen:

DEFBIT "a"

Alle Variablen, deren Name als ersten Buchstaben ein a trägt,

sind hiermit - sofern nicht separat definiert (s.o.) - als Boole-

Variablen (Var!) deklariert.

DEFBYT "b,c,g-l"

Alle Variablen, deren Name als erstes Zeichen ein b, c, g, h, 1,

j, k oder | trägt, werden als 1-Byte-Integer (Var|) deklariert.

DEFWRD "word"

Alle Variablen, deren Name mit den Buchstaben word beginnt,

werden als 2-Byte-Integer (Var&) deklariert.

DEFINT "i1,12,13"

Alle Variablen, deren Name mit den Buchstaben il, 12 oder 13

beginnt, werden als 4-Byte-Integer (Var%) deklariert.

172 Das große GFA-BASIC-Buch ————

DEFFLT "a-c,x-z"

Alle Variablen, deren Name als ersten Buchstaben ein a, b, c, x,

y oder z trägt, werden als 8-Byte-Fließkommavariablen (Var#)

deklariert.

DEFSTR "d-f'

Alle Variablen, deren Name als ersten Buchstaben ein d, e oder

f trägt, werden als String-Variablen (Var$) deklariert. Beispiel:

Defint "1"
a

I_string$="XY2"
i]

Alle mit I beginnenden Variablen

gelten ab jetzt als 4-Byte-Integer.

Beliebige Zuweisung zu einer mit

I beginnenden String-Variable.

Es wird XYZ ausgegeben, da trotz

der vorangegangenen Definition die

direkt angegebene String-Spezifikation

$ gültig bleibt.
Beliebige Zuweisung zu einer mit I

beginnenden Variablen ohne Postfix.

Es wird 1548892 ausgegeben. Übergebene
Nachkommastellen werden integriert. Die

4-Byte-Definition kommt zur Geltung.

Print I_string$

I 4byte=1548892 .88
8

Print I_4byte
i]

c
a
m

(
m
m

s
a
m

c
a
m

o
m

(
t
a
m

c
a
m
s

(
a
i

s
e
m

t
a
m

o
f
a

s
e
m

G
e
m

DEFBYT { DEFB } 1-Byte-Integervariablen deklarieren |

DEFBYT Defstring$

Siehe Erläuterungen zu DEFBIT.

DEFFLT { DEFFL } 8-Byte-FlieSkommavariablen deklarieren |
pr

DEFFLT Defstring$

Statt DEFFLT kann im Editor auch DEFSNG oder DEFDBL
verwendet werden. Diese Angaben werden vom Editor bei der
Syntaxkontrolle in DEFFLT umgewandelt. Sonst siehe DEFBIT.

— Programmstruktur 173

DEFINT { DEFI } 4-Byte-Integervariablen deklarieren |

DEFINT Defstring$

Siehe Erläuterungen zu DEFBIT.

DEFSTR { DEFS } Zeichenkettenvariable(n) deklarieren |

DEFSTR Defstring$

Siehe Erläuterungen zu DEFBIT.

DEFWRD { DEFW } 2-Byte-Integervariablen deklarieren |

DEFWRD Defstring$

Sıehe Erläuterungen zu DEFBIT.

6.5 Unterprogramme

DEFFN Funktion definieren

DEFFN Funkt.name [(Var-Liste)]=Funkt.expr

DEFFN ist eine sehr komfortable Möglichkeit, numerische oder
alphanumerische Funktionen kompakt zu definieren. "Funkt.na-

me" steht fiir einen beliebigen Namen, mit dem die Funktion
durch FN (bzw. @) angesprochen werden kann. In der Wahl des
Funktionsnamens werden Ihnen keinerlei Einschränkungen auf-
erlegt. Sie können außerdem auch BASIC-Befehlsnamen oder

174 Das große GFA-BASIC-Buch ———

Namen schon existierender Variablen verwenden. Dies ist mög-
lich, da der Funktionsname untrennbar mit der unter ihm defi-
nierten Funktion in Bezug steht. Die Verwendung von Feld-Va-

riablennamen ist allerdings nicht zulässig. Das erste Zeichen
kann, anders als bei Variablen, auch eine Ziffer sein.

Dem Namen kann optional (wahlfrei) eine Liste von Variablen-
namen in Klammern angefügt werden (Var-Liste), deren Inhalte
dann innerhalb der Funktion verarbeitet werden können. Die
einzelnen Variablennamen sind dabei durch Komma voneinander
zu trennen. Diese Parameterliste kann ohne weiteres Variablen
unterschiedlicher Typen (Real, Integer, String etc.) beinhalten.
Innerhalb der Funktion sind dann allerdings nur Operationen
erlaubt, die dem verwendeten Funktionstypen entsprechen. D.h.,

wenn die Funktion als String-Typ deklariert wurde (z.B. DEFFN

Funktion$...), können nur String-Operationen ausgeführt werden.
Bei numerischen Funktionstypen können folglich nur numerische
Operationen eingesetzt werden.

Haben Sie eine Parameterliste vorgesehen, müssen beim Funk-
tionsaufruf dementsprechend viele und dem jeweiligen Vari-
ablentyp entsprechende Werte, Strings, andere Variablen oder

Ausdrücke übergeben werden. Entsprechen die übergebenen Pa-

rametertypen nicht der Liste oder werden zu viele bzw. zuwenig
Parameter übergeben, erscheint eine Fehlermeldung.

Die angegebenen Listen-Variablen müssen jedoch nicht zwin-
gend innerhalb der Funktion verwendet werden (Dummy). An-
dererseits können globale Variablen in der Funktion verwendet
werden, die nicht in der Parameterliste stehen. Bei Aufruf der

Funktion werden dann die aktuellen Inhalte der darin verwende-
ten Variablen angenommen und weiterverarbeitet. Existiert eine
globale Variable mit gleichem Namen wie der einer Parameter-

Aufnahmevariable, so kommt deren Inhalt nicht zur Geltung, da
die Listen-Variable innerhalb der Prozedur als lokal verarbeitet
wird. D.h. sie hat dann ausschließlich den Wert, der ihr bei

Funktionsaufruf über die Parameterliste zugewiesen wurde, und
nach Rückkehr wieder den vorherigen globalen Inhalt.

——— Programmstruktur 175

Die Länge einer Funktion wird durch die maximale Eingabe-
zeilenlänge (256 Zeichen) beschränkt. Reicht dieser Platz nicht
aus, um eine Funktion komplett zu definieren, können aus einer
Funktion heraus andere Funktionen aufgerufen werden. Man
kann also Funktionen beliebig miteinander verketten. Eine
Funktion kann demnach ohne weiteres ausschließlich aus Funk-
tionsaufrufen und deren Verknüpfungen bestehen.

Funktionen können an jeder beliebigen Stelle des Programms
definiert sein. Da bei Programmstart alle DEFFNs initialisiert
werden, kann dies also auch am Programmende geschehen, selbst
wenn der Funktionsaufruf FN (bzw. @) vor der Funktion auf-
tritt. Zu Beginn des Programmlaufs durchsucht der Interpreter
den Programmtext nach evtl. vorhandenen DEFFNs. Deren In-

halt ist ihm daher vor Ausführung der ersten Zeile bereits be-
kannt.

Vorsicht: Endlosschleifen, worin sich zwei Funktionen gegen-
seitig aufrufen, können auch durch die Break-Funk-
tion <Control/Shift/Alternate> nicht mehr unter-
brochen werden. Rekursive Aufrufe haben denselben
Effekt.

FN{@} Funktion aufrufen

FN Funktionsname [(Parameterliste)]

Mit FN bzw. dessen Kürzel @ können selbstdefinierte Funk-
tionen aufgerufen werden. Sollen Parameter an die Funktion
übergeben werden, wird dem Aufruf in Klammern eine Para-
meterliste nachgestellt, innerhalb derer die einzelnen Parameter
ggf. durch Kommas voneinander zu trennen sind. Wie bei
DEFFN erwähnt, ist darauf zu achten, daß diese Angaben den
in der DEFFN-Var-Liste aufgeführten Variablentypen ent-

sprechen.

176 Das große GFA-BASIC-Buch ————

Das Ergebnis einer Funktion kann - wie bei jeder anderen BA-
SIC-Funktion auch - über einen Ausgabe-Befehl (PRINT,
WRITE, TEXT, OUT) ausgegeben, durch eine Zuweisung einer
dem Funktionstyp entsprechenden Variablen übergeben und ın

entsprechende Ausdrücke oder Bedingungsabfragen integriert

werden.

FUNCTION..RETURN..ENDFUNC { FU..RET..ENDF }

Funktion

FUNCTION Name [(Var1,Var2%,Var3$,... [,VAR Var,...])]

. auszuführende Programmteile

RETURN Back

ENDFUNC

FUNCTION kennzeichnet den Anfang einer selbstdefinierten
mehrzeiligen Funktion. Es kann eine optionale Liste von lokalen
Variablen (wie bei DEFFN und PROCEDURE) angegeben wer-
den, welche ggf. die durch FN (bzw. @) übergebenen Daten
aufnehmen. Dabei ist darauf zu achten, daß die Typen der Va-
riablen den übergebenen Parametern entsprechen.

Es ist auch möglich, durch VAR innerhalb dieser Liste Vari-
ablen zu definieren, an die dann durch FN eine globale Variable
direkt übergeben werden kann (siehe VAR, PROCEDURE).
Außerdem ist - wie bei PROCEDURE - die Übergabe von in-
direkten Pointer-Parametern möglich (siehe auch GOSUB).

"Name" ist ein beliebiger Name, der die Funktion benennt. In-
nerhalb der FUNCTION kann beliebig viel Programmtext ange-
ordnet werden. Im Gegensatz zu DEFFN-Funktionen ist es
möglich, FUNCTION-Funktionen sich selbst aufrufen zu lassen
(Rekursion).

Grundsätzlich ist eine FUNCTION mit einer PROCEDURE ver-
gleichbar. Ein Unterschied ist, daß ENDFUNC (wie RETURN
bei PROCEDURE) zwar den strukturellen Abschluß einer

——— Programmstruktur 177

FUNCTION-Funktion bildet, jedoch im Gegensatz zu PROCE-
DURE... RETURN diese Endmarkierung nicht als Rück-
sprunganweisung interpretiert wird. Aus FUNCTION-Funk-
tionen ist nur ein Rücksprung durch RETURN Back möglich,
was nicht mit dem Prozedurende RETURN verwechselt werden
darf.

Trifft das Programm innerhalb einer FUNCTION auf die Rück-
sprunganweisung RETURN Back, wird der hinter RETURN

stehende Wert, Ausdruck oder Variableninhalt Back als Funk-

tionsergebnis an das Programm zurückgegeben und zu dem dem
Aufruf folgenden Befehl gesprungen. Es können beliebig viele

RETURN-Back-Anweisungen innerhalb einer FUNCTION an-
gegeben werden (z.B. innerhalb von IF..ELSEIF..ELSE..ENDIF-

Abfragen). Wie auch FN-Aufrufe einzeiliger Funktionen
(DEFFN) kann ein Aufruf mehrzeiliger FUNCTIONS ebenfalls
beliebig in Ausdrücke und Bedingungen eingebunden bzw. als
Variablenzuweisung verwendet werden.

Soll die Funktion alphanumerische (String-)Ergebnisse liefern,
ist dem Funktionsnamen ein $ anzuhängen (z.B. FUNCTION
Name$). Beispiel:

A$="1 ** UPPER/LOWER-Test-String ** 1"

Print "NORMAL: '";A$

Print "UPPERS: ";Upper$(A$)
Print "LOWERS: ";aLower$(A$)

j

Function Lower$(L.str$)

' Untersucht einen vorgegebenen String auf Großbuchstaben.

' Gefundene Großbuchstaben werden in die entsprechenden
' Kleinbuchstaben umgewandelt.

ı L.str$ = umzuwandelnder String
|

Local L.k%

For L.k%=1 To Len(L.str$)

Select Mid$(L.str$,L.k%,1)
Case "A" To zu nn MOH nu

Mid$(L.str$,L.kK%,1)=Chr$(Asc(Mid$(L.str$,L.k%,1))+32)
' Mid$(L.str$,L.k%, 1)=Chr$(Asc(Mid$(L.str$,L.k%,1)) Or 32)

Endselect

Next L.k%

Return L.str$

Endfunc

178 Das große GFA-BASIC-Buch ——

An diesem kleinen Beispiel läßt sich leicht das fast unüber-

schaubare Einsatzgebiet mehrzeiliger Funktionen erkennen. Ihrer
Phantasie sind da keine Grenzen gesetzt. Hätte Frank Ostrowski
die RINSTR-Funktion nicht implementiert, wäre sie hiermit

spielend zu verwirklichen. Soll hier gleichzeitig der Inhalt von
A$ nach Funktionsende gegen den Lower-Case-String ausge-

tauscht werden, muß man dazu nur den FUNCTION-Kopf fol-

gendermaßen ändern:

Function Lower$(Var L.str$)

Übrigens soll die REM-Zeile Mid$(...) im Beispiel einen kleinen
Trick verdeutlichen. Die beiden MID$()-Zeilen unter "A" To "Z"
lassen sich beliebig austauschen. Wissenswert ist, daß der einzige
Unterschied zwischen Groß- und Kleinbuchstaben das Bit 5
(2*5=32) des ASCII-Wertes ist. Ist dieses Bit gesetzt, so handelt
es sich um Kleinbuchstaben (ASCH: 97 - 122). Ist es gelöscht, so

sind es folgerichtig Großbuchstaben (ASCH: 65 - 90).

GOSUB { G oder @ } Verzweigung zu einer PROCEDURE

GOSUB Prozedur [(Parameterliste)]

Eine GOSUB-Verzweigung springt aus der GOSUB-Zeile direkt
zum Kopf der ın "Prozedur" bezeichneten PROCEDURE. Ist die

Prozedur abgearbeitet, wird vom Prozedurende RETURN aus
direkt zu der auf den entsprechenden GOSUB-Aufruf folgenden
Programmzeile zurückgesprungen und dort das Programm fort-
gesetzt.

GFA-BASIC bietet Ihnen wahlweise auch die Möglichkeit, an
eine Prozedur eine beliebig lange Parameterliste zu übergeben.
Diese Parameter werden dort einer Liste von Variablen zugeord-
net, die in Klammern im Prozedurkopf (z.B. PROCEDURE
Test(Var,Var$,...)) angegeben sind. Die Anzahl der GOSUB-Pa-

— Programmstruktur 179

rameter bzw. der PROCEDURE-Aufnahmevariablen ist nur
durch die maximale Programmzeilenlänge von 256 Zeichen be-
grenzt.

Typen und Reihenfolge der Parameter in der Parameterliste
können beliebig gemischt werden, solange darauf geachtet wird,
daß Anzahl, Typ und Listenplatz der Parameter mit Anzahl, Typ

und Listenplatz der in PROCEDURE angegebenen Aufnahme-
variablen übereinstimmen.

Durch den Sternchen-Pointer (*Var) können Variablen auch in-
direkt adressiert werden. Das bedeutet, daß ein in der Para-
meterliste angegebener Pointer die Adresse seiner Variablen an
die Prozedur übergibt und nicht deren Inhalt. Wird nun inner-
halb der PROCEDURE der dafür vorgesehenen Aufnahme-
variablen ebenfalls durch einen Pointer eine Variablenadresse
zugewiesen, so finden Sie nach Abschluß in der übergebenen
Variablen den durch den internen Pointer zugewiesenen Wert.

Die im Prozedurkopf aufgeführten Variablen gelten innerhalb
der Prozedur als lokale Variablen. D.h., daß die in ihnen ent-

haltenen Werte oder Strings nur innerhalb dieser Prozedur ein-
gesetzt oder abgefragt werden können. Benennen Sie außerhalb
dieser Prozedur globale Variablen mit dem gleichen Namen, so
ist BASIC in der Lage, diese von den internen lokalen Variablen
zu unterscheiden. Nach Rücksprung aus der Prozedur in das

Hauptprogramm werden die globalen Inhalte wieder restauriert.

Zur Bildung des Prozedurnamens sind alle normalen alpha-
numerischen und numerischen Zeichen (A - Z und 0 - 9) sowie
der Tiefstrich (Underscore _) und Punkt erlaubt. Anders als bei
Variablennamen kann hier auch eine Ziffer als erstes Zeichen
verwendet werden.

Außerdem kann statt eines indirekten Pointer-Parameters (*Var)
auch die Variable direkt übergeben werden. Dazu muß an ent-
sprechender Stelle in der PROCEDURE-Aufnahmevariablenliste

180 Das große GFA-BASIC-Buch ———

eine VAR-Variable gleichen Typs vorgesehen werden (siehe
VAR). Ein weiteres GOSUB-Beispiel finden Sie unter PROCE-
DURE.

GOTO { GOT } Unbedingter Sprung zu einem Label

GOTO Label

Dies ist in herkömmlichen BASIC-Dialekten einer der am häu-
figsten verwendeten Befehle. In GFA-BASIC hält sich dagegen

seine Verwendung in Grenzen, da in den überwiegenden Fällen
der erzielte Effekt durch GOSUB und FN wesentlich eleganter

erreichbar ist.

Er bewirkt nichts weiter, als daß das Programm von der Zeile
aus, in der es auf diesen Befehl trifft, zu der Programmzeile
verzweigt, die mit dem angegebenen Label-Namen markiert ist.
Dieses Label kann sich aus beliebigen Zeichen zusammensetzen.

Genau wie bei Prozedurnamen ist es auch möglich, eine Ziffer
als erstes Zeichen zu verwenden. Der Label-Name muß mit ei-
nem nachgestellten Doppelpunkt abgeschlossen werden.

Dasselbe Label kann übrigens auch als Sprungziel für RESTORE
Label verwendet werden. Sprünge ın oder aus FOR..NEXT-

Schleifen oder PROCEDUREs sind nicht erlaubt. Wird dies

versucht, so erscheint eine Fehlermeldung.

LOCAL { LOC } Lokale Variablen deklarieren

LOCAL Loc.var [,Lokale Variablenliste,...]

Es können innerhalb einer PROCEDURE - und auch in einer

FUNCTION - beliebige Variablen als lokal deklariert werden.

Diese können dann ausschließlich in der Prozedur verwendet

———— Programmstruktur 181

werden, in der sie deklariert wurden, bzw. in den von dieser

Prozedur aufgerufenen Unter-Prozeduren. Für diese Unter-Pro-
zeduren ist dann die lokale Variable der höheren Ebene gleich-
bedeutend mit globalen Variablen.

Wird im Hauptprogramm bzw. in Routinen höherer Ebene eine

Variable mit gleichem Namen benannt, so ist der Interpreter in
der Lage, diese von den lokalen Variablen der aktuellen Routine
zu unterscheiden (siehe PROCEDURE).

Werden mehrere Variablen gleichzeitig deklariert, können sie
unterschiedlichen Typs sein und sind dann durch Kommata
voneinander zu trennen.

ON ... GOSUB Bedingte Verzweigung zu Prozeduren

ON Wert GOSUB Proci [,Proc2,Proc3,...]

ON Wert Proc1 [,Proc2,Proc3,...]

Mit diesem Befehl lassen sich mehrere Prozeduren zu einer Liste
zusammenfassen, die dann je nach angegebenem ’Wert’ (nume-
rischer Ausdruck, Variable oder Konstante) aufgerufen werden.

Die Entscheidung darüber, zu welcher Prozedur verzweigt wer-
den soll, wird nur in Einerschritten ab 1 aufwärts getroffen.

Eine Verzweigung mit Wert = 0 ist nicht möglich. Die Verzwei-
gung erfolgt also nach folgendem Schema:

Wert >= 1 < 2 ==> Procl aufrufen

Wert >= 2 < 3 ==> Proc2 aufrufen

Wert >= 3 < 4 ==> Proc3 aufrufen

USW.

Ist Wert größer als die Anzahl der angegebenen Prozeduren oder

ist Wert gleich null, so wird das Programm ohne Verzweigung in
der auf ON GOSUB folgenden Programmzeile fortgesetzt.

182 Das große GFA-BASIC-Buch ————

Bei sämtlichen ON..GOSUB-Varianten des GFA-BASIC sind nur

Prozeduren als Ziel erlaubt, die keine Parameterliste erwarten.

Beispiel:

On. Menu(1)-20 Gosub Top,Clos,Full,Leer,Leer,Leer,Siz,Mov
Procedure Top

ı Maßnahmen zum Aktualisieren eines Fensters

Return

Procedure Clos

ı Maßnahmen zum Schließen eines Fensters

Return

Procedure Full

' Maßnahmen zum Dimensionieren eines Fensters auf

ı größtmögliche Ausmaße.

Return

Procedure Siz

ı Maßnahmen zur beliebigen Dimensionierung eines Fensters

Return

Procedure Mov

' Maßnahmen zum Bewegen eines Fensters

Return

Procedure Leer

' Dummy-Prozedur ohne Inhalt, die nur dann aufgerufen

' wird, sobald ein ON..GOSUB-Wert auftritt, der ohne
ı Auswirkung bleiben soll.

Return!

ON BREAK [CONT] [GOSUB] Break-Funktion behandeln

ON BREAK GOSUB Prozedur

ON BREAK

ON BREAK CONT

Verzweigt ım ersten Fall zu der angegebenen Prozedur, falls

nach Ausführung des Befehls im Programmlauf die Break-
Funktion <Control><Shift><Alternate> verwendet wird.

Im zweiten Fall wird die normale Break-Funktion aktiviert.

D.h., das Programm wird nach <Control><Shift><Alternate>

beendet.

Die dritte Syntaxform bewirkt, daß das Programm bis zum
nächsten ON BREAK oder ON BREAK GOSUB bzw. bis zum

——— Programmstruktur 183

Programmende nicht mehr durch die Break-Funktion unter-
brochen werden kann. Diese Möglichkeit ist sehr vorsichtig zu
handhaben, da bei endlos verzweigenden Strukturen ein Pro-
grammabbruch dann nur noch über speziell vorgesehene Ab-

bruch-Bedingungen oder durch die gefürchtete Reset-Tasten-
kombination möglich ist. Beispiel:

On break gosub Break i Break-Funktion umleiten

Print At(1,1);"1. Stufe"
Print At(1,2);"2. Stufe durch <Control><Shift><Alternate>+<Esc>"
Do i Endlos-Schleife

If Ex%=1 ! 2. Stufe schon erreicht?

If Inkey$=Chr$(13) I! <Return> gedrückt?

Cls

Print At(1,1);"3. Stufe"
Print At(1,2);"Abbruch durch <Control><Shift><Alternate>"

On break ! Break-Funktion wieder einschalten

Endif

Endif

Loop

Procedure Break I Break-Routine (ist nur

' ! durch Break-Tasten erreichbar)

If Inkey$=Chr$(27) ! Vorher <Esc> gedrückt?
Ex%=1 ! Flag für Stufe 3 setzen

Cls

Print At(1,1);"2. Stufe"
Print At(1,2);"3. Stufe durch <Return>"
On break cont I Break-Funktion ausschalten

Endif

Return

PROCEDURE { PRO }... RETURN { RET } Prozedur-Titel |

Oder:

SUB { SU }... ENDSUB { ENDSU } |

Oder:

184 Das große GFA-BASIC-Buch ~————

PROCEDURE { PRO }...ENDPROC { ENDP }

PROCEDURE Name [(Variablenliste)]

. auszuführende Programmteile

RETURN

Mit PROCEDURE werden in GFA-BASIC Unterprogramme
bezeichnet. Diese können beliebigen Programmtext enthalten und

werden durch die Rücksprunganweisung RETURN abgeschlos-
sen. Mit RETURN kehrt das Programm zu der aufrufenden Pro-
grammzeile zurück und fährt dort mit der darauffolgenden Pro-
grammzeile fort.

Es ist nicht sehr rationell, bestimmte Programmabläufe, die in

immer derselben Form mehrfach im Hauptprogramm erforder-

lich werden, immer wieder neu zu formulieren. Dieses Verfah-

ren ist also immer dann vorteilhaft, wenn allgemein gehaltene

Unterprogramme von mehreren Programmstellen aus aufgerufen

werden sollen.

Es kann optional eine Variablenliste lokaler Variablen (siehe

LOCAL) angegeben werden, die ggf. die durch GOSUB über-

gebenen Daten aufnehmen. Die Variablen dieser Liste können

unterschiedlichen Typs sein, wobei darauf zu achten ist, daß die

Variablentypen den übergebenen Parametertypen entsprechen

(bzw. umgekehrt).

Der Name der Prozedur kann aus beliebigen Zeichen (A - Z)
und/oder Ziffern (0 - 9), dem Tiefstrich (_) und/oder dem

Punkt gebildet werden. Anders als bei Variablennamen kann

auch hier das erste Zeichen aus einer Ziffer bestehen.

Es ıst auch möglich, Prozeduren sıch selbst aufrufen zu lassen
(Rekursion) bzw. aus einer Prozedur heraus beliebig weitere
Prozeduren aufzurufen.

— Programmstruktur 185

Struktur:

Programm

Gosub Proc1 >—.,

weiteres Programm ——.
j

Programmende

Procedure Proc1

|. .Unterprogramm
'--Gosub Proc2 >—.,

.—_——

|..evtl. weiteres Unterprogramm
--+—<— Return €

Procedure Proc2
13] . <——!

|..Unterprogramm von 'Proc1!
'--evtl. weitere Sprunge——>——.

——<—Return <——!

Es ist auch möglich, durch VAR innerhalb der Variablenliste
Variablen zu definieren, an die dann durch GOSUB eine globale

Variable direkt übergeben werden kann (siehe VAR). Außerdem
kann statt PROCEDURE auch SUB und statt RETURN auch

ENDPROC oder ENDSUB verwendet werden. Diese Ausdrücke

werden vom Interpreter in PROCEDURE bzw. RETURN um-

gewandelt.

Beispiele zu diesen beiden Struktur-Befehlen finden Sie in die-

sem Buch in Hülle und Fülle. Außerdem finden Sie weitere In-

formationen darüber unter FUNCTION, LOCAL und GOSUB.

VAR Direkte Variablen-Übergabe |

PROCEDURE Name([Var1,...] VAR Varnamei [,Varname2$,...])

FUNCTION Name([Var1,...] VAR Varnamei [,Varname2$,...])

Als Alternative zu den indirekten Pointer-Variablen können in-

nerhalb der Kopfzeilen von PROCEDUREs und FUNCTIONS in

der Liste der lokalen Aufnahme-Varıablen mittels VAR auch

186 Das große GFA-BASIC-Buch ————

Variablen direkt an die Prozedur/Funktion übergeben werden.
Die hinter VAR angegebenen Variablennamen stehen dann in-
nerhalb der Prozedur/Funktion stellvertretend für die durch
GOSUB oder FN übergebenen Variablen. Dabei ist zu beachten,
daß die VAR-Variablen an letzter Stelle der Variablenliste pla-

ziert werden. Es werden dann alle Variablennamen, die hinter

VAR stehen, als VAR-Variablen interpretiert.

Die VAR-Variable ist tatsächlich mit der globalen Variable
identisch. Sie trägt nur für die Dauer der Prozedur/Funktion den
im Kopf angegebenen Namen. Jede Veränderung der
Aufnahmevariablen innerhalb der Prozedur wirkt sich also direkt
auf die übergebene globale Variable aus.

Inhalte globaler Variablen, die denselben Namen wie die Auf-
nahmevariable tragen, bleiben erhalten. Der prozedur-

/funktionsinterne Name hat also bis zum Rücksprung in das

Hauptprogramm lokalen Charakter. Die gleichnamige globale
Variable ist jedoch innerhalb der Routine nicht verfügbar. Nach
Rücksprung zum Hauptprogramm (bzw. zur nächsthöheren

Ebene) wird dann der globale Inhalt wieder restauriert.

Es ıst dabei zu beachten, daß die beiden korrespondierenden

Variablennamen dem gleichen Typ angehören. Ist das nicht der

Fall oder wird eine Konstante oder ein Ausdruck als Parameter

übergeben, erscheint die Fehlermeldung "Falsche VAR-Type".

6.6 Assemler-/C-/PRG-Programmaufrufe

C:() | Maschinenprogramm (C-kompiliert) aufrufen

Var=C:Adressvar ([Parameterliste])

Es ist in "Adressvar" die Adresse einer Maschinenroutine und -

optional - eine Liste numerischer Parameter ın Klammern zu

übergeben. Die Übergabe erfolgt nach üblichen C-Konventionen

—— Programmstruktur 187

auf dem Stack. Sollen 32-Bit-Parameter übergeben werden, ist
dem jeweiligen Parameter das Kürzel ’L:’ voranzustellen. Sonst
gilt das Word-Format (16 Bit). Beispiel:

VOID C:(L:Paral%,Para2%,W:Para3%, L:Para4%)

erzeugt folgenden Stack:

run:
move. | (sp),return ;
move.l 4lsp),parai ;
move 8(sp),para2;
move 10(sp) ,para3 |;

. etc.

. Maschinenprogramm

rts ; Nur RTS verwenden !!

Rücksprungadresse
1. Parameter Paral% (Long)

2. Parameter Para2’ (Word)

3. Parameter Para3% (Word)

Sind keine Parameter zu übergeben, ist eine Leerklammer () zu
verwenden. Nach Rückkehr kann der Inhalt von DO (wie ın C)
entweder direkt ausgegeben (PRINT C:Var()), einer Variablen
übergeben (A%=C:Var()) oder in Bedingungsabfragen eingebun-
den werden (IF C:Var()). |

CALL { CAL} Maschinenprogramm (assembliert) aufrufen

CALL Adressvar ([Parameterliste])

"Adressvar" enthält die Adresse der aufzurufenden Maschinen-

routine. "Parameterliste" enthält, durch Kommata getrennt, die

evtl. zu übergebenden Parameter. Diese können beliebigen Typs
sein, werden jedoch als 32-Bit-Werte interpretiert. Das
Maschinenprogramm empfängt auf dem Stack der Reihe nach

die Rücksprungadresse, einen 16-Bit-Wert, der die Para-

meteranzahl enthält, sowie eine 32-Bit-Adresse, ab der die Pa-

rameter im 32-Bit-Format aufeinanderfolgend vom BASIC ab-
gelegt wurden. String-Parameter werden hier vom BASIC mit

deren Anfangsadresse übergeben. Beispiel:

188 Das große GFA-BASIC-Buch ————

CALL Prog4(17,"Para",A%,BS, *Var%)

erzeugt folgenden Stack:

run:
move. l (sp), return
move 4(sp) ‚anzahl
move.l 6(sp),adress
move. adress,al

move (al),paral
move 4(a1),para2

Rücksprungadresse
5 Parameter
Zeiger auf Parameterblock

Zeiger nach al

= Parameter 1 in paral
= Parameter 2 in para? m

e

M
a

N
e

W
e

M
e

W
S

it
. etc.
. Maschinenprogramm

rts ; Nur RTS verwenden!

EXEC { EXE } CLI-Kommando iibergeben

EXEC Kommando$, In, Out

Dieser Befehl erlaubt es, an das sog. CLI (Command Line Inter-
face) ein Kommando zu übergeben, um dadurch (zum Beispiel)

ein beliebiges, ablauffähiges (Nicht-GFA-) Programm zu starten.

Das CLI-Kommando wird dazu in Kommando$ übergeben. In
und Out stehen für die Kanalnummern (auch ’Filehandle’ ge-
nannt) der gewünschten Ein- und Ausgabekanäle. Im Normalfall
geben Sie hier jeweils -1 an. Dadurch erfolgt die Ein-/Ausgabe
von bzw. in ein CLI-Fenster. (Falls Sie GFA-BASIC vom CLI
aus gestartet haben, wird das dabei aktive Fenster genommen.

Wurde GFA-BASIC von der Workbench aus aufgerufen, so wird
ein neues CLI-Fenster. geöffnet.) Um die Ein- oder Ausgaben
auf ein anderes Gerät bzw. eine andere Datei umzuleiten,

müßten Sie im CLI oder in GFA-BASIC mit der DOS-Funktion
Open ein entsprechendes Filehandle erzeugen (siehe auch Er-
klärungen zur DOS-Bibliothek in Kapitel 5) und dieses dann bei
In bzw. Out angeben. In den allermeisten Fällen wird das aber
nicht erforderlich sein, da die aufgerufenen Programme in der
Regel selbst die Einstellung der Ein-/Ausgabekanäle über-
nehmen.

——— Programmstruktur 189

Theoretisch läßt sich mit EXEC jedes beliebige CLI-Kommando
ausführen. In der Praxis am interessantesten dürfte aber der
Aufruf von anderen (Anwender-)Programmen sein. Dabeı gibt
es grundsätzlich zwei Möglichkeiten (die natürlich auch beim
Aufruf einfacher CLI-Kommandos wie etwa ’List’ bestehen):

> GFA-BASIC wartet, bis das Programm beendet wird.

>» Das Programm läuft parallel zu GFA-BASIC. Mit GFA-BA-
SIC selbst kann normal weitergearbeitet werden.

Im ersten Fall enthält Kommando$ nur den Namen des aufzu-

rufenden Programms (ggf. mit Pfadangabe). Beispiel:

EXEC "df0:Utilities/Calculator",-1,-1

startet das (auf der Workbench-Diskette befindliche) Programm

’Calculator’. GFA-BASIC wartet nun, bis Sie mit ihren Berech-

nungen fertig sind, d.h. das Fenster von ’Calculator’ schließen.

Erst danach können Sie mit GFA-BASIC weiterarbeiten.

Im zweiten Fall müssen Sie dem Namen des auszuführenden

Programms ein ’Run’ voranstellen. Beispiel:

EXEC "Run dfO:clock",-1,-1

startet die (ebenfalls auf der Workbench-Diskette befindliche)

Clock. Das Programm läuft nun parallel zu GFA-BASIC.

Die Anzahl der gleichzeitig ablaufenden Programme ist theore-
tisch nur durch den verfiigbaren Speicherplatz begrenzt. Bitte

beachten Sie aber, daß jedes zusätzliche Programm auch zusätz-

liche Rechenzeit kostet. Dadurch kann sich die Ablaufgeschwin-
digkeit der einzelnen Programme zum Teil beträchtlich verlang-
samen.

190 Das große GFA-BASIC-Buch ——

MONITOR {M} Maschinen-Programm aufrufen

MONITOR [(Parameter)]

Parameter enthält optional einen Übergabewert, der in DO an die

aufgerufene Routine geliefert wird.

Der Befehl MONITOR erzeugt ganz banal eine Illegal-Instruc-
tion-Exception. Dies ist ein Systemfehler, der immer dann auf-

tritt, wenn in einem Maschinenprogramm versucht wird, einen

Befehl auszuführen, den der Amiga nicht kennt. Das passiert

meist dann, wenn der PC (ProgramCounter = CPU-Zeiger auf
die nächste auszuführende Adresse) aufgrund eines Pro-
grammfehlers "in die Wüste" zeigt.

Die Idee hinter MONITOR ist nun, daß erstens in GFA-BASIC
eine Illegal-Instruction-Exception unter normalen Umständen
unmöglich ist, und zweitens, daß verschiedene Programme
diesen Fehler abfangen, um anschließend in einen Debugger,
Disassembler, Maschinen-Monitor oder ähnliches zu springen.

Ein solches Programm läßt sich also am leichtesten mit MONI-

TOR aufrufen.

Aber Vorsicht: Bei Auslösung einer Illegal-Instruction-Exception
springt der Rechner über einen sog. Vektor (Speicheradresse 16)

an die Adresse des MONITOR-Programms. Im Normalfall zeigt
dieser Vektor auf die Betriebssystemroutine zur Erzeugung der
Guru-Meditations. Bevor Sie MONITOR das erste Mal anwen-
den, müssen Sie also zunächst einmal diesen Vektor (am besten
durch das Programm selbst) auf die Adresse des MONITOR-
Programms ’verbiegen’ lassen! Ansonsten bekommen Sie einen
Systemabsturz.

——— Programmstruktur 191

RCALL{RC} Masch.-Programmaufruf m. Registerzugriff

RCALL Adresse, Feld%()

Ruft ein ab "Adresse" liegendes Maschinenprogramm auf. Dabei
kann der Name eines 32-Bit-Integer-Arrays (mind. 16 Elemente)
übergeben werden, in dem vor Aufruf beliebige Longwords ab-
gelegt werden können. Die Inhalte der ersten 15 Elemente dieses
Feldes (OPTION BASE beachten) werden vor Ausführung der
Routine folgendermaßen in die CPU-Register kopiert (bei OP-

TION BASE 0):

Feld%(0) bis Feld%(7) --> dO bis d7

Feld%(8) bis Feld%(14) --> a0 bis a6

Nach Abschluß der Routine (mit RTS) werden die Register-
inhalte in der gleichen Reihenfolge wieder in das Feld zurück-
geschrieben. Zusätzlich erhält man in Feld%(15) (bei OPTION
BASE 0, sonst in Feld%(16)) den aktuellen Userstack-Pointer (SP
= a7 - nur Rückgabe!). |

RESTORE {RES} DATA-Zeiger setzen

RESTORE [Labelname]

RESTORE ohne Angabe einer Marke bewirkt, daß der DATA-
Zeiger grundsätzlich auf den ersten aller im Programm enthal-
tenen DATA-Einträge gerichtet wird. Durch RESTORE Label-
name kann der DATA-Zeiger auf das erste DATA gerichtet
werden, das auf das angegebene Label folgt.

Ab dort werden dann die vorhandenen DATAs eingelesen, bis
ein neuer RESTORE-Befehl eingesetzt wird oder das letzte aller
DATAs gelesen wurde. Weitere Informationen hierzu finden Sie
unter DATA.

192 Das große GFA-BASIC-Buch ——

—— Textoperationen — 193

7. Textoperationen

7.1 String-Manipulationen

MID$() = Teil-String zuweisen

MID$(Ziel$,Start [,Anz])="Text"

Ziel$ gibt eine String- Variable an, in die "Text" ab Start einge-
setzt werden soll. Anz gibt optional die Anzahl der Zeichen von
Text an, die maximal in Ziel$ eingesetzt werden sollen. Die ur-
sprüngliche Lange von Ziel$ bleibt unverändert. Es werden max.
so viele Zeichen von Text eingefügt, wie ab Start in Ziel$ hin-
einpassen. Ä

Beispiele hierzu finden Sie unter FORM INPUT und FUNC-
TION. |

LSET {LS} Zeichen(kette) linksbündig einsetzen

LSET ZielS="Text"

Text kann eine beliebige Zeichenkette oder String-Variable sein,
deren Inhalt linksbündig in Ziel$ eingefügt wird. Dabei bleibt
die ursprüngliche Länge von Ziel$ unverändert. Ist Ziel$ kürzer
als Text, wird Text bei der Länge von Ziel$ abgeschnitten. Ist
Ziel dagegen länger als Text, werden die restlichen Stellen von

Ziel$ mit Leerzeichen aufgefüllt.

Ein Beispiel zu LSET finden Sie in Kap. 5.5.1 "Funktionsweise
einer Random-Access-Datei".

194 Das große GFA-BASIC-Buch ———

RSET{RS} Zeichen(kette) rechtsbündig einsetzen

RSET Ziel$="Text"

RSET ist grundsätzlich mit LSET vergleichbar. Der einzige Un-
terschied besteht darın, daß "Text" am Ende des Ziel-Strings
eingesetzt wird. Beide Befehle finden überwiegend ın Random-
Acces-Dateien Verwendung, wo es darum geht, daß trotz String-
Veränderung die Längen der Eintragszeilen unverändert erhalten

bleiben.

7.2 String-Analyse

INSTR() Zeichen(kette) in einem String suchen

Var=INSTR(Ziel$,Such$ [,Start])

Var=INSTR([Start,] Ziel$,Such$)

Liefert einen Wert, der die absolute Position von Such$ in Ziel$

angibt. Ist Such$ in Ziel$ nicht enthalten, wird der Wert O0 zu-
rückgegeben. Sind beide Strings leer, erhält man eine 1. Bei
Verwendung der Option Start wird ab der damit angegebenen

Zeichenposition gesucht. Bei der Angabe des Such-Strings ist
darauf zu achten, daß hier zwischen Groß- und Kleinschreibung

unterschieden wird. Beispiel:

Ziel$="Kaum zu glauben. Ich trau! meinen Augen nicht."

Such$="au"!

aAstring(0,Ziel$,Such$, Ibk$)
For 1%=1 To Len(Ibk$) Step 2

Print Cvi(Mid$(Ibk$,1%,2))
Next 1%

Procedure Astring(S.pos%,Z.str$,S.str$,Var Bk$)
|

' Erweiterte INSTR-Routine, die alle (!) Positionen
' eines Strings innerhalb eines Ziel-Strings ab einer

' evtl. angegebenen Startposition ermittelt und die

— Textoperationen 195

Positionsliste als MKI$-Daten-String zurückgibt.

S.pos% = String-Position, ab welcher gesucht werden soll.
O wird wie bei INSTR als 1 interpretiert.

Z.str$ = Zu untersuchender Ziel-String

= Zu suchender String:
Bk$ = VAR-Variable ist nach Rückkehr

[|

8

5

8

|

ı S.str$
|

‘ entweder leer (String

’ nicht gefunden) oder

’ enthält der Reihe nach

a die gefundenen Positionen

Local X$,Pos%
Repeat | Such-Schleife >

Pos%=Instr($S.pos%,Z.str$,S.str$) ! Position feststellen
If Pos%>0 String enthalten?

X$=X$+Mki$(Pos%)
S.pos%=Pos%t+]

Position eintragen

Startposition erhöhen
Endif

Until Pos%=0 Kein String mehr? <—
Bk$=X$

Return

LEFT$() Linksbündigen Teil-String ermitteln

Var$=LEFT$(Ziel$ [,Anz])

Ohne die Option Anz wird das erste Zeichen des Strings Ziel$
geliefert. Bei Verwendung der Option Anz werden ab String-
Anfang Anz Zeichen von Ziel$ geliefert. Ist Anz größer als die
Länge von Ziel$, so wird Ziel$ komplett als Ergebnis zurückge-

geben. Ist Ziel$ ohne Inhalt (""), wird ein Null-String geliefert.

Beispiele zu LEFT$() finden Sie unter PRINT und unter DATA.

196 — Das große GFA-BASIC-Buch ——

LEN() String-Länge ermitteln

Var=LEN(Var$)

Liefert die Länge des angegebenen Strings Var$. Beispiele zu
LEN() finden Sie unter FORM INPUT, INKEY$(, LINE IN-
PUT, INSTR und an vielen Stellen im Buch verteilt.

MIDI) Beliebigen Teil-String ermitteln

Var$=MID$(Ziel$,Start [,Anz])

Es wird ein Teil-String von Ziel$ geliefert. Start gibt die Posi-
tion in Ziel$ an, ab der gelesen werden soll. Wird die Option
Anz verwendet, werden ab Start so viel Zeichen geliefert, wie in

Anz angegeben sind. Wird Anz nicht verwendet oder ist der in
Anz angegebene Wert größer als die Menge der ab Start verblei-

benden Zeichen von Ziel$, so wird der gesamte Rest-String ab

Start zurückgegeben. Ist Ziel$ ohne Inhalt, wird ein Null-String
("") geliefert.

Anwendungsbeispiele zu MID$() finden Sie unter anderem bei

FORM INPUT und RIGHTS$().

PRED() Nachstkleineres ASCII-Zeichen ermitteln

Var$=PRED(Expr$)

Liefert das nächstkleinere ASCII-Zeichen des ersten Zeichens

von Expr$. Ist als Abkürzung für CHR$(ASC(Expr$)-1) einsetz-
bar. Beispiel:

Textoperationen

For 1%=65 To 76

Print "ASCII des Zeichens ";Chr$(I%);

Print " minus 1 = ";Asc(Pred(Chr$(1%)));

197

Print " = Zeichen ";Pred(Chr$(1%))

Next I%

RIGHT$() Rechtsbündigen Teil-String ermitteln

Var$=RIGHT$(Ziel$ [,Anz])

Ohne die Option Anz wird das letzte Zeichen des Strings Ziel$
geliefert. Bei Verwendung der Option Anz werden vom String-
Ende Anz Zeichen von Ziel$ geliefert. Ist Anz größer als die

Länge von Ziel$, so wird Ziel$ komplett als Ergebnis zurückge-

geben. Ist Ziel$ ohne Inhalt (""), wird ein Null-String zurückge-

geben. Beispiel:

X$="Dies ist ein DEMO-String zur Vorführung der String-"

X$=X$+"Trennfunktion CUT. Im RUckgabe-String (hier: A$)"

X$=X$+"wird eine Liste von MKI$-Wertepaaren zurUckgegeben"

X$=X$+", die der Reihe nach die Positionen und Länge aller "

X$=X$+"extrahierten Strings enthält."

acCut(X$,", -2.)",20,*A$) !

For 1%=1 To Len(A$) Step 4

Slen%=Cvi(Mid$(A$, 1%+2,2))

Print Mid$(X$,Spos%,Slen%)

Next 1%

!
!

Spos%=Cvi (Mid$(A$,1%,2)) !
|

I

Aufruf

MKI$-String in 4er-Steps
durchgehen

Teil-String-Position lesen

Teil-Stringlänge lesen

Teil-String ausgeben

Procedure Cut(C.str$,C.sgn$,C.brt%,C.vec%)

Teilt einen vorgegebenen String in Teile mit einer

' vorgegebenen max. Länge, wobei eine Liste von

Trennzeichen angegeben werden kann, die dann Priorität

Länge haben. Der Ausgangs-String bleibt unverändert. vor der

C.str$

C.sgn$

C.brt%

C.vech%

Zu teilender Vorgabe-String

Beliebige Liste von Trennzeichen. Die

Teil-Strings enden jeweils mit dem ersten

Zeichen hinter dem gefundenen Trennzeichen.

Ist C.sgn$ leer (""), gilt für die
Trennung ausschließlich C.brt%.

Max. neue Zeilenbreite

Pointer auf eine Rückgabe-String-Variable, die
nach Abschluß eine Liste von MKI$-Wertepaaren

198 Das große GFA-BASIC-Buch ———

' enthalt, die der Reihe nach Position und Lange

' der einzelnen Teil-Strings angeben.
ß

Local C.dum$,Cd.vec$,C.pos%,C.a$,C.j%

C.pos%=1 I Positions-Puffer +1
Do

Cc. a$=Left$(C.str$,Min(C.brt%,Len(C.str$))) ! Teil-String

I auf Länge trimmen

tf Len(C.sgn$)>0 ! Trennzeichen vorhanden?

For C.j%=Len(C.a$) Downto 1 ! Alle Zeichen durchgehen

Exit if Instr(C.sgn$,Mid$(C.a$,C.j%,1)) ! Abbruch,
I wenn Trennzeichen gefunden

Next C.j% ı Nächstes Zeichen

Endif
If C.j%=0 I Kein Trennzeichen?

C.j%=C.brt% ! Längenvorgabe hat Priorität

Endi f
C.dum$=Left$(C.a$,Min(C.brt%,C.j%)) ! Teil-String "cutten"
C. str$=Right$(C. str$ ‚Len(C.str$)-Min((C.brt%),Len(C.dum$)))

! Ausgangs-String kürzen

ca. vec$=Cd. vec$+Mki$(C.pos%)+Mki$(Len(C.dum$))
I MKI$-String bilden

Add C.pos%,Len(C.dum$) I Neue Startposition
Exit if Len(C.str$)<C.brt% ! Exit, wenn Rest < max. Breite

Loop

Cd.vec$=Cd.vec$+Mki$(C.pos%)+Mki$(Len(C.str$)) ! MKI$-Rest
*C.vec%=Cd.vec$ I MKI$-String zurückgeben

Return

RINSTR() Zeichen(kette) in einem String rückwärts suchen

Var=RINSTR(Ziel$,Such$ [,Start])

Var=RINSTR([Start,] Ziel$,Such$)

Liefert einen Wert, der die erste gefundene Position von ’Such$’

in Ziel$ angıbt. Bei der Durchsuchung des Ziel-Strings wird im
Gegensatz zu INSTR am String-Ende begonnen. Weiteres siehe
INSTR.

——— Textoperationen 199

SUCC() Nächstgrößeres ASCIl-Zeichen ermitteln

Var$=SUCC(Expr$)

Liefert das nächstgrößere ASCII-Zeichen des ersten Zeichens
von Expr$. Ist als Abkürzung für CHR$(ASC(Expr$)+1) einsetz-
bar. Beispiel:

For 1%=65 To 78
Print "ASCII des Zeichens ";Chr$(1%);
Print " plus 1 = ";Asc(Succ(Chr$(1%)));
Print " = Zeichen ";Succ(Chr$(1%))

Next I%

7.3 String-Formatierung

SPACE$() Leerzeichen-String bilden

Var$=SPACE$(Anz)

Es wird ein String aus Anz Leerzeichen gebildet und zurückge-
geben.

STRING$() Mehrfach-Zeichenkette bilden

Var$=STRINGS(Anz, "Text"
Var$=STRINGS(Anz, Ascii)

Es wird ein String gebildet, der sich daraus ergibt, daß Text so
oft verkettet wird, wie in Anz angegeben. Text kann auch als
Variable oder String-Konstrukt angegeben werden. Soll ein ein-
zelnes Zeichen multipliziert werden, kann statt Text auch der

ASCIH-Wert des Zeichens verwendet. werden. Die entstehende

200 Das große GFA-BASIC-Buch ———

Zeichenkette darf nicht mehr als 32767 Zeichen enthalten

(maximale Größe einer String-Variablen).

Beispiele finden Sie unter anderem unter PRINT.

TRIM$() Space-Zeichen eliminieren |

Var$=TRIM$(Ziel$)

Eliminiert alle Spaces (Leerzeichen), die am String-Anfang oder
am String-Ende von Ziel$ stehen, und liefert den verbleibenden
String-Teil. Besteht der übergebene String Ziel$ nur aus Leer-
zeichen oder ist er ohne Inhalt, erhält man einen Leer-String ("")

zurück. Beispiel:

For 1%=1 To 4

Read A$
Print "Vorher : ->";A$;"<-",
Print "Nachher: ->";Trim$(A$);"<-"

Next 1%
Data String 1 , String 2,String 3,String4 ,

UPPER$() Buchstabenumwandlung klein = > aro |

VarS=UPPERS(Ziel$)

Trifft UPPER$ beim Lesen von Ziel$ auf einen kleingeschriebe-
nen Buchstaben (ASCII-Werte 97 bis 129), so wird dieser in den
entsprechenden Großbuchstaben (ASCII-Werte 65 bis 90) umge-
wandelt. Kleingeschriebene Umlaute (ä, ö, ü) werden ebenfalls

in Uppercase (A, O, U) gewandelt. Alle anderen Zeichen bleiben
unverändert.

——— Arithmetik-Befehle

8. Arithmetik-Befehle

8.1 Operatoren

Arithmetische Operatoren:

*/
DIV

MOD
+-

Potenzieren

Negatives Vorzeichen

Multiplikation und Division

Ganzzahldivision (Entfernen von Dezimalstellen)

Modulo-Berechnung (Rest der Ganzzahldivision)

Addition und Subtraktion

Vergleichsoperatoren:

I
A
V

Ul
 ungleich <> oder >< gleich

größer als > = oder => größer oder gleich

kleiner als <= oder = < kleiner oder gleich

ungefahr gleich (28 Bit-Vergleich)

Logische Operatoren:

AND

OR

XOR

NOT

IMP

EQV

Konjunktion: Das Ergebnis von AND ist wahr, wenn

beide Argumente wahr sind.

Disjunktion: Das Ergebnis von OR ist wahr, wenn

eines der Argumente wahr ist.

Exklusives Oder: Das Ergebnis von XOR ist falsch, wenn

die Argumente beide wahr oder beide falsch sind.

Negation: Vertauscht Wahrheitswerte ins Gegenteil.

Implikation: Die Folgerung IMP ist nur dann falsch, wenn

aus etwas Wahrem etwas Falsches folgt.

Äquivalenz: Umkehrung zu XOR. Das Ergebnis ist falsch,
wenn sich die beiden Argumente unterscheiden.

201

202 Das große GFA-BASIC-Buch ————

Prioritäten:

() Klammern (höchste Priorität)

“ Potenzierung

- Negatives Vorzeichen

*/ Multiplikation und Division

DIV MOD Ganzzahldivision und Modulo-Berechnung

+ - Addition und Subtraktion
= > < ==

<> >= <= Vergleichsoperatoren

NOT AND OR,

XOR IMP EQV Logische Operatoren (niedrigste Prioritat)

8.2 Mathematische Operationen

ADD { AD } Additionsbefehl

ADD Var,Wert

Addiert Wert zum Inhalt der numerischen Variablen Var und

legt anschlieBend das Ergebnis in Var ab.

Wird in Var eine Integer-Variable angegeben, so wird ein evtl.
in Wert angegebener Realwert als Integerwert behandelt.

DEC Dekrementierung

DEC Var

Vermindert den Wert der numerischen Variablen Var um den

Wert 1.

—— Arithmetik-Befehle 203

DIV Divisionsbefehl { DI }

DIV Var ‚Wert

Dividiert den Inhalt der numerischen Variablen Var durch Wert

und legt anschließend das Ergebnis in Var ab. Beachten Sie bitte
die Anmerkung zum ADD-Befehl.

INC { IN } | Inkrementierung |

INC Var

Erhöht den Wert der numerischen Variable Var um den Wert I.

MUL{MU} Multiplikationsbefehl |

MUL Var ‚Wert

Multipliziert den Inhalt der numerischen Variablen Var mit Wert

und legt anschließend das Ergebnis ın Var ab. Beachten Sie bitte
die Anmerkung zum ADD-Befehl.

SUB {SU} Subtraktionsbefehl { SU }

SUB Var ‚Wert

Subtrahiert Wert vom Inhalt der numerischen Variablen Var und
legt anschließend das Ergebnis in Var ab. Beachten Sie bitte die
Anmerkung zum ADD-Befehl.

204 Das große GFA-BASIC-Buch ————

ADD() Integer-Additionsfunktion

Var=ADD(Wert1,Wert2)

Addiert Wertl zu Wert2 und liefert dann das entsprechende In-

teger-Ergebnis.

Anmerkung: Im Gegensatz zu den ADD-, SUB-, MUL-, DIV-

Befehlen können diese Funktionen - wie jede andere Funktion
auch - in die Ausgabe, in Zuweisungen, Ausdrücke, Bedin-
gungsabfragen etc. eingebunden werden. Sie stehen stellvertre-
tend für das Ergebnis, das sie liefern sollen. Außerdem können
hiermit generell nur integrierte Werte berechnet werden. Von
ggf. aus der Operation entstehenden Realwerten wird nur der
Vorkomma-Anteil geliefert. Eine Rundung findet nicht statt.

Die Werte können als Konstante, Variable, Ausdruck oder

Funktion angegeben werden. Sie werden durch die Operation

nicht verändert. Gibt man die Werte als Realwerte an, werden |

sie vor Ausführung der Operation auf ihren Integeranteil redu-
ziert. Beispiel:

Print Mod(Add(Div(100,33),Mul (345,Sub(12,5.6))),38)

entspricht

Print Int(100/33)+Int(345*Int(12-Int(5.6))) Mod 38

DIV() Integer-Divisionsfunktion

Var=DIV(Wert1,Wert2)

Dividiert Wert! durch Wert2 und liefert das entsprechende Inte-

ger-Ergebnis. Beachten Sie bitte die Anmerkung zur ADD()-
Funktion.

—— Arithmetik-Befehle 205

MOD() Integer-Modulo-Funktion

Var=MOD(Wert1,Wert2)

Berechnet den ganzzahligen Rest der Integer-Divison Wert]

durch Wert2 (Modulo-Berechnung) und liefert das entsprechende
Integer-Ergebnis. Beachten Sie bitte die Anmerkung zur ADD()-
Funktion.

MUL() Integer-Multiplikationsfunktion

Var=MUL (Wert1,Wert2)

Multipliziert Wertl mit Wert2 und liefert das entsprechende In-

teger-Ergebnis. Beachten Sie bitte die Anmerkung zur ADD()-
Funktion.

SUB() _ Integer-Subtraktionsfunktion

Var=SUB(Wert1,Wert2)

Subtrahiert Wert2 von Wertl und liefert das entsprechende Inte-

ger-Ergebnis. Beachten Sie bitte die Anmerkung zur ADD()-
Funktion.

206 Das große GFA-BASIC-Buch ———

8.3 Numerische Funktionen

ABS() Betrags-Funktion

Var=ABS(Arg)

ABS gibt das Argument Arg vorzeichenlos als positiven (absolu-

ten) Wert zurück. Dieser Wert ist immer gleich oder größer null.

EVEN() Zahl auf "gerade" testen |

Var=EVEN(Arg)

Liefert -1, wenn Arg gerade ist. Sonst wird 0 geliefert.

EXP() . Exponential-Funktion |

Var=EXP(Arg)

Berechnet das Ergebnis des Exponenten Arg zur Basis e
(Eulersche Zahl). Gleichbedeutend mit: 2.718281828462 * Arg.

Arg muß auf jeden Fall größer null sein, da sonst eine Fehler-
meldung produziert wird. EXP ist die Umkehrfunktion zu LOG.

FIX() | Ganzzahl-Funktion

Var=FIX(Arg)

Übergibt den ganzzahligen Anteil (Integer) der Real-Zahl Arg.
Die Funktion rundet Zahlen weder auf noch ab, sondern ent-

——— Arithmetik-Befehle 207

fernt nur die Dezimalstellen. Im Minusbereich wird dadurch der
Minuswert kleiner. FIX(-12.33) ergibt -12. FIX(33.17) ergibt 33.
FIX ist identisch mit TRUNC.

FRAC() Dezimalstellen-Funktion

Var=FRAC(Arg)

Liefert den Dezimalanteil (Nachkommastellen) von Arg, falls
Arg eine reelle Zahl ist, bzw. den Wert 0, falls Arg integer ist.

INT() Ganzzahl-Funktion

Var=INT(Arg)

Wandelt die Zahl Arg ın eine Integer-Zahl. Ist Arg ein
Realwert, so wird die nächstkleinere Ganzzahl zurückgegeben.
Im Gegensatz zu FIX() und TRUNC(wird dadurch im

Minusbereich der Minuswert größer.

INT(-12.33) ergibt -13 INT(33.17) ergibt 33.

LOG() Logarithmus-Funktion

Var=L0G[10] (Arg)

LOG() gibt den natürlichen (Neperschen) Logarithmus des in
Klammern angegebenen numerischen Ausdrucks Arg zur Basis e
zurück.

Basis e => 2.718281828 => Eulersche Zahl

208 Das große GFA-BASIC-Buch ——

Das Ergebnis von 2.718281828462*LOG(Arg) ergibt Arg.
LOGI10() liefert dagegen den dekadischen (Briggsschen) Lo-

garithmus des in Klammern übergebenen Arguments Arg zur
Basis 10.

Das Ergebnis von 10*LOG10(Arg) ergibt Arg. Arg muß auf je-
den Fall größer null sein, da sonst eine Fehlermeldung produ-
ziert wird. LOG() ist die Umkehrfunktion zu EXP().

ODD() Zahl auf "ungerade" testen |

Var=ODD(Arg)

Liefert -1, wenn Arg ungerade ist. Sonst wird 0 geliefert.

PRED() Nächstkleinere Ganzzahl ermitteln |

Var=PRED(Arg)

Liefert die nächstkleinere Integerzahl vor Arg. Bei Arg als Re-

alzahi werden vor Ausführung der Operation die Nachkom-
mastellen integriert (siehe INT).

ROUND() Rundungsfunktion

Var=ROUNDCArg [,Stelle])

Rundet Arg mathematisch exakt auf eine ganze Zahl. Wird die
Option Stelle verwendet, wird auf die angegebene Nachkomma-
stelle gerundet. Ist Stelle negativ, wird auf die entsprechende
Stelle vor dem Komma gerundet.

—— Arithmetik-Befehle 209

SGN() Vorzeichen ermitteln

Var=SGN(Arg)

Liefert das Vorzeichen (engl.: SIGN) von Arg.

1 wenn Arg > 0/-1 wenn Arg < 0/0 wenn Arg = 0

SQR() Wurzel-Funktion |

Var=SQR(Arg)

Es wird die 2. Wurzel (Quadratwurzel engl.: SQuare Radical) von
Arg geliefert. Wird eine höhere Wurzel gebraucht, so ist diese
über den Umweg der Potenzierung mit gebrochenem Exponenten
zu berechnen:

Arg’ (1/3)
Arg“ (1/4)

3. Wurzel

4. Wurzel

etc.

Arg muß auf jeden Fall gleich oder größer null sein, da sonst
eine Fehlermeldung produziert wird. Ä

SUCC() Nächstgrößere Ganzzahl ermitteln

Var=SUCC(Arg)

Liefert die nächstgrößere Integerzahl nach Arg. Bei Arg als Re-
alzahl werden die Nachkommastellen integriert (siehe INT).

210 Das große GFA-BASIC-Buch ————

TRUNC() Ganzzahl-Funktion

Var=TRUNC(Arg)

TRUNC ist identisch mit FIX. Weiteres siehe dort.

8.4 Trigonometrische Funktionen

ACOS() | Arcuscosinus-Funktion |

Var=ACOS(Arg)

Berechnet den Arcuscosinus von Arg. Weiters siehe unter ATN().

ASIN() Arcussinus-Funktion |

Var=ASINCArg)

Berechnet den Arcussinus von Arg. Weiteres siehe unter ATN().

ATN() Arcustangens-F unition |

Var=ATN(Arg)

Das Argument Arg ist ein Tangenswert, aus dem der ihm ent-

sprechende Winkel in Radiant berechnet wird. Es wird ein Wert

zwischen -PI/2 und +PI/2 geliefert. Benötigt man die Winkelan-
gabe in Grad, so muß das Ergebnis mit 180/PI multipliziert bzw.
durch DEG umgewandelt werden.

— Arithmetik-Befehle | 211

COS() Cosinus-Funktion

Var=COS(Arg)

Berechnet den Cosinus von Arg. Arg ist ein Winkel in Radiant.
Soll der Winkel in Grad eingegeben werden, muß dieser vorher
mit PI/180 multipliziert bzw. durch RAD gewandelt werden.
Beispiel:

For I=0 To 90 Step 15
Print "Sinus ";1;" GRAD : ":Sin(I*Pi/180)
Print "Cosinus ";1;" GRAD : ";Cos(I*Pi/180)
Print "Tangens ",1;" GRAD : ";Tan(1I*Pi/180)

Next I |
For I=-Pi+0.0000001 To Pi Step Pi/90

Print "Sinus ";1;'" RAD : ":Sin(I)

Print "Cosinus ";1;" RAD : ":Cos(I1)
Print "Tangens ":I:" RAD : ";Tancl)

Next I

Ein weiteres Beispiel zu COS() und SIN() finden Sie unter PI.

COSQ() Interpolierte Cosinus-Funktion mit Grad-Angabe |

Var=COSQ (Grad)

Ermittelt den 16tel-Grad-interpolierten Cosinus des in Grad an-

gegebenen Winkels Grad (ca. zehnmal schneller als COSO).

DEG() Umwandlung in Grad

Var=DEG(Radiant)

Rechnet die Radiant-Winkelangabe in Gradmaß (DEGree) um.
Entspricht dem Ergebnis von ARG*180/PI.

212 Das große GFA-BASIC-Buch ————

PI Kreiszahl

PI

Reservierte Variable. Steht dort, wo sie eingesetzt wird, fiir die

konstante Kreiszahl PI (3.1415926536). |

Grafik: Cbox

Beispiel:

Yt%=2
Deffill ‚2,4
For 1%=0 To 360 Step 12
aCbox(2,320,200/Yt%,250,1%)

Next I%
Cls
For 1%=0 To 720 Step 12

Add J%,3 I Radius +3
aCbox(1,320,200/Yt%, 10+J%, 1%)

Next I%

ı Y-Auflösungsteiler

I DEFFILL grau

1- PBOX-Schleife
I!

ı Bildschirm klar
I —

I- BOX-Schleife

Procedure Cbox(Mod%,Xp%, Yp%, Rd%, Wi%)
' Produziert ein Quadrat, das in einem beliebigen Winkel

und mit beliebiger Größe dargestellt werden kann. |

ı Mod% = Darstel lungsmodus

t 1 = BOX

a 2 = PBOX
' Xpk/Yp% =
' Rd% = Umkreisradius

ı wi% = Neigungswinkel
8

Local J%,1%,Yt%,Dg

Yt%=2

Erase Px%()

Erase PyZ%()

Dim Px%(4),Py%(4)
For 1%=-Wi%+45 To -Wi%+360+45

Dg=1%*Pi/180

Koordinaten des Mittelpunktes (Drehpunktes)

Y-Auflösungsteiler

POLY-X-Feld löschen

POLY-Y-Feld löschen

POLY-Felder dimensionieren

Step 90 ! Einmal rundum
In Radiant umrechnen

Px%(JA) =Xp%+(SinCDg)*Rd%*Sqr(2)/2+0.5) I- Koordinaten..
Py%(JA)=Yp%+(Cos(Dg)*Rd%/Yt%*Sqar(2)/2+0.5) !- „.berechnen
|

Inc J%
Next 1%

If Mod%=1
Polyline 5,Px%C),Py%C)

Endif
If Mod%=2

Ecken-Zähler +1

Nächste Ecke

BOX-Darstellung?

Dann Polyline

PBOX-Darstellung?

—— Arithmetik-Befehle 213

Polyfill 5,Px%C),Py%C) I Dann Polyfill
Endif

Return

RAD() Umwandlung in Radiant (Bogenmaß)

Var=RAD(Grad)

Rechnet die Grad-Winkelangabe Grad in Bogenmaß (RADiant)
um.

SIN() Sinus-Funktion |

Var=SIN(Arg)

Berechnet den Sinus von Arg. Weiteres siehe unter COS().

SINQ() Interpolierte Sinus-Funktion mit Grad-Angabe |

Var=SINQ(Grad)

Ermittelt den 16tel-Grad-interpolierten Sinus des in Grad ange-

gebenen Winkels Grad (ca. zehnmal schneller als SIN()).

TAN() | Tangens-Funktion

Var=TAN(Arg)

Berechnet den Tangens von Arg. Weiteres siehe unter COS().

214 Das große GFA-BASIC-Buch ——

8.5 Vergleichsoperationen

MAX() Größten Wert ermitteln/größten String ermitteln |

Var=MAX(Expr1,Expr2 [,Expr3,...])

Var$=MAX(Expr1$,Expr2$ [,Expr3$,...])

Gibt den größten Wert einer Werteliste bzw. den größten String
einer String-Liste zurück. Expr kann ein beliebiger nume-
rischer- oder Textausdruck, Wert, String bzw. Variable sein.

Alle Ausdrücke müssen demselben Typ angehören.

Bei String-Vergleichen wird der größte String ermittelt, indem
der Reihe nach alle Einzelzeichen der zu vergleichenden Strings
überprüft werden. Haben beide Zeichen denselben ASCII-Wert,

werden solange die nächsten beiden Zeichen geprüft, bis sie sich

unterscheiden oder einer der beiden Strings keine Zeichen mehr

enthält. Im ersten Fall ist der Ausdruck größer, dessen zuletzt

‚geprüftes Zeichen den größeren ASCII- Wert besitzt. Im zweiten
Falle ist es der String mit der größeren Länge.

MIN() Kleinsten Wert/String ermitteln |

Var=MINCExpr1,Expr2 [,Expr3,-..])

VarS=MINCExpr1$,Expr2$ [,Expr3$,...])

Gibt den kleinsten Wert einer Werteliste bzw. den kleinsten
String einer String-Liste zurück. Siehe auch Erläuterungen zu
MAX().

——— Arithmetik-Befehle 215

8.6 Bit-Operationen

AND() | Konjunktions-Funktion

Var=AND(Wert1,Wert2)

Verknüpft logisch die beiden angegebenen Werte im AND-Mo-
dus und liefert das Integer-Ergebnis (siehe Kapitel 4 "Basis-
BASIC").

Die Booleschen Funktionen stehen jeweils als Ersatz für die
entsprechende logische Verknüpfungsoperation:

AND(X,y) entspricht (x AND y)
OR(X,Y) entspricht (x OR y)

XOR(X,Y) entspricht (x XOR y)

EQV(x,y) entspricht (x EQV y)

IMP(x,y) entspricht (x IMP y)

Beispiel:

Print &X11101101 And &X1111''""!And(%11101101,%1111)
Print &HED Or &HF'''''Or(SED, SF)
Print 237 Xor 15'''''Xor(237, 15)

Durch die Funktionsform werden diese Operationen für den

Programmierer übersichtlicher und für das BASIC schneller "er-
faßbar", wodurch sich Geschwindigkeitsvorteile von bis zu 10
Prozent ergeben.

In der Beschreibung zu IF..ENDIF habe ich den Vorgang der
Bedingungsstellung durch AND und OR zu erklären versucht.
Eine häufige Bedingungsform ist z.B.:

IF (Cv1%=w1 OR v2%<>w1) AND v3%>(ex1%tn2)) OR v4%<w2

Durch die Verknüpfungsfunktionen kann diese Bedingung fol-
gendermaßen umgestaltet werden:

IF ORCAND(OR(v1%=w1, v2%<>w1) ,v3%(ex1%+w2)) , v4%<w2)

216 Das große GFA-BASIC-Buch ———

Durch die klare Klammersetzung kann ein Ausdruck dieser Art
wesentlich leichter analysiert werden. Ein kleiner Nachteil ist,
daß OR- oder AND-Ketten etwas unübersichtlicher werden.

Aus:

IF v1%>w1 OR v2%<>w1 OR v3%<>v1% OR v4%=w2

wird:

IF ORCOR(OR(v1%>w1,v2%<>w1) , V3%<>V1%) , VA%=W2)

Aber das ist wohl Geschmacksache. Man wird ja durch nichts
daran gehindert, in solchen Fällen die erste Variante zu verwen-

den.

BCHG() Einzel-Bit wechseln (Xor-en)

Var=BCHG(Wert,Bit)

Wechselt das angegebene Bit von Wert (Wert XOR 2% Bit). War

das Bit vorher 1, dann ist es anschlieBend 0 und umgekehrt.

Beachten Sie bei den Einzel-Bit-Funktionen, daß die Bit-Zäh-

lung von rechts mit der Bit-Nummer 0 beginnt. Bit kann belie-
big angegeben werden, wobei größere Werte als 31 (max.

Breite=32 Bit) nicht mehr korrekt verarbeitet werden. Größere
Angaben für Wert als 2*32-1 (&HFFFFFFFF = max. Longwert)
werden nicht verarbeitet.

—— Arithmetik-Befehle 217

BCLR() Einzel-Bit löschen

Var=BCLR(Wert, Bit)

Löscht das angegebene Bit von Wert (Wert AND NOT 2’Bit).
War das Bit vorher 1, ist es anschlieBend 0. 0 bleibt 0. Weiteres
siehe unter BCHG().

BSET() Einzel-Bit setzen

Var=BSET(Wert,Bit)

Setzt das angegebene Bit von Wert (Wert OR 2”Bit). War das Bit
vorher 0, ist es anschließend 1. War es 1, bleibt es 1. Weiteres

siehe unter BCHG().

BTST() Einzel-Bit auf an/aus testen

Var=BTST(Wert, Bit)

Testet das angegebene Bit von Wert (-SGN(Wert AND 2“Bit)).
Ist das Bit gesetzt, wird eine -1 (TRUE) geliefert, sonst 0
(FALSE). Weiteres siehe unter BCHG().

BYTE() Vorzeichenloses LO-Byte eines Wertes liefern

Var=BYTE(Wert)

Liefert vorzeichenlos die untersten 8 Bit von Wert.

218 Das große GFA-BASIC-Buch ——

CARD() Vorzeichenloses LO-Word eines Wertes liefern |

Var=CARD(Wert)

Liefert vorzeichenlos die untersten 16 Bit von Wert.

EQV() | Äquivalenz-Funktion |

Var=EQV(Wert1,Wert2)

Verknüpft logisch die beiden angegebenen Werte im EQV-Mo-

dus und liefert das Integer-Ergebnis. Weiteres sıehe unter
AND().

IMP() Implikations-Funktion

Var=IMP(Wert1,Wert2)

Verknipft logisch die beiden angegebenen Werte im IMP-Modus
und liefert das Integer-Ergebnis. Weiteres siehe unter AND().

OR() Disjunktions-Funktion

Var=OR(Wert1,Wert2)

Verknüpft logisch die beiden angegebenen Werte im OR-Modus
und liefert das Integer-Ergebnis. Weiteres siehe unter AND().

——— Arithmetik-Befehle 219

SHL()) Bits links verschieben

Var=SHL(Wert,Bits) Long-Shift-Left

Var=SHL&(Wert,Bits) Word-Shift-Left

Var=SHL|(Wert,Bits) Byte-Shift-Left

Verschiebt den Inhalt von ’Wert’ um die Anzahl ’Bits’ nach
links. Je verschobenem Bit wird ’Wert’ dabei mit 2 multipliziert

(Integer-Multiplikation: Var=Wert*2“Bits). Das rechts frei wer-
dende Bit wird mit 0 gefüllt.

ON MEERE Geidemeeemen

Höchstes / / f/ I I 1 11 .—.
Bit <--' sf I I 1111 | oO |
fällt raus / / / / / / / ı _——!

/ Null wird

jloJjıJıJojıJojJojo| << nachgeschoben

Bei Angabe von & hinter SHL werden nur die ersten 16 Bit
(LO-Word) von Wert verschoben, bei | nur die ersten 8 Bit (LO-
Byte). Ist Wert bei SHL|() größer als 8 Bit, so werden als Ergeb-
nis trotzdem nur die untersten 8 Bit der Operation geliefert.
Dasselbe gilt für SHL&() (16 Bit), wobei dann jedoch das Bit 15
des Ergebnisses ın die Bits 16-31 kopiert wird (vorzeichenbe-

haftet).

SHR() Bits logisch rechts verschieben

Var=SHR(Wert,Bits)Long-Shift-Right

Var=SHR&(Wert,Bits) Word-Shift-Right

Var=SHR|(Wert,Bits) Byte-Shift-Right

Verschiebt den Inhalt von ’Wert’ um die Anzahl ’Bits’ nach

rechts. Je verschobenem Bit wird ’Wert’ dabei durch 2 dividiert

(Integer-Division: Var=Wert DIV 2*’Bits). Das links frei wer-

220 Das große GFA-BASIC-Buch ———

dende Bit wird mit 0 gefüllt. Bei Komplementwerten bleibt also
das Vorzeichen nicht erhalten.

.—. V VN N NO NEN INN Niedrigstes
Null | 0 | \ VON XN NON ND > Bit
wird i! V VN VN NO NN N fallt raus
nach- 4M ae ee ee ee
geschoben '—> |0[/[1|]0[1]1[0]1]0|

Bei Angabe von & hinter SHR werden nur die ersten 16 Bit
(LO-Word) von Wert verschoben, bei | nur die ersten 8 Bit (LO-
Byte). Ist Wert bei SHR|() größer als 8 Bit, so werden als Ergeb-

nis trotzdem nur die untersten 8 Bit der Operation geliefert.
Dasselbe gilt fiir SHR&() (16 Bit), wobei dann jedoch das Bit 15
des Ergebnisses in die Bits 16-31 kopiert wird (vorzeichenbe-
haftet).

ROL() Bits links rotieren

Var=ROL(Wert,Bits) Long-Rotate-Left

Var=ROL&(Wert,Bits) Word-Rotate-Left

Var=ROL!(Wert,Bits) Byte-Rotate-Left

Rotiert den Inhalt von ’Wert’ um die Anzahl ’Bits’ nach links.
Das jeweils rechts frei werdende Bit wird dabei mit dem jeweils
links herausgeschobenen Bit gefüllt.

Das

höchste Bit

des Wertes

wird als

niedrigstes

Bit nach-

geschoben

——— Arithmetik-Befehle 221

Bei Angabe von & hinter ROL werden nur die ersten 16 Bit
(LO-Word) von Wert rotiert, bei | nur die ersten 8 Bit (LO-

Byte). Ist Wert bei ROL|() größer als 8 Bit, so werden als Ergeb-
nis trotzdem nur die untersten 8 Bit der Operation geliefert.
Dasselbe gilt fir ROL&() (16 Bit), wobei dann jedoch das Bit 15

des Ergebnisses in die Bits 16-31 kopiert wird (vorzeichenbe-
haftet).

ROR() | Bits rechts rotieren

Var=ROR(Wert,Bits) Long-Rotate-Right

Var=ROR&(Wert,Bits) Word-Rotate-Right

Var=ROR|(Wert,Bits) Byte-Rotate-Right

Rotiert den Inhalt von ’Wert’ um die Anzahl ’Bits’ nach rechts.
Das jeweils links freiwerdende Bit wird dabei mit dem jeweils
rechts herausgeschobenen Bit gefüllt.

Das 1 1...
niedrigste |ıJlojıJlıJo|ı]Jo]|1]
Bit des ı___-I___ıI___!___—- es a Ss jd |

Wertes \ \V NON NO NOONAN
wird als V NON ON NON ND IS
höchstes \ NN NO NO NON
Bit nach- — 1.1...
geschoben '—> | ı | ı Jo|ı Jı Jo] 1] 0]

Bei Angabe von & hinter ROR werden nur die ersten 16 Bit
(LO-Word) von Wert rotiert, bei | nur die ersten 8 Bit (LO-

Byte). Ist Wert bei ROR|() größer als 8 Bit, so werden als Ergeb-
nis trotzdem nur die untersten 8 Bit der Operation geliefert.
Dasselbe gilt für ROR&() (16 Bit), wobei dann jedoch das Bit 15
des Ergebnisses in die Bits 16-31 kopiert wird (vorzeichenbe-
haftet).

222 — Das große GFA-BASIC-Buch ——

SWAP() HI- und LO-Word vertauschen

Var=SWAP(Wert)

- Funktion - (siehe SWAP als Befehl)

Vertauscht das LO-Word (Bits 0-15) von ’Wert’ mit dessen HI-

Word (Bits 16-31). ’Wert’ wird dabei grundsätzlich als 32-Bit-
Integerwert interpretiert. Wird ’Wert’ als Realwert übergeben,

werden evtl. vorhandene Nachkommastellen vor Ausführung der
Operation integriert (siehe INT()). Kleinere Wert-Formate als 32

Bit werden auf Long erweitert.

WORD() Wert auf 32 Bit erweitern

Var=WORD (Wert)

Erweitert ’Wert’ arithmetisch (vorzeichenbehaftet) auf 32 Bit.
Das Bit 15 von ’Wert’ wird dabei in die obersten 16 Bits des Er-
gebnisses kopiert. Ist also Bit 15 (16. von links) von ’Wert’ ge-
setzt, so ist das Ergebnis von WORD(Wert) negativ.

XOR() eXclusivOR-Funktion |

Var=XOR(Wert1,Wert2)

Verknüpft logisch die beiden angegebenen Werte im XOR-Mo-
dus und liefert das Integer-Ergebnis. Weiteres siehe unter
AND().

— Arithmetik-Befehle 223

8.7 Zufallswert-Erzeugung

RAND() 16-Bit-Integer-Zufa lIszahl

Var=RAND(n)

Ubergibt eine vorzeichenlose 16-Bit-Integer-Zufallszahl aus dem
Zahlenbereich O (inkl.) und n (exkl.). Größere Werte für n als
65535 werden durch n MOD 65535 auf den zulässigen Bereich
umgerechnet.

RANDOM() | 32-Bit-Integer-Zufallszahl

Var=RANDOM(n)

Übergibt eine 32-Bit-Integer-Zufallszahl aus dem Integer-Zah-

lenbereich O (inkl.) und n (exkl.), wobei n auch negativ sein
kann.

RANDOMIZE { RA } Zufallszahlengenerator initialisieren

RANDOMIZE [(Start)]

Initialisiert den Zufallszahlengenerator. Bei Verwendung des op-
tionalen Parameters Start wird der Generator mit diesem Wert

gestartet. Bei mehrfacher Verwendung desselben Startwertes be-
ginnt immer dieselbe Zufallszahlenfolge mit ’Start’ als erstem
Wert. Möchten Sie denselben Startwert intialisieren, der bei Sy-
stemstart gültig war, so kann die optionale Start-Klammer weg-
gelassen oder RANDOMIZE 0 verwendet werden.

224 Das große GFA-BASIC-Buch ————

RND() Dezimalstellen-Zufallszahl

Var=RND [(Arg)]

Es wird ein 13stelliger Zufallswert im Bereich zwischen 0 (inkl.)
und 1 (exkl.) geliefert. Die gesamte Klammer ist optional und
kann vernachlässigt werden. Wenn sie verwendet wird, so gilt
’Arg’ als Scheinargument ohne Bedeutung. Beispiel:

Print RND(0)*10+3 I Liefert zufällige Realzahl

! im Bereich von 3 bis 13

—— Grafik | 225

9. Grafik

Die Grafikbefehle der GFA-BASIC sind zu großen Teilen noch
vom ATARI ST übernommen worden. Allerdings hat sich hier
gezeigt, daß doch ein Großteil zu sehr auf die speziellen Be-

 dürfnisse zugeschnitten war und so nicht übernommen werden

konnte.

Andererseits - und dies sei denjenigen zum Trost, die verlorenen
Befehlen hinterhertrauern - sind neue und weit mächtigere Be-
fehle hinzugekommen, da die Bereiche BOB (BlitterOBjects =
Grafikobjekte) und Screen beim ATARI niemandem bekannt
waren.

9.1 Grafikdefinitionen

BOUNDARY { BOU } P-Grafikumrandung an/aus

BOUNDARY Flag Version 3.0

Schaltet die Umrandung von P-Grafikobjekten (PBOX,
PCIRCLE, POLYFILL etc.) an (Flag = 1) oder aus (Flag = 0).

Beispiel: Diese Prozedur eignet sich zur Erzeugung der unter-
schiedlichsten geometrischen Figuren. Spielen Sie ein wenig mit
den Einstellungsparametern und den Punktangaben der POLY-
xxx-Befehle. Das Koordinatenfeld wurde vorsorglich auf maxi-
mal 60 Punkte dimensioniert, um Veränderungen der Schritt-
weite zulassen zu können. Ein rechtwinkliges Dreieck läßt sich
z.B. dadurch erzeugen, indem daß Sie die Schrittweite STEP von
120 auf 90 ändern. Ein exzentrisches Dreieck entsteht, wenn Sie
STEP kleiner 90 werden lassen. Ein gleichmäßiges Sechseck ent-

226 Das große GFA-BASIC-Buch ———

steht, indem Sie STEP 60 einstellen und gleichzeitig die
Punktangaben bei POLYLINE auf 7 sowie bei POLYFILL auf 6
Punkte ändern.

Marker einstellen

DEFILL grau

Einmal rundherum in 20-Grad-Steps
Rahmen aus

DEFMARK ,4
DEFFILL ‚2,4
FOR i%=0 TO 360 STEP 20

BOUNDARY 0

actri(1,120,110, 100, i%)

actri(2,120,110,60, 1%)

BOUNDARY 1 ! Rahmen an

actri(2,520,110,60, i%)

NEXT i%
t

PROCEDURE ctri(mod%,xp%, yp%,rd%,wi%) ! Fur Hires
' Produziert ein Dreieck, das in einem beliebigen Winkel

und mit beliebiger Größe dargestellt werden kann.

Mod% = Darstellungsmodus

1 = Nur Linie

2 = Gefüllte Dreiecksfläche

Möchten Sie nur die Eck-Koordinaten ermitteln, ohne daß
die Figur gezeichnet wird, so übergeben Sie Mod% = 0.

Die Eck-Koordinaten können Sie dann nach Rückkehr aus

Px%(0)/Py%(0) bis Px%(2)/Py%(2) auslesen.

Xp%/Yp% = Koordinaten des Mittelpunktes (Drehpunktes)
Rd% = Umkreisradius
Wi% = Neigungswinkel

LOCAL j%, 1%, yt% I Lokale Variablen
yt%=1 ! Y-Auflösungsteiler

ERASE px%() I POLY-X-Feld löschen

ERASE py%() ! POLY-Y-Feld löschen
DIM px%(4),py%(4) I POLY-Felder dimensionieren
FOR 1%=-wi% TO -wi%t360 STEP 120 ! Einmal rundum

Px%(J%A)=xp%+(SINCI%*P1/180)*rd%+0.5) I Koordinaten...
PYRCIRI=YPR+LCOSCHRFPL/TBO)"rÄR/yERtO. 5) ! „..berechnen
INC j% Ecken-Zähler +1

NEXT i%) Nachste Ecke
IF mod%=1 ! Nur Linie?

POLYLINE 4,px%(), py“) ! Dann POLYLINE

ENDIF

IF mod%=2 I Gefüllte Figur?

POLYFILL 3,px%(), py%() ! Dann POLYFILL
ENDIF

RETURN

— Grafik 227

COLOR {C} Linienfarbe bestimmen

COLOR Front, Back, OutLine

Bestimmt das Farb-Register, aus dem linien- und punktezeich-
nende Grafikobjekte (LINE, PLOT, DRAW, CIRCLE, BOX
etc.) ihre Farben beziehen. Dabei gibt Front die Farbnummer
an, mit der Linien gezeichnet werden, Back, mit welcher Farbe
der Hintergrund gezeichnet werden soll, und OutLine enthält die
Farbnummer, mit der Objekte, die ein Pam Anfang des Befehls
haben, umrandet werden.

Der Auswahlbereich für die Farbnummern hängt dabei ganz von
der Screen-Auflösung ab. Er kann maximal zwischen 0 und 63
liegen, wird aber bei höheren Auflösungen oder weniger Bit-
Planes heruntergesetzt.

Allgemein gilt:

1 BitPlane 2 Farben

2 BitPlanes 4 Farben

3 BitPlanes 8 Farben

4 BitPlanes 16 Farben

5 BitPlanes 32 Farben

6 BitPlanes 64 Farben

Allerdings gelten folgende Einschränkungen:

> Im Hires-Modus (also 640 x 256 Punkte) können maximal 4
BitPlanes, also 16 Farben angesprochen werden.

> Es ist nicht möglich, mehr als 5 BitPlanes ohne besondere

Tricks zu verwalten.

Daher fragt man sich, wozu die höheren Farbnummern von 32
bis 63 gebraucht werden. Diese werden für zwei besondere Gra-
fikmodi des Amiga benötigt. Und zwar ist dies einmal der EX-
TRA_HALFBRITE- und der HAM-Modus, zu denen Sie mehr
unter OPENS lesen können.

228 Das große GFA-BASIC-Buch ———

Auflösung BitPlanes Farben

Hires (640/256) 4 0... 16

Hires Lace (640/512) 4 0... 16

Lowres (320/256) 5 0... 31

Lowres Lace (320/512) 5 0..31

HAM (320/256) 6 0... 63 (aber 4096 wirklich)

HAM Lace (320/512) — 6 0... 63 (aber 4096 wirklich)

EHB (320/256) 6 0... 63 (32 mit 2

Helligkeiten)

EHB Lace (320/512) 6 0... 63 (32 mit 2

Helligkeiten)

Bei den Auflösungen gibt es Farben, die bei Systemstart vorein-
gestellt sind. Der Inhalt der Register kann mit dem Befehl
SETCOLOR bestimmt werden. Ein Beispiel finden Sie unter

SETCOLOR.

DEFFILL { DEFF } Füllmuster bestimmen

DEFFILL [Farbe], [Stil], [Muster]

DEFFILL [Farbe] ‚Muster$

Legt Füllfarbe, Füllstil und Füllmuster für P-Grafikbefehle und
FILL fest bzw. ermöglicht eigene Muster-Definitionen. Parame-
ter Farbe siehe unter COLOR.

Stil Muster

O = Hintergrundfarbe Entfällt

1 = Objektfarbe Entfällt

2 = Punktiert 2 bis 24

3 = Schraffiert 1 bis 12

4 = Selbstdefiniert Amiga- bzw. Benutzer-Muster

—— Grafik 229

Parameter, die unverändert bleiben sollen, können ausgelassen

werden (jedoch nicht die dazugehörigen Trennkommas). Mit der

Variante DEFFILL Farbe,Muster$ läßt sich ein eigenes Füll-
muster einrichten. Dazu ıst in Muster$ ein 16 (bzw. 32/64 siehe
unten) Words langer String zu übergeben. Dieser beinhaltet 16
Words (bzw. 32/64 siehe unten) im MKI$-Format, die der Reihe
nach die Bit-Muster der 16 Musterzeilen enthalten. Beispiel 1:

F .muster$=Mki$(&X1111111111111111)
F .muster$=F .muster$+Mki$(&X1000000000000000)

-muster$=F .muster$+Mki$(&X 10000001 10000000)

-muster$=F .muster$+Mki$(&X 1000001001000000)

-muster$=F .muster$+Mki$(&X1000010000100000)

-muster$=F .muster$+Mk1$(&X 1000 100000010000)

-muster$=F .muster$+Mki$(&X1001000110001000)

-muster$=F .muster$+Mki$(&X1010001111000100)

.muster$=F .muster$+Mki$(&X1001000110001000)

.muster$=F.muster$+Mki$(&X1000100000010000)

-muster$=F .muster$+Mk1$(&X 1000010000100000)

-muster$=F .muster$+Mk1$(&X 1000001001000000)

.muster$=F .muster$+Mki$(&X 10000001 10000000)

.muster$=F .muster$+Mki$(&X1011111111111110)

.muster$=F.muster$+Mki$(&X1001111111111000)

F .muster$=F .muster$+Mki$(&X 1000000000000000)

Deffill 1,F.muster$

Pbox 100,100,200,200

vn

n
a
n
n
y
n
n
n
n
n
n
n
n
n
7
n
n

Es kann für jede mögliche Bit-Plane jeweils ein 16 Word-Block

in Muster$ übergeben werden. D.h., in den Words 1 bis 16 steht
dann das Bit-Muster für die Plane 1, in den Words 17 bis 32 das

zusätzliche Bit-Muster für Plane 2, und in den Words 33 bis 48

steht das zusätzliche Bit-Muster für Plane 3 usw.

Beispiel 2:

GRAPHMODE 2

FOR i%=0 TO 7 1———,

DEFFILL i%,3,1% I Irgendein

PCIRCLE 16,16,16 ! Bit-Muster
I
|

DEFFILL i%+2,3, i%+2 erzeugen
PCIRCLE 48,16, 16 ;__

NEXT i%
adfill3(7,7,df$) | ! V3.0-Aufruf
DEFFILL 1,df$ I Neues Füllmuster..
PBOX 15,64,192,192 ! „..zeigen
GRAPHMODE 3 ! XOR-Modus

adfill3¢42,7,df$) ! V3.0-Aufruf

230 Das große GFA-BASIC-Buch ———

DEFFILL 1,df$! Neues Füllmuster..
PBOX 105,14,192,112 I Zeigen (mit Überlappung)
|

PROCEDURE dfill3(d.x%,d.y%, VAR d.ff$) I nur für V3.0

' Kopiert einen beliebigen 16*16-Bildschirmausschnitt im
DEFFILL-Format in eine String-Variable (Hires/Midres/Lowres) |

ı D.x% = Linke Quell-X-Koordinate
'D.y4 = Obere Quell-Y-Koordinate
' D.ff$ = VAR-String-Variable, welche nach Abschluß
a die Fullmusterdaten enthalt
LOCAL d.fr$,dc1%,dc2%,d.f$,xb% I Lokale Variablen
GET d.x%,d.y%,d.x%+15,d.y%+15,d.fr$ 1! Ausschnitt speichern
d. f$=RIGHTS(d. fr$, 32) I Muster übertragen

1 d.ff$=d.f$ Muster-Rückgabe

RETURN

DEFLINE { DE} Linien-Modi bestimmen

DEFLINE [Stil]

Mit diesem Befehl kann das bei linienzeichnenden Befehlen
(BOX, LINE, DRAW etc.) zu verwendende Linienmuster fest-
gelegt werden. ACHTUNG! Bei den Befehlen CIRCLE und EL-
LIPSE wird das hier definierte Linienmuster nicht verwendet.

Stil:

0 = Linie in Hintergrundfarbe

1 = Durchgezogene Linie

2 = Gestrichelte Linie 1

3 = Gepunktete Linie

4 = Punkt-Strich-Linie

5 = Gestrichelte Linie 2

6 = Strich-Punkt-Punkt-Linie __ |

-1 bis -32767 Benutzerstil

Der selbstdefinierte Linienstil setzt sich aus einem 15-Bit-Wert
zusammen, wobei jedes gesetzte Bit einem Punkt in der Linie
entspricht. Diese Zahl muß als Minuswert übergeben werden.
Die Linie setzt sich dann aus dem Vielfachen dieser 15 Bits zu-

—— Grafik 231

sammen. Die Stil-Veränderungen wirken sich nur bei Linien-

dicke 1 aus. Alle anderen Liniendicken werden als Voll-Linie
gezeichnet.

0 = Eckig

1 = Pfeilförmig

2 = Rund

Beispiel:

FOR i%=1 TO 6
DEFLINE i%
LINE 200,60+1%*16, 300, 60+1%*16
PRINT AT(40,8+i1%*2) 3 1%

NEXT i%
DEFLINE -18149 I -18149 = -&X100011011100101
FOR i%=1 TO 90 STEP 4

BOX 10+1%, 10+1%, 190- 1%, 190- i%
NEXT i%

DEFMOUSE { DEFM } Mausform bestimmen

DEFMOUSE Form

DEFMOUSE Maus$

Aufruf von selbstdefinierten oder systemeigenen Mausformen.
Dieser Mauszeiger kann genau wie bei der allgemeinen Pro-
grammierung fiir jedes Window separat eingestellt werden. Da-
durch kann der Benutzer genau erkennen, welches Window ge-
rade aktiv ist. Wenn z.B. im Eingabewindow der Mauszeiger die
Gestalt eines Pfeils und im Status Window die einer Sanduhr hat,

weiß man, daß die Eingabe zwar möglich ist, der Statusbericht
aber noch abgewartet werden muß.

Form (vordefiniert):

O = Pfeil 1 = X-Klammer (Text-Cursor)

2 = Sanduhr 3 = Zeigende Hand

4 = Offene Hand 5 = Fadenkreuz fein

6 = Fadenkreuz grob 7 = Fadenkreuz umrandet

232 Das große GFA-BASIC-Buch ————

Statt durch Form kann durch Maus$ eine String-Variable ange-
geben werden, deren Inhalt im MKI$-Format die Mausform de-
finiert.

Word 1

X-Koordinate des Aktionspunktes.

Word 2

Y-Koordinate des Aktionspunktes. Auf den Aktionspunkt wer-
den anschlieBend alle Mausaktionen (z.B. Mousex, Mousey) be-

zogen.

Word 3

Immer MKI$(1).

Word 4

Maskenfarbe (Hintergrund des Mausbildes):

weiß = MKI$(0)/schwarz = MKI$(1)

Word 5

Cursor-Farbe (Mausbild).

Word 6 bis 21

16-Bit-Musterzeilen der Mausmaske.

Word 22 bis 37

16-Bit-Musterzeilen des Mausbildes.

Die Definition einer Mausform ist beim Amiga vierfarbig mög-

lich.

— Grafik 233

Beispiel:

OPENW 0 ' Ausgabe-Window öffnen

PAUSE 20 ' Zeit zum Anklicken geben

FOR i=0 TO 8

DEFMOUSE i ' neues Maus-Image definieren

PAUSE 40 ' Zeit zur Anzeige geben

NEXT i

GRAPHMODE {GR} Grafikmodus bestimmen

GRAPHMODE Modus

Modus bestimmt den Operationsmodus, mit welchem Grafikaus-

gaben in den bestehenden Hintergrund eingesetzt werden.

0 = JAM1 (transparent)

Das verwendete Grafik-Element (PBOX, LINE etc) wird voll-
ständig gezeichnet. Allerdings beschränkt sich die Textausgabe
auf die Linien, die zur Darstellung benötigt werden. Der Raum
um den Text wird nicht verändert. |

Neuer Punkt = Farbmaske des neuen Punktes OR neuer Punkt

1 = JAM2 (replace)

Das verwendete Grafik-Element (PBOX, LINE etc.) wird voll-
flächig dargestellt. Alles, was sich darunter befindet, wird davon
überdeckt und ersetzt. Bei der Textausgabe wird auch der Hin-
tergrund, auf den man den Text schreibt, mit der Hintergrund-

farbe überschrieben.

Neuer Punkt = Farbmaske des neuen Punktes AND neuer Punkt

2 = COMPLEMENT (invertiert)
Es werden alle Bildpunkte gesetzt, die vorher nicht gesetzt wa-
ren und umgekehrt. Dies geschieht aber nur an den Stellen, an

234 Das große GFA-BASIC-Buch ———-

denen auch eine Grafik ausgegeben wird. COMPLEMENT ar-
beitet in der Beziehung wie auch JAMI.

4 = INVERSEVID (invertiert)
Bei diesem Ausgabemodus wird z.B. der auszugebende Text in-
vertiert dargestellt. Das heißt, dort, wo Text stehen soll, wird

der Grafikbildschirm gelöscht. Und dort, wo im Normalfall

Hintergrund erscheint, ist jetzt Dunkelheit (der Amiga setzt dort
die Punkte).

Alle diese Zeichenmodi lassen sich untereinander verknüpfen!

Sie können durch Addieren der Kennzahlen zweier Zeichenmodi

einen neuen kreieren. Allerdings gibt es natürlich auch hier
Grenzen. Deshalb wurde z.B. JAMI mit der Null belegt. Sie
können, so oft Sie wollen, eine Null zu einem anderen Zeichen-

modus addieren, und es wird sich nichts ändern. Andererseits

sind Kombinationen wie JAM2 und COMPLEMENT durchaus
anwendbar und erzeugen interessante Effekte.

Die vier Grund-Modi zeigt die folgende Grafik:

Beispiel:

DEFFILL ‚2,5
PBOX 10,10,200,90
BOX 8,8,202,124
TEXT 36,118,"GRAPHMOD E"
DEFFILL ,2,4
FOR i%=1 TO 4

GRAPHMODE 27(i%-2)
PBOX 1%*50-35, 22, i1%*50-20, 160
GRAPHMODE 0
TEXT 1%*50-18, 158, INT(27(i%-2))

NEXT i%

— Grafik 235

SETCOLOR {SET } Hardware-Farbregister einstellen

SETCOLOR Reg,Rot,Grün,Blau

SETCOLOR Reg,Mischwert

Die Farbe des mit Reg angegebenen Farbregisters der aktiven
Screen kann entweder durch die Farbanteile Rot, Grün und Blau

(jeweils O bis 15) oder durch einen Mischwert (0 bis 4095) defi-
niert werden.

Mischwert = (Rotanteil*256)+(Grünanteil*16)+Blauanteil

Bei verschiedenen Gelegenheiten ist es von Nutzen, die Regi-
stereinträge nicht mit drei unabhängigen Parametern vorzu-
nehmen, sondern einen Gesamt-Mischungswert zu übergeben.

GFA-BASIC unterscheidet, ob ein oder mehrere Farbparameter

übergeben wurden. Wird nur der Parameter Mischwert über-

geben, setzt sich die Farbmischung nach folgendem Muster zu-
sammen:

Soll z.B. ein Blauanteil von 3, ein Rotanteil von 2 und ein

Grünanteil von 5 übergeben werden, errechnet sich der Wert,
indem man den Rotanteil mit 256 (2”8) multipliziert, den
Grünanteil mit 16 (2*4) und den Blauanteil mit 1 (2*0). In die-
sem Beispiel müßte der Wert 595 übergeben werden, um die ge-

wünschte Farbmischung zu erhalten.

Durch die Möglichkeit, mit Hexadezimalzahlen zu arbeiten, kann
man diese Berechnung folgendermaßen vereinfachen:

SETCOLOR 1,&H253 —.
oder

A=8H253 entspricht
SETCOLOR 1,A — Setcolor 1,2,5,3

oder |
A$="KHr+H2uzusnzızu

A=VAL(A$)

SETCOLOR 1,A —

236 Das große GFA-BASIC-Buch ———

So lassen sich 4096 verschiedene Farben (3 Grund-Farben mit je

16 Abstufungen = 16*16*16 = 4096 Farben) erzeugen.

Die Bits 0 - 7 von Mischwert bestimmen dabei den Rotanteil,

die Bits 8 - 15 den Grünanteil und die Bits 16 - 23 den Blau-

anteıl der Farbe.

Bei Verwendung der Standard-Ausgabe auf der Workbench mit
dem GFA-Ausgabe-Fenster haben die vier Farbregister eine
festgelegte Zuordnung:

Register0 = Hintergrund-Farbe (Blau)

Register 1 = PRINT-Ausgabetext-Farbe (Weiß)

Register 2 = Block-Farbe (Schwarz)
Register 3 = Signal-Farbe für Warnungen (Rot)

Leider ist der Goethesche Farbkreis hier nicht anwendbar, da

hier nicht die drei Elementarfarben Rot, Blau und Gelb ge-

mischt werden. Um sich bei der Farbwahl zu orientieren, müßte

aus Grün die Farbe Blau subtrahiert werden, um Gelb zu erhal-

ten. Trotzdem kann man sich seiner als allgemeine Richtlinie
bedienen:

ROT |
VIOLETT ORANGE

WEISS
BLAU GELB

GRÜN

Zur Farbphysik:

Es existieren drei Elementarfarben : ROT, BLAU, GELB.

Die 1:1-Mischung zweier dieser Farben ergibt die Komplemen-
tärfarbe (Gegenfarbe) der nicht-beteiligten dritten Farbe.

1:1 Mischung von ROT und BLAU ergibt VIOLETT (=
Komplement zu GELB).

1:1 Mischung von ROT und GELB ergibt ORANGE (=
Komplement zu BLAU).

—— Grafik 237

1:1 Mischung von BLAU und GELB ergibt GRÜN (= Kom-
plement zu ROT).

1:1:1 Mischung von ROT, BLAU und GELB ergibt WEISS.

Ist keine der Elementarfarben beteiligt, ergibt sich die "Nicht-
farbe" SCHWARZ. Beispiel:

DIM c%(15) ! DIM Farb-Speicher
SETCOLOR 0,0 ı Hintergrund schwarz
FOR i%=1 TO 15 i 15 Register (außer 0) >—————

IF i%<8 I 7 Werte von weiß zu grün

CHC i%)=1%*16 ı Grünanteil erhöhen

ELSE I 8 Werte von gelb zu rot

c% i%)=7*256+(15-1%)*16 ! Grünanteil vermindern

ENDIF

SETCOLOR 1%,C c%(1%) I Farbe setzen
NEXT 1% ! Nächstes Register <

FOR j%=0 TO 4 I 5 mal >

RESTORE ! Data-Zeiger setzen

FOR i%=1 TO 15 ı 15 Farben >

READ 3% I COLOR-Register holen

COLOR a% ! BOX- und CIRCLE-Farbe setzen

BOX 200+j%*20+1%,20+j%*20+1%,400- j%*20- 1%,220- j%*20- 1
CIRCLE 300,120, j%*15+1%*10
CIRCLE 300, 120, j%*15+1%*10+5

x

NEXT i% ı Nächste Farbe < '

NEXT j% ı Nächster Offset < '

DO ! Endlos-Schleife >

b%=c%(15) I--,
FOR i%=14 DOWNTO 1

> e%l i%r1)=c%(i%) - Farben rotieren
NEXT i%
c% 1)=b% i--!
FOR i%=1 TO 15 ı 15 Register >

FOR j%=1 TO 100 ! Kleine..

NEXT j% ! ‚Pause.

SETCOLOR i%,c%l i%) |! Neue Farbe setzen

NEXT 1% ! Nächstes Register <————'!

LOOP I<
DATA 2,3,6,4,7,5,8,9,10,11,14,12,15,13,1, Umrechnungstabel le

Dieses Beispiel produziert eine Farbspielerei, die für

Interessierte leicht zur Meditationshilfe (für gestreBte
Programmierer) oder zur Bio-Feedback-Methode
"zweckentfremdet" werden kann. Die Farben pulsieren mit einer

Frequenz von ca. 58 Zyklen pro Minute (ca. optimale
Pulsfrequenz bei Entspannung). Die Frequenz läßt sich leicht mit
der Pausen-Schleife im letzten Block verändern.

238 Das große GFA-BASIC-Buch ————

9.2 Objektgrafikbefehle

BOX, PBOX { BO, PB } Rechteck zeichnen

[P]BOX X_links,Y_oben,X_rechts, Y_unten

X_links/Y_oben und X_rechts/Y_unten bezeichnen die diago-
nal gegenüberliegenden Ecken eines Rechtecks, das entweder als
Linienzug (BOX) oder mit dem aktuellen DEFFILL-Füllmuster
(PBOX) gezeichnet wird.

Beispiel: Wenn es darum geht, ein größeres Raster mit PBOX zu

füllen (z.B. in einer Lupe), sollte man - wenn irgend möglich -
versuchen, die PBOX durch eine PUT-Fläche zu ersetzen. Das

geht erheblich schneller. Bei kleinen Rastern fällt der Geschwin-
digkeitsunterschied nicht besonders auf, bei größeren Rastern ist
es dagegen schon ein merklicher Unterschied, ob das Raster in 2
oder in 4 Sekunden gefüllt wird. Um das zu demonstrieren, folgt
eine kleine Routine, die es ermöglicht, einen beliebigen

Bildausschnitt zu vergrößern und/oder ıhn für eine spätere Ver-

wendung (raster-indiziert) in einem Feld zwischenzuspeichern.

Hier ist eine kleine Bedienungsanleitung nötig. Sie können den
Bildbereich, in dem der vergrößerte Ausschnitt dargestellt wer-
den soll, beliebig bestimmen. Außerdem kann die Rastergröße
und die Breite und Höhe eines vergrößerten Rasterpunktes ange-

geben werden. Es ist ungünstig, wenn sich der Wiedergabe-
Ausschnitt mit dem zu vergrößernden Ausschnitt überschneidet.
Der Wiedergabe-Ausschnitt wird - sollten seine Eck-Koordina-

ten außerhalb des Bildschirms liegen - von der Routine auf den
sichtbaren Bildschirm begrenzt.

Ist die Routine aufgerufen, so wird gef. der vergrößerte Aus-
schnitt gezeichnet und die Routine wartet dann darauf, daß mit

der rechten Maustaste der Lupeninhalt verändert wird. Verlassen
wird die Lupe zu jedem beliebigen Zeitpunkt mit Druck auf die
rechte Maustaste. Daran anschließend wird der Lupenhinter-

grund selbständig restauriert.

— Grafik 239

Der Lupeninhalt wird verändert, indem mit der linken Maustaste

der gewünschte Lupenpunkt angeklickt wird. Der Punkt ver-
ändert seine Farbe. Diese Farbe behält er auch bei Mausbewe-
gungen solange bei, bis die Maustaste wieder losgelassen wird.
Bei jedem Mausklick auf einen Lupenpunkt wird sein Farbindex
um 1 vermindert. Klicken Sie also auf der Workbench viermal
auf denselben Punkt, nimmt er nacheinander alle 4 möglichen
Farben an. Es ist deshalb ratsam, bei einem Punkt-Klick die
Maustaste gedrückt zu halten, um zu sehen, welche Farbe sich

ergibt. Solange Sie die Taste gedrückt halten, können Sie mit
dieser Farbe innerhalb der Lupe zeichnen. Wird die Taste losge-
lassen, wird der Farbindex, auf dem sich die Maus zum Zeit-

punkt des Klicks befindet um | vermindert. Haben Sie als Flag

l angegeben, wird gleichzeitig auch der originale Bildschirmbe-
reich entsprechend der Lupenänderung verändert. Nach Rück-

kehr aus der Prozedur ist der aktuelle Lupeninhalt in dem Feld

Larr%(Rasterbreite,Rasterhöhe) gespeichert und kann damit auch
außerhalb der Prozedur verwendet werden.

Soll die Lupe nicht dargestellt werden, geben Sie als Flag 2 an.
In diesem Fall wird nur das Feld Larr%() mit dem angegebenen
Bildausschnitt gefüllt. Der Feldindex entspricht der Lage der
Punkte im Raster. Die Indizierung beginnt mit Null. Z.B.

Larr%(0,0) enthält den Farbwert des 1. Punktes links oben in der

Ausschnittecke und z.B. Larr%(12,6) den Farbwert des Raster-
punktes mit den Rasterkoordinaten 13. Punkt von lınks/7. Punkt

von oben. Grundsätzlich ist zu bedenken, daß das Feld - ab-

hängig von der Rastergröße - eine ganze Menge Speicherplatz

verbrauchen kann. Ein Raster von z.B. 50*50 Punkten benötigt
(50*50*4) 10000 Bytes.

Weitere Informationen finden Sie unten in der Beschreibung der
Prozedur.

' Vorbereitung für beide Anwendungsbeispiele |
I

FOR i%=0 TO 100 ı 100 mal
DEFFILL RANDOM(MAX(1, (2° (2-2)) 2-1))+1,2,RANDOM(22)

X%=RANDOM(590) ı PBOX mit zufälliger...

y%=RANDOM(200) I ...Farbe, Muster und...
PBOX x%,y%,xX%+50,y%+50 1 „..Position zetchnen

240 Das große GFA-BASIC-Buch

NEXT i%
‘

' Anwendungsbeispiel 1:
a

PRINT "Lupe mit rechter Maustaste aufrufen"
DO ! Endlos-Schleife

GRAPHMODE 3 I XOR-Modus für Flimmerbox

MOUSE xx%, yy%,k% I Maus-Status holen
Xx4=MAX (30, Xx%) I Box-X-Position begrenzen
yy%=MAX(30,yy%) ! Box-Y-Position begrenzen
BOX xx%-1,yy%-1,xx%+20,yy%+20 ! Flimmerbox...
BOX xx%-1,yy%-1,xx%+20,yy%+20 ! „..zeichnen
IF MOUSEK=2 I Rechte Maustaste gedrückt?

GRAPHMODE 1 I REPLACE-Modus an

Lupe(xx%-20*6,yy%-20*6,20,20,6,6,1) ! Aufruf
ENDIF

LOOP
ı

' Anwendungsbeispiel 2 (vorher Beispiel 1 löschen):
I

PRINT "Maushintergrund (20*20) in Feld Larr%C) einlesen."
PRINT "beliebige Maustaste drucken"

REPEAT ! Auf...
UNTIL MOUSEK I Mausklick warten
alupe(MOUSEX-20*6,MOUSEY-20*6, 20, 20,6,6,2) ! Lupe aufrufen
CLS Bildschirm Löschen

FOR i%=0 TO 20-1 Ä 20 Zeilen

FOR j%=0 TO 20-1 ! 20 Spalten
COLOR larr%(i%,j%) I Punktfarbe setzen
PLOT 100+1%, 100+ 5% I Punkt zeichnen

NEXT j%

NEXT i%

PROCEDURE Lupe(xp%, yp%, br%,ho%, sx%, sy%, flg%)

Für Hires/Midres/Lowres

Xp% = X-Koordinate der Lupenbox
Yp% = Y-Koordinate der Lupenbox
Br% = Breite des zu vergrößernden Rasters

Ho% = Höhe des zu vergrößernden Rasters

Sx% = Breite eines Lupen-Rasterpunktes
Sy% = Höhe eines Lupen-Rasterpunktes

LY

i]

Q

t

8

|

ı Flg%= Flag |

' O = Lupe wird gezeichnet und kann verändert
' werden. Der Original-Ausschnitt bleibt

i dabei unverändert.
' Lupe wird gezeichnet und kann verändert |

werden. Der Original-Ausschnitt wird
' entsprechend der Lupenänderungen ebenfalls
‘ verandert.
i]

U

L)

L]

PN
 u

2 = Es wird nur das Rasterfeld mit den Punktfarben

des Original-Rasters gefüllt. Die Lupe wird

nicht gezeichnet.

Das Rasterfeld Larr%() wird auch bei Modus 0 und 1 gefüllt

Grafik 241

und kann nach Rückkehr aus der Routine ausgewertet werden.
A

LOCAL i%, j%, \b$,mx%,my4,mk%, xp2%, yp2%, pkt%

LOCAL pnt%,mxx%, myy%, pxr%, pyr%

SXZ=MIN(SX4%, 16) i Max. Punktbreite = 16
xp%=MIN(639,MAX(xp%- 10,0)) I Koordinaten der...
yp%=MIN(255 ,MAX(yp%-10,0)) i „..Wiedergabe-Box...
xp2%=MIN(639 ,MAX(xp%+br%*sx%+9,0)) ! ...auf Bildschirm...
yp2%=MIN(255 ‚,MAX(yp%+ho%*sy%+9,0)) ! ...begrenzen
GET xp%, yp%, xp2%, yp2%, lb$ I Hintergrund sichern

ERASE larr%() I Rasterfeld löschen
DIM bI$C(2°(2-2))”2),larr%(br%,ho%) ! DIM PUT- .

! und Rasterfeld

IF flg%<>2 I Lupe zeichnen?
FOR 1%=0 TO (2°(2-2))’2 ! Alle möglichen Farben

DEFFILL i%,2,8 ! Füllmusterfarbe setzen
pxr%=xp%+4+MINCbr%*sx%, 18) I Breite u. Höhe der...
pyr%=yp%+4+MINCho%*sy%, 18) I ...PBOX ermitteln
PBOX xp%t4, yp%+4 , pxr%, pyr% I PBOX vollfarbig zeichnen
GET xp%+5 , yp%+5 ,xp%+5+15, yp%+5+15,b1$(i%) ! PUT-Box.

I „.speichern (PBOX- Ersatz)
HIDSCDISCIX)1.,49-MKISCHAXCI , 82% 1))+MKIS(MAX(1,Sy4-1))

' PUT-Header an gewünschte Punktgröße anpassen
NEXT 1%
DEFFILL 0,0,0 I DEFFILL weiß
COLOR 1 ! COLOR für Rahmenbox
PBOX xp%, yp%,xp2%,yp2% I Lupenhintergrund löschen
BOX xp%, yp%, Xp2%, yp2% I Lupenrahmen zeichnen
BOX xp%t4, yp%+4 ,xp2%-4,yp2%-4 1! Lupenrahmen zeichnen

ENDIF

MOUSE mx%,my% ,mk%

FOR i%=0 TO br%-1 Raster-X-Index
FOR j%=0 TO ho%-1 I Raster-Y-Index

! Aktuelle Mauskoordinate
i
N

pnt%=POINT (mx%+i%,my%+]%) I Punktfarbe ermitteln
N
i

IF pnt% I Punkt gesetzt?

larr%(i%, J%)=pnt% I Punktfarbe in Feld schreiben
IF flg%<>2 I Lupe soll gezeichnet werden?

PUT xp%t5+1%*sx%, yp%+5+j%*sy%,bl$(pnt%) ! Lupenpunkt...
ENDIF I „..zeichnen

ENDIF
NEXT j%

NEXT i%

IF flg%<>2 ! Lupe ist gezeichnet?

REPEAT I Lupen-Schleife
MOUSE mxx%,myy%,mk% I Maus-Status holen
REPEAT I warten...

UNTIL MOUSEX<>mxx% OR MOUSEY<>myy% OR MOUSEK

' . I ...auf Mausaktion

IF mxx%>xp%+5 AND mxx%<xp%+4+br%*sx% 1 X-Maus in der Lupe?
IF myy%>yp%+5 AND myy%<yp%+4+h0o%*sy% ! Y-Maus in der Lupe?

mxx%= INT C(mxx%- (xp%+5))/sx%) ! Koordinaten auf...
myy4=INTC Cmyy%- Cyp4%+5))/sy%) ! ...Rasterindex umrechnen

IF mk%=1 I Linke Maustaste gedrückt?

242 Das große GFA-BASIC-Buch ~————

IF flg%=1 I Originalpunkt ändern?
PLOT mx%tmxx% , my%tmyy% ! Dann Punkt setzen

ENDIF

Larr%lmxx%,myy%)=pkt% 1! Rasterfeld aktualisieren
PUT xpht5+mxx%“*sx%, yp%+5+tmyy%*sy%,bl$(pkt%)

I Lupenpunkt setzen
ELSE I Linke Maustaste ist aus!

PktER=POINT (XPS S+MxxA" sx’, yprstmyyAtsy%)- 1
! Punktfarbe um 1 vermindern

IF pkt%<@ ! Farbindex < Q?
pkt%=MAX(1,(2°(2-2))°2-1) ! Index auf Maximum

ENDIF
COLOR pkt% ! Originalpunktfarbe setzen

ENDIF
ENDIF

ENDIF
UNTIL mk%=2 I Rechte Maustaste gedrückt?

PAUSE 5 I Kleine Klick-Pause
ENDIF
ERASE bl$() I PUT-Box-Feld löschen

PUT xp%, yp%, lb$! Hintergrund restaurieren

RETURN

CIRCLE, PCIRCLE { Cl, PC } Kreis(bogen); zeichnen |

[PJCIRCLE X_ cent, Y_cent, Radius

"X _cent/Y __cent" bestimmen den Kreismittelpunkt. "Radius" ist
der halbe Kreisdurchmesser.

CIRCLE zeichnet einen Kreis um den Mittelpunkt X_-cent,
Y cent mit dem angegebenen Radius. Dieser darf momentan

nur Werte bis zu 511 annehmen, weil der Blitter nicht in der

Lage ist, größere Grafikflächen zu bearbeiten.

— Grafik 243

ELLIPSE, PELLIPSE { ELL, PE } Ellipse(nbogen) zeichnen

[PJELLIPSE Xcent,Ycent,Xrad, Yrad

"Xrad" ist der Ellipsenradius in X-Richtung und "Yrad" der in
Y-Richtung. "Xcent/Ycent" legt den Ellipsenmittelpunkt fest.

FILL { Fi} Flächen mit Muster füllen

FILL Xpos,Ypos [,Farbe]

"Xpos/Ypos" gibt die Lage des Bildschirmpunktes an, von dem

aus sich der Füllvorgang ausbreitet, bis er an geschlossene
Grenzen stößt, also an Punkte mit einer anderen Farbe als der

Punkt (Xpos, Ypos).

FILL ist ggf. mit Vorsicht zu genießen. Dies hat zwei Gründe.
Der eine ist, daß das ausbreitende Füllmuster die kleinsten (1
Pıxel) Schlupfwinkel entdeckt, durch die es sich weiter aus-

breiten kann. Das führt manchmal dazu, daß Bereiche, die nicht

gefüllt werden sollen, durch den FILL-Befehl zunichte gemacht

werden und es dann oft unmöglich ist, diesen Bereich wieder
vom unerwünschten Füllmuster zu säubern.

Auf der anderen Seite ist die Füll-Funktion besonders schnell,

weil sie vom Blitter unterstützt wird, der in Windeseile Bereiche

von bis zu 1024 x 1024 Punkten innerhalb nur’ einer Sekunde

beschreiben kann. Diese Geschwindigkeit kann nur dadurch ge-
bremst werden, daß Sie ein so kompliziertes Füll-Muster ver-

wenden, daß der Amiga erst einmal ein bißchen rechnen muß.

In Version V3.0 kann der Füllvorgang durch die GFA-Break- —
Funktion abgebrochen werden. Die oben beschriebenen V2.xx-
Probleme lassen sich also - Ostrowski macht es möglich - durch
die Tastenkombination <Control><Shift><Alternate> weitest-

244 Das große GFA-BASIC-Buch ————

gehend unterbinden. Die Abbruch-Tasten müssen dabei gedrückt

gehalten werden, da intern erst die aktuelle Füll-Sequenz be-

endet wird. |

In Version V3.0, die uns für den Amiga vorliegt, kann optional

mit dem Parameter "Farbe" ein Farbwert angegeben werden. Es
wird dann nur diese Farbe als Füllbegrenzung gewertet. Alle
anderen Punkte werden gefüllt. Liegt z.B. der Bildpunkt
Xpos/Ypos auf einer Linie, wird der Füllvorgang nur auf dieser
Linie durchgeführt.

Bei eingeschaltetem Clipping (siehe CLIP) wird generell nur bis
an die Grenzen des CLIP-Ausschnitts gefüllt. Beispiel (nur

Lowres):

OPENS 2,0,0,320,256,3,0
OPENW 2,0,0,320,256,0,15,2
DEFFILL 7,2,6
PBOX 10,10,310
DEFFILL 11,2,8
PBOX 90,40,180,90
FOR i%=1 TO 15

DEFFILL i%,2,8
PCIRCLE RANDOM(80)+85, RANDOM(50)+45, 10

NEXT i%
DEFFILL 4,2,8
FILL 176,44,7
CLOSEW 2
CLOSES 2

‚190

POLYFILL { POLYF } Polygon zeichnen, gefüllt

POLYFILL Pkte,Xp(),Yp() [OFFSET Xdiff,Ydiff]

Es gelten die gleichen Ausführungen wie zu POLYLINE, nur
daß zusätzlich die zwischen den einzelnen Linien liegenden

Flächen mit dem eingestellten Füllmuster ausgefüllt werden.

Ein Beispiel finden Sie unter POLYLINE.

———- Grafik 245

TEXT { T } Text im Grafikmodus ausgeben

TEXT Xt, Yt, "Text"

"Text" kann sowohl direkt als Text, als String-Variable oder als
zusammengesetzter Textausdruck (A$+Str$("1")) angegeben wer-

den. "Xt,Yt" steht für den Bildschirmpunkt, an den der Text

linksbiindig angelegt wird. Die Ausgaben beschränken sich auf
den Bildschirm.

Der zur Ausrichtung des Textes ausschlaggebende Punkt ist im-
mer der, der bei normaler Lage des Textes (waagerecht von links
nach rechts) in der Zeichenbox des ersten Zeichens (auch bei

Leerzeichen) links unten liegt. Mit diesem Punkt wird der Text
generell an die angegebene X/Y-Position angelegt. Beispiel:

DEFFILL ‚2,1
PBOX 20,5,300, 120
DEFTEXT 1,16,0,16
FOR i%=1 TO 4

GRAPHMODE i%
tx$="TEXT (normal) GRAPHMODE "+STR$CI%)
TEXT 50, 15+1%*20, tx$

NEXT i%

| |
| SCROLL { SC } BitMap-Bereich verschieben

SCROLL Dx,Dy,X1,Y1,X2,Y2

Mit Hilfe dieses Kommandos kann der Bildschirmbereich, der

durch die Koordinatenpaare X1,Yl und X2,Y2 beschrieben

wird, verschoben werden. Die Verschiebe-Richtung und -Breite

beschreiben die einleitenden Werte für X und Y getrennt.

Setz man für Dx oder Dy positive Werte, so bedeutet dies eine
Verschiebung nach links bzw. nach unten. Umgekehrt verfahren
die negativen Werte.

246 Das große GFA-BASIC-Buch ————

' Demonstration des Scroll-Befehls
a

' Das große GFA-BASIC Buch
|

i] (p) by Wolf-Gideon Bleek im August 1989
' (c) by DATA BECKER GmbH 1989
I

COLOR 1
FOR i=1 TO 200

DRAW TO RANDOM(640),RANDOM(256)
NEXT i
FOR i=1 TO 600

dx=RANDOM(11)-5

dy=RANDOM(5)-2
x1=RANDOM(320)
x2=RANDOM(320)+320
y1=RANDOM(128)
y2=RANDOM(128)+128
SCROLL dx,dy,x1,y1,x2,y2

NEXT 1

Dieses Programm demonstriert nicht nur die Geschwindigkeit

des Amiga beim Linienzeichen, sondern zeigt auch, welche wun-
derbaren Effekte sich mit einer recht einfachen Befehlskon-

struktion erziehlen lassen. Bitte beachten Sie, daß die an den

Seiten des verschobenen Bereichs herausgeschobenen Pixel nicht

gespeichert werden. Nachgeschoben wird auf der gegenüberlie-

genden Seite immer die Hintergrundfarbe.

9.3 Strich-/Punktgrafik

DRAW { DR } Punkte zeichnen und verbinden

DRAW TO Xpos,Ypos

DRAW X1,Y1 [TO X2°,Y2 [TO X3,Y3...]]

Die erste Syntax-Variante verbindet den durch Xpos/Ypos be-

zeichneten Punkt mit dem zuletzt durch DRAW, PLOT oder

LINE gezeichneten Grafik-Punkt. Die zweite Variante zeichnet
einen beliebig langen Linienzug durch die angegebene Punkte-

— Grafik 247

Kette. Wird die optionale Punkte-Kette weggelassen (DRAW
X1,Y1), dann wird an der angegebenen Position ein einzelner
Punkt gesetzt (vgl. PLOT).

Beispiel: Damit Sie sich nicht soviel Arbeit machen müssen, die

einzelnen Punktkoordinaten einer Kette einzutippen, folgt nun

ein kleines Hilfsprogramm. Wenn Sie es gestartet haben, können
Sie mit einem Druck auf die linke Maustaste einzelne Punkte

zeichnen. Es sind zwei Arrays dimensioniert, die die jeweilige
X- und Y-Koordinate des gerade gezeichneten Punktes fest-
halten. Jedes dieser beiden Arrays hat 1000 Elemente, d.h. daß

Sie maximal 1000 Punkte zeichnen können. Wenn Sie diese

Punkteanzahl erreicht haben oder die rechte Maustaste drücken,

werden die beiden Arrays in Form von DATA-Zeilen unter dem
Namen DRAW.LST auf der RAM-Disk abgespeichert.

Anschließend wird das erste Programm beendet. Laden Sie nun

mit Merge die geschriebene DATA-Datei in den Arbeitsspeicher
und starten Sıe das zweite Programm. Sie werden sehen, daß
Ihre Zeichnung nun anhand der DATA-Zeilen und des DRAW-
Befehls neu auf den Bildschirm gebracht wird.

Programm 1:

DIM px(1000),py(1000) ! DIM Punkte-Speicher
DO ! Eingabe-Schleife

I
i

MOUSE x,y,k I Maus-Status holen

IF k=1 I Linke Maustaste gedrückt?

PAUSE 1 I Kleine Klickpause
DRAW x,y I Punkt zeichnen

INC count ! Punktezähler +1
px (count)=x I X-Koordinate speichern
py(count)=y I Y-Koordinate speichern

ENDIF

EXIT IF k=2 OR count=1000 ! 1000 Punkte erreicht oder...

LOOP I „..rechte Maustaste gedrückt?

OPEN "O" #1,"RAM:DRAW.LST" ! Datei öffnen

PRINT #1;"D.rawkoos:";CHR$(13) ! DATA-Label schreiben

FOR j=1 TO 100 I 100 DATA-Zeilen

PRINT #1;"D "; I DATA schreiben

FOR i=1 TO 10 ! 10 Koordinatenpaare je Zeile
INC ci I Indexzähler +1
PRINT #1;STRS(px(ci)):","sSTR$(py(ci)); ! X/Y schreiben
EXIT IF ci=>count I Abbruch, wenn Anzahl < 1000
IF 1<10 I Zeilenende noch nicht erreicht?

248 Das große GFA-BASIC-Buch ———

PRINT #1;","; ! Dann Komma schreiben

ENDIF

NEXT 1 Nächstes Koordinatenpaar
PRINT #1;CHR$(13)
EXIT IF ci=>count

CR-Zeilenende schreiben

Abbruch, wenn Anzahl < 1000
NEXT j Nächste DATA-Zeile

PRINT #1;"D ";STR$C1111) DATA-Endmarke schreiben
CLOSE #1 Datei schließen

EDIT Programmende

Programm 2:

DIM px(1000),py(1000) I DIM Punkte-Speicher
RESTORE d.rawkoos I DATA-Zeiger setzen |

READ px(1),py(1) I 1. Koordinatenpaar lesen
PLOT px(1),py(1) I und zeichnen
FOR i=2 TO 1000 I Restliche Koordinaten

READ px(i),py(i) I Lesen
' Pbox Px(I),Py(CI),Px(CI)+10,Py(I)+10
ı Ersetzen Sie die Zeile mit dem Draw-Befehl durch diese
ı Pbox-Zeile, und schon haben Sie einen neuen Effekt.
DRAW TO px(i),pyCi) I Und zeichnen
EXIT IF px(i)=1111 I Abbruch, wenn Ende erreicht

NEXT 1 ! Nächstes Paar

DRAW $ { DR } Plotter-(Turtle-)Grafik
|

DRAW Def$(,Const(,"Def"[,Var{,...]]1]] Version 3.0

Erlaubt eine Plotter-Simulation auf dem Bildschirm (LOGO-

Turtle-Grafik). In Def$/"Def"” können wahlweise als alpha-
numerischer Ausdruck, als String-Variable oder Textkonstante

Turtle-Kommandos angegeben werden. Als Kommandos sind

folgende Kürzel vorgesehen:

fdn (forward) Bewege Stift n Pixel vorwärts.

bkn (backward) Bewege Stift n Pixel rückwärts.

sx n Skalierung aller bei fd und bk angegeben Werte in X-
Richtung mit dem Wert n.

syn Skalierung aller bei fd und bk angegeben Werte in Y-
Richtung mit dem Wert n.

— Grafik 249

Sx 0 X-Skalierung ausschalten.

sy 0 Y-Skalierung ausschalten.

tn (left turn) Drehe Stift um n Grad nach links.

rtn (right turn) Drehe Stift um n Grad nach rechts.

ttn (turn to) Setze Stift absolut in Richtung n Grad
(Gradeinteilung siehe SETDRAW).

max,y (move absolute) Bewege Stift (pu) auf absolute Position
x/y (siehe auch SETDRAW).

dax,y (draw absolute) Bewege Stift (pd) auf absolute Position

x/y, und zeichne dabei eine Linie.

mrx,y (move relative) Bewege Stift (pu) auf Position x/y, rela-

tıv zur aktuellen Turtle-Position.

drx,y (draw relative) Bewege Stift (pd) auf Position x/y, rela-
tiv zur aktuellen Turtle-Position, und zeichne dabei

eine Linie.

con (color) Linienfarbe n einstellen (siehe COLOR).

pu (pen up) Stift anheben (Stift schwebt).

pd (pen down) Stift aufsetzen.

(n enthält den jeweils anzugebenden Wert, x,y die betreffenden
Koordinaten).

Eine DRAW-Zeile könnte folgendermaßen zusammengesetzt

sein:

Draw "mal, xX%,Y%, "tt", Int(10.52) , "pd", A$,Len(B$),"Lt60 43.4

Die Angabe der Entfernungen, Winkel und Koordinaten etc.
kann ebenfalls wahlweise als Ausdruck, als Konstante, als Va-

riable oder innerhalb von Def$/"Def" erfolgen. Dabei ist die
Anzahl der durch Komma getrennten Einzelanweisungen belie-
big (max. Eingabezeilenlänge = 255 Zeichen). Das Komma kann
in den meisten Fällen auch vernachlässigt werden. Beispiel:

250 Das große GFA-BASIC-Buch ———

GRAPHMODE 3 | ! XOR-Modus
FOR i%=0 TO 640 STEP 5 ! Einmal von links nach rechts

FOR j%=0 TO 1 I Zweimal hintereinander

SETDRAW 100+1%, 170+C0S(i%*P1/180)*50,1%+90 ! Turtle setzen
DRAW "pd rt90 fd20 rt90 fd30 1t45 fd14.1 Lt45 fd40"
DRAW "Lt45 fdi4.1 Lt45 fdi0 Lt9O fd20 |t90 fd10 rt90"
DRAW "fd20 rt90 fd30 rt90 fd60 rt90 fd40 rt45 fd28.3"
DRAW "rt45 fd60 rt45 fd28.3 rt45 fd40"
DRAW "pu fd30 pd fd40 rt90 fd20 rt90 fd30 Lt45 fd14.1"
DRAW "Lt45 fd10 (t90 fd20 rt90 fd20 rt90 fd20 Lt90 fd40"
DRAW "rt90 fd20 rt90 fd80 rt45 fd28.3 rt45 fd40"
DRAW "pu fd30 pd fd30 rt45 fd28.3 rt45 fd80 rt90 fd20"
DRAW "rt90 fd40 Lt90 fd30 Lt9O fd40 rt90 fd20 rt90 fd80"
DRAW "rt45 fd28.3 pu rt135 fd30 pd fd10 Lt9O fd30 Lt90"
DRAW "fd10 [t45 fd14.1 [t45 fd10 Lt45 fd14.1 pu"

NEXT j%
NEXT i%

DRAW () Plotter-(Turtle-)Attribute liefern

Var=DRAW(Index) Version 3.0

Liefert Informationen über die aktuellen DRAW-Turtle-Attri-

bute.

Index:

= Aktuelle X-Position

= Aktuelle Y-Position

= Aktuell eingestellter Winkel (in Grad)

= Aktuelle X-Skalierung

= Aktuelle Y-Skalierung

= Pen-Flag (-1 = pd/O = pu) N
P
O
D
N
D
—
-
 O

Mit Index 0 bis 4 werden Fließkommawerte geliefert. Beispiel:

Aus der Sprache LOGO kennen Sie vielleicht die Turtle (Schild-

kröte), die in den meisten Fällen als Pfeil dargestellt wird. Mit
den folgenden beiden Prozeduren können Sie diese optische
Turtle simulieren. Die Prozedur Showt speichert den aktuellen
Hintergrund unter der Turtle und zeichnet einen Pfeil auf die
aktuelle Position. Mit Hidet wird der Hintergrund wieder re-
stauriert und die Turtle damit gelöscht.

SE

PR

sh

DO

Grafik

TDRAW 20,20,90 ! Turtle setzen

INT "TURTLE-Steuerung per Maustasten"

owt ! Turtle zeigen

dxmax=MAX(15,MIN(624,DRAW(O))) ! Immer schön...
dymax=MAX(15,MIN(240,DRAWCI))) ! ...im Bild...

SETDRAW dxmax,dymax,DRAW(2) I „..bleiben
hidet Turtle verstecken N

DRAW "fd2" i 2 Pixel zeichnen

showt ! Turtle zeigen

IF MOUSEK=1 I Linke Maustaste?

DRAW "Lea" I Dann 2 Grad linksrum

ELSE IF MOUSEK=2 I Rechte Maustaste?

DRAW "rt2" 4 Dann 2 Grad rechtsrum

ENDIF

LOOP
|

PROCEDURE showt I TURTLE-Proc

LOCAL xtrtl,ytrtl,xtrtl2,ytrtl2,wtrtl,ptrtl

xtrti=DRAW(O) I Aktuelle X-Position?

ytrtl=DRAW(1) I Aktuelle Y-Position?
xtrtl1=MAX(0,MIN(639,xtrtl-15)) !——. GET-

ytrtl1=MAX(0,MIN(255,ytrtl-15)) I Bereich..
xtrtl2=MAX(0,MIN(639,xtrtl1+30)) I eingrenzen

ytrtl2=MAX(0,MIN(255, ytrtl1+30))!——!

wtrtl=DRAW(2) ı Aktueller Winkel?

ptrtlZ=DRAW(5) I Aktueller Pen-Status

RE

PR

RE

GET xtrtli,ytrtli,xtrtl2,ytrtl2,trtlbcekgrnd$

I Hintergrund speichern

DRAW "pd (t120 fd11 rt150 fd20 rt120 fd20 rt150 fd1i"

I Turtle malen

SETDRAW xtrtl,ytrtl,wtrtl I Alten Turtle-Status setzen

IF ptrtl%=0 ! Stift war vorher oben?
DRAW "pu"! ! Dann wieder hochsetzen

ENDIF
TURN

OCEDURE hidet | I Turtle löschen
PUT xtrtli,ytrtl1, trtlbekgrnd$

TURN

251

252 Das große GFA-BASIC-Buch ———

LINE {Li} Linie zeichnen

LINE X1,Y1,X2,X2

Die Bildschirm-Koordinaten X1,Yl und X2,Y2 werden durch
eine gerade Linie im aktuellen - zuletzt mit DEFLINE - einge-
stellten Linienstatus gezeichnet. Beispiel:

FOR j%=1 TO 20
LINE 10,)%*10,100, j%*10
LINE j%*10,10, j%*10, 100

NEXT j%

PLOT {PL} Punkt zeichnen

PLOT Xpos,Ypos

Xpos/Ypos bestimmt die Lage eines Bildschirm-Punktes, der

gesetzt werden soll.

POINT() Bildschirmpunkt-Farbwert ermitteln

Var=POINT(Xpos,Ypos)

Liefert die Nummer des Farbregisters, aus dem der durch
Xpos/Ypos bezeichnete Bildschirm-Punkt seine Farbe bezieht
(siehe COLOR). Beispiel:

t%=TIMER

DEFFILL ‚2,2 I DEFFILL hellgrau
PBOX 10,10,100,100 I Kleine PBOX
FOR x%=10 TO 100 I Alle Punkte in X-Richtung

FOR y%=10 TO 100 I Alle Punkte in Y-Richtung

IF POINT(X%,y%)=0 !
PLOT 110+x%,y%_!

ENDIF

Testen, ob nicht gesetzt

I Ja, dann setzen

——— Grafik | 253

NEXT y% ! Nächste Spalte
NEXT x% ! Nächste Zeile
PRINT (TIMER-t%)/200'"Sek."

Das Ergebnis des Programms ist das Negativ der zuerst gezeich-
neten PBOX, da statt jedes Punktes, der in der PBOX weiß ist,

in der neuen Box ein Punkt gesetzt wird.

POLYLINE { POL} Polygon zeichnen

POLYLINE Pkte,Xp(),Yp() [OFFSET Xdiff,Ydiff]

Die POLY-Befehle (POLYFILL, POLYLINE) verwenden jeweils
die Füll-, Linien- oder Marker-Attribute, die vorher mit

DEFLINE, DEFFILL oder DEFMARK vorgenommen wurden.

In den Integer-Feldern Xp() und Yp() sind der Reihe nach so

viele Koordinatenpaare anzugeben, wıe Polygon-Ecken vorge-

sehen sind. Der erste zu definierende Punkt des Vielecks ist im

Element 0 (OPTION BASE 0) bzw. im Element | (OPTION
BASE 1) der Felder abzulegen, da die Inhalte der ersten beiden
Feldelemente als Koordinatenwerte des ersten Punktes verwendet

werden.

Die Anzahl der zu berücksichtigenden Polygon-Eckpunkte wird
in Pkte übergeben. Maximal dürfen 128 Punkte angegeben wer-
den. Soll mit POLYLINE ein geschlossener Linienzug gezeichnet
werden, muß der letzte Punkt mit dem ersten identisch sein

(Xp(n)=Xp(0)/Yp(n)=Yp(0)).

Um sich nicht jedesmal die Arbeit machen zu müssen, die Ko-
ordinatenpaare neu zu bestimmen, sobald dieselbe Figur an einer

anderen Stelle gezeichnet werden soll, kann mit dem Zusatz-

befehl OFFSET, der ggf. den POLY-Befehlen angehängt wird,
in X- und in Y-Richtung ein Versatz der Figur um einen be-
stimmten Betrag (negativ oder positiv) bewirkt werden. Beispiel:

254

DIM x(10),y¢10)
GRAPHMODE 3
DO

FOR i=0 TO 9

X(1)=RANDOM(100)+56* i
y(i)=RANDOM(128)+40

NEXT i
x(1)=x(0)
y(i)=y(0)
bb=INT(RND*24)
cc=RANDOM(5)+1
DEFFILL 1,2,bb
DEFLINE cc

POLYFILL 9,xC),yC)
FOR j%=1 TO 2

FOR i%=3 TO 99 STEP 6

Das große GFA-BASIC-Buch ~————

DIM Punkt-Felder

XOR -Modus

Endlos-Schleife

10 Punkte

Zufällige X-Koordinate

Zufällige Y-Koordinate

Letztes X = 1. X

Letztes Y = 1. Y

Zufälliges Füllmuster

Zufälliger Linientyp
Muster-DEF

Linien-DEF

Fläche zeichnen

2 mal

16 Offsets

POLYLINE 11,x(),y() OFFSET i%,i% ! Vieleck zeichnen
NEXT 1%

NEXT j%

POLYFILL 9,x(€),y().

LOOP

Nachstes Offset

Fläche löschen

SETDRAW { SETD } DRAW-Turtle positionieren

SETDRAW Xpos,Ypos,Grad Version 3.0

Setzt den Stift für Plotter-(Turtle-)Grafik auf die absolute Posi-
tion Xpos,Ypos in die Zeichenrichtung Grad (siehe auch DRAW

$).

Grad:

0 / 360

270 —— Xpos/Ypos — 90

180

Ein Beispiel hierzu finden Sie unter DRAW().

——— Grafik 255

9.4 Grafikoperationen

CLIP { CLI } Grafikausgabe begrenzen/Nullpunkt setzen

CLIP Xpos,Ypos,Breite,Höhe [OFFSET X,Y] Version 3.0
CLIP Xl,Yo TO Xr,Yu [OFFSET X,Y]
CLIP #Windownummer [OFFSET X,Y]

CLIP OFFSET X,Y
CLIP OFF

Ermöglicht die Bestimmung eines Bildschirmrechtecks, auf das

dann sämtliche Grafikausgaben begrenzt werden (außer PUT)

bzw. die Festlegung des Koordinaten-Nullpunktes für Grafik-

ausgaben. Alle Teile von Grafikausgaben (LINE, BOX, PBOX,
DRAW etc.), die die Grenzen dieses Rechtecks überschreiten,

werden an dessen Grenzen abgeschnitten.

Syntax-Variante 1: Xpos und Ypos beschreiben die Position

sowie Breite und Höhe des CLIP-

Rechtecks.

Syntax-Variante 2: Xl und Yo beschreiben die Position der
linken oberen Ecke des CLIP-Rechtecks.

Xr und Yu (hinter TO) beschreiben die
Position seiner rechten unteren Ecke.

Syntax-Variante 3: #Windownummer enthält die GFA-

_ Fensternummer, dessen Arbeitsbereichs-

Position und -Ausmaße für das CLIP-

Rechteck gelten sollen.

Syntax-Variante 4: X und Y legen den Koordinaten-Ur-
sprung (in Relation zur linken oberen
Bildschirmecke) für künftige Grafikaus-
gaben fest (außer PUT). OFFSET X,Y
kann auch optional an die vorangegan-

256 Das große GFA-BASIC-Buch ————

genen CLIP-Befehlsvarıanten angehängt

werden, wodurch ebenfalls der Grafik-

Nullpunkt bestimmt wird.

Syntax-Variante 5: CLIP OFF schaltet aktuelles Clipping

wieder aus. Beispiel:

DEFFILL ‚2,4 ! DEFFILL grau

PBOX 2,2,218,118 I Hintergrund-Fläche zeichnen

DEFFILL ,2,2 I DEFFILL hellgrau

CLIP 10,10,100,100 ! Ab 10/10 100 Pixel in jeder

1 I Richtung als Clip-Box
PCIRCLE 60,60,60 I Gefüllten Kreis zeichnen

CLIP 110, 10 TO 210,110 OFFSET 100,10

' Bildschirmbereich mit den Koordinaten 110/10 und 210/110

' als Clip-Bereich anmelden und Nullpunkt auf 100/10 setzen.
PCIRCLE 60,50,60 I Gefüllten Kreis zeichnen

CLIP OFF I Clipping ausschalten

CLIP OFFSET 0,0 I Grafik-Nullpunkt wieder auf 0/0 setzen
BOX 10,10,210,110 ! Box um die beiden Kreis-Ausschnitte '

GET Bildschirmbereich speichern

GET X_links,Y_oben,X_rechts,Y_unten, Var$

Durch GET (nicht zu verwechseln mit dem Diskettenbefehl

GET#) wird mit den Koordinatenangaben X_links/Y_ oben und

X_rechts/Y_ unten ein Bildschirmausschnitt definiert, der als

Bitmuster ın Var$ eingelesen wird. Die angegebenen Eck-Koor-

dinaten müssen innerhalb des Bildschirmbereichs liegen, da sonst

der Interpreter den Befehl nicht ausführt.

Diese sparsame Beschreibung läßt nicht ahnen, was mit diesem

Befehl alles machbar ist. Dies ist für die Grafik-Programmie-
rung einer der wichtigsten Befehle überhaupt.

Beispiel: Und wieder mal ein "kleines" Demo-Listing. Es produ-
ziert eines der so heißbegehrten Pop-Up-Menüs. Dies sind

Menüs, die nicht - wie vom Intuition her gewohnt - vom oberen

Bildrand "herunterfallen" bzw. "heruntergezogen" werden (Drop-

— Grafik 257

Down-Menü, bzw. Pull-Down-Menü), sondern an der Bild-
schirmposition erscheinen, an der sie benötigt werden, nämlich

unter dem Mauszeiger.

Dabei kann ein beliebiger Bildschirmbereich angegeben werden,
ınnerhalb dessen das Menü dargestellt werden soll bzw. der als

Reaktionsbereich fungiert. Ist der Mauszeiger zum Zeitpunkt des

Aufrufs innerhalb dieses Bereichs, so bleibt das Menü unter dem

Mauszeiger stehen. Wird ein Menüpunkt angewählt oder verläßt
der Mauszeiger den Bereich wieder (auch ohne Auswahl), so

wird das Menü wieder gelöscht. Unter welchen Bedingungen Sie

den Menü-Aufruf zulassen, bleibt Ihnen überlassen.

Bei der Einrichtung des Menüs habe ich versucht, weitestgehend

den Konventionen der GFA-PullDown-Menü-Definition Rech-
nung zu tragen. So wird z.B. auch hier ein Menüzeilentext, der
mit einem Bindestrich beginnt, als unwählbar (grau) dargestellt.

Der Punkt ıst dann von der Auswahl ausgeschlossen.

Ein wesentlicher Unterschied ist, daß hier aus einem DATA-

Block, der die einzelnen Zeilentexte enthält, über einen wähl-

baren Startindex beliebige Menüteile ausgeschnitten und ange-

zeigt werden können. Außerdem ist die Anzeige des

Menüzeilentextes auf eine Pixel-Breite von 100 Pixel

(Hires/Midres) bzw. 50 Pixel (Lowres) beschränkt. Der Text

wird per TEXT auf diese Breite formatiert und in den Menü-

punkt eingesetzt.

start%=] ! Erst ab 2. Menüpunkt darstellen
anzahl%=20 I Insgesamt 6 Menüpunkte darstellen
DIM feld$(start%tanzahl%) ! Textfeld einrichten. Nur so viele

' Menüpunkt-Elemente, wie zur Demo nötig sind.
RESTORE m.datas I Datazeiger setzen

FOR i%=1 TO start%tanzahl% ! Menütext-Datas

READ feld$(i%) I Einlesen
PRINT feld$(i%)

NEXT 1%

m.datas:
DATA --- ‚Speichern, Laden, Löschen, Kopieren, ---------- ‚QUIT

DATA ---,Speichern, Laden, Löschen, Kopieren, ------ ----,QUIT
DATA ---,Speichern, Laden, Löschen, Kopieren, ---------- ‚QUIT

258 Das große GFA-BASIC-Buch ———

Der Einfachheit halber habe ich hier dreimal dieselben Texte

verwendet, um den folgenden Block der IF..ENDIF-Abfragen in

Grenzen zu halten. In V3.0 können diese Abfragen auch leicht
durch IF..ELSE IF oder SELECT..CASE vereinfacht werden.

Im folgenden Listing mußten wieder einige Programmzeilen aus
drucktechnischen Gründen getrennt werden. Die drei Trenn-
punkte am Zeilenende und Zeilenbeginn gehören nicht zur Zei-
lensyntax.

BOX 50,50,300,200
DO

REPEAT

IF MOUSEX>50 AND MOUSEX<300 AND MOUSEY>50 AND MOUSEY<399

amenue(start%, anzahl%,50,50,300,255, *feld$(), *index%)

ENDIF

' Weitere Aufruf-Variante:

ı If Mousek=2
' aMenue(Start%,Anzahl%,0,0,639,255, *Feld$(),*Index%)
' Endif

UNTIL index%>0 I Or Mousek
IF feld$Cindex%+start%)="Speichern"

feld$(index%+start%)=""-Speichern"
feld$(index%+start%+1)="Laden"
PRINT AT(1,1);"gewahlt: Speichern "

ENDIF

IF feld$Cindex%+start%)="Laden"
feld$(index%+start%- 1)="Speichern"
feld$(index%+start%)=""-Laden"

PRINT AT(1,1);"gewahlt: Laden "

ENDIF.
IF feld$(index%t+start%)="Loschen"

PRINT AT(1,1);"gewdhlt: Löschen "
ENDIF

IF feld$Cindex%+start%)="Kopieren""
feld$(index%+start%)=CHR$(8)+" Kopieren!"
PRINT AT(1,1);"gewählt: Kopieren "

. GOTO label
ENDIF

IF feld$(index%+start%)=CHRS$(8)+" Kopieren!
feld$(index%+start%)="Kopieren"
PRINT AT(1,1);"gewählt: Kopieren u

ENDIF

IF feld$(index%t+start%)="QUIT"
PRINT AT(1,1);"gewählt: Quit u

ENDIF
label:
PRINT "Menüindex : ";index%

EXIT IF feld$Cindex%+start%)="QUIT"

Grafik

CLR index%

LOOP

PROCEDURE menue(pm1%, mmx%,mxl%,myor,mxr%,myu%, f.adr%, v.adr%)
' Pop-Up-Menu
&

' Pmi% = Index des Menüpunktes (Textfeldindex), der an
erster Stelle erscheinen soll. Die Texte müssen

! ab Index 0 im Textfeld stehen.

' Mmx% = Anzahl der Menüpunkte, die ab Pmi% dargestellt
' werden sollen. Der Menü-Index liegt immer im

\ Bereich von 1 bis Mmx%.

ı Mxl%, Myo%, Mxr%, Myu%
' = Rahmenkoordinaten, innerhalb derer das Menü
' dargestellt werden soll. Paßt das Menü nicht

' in den Rahmen, liegt die rechte untere Ecke

' des Menüs immer auf der rechten unteren Ecke

‘ des Rahmens.

' Pointer auf das Textfeld.

! Pointer auf eine Rückgabevariable.

' Die Rückgabevariable enthält nach Abschluß den

1 Index des gewählten Menüpunktes. Um den dazugehörigen

' Textfeld-Index zu ermitteln, muß zum Menüindex 'Pm1%!
' addiert werden. |

LOCAL mmen$,msk%,m.key$, yi%,yi2%,mrs%,m.i%, |sr%

LOCAL mx12%,mxr2% ,my0o2% ,myu2%

DIM dum$(1) ! Lokales Swap-Feld
SWAP *f.adr%,dum$() I Felder swappen
mx l2%=MIN(MAX(MOUSEX-68, mx 1%) ‚mxr%- 136)

mxr2%=mx12%+136

myo2%=MIN(MAX(MOUSEY-6,myo%) ‚myu%- 18+mmx%* 18)
myu2%=myo2%+(18+mmx%*18)

mxlZ=MINCmxl%,mxl2%)
myo%=MIN(myo%,myo2%)

q

F.adr%

V.adr%

' Die letzten 6 Zeilen haben die schwierige Aufgabe, den

' gewünschten Darstellungsbereich des Menüs und die Position

' der Maus so miteinander zu verknüpfen, daß das Menü -
' wenn möglich - unter dem Mauszeiger, aber nicht außerhalb

' des gewählten Rahmens dargestellt wird.
8

GET MAX(O,mxl2%),MAX(0,myo24) ‚MIN(639 ‚mxr2%) „MIN(myu2%, 255) ‚mmen$

' Menü-Hintergrund speichern
DEFFILL 1,0,0 I DEFFILL weiß

GRAPHMODE 1 I Replace-Modus
PBOX mx12%,myo2% mxr2% ,myu2% |
BOX mx12%+1 ,myo2%+1 ,mxr2%- 1, myu2%- 1

DEFFILL 1,2,4 I DEFFILL grau
PBOX mx12%+6 myo2%+6 ‚mxr2%-6 ,myu2%-6
DEFFILL 1,0,0 I DEFFILL weiß
FOR m.i%=1 TO mmx% I Alle Menü-Zeilen

GRAPHMODE 1 ! Replace-Modus
PBOX mx12%+13 ,myo2%-6+m. 14* 18, mxr2%- 13 ‚myo2%+6+m. 1%*18

259

260 Das große GFA-BASIC-Buch

GRAPHMODE 2 I Transparent-Modus
IF LEFTS(dum$(m.i%+pm1%))="-" 1 1.Zeichen = - ? . Menü

TEXT
mx 12%+20 ‚myo2%+3+m. 14* 18, RIGHTS(dum$(m. i%+pm1%) , LENCdum$ (m. i%+pm1%)) -1)

ELSE i Aktive Zeile !
TEXT mxl2%+20 ‚myo2%+3+m. 1%*18- 1, dum$(m. i%+pm1%)

ENDIF
NEXT m.i% Nächste Zeile ——! .
DEFMOUSE 3

DEFFILL 1,1,1

GRAPHMODE 3

DEFMOUSE Zeigefinger

DEFFILL schwarz

XOR -Modus

BOUNDARY 0 V3.0 : P-Rahmen aus

REPEAT Auswahl-Schleife >

ON MENU Ereignis-Uberwachung
MOUSE xko.x%,yko.y4,msk% ! Maus-Status holen

yi%=INTC(yko.y%- (my02%-8))/18)
' I Zeilen-Index berechnen
IF xko.x%>mxl2%+12 AND yi%>O AND xko.x%<mxr2%-13 AND yi%<=(mmx%) |

' Maus auf einem Menüpunkt?
IF LEFTS(dum$(yi%+pm1%))<>"-" 1 Menüpunkt aktiv?

PBOX mx12%+14 ,my02%-5+yi1%*18-1,mxr2%-14+1 ,my0o2%+5+y1%*18

ENDIF
REPEAT i Mausbewegung abwarten >——.

yi2%=INTC(MOUSEY-(myo2%-8))/18)

' I Ggfs. neuen Index holen

msk%=MOUSEK i Maustasten-Status holen

m.key$=INKEY$ I Tastatur abfragen

ON MENU I Ereignis-Überwachung

UNTIL MOUSEX<mxl2%+12 OR MOUSEX>mxr2%-13 OR yi%<>yi2% OR msk%>0 OR

m.key$>"t I<-1

IF LEFTS(dum$(yi%+pmi%))<>"-" | Menüpunkt aktiv?
PBOX mx12%+14 ‚my02%-5+y1%*18-1 ,mxr2%- 14+1 ‚my02%+5+y1%*18

ELSE i Menüpunkt ist inaktiv!
CLR msk% I Maustasten-Status löschen

ENDIF

ELSE ! Maus nicht auf Menüpunkt!
CLR yi2% I Punkt-Index löschen

ENDIF

EXIT IF (MOUSEX<mxl% OR MOUSEX>mxr% OR MOUSEY<myo% OR MOUSEY>myu%)
AND yi2%<=mmx%

' Schleife verlassen, wenn sich der Mauszeiger außerhalb

ı des Darstellungsbereichs befindet.

m.key$=INKEY$ I Tastatur abfragen

UNTIL (msk%>0 OR m.key$>"") AND yi2%<=mmx%

' Schleife verlassen, wenn Tastatur betätigt oder ein

‘ Mausknopf gedrückt wurde.! < '

DEFMOUSE O ! DEFMOUSE Pfeil

DEFFILL 1,0,0 © I DEFFILL weiß

GRAPHMODE 1 I Replace-Modus
PUT MAX(0,mxl2%),MAX(0,myo2%),mmen$! Hintergrund restaurieren

BOUNDARY 1 I V3.0 : P-Rahmen an

SWAP *f.adr%,dum$() I Menütextfeld wieder global
ERASE dum$() I Lokales Swap-Feld löschen

——— Grafik 261

*y,.adr%=yi2% I Gewählten Index zurückgeben

PAUSE 5 I Kleine Klickpause
RETURN

Weitere Beispiele zu GET finden Sie hier im Buch in Hülle und
Fülle.

PUT{PU} Bildschirmbereich setzen

PUT X_links,Y_oben,Var$ [,Modus,Maske]

PUT (nicht zu verwechseln mit dem Diskettenbefehl PUT#)
zeichnet einen durch GET (siehe dort) eingelesenen Bildaus-
schnitt an die Koordinaten X_links/Y_ oben. Die bei GET defi-
nierte Größe bleibt dabei unverändert. Die Koordinaten des un-
teren rechten Eckpunktes ergeben sich aus der Breite und Höhe

des mit GET gespeicherten Ausschnitts. Dabei kann die Position
auch so gewählt werden, daß der Bildausschnitt teilweise oder
auch völlig außerhalb des Bildschirmbereichs liegt.

Durch die Option Modus kann ein Grafikmodus bestimmt wer-

den, sonst wird ım Replace-Modus gezeichnet. Negatıve Werte

für Modus sollten tunlichst vermieden werden, da sonst mit
Fehlfunktionen zu rechnen ist.

Modus:

Destinvert (&H30) In das Bild wird der invertierte Bild-
schirmbereich gesetzt.

Sourcelnvert (&H50) Das Bild wird im Bereich des Aus-
schnittes invertiert.

ExcIDestSource (&H60) Der Bildschirmbereich wird mit dem
Ausschnitt exklusiv-oder verknüpft.

262 Das große GFA-BASIC-Buch ———

OrDestSource (&H80) Die Verknüpfung erfolgt nur zwischen
Bits, die bei Bildschirm und Ausschnitt

gleich sind.

DestSource (&HCO) Der Ausschnitt wird über den Bild-
schirmbereich gesetzt.

9.4.1 Organisation eines PUT-Strings

In diesem Zusammenhang ist es vielleicht angebracht, ein paar

Worte zur PUT-String-Organisation zu verlieren. Die ersten 3

Words (6 Bytes) des Strings enthalten der Reihe nach:

Word 1 Die Breite des Ausschnitts minus I (= X_rechts minus
X _links).

Word 2 Die Höhe des Ausschnitts minus | (= Y__unten minus
Y_ oben).

Word 3 Anzahl der BitPlanes.

Nur bei einer BitPlane entspricht ein gesetztes Bit im PUT-Ra-
ster einem gesetzten Punkt ım gespeicherten Bild-Ausschnitt. In

allen anderen Fällen bildet die Kombination von übereinander

liegenden Bits die Nummer des Farbregisters, aus dem die Farbe
für diesen Punkt geholt werden soll.

An diesen sogenannten "Header" (Kopf) werden der Reihe nach
die Bit-Informationen des gespeicherten Ausschnitts angehängt.

Dies geschieht bei einer BitPlane - das ist am einfachsten zu er-
klären - nach folgendem Schema: Angenommen, der Ausschnitt
ist 26 Pixel breit und 15 Pixel hoch. Die Breite des Auschnitts
wird durch 16 (Wordbreite) geteilt und - falls bei der Teilung

ein Rest geblieben ist - zum integrierten Teilungsergebnis der
Wert | hinzugezählt:

Word 1 = Int(26/16)+Abs((26 MOD 16)>0)

——— Grafik 263

Die Bit-Raster-Breite im PUT-String ist also immer glatt durch
16 teilbar. Im obigen Beispiel belegen die Pixel-Bits 17-26 der
ersten Ausschnittzeile die Bits 0 bis 9 des 5. String-Words,

während die verbleibenden Bits 10 bis 15 des 5. Words mit
"irgend etwas" gefüllt werden. Diese nicht benötigten Bits ent-

halten also unbrauchbaren Bit-Müll.

< 32 Bit (= 2 Words) >
< Ausschnittbreite = 27 Pixel >|<- 'Müll'!->

KRTRKKKKKKKEKRTKKIKTK KT KKK Kh Ke KK KK KK KK NO OO 100 1

nek KR KKK KKK KKK KEK KEKE KKKKKOKKONIUO OO OD 2

nek KR KK RR KKK KKK KKK Ke KKK IK KK KE KEE OO 0100 3

eee KR KEKE KEKE KE KEKE KKK KKK KKK KEKE KK KO OO OD 1D 4

keke kK KKK KEKE KOO 1000 5

exe Keke KR KR KR KKK KKK KEK KKK KKK KEKE KK OO 1100 6

ae kee K KKK KEKE KEK KKK KK KK KANN ON NO 7

tee eee EK BILD -DATEN ******Q00000 8
eee Kee KEKE KEKE KEKE KEKE KK KKK KKK Ke KEKE KK OT O10 0 9

eee eR Ke KE KK KK KEKE KKK KKK KK KE KEK KEK OO QO 000 10

eee ke KR KKK KEK KR KR KKK KKK KR KK KEKE KEK TOO 010 II

kee KR KKK KKK KKK KKK KR KK KK KK KEK KEE 1 OOO 000 12

eee RK KR KR KR KR KKK KK N I KKK KKK KEKE KO KON 101741 «13

ewe RK KR KKK KEK KKK KK KKK HK KEKE KEK KO 11100 «14

eee KK KR KKK KR KKK KEK RK KKK KE KKK KK 1 4T OO O10 «15

|<--vorderes Word der Zeile—>|<--hinteres Word der Zeile—>|
012345678 9ABCDEFOIT123 456789 ABCDEF
(Hex-Bitnummern)

In diesem Rhythmus werden nun alle Bildzeilen im Ziel-String
abgelegt. Bit 0 - 15 des 6. Words und Bit 0 - 9 des 7. Words
enthalten die Daten der 2. Pixel-Zeile, Bit 0 - 15 des 8. Words

und Bit 0 - 9 des 9. Words enthalten die Daten der 3. Pixel-

Zeile usw.

Bei mehr BitPlanes wird das Verfahren wesentlich komplizierter.
Ich habe fast einen ganzen Tag damit verbracht, mir zu über-
legen, wıe ich dieses Verfahren transparent machen könnte -

und zwar so, daß es für jeden leicht verständlich ist. Nach
vielen erfolglosen Ansätzen habe ich mich entschlossen, die
vielen Seiten Text, die ich dabei verschwenden würde, durch

eine möglichst aussagekräftige Grafik zu ersetzen und diese dann
zu erklären. | |

264 Das große GFA-BASIC-Buch ————

Prinzipiell ist es ın Farbe das gleiche Schema, nur daß sıch die
Farbinformationen eines Bildschirmpunktes daraus ergeben, daß

2 oder mehrere - wie in der Grafik dargestellt - 4-Bitraster

(Planes) im oben beschriebenen Format "übereinander" gelegt

werden. Das für den jeweiligen Punkt zuständige Farbregister

ergibt sich aus der Bit-Summe der jeweiligen Plane-Bits.
Grundsätzlich ist ein Farb-GET/PUT-Image genauso organisiert
wie der Farb-Bildschirm, wobei nur jeweils die nicht: benötigten

Rest-Bits (Bit-Müll) des letzten Words einer Zeile zu beachten
sind.

In der Grafik habe ich die Bits der Reihenfolge nach durch-

numeriert. Als Beispiel habe ich ein 14*6-Raster gewählt. Neh-
men Sie an, Sie "schneiden" mittels GET aus dem Bildschirm ein

Teil mit der Breite von 14 und der Höhe von 6 Pixel aus. Die
ersten sechs Bytes des String-Headers habe ich ja oben schon

erklärt. Daran schließen sıch nun - ım Beispiel - ım 4-Word-

Rhythmus die Bit-Informationen der einzelnen Zeilen an.

Legt man nun die vier Planes direkt übereinander, so ergibt die
Bit-Stellung der vier zusammengehörigen Bits die Nummer des
Farbregisters, aus dem dieser Bildschirmpunkt seine Farbe be-

zieht. In der Grafik habe ich das Ausschnitt-Pixel 4/3 besonders

herausgestellt, um daran die Farbberechnung zu demonstrieren.

In Plane 1 ist dieses Bit gesetzt : 20

In Plane 2 ist es ebenfalls gesetzt : 271

In Plane 3 ist es nicht gesetzt 0

In Plane 4 ist es wiederum gesetzt : 2°3

Die Summe dieser vier Bits ergibt : 11

Das Pixel 4/3 des Ausschnitts bezieht seine Farbe also aus dem
Farbregister 11. Zur Vertiefung nehme ich nun noch die vier
Bits 205, 221, 237 und 317 am rechten Rand.

—— Grafik 265

In Plane 1 ist das Bit nicht gesetzt :

In Plane 2 ist es gesetzt : 2

In Plane 3 ist es ebenfalls gesetzt 2

In Plane 4 ist es nicht gesetzt O
f

N

©

Für Pixel 14/4 ist das Farbregister 6 zuständig.

In der Grafik sehen Sie, daß die beiden letzten Bits jeder Zeile

leer sind. An Speicherplatz wird jedoch für jedes "angebrochene"
Word ein volles Word benötigt. Wäre also in diesem Fall der
Ausschnitt 17 Punkte breit, so würde dafür der doppelte Spei-

cherplatz erforderlich, obwohl vom zweiten Word jeder Zeile
nur das 1 Bit belegt wäre.

Anhand der Word-Numerierung können Sie erkennen, in wel-

cher Folge die Words im Speicher liegen.

Dieses Grundwissen soll Ihnen genügen, um die internen Ver-

borgenheiten der Amiga-Grafik halbwegs zu verstehen. Die Be-
fehle funktionieren aber auch, wenn Sie es nicht verstanden ha-

ben, denn ein komplexer Befehl ist ja gerade dafür da, daß er

einem aufwendige Arbeit und großes Hintergrundwissen ab-
nimmt.

9.4.2 Organisation des Bildschirm-Speichers

SPRITE { SPR } Sprite setzen und löschen

SPRITE #Nummer, Def.var$

SPRITE #Nummer [, ""]

SPRITE #Nummer [,Xpos, Ypos]

SPRITE ON/OFF

Mit Def.var$ wird eine String-Variable angegeben, deren Inhalt
im MKI$-Format die Mausform definiert.

Grundsätzlich sind Sprite(s) nichts anderes als der Mauszeiger,

der ja ebenfalls den Charakter eines Sprites besitzt. Der Maus-

266 Das große GFA-BASIC-Buch ————

Sprite wird jedoch automatisch durch die Bewegungen der Maus
gesteuert. Mit dem Befehl SPRITE können Sie einen - oder auch
mehrere - Sprites definieren und nach Ihren Wünschen auf dem

Bildschirm plazieren und bewegen.

Der Aufbau eines solchen Sprites ist dem eines Mauszeigers

gleich, denn der Mauszeiger ist ein Sprite. Die Sprite-Form be-

steht aus einem Raster mit 16*y Pixel, und es wird ein Format-
String gebildet, indem man die Sprite-Daten als BitMap-konver-

tierte-String-Daten aneinanderfügt.

Der Sprite-String hat folgendes Format:

Für jede Grafikzeile des Sprites werden vier Bytes benötigt. Je-
des dieser Bytes wird als ASCII-Zeichen in den String abgelegt,
wobei die gesetzten Bits einen Punkt markieren und die unge-
setzten die freien Lücken. Da ein Sprite eine Breite von 16

Punkten besitzt, werden die ersten und letzten zwei Bytes einer
Zeile zu einem Paar zusammengefaßt, das nebeneinander lie-
gende Punkte repräsentiert.

Die zwei Paare sind für die vier verschiedenen Farben zuständig.
Es werden nämlich beide 16 Bit breite Punkt-Reihen über-
einander gelegt. Für jeden Punkt wird dann das übereinander

liegende Bit-Paar untersucht. Es ergeben sich folgende Kombi-
nationen:

Bit-Paar Farbe

00 transparent

01 erstes Farbregister

10 zweites Farbregister

11 drittes Farbregister

Die Kombination der Bits ergibt einen Farbwert. Der erste
Farbwert, die Kombination 00, ist immer transparent, d.h. der

Hintergrund bleibt sichtbar. Bei den restlichen drei Einstel-

lungen hängt es von der Sprite-Nummer ab, welche Farbe ihm

zugeteilt wird.

—— Grafik 267

Hier ist noch eine Tabelle, bei der Sie erkennen können, welche

Farbregister, die Sie bei Bedarf mit SETCOLOR verändern kön-

nen, bei welchem Sprite die Farbgestalt bestimmen:

Sprite-Nummer Farbregister

0/1 17, 18, 19
2/3 21, 22, 23
4/5 25, 26, 27
6/7 29, 30, 31

Mit der zweiten Variante läßt sich ganz schnell die Grafik eines
Sprites wieder löschen. Somit kann auch der Mauszeiger über

seine Nummer (0. Sprite) gelöscht werden.

Die dritte Version erlaubt die Positionierung des Sprites auf dem

Screen. Dafür gibt man die X- und Y-Koordinate in einem
320x256-Punkte-Raster an, das unabhängig von der Screen-

Auflösung gilt.

Zum Löschen oder Einschalten aller Sprites gibt es noch die Va-
riante mit den Schlüsselwörtern OFF oder ON, die auch den

Mauszeiger betreffen. Beispiel:

PRINT i Nur, um Ausgabefenster zu aktivieren
Sp1$=STRINGS(64, -1)
SPRITE #1,sp1$
FOR i%=0 TO 2000 STEP 4 {————,

x%=108+SIN(1%*P1/180)* (100)
y%=108+C0S(i%*P1/180)*(40) — Sprite

VSYNC darstellen

SPRITE #1,x%,y% !—_—-,
NEXT 1%

SPRITE OFF I Sprite ausschalten

268 | Das große GFA-BASIC-Buch ——

VSYNC {VS} VBL-Synchronisation |

VSYNC

Wartet auf den nächsten Strahlrücklauf (Vertikal-Blank). Der
Elekronenstrahl beginnt den Bildaufbau in der oberen linken
Bildschirmecke und zeichnet dann nacheinander alle Zeilen, bıs

er in der rechten unteren Ecke angelangt ist. Danach beginnt er

den. nächsten Aufbau wieder in der linken oberen Ecke. Diesen
Weg legt er ca. 50 Mal in der Sekunde zurück

Bei Grafikausgaben mit GET oder PUT kann es sınnvoll sein,

den nächsten Bildneuaufbau abzuwarten. Durch die vertikale

Synchronisation einer Grafikausgabe mit dem Bildaufbau kann
so das Interferenz-Flimmern eingeschränkt werden. Bei Grafik-
ausgaben, die mehr Zeit in Anspruch nehmen, als der Computer

zu einem Bildaufbau benötigt, treten allerdings auch dann wie-
der Interferenzen auf. Ein Beispiel dazu finden Sie unter

SPRITE. Die Auswirkung von VSYNC können Sie beobachten,
wenn Sie in diesem Beispiel die VSYNC-Zeile löschen.

9.5 Objekt-Animation

Der Amiga ist in der Lage, nicht nur Sprites für bewegte und

animierte Darstellung zu verwenden. Zusätzlich werden die sog.

BOBs angeboten (BlitterOBjects), die vom Coprozessor "Blitter"
verwaltet werden. Der Blitter ist in der Lage, besonders schnell
größere Grafik-Flächen zu verschieben und eignet sich so be-
sonders für die Objekt-Animation.

Die vom GFA-BASIC vorgestellten Befehle richten sich voll-
kommen nach dem AmigaBASIC-Standard, um so ein größtmög-
liches Maß an Kompatibilität zu erreichen.

— Grafik | 269

OBJECT.SHAPE Objekt-Aussehen definieren

OBJECT.SHAPE ObjNummer, DefString$

OBJECT.SHAPE ObjNummer, AltesObjekt

Hier haben wir den Befehl, mit dem Sie das Aussehen eines

Objektes bestimmen können. Die erste Syntax-Variante definiert
ein Objekt über einen Definitions-String. Diesen String erhalten
Sie ganz einfach über ein auf der GFA-Diskette mitgeliefertes
Programm. Es heißt IFF_TO_BOB.GFA und erlaubt das Kon-
vertieren von IFF-Brushes, die Sie z.B. mit DeluxePaint erstellen

können, in BOBs.

Die zweite Variante kopiert einfach die Gestalt des alten Ob-

jektes in das neue. Sie duplizieren damit einfach ein Objekt und

können das zweite z.B. mit OBJECT.PLANES in den Farben

verändern.

OBJECT.CLOSE Objekt entfernen

OBJECT.CLOSE [ObjNummer [,ObjNummer [,ObjNummer ...]]]

Entfernt ein Objekt ganz und gar aus dem Window. Danach ist
dieses Objekt auch nicht mehr wieder neu aufrufbar, sondern

muß ganz neu definiert werden.

Die Anzahl der zu löschenden Objekte ist beliebig. Trennen Sie
mehrere Objekt-Nummern durch Kommata. Sollen alle aktiven

Objekte entfernt werden, genügt der Aufruf des Befehls ohne
Parameter.

270 Das große GFA-BASIC-Buch ————

OBJECT.ON Objekt sichtbar machen |

OBJECT.ON [ObjNummer [,ObjNummer [,ObjNummer ...1]]

Schaltet ein zuvor definiertes Objekt ein. Es wird ab jetzt auf

dem Bildschirm dargestellt, kann bewegt oder beschleunigt und

auch mit allen anderen Befehlen beeinflußt werden.

Auch hier ıst dıe Anzahl der Parameter beliebig. Geben Sie
keine Parameter an, werden alle Objekte eingeschaltet.

OBJECT.OFF Objekt unsichtbar machen

OBJECT.OFF [ObjNummer [,ObjNummer [,ObjNummer ...]]]

Löscht ein Objekt aus dem Window, d.h. die Darstellung des

Objektes wird eingestellt. Das Objekt selbst ist aber noch für

GFA-BASIC vorhanden, Sıe können es also jederzeit wieder neu
aktivieren.

Geben Sie durch Kommata getrennt die Nummern der Objekte
an, die ausgeschaltet werden sollen. Bei fehlender Angabe wer-

den alle Objekte ausgeschaltet.

OBJECT.CLIP Objekt-Wirkungsbereich festlegen

OBJECT.CLIP X_links,Y_oben,X_rechts,Y_unten

Die von GFA-BASIC unterstützten Objekte müssen nicht im
gesamten Bereich des Windows zugelassen sein. Sie können auch
einen Bereich explizit definieren, der den Freiraum der BOBs

einschränkt. Dafür wird OBJECT.CLIP benutzt. Die Koordina-
tenangaben verstehen sich absolut innerhalb des Windows.

— Grafik 271

OBJECT.START Objekt-Bewegung starten

OBJECT.START [ObjNummer [,ObjNummer [,ObjNummer. ...]]]

Startet die Bewegung der angegebenen Objekte. Fehlt die spe-

zielle Angabe von Objekt-Nummern, bezieht sich der Befehl auf
alle aktiven Objekte.

OBJECT.STOP Objekt-Bewegung anhalten

OBJECT.STOP [ObjNummer [,ObjNummer [,ObjNummer ...]]]

Stoppt die Bewegung der angegebenen Objekte. Fehlt die expli-
zite Angabe einer oder mehrerer Objekt-Nummern, so werden
alle Objekte angehalten.

OBJECT.X X-Position bestimmen

OBJECT.X ObjNummer, X_ Position

Bestimmt die X-Position des Objektes. Dieser Wert bezieht sich
auf das Window, in dem das Objekt dargestellt wird.

OBJECT.Y Y-Position bestimmen

OBJECT.Y ObjNummer, Y Position

Bestimmt die Y-Position des Objektes. Dieser Wert bezieht sich
auf das Window, in dem das Objekt dargestellt wird.

272 Das große GFA-BASIC-Buch ———

OBJECT.AX Objekt beschleunigen

OBJECT.AX ObjNummer, PixSec

Wenn Sie ein Objekt in Ihrem Programm bewegen wollen, dann
läßt sich dies nicht nur linear machen (das Objekt bewegt sich
ständig mit der gleichen Geschwindigkeit), sondern Sie können
diese Grafik auch beschleunigen. Dazu wird dieser Befehl ver-

wendet, bei dem Sie unter Angabe der Objekt-Nummer eine

Beschleunigungsrate angeben können, die den Geschwindig-
keitszuwachs in Pixeln pro Sekunde definiert.

OBJECT.AX legt die Beschleunigung des Objektes alleine in X-
Richtung fest!

OBJECT.AY Objekt beschleunigen

OBJECT.AY ObjNummer, PixSec

Zur Beschleunigung eines Objekts in Y-Richtung. Sehen Sie für
eine Beschreibung unter OBJECT.AX nach.

OBJECT.VX Objekt-Geschwindigkeit festlegen

OBJECT.VX ObjNummer, X_Geschwindigkeit

Bestimmt die Geschwindigkeit des Objektes in X-Richtung.

Diese wird in Pixeln pro Sekunde angegeben.

——— Grafik 273

OBJECT.VY Objekt-Geschwindigkeit festlegen

OBJECT.VY ObjNummer, Y_Geschwindigkeit

Bestimmt die Geschwindigkeit des Objektes in Y-Richtung.
Diese wird in Pixeln pro Sekunde angegeben.

OBJECT.PLANES Farbeinstellung des Objekts festlegen

OBJECT.PLANES ObjNummer [,Bitebenen [,Ebenenwert]]

Dieser sehr interne Befehl erlaubt es, die Darstellung des BOBs
zu beeinflussen. Dabei werden zwei 8-Bit-Werte angegeben, die

die jeweilige Verteilung der Grafik auf die einzelnen BitPlanes

des Screen bestimmen.

Mit der Einstellung Bitebenen geben Sie an, in welche BitPlanes
die BOB-Grafik geschrieben werden soll. Setzen eines Bits be-
deutet, daß die vom BOB für diese BitPlane vorgesehene Grafik

dargestellt werden soll. Löschen Sie ein Bit, obwohl dafür eine

BitPlane definiert wurde, so verliert der BOB an dieser Stelle

seine Farbe.

Ebenenwert gleicht die oben ausgeschalteten BitPlanes wieder
aus. Indem Sie dort gelöschte Bits hier setzen, tragen Sie dem

Amiga auf, diese Bitplanes ganz zu setzen, daß heißt dort eine

Farbe darzustellen.

So können Sie mit dem ersten Wert Farben aus der Grafik ent-

fernen und mit dem zweiten Farben dazufügen. Sie können aber
auch ein BOB mit nur einer BitPlane nehmen, und es durch

Zuschalten nicht benutzter BitPlanes im Ebenenwert einfärben.
Damit lassen sich ganz einfach verschiedenfarbige BOBs mit
gleicher interner Definition erstellen.

274 Das große GFA-BASIC-Buch ———

Hier noch ein Rechenbeispiel, das Ihnen die Bestimmung der

beiden Werte erleichtert:

Das BOB hat vier BitPlanes, von denen nur die erste und die

dritte BitPlane dargestellt werden sollen.

BitPlane 1: 2°0 = 1

BitPlane2: 2°1= 2

BitPlane3: 2°2 = 4

BitPlane 4: 2°3 = 8

BitPilane 5: 274 = 16

BitPlane 6: 275 = 32

Wir bekommen also fiir Bitebenen einen Wert von 5. Außerdem
soll noch die vierte BitPlane bei der Darstellung mit Bits gefüllt
werden. Dazu wird der Wert 8 bei Ebenenwert eingetragen.

OBJECT.PRIORITY Objekt-Reihenfolge einstellen

OBJECT.PRIORITY ObjNummer, Priorität

Sobald mehrere BOBs in einem Window dargestellt werden, tritt
für den Computer das Problem auf, daß er nicht weiß, in wel-
cher Reihenfolge er die BOBs zeichnen soll. Das ist besonders
für eine perspektivische Darstellung sehr wichtig, denn dort lebt

der Effekt von Überlappungen, die Teile der Grafik verdecken.

Sie können mit diesem Befehl für jeden BOB eine Priorität fest-
legen, mit der er gezeichnet wird. Je höher die Priorität, desto
später wird das Objekt gezeichnet, es liegt also später über an-
deren Objekten mit geringerer Priorität.

Der Wert dafür kann zwischen 0 und 32767 liegen und reicht
damit bestimmt für Ihre Anwendungen aus.

— Grafik — 275

OBJECT.HIT Objekt-Kollision Auswahl treffen

OBJECT.HIT ObjNummer [, Wert1 [,Wert2]]

Manchmal ist es nötig, daß die Kollision zweier Objekte nicht
registriert wird. Dazu könnte man einerseits in der Abfrage bei
der Untersuchung manche Fälle außer acht lassen. Dies erweist
sich aber nicht als günstig, weil für jeden anderen Fall immer
wieder neue Abfragen geschrieben werden müssen.

Deshalb gibt es den Befehl OBJECT.HIT, mit dem die Bezie-
hung aller Objekte neu definiert werden kann. Unter Beziehung
verstehen wir, ob eine Kollision angezeigt oder nicht angezeigt
werden soll. Dabei wird wieder auf verschiedene Bitmuster zu-
rückgegriffen, die angeben, welche Objektnummern bei einer
Kollision gemeldet werden sollen. |

GFA-BASIC meldet alle Kollisionen. Wir verändern das durch

die beiden Werte. Der erste, ein 16-Bit-Wert, bestimmt mit je-

dem seiner Bits, mit welchen anderen Objekten es zusammen-

stoßen kann, so daß eine Meldung erfolgt. Bei einer Kollision
wird einfach der Wert2 des fremden Objektes mit dem Wertl
unseres Objektes verknüpft. Nur wenn ein Wert ungleich null
entsteht, wird eine Kollision gemeldet.

OBJECT.X() X-Position ermitteln

~ X_ Position=OBJECT .X(ObjNummer)

Bestimmt die aktuelle X-Position des über ObjNummer identi-
fizierten Objektes.

276 Das große GFA-BASIC-Buch ——

OBJECT.Y() Y-Position ermitteln

Y_Position=OBJECT.Y(ObjNummer)

Bestimmt die aktuelle Y-Position des über ObjNummer identifi-
zierten Objektes.

OBJECT.VX() Geschwindigkeit in X-Richtung ermitteln

X_Geschwindigkei t=OBJECT .VX(ObjNummer)

Bestimmt die momentane Geschwindigkeit in X-Richtung in Pi-
xeln pro Sekunde. | |

OBJ ECT.VY() Geschwindigkeit in Y-Richtung ermitteln

Y_Geschwindigkeit=0BJECT.VY(ObjNummer)

Bestimmt die momentane Geschwindigkeit in Y-Richtung ın Pi-
xeln pro Sekunde.

OBJECT.AX() Beschleunigung in X-Richtung ermitteln

X_Beschleunigung=OBJECT.AX(ObjNummer)

Bestimmt die aktuelle Beschleunigung in X-Richtung in Pixeln

pro Sekunde.

— Grafik 277

OBJECT.AY() Beschleunigung in Y-Richtung ermitteln

Y_Beschleunigung=OBJECT.AY(ObjNummer)

Bestimmt die aktuelle Beschleunigung in Y-Richtung in Pixeln
pro Sekunde.

ON COLLISION GOSUB Bei Objektkollision verzweigen |

ON COLLISION GOSUB Prozedur

Legt die Prozedur fest, die bei Kollision zweier Objekte oder ei-

nes Objektes mit dem Window-Rand angesprungen werden soll.

COLLISION() Kollisionssart feststellen

Ort=COLLISION(ObjNummer)

Stelle fest, mit welchem Objekt das angegebene zusammenge-

stoßen ist. Dabei können vier Sonderfälle eintreten:

Ergebnis Bedeutung

-1 oberer Window-Rand

-2 linker Rand

-3 unterer Rand

-4 rechter Rand

Außerdem kann man als Argument die Werte 0 oder -1 angeben.
Dabei liefert COLLISION(0) die Nummer des Objekts, das als
letztes an der Kollision beteiligt war, und COLLISION(-1)
liefert die Nummer des Windows, in dem die Kollision stattfand.

278 Das große GFA-BASIC-Buch ——

——— Datenumwandlung 279

10. Datenumwandlung

ASC() Textzeichen => ASCIl-Wert

Var=ASC("Zeichen")

Ermittelt den ASCII-Wert des Textzeichens ’Zeichen’. Bei Strings
wird nur der ASCII-Wert des ersten Zeichens zurückgegeben. Ist
der angegebene String leer (""), wird der Wert 0 geliefert. ASC()
bildet die Umkehrfunktion zu CHR$().

Eine Tabelle der möglichen Zeichen und ihrer ASCII-Werte fin-

den Sie im Anhang. ASCII: American Standard Code for Infor-
mation Interchange (Deutsch: Amerikanischer Standard-Code für
Informationsaustausch).

BIN$() Numerisch => Binär

Var$=BIN$(Expr)

Var$=BIN$(CExpr [,Stellen])

Wandelt Expr in einen Binär-String um. Expr steht für eine(n)

beliebige(n) numerische(n) Variable, Konstante, Ausdruck oder

Funktion.

Durch den optionalen Parameter Stellen kann eine Stellenanzahl
(1 - 32) vorgegeben werden, auf die der gewandelte Wert be-

grenzt wird. Beispiele:

Print Bin$(1273530)
|

Print

For 1%=1 To 4 i 4 Binärwerte

- Read A% I Lesen

Print Bin$(A%),"="!A% |! Wandeln und ausgeben

280 Das große GFA-BASIC-Buch ———

Next 1%
Data &X1001110,&X100110101,&X10001110,&X100111001

Print

For 1%=1 To 12 ı 12 Binärwerte

Read A$ I Als String lesen

BS= Right$(String$(14,"0")+A$,14) ! Binär-String auf

I 14 Zeichen formatieren

Print B$, ı Binär-String ausgeben

Print "=""'val("&X"+A$) I Wert ausgeben

For J%=1 To Len(B$) I Alle Zeichen des Strings

If Val("&X"+B$) And 2°J% ! Bit gesetzt?

Plot 200+J%,30+I% ! Dann Punkt setzen
Endif

Next J%
Next 1%

Data 000111000111000111000
Data 000111000111000111000
Data 000111000111000111000
Data 111000111000111000111
Data 111000111000111000111
Data 111000111000111000111
Data 000111000111000111000
Data 000111000111000111000
Data 000111000111000111000
Data 111000111000111000111
Data 111000111000111000111
Data 111000111000111000111

10.1 Die Zahlensysteme

Es gibt im Computerbereich vier Arten von Zahlensystemen:

> Das dezimale System

> Das hexadezimale System

> Das binäre System

» Das oktale System

Das allgemein übliche Dezimalsystem hat die Zahl 10 zur Basis
(dezi: von lat. decem => zehn/z.B. Dezimeter = 10 Zentimeter).
Diese Basis wird jeweils zur Ermittlung der Wertigkeit einer
Zahl herangezogen. So werden die Einerstellen aus der Null-Po-
tenz der Zahl 10 ermittelt (10 hoch 0 = 1), die Zehnerstellen aus

——— Datenumwandlung 281

der Einer-Potenz (10 hoch 1 = 10), die Hunderterstellen aus der
Zweier-Potenz (10 hoch 2 = 100) usw.

In den anderen Zahlensystemen ist dieser Potenzierungsvorgang
exakt derselbe, nur werden hier andere Zahlen als Basıs verwen-

det. So wird im Hexadezimalsystem (Hexa + Dezi = Hexadezi/6
+ 10 = 16) die Zahl 16 als Basıs verwendet, im Binärsystem (Bi =
2) die Zahl 2 und im Oktalsystem (Okta = 8) die Zahl 8. So er-
klären sich die geringen Wertigkeiten der Binärzahlen in ihren
Stellen und die hohen Wertigkeiten der Hexadezimalzahlen.

Stellenwertigkeiten:

Dezimal:

<-... 5. 4. 3. 2. 1. Stelle

<-... 10000 1000 100 10 1 Wert/Format

<-... 10°4 10°3 - 10°2 10°1 10°0 | Potenz

Hexadezimal:

<-... 5. 4. 3. 2. 1. | Stelle

<-... 65536 4096 256 16 1 Wert

<-... $10000 | $1000 ‘$100 $10 $1 Format

<-... 16°4 16°3 16°2 16°71 16°0 | Potenz
: a

Binär

<-... 5. 4. 3. 2. 1. Stelle

<-... 16 8 4 2 1 Wert

<-... %10000 | %1000 %100 %10 %1 Format

<-... 24 — 2°73 2°2 2°1 2°0 Potenz

Das große GFA-BASIC-Buch 282

Oktal

<- 5. 4. 3. 2. 1.

<- 4096 512 64 8 1

<-... &10000 | &1000 &100 &10 &1

<- 8°4 8°3 8°2 8° 1 8°0

Stelle

Wert

Format

Potenz

Bei den Hexadezimalzahlen ist eine Besonderheit zu beachten.
Da sich die Zahl 16 mit arabischen Zahlen nicht einstellig dar-
stellen läßt, hat man zu einem Trick gegriffen. Die Hex-Zahlen

0 - 9 werden genauso dargestellt wie im Dezimalsystem. Die
Zahlen von 10 bis 15 werden dagegen durch einen Buchstaben
repräsentiert (A=10;B=11;C=12; D=13;E=14;F=15). Daher also die
Buchstaben in Hexadezimalzahlen. |

Die Dezimalzahl 1037 setzt sich also wie folgt zusammen:

(10 hoch 0) * 7 = 7
+ (10 hoch 1) * 3 = 30

(die dritte Stelle ist nicht besetzt, also: 0)
+ (10 hoch 3) * 1 = 1000

Summe :

Die Binärzahl %100011 ergibt dagegen nach der Wertigkeit ihrer
Stellen (immer von rechts gesehen, wie im Dezimalsystem auch):

(2 hoch 0) * 1
+ (2 hoch 1) * 1

1
2

(die dritte Stelle ist nicht besetzt, also: 0)
(die vierte Stelle ist nicht besetzt, also: 0)
(die fünfte Stelle ist nicht besetzt, also: 0)

+ (2 hoch 5) * 1

Summe :

= 32

—— Datenumwandlung 283

Das gleiche für die Hexadezimalzahl $F3B0:

(die erste Stelle ist nicht besetzt, also: 0)
(16 hoch 1) * 11 = 176

+ (16 hoch 2) * 3 = 2816
+ (16 hoch 3) * 15 = 61440

Summe : 64432

Und noch für die Oktalzahl &10537:

(8 hoch 0) * 7 = 7
+ (8 hoch 1) *3 = 24
+ (8 hoch 2) *5 = 320

(die vierte Stelle ist nicht besetzt, also: 0)
+ (8 hoch 4) * 1 = 4096

Summe : 4447

Die Umkehrung dieser Transformation sieht dann so aus: Die
Dezimalzahl 1352 soll in das binäre Format verwandelt werden:

1352 : 2 = 676 Rest 0 >

676 : 2 = 338 Rest 0 >

338 : 2 = 169 Rest 0 > .

169 : 2 = 84 Rest 1 >

84 : 2 = 42 Rest 0 > .

42:2 = 21 Rest 0 > .

21:2 = 10 Rest 1 >

10:2 = 5 Rest 0 >

5:2 = 2 Rest 1 > .
2:2 = 1 Rest 0 >

1:2 = 0 Rest 1 >

0:2 = 0 Rest 0 — |

Die Binärzahl lautet: 010101001000

Nach dem gleichen Schema lassen sich auch Dezimalzahlen in
die übrigen beiden Zahlensysteme konvertieren. Dazu noch das
Beispiel für Hexadezimalzahlen: Die Dezimalzahl 35117 soll ın

das Hexadezimalformat gewandelt werden:

35117 : 16 = 2194 => 2194 * 16 = 35104 => Diff. = 13 (D) > .
2194 : 16 = 137 => 137 * 16 = 2192 => Diff. = 2 (2) > .
137 : 16 = 8 => 8 * 16 = = 9 (9) > | 128 => Diff.

284 Das große GFA-BASIC-Buch ———

8:16 = 0 => 0* 16 = 0 => Diff. = 8 (8) ——

0: 16= 0 => 0* 16 = 0 => Diff. = 0 |

Die Hexadezimalzahl lautet : 892D

Bei derart komfortablen Sprachen wie GFA-BASIC hat man es

natürlich nicht mehr nötig, diese Zahlen und Formate "zu Fuß"
zu ermitteln. Trotzdem kann es unter Umständen von Vorteil

sein, sich damit einigermaßen auszukennen.

Das hexadezimale Zahlensystem wurde aus einem bestimmten
Grund entwickelt. Es lassen sich nämlich "zufälligerweise" genau
die Inhalte von vier Bits (Tetrade oder auch Nibble) mit einer
Hex-Zahl darstellen. Eine vierstellige Binärzahl kann maximal
den Wert 15 (2*0+2*1+2*2+2*3) annehmen. Und genau dieser
Wert läßt sich auch maximal mit einer Hex-Ziffer darstellen (F).
Ein Byte (8 Bit) wird demnach immer zu einer 2er-Tetrade (2*4
= 8 Bit), ein Word (16 Bit) zu einer 4er-Tetrade (4*4 = 16 Bit)
und ein Longword (32 Bit) immer zu einer 8er-Tetrade (8*4 =
32 Bit) zusammengefaBt.

CFLOAT() Integerwert = > Fließkommawert

Var=CFLOAT (Wert)

Wandelt Wert (Integerwert) in eine Realzahl um. CFLOAT bildet
die Umkehrfunktion zu CINT.

CHR$() ASCII => Textzeichen

Var$=CHR$(Wert)

Liefert ein - dem angegebenen Wert entsprechendes - ASCII-
Zeichen. Ist Wert größer als 255, so wird das Zeichen ermittelt,

——— Datenumwandlung 285

das dem Wert MOD 256 (bzw. Wert AND 255) entspricht. CHR$
bildet die Umkehrf unktion zu ASC.

Beispiele hierzu finden Sie z.B. unter INKEY$(), LINE INPUT,
PRINT, WRITE und ASC().

CINT() Fließkommawert = > Integerwert

Var=CINT(Wert)

Wandelt Wert (Realwert) in eine Integerzahl um. Im Gegensatz

zu INT wird die Zahl vorher exakt gerundet. CINT bildet die
Umkehrfunktion zu CFLOAT.

CVI(), CVL() ‚ CVS(), CVD() String = > Format-Zahl |

Funktion: Ergebnis:

Var=CVI("2 Zeichen") 16-Bit-Integerwert

Var=CVL("4 Zeichen") 32-Bit-Integerwert

Var=CVS("4 Zeichen!) Realwert (Amiga-BASIC-Format)

Var=CVD("8 Zeichen") Realwert (MBASIC- oder GFA-BASIC-Format)

Es wird die der jeweiligen Funktion entsprechende Zeichen-
anzahl von x Zeichen in eine Zahl des jeweiligen Formats um-
gewandelt. Diese Funktionen bilden die Umkehrfunktionen zu

MKI$/MKL$/MKS$/MKD$.

Beispiele finden Sie unter INSTR() und in der Prozedur Cut
unter RIGHTS().

286 Das große GFA-BASIC-Buch ———

HEX$() Numerisch = > Hexadezimal

Var$=HEX$(Expr)

Var$=HEX$(Expr [,Stellen])

Wandelt Expr in einen Hexadezimal-String um. Expr steht fir

eine(n) beliebige(n) numerische(n) Variable, Konstante, Aus-
druck oder Funktion. Durch den optionalen Parameter Stellen

kann eine Stellenanzahl (1 - 8) vorgegeben werden, auf die der

gewandelte Wert begrenzt wird.

Außerdem wird das Standard-Präfix für Hexadezimalzahlen (z.B.
$FA5C16) erkannt, und - zulässige - Wertangaben dieser Art
werden vom Interpreter selbständig in das GFA-Format (z.B.

& HFAS5C16) umgewandelt. Wird als Präfıx nur das Und-Zeichen
& (z.B. &1EA6F9) verwendet, wird der Ausdruck ebenfalls in

den entsprechenden Hex-Wert umgewandelt.

MKI$(), MKL$(), MKS$(), MKD$() Format-Zahl = > String

Funktion: Ergebnis:

Var$=MK1$(16-Bit-Integer-Wert) 2-Zeichen-String

Var$=MKL$(32-Bit-Integer-Wert) 4-Zeichen-String

Var$=MKS$(Amiga-BASIC-Realwert) 4-Zeichen-String

Var$=MKD$(MBASIC- oder GFA-BASIC-Realwert) 8-Zeichen-String

Es wird der in Klammern angegebene Wert in einen der Wert-
größe und dem gewünschten Format entsprechenden String-Aus-

druck umgewandelt.

Der Variablenaufbau der verschiedenen Systeme, Interpreter und
Compiler kann sich stark voneinander unterscheiden. Um nicht

zeitaufwendige Rechenoperationen ausführen zu müssen, um die
einzelnen Werte anderer Sprachen in das benötigte Format zu
übertragen, können diese Funktionen auch dazu verwendet wer-

den, den Datenaustausch zu vereinfachen.

——— Datenumwandlung 287

Diese Funktionen bilden die Umkehrfunktionen zu CVI()/
CVL(O/CVSO/CVDO.

Beispiele hierzu finden Sie unter anderem in der Prozedur Cut
unter RIGHT$().

OCT$() | Numerisch => Oktal

Var$=0CT$(Expr)

Var$=0CT$(Expr [,Stellen])

Wandelt Expr in einen Oktal-String um. Expr steht für eine(n)

beliebige(n) numerische(n) Variable, Konstante, Ausdruck oder
Funktion. Will man Integerwerte im Oktal-Format angeben, so
kann der Vorsatz &O (z.B.: A%=&O16501) verwendet werden.

Durch den optionalen Parameter Stellen kann eine Stellenanzahl
(1 - 11) vorgegeben werden, auf die der gewandelte Wert be-

grenzt wird. 2.

Weitere Informationen finden Sie in Kapitel 10.1 "Die Zahlen-
systeme".

STR$() Numerisch = > String

Var$=STR$(Wert)

Var$=STR$(Wert [,Stellen [,Real]])

Es wird ein Text-String mit der Länge gebildet, die der Anzahl
der Ziffern des übergebenen Wertes im Dezimalformat ent-
spricht. Wert kann in jedem beliebigen Zahlensystem angegeben
werden. Als Hexadezimal-, Binär- oder Oktalzahl angegebene

Werte werden vorher in das Dezimalformat umgewandelt.

288 Das große GFA-BASIC-Buch ———

Die hiermit erzeugte Ziffernfolge ist keine Zahl mehr, die einen
Wert darstellt, sondern lediglich ein String, der die einzelnen
Ziffern des Wertes als Textzeichen enthält. STR$ bildet die Um-
kehrfunktion zu VAL.

Durch den optionalen Parameter Stellen kann eine Stellenanzahl

vorgegeben werden (Vor-, Nachkommastellen und ggf. Dezimal-
punkt), auf die der gewandelte Wert begrenzt wird. Der optio-
nale Parameter Real gibt an, auf wie viele Nachkommastellen
der gewandelte Wert ggf. gerundet werden soll. Diese gerundeten
Nachkommastellen gehen auf jeden Fall in den gelieferten Wert-
String ein, auch wenn Wert eigentlich keine Nachkommastellen
beinhaltet. Beispiele:

PRINT STR$(572.6169,5,3) ergibt: 2.617
PRINT STR$(6169,9,5) ergibt: 169.00000

VAL() | String => Numerisch

Var=VAL(Var$)

Wandelt alle am Anfang eines Strings stehenden Zeichen, die
sich zur Darstellung numerischer Werte eignen, in eine dezimale
Realzahl um.

Var$ ist eine beliebige Zeichenkette, ein String-Ausdruck oder
eine String-Variable, deren Inhalt vom Anfang ausgehend da-
raufhin untersucht wird, ob Textzeichen enthalten sind, die

einen Wert in einem der vier Zahlensysteme darstellen. Die Su-
che wird abgebrochen, wenn das String-Ende erreicht ist oder
die Funktion auf ein Textzeichen trifft, das nicht wandelbar ist.

Ist das erste Zeichen des Strings ein nicht wandelbares Text-

zeichen oder ist der String leer, wird eine Null zurückgegeben.
Beispiele:

——— Datenumwandlung 289

AS="> "+Str$(123456);" <u
Print A$ ergibt: > 123456 <
1

A$="1011010 <-Binär"

Print Val("&X"+A$) ergibt: 90 (= &X1011010)
|

A$="1141331 <-Octal"

Print Val("&0"+A$) ergibt: 312025 (= &01141331)
'

AS="AF451DE <-Hexadezimal"
Print ValC"&H"+A$) ergibt: 183783902 (= &HAF451DE)

Print Val("&HEEZeichen") ergibt: 238 (= &HEE)
t .

A$="8X110123"
A%=Val(A$) '
Print A% ergibt: 13 (= &X1101)
4

Print Val("2.37E+07") ergibt: 23700000 (= 2.37E+07)

VAL?() Anzahl wandelbarer Textzeichen ermitteln

Var=VAL?(Var$)

Ermittelt ab Anfang von Var$ die Anzahl seiner Zeichen, die ın
numerische Werte konvertiert werden können (siehe VAL()).
Var$ steht für eine beliebige Zeichenkette oder String- Variable,
die auf die Anzahl ihrer wandelbaren Zeichen untersucht wer-
den soll. Trifft die Funktion auf nicht wandelbare Zeichen, wird

die Untersuchung abgebrochen. Beispiele:

Print Val?('237E07") ergibt: 6
i]

AS="8X110123E"

Print Val? (A$) ergibt: 6

(Exponential format)

(inkl. Identifikator)

290 — Das große GFA-BASIC-Buch ——

—— Feld-, Speicher- und Zeigeroperationen 291

11. Feld-, Speicher- und Zeigeroperationen

11.1 Feldoperationen

ARRAYFILL { ARR } Feld mit Wert belegen

ARRAYFILL Feld(),Var

’Feld’ bezeichnet ein bereits beliebig dimensioniertes numeri-
sches Feld (Integer, Real, Boole). Alle Elemente dieses Feldes
werden mit dem Wert Var belegt. Var muß mit dem Feldtyp

übereinstimmen (z.B. Integer zu Integer).

Beispiel:

Umstandlich: Dim Feld%(20,32,16)

For A%=0 To 20 I—. Füllt alle

For B%=0 To 32 Elemente des

For C%=0 To 16 — Arrays Feld%
Feld%(A%,B%,C%)=237 mit dem Wert

Next C% 237.
Next B%

Next A% I ——

GFA-Methode: Dim Feld%(20,32,16)
Arrayfill Feld%(),237 !—— Tut dasselbe

DELETE { DEL } Einzelelement aus Feld löschen |

DELETE Feld(Index)

DELETE Feld$(Index)

Löscht das einzelne Element ’Index’ aus dem Feld ’Feld’ bzw.
’Feld$’. Alle darüberliegenden Elemente werden im Feld um
eine Stelle nach unten versetzt. Das letzte Element enthält an-

292 Das große GFA-BASIC-Buch ———

schließend den Wert Null bzw. bei String-Feldern einen Leer-
String. DELETE ist die Umkehrung zu INSERT.

Beispiel:

Vorher:

0 1 2 3 4 5 6 (Index)

\ /
155 231 663 725 898 112 57

/ \

Vv

Dann:

DELETE Feld(4)

Nachher:

0 1 2 3 4 5 6 (Index)

| (5) (6)
155 231 663 725 112 57 0

< | Letztes
Element

wird 0

DIM | Feld(er) dimensionieren

DIM Arr1(Ind1 [,Ind2,...]) [,Arr2(CInd! [,Ind2,...]1)...]

Legt die Dimension(en) von Arrl (bzw. Arr2, Arr3 etc.) fest und
reserviert hierfür Speicherplatz. ’Arr’ steht für beliebige nume-
rische oder alphanumerische Felder.

——— Feld-, Speicher- und Zeigeroperationen 293

’Ind’ besagt, wie viele Elemente pro Dimension zugelassen sind.

Bei mehrdimensionalen Feldern (z.B. DIM Feld(5,20,7)) ist die
Anzahl der Elemente auf 65535, bei eindimensionalen Feldern
(z.B. DIM Feld$(100)) nur durch die Größe des Arbeitsspeichers
begrenzt.

Achtung: Bei großen Dimensionierungen kann sich die Adres-
senlage der übrigen Variablen - insbesondere bei
String-Variablen - verschieben. Falls Maschinenpro-
gramme in String-Variablen abgelegt wurden und
das Programm ohne vorherige VARPTR-Abfrage
aufgerufen wird, führt dies ggf. zum Absturz. Zur
Speicherung der Routine verwendet man daher bes-
ser INLINE (siehe dort).

11.1.1 Aufbau eines mehrdimensionalen Feldes

Stellen Sie sich bitte einen Schrank vor. Dieser Schrank wird nun
in zwei Hälften geteilt, und zwar in eine rechte und eine linke
Hälfte. Innerhalb der Hälften sind Schubladen untergebracht.

Nehmen wir an, jede Hälfte besitzt zwei Schubladen.

Diese Schubladen werden nun wiederum in einzelne Fächer un-

terteilt. Jede Schublade erhält drei Fächer. Wir haben nun also

einen Schrank mit 12 Fächern (2*2*3) eingerichtet.

Die entsprechende Dimensionierung dazu:

DIM Schrank(1,1,2) -> bei OPTION BASE 0
DIM Schrank(2,2,3) -> bei OPTION BASE 1

Sie wundern sich evtl., warum im ersten Fall nicht (2,2,3) steht.
Das hat den Grund, daß Arrays immer mit dem Index 0 zu zäh-
len beginnen, falls nicht durch OPTION BASE 1 das Null-Ele-
ment eliminiert wurde. So wird im ersten Fall vorausgesetzt, daß

als jeweils kleinster Index einer Dimension ein Null-Element
vorhanden ist. |

294 Das große GFA-BASIC-Buch ————

Der angegebene Index bedeutet dann: "Dimensioniere bis Ele-
ment X", also:

Element 0 und 1 der ersten Dimension --.
Element 0 und 1 der zweiten Dimension |-> DIM(1,1,2)
Element 0, 1 und 2 der dritten Dimension --'

Im folgenden gehe ich grundsätzlich davon aus, daß OPTION
BASE 0 aktıv ıst. In diesem Schrank sollen nun verschiedene
"Dinge" untergebracht werden. In unserem Fall sind dies Zahlen
(hier: Mengenwerte). Zur besseren Orientierung ordne ich den
beiden Schrankseiten erst einmal Begriffe zu:

Linke Schrankseite -> Werkzeug (1D-Index=0)

Rechte Schrankseite -> Bücher (1D-Index=1)

/ Schrank /

1. Dimension: Werkzeug Bücher

/

Den Schubladen der Werkzeug-Seite gebe ich die Aufschriften:

1. Schublade -> Zangen (2D-Index=0)

2. Schublade -> Sägen (2D-Index=1)

Die Schubladen der Bücher-Seite bekommen die Namen:

1. Schublade -> Klassik (2D-Index=0)
2. Schublade -> Natur (2D- Index=1)

/ | /
/ Schrank (Feldname) /

| Werkzeug 0 | Bücher 1 |

/| 0 /| /| 0 /|
/ 1 L] / ß / i]

2. Dimension: // // /_/ /1
| Zangen |/ | Klassik |/
[a I A

—— Feld-, Speicher- und Zeigeroperationen

A er ‘fl 1 7
/! /! /! —{ !

/_/ /1 /J //
| Sägen |/ | Natur |/ /

i] Li | t /

8 |

Nun gebe ich den Elementen einen Namen:

| Auf der 'Werkzeug'-Seite (Index 0 der 1.Dimension)

.->| in der Schublade 'Zangen' (Index 0 der 2.Dimension)
a

.->| 1. Fach -> 'Kneifzangen' (3D-Index=0)

ı_—_ I. ->| 2. Fach -> 'Rohrzangen! (3D-Index=1)

>| 3. Fach -> 'Spitzzangen' (3D-Index=2)
|

->| in der Schublade 'Sdgen' (Index 1 der 2.Dimension)
tie

.->| 1. Fach -> 'Kettensdgen' (3D-Index=0)

ı-|->| 2. Fach -> 'BUgelsdgen' (3D-Index=1)

'->| 3. Fach -> !Stichsägen' (3D-Index=2)
|

Auf der 'Bücher'-Seite (Index 1 der 1.Dimension)

.->| in der Schublade 'Klassik'(Index 0 der 2.Dimension)

>| 1. Fach -> Essays! (3D- Index=0) | |

— “Ve ->| 2. Fach -> Novellen! (3D- Index=1)

1->| 3. Fach -> 'Romane! (3D - Index=2)
|

'->| in der Schublade 'Natur' (Index 1 der 2.Dimension)

295

296 Das große GFA-BASIC-Buch ————

„>| 1. Fach -> !Tiere! (3D- Index=0) |

1 >| 2. Fach -> Pflanzen! (3D - Index=1) |

>! 3. Fach -> 'Steine! (3D- Index=2) |
|

. - '

Bis hierhin sieht das vielleicht etwas übertrieben aus. Der Sinn

der Sache ist aber der, daß nun anhand von sogenannten

"Indizes" auf jedes einzelne Fach der untersten Ebene zugegrif-

fen werden kann.

Unter Index versteht man allgemein ein Unterscheidungsmerk-
mal bzw. eine Kennzeichnung gleichartiger Größen, die dann
statt durch ihren Namen durch einen ihnen zugewiesenen Ta-
bellenwert (Tabellenposition = Index) identifiziert werden kön-
nen, z.B.:

Oberbegriff ’Tier’ 1 = ’Haus-’
2 = ’Nutz-’

3 = ’Raub-’

4 = ’Schalen-’

5 = ’Stachel-’

Statt des Begriffs ’Raubtier’r könnte man nun auch ’Tier(3)’
sagen und dann - um die Bedeutung von (3) zu erfahren - in
der Tabelle unter dem Index 3 nachschauen.

Stellt man sich für die Elemente ’Pflanzen’, ’Romane’ usw. in
der untersten Dimension Speicherplätze im Computer vor, so

kann man sich nun durch die Angabe der Indizes jederzeit In-
formationen über den Inhalt der Plätze verschaffen. Dieses ist
vor allem dann wichtig, wenn Informationen abgelegt werden,

die bestimmten ’Familien’ zugeordnet werden sollen.

Um nun z.B. den Inhalt des Faches "Pflanzen" zu ermitteln, kann

man durch Ausgaben (z.B. PRINT Schrank(1,1,0)), eine beliebige
Zuweisung (z.B. A%=Schrank(1,1,0)) oder Einbindung in einen
Ausdruck (z.B. IF 2*Schrank(1,1,0)+10) dieses Fach lesen oder
durch Schrank(1,1,0)=XYZ etwas darin ablegen.

——— Feld-, Speicher- und Zeigeroperationen 297

Um die Identifikation der einzelnen Schrankseiten, Schubladen

und der darin enthaltenen Fächer zu vereinfachen, kann man
den numerischen Indizes auch Variablennamen zuweisen:

Werkzeug =0

Zangen=0

Kneifzangen=0

Rohrzangen = 1

Spitzzangen =2

Saegen= 1

Kettensaegen=0

Buegelsaegen= 1

Stichsaegen=2

Bücher= 1

Klassik =0

Essays=0

Novellen = 1

Romane=2

Natur = 1

Tiere=0

Pflanzen =1
Steine =2

Jetzt fällt es natürlich leicht, z.B. gezielt in Erfahrung zu brin-
gen, wie viele Bücher zum Thema "Pflanzen" in meiner Biblio-

thek stehen:

IF Schrank(Buecher ‚Natur ,Pflanzen)=0
PRINT "Natur-Banause!"

ENDIF

oder:

IF Schrank(Werkzeug, Zangen, Rohrzangen)>10

PRINT "Na dann: fröhlichen Rohrbruch!"

ENDIF

Ich hoffe, daß Ihnen dieser Ausflug in die Dimensionen in Zu-

kunft etwas dabei helfen wird, die - manchmal sehr - ver-
zwickten Zusammenhänge bei mehrdimensionalen Feldern zu
verstehen. Bei dem hier durchgespielten Beispiel habe ich die

298 Ä Das große GFA-BASIC-Buch ———

Dimensionstiefen in Grenzen gehalten, die sich noch relativ
leicht nachvollziehen lassen. Stellen Sie sich zum Schluß bitte

noch einmal etwas vor:

Ein Gelände mit 100 Lagerhallen. In allen Lagerhallen stehen 60
Regal-Blöcke zu je 50 Regalen. Jedes Regal ist vertikal in 200
Spalten unterteilt und jede dieser Spalten in 40 Regalböden.

Und zu guter Letzt stehen auf jedem Regalboden noch 20 Kä-

sten, wovon wiederum jeder in 10 Fächer aufgeteilt ist.

DIM Lager(100,60,50,200,40,20,10)

Die sich daraus ergebende Elementeanzahl ist zwar auf einem
Amiga nicht zu verarbeiten (100*60*50*200*40*20*10 = 480
Milliarden), aber sie gibt einen Ausblick auf die fast unbe-
grenzten Einsatzmöglichkeiten von mehrdimensionalen Feldern.

DIM?() Menge der Feldelemente ermitteln

Var=DIM?(Feld())

’Feld’ ist ein beliebiger numerischer oder alphanumerischer
Feldname. DIM? liefert die Anzahl aller Elemente dieses Feldes.
Bei nicht dimensionierten Feldern wird der Wert O geliefert.
Beispiel:

Dim Feld%(2,3,4)

If Dim?(Feld%())>0

Print "Das Feld hat ";Dim?(Feld%());" Elemente"
Else

Print "Das Feld ist nicht dimensioniert!"

Endif

——— Feld-, Speicher- und Zeigeroperationen 299

ERASE { ERA } Feld(er) löschen

ERASE Feld()

ERASE Feldi() [,Feld2() [,...]]

’Feld’ bezeichnet ein beliebiges Feld, das gelöscht werden soll.

Die Dimensionierung wird aufgehoben und der dafür reservierte
Speicherplatz wieder freigegeben. Außerdem ist es auch möglich,
eine Liste von Feldern anzugeben, die dann mit nur einem Be-

fehl gelöscht werden.

Felder, die nach ihrer Verwendung nicht mehr benötigt werden,
sollten mit diesem Befehl sofort wieder gelöscht werden, um den
durch sie belegten Speicherplatz wieder dem Programm zur
Verfügung zu stellen. .

Eine wichtige Einsatzmöglichkeit besteht darin, Felder in allge-
mein verwendbaren Prozeduren (Utilities) einzusetzen. Da nicht
erwartet werden kann, daß für jedes Utility die Dimensionie-
rungen im Hauptprogramm vorgenommen werden, sollten diese

also in der Prozedur selbst erfolgen. Nach Abschluß der Arbei-
ten in dieser Prozedur wird das Feld wieder gelöscht, um beim
nächsten Aufruf wieder neu dimensioniert werden zu können.

INSERT { INS } Einzelelement in Feld einfügen

INSERT Feld(Index)=Wert

INSERT Feld$(Index)=Text

Fügt das einzelne Element Index in das Feld ’Feld’ bzw. ’Feld$’
mit dem zugewiesenen Wert bzw. String ein. Alle darüberliegen-
den Elemente werden um eine Stelle nach oben versetzt. Das

letzte Element des Feldes wird dabei aus dem Feld entfernt.

300 Das große GFA-BASIC-Buch ————

Beispiel:

Vorher:

0 1 2 3 4 5 6 (Index)

155 231 663 725 898 112 57

Dann:

INSERT Feld(4)=429 |

Nachher:

0 1 2 3 4 5 6 (Index)

— (4) (5)
155 231 663 725 || 429 || 898 112]

Vorheriges |\ /
Element (6) | 57

fällt raus |/ \

OPTION BASE { OPT BASE }Feld-Basiselement pestimmen|

OPTION BASE Basis

Basis bestimmt das Basis-Element aller Felder (0 oder 1). Die
Basis kann im Programm mehrmals geändert werden, da sich die
schon definierten Elemente dem neuen Index anpassen (z.B. OP-

TION BASE 1 -> A$(0) wird A$(1), A$(1) wird A$(2) etc.).

Wurde ein Feld z.B. unter OPTION BASE 0 mit Dim Feld(5)
eingerichtet, so ergibt Print Feld(6) eine Fehlermeldung, und das
Element Feld(0) ist ohne weiteres ansprechbar. Wird jedoch an-
schließend OPTION BASE 1 verfügt, so ist das vorher letzte

——— Feld-, Speicher- und Zeigeroperationen 301

Element Feld(5) nun ohne Fehlermeldung mit Feld(6) ansprech-
bar, und das vorher erste Element Feld(0) ergibt eine Fehlermel-

dung.

Die Basis-Bestimmung wirkt sich auf alle dimensionierten Felder
gleichzeitig aus.

QSORT { QS } - Feld (-Bereich) Quick-Sortierung

QSORT Feld([Sign]) [,Anz [,Feld2%()]]

QSORT Feld$([Sign]) [(WITH Vorgabe()] [,Anz [,Feld2%()}]

Es können Felder nach ihrer numerischen Größe oder alphabe-

tischen Reihenfolge sortiert werden. Feld() ist dabei ein nume-
risches Feld beliebigen Typs. Feld$() ist ein String-Feld.

Das optionale "Sign" (innerhalb der Leerklammer, z.B. QSORT

Feld(+)) ist entweder ein Plus- oder Minuszeichen, das die Sor-

tierrichtug angibt. Sollen die Werte bzw. Strings mit dem
höchsten Wert bzw. Buchstaben in Element 0 beginnend abstei-
gend sortiert werden, ist ein Minuszeichen einzusetzen. Das

Pluszeichen oder keine Sign-Angabe bewirkt die aufsteigende
Sortierung.

Anz kann optional verwendet werden, um eine Elementanzahl zu
bestimmen, bis zu der sortiert werden soll (z.B. 6 = von 0 - 5
bei OPTION BASE 0 bzw. von | - 6 bei OPTION BASE 1).
Außerdem kann optional ein 4-Byte-Integerfeld (Feld2%()) an-
gegeben werden, dessen Elemente unabhängig von ihrem Inhalt

parallel mit dem eigentlichen Sortierfeld mitsortiert werden.

Bei String-Feldern kann durch WITH zusätzlich ein beliebiges
Integerfeld (Vorgabe() => 1-, 2- oder 4-Byte-Integer) mit min-
destens 256 Elementen bestimmt werden, dessen Elemente-In-

halte die Reihenfolge der Sortierung vorgibt. Wären z.B. alle 256
Vorgabe()-Elemente mit den ASCII-Werten in normaler Rei-
henfolge belegt (0-255), so kann Vorgabe() vernachlässigt wer-

302 | Das große GFA-BASIC-Buch ——

den. Werden dagegen z.B. die Zeichen a und A vertauscht, so

steht A in der Sortierfolge über a (normalerweise umgekehrt),
während alle anderen Zeichen normal sortiert werden. So kann
eine völlig willkürliche Sortierfolge vorgegeben werden (siehe
Anhang "ASCII-Tabelle").

Beispiel 1:

Dim Feld%(20) ! DIM Feld

Print "unsortiert:"

For 1%=0 To 20 ı 20mal

Feld%(1%)=Rand(100) I Zufällige Werte zuweisen

Print Feld%(1%) I Und ausgeben

Next 1% ı Nächstes Element

Qsort FeldZ() . I Feld sortieren

Print At(15,1);"steigend sortiert:"

For 1%=0 To 20 ı 20 sortierte Elemente

Print At(15,1%+2);Feld%(1%) ! Neu ausgeben
Next I%

Beispiel 2:

Dim Feld%(20) I DIM Feld

Print "unsortiert:"

For 1%=0 To 20 I 20mal)

Feld%(1%) =Rand(100) I Zufällige Werte zuweisen

Print Feld%(1%) I Und ausgeben
i Next I% ı Nächstes Element

Qsort Feldz(-),5 ! 5 Elemente "fallend" sortieren
Print At(15,1);"fallend sortiert:"
For 1%=0 To 20 I 20 Elemente

Print At(15,1%+2);Feld%(1%) ! Neu ausgeben
If 1%<5 | I Im Sort-Bereich?

Print At(20,1%+2);"<-- sortiert"
Else

Print At(4,1%+2);"--------- >"
Endi f

Next 1%

Beispiel 3: —

Dim Feld%(20),Feld2%(20) ! DIM Feld und Parallelfeld
Print "unsortiert: Indexfeld:"

Print Spc(27);"1"
For 1%=0 To 20 I 20mal

Feld%(1%)=Rand(100) I Zufällige Werte zuweisen

Feld2%(1%)=1% ! Parallelfeld indizieren

Print Feld%(1%),Feld2%(1%) ! Und ausgeben
Next 1% I Nächstes Element

——— Feld-, Speicher- und Zeigeroperationen 303

Qsort Feld%(+),15,Feld2%C) ! 15 Elemente + Index sortieren
A$="l steigend sortiert: Indexfeld (mitsortiert):"
Print At(28,1);A$
For 1%=0 To 20 I 20 Elemente

Print At(28,1%+3);"! ";Feld%(1%) ! Feld neu ausgeben
Print At(52,1%3);Feld2%(1%) ! Index neu ausgeben
If 1%<15 ! Im Sort-Bereich?

Print At(34,1%+3);" -- sortiert --"
Else -

Print At(34,1%+3);" - unsortiert -"
Endif

Next 1%

Beispiel 4:

In den ersten drei Beispielen können Sie statt des 4-Byte-

Integerfeldes Feld%() ebensogut andere numerische Feldtypen
oder ein String-Feld einsetzen. Der Sortiermodus und das Ergeb-
nis würden dabei prinzipiell gleich bleiben, nur daß bei String-
Feldern nicht nach numerischer Reihenfolge, sondern nach der
Reihenfolge der den Zeichen entsprechenden ASCII-Werten sor-

tiert würde. Das folgende Beispiel demonstriert das Sortieren
nach einer beliebigen Reihenfolge.

Dim Feld$(40), Feld2%(40),Vorgabe!(256) ! DIMs
Print "unsortiert: Indexfeld:"

Print Spc(27);"|"
X$="AAG60UUR" I Umlaute und Eszet
X2$="AAOQUUS" I Ersatzkriterium

For 1%=0 To 255 ı Alle ASCIIs

Vorgabe! (1%)= =1% ! In Sortiervorgabe einsetzen

If ‚Instre"abedefghi jklmnoparstuvwxyz", Chr$(1%))
I Kleinbuchstaben?

vorgabel (1%) =Asc(Chr$(1%-32)) ! Durch Großbuchstaben
I Ersetzen

Endi f

If Instr (8, Chr$(1%)) I Umlaut oder Eszet?

Vorgabe | (1%)=Asc(Mid8(X28, Instr(X$,Chr$(1%)),1))
! Durch Ersatzkriterium

Endi f I Ersetzen
Next I%

For 1%=0 To 40 I 4Omal

For J%=0 To 8 ı 8 Zeichen je String

X%=Rand(59)+65 1 Zufalls-ASCII

' A-Z = 26 Zeichen

‘ a-z = 26 Zeichen

y AOUd6UB = 7 Zeichen
|

| insgesamt = 59 Zeichen.

304 Das große GFA-BASIC-Buch ————

ı

' Rand(59) wählt also einen Wert zwischen 0 und 58.

' Dieser Wert wird anschließend um 65 erhöht

' -> ASCII-Wert von 'A' ist ‚9:

If X%>115 X% größer A-Z und a-z?

X%=ASC(Mid$(X$,X%-116, 09 Dann Umlaut oder Eszet

Else if X%>90 X% zwischen a-z?

Add X%,6) X%+6 = mindesten Asc("a") |
Endi f

Feld$(14)=Feld$(1%)+Chr$(x%) ! Zeichen einbinden

Next J%

Feld2%(1%)=1% ı Parallelfeld indizieren

Print Feld$(1%),Feld2%(1%) I Und ausgeben

Next 1% ı Nächstes Element

Qsort Feld$() With Vorgabe!(),41,Feld2%C)
' Alle Elemente + Index nach Vorgabe steigend sortieren

AS="! steigend sortiert: Indexfeld (mitsort.):"
Print At(28,1);A$

For 1%=0 To 40 I 20 Elemente

Print At(28,1%*3); ‚ul n;Feld$(1%) ! Feld neu ausgeben
Print At(50,1%+3); Feld2%C1%) ! Index neu ausgeben

Next 1%

SSORT {SS} Feld (-Bereich) Shell-Sortierung

SSORT Feld([Sign]) [,Anz [,Feld2%()]]

SSORT Feld$([Sign]) [WITH Vorgabe()] [,Anz [,Feld2%()]]

Erläuterungen zu QSORT gelten hier analog (siehe dort). Der
wesentliche Unterschied zwischen beiden Sortier- Algorithmen
ist, daß QSORT rekursiv arbeitet und dadurch wesentlich mehr
Speicherplatz benötigt als das SSORT-Verfahren. Dafür ist

SSORT in den meisten Fällen wesentlich langsamer.

Das Shellsort-Verfahren (es wurde von einem Engländer namens
Shell entwickelt) ist aufgrund seines Aufbaus eher dazu geeignet,
schon vorsortierte Felder zu sortieren, was beim Quicksort-Ver-
fahren unter Umständen sogar eine Zeitverzögerung bewirken
kann. In den meisten Fällen hängt es jedoch von Ihrem persön-
lichen "Geschmack", dem noch verfügbaren Speicher und der
jeweiligen Situation ab, welcher Sortierbefehl für Sie in Frage
kommt.

——— Feld-, Speicher- und Zeigeroperationen 305.

11.2 Speicheroperationen

ABSOLUTE {AB} Variable auf Adresse setzen

ABSOLUTE Var ‚Adresse

Die Adresse der numerischen Variablen Var (beliebiger Typ) —
wird auf die absolute Speicheradresse Adresse gelegt. Ä

Adresse ist in jedem Fall identisch mit VARPTR(Var):

ABSOLUTE Var%,9952 |
PRINT 9952=V:Var%

-> Ausgabe = -1 (TRUE)

Eine Zuweisung zu einer ABSOLUTE- Variablen ist gleichbe-
deutend mit: |

POKE Adresse ‚Bytewert -> Bei Byte-Variablen Var!
DPOKE Adresse ,Wordwert -> Bei Word-Variablen Var&
LPOKE Adresse,Longwert -> Bei Long-Variablen Var%

Die Abfrage einer ABSOLUTE-Variablen ist gleichbedeutend
mit: |

Bytewert=PEEK(Adresse) -> Bei Byte-Variablen Var!
Wordwert=DPEEK(Adresse) -> Bei Word-Variablen Varé&
Longwert=DPEEK(Adresse) -> Bei Long-Variablen Var%

Bei Real- oder Boole-Variablen ist das jeweilige Zahlenformat
zu beachten. ABSOLUTE mit Feld- und String-Variablen ist.
nicht möglich. ABSOLUTE ist innerhalb von PROCEDURES
und FUNCTIONs mit zuvor als lokal definierten Variablen
ebenso möglich wie auf globaler Ebene. Nach Rückkehr zum
Hauptprogramm wird die "Absolutierung" jedoch wieder aufge-
hoben.

Statt des Kommas zwischen Var und Adresse kann auch ein

Gleich-Zeichen (ABSOLUTE Var%=Adresse) verwendet werden.

306 - Das große GFA-BASIC-Buch -~———

BMOVE {B} Speicherblock kopieren

BMOVE Quelle,Ziel,Anz

Ab der Adresse Quelle werden Anz Bytes gelesen und an den
mit der Adresse Ziel beginnenden Bereich kopiert. Quell- und
Zielbereich können sich dabei auch überschneiden.

Bei Anz ist zu beachten, daß nie der Wert 0 auftreten darf. Wird
als Anzahl der zu kopierenden Bytes keine Konstante verwendet
(z.B.X__bytes*Zeilen), so kann es unter ungünstigen Umstän-
den dazu kommen, daß als Anz-Parameter Null übergeben wird.

In solchen Fällen ist meistens ein gnadenloser Absturz die Folge.
Um dies zu vermeiden, bietet sich die Funktion MAX(1,Anz)

an, die dafür sorgt, daß mindestens ein Byte übertragen wird.

BMOVE arbeitet bei geraden Adressen schneller als bei un-
geraden. BMOVE ist ein Befehl, ohne den professionelles Pro-

_ grammieren fast undenkbar wäre. Bei älteren BASIC-Dialekten
bestand ein wesentlicher Unterschied zu den maschinennahen
Sprachen bzw. Maschinensprache darin, daß kein schneller
Speicherblock-Transfer möglich war. Speicherblöcke mußten

durch FOR..NEXT-Schleifen und PEEK/POKE Byte für Byte
übertragen werden. BMOVE macht dem ein Ende. Das Einsatz-

gebiet ist so weit gefächert, daß es der Phantasie des Einzelnen
überlassen bleibt, was er mit diesem mächtigen Befehl anfängt.
An Ideen dürfte es da allerdings nicht mangeln. |

BYTE{}, CARD{}, LONG{}

Speicherinh. lesen BYTEO= 1 Byte schreiben CARD{}= 2 Byte schreiben

LONG{}= 4 Byte schreiben

Syntax (Zuweisung an Adresse/vgl. D-L-POKE):

BYTE{Adresse}=Wert => Schreibt ein Byte

CARD{gerade Adresse}=Wert => Schreibt zwei Byte (Word)

—— Feld-, Speicher- und Zeigeroperationen 307

LONG{gerade Adresse}=Wert => Schreibt vier Byte (Long)

Syntax (Lesen aus Adresse/vgl. D-L-PEEK):

Var=BYTE{Adresse} => Liest ein Byte

Var=CARD{gerade Adresse} => Liest zwei Byte (Word/(Cardinal)

Var=LONG{gerade Adresse} => Liest vier Byte (Long)

Ab Adresse werden dem Format entsprechend viele (l, 2, 4)

Bytes gelesen bzw. geschrieben. Bei CARD{} und LONGI{} dür-
fen nur gerade Adressen verwendet werden.

Sollen 4-Byte-Werte gelesen werden, kann die Bezeichnung
LONG weggelassen werden (z.B. {123456} liest 4 Byte ab
Adresse 123456).

CHAR{} — C-Text lesen CHAR{}= _... schreiben

Var$=CHAR{(Adresse} => C-Text lesen (Funktion)

CHAR{Adresse}=Expr$ => C-Text schreiben

Es wird ein String im C-Format gelesen bzw. geschrieben. Bei
der Schreibfunktion wird dem String Expr$ automatisch ein
Null-Byte angehängt und der String an Adresse geschrieben. Die

Lesefunktion liest ab Adresse, bricht beim ersten gefundenen

Null-Byte ab und liefert den bis dahin gelesenen Text zurück.

DOUBLE{}, SINGLE{}

IEEE-Double/Single-Realformat lesen DOUBLE{}=, SINGLE{}= ... schreiben {

DO }= 3, { SI d= }

Syntax (Lesen aus Adresse):

Realvar=DOUBLE{gerade Adresse} => 8-Byte-IEEE-Realzahl

Realvar=SINGLE{gerade Adresse} => 4-Byte-IEEE-Realzahl

Syntax: (Schreiben an Adresse):

DOUBLE{gerade Adresse}=Wert => 8-Byte-IEEE-Realzahl

SINGLE{gerade Adresse}=Wert => 4-Byte-IEEE-Realzahl

308 Das große GFA-BASIC-Buch ————

Beim Schreiben wird der angegebene 8- bzw. 4-Byte-Wert als
Wert im IEEE-Format interpretiert und so an die angegebene

Adresse geschrieben. Soll ein Wert gelesen werden, wird intern
der Inhalt der auf Adresse folgenden 4 bzw. 8 Byte als Wert im

IEEE-Format interpretiert und in Realvar zurückgegeben.

FLOAT{}

8 Byte in GFA-3.0-BASIC-Realformat lesen FLOAT{}= 8 Byte in GFA-3.0-

Realformat schreiben

Realvar=FLOAT{gerade Adresse} => Lesen (Funktion)

FLOAT{gerade Adresse}=Wert => Schreiben

Beim Schreiben wird der angegebene Wert als Wert im 8-Byte-
Realformat des V3.0-GFA-BASICs interpretiert und so in die -

auf Adresse folgenden - 8 Bytes geschrieben. Soll ein Wert ge-

lesen werden, so wird intern der Inhalt der auf Adresse folgen-

den 8 Byte als V3.0-Realwert interpretiert und in Realvar zu-
rückgegeben.

INT{} /WORD{}

2 Byte als Vorzeichen-Integer schreiben; lesen INT{}= /WORDO= ...

schreiben

Intvar=INT{Adresse} => Lesen (Funktion)
Intvar=WORD{Adresse} => Lesen (Funktion)

INT{Adresse}=Wert => Schreiben (Befehl)

WORD{Adresse}=Wert => Schreiben (Befehl)

Bei INT{} und WORD{} handelt es sich um zwei Namen der-
selben Funktion bzw. desselben Befehls. Beim Schreiben wird
der angegebene Wert als Wert im vorzeichenbehafteten 2-Byte-
Integerformat interpretiert und so in die - auf Adresse folgen-

——— Feld-, Speicher- und Zeigeroperationen 309

den - 2 Bytes geschrieben. Soll ein Wert gelesen werden, wird
intern der Inhalt der auf Adresse folgenden 2 Byte als vor-
zeichenbehafteter 2-Byte-Integerwert interpretiert und in der
Aufnahmevariablen Intvar (beliebiger Typ) zurückgegeben.

Vorzeichenbehaftete 2-Byte-Werte können nur im Bereich von -
32768 (&X1000000000000000) bis 32767 (&XO0111111111111111)
liegen. Ist also das höchste Bit (Bit 15) der beiden auf Adresse
folgenden 16 Bits gesetzt, so ist der gelieferte Wert negativ. Der
sich aus den untersten 15 Bits ergebende positive Normal-Inte-
gerwert (Wert And (2*15-1)) wird dann zu -32768 addiert und
ergibt so den gelieferten Minuswert. Wird als Intvar eine Byte-
Variable (z.B. Var|) angegeben, kann damit nur ein vorzeichen-
loser Wert von 0 - 255 aufgenommen werden.

PEEK, DPEEK, LPEEK Speicherinhalt auslesen

Var=PEEK(Adresse) => Liest ein Byte

Var=DPEEK(gerade Adresse) => Liest zwei Byte (Word)

Var=LPEEK(gerade Adresse) => Liest vier Byte (Long)

Ab Adresse werden dem Format entsprechend viele (1, 2 oder 4)

Bytes gelesen. Bei DPEEK() und LPEEK() dürfen nur gerade
Adressen verwendet werden.

POKE,DPOKE,LPOKE { PO,DP,LP }Speicherinhalt ändern

POKE Adresse,Byte => Schreibt ein Byte

DPOKE gerade Adresse,Word => Schreibt zwei Byte (Word)

LPOKE gerade Adresse,Long => Schreibt vier Byte (Long)

Schreibt den angegebenen Wert (Byte, Word, Long) im jeweili-
gen Format in die ab Adresse folgenden 1, 2 oder 4 Bytes. Bei
DPOKE und LPOKE dirfen nur gerade Adressen verwendet
werden. |

310 Das große GFA-BASIC-Buch ———

Stellen Sie beim Experimentieren mit den POKEs sicher, daß Sie
nicht unbeabsichtigt in wichtige Bereiche des Systems oder des
Interpreters hinein’poken’. Auch wenn das nicht immer sofort

mit einem Absturz endet, können durch falsche Daten in diesen
Bereichen Fehlfunktionen ausgelöst werden, die sich erst nach
geraumer Zeit bemerkbar machen. Diese Fehlfunktionen sind im
Endeffekt wesentlich gefährlicher als ein Absturz, da dadurch
auch beim Laden und Speichern Daten unbemerkt "beschädigt"
werden können, während man sich in Sicherheit wähnt.

Lassen Sie also bitte grundsätzlich bei allen Speichermanipula-
tionen äußerste Vorsicht walten! Sollte Ihnen ein POKE mal
"verloren gehen", (wenn also seine Wirkung nicht nachvollziehbar
ist), ist es in den meisten Fällen angebracht, die Daten (Pro-

gramm etc.) so schnell wie möglich auf Disk zu sichern und
dann einen Reset auszulösen, ehe Schlimmeres folgt.

11.3 Speicherverwaltung

INLINE { INL } BASIC-interne Speicherreservierung

INLINE Adresse%, Bytes

Reserviert innerhalb des Programm-Listings einen Speicher-
bereich von maximal 32700 Bytes. Dazu wird in ’Bytes’ die ge-
wünschte Größe angegeben. Adresse% ist eine 4-Byte-Integer-
Rückgabevariable (keine Feldvariable). Trifft das Programm auf
eine INLINE-Zeile, so wird darın vom BASIC die aktuelle

Startadresse des INLINE-Speichers geliefert. Sonst geschieht
nichts. Ob etwas im Speicher ist, bzw. was Sıe mit der Adresse

und diesem Speicher anfangen, hängt davon ab, was Sie bei der
Programmerstellung in diesen Speicher geladen haben.

Die Besonderheit dieses Befehls besteht nämlich darın, daß

schon der Editor auf die Eingabe einer INLINE-Zeile reagiert.
Überall dort, wo eine INLINE-Zeile geschrieben wurde und

——— Feld-, Speicher- und Zeigeroperationen 311

durch <Return> oder eine andere Editorfunktion verlassen wird,

wird im Programmspeicher ein Bereich mit der angegebenen
Größe reserviert. Wenn Sie nun das Programm mit der Editor-
funktion Save bzw. SAVE oder PSAVE abspeichern, werden
diese INLINE-Speicher als Programmbestandteil mitsamt Inhalt
mit abgespeichert. Beim nächsten Laden durch Load bzw. LOAD

werden die INLINE-Speicher ebenfalls mitgeladen, sie sind dann
unverändert wieder verfügbar.

Mit der Editorfunktion Save,A bzw. dem Befehl LIST wird nur

die Zeile, aber nicht der INLINE-Speicher gesichert. Beim La-

den eines ASCII-Listings mit Merge wird zwar wieder der
Speicher reserviert, aber er ist dann ohne Inhalt.

In einer INLINE-Befehlszeile ist kein !-Kommentar möglich, da
an Stelle des Kommentars intern der INLINE-Speicher gelegt

wird. Beim ersten Anlegen eines Speichers wird dieser mit Null-
Bytes gefüllt. Wird eine bestehende INLINE-Zeile aus dem Pro-
gramm gelöscht, wird auch automatisch der Speicher wieder an
das BASIC zurückgegeben.

Wird dagegen eine bereits bestehende INLINE-Zeile nachträglich

verändert (neuer Variablename oder neue Speichergröße), fragt

der Interpreter zuerst nach, ob der alte INLINE-Speicher ge-

löscht werden soll. Wird diese Abfrage mit "OK" beantwortet,

wird der alte Speicher gelöscht und ein neuer - den neuen An-
gaben entsprechender - Speicher eingerichtet.

Steht der Cursor auf einer fertigen (schon gecheckten) INLINE-
Zeile, kann man die <Help>-Taste drücken. Das können Sie
sonst natürlich auch, nur hat es dann keinen Zweck. Drücken

Sie also die <Help>-Taste, während der Cursor auf einer IN-
LINE-Zeile steht, so erscheint eine Meniizeile.

Mit Mausklick auf Load kann eine beliebige Datei in den reser-
vierten Bereich geladen werden (z.B. Maschinen-Code, Bild-
dateien etc.). Mit Save wird der INLINE-Speicher auf Diskette

gesichert. Dump ermöglicht die Ausgabe des INLINE-Inhalts in

312 Das große GFA-BASIC-Buch ———

2-Byte-Hexwerten (mit Offset-Angabe) auf dem Drucker, und
Clear löscht (ohne Sicherheitsabfrage) den INLINE-Speicher.

Beim Speichern wird der INLINE-Datei - sofern keine andere
angegeben wurde - die Extension .INL "verpaßt". Beim Laden
wird ebenfalls die Auswahl-Vorgabe .INL voreingestellt. Es
kann jedoch jede beliebige Datei geladen werden. Die zu la-
dende Datei sollte entweder genauso groß wie der INLINE-
Speicher oder größer sein. Dateien, die den INLINE-Speicher
nicht ganz füllen, werden mit der Meldung "File-Ende erreicht"
abgewiesen. Dateien mit einer Länge, die größer als der IN-
LINE-Speicher ist, werden bei der INLINE-Länge abge-

schnitten.

Noch einmal das Ganze in Stichpunkten:

1. INLINE-Zeile schreiben (Rückgabe-Varıable und Größe an-

geben); wenn der INLINE-Speicher gefüllt, gesichert, ge-
druckt oder gelöscht werden soll:

2. Cursor auf INLINE-Zeile und <Help> drücken.

3. Menü-Funktion wählen.

MALLOC() System-Speicher-Reservierung |

Back=MALLOC(Anz,Art)

MALLOC reserviert ’Anz’ Bytes an Systemspeicher. Dieser
Speicherbereich ist anschließend gegen den Zugriff von anderen
(parallel ablaufenden) Programmen aus geschützt. Als Rück-
gabewert erhält man bei durchgeführter Reservierung die
Startadresse des reservierten Bereichs (im Falle eines Fehlers
enthält ’Back’ den Wert Null). Diese Adresse sollte man sıch un-
bedingt merken, damit der Speicher später auch wieder (mit
MFREE) freigegeben werden kann.

—— Feld-, Speicher- und Zeigeroperationen 313

Hinweis: Der Wert in ’Anz’ wird von MALLOC immer auf
das nächste Vielfache von 8 aufgerundet.

Die Variable ’Art’ bestimmt, welcher Art der zugewiesene
Speicher sein soll:

Art=2

Art=4

Art il —

’Art= 1’

Art=65536

Der zu reservierende Speicherbereich soll im sog.
Chip-Memory liegen. Chip-Memory ist der untere
512-Kilobyte-Bereich des Speichers. Nur dieser Be-
reich kann von den Spezialchips zur Grafik- und

Sounderzeugung angesprochen werden! Zur Speiche-
rung von Grafik- und Sounddaten müssen Sie also
unbedingt diese Art von Speicher reservieren lassen.

Der zu reservierende Bereich soll sich außerhalb des
Chip-Memories im sog. Fast-Memory befinden. Das
Ganze hat natürlich nur dann einen Sinn, wenn Sie
auch über mehr als 512 Kilobyte Gesamtspeicher
verfügen.

Der zu reservierende Bereich darf - nachdem er
festgelegt wurde - nicht mehr verschoben werden. In
der momentanen Version des Betriebssystems ist es
zwar noch nicht vorgesehen, einmal reservierten
Speicher nachträglich zu verschieben. Aus Kompati-

bilitätsgründen empfiehlt es sich aber, diese Spei-

cherart trotzdem zu wählen, insbesondere dann,

wenn Sie den reservierten Speicher längere Zeit
benötigen.

Kann durch ODER-Verknüpfung mit den anderen
Speicherarten verknüpft werden. ’Art= 1 OR 2’ zum

Beispiel reserviert nicht verschiebbares Chip-Me-

mory.

Der reservierte Speicherbereich wird mit Nullen auf-

gefüllt. Diese Speicherart kann mit allen anderen

durch ODER-Verknipfung kombiniert werden.

314 Das große GFA-BASIC-Buch ———

Hinweis: Falls Art weder die Kennung für Chip- noch für
Fast-Memory enthält (z.B. ’Art=1’; Bereich darf
nicht verschoben werden, wo er liegt, ist aber egal),

so wird zuerst versucht, Fast-Memory zu belegen.
Wenn sich dort kein genügend großer freier Bereich
mehr findet, wird Chip-Memory reserviert.

Beispiele:

Back=MALLOC(1000,4 OR 65536)

Belegt 1000 Byte außerhalb des Chip-Memories und füllt den
reservierten Bereich mit Nullen auf.

Back=MALLOC(32000,2)
Reserviert 32000 Byte im Chip-Memory
Back=MALLOC(150,2 OR 1 OR 65536)

Belegt 150 Byte nicht verschiebbares Chip-Memory und füllt
den reservierten Bereich mit Nullen auf.

MFREE() MALLOC()-Speicher freigeben

Back=MFREE (Adresse, Anz)

Gibt den durch MALLOC() reservierten Speicher wieder frei. In
’Adresse’ wird die Startadresse des freizugebenden Bereichs an-
gegeben (bei MALLOC()-Aufruf merken), in ’Anz’ muß die
Größe des Bereichs übergeben werden. In ’Back’ wird die Größe

des freigegebenen Bereichs (also Anz) zurückgegeben.

Vorsicht: Bitte achten Sie sorgfältig darauf, daß die an
MFREE übergebenen Parameter auch wirklich stim-
men! Geben Sie zum Beispiel eine falsche Adresse

oder (in Anz) eine falsche Bereichsgröße an, so be-

kommen Sie unweigerlich einen Systemabsturz
(Guru-Meditation).

——— Feld-, Speicher- und Zeigeroperationen 315

RESERVE { RESE } BASIC-Arbeitsspeicher festlegen

RESERVE [Anz]

’Anz’ gibt die neu einzurichtende Größe des BASIC-Arbeits-
speichers (Programm+Variablen) in Bytes an. Voreingestellt sind
64 KByte. Dieser Wert wird auch genommen, wenn man bei
RESERVE den Parameter Anz wegläßt.

Achtung: Durch RESERVE wird der Variablenspeicher kom-

plett gelöscht!

11.4 Zeigeroperationen

* | Variablen-Pointer

Var=*Var

Var=*Feld()

Wird ein Variablenname Var bzw. Feld() beliebigen Typs (siehe
TYPE) auf diese Art als Zeiger gekennzeichnet, wird nicht der
Variableninhalt, sondern die Variablenadresse übergeben. Bei
Feldern und Strings ist dies der zugehörige Descriptor (->
ARRPTR X() oder ARRPTR X$), bei numerischen Variablen
die Adresse, an welcher der Variableninhalt zu finden ist.

Beispiel 1:

A%=12 ! AZ mit 12 belegen

B%A=*A% I Pointer auf A% in B% speichern
*8%=33 I Indirekt A% mit 33 belegen

Print "Variablenadresse A% (Uber Pointer): ";*A%
Print "Variablenadresse A% (über VARPTR) : ";Varptr(A%)
Print "Variablenadresse A% (in BA) : 1:B%
Print "Variableninhalt A%X (direkt) 2 1:A%
Print "Variableninhalt A% (indirekt) : ":Lpeek(B%)

316 Das große GFA-BASIC-Buch ———

Beispiel 2:

Var$="GFA-BASIC" ' String-Variable belegen

Var%=5 | i 4-Byte-Integervariable belegen

Gosub Proc(*Var$,*Var%) 1! Proc-Aufruf mit Pointer-Variablens
Print Var$,Var% I Globale Variablen ausgeben

Procedure Proc(Para1%,Para2%) ! Kopf mit Pointer-Aufnahme
Local Lvar$,Lvar,Lvar%,1% ! Lokale Variablen vorbereiten
For 1%=0 To Dpeek(Para1%+4)-1 ! String-Länge aus Descriptor

Zr=Peek(Lpeek(Paral%)+1%) I Zeichen lesen (mittels
I des Descriptors durch PEEK)

Lvarslvar$+Chr$(2%) I Lokalen String bilden

Next 1% ! Nächstes Zeichen

If Type(Para2%)=0 I Para2%=Realvariable? (siehe TYPE())
Bmove Para2%,Varptr(Lvar),8 ! 8 Bytes in die lokale
' I Realvariable übertragen

*Para1%=String$(3,Lvar$)+" / 2°"+Str$(lLvar)+" = "
' I String bilden und zurückgeben

*Parad%=2"Lvar I Ergebnis berechnen und zurückgeben

Endif

If Type(Para2%)=2
Lpoke Varptr(Lvar%),Lpeek(Para2%) ! 4 Bytes in die lokale

I Integer-Variable übertragen

*Para1%=String$(3,Lvar$)+" / 2°"+Str$(Lvar4%Z)+" = "
a i String bilden und zurückgeben

*Para2%=2"Lvar% ! Ergebnis berechnen und zurückgeben

Endif

Return

Für die Variablen- und Feldübergabe an Unterprogramme eignet

sich dagegen VAR. Hiermit ist es möglich, die Variablen und
Felder "direkt" zu übergeben. Sie sind dann gleichzeitig
Übergabevariablen und Rückgabevariablen. Eine Übernahme der

Variableninhalte wie ın Beispiel 2 ist hier nicht mehr nötig.

ARRPTR String-/Feld-Descriptoradresse ermitteln

Var=ARRPTR(Var$)

Var=ARRPTR(Feld())

Liefert die Anfangsadresse des String- bzw. Feld-Descriptors
(siehe Erläuterungen im Anhang "Variablenorganisation/-typen").

—— Feld-, Speicher- und Zeigeroperationen 317

VARPTR Variablen-Adresse ermitteln { V: }

Var=VARPTR(Var)

Liefert bei numerischen Variablen deren Adresse bzw. bei
String-Variablen die Adresse des ersten Zeichens. Var steht für
jede beliebige Variable (auch Feldelement). Es kann auch V: als
Abkürzung verwendet werden (z.B. PRINT V:A$).

Beispiel:

AS=""BASIC" I String setzen

Adr%=Varptr(A$) ! String-Adresse holen
For 1%=0 to 5 ! 5 Zeichen

Print Chr$(Peek(ADR%+1%)); ausgeben
Next 1%

11.5 Die Exec-Bibliothek des Amiga

Die Exec-Bibliothek beinhaltet in der überwiegenden Mehrzahl
Funktionen zur Multitasking-, zur Interrupt- und zur Speicher-
verwaltung des Amiga. Dinge also, mit denen man sich in GFA-
BASIC - zum Glück - nur äußerst selten befassen muß.

Um die Funktionen der Exec-Bibliothek erfolgreich anwenden
zu können, sind detaillierte Kenntnisse über Aufbau und Funk-

tionsweise von AmigaDOS erforderlich, die den Rahmen dieses
Buches bei weitem sprengen würden. Bitte nehmen Sie es mir
also nicht übel, wenn ich im folgenden die einzelnen Funktionen
nur in sehr knapper Form vorstelle.

Wer mehr wissen möchte, der sollte einmal einen Blick in

"Amiga Intern’, "Intern 2’ oder in das große AmigaDOS-Buch
werfen. |

Und bitte denken Sie immer daran: Viele der Exec-Routinen
beeinflussen die elementarsten Abläufe innerhalb des Amiga!

318 Das große GFA-BASIC-Buch ———

Wenn da etwas schiefläuft, bekommen Sie in vielen Fällen nicht

einmal mehr eine Guru-Meditation.

Für alle, die es dennoch wagen wollen, die Routinen zu nutzen,
noch ein Hinweis: Alle Exec-Routinen lassen sich von GFA-
BASIC aus jederzeit wie eine GFA-BASIC-Funktion ansprechen.
Irgendwelche Öffnungszeremonien, wie man sie von Amiga-
BASIC kennt, sind nicht erforderlich.

Die verfügbaren Funktionen im einzelnen:

SetTaskPri Priorität eines Tasks ändern

 Prioralt SetTaskPri(Task,Priorneu)

Gleich zu Anfang die vielleicht interessanteste Funktion.
SetTaskPri ändert die Priorität (-128 bis +127) eines Tasks. (In
’Prioralt’ wird die alte Priorität zurückgegeben.)

Dazu einige Erläuterungen: Auch wenn es so scheint, als ob der
Amiga in der Lage wäre, mehrere Programme gleichzeitig zu
verarbeiten (Stichwort: Multitasking), wird in Wirklichkeit zu ei-
nem bestimmten Zeitpunkt immer nur ein Programm abge-
arbeitet. Der Trick beim Multitasking besteht einfach darin,

zwischen den einzelnen Programmen in so schneller Folge um-
zuschalten, daß für den Anwender der Eindruck entsteht, als

würden alle Programme gleichzeitig ablaufen. Jedes Programm
läuft dazu in einem sog. Task. Das Umschalten zwischen den
einzelnen Tasks besorgt das Betriebssystem.

Jeder Task erhält einen bestimmten Anteil an Rechenzeit. Im
einfachsten Fall wird die Rechenzeit zwischen den einzelnen
Tasks gleichmäßig aufgeteilt. Sind also zum Beispiel drei Tasks
gleichzeitig aktiv, so erhält jeder Task ein Drittel der Rechenzeit
zugeteilt. In vielen Fällen möchte man diese lineare Aufteilung
der Rechenzeit jedoch vermeiden. Ein Beispiel: Nehmen wir
einmal an, Sie arbeiten mit zwei GFA-BASIC-Programmen
gleichzeitig. Das eine Programm führt komplexe mathematische
Berechnungen durch, während das andere Programm gerade eine
Grafik zu Papier bringt. Wenn Sie nicht gerade über einen La-

serdrucker verfügen, dürfte das zweite Programm die meiste

———— Feld-, Speicher- und Zeigeroperationen 319

Zeit damit beschäftigt sein, auf den Drucker zu warten, bis

dieser jeweils seinen Datenpuffer ausgedruckt hat. Hier wäre es
günstiger, dem Mathematikprogramm den Löwenanteil an Re-
chenzeit zuzuteilen.

Zu diesem Zweck besteht die Möglichkeit, jedem Task eine be-

stimmte Priorität zuzuweisen. Die Skala reicht dabei von -127

bis +128. Je höher die Priorität eines Tasks ist, desto größer ist

sein Anteil an Rechenzeit.

Wie geht man nun konkret vor? Das ist im Grunde genommen

ganz einfach. Bleiben wir beim Beispiel. Zunächst gehen Sie in
das Mathematikprogramm und geben dort im Direktmodus ein:

VOID SetTaskPri(FindTask(0),5)

Anschließend schalten Sie auf das Druckprogramm um und ge-
ben dort - ebenfalls im Direktmodus - ein:

VOID SetTaskPri(FindTask(0),-5)

Der eine Task erhält also die Priorität 5, der andere die Priorität

-5. Diese relativ nahe beieinander liegenden Werte reichen bei
nur zwei Programmen völlig aus.

Natürlich können Sie SetTaskPri auch innerhalb eines

Programms (und nicht nur im Direktmodus) verwenden. Um
wieder auf die Standardpriorität, nämlich 0, zurückzuschalten,
gibt es zwei Möglichkeiten:

> VOID SetTaskPri(FindTask(0),0)

> Anklicken des Pulldown-Menüpunktes ’TaskPri 0’ im
GFA-Editormenü.

320 Das große GFA-BASIC-Buch ————

Supervisor In Supervisor-Modus umschalten

' VOID Supervisor()

Schaltet den 68000er-Prozessor des Amiga in den Supervisor-

Modus.

InitCode | Resident-Module initialisieren

VOID InitCode(Startwert, Versionsnummer)

Initialisiert alle Resident-Module mit dem angegebenen Startwert
und der Versionsnummer.

InitStruct Speicherbereich initialisieren

VOID InitStruct(Init, Puffer, Größe)

Initialisiert den Speicherbereich der Länge ’Größe’ beginnend ab
der Adresse ’Puffer’ mit den Werten, die ab Adresse ’Init’ im

Speicher stehen.

MakeLibrary Neue Funktionsbibliothek erzeugen

Adr = MakeLibrary(...)

Erzeugt eine neue Funktionsbibliothek und übergibt deren |
Adresse in ’Adr’.

FindResident Adresse einer Resident-Struktur suchen

Adr = FindResident(Name) |

Versucht die Adresse der Resident-Struktur ’Name’ zu finden

und übergibt diese gegebenenfalls in ’Adr’.

InitResident Resident-Struktur initialisieren

VOID InitResident(Adr, Seglist)

Initialisiert eine Resident-Struktur (Adresse in ’Adr’) unter Be-
nutzung der Segmentliste, deren Adresse in ’Seglist’ steht.

——— Feld-, Speicher- und Zeigeroperationen 321

Debug Debug-Routine aktivieren

VOID Debug()

Aktiviert die ROM-Wack-Funktion des Betriebssystems. Danach

werden die Debug-Daten (zur externen Kontrolle des ablaufen-

den Programms durch andere Rechner) über die RS-232-
Schnittstelle geschickt.

Disable | Interrupts sperren

VOID Disable()

Sperrt diverse Interrupts.

Enable Interrupts wieder aktivieren

VOID Enable()

Aktiviert die durch die Funktion Disable desaktivierten Inter-

rupts wieder.

Forbid Task-Switching abschalten

VOID Forbid()

Desaktiviert das Multitasking-System des Amiga.

Permit Task-Switching wieder einschalten

VOID Permit()

Gegenstiick zu Forbid. Reaktiviert das Multitasking.

SetSr Statusregister verandern

Alt = SetSr(Neu, Maske)

Verändert das Statusregister des 68000er-Prozessors. In ’Alt
wird der alte Wert des Registers zurückgegeben.

322 | _ Das große GFA-BASIC-Buch —

SuperState In Supervisor-Modus umschalten

Stack = SuperState()

Schaltet den 68000er-Prozessor in den Supervisor-Modus. Stack

enthält den alten Stackpointer. Dieser Wert muß (!) für den
Aufruf von UserState aufbewahrt werden.

UserState In User-Modus umschalten

VOID UserState(Stack)

Schaltet den 68000er-Prozessor in den User-Modus. ’Stack’ ent-

hält den Wert, den Sie bei SuperState zurückerhalten haben.

SetintVector System-Interrupt-Vektor setzen

Adralt = SetIntVector(Nummer, Adrneu)

Setzt den Interrupt-Vektor neu und übergibt in ’Adralt’ die
Adresse der alten Struktur. (Adresse der neuen Struktur befindet
sich in ’Adrneu’.)

AddintServer Interrupt-Server-Routine einfügen

VOID AddIntServer(Nummer, Adr)

Fügt zu den bereits vorhandenen Interrupt-Server-Routinen eine
neue hinzu.

Cause Software-Interrupt ausführen

VOID Cause(Adr)

Führt einen Software-Interrupt aus, dessen Adresse in ’Adr’ ste-

hen muß.

——— Feld-, Speicher- und Zeigeroperationen 323

Allocate Speicherblock anfordern

Adr = Allocate(Memheader, Größe)

Fordert aus einer eigenen Speicherlistenverwaltung einen Block
an. Im Erfolgsfall enthält ’Adr’ die Adresse des Blockanfangs. —

Deallocate Speicherblock freigeben

VOID Deallocate(Memheader, Adr, Größe)

Gibt einen mit der Funktion Allocate angeforderten Speicher-
block wieder frei.

AllocMem Speicherplatz reservieren

Adr = AllocMem(Größe, Art)

Diese Funktion entspricht der GFA-BASIC-Funktion MALLOC.

FreeMem Speicherplatz freigeben

Größe = FreeMem(Adr, Größe)

Diese Funktion entspricht der GFA-BASIC-Funktion MFREE.

AvailMem Freien Speicherplatz ermitteln

Speicher = AvailMem(Art)

Liefert den im Moment verfügbaren freien Speicherplatz. ’Art’

enthält die Speicherart (Chip-Memory usw.).

AllocEntry MemList-Struktur initialisieren

Adr = AllocEntry(MemList)

Initialisiert eine MemList-Struktur und übergibt im Erfolgsfall

deren Adresse in ’Adr’. |

324 Das große GFA-BASIC-Buch ——

FreeEntry | Speicherbereiche löschen

VOID FreeEntry(MemList)

Löscht alle Speicherbereiche, die durch die Funktion AllocEntry

in einer MemList-Struktur reserviert wurden.

Insert Node-Struktur einfügen

VOID Insert(List, Nodei, Node2)

_ Fügt eine Node-Struktur in eine Node-Strukturen-Liste ein.

AddHead Node-Struktur am Anfang einfügen

VOID AddHead(List,Node)

Fügt eine Node-Struktur an den Anfang einer doppelt ver-

ketteten Liste ein.

AddTail Node-Struktur am Ende einfügen

VOID AddTail(List,Node)

Fügt eine Node-Struktur an das Ende einer doppelt verketteten
Liste ein.

Remove Node-Struktur löschen

VOID Remove(Node)

Löscht eine Node-Struktur aus einer verketteten Liste von

Node-Strukturen.

RemHead Node-Struktur am Anfang löschen

Adr= RemHead(List)

Löscht das erste Element aus einer verketteten Liste von Node-
Strukturen. ’List’ enthält die Adresse der verketteten Liste, in
’Adr’ wird die Adresse der gelöschten Node-Struktur zurückge-
geben. |

——— Feld-, Speicher- und Zeigeroperationen - 325

RemTail Node-Struktur am Ende löschen

Adr = RemTail(List) |

Löscht das letzte Element aus einer verketteten Liste von Node-
Strukturen. ’List’ enthält die Adresse der verketteten Liste, in

’Adr’ wird die Adresse der gelöschten Node-Struktur zurückge-
geben.

Enqueue Node-Struktur in Systemliste einfügen

VOID Enqueue(List, Node)

FindName Node-Struktur nach Namen durchsuchen

Adr = FindName(Start, Name)

Durchsucht eine System-Node-Liste (Adresse in ’Start’) nach
dem in ’Name’ angegebenen Namen und übergibt gegebenenfalls

in ’Adr’ die Adresse der zugehörigen Node-Struktur.

AddTask | Neuen Task anmelden

VOID AddTask(TaskCB, InitialPC, FinalPC)

Meldet dem System einen neuen Task an.

RemTask Task beenden

VOID RemTask(Task)

Beendet den angegebenen Task und löscht ihn.

FindTask Task suchen

Adr = FindTask(Name)

Durchsucht die Task-Listen nach dem Task mit dem ange-
gebenen Namen und übergibt gegebenenfalls dessen Adresse in
’Adr’. |

326 Das große GFA-BASIC-Buch ——

SetSignal _ Signalbit-Status setzen

Sigalt = SetSignal(Signeu, Sigmaske)

Setzt den Status der Task-Empfangs-Signalbits. ’Signeu’ enthält

den neuen Status, in ’Sigalt’ wird der alte Status zurückgegeben.

SetExcept Signalbit auswählen

Sigalt = SetExcept(Signeu, Maske)

Wählt eines der insgesamt 32 Signalbits eines Tasks aus. In Sigalt
wird das alte Signalbit zurückgegeben.

Wait Auf Signal warten
VOID Wait(Signal)

Hält einen Task solange an, bis (von einem anderen Task) ein

Signal gesendet wird.

Signal Signal senden

VOID Signal(Task, Signal) |

Schickt ein Signal an einen anderen Task.

AllocSignal Signalbit reservieren

Rück = AllocSignal(Signalnr)

Reserviert eines der verfügbaren Signalbits.

FreeSignal Signalbit freigeben

VOID FreeSignal(Signalnr)

Gibt ein mit AllocSignal reserviertes Signalbit wieder frei.

——— Feld-, Speicher- und Zeigeroperationen | 327

AllocTrap Trap-Nummer reservieren

Trapnr = AllocTrap(Trapnr)

Reserviert eine Trap-Nummer der verfügbaren Traps der lau-
fenden Task.

FreeTrap Trap-Nummer freigeben

VOID FreeTrap(Trapnr)

Gibt einen mit der Funktion AllocTrap reservierten Trap wieder

frei.

AddPort Message-Port anfügen

VOID AddPort(MsgPort)

Fügt an die System-Message-Port-Liste einen neuen Message-

Port und macht ihn jedem Task zugänglich.

RemPort : Message-Port löschen

VOID RemPort(MsgPort)

Löscht einen Message-Port aus der Message-Port-Liste.

PutMsg Nachricht anhängen

VOID PutMsg(MsgPort, Message)

Hängt eine Nachricht an den angegebenen Message-Port.

GetMsg | Nachricht holen

MsgPort = GetMsg(MsgPort)

Holt die nächste Nachricht aus dem angegebenen Message-Port.

328 Das große GFA-BASIC-Buch ———

ReplyMsg Nachricht zuriicksenden

VOID ReplyMsg(Message)

Sendet eine empfangene Nachricht an den absendenden Mes-

sage-Port zurück (zur Empfangsbestätigung).

WaitPort _ Auf Ereignis warten

VOID WaitPort(MsgPort)

Wartet auf ein Ereignis in dem angegebenen Message-Port.

FindPort Message-Port suchen

Adr = FindPort(Name)

Durchsucht die System-Message-Port-Liste nach einem Port mit

dem angegebenen Namen und übergibt gegebenenfalls in ’Adr’

dessen Adresse.

AddLibrary Neue Library einfügen

VOID AddLibrary(Adr)

Fügt eine neue Library zum System hinzu und macht sie für alle
Tasks zugänglich.

RemLibrary Library entfernen

Ruck = RemLibrary(Adr)

Löscht eine Library aus der Library-Liste des Systems.

CloseLibrary Library schlieBen

VOID CloseLibrary(Adr)

SchlieBt eine Library, deren Adresse sich in ’Adr’ befindet.

——— Feld-, Speicher- und Zeigeroperationen 329

SetFunction Neue Funktion in Library einfügen

Adr = SetFunction(Library, Funkoffset, Funkadr)

Fügt in eine Funktionsbibliothek eine neue Funktion ein. In
’Adr’ wird die Adresse der alten Funktion zurückgegeben, die an
der angegebenen Position in der Bibliothek stand.

SumLibrary Neue Checksumme berechnen

VOID SumLibrary(Library)

Berechnet fiir die angegebene Library eine neue Checksumme.

AddDevice | __ Device hinzufügen

VOID AddDevice(Adr)

Fügt zur System-Device-Liste ein neues Device hinzu und macht
es für alle Tasks zugänglich.

RemDevice __. Device entfernen

VOID RemdevicetAdr)

Löscht ein Device aus der System-Device-Liste.

OpenDevice Device Offnen

Rück = OpenDevice(Name, Nummer, IORequest, Flags)

Offnet das durch seinen Namen bezeichnete Device und initiali-

siert die zugehörige IORequest-Struktur.

CloseDevice Device abmelden

VOID CloseDevice(IORequest)

Meldet ein Device beim System ab.

330 Das große GFA-BASIC-Buch ———

DolO Kommando ausfuhren

Rück = DoIO(10Request)

Führt das in der IORequest-Struktur festgelegte Kommando aus.

WaitlO Auf Kommandoausführung warten

Rück = WaitIO(IORequest)

Wartet, bis das in der IORequest-Struktur angegebene Kom-
mando ausgeführt ist.

AddResource Resource hinzufügen

VOID AddResource(Adr)

Fügt ein Resource zur System-Resource-Liste hinzu und macht

es jedem Task verfügbar.

RemResource Resource entfernen

VOID RemResource(Adr)

Entfernt ein Resource aus der System-Resource-Liste.

OpenResource Resource Öffnen

Adr = OpenResource(Name, Version)

Öffnet ein bereits installiertes Resource und übergibt in ’Adr’
dıe Adresse der zugehörigen Resource-Struktur.

OpenLibrary Library offnen

Adr = OpenLibrary(Name, Version)

Öffnet eine Funktionsbibliothek und übergibt in ’Adr’ die
Adresse der zugehörigen Librarystruktur.

——— Programmkontrolle 331

12. Programmkontrolle

12.1 Programmstart und -ende

CONT { CON } Programm (nach STOP-Befehl) fortsetzen

CONT

Wurde der Programmlauf mit STOP unterbrochen, kann durch
CONT im Direktmodus das Programm in der Zeile nach dem
STOP-Befehl fortgesetzt werden. CONT ist nicht möglich, wenn
nach STOP entweder CLEAR verwendet, das Programm-Listing
verändert oder neue Variablen eingeführt wurden.

In manchen Fällen kann es notwendig sein, in ON BREAK
GOSUB- oder ON ERROR GOSUB-Prozeduren CONT einzu-

setzen. Ob ein solcher Fall eintritt, hängt von verschiedenen
Umständen ab, die sich nicht immer konkret vorhersagen lassen.

Wenn es Ihnen passiert, daß das Programm in solchen Prozedu-

ren "hängenbleibt", ist es gut, daß Sie von dieser Möglichkeit

schon einmal gehört haben.

EDIT{ED} a Programm beenden

EDIT

Hat dieselbe Wirkung wie END (siehe dort). EDIT kehrt jedoch
ohne Vorwarnung direkt zum Editor (Interpreter) bzw. zur
Workbench (bei Kompilaten) zurück.

332 Das große GFA-BASIC-Buch ———

END Programm beenden

END

Bewirkt den Abbruch des aktuellen Programms. Variablen-
inhalte/offene Dateien bleiben im Interpreter bis zur nächsten

Programmänderung bzw. bis zum nächsten CLEAR erhal-
ten/geöffnet und können im Direktmodus weiter angesprochen
werden.

Das Programm kann danach nicht durch CONT fortgesetzt wer-
den. Im Interpreter-Betrieb erscheint eine Programm-Ende-Mel-
dung, nach der zum Editor zurückgekehrt wird. Kompilate keh-
ren ohne Ende-Meldung direkt zur Workbench bzw. zum auf-
rufenden Programm (siehe EXEC) zurück.

QUIT {Q } Programmende (Rückkehr zu CLI od. Workbench)

QUIT

QUIT [x] (nur V3.0)

QUIT ist identisch mit SYSTEM und bewirkt, daß das Pro-

gramm ohne jegliche Sicherheitsabfrage zur Workbench bzw.
(evtl. bei Kompilaten) zum Aufrufer (also dem CLI oder EXEC)
zurückkehrt.

In Version V3.0 kann in x ein 16-Bit-Wert angegeben werden,
der an das aufrufende Programm (über DO) zurückgegeben und
dann dort ausgewertet werden kann (siehe EXEC als Funktion).

Allgemeine Konvention:

x=0 Programm wurde korrekt - ohne Error - verlassen.

x>0 _BASIC-Fehler aufgetreten (ERR = 0 bis 109).

x<Q System-Fehler aufgetreten (ERR= -1 bis -67).

——— Programmkontrolle 333

Tritt ein System- oder BASIC-Fehler ein, könnte ggf. QUIT
ERR in einer Fehler-Abfangroutine (siehe ON ERROR GOSUB)
als Programmende eingesetzt werden. So "weiß" ggf. das auf-
rufende Programm, aus welchen Gründen das von ihm aufge-
rufene Programm beendet wurde.

RUN { RU } Programm starten

RUN

RUN ™Programmname"

Startet das aktuelle Programm neu. Dabei werden sämtliche Va-
rıablen und der Bildschirm gelöscht. RUN kann auch im Di-
rektmodus verwendet werden.

In der uns vorliegenden Version V3.0 kann ein Programmname
angegeben werden. Das angegebene Programm wird geladen und

automatisch gestartet (vgl. CHAIN).

STOP {ST} Programm unterbrechen

STOP

Mit STOP kann der Programmlauf an jeder Stelle unterbrochen
werden. Es erscheint eine ALERT-Box, durch die man das Pro-

gramm fortsetzen kann oder durch die man in den Direktmodus
gelangt.

Da keine Variablen gelöscht und keine Dateien geschlossen wer-
den, kann aus dem Direktmodus heraus durch Eingabe einzelner

Befehlszeilen schrittweise gearbeitet werden und anschließend
das Programm ggf. durch Eingabe von CONT im Direktmodus

. fortgesetzt werden (siehe CONT). Es kann auch zum Editor ge-

wechselt werden. Solange dort keine Zeilen verändert werden,

334 Das große GFA-BASIC-Buch ————

kann auch dann nach Rückkehr zur Direkt-Eingabeebene durch

CONT das Programm wieder aufgenommen werden.

Beispiel:

DO ı Endlos-Schleife

INC Aa ı Irgendeine Zählvariable +1

IF Aa>100 ! Variable größer 100?

CLR Aa I Variable löschen

STOP I Programmstop

ENDIF

PRINT Aa’! I Wert ausgeben

LOOP

SYSTEM {SYS} Programmende (Interpreter verlassen)

SYSTEM

SYSTEM [x]

Ist identisch mit QUIT (siehe Erläuterungen dort).

12.2 Löschfunktionen

CLEAR {CLE} Felder und Variablen löschen

CLEAR

Alle numerischen Variablen erhalten den Wert 0, alle String-Va-

riablen werden zu Leer-Strings. Felder werden gelöscht, und
ihre Dimensionierung wird aufgehoben. CLEAR darf nicht in
Prozeduren oder FOR/NEXT-Schleifen verwendet werden. Bei
Programmstart wird CLEAR automatisch ausgeführt.

_—— Programmkontrolle 335

CLR Einzelvariablen löschen

CLR Var [,Var%,Var$,...]

Es kann eine Liste von Variablen (keine Feldvariablen) über-
geben werden, deren Inhalte gelöscht werden sollen, z.B.:

CLR A$,B%,C,D!

entspricht:

A$="ı B%=0 C=0 D!=0

CLS Bildschirm löschen

CLS [#Kanal]

Löscht den Ausgabebildschirm bzw. das jeweils geöffnete Intui-
tion-Fenster und setzt den Cursor auf Home (linke obere Ecke).
Wenn durch die Option Kanal CLS in eine Diskettendatei ge-

schrieben wird, wird beim Lesen dieser Datei der Bildschirm

geléscht, sobald der Lesezeiger auf CLS trifft. Die Ausgabe
eines CHR$(12) mittels PRINT bewirkt das gleiche und wird
auch bei der Datei-Ausgabe verwendet.

NEW | Programmspeicher löschen

NEW

Löscht den BASIC-Arbeitsspeicher mitsamt dem Programm und
seinen Variablen. Der Speicher ist für neue Anwendungen frei.

336 Das große GFA-BASIC-Buch ————

12.3 Zeitoperationen

DATE$ Systemdatum ermitteln

Var$=DATE$

DATES="Datum-String" (nur V3.0)

DATE$ ist eine reservierte String-Variable, die dieses aktuelle

Systemdatum als Text-String im Format DD.MM.YYYY (D =
Tag/ M = Monat/ Y = Jahr) enthält. Es ist möglich, DATES ein
neues Datum in "Datum-String" zuzuweisen. Das Format dieses
Strings ist unter SETTIME beschrieben.

Wie Sie sicher wissen, kann im Programm Preferences der Work-
bench das aktuelle Datum eingegeben werden. Diese Angabe

wird systemintern ständig auf den aktuellen Stand gebracht. Ha-
ben Sie keine Veränderungen an dieser Einstellungen vorge-

nommen (siehe SETTIME), so erhalten Sie immer das jeweilig
auf der Workbench-Diskette abgespeicherte Datum, das nur bei
einer akkugepufferten Uhr in der Startup-Sequence neu gesetzt

werden kann.

DELAY { DELA } | 1/1-Sek.-Wartefunktion

DELAY Sekunden Version 3.0

Sekunden bestimmt, wie viele Sekunden das Programm pausieren
soll (sonst siehe PAUSE).

—— Programmkontrolle 337

PAUSE {PA} 1/50-Sek.-Wartefunktion

PAUSE Dauer

Dauer bestimmt in 50stel Sekunden, wie lange das Programm
pausieren soll. In dieser Zeit ist ausschlieBlich die Break-Funk-

tion aktiv.

Andere Aktivitäten (ON ERROR GOSUB, ON MENU xxxx
GOSUB, EVERY/AFTER GOSUB etc.) werden fiir die ange-
gebene Dauer eingestellt.

Das Problem der 16-Bit-Computer (der 32-Bit-Computer erst

recht) ist nicht mehr, daß sie so langsam sind und dadurch
zwangsläufig Pausen schaffen, sondern daß sie so schnell sind,
daß man ihnen manchmal eine kleine Verschnaufpause auf-
zwingen muß, um bestimmte Programmläufe überhaupt noch
kontrollieren zu können. In einigen Programmen finden Sie den
Begriff "kleine Klickpause". Er kennzeichnet, was gemeint ist.

Stellen Sie sich vor, Sie lassen eine Schleife mit der Abbruchbe-

dingung EXIT IFMOUSEK=1 enden, und ein daran an-
schließender Block wird nur betreten, IF MOUSEK=! ist. Selbst

wenn dazwischen noch weitere Zeilen liegen, ist der Computer

so schnell, daß der Mausklick zum Verlassen der Schleife
gleichzeitig als Bedingungs-Erfüllung für den Eintritt in den IF

MOUSEK=1-Block gewertet wird. Damit der Benutzer des Pro-

gramms in solchen Fällen Zeit hat, die Maustaste wieder loszu-
lassen, legt man zwischen die beiden Bedingungen eine kleine
Pause (z.B. PAUSE 5), die dann im Pogrammverlauf von einem
"Unwissenden" gar nicht bemerkt wird.

338 Das große GFA-BASIC-Buch ————

SETTIME { SETT } Uhrzeit und Datum einstellen

SETTIME Zeit$,Datum$

In Zeit$ und Datum$ werden die neue Systemzeit und das neue
Systemdatum bestimmt. Es müssen beide Strings übergeben wer-
den. |

Europa-Format:

Zeit$ = "hh:mm:ss" oder "hhmnss"

Datum$ = "dd.mm.yyyy" oder "dd.mm.yy"

USA-Format (nur in V3.0 - siehe MODE):

 ZeitS = "hh:mm:ss" oder "hhmmss" (wie oben)
Datum$ = umm/dd/yyyy" oder "mm/dd/yy"

Die Jahresangabe kann auch zweistellig erfolgen (z.B. 86 fiir
1986), falls es sich um eine Angabe zwischen 1980 und 2079
handelt. Bei der Zeitangabe können die Sekunden (ggf. inkl.
Doppelpunkt) weggelassen werden. Die Sekunden werden dann

auf Null gesetzt, z.B.:

SETTIME "15:37", = > verändert nur die Uhrzeit

SETTIME "15:37:22","15.07.88" = > verändert beide Einträge

SETTIME "","15.07.1988" = > verändert nur das Datum

Wird das Format nicht korrekt eingehalten, werden die Angaben
ignoriert, und der alte Inhalt wird unverändert beibehalten. Die
Sekunden der Zeitangabe werden übrigens nur in Zweierschrit-
ten (0, 2, 4, 6 etc.) übernommen, ungerade Angaben werden auf
die nächsthöhere gerade Zahl "gerundet".

— Programmkontrolie 339

TIME$ System-Uhrzeit ermitteln

Var$=TIME$

TIME$="Zeit-String"

TIME$ ist eine reservierte String-Variable, die die aktuelle
Uhrzeit als Text-String im Format hh:mm:ss (h = Stunde/m =
Minute/s = Sekunde) enthält. In V3.0 ist es möglich, TIMES eine
neue Uhrzeit in Zeit-String zuzuweisen. Das Format dieses
Strings ist unter SETTIME beschrieben. Die Sekunden der
Zeitangabe werden übrigens in Zweierschritten erhöht.

Im GFA-Editor der V3.0 ist dies die Zeitangabe, die Sie rechts

oben auf dem Bildschirm sehen. Für Dauer-Computerer (wie
mich) wäre es übrigens sicher angebracht gewesen, zusätzlich
noch eine Weck-Zeit-Eingabe zu installieren, damit man nicht
das Schlafengehen "verschläft". Bei mir müßte dann allerdings

nach Erreichen der Weckzeit ein Guru eingebaut werden, da ich
bis jetzt jedes gesetzte Zeitlimit um Längen geschlagen habe.

TIMER Laufzeit ermitteln

Var=TIMER

Reservierte Variable. Enthält die seit Systemstart verstrichene
Zeit in 200stel Sekunden.

Der Amiga verfügt über einen Zeit-Zähler, der alle 1/200stel
Sekunden um 1 erhöht wird. Dieser Zähler beginnt zum Zeit-
punkt des Systemstarts bei Null und erhöht sich also in jeder Se-
kunde um den Wert 200. Dabei ist es unerheblich, ob zwischen-
zeitlich irgendwelche Anwendungen ausgeführt werden. Der
Zähler orientiert sich an dem konstant bleibenden Takt des
Prozessors. D.h. also, daß Sie anhand dieses Zählers exakt fest-

stellen können, wieviel Zeit seit dem Systemstart vergangen ist.
Außerdem läßt sich dieser TIMER hervorragend dazu ver-

340 Das große GFA-BASIC-Buch ————

wenden, von einer bestimmten Zeitdauer abhängige Arbeiten
ausführen zu lassen oder die Zeitdauer bestimmter Prozesse zu

messen (Benchmark-Tests).

Beispiel 1 (Zeitanzeige):

Time=Timer ! Timer puffern
Do ! Endlos-Schleife

X%=(Timer-Time)/200 ! Differenz in Sekunden

Print At(10,10);RightS(String$(3, "0")+Str$(X%),3);" Sek."
Loop

Beispiel 2 (Zeitmessung):
Time=Timer
Print "20000er Integer-FOR..NEXT-Leerschleife: ";

For 1%=0 To 20000
Next 1%

Print (Timer-Time)/200;" Sek."

Time=Timer

Print "20000er Real-FOR..NEXT-Leerschleife: ";
For I=0 To 20000

Next I

Print (Timer-Time)/200;" Sek."

Time=Timer

Print "20000er Integer-REPEAT..UNTIL-Leerschleife: ";

Clr 1%

Repeat

Inc 1%

Until 1%=20000
Print (Timer-Time)/200;" Sek."
Time=Timer

Print '"20000er Integer-DO..LOOP-Leerschleife: ";

Clr 1%
Do

Inc 1%

Exit if 1%=20000
Loop

Print (Timer-Time)/200;" Sek."

Beispiel 3 (Quasi-Multitasking):
Print "Bitte <Tasten> drücken"

Graphmode 3 I XOR-Modus für Auf/Zu-Box
Do

Key$=Inkey$ i Tatstatur abfragen

If Keys>Hu I Taste gedrückt?

Print Key$; | I Zeichen ausgeben
Endif
If Timer Mod 100=0 I Jede 1/2 Sekunde

For 1%=10 To 100 Step 6 ! .
Box 110-1%,110-1%, 120+1%, 120+1% Parallelprozeß-

Next 1% — Prozeß

For 1%=100 To 10 Step -6 laufen lassen

——— Programmkontrolle 341

Box 110-1%,110-1%,120+1%, 120+1% |

Next I% ! i

Endif

Loop

12.4 Fehlerbehandlung

ERR Fehler-Code ermitteln

Var=ERR

ERR ist eine reservierte Variable, die nach Auftreten eines

Fehlers seine Identifikationsnummer enthält. Siehe Fehlerliste ım

Anhang.

|
| ERRS Fehlertext liefern

Var$=ERR$(Index) Version 3.0

Die Funktion ERR$ liefert in V3.0 den Text der Fehlermeldung,
deren Fehlerindex angegeben wurde.

ERROR {ER} Fehler simulieren

ERROR Fehlernummer

Fehlernummer steht für die Identifikationsnummer des zu simu-

lierenden Fehlers.

Es wird entweder die entsprechende Fehlermeldung ausgegeben
und das Programm beendet, oder es wird - wenn ON ERROR

GOSUB aktiv ist - zu der dort angegebenen Prozedur verzweigt.

342 Das große GFA-BASIC-Buch ———

FATAL Fehlerart ermitteln

Var=FATAL

Reservierte Variable. Es wird eine Unterscheidung zwischen
"Normal"- und "System-Fehler"-Fehlern getroffen. Ist ein
"System-Fehler" aufgetreten (Adresse des zuletzt ausgeführten
BASIC-Befehls ist nicht mehr bekannt), enthält sie eine -1. Bei
allen anderen Fehlern enthält sıe eine 0.

0 -- Allgemeiner BASIC-Fehler. Die Variablen- und Label-
Adressen sowie der GOSUB-Stapel sind intakt.

-1 -- Fataler Systemfehler. Die Adressenlage ist zerstört, was
normalerweise eine Guru-Meditation zur Folge hat. In
GFA-BASIC wird versucht, diese Fehler ebenfalls ab-
zufangen, da das System bei den "normalen" System-Errors

_ die Registerinhalte in einen besonderen Bereich rettet, der
- falls kein Total-Absturz eingetreten ist - zur Re-Initia-
lisierung wieder ausgelesen werden kann.

ON ERROR [GOSUB] Verzweigung bei renter |

ON ERROR GOSUB Prozedur

ON ERROR

Verzweigt im ersten Fall zur der angegebenen Prozedur, sobald
ein System- oder BASIC-Fehler auftritt. In diesem Fall wird
keine Fehlermeldung ausgegeben, sondern das Error-Handling
wird dem Programmierer überlassen. So ist es möglich, anhand
der Fehlernummer ERR (und ERR$) eigene Fehlermeldungen
auszugeben oder das Programm - Ihren Vorstellungen und dem
aktuellen Error entsprechend - weiterverzweigen oder einfach
fortfahren zu lassen (siehe RESUME).

——— Programmkontrolle 343

Wurde zu einer Fehler-Routine verzweigt, schaltet der Inter-
preter die Fehlerbehandlung nach Abarbeiten der Prozedur wie-
der in den Normalmodus zurück. Soll also wieder ON ERROR
GOSUB aktiviert werden, so muß in der Abfangroutine vor dem

RESUME-Sprung erneut eine/die Fehlerroutine angegeben wer-
den.

Die zweite Syntaxvariante schaltet den normalen Error-Modus
wieder ein. Es erscheint bei Errors also wieder die übliche Feh-
lermeldung (in Kompilaten entsprechende OPTION einsetzen!)

und das Programm wird daran anschließend abgebrochen.

In der vorliegenden Version 3.0 kann der Befehlsteil GOSUB
weggelassen werden. Er wird vom Editor selbständig eingefügt.

Beispiel unter FATAL.

RESUME { RESU } Programm nach Error-Routine fortsetzen

RESUME => Nach Error-Routine Programmfortsetzung mit Wiederholung

der fehlerhaften Zeile.
RESUME NEXT => Nach Error-Routine Programmfortsetzung mit der Zeile,

die der fehlerhaften Zeile folgt.

RESUME Label => Nach Error-Routine Programmfortsetzung mit der

angegebenen Label-Zeile.

Bestimmmt, mit welcher Programmzeile das Programm nach

Auftreten eines selbst verwalteten Fehlers (siehe ON ERROR
GOSUB) fortgesetzt werden soll. RESUME ist nur innerhalb von
Prozeduren zulässig. Sinnvollerweise wäre das eine Fehlerbe-
handlungsroutine, aber es ist auch möglich, RESUME Label als
GOTO-Sprung aus einer Prozedur heraus zu mißbrauchen.
GOTO selbst ist ja aus Prozeduren heraus nicht erlaubt, z.B.:

Label: ! Sprung-Label
Print 111 I PRINT irgendwas

aRoutine ! Routine aufrufen

Procedure Routine

Resume Label ! Sprung zum Label
Return

344 Das große GFA-BASIC-Buch ————

Befindet sich bei der Label-Variante das angegebene Label
außerhalb der Routine, in der das RESUME- Label steht, wird

grundsätzlich der GOSUB-Sprungstapel gelöscht, und alle glo-
balen Variablen werden restauriert.

Nach FATAL-Errors (siehe FATAL) ist ausschließlich RESUME
Label zu verwenden. RESUME NEXT und RESUME könnten ın

diesem Fall evtl. zum Absturz führen.

Ein Beispiel finden Sie unter FATAL.

12.5 Auskünfte

CRSCOL Aktuelle Cursor-Spalte liefern

Var=CRSCOL

Reservierte Variable, die die Cursor-Spalte des Windows enthält,

in der sich der Cursor aktuell befindet (CRSCOL = CuRSorCO-
Lumn).

Im Gegensatz zur Funktion POS(), die die zeilenbezogene Cur-
sor-Position liefert, kann mit CRSCOL die Spaltenposition des

Cursors auf dem Bildschirm (Hires/Lowres: 1 - 80/ 1 - 60) er-
mittelt werden. In Verbindung mit CRSLIN bildet CRSCOL das
Gegenstück zu PRINT AT(S,Z). Ein Beispiel hierzu finden Sie
unter CRSLIN.

CRSLIN Aktuelle Cursor-Zeile liefern

Var=CRSLIN

Reservierte Variable, die die TOS-Cursor-Zeile enthält, in der
sich der Cursor aktuell befindet (CRSLIN = CuRSorLINe).

—— Programmkontrolle - 345

CRSLIN liegt beim Standard-Font in allen Auflösungen immer
ım Bereich von 1 - 25. Wenn Sie in Hires die Prozedur Sysfont
(siehe ASC()) mit Font = 1 einsetzen, liegt CRSLIN im Bereich
von | - 50.

In Verbindung mit CRSCOL bildet CRSLIN das Gegenstück zu
PRINT AT(S,Z). |

Beispiel 1:

FOR i=1 TO 500 ! 500mal
PRINT "CRSCOL/CRSLIN-Test "; ! Text ausgeben
IF CRSCOL>50 ! Cursor hinter 50. Spalte?

PRINT ! Dann neue Zeile
ENDIF
IF CRSLIN=25 | ! Cursor in unterster Zeile

CLS ! Dann Bildschirm löschen
ENDIF

NEXT i

Beispiel 2:

a$="TEXT RÜCKWÄRTS"
PRINT AT(37,1); Cursor positionieren
DO Zeilen-Schleife

PRINT AT(37,CRSLIN+1); Cursor neu positionieren
DO Spalten-Schleife

PRINT ATC(CRSCOL-2,CRSLIN);

PRINT MID$(a$, (36-CRSCOL),1);
EXIT IF CRSCOL<22

Cursor 2 Spalten nach links
Zeichen ausgeben

Cursor vor der 22. Spalte =
Exit

LOOP
EXIT IF CRSLIN>23 ! Cursor unter 23. Zeile = Exit

LOOP

FRE() Freien Speicherplatz ermitteln

Var=FRE (Dummy)

Var=FRE()

Es wird eine Garbage-Collection (Müll-Sammlung) durchgeführt
und anschließend die Größe des noch freien Speichers geliefert.
Dummy ist ein Integerwert ohne Bedeutung.

346 - Das groBe GFA-BASIC-Buch ———

Der Interpreter sorgt sich ständig um den verbleibenden Spei-
cherplatz. Dazu werden intern die nicht mehr benötigten Vari-

ablenbereiche (z.B. gelöschte String-Variablen und Felder) er-
mittelt, entfernt und die benachbarten Speicherbereiche zu-
sammengeschlossen. Diese Arbeit wird vom BASIC sporadisch
erledigt. Zu erkennen ist sie manchmal an kurzen "Aussetzern",

bei denen man den Eindruck bekommt, daß das Programm für
eine 10tel Sekunde "stottert".

Um diese Garbage-Collection gezielt einsetzen zu können, kann
FRE() verwendet werden, auch wenn man am verbleibenden

Speicherplatz gar nicht interessiert ist. Ratsam ist der Einsatz
von FRE() vor allem direkt vor einer Abfrage von Vari-
ablenadressen durch VARPTR() oder ARRPTR(), da die

Adreßlage der Variablen (vor allem der Strings) durch eine zwi-
schenzeitlich intern ausgeführte Garbage-Collection verschoben
worden sein kann.

In der Amiga-Version 3.0 ist Dummy optional. Wird eine Leer-
klammer angegeben, wird vor der Speicherplatz-Ermittlung
keine Garbage-Collection durchgeführt.

TYPE() Variablentyp ermitteln

Var=TYPE(Pointer)

Pointer steht für einen *-Pointer (z.B. PRINT TYPE(*Var%)). Es
wird der Typ der dadurch repräsentierten Variablen geliefert.

Type:

V
P
R
O
D
-
O
 —
 = Fehler aufgetreten

= Realzahlvariable (Var)

= String-Variable (Var$)

= 4-Byte-Integervariable (Var%)

= Boolesche Variable (Var!)

= Real-Feldvariable (Var())

= String-Feldvariable (Var$())

——— Programmkontrolle 347

6 = 4-Byte-Integer-Feldvariable (Var%())

7 = Boolesche Feldvariable (Var!())

Ab hier nur fiir V3.0:

8 = 2-Byte-Integervariable (Var&)

9 = 1-Byte-Integervariable (Var |)

2 = 2-Byte-Integer-Feldvariable (Var&())

3 = 1-Byte-Integer-Feldvariable (Var | ())

Beispiel:

A=10.1
AS=""ABC"
A%=10
Al=-1 |
Print Type(*A) 'Type(*AS) 'Type(*A%) 'Type(*A!)

Ein weiteres Beispiel finden Sie unter * (Pointer).

12.6 Multitasking

AFTER x GOSUB { AF} Single-Interrupt-Routinenaufruf

AFTER Ticks [GOSUB] Prozedur | Version 3.0

Ruft nach Ticks Zeiteinheiten (1 Sekunde = 200 Ticks) die an-
gegebene Prozedur einmal auf. Der Befehl wird jedoch - gene-

rell - immer erst nach vollständiger Abarbeitung eines BASIC-
Befehls ausgeführt. Wenn z.B. durch SOUND x,x,x,x,Dauer,

PAUSE, DELAY, INP() INPUT, BLOAD etc. die Program-
mausführung unterbrochen wird, so wird der Sprung zur ange-

gebenen Prozedur ggf. erst bei Wiederaufnahme des Programms
wirksam. Beispiel:

AFTER 100 GOSUB abc ! AFTER-Aufruf
t%=TIMER
INPUT a$! AFTER-Ausführung wird unterbrochen

DO

LOOP

348 Das große GFA-BASIC-Buch ————

PROCEDURE abc
PRINT "AFTER 100 GOSUB erst nach ";TIMER-t%;

PRINT " Ticks ausgeführt"

END
RETURN

Anmerkung: Es ist bisher nicht möglich, mehrere AFTER-In-
terrupt-Anweisungen gleichzeitig zu verarbeiten.
Die zuletzt verfügte AFTER GOSUB- bzw.
EVERY GOSUB-Anweisung hebt also die vorange-
gangene auf.

Beispiel:

AFTER 1000 GOSUB aa ! Erster Aufruf

AFTER 400 GOSUB bb ! Zweiter Aufruf

DO Endlos-Schleife

LOOP

PROCEDURE aa I Prozedur für ersten Aufruf

PRINT 11111

RETURN

PROCEDURE bb I Prozedur für zweiten Aufruf

PRINT 22222

RETURN

Hier im Beispiel wird nur einmal nach zwei Sekunden die Pro-

zedur des zweiten Aufrufs angesprungen. Der erste Aufruf ist
durch den zweiten ungültig geworden. PRINT 11111 wird also
nicht mehr ausgeführt.

Es gibt allerdings die Möglichkeit, aus einer AFTER x GOSUB-
Anweisung eine zweite EVERY x GOSUB-Anweisung zu ma-
chen. Dazu muß ganz einfach die entsprechende AFTER x
GOSUB-Prozedur vor ihrem RETURN wieder neu initialisiert
werden. Dabei ist zu beachten, daß so nicht der gleiche regel-
mäßige Rhythmus wie bei EVERY zu erreichen ist, da ja die
Initialisierung selbst immer wieder Zeit ın Anspruch nimmt.
Eine solche - zu EVERY zusätzliche - Interrupt-Schleife ist je-

doch in den meisten Fällen besser als keine.

——— Programmkontrolle 349

Beispiel:

AFTER 60 GOSUB proc1 I AFTER initialisieren
EVERY 100 GOSUB proc2 ! EVERY initialisieren
DO ! Endlos-Schleife
LOOP
PROCEDURE proci ! AFTER-Prozedur

PRINT "AFTER-Procedure"
AFTER 60 GOSUB proc1 I AFTER neu initialisieren

RETURN
PROCEDURE proc2 ! EVERY-Prozedur

PRINT "EVERY-Procedure"
RETURN

AFTER CONT { AF CONT }Single-Interrupt-Routine freigeb.

AFTER CONT Version 3.0

Setzt nach AFTER STOP die Single-Interrupt-Kontrolle fort.
Weiteres siehe AFTER STOP.

AFTER STOP { AF STOP } Single-Interruptroutine sperren

AFTER STOP Version 3.0

Unterbricht die Single-Interruptkontrolle. Durch AFTER STOP
kann veranlaßt werden, daß die Ausführung der aktuellen AF-
TER x GOSUB-Prozedur solange verzögert wird, bis wieder
AFTER CONT verfügt wird. Wird AFTER CONT nicht einge-
setzt, so bleibt AFTER x GOSUB bis zum Programmende in-
aktiv - es sei denn, durch einen neuen AFTER x GOSUB wurde

ein neuer Timer gesetzt.

Z.B. soll nach 3 Sekunden eine AFTER-Procedure angesprungen
werden. Die Ausführung wird jedoch nach 2 Sekunden durch
AFTER STOP unterbrochen und nach weiteren 2 Sekunden
durch AFTER CONT wieder zugelassen, so wird AFTER x
GOSUB erst nach diesen 4 Sekunden ausgeführt, obwohl die

350 Ä Das große GFA-BASIC-Buch ——

Zeitspanne von 3 Sekunden schon verstrichen ist. Weitere AF-

TER CONT-Aufrufe für denselben Prozeß haben dann keine

Wirkung mehr, da die Routine nur einmal ausgeführt wird.

Beispiel:

t%=TIMER

AFTER 600 GOSUB proci i Nach 3 Sekunden
PRINT "AFTER 600 GOSUB ist aktiv"

EVERY 400 GOSUB proc2 I Alle 2 Sekunden
DO ! Endlos-Schleife
LOOP

PROCEDURE proc1
PRINT "AFTER 600 GOSUB nach ";(TIMER-t%);" Ticks ausgeführt!"

EDIT

RETURN

PROCEDURE proc2
a%=a% XOR 1 ı A% als Wechsel-Flag (1/0)

IF a%=1

PRINT "AFTER 600 GOSUB unterbrochen!"

AFTER STOP ! AFTER GOSUB unterbrechen

ELSE

PRINT "AFTER 600 GOSUB wieder aufgenommen!"

AFTER CONT ! AFTER GOSUB fortsetzen

ENDIF

RETURN

EVERY x GOSUB { EV} Interrupt-Routinenaufruf

EVERY Ticks [GOSUB] Prozedur

Ruft ständig nach Ablauf von Ticks Zeiteinheiten (1 Sekunde =
200 Ticks) die angegebene Prozedur auf. Der Befehl wird jedoch
- generell - immer erst nach vollständiger Abarbeitung eines
BASIC-Befehls ausgeführt. Wenn z.B. durch SOUND

X,x,x,x,Dauer, PAUSE, DELAY, INP() INPUT, BLOAD etc. die

Programmausführung unterbrochen wird, so wird der Sprung zur
angegebenen Prozedur ggf. erst bei Wiederaufnahme des Pro-
gramms wirksam.

GFA-Fans mußten lange auf diesen Befehl warten. Beachten Sie
außerdem die Anmerkung zu AFTER GOSUB.

——— Programmkontrolle 351

Beispiel:

Every 50 Gosub Multi I Interrupt initialisieren
Print At(1,3);"Bitte Text eingeben und mit Maus zeichnen."
Print "(Die Zeit-Datum-Anzeige kann durch Klick";
Print "gedffnet und dann geändert werden.)"

Do ! Endlos-Schleife

Keytest A% I Tastatur abfragen

If (A% And 255) ! ASCII-Taste gedrückt?

Out 5,A% And 255 i ASCII über Console ausgeben

Endif
If Mousek ! Maustaste gedrückt?

Repeat ! Box-Schleife
Box Mousex, Mousey, Mousex+10,Mousey+10

Until Mousek=0 I Bis Maustaste losgelassen

Endif
Loop

Procedure Multi i EVERY-Prozedur
Every Stop ! EVERY unterbrechen (siehe unten)
Gosub Timdat(1,1,1) I Zeit-Prozedur aufrufen

Every Cont I EVERY fortsetzen (siehe unten)

Return

Die in diesem Beispiel verwendete Zeit-Routine Timdat finden
Sie unter SETTIME beschrieben. Sıe ist ın dieses Demo-Pro-

gramm vor Start einzubinden.

Hier können Sie einen Effekt beobachten, der mich fast zur
Verzweiflung getrieben hat. Ich wußte genau, daß die Timdat-
Routine einwandfrei funktionierte. Als ich den Timdat-Aufruf

in die Multi-Prozedur blauäugig eingebunden hatte, war ein

Probelauf fällig ---!!!--- und es funktionierte gar nichts mehr
oder immer, wenn ich das Datum oder die Zeit ändern wollte,

brach das Chaos aus.

Ich durchsuchte Timdat nach möglichen Fehlern und suchte und

suchte... Als ich dann genug gesucht hatte, überprüfte ich mit

TRON den Programmlauf. Da die Interrupt-Prozeduren von

TRON ausgeschlossen werden (!), konnte ich so auch nichts er-
kennen. Nach einiger - haareraufend verbrachter - Zeit kam mir
der Geistesblitz, daß ja die Timdat-Routine auch dann immer
wieder durch EVERY aufgerufen wird, wenn man innerhalb
von Timdat gerade mit der Zeit- oder Datumseingabe beschäf-
tigt ıst. Daraus entstand - quası rekursiv - das Durcheinander.

352 Das große GFA-BASIC-Buch ———

Erst als ich vor dem Timdat-Aufruf EVERY STOP und danach

EVERY CONT einsetzte, klappte alles wieder so, wie es sollte.

EVERY CONT { EV CONT } Interrupt-Routine freigeben

EVERY CONT Version 3.0

Nimmt nach EVERY STOP die EVERY-Interrupt-Kontrolle

wieder auf. EVERY GOSUB wird wieder ausgeführt.

EVERY STOP { EV STOP } Interrupt-Routine sperren

EVERY STOP Version 3.0

Unterbricht die EVERY-Interrupt-Kontrolle. EVERY GOSUB

wird nicht mehr ausgeführt. Fortsetzung erst wieder durch
EVERY CONT.

12.7 Debugging

| DUMP { DU } Variableninhalte/Namen ausgeben

DUMP [Defstring$] [TO Datei$] Version 3.0

Wird DUMP ohne Optionen verwendet, werden die Inhalte aller

Variablen sowie die Dimensionierungen aller Felder ausgegeben.

In Deftsring$ kann optional eine nähere Spezifikation angegeben
werden:

———— Programmkontrolle 353

‘a" Die Inhalte aller Variablen sowie die Dimensionierungen
aller Felder, deren Name mit a beginnt, werden ausge-

geben.

Alle Label-Namen sowie ihre Zeilennummer werden

ausgegeben.

"a" Alle Label-Namen, die mit a beginnen, sowie ihre Zei-

lennummer werden ausgegeben.

"@" Alle Prozedur- und Funktionsnamen sowie thre Zeilen-

nummer werden ausgegeben.

"@a" Alle Prozedur- und Funktionsnamen, die mit a begin-

nen, sowie ihre Zeilennummer werden ausgegeben.

Ausgegebenen Prozedurnamen wird als Kennung @ angehängt,

sowie dahinter - falls die Prozedur im aktuellen Programm noch

existiert - die Nummer der Zeile, in der die Prozedur beginnt.
Dasselbe geschieht bei Namen noch existierender Funktionen.
Diese erhalten jedoch als Kennung ein FN. Die Namen von
String-Funktionen werden zusätzlich noch mit einem $ gekenn-

zeichnet.

Prozeduren, Funktionen und Label, die definiert waren und
wieder aus dem Programm gelöscht wurden, werden ohne Zei-

lennummern dargestellt. Dagegen sind nicht mehr existierende
Variablennamen - die ebenfalls ausgegeben werden, solange sie

noch in der internen Liste stehen - auf den ersten Blick nicht zu
erkennen. Das einzige Merkmal ist, daß sie keinen Inhalt haben
(0 bzw. ""), was jedoch bei noch existierenden Variablen ebenso
der Fall sein kein.

Durch Save, A, New und anschließendes Merge werden die

überflüssigen Namen aus der internen Referenzliste entfernt.

Bei String-Variablen werden max. 60 Zeichen ihres Inhalts aus-
gegeben, die dann in " (Anführungszeichen) eingeschlossen sind.

354 Das große GFA-BASIC-Buch ————

Ist der Inhalt länger als 60 Zeichen, steht am Textende das Zei-
chen >. Enthält der String Zeichen mit einem ASCII-Wert unter

32, werden diese Zeichen durch einen Punkt . repräsentiert. Es

kann außerdem - unabhängig von der Option Deftstring$ - hin-

ter dem Zusatz TO in Datei$ der Name einer Datei angegeben
werden, in die dann die DUMP-Ausgaben umgeleitet werden.
Diese Datei erhält - sofern keine andere angegeben wird - die
Extension .DMP., ggf. schon existierende .DMP-Dateien gleichen
Namens erhalten die Backup-Extension .BAK.

TRACE$ Im Trace-Modus aktuelle Befehlszeile liefern

Var$=TRACE$ Version 3.0

Innerhalb der durch TRON Proc bestimmten Prozedur kann

durch die reservierte Variable TRACE$ der Text der aktuellen

Programmzeile vor ıhrer Ausführung ermittelt werden. Außer-
halb dieser Prozedur ist TRACE$ ohne Inhalt.

Ein Beispiel zu TRACE$ finden Sie unter TRON Proc.

TROFF { TROF } Trace-Modus ausschalten

TROFF

Im Anschluß an TROFF ist das Programm wieder im normalen
Ausfiihrungsmodus. TRON - sowie TRON Proc in Version V3.0
- werden ausgeschaltet. TROFF innerhalb einer TRON-Proc-

Routine hat keine Wirkung.

———— Programmkontrolle 355

TRON Proc {TR} Trace-Modus in Prozedur lenken

TRON Prozedurname Version 3.0

Dies ist eine V3.0-Variante des bekannten TRON-Befehls. Sie
lenkt den Trace-Modus in die durch Prozedurname angegebene
Prozedur um. Dabei wird nicht - wie bei TRON sonst üblich -
automatisch die aktuelle Befehlszeile ausgegeben, sondern es
kann beliebig auf die durch TRACE$ ermittelte, als nächstes
auszuführende Befehlszeile oder ggf. auf die durch DUMP er-
mittelten Variableninhalte reagiert werden.

Auch TRON Proc wird ggf. durch TROFF deaktiviert.

Möchten Sıe eine Debugging-Routine selbst schreiben, so kann
Ihnen TRON Proc dabei nicht helfen, denn sowohl die Inter-
rupt-Routinen AFTER x GOSUB und EVERY x GOSUB als.
auch die hier angegebene Debugging-Prozedur werden von der
TRACE$-Ausgabe ausgeschlossen.

12.8 Diverses

$ Textbereich fiir V3.0-Compiler deklarieren

$ Text Version 3.0

Deklariert beliebige Programmzeilen als Textspeicher zur Weiter-
verarbeitung durch den V3.0-Compiler. Im Interpreter-Betrieb
wird eine solche Zeile wie REM bzw. ’ behandelt. Nähere In-

formationen sind erst mit Erscheinen des V3.0-Compilers zu er-
warten.

356 Das große GFA-BASIC-Buch ——

| |
DEFLIST { DEFLIS } Listing-Format festlegen

DEFLIST Format

Format:

0 Befehlsnamen werden groß, Variablennamen klein ge-

schrieben (PRINT var$). In V3.0 wird beı global dekla-
rierten Variablennamen das Postfix vernachlässigt (Postfix
siehe DEFxxx-Befehle DEFBYT etc.).

1 Anfangsbuchstaben von Befehls- und Variablennamen

werden groß geschrieben (Print Var$). In V3.0 wird bei
global deklarierten Variablennamen das Postfix vernach-

lässigt.

DEFLIST kann nur ım Interpreter-Direktmodus verwendet wer-

den.

DEFNUM { DEFN } Rundung von Ziffern-Ausgaben

DEFNUM Stelle

Stelle gibt die Ziffernstelle an (3 - 13), auf die alle folgenden -
durch PRINT etc. - auszugebenden Werte gerundet werden sol-

len. Diese Einstellung wird erst durch den nächsten DEFNUM-
Befehl verändert. Durch Angabe der maximalen Stellenanzahl

(13) wird die normale Werteausgabe wieder angeschaltet.

Bei Realzahlen wird der Vorkomma-Anteil, der ggf. hinter Stelle
liegt, als Nullen ausgegeben. Liegt Stelle im Nachkommabereich,
werden alle dahinterliegenden Nachkommastellen ignoriert, bzw.

die nächste Stelle hinter Stelle wird zur Rundung verwendet.

——— Programmkontrolle 357

Die Rundung erfolgt mathematisch exakt (Int(A+0.5)). In diesem

Format ausgegebene Variableninhalte bleiben von DEFLIST un-

berührt. Die interne Rechengenaugkeit wird hierdurch nicht be-
einträchtigt. Beispiel:

a=RANDOM(1000000)+RND
PRINT "Originalwert: ";a;CHR$(10)
FOR i%=3 TO 11

DEFNUM i%
PRINT a,"DEFNUM ";i%

NEXT i%

FALSE Unwahr-Konstante |

Var=FALSE

Reservierte Variable. Enthält konstant den Un-Wert 0.

LET{LE} Daten zuweisen |

LET Var=Wert

LET Var$=Text

Es wird Wert bzw. Text der angegebenen Variablen zugewiesen.
Der LET-Befehl ist eigentlich überflüssig, da es bei Variablen-
namen keine Einschränkungen (außer PI, ERR, FATAL, TIMER
etc.) mehr gibt und so die Variablen von der Syntax her deutlich
sind. Hier hat LET nur noch den Zweck der Kompatibilität zu

den BASIC-Dialekten (z.B. AmigaBASIC), deren Programme
man durch Merge in den GFA-Arbeitsspeicher laden kann.

358 Das große GFA-BASIC-Buch ———

MODE { MOD } Zahlen/Datum -> Europa/USA wählen

MODE Modus Version 3.0

In der Grundeinstellung werden in GFA-BASIC durch PRINT
USING Werte im Europa-Format ausgegeben. D.h. ggf., daß als

Tausendertrennung ein Komma und als Dezimaltrennung ein
Punkt verwendet wird. In den USA gelten die umgekehrten
Konventionen. Ähnliches gilt für die Darstellung des Datums
(siehe SETTIME).

Modus ist als 2-Bit-Vektor anzusehen, dessen Bit 0 die Darstel-

lung des Datums durch DATE$ und FILES bzw. über das Ein-
gabeformat des Datums bei SETTIME und DATE$= bestimmt.
Bit 1 entscheidet über die zu verwendende Art der Werte-Dar-
stellungsart bei PRINT USING-Ausgaben bzw. bei Verwendung
von STR$().

Modus USING DATES

&X00 FETTE? 25.05.1988
&X01 # HHH HH 05/25/1988
&X10 HHH HEH 25.05.1988
&X11 HAE HE 05/25/1988

TRUE | Wahr-Konstante

Var=TRUE

TRUE ist eine reservierte Variable, die konstant den Wert -1

enthält. Bei verschiedenen Funktionen (z.B. EXIST) wird ein
Wahrheitswert zurückgegeben. Zur besseren Ubersichtlichkeit
kann bei Bedingungsabfragen dieser Art, beı Bit-Flag-Verwal-
tung oder Zuweisungen etc. statt des Wertes -1 die Konstante
TRUE verwendet werden (siehe auch FALSE).

m Programmkontrolle 359

Beispiel 1:

FILESELECT "FileBox","Laden","SYS:", FS i Datei wahlen

IF EXISTCF$)=TRUE i Datei auf Disk?

. weiteres

. Programml

Beispiel 2:

DO ! Endlos-Schleife

IF MOUSEK=1 ! Linke Maustaste gedrückt?

bitflag!=bitflag! XOR TRUE ! Flag bei jedem Mausklick

i Abwechselnd an- und ausschalten

onof #%=ABS(bi tf Lag! =TRUE) ! Ergibt: An = 1/Aus = 0

PRINT AT(1,1);RIGHTSC"an ", 3*onof f%)

PRINT AT(1,1);RIGHTS("“aus", 3*ABS(onof f%=FALSE))

PAUSE 6 I Kleine Klickpause
ENDIF

CIRCLE MOUSEX*onoff%, MOUSEY*onof f%, 10*onof f%
LOOP

Vielleicht können Sie im obigen Beispiel auf Anhieb nicht viel
mit den beiden PRINT-Zeilen anfangen. Dadurch, daß ich eine

Wahrheitsabfrage in die Zeilen mit einbaue, erspare ich mir eine

entsprechende IF-Abfrage. Die Variable Onoff% enthält, je

nachdem, ob das Bitflag! -1 oder O ist, den Wert I oder 0. Mit

der RIGHT$-Konstruktion lasse ich nur dann die Ausgabe des

Strings zu, wenn der Wert 3 (Länge des Strings) mit 1 multipli-

ziert wird. Steht in Onoff% der Wert Null, ist die zu ermittelnde

RIGHT$-String-Lange ebenfalls Null und es wird kein String
ausgegeben.

Im Normalverfahren würde die Konstruktion so aussehen:

IF Bitflag!=TRUE

PRINT AT(1,1);"an "

ELSE

PRINT AT(1,1); "aus"

ENDIF

360 Das große GFA-BASIC-Buch ————

SWAP { SW} Variablen/Felder/Pointer tauschen

SWAP Vari,Var2

SWAP Element(x),Element(y)

SWAP Feld1(), Feld2¢)
SWAP *Pointer, Feld()

Dies ist der SWAP-Befehl, in V3.0 gibt es SWAP() auch als

Funktion. SWAP tauscht die Inhalte zweier gleichartiger Variab-
len, Felder oder Feldelemente (numerische oder alphanumeri-

sche) bzw. einen Zeiger auf einen Feld-Descriptor (siehe *) mit
dem Descriptor des angegebenen Feldes (Feldübergabe an Proze-

duren). Bei Feldern wird auch die Dimensionierung vertauscht.
Es ist bei Pointer/Feld-SWAP nicht nötig, das angegebene Feld
vorher zu dimensionieren.

Beispiel 1:

A%=100
B%=1000
Print "AZ, B% vor SWAP:";A%'!B%
Swap A%,B%
Print "A%, B% nach SWAP:";A%'B%

Beispiel 2:

Dim A%C10)

aRoutinel*A%C))
Procedure Routine(X%)

Swap *X%,Dummy%()

... Ab hier ist das vorherige Feld A%() unter

. dem Namen Dummy%() ansprechbar. Feld A%()
. ist leer.

. Routinentext

Swap *X%,DummyZ()

. Ab hier ist Feld Dummy%C) wieder Feld A%()

. und Feld Dummy%() ist wieder leer.

Return

———— Programmkontrolle 361

Diese indirekte Übergabe von Feldern an Prozeduren hat den
Vorteil, daß das durch SWAP in die Prozedur "hineingetauschte"
Feld nicht unter seinem eigentlichen (globalen) Namen ange-
sprochen werden muß, sondern innerhalb der Prozedur unter ei-

nem lokalen Namen angesprochen und bearbeitet werden kann.

Genaugenommen ist diese Konstruktion in der Version 3.0 je-
doch überflüssig, da hier Felder genauso wie Variablen durch
VAR direkt an die Prozedur übergeben werden können:

DIM feld%(1)
xyz(feld%())
PRINT Feld%(1)
PROCEDURE Xyz(VAR Dummyfeld%())

Dummy feld%(1)=100 |
RETURN .

VOID { V } Dummy-Zuweisung |

VOID Funktion

VOID ist ein Ersatz fiir eine sogenannte Dummy-Zuweisung, je-
doch - vor allem in Compilaten - erheblich schneller. Es wird

eine Funktion aufgerufen, ohne dieser eine Riickgabe- Variable
zur Verfügung stellen zu müssen. In vielen Fällen ist die Zu-
weisung des Funktionsergebnisses an eine Aufnahme-Variable

bei Funktionsaufrufen unnötig, da das Ergebnis nicht von In-
teresse ist. Um Speicherplatz (und Zeit) zu sparen, können diese

Funktionen mit VOID aufgerufen werden.

Beispiel:

Statt: A=INP(2) ! Auf Taste warten

. "> VOID INP(2)

Statt: A=FRE(0) I Garbage-Collection

--> VOID FRE(O)

362 Das große GFA-BASIC-Buch ———

— Interaktionen (Programm/Benutzer) 363

13. Interaktionen (Programm/Benutzer)

| .

| ALERT {A} Alert-Box erstellen
|

ALERT Icon%, Boxtext$, Def_Button%, Buttontext$, Backvar%

Diese an Intuition angelehnte Funktion erlaubt es, mit dem An-
wender unkompliziert zu kommunizieren. Prinzipiell lassen sich
damit sogar umfangreiche Menüs verwalten. Da die Alert-Box
(wachsam,alarmbereit) aber nur maxımal drei Auswahlmöglich-

keiten zur Verfügung stellt, ist sie eher für kleinere Abfragen
oder Hinweistexte geeignet.

Icon%

Stellt eine Zahl dar, unter der man ein Symbol abrufen kann,
das den Charakter der Nachricht kennzeichnen soll. Dies ist aber
leider in der Amiga-Version 3.0 noch nicht implementiert.

Boxtext$

Hier wird der eigentliche Text (Mitteilung/Frage) an die Funk-
tion übergeben. Das Pipe-Zeichen | gilt darin als Trennungs-
zeichen zwischen den einzelnen Zeilen. Es können insgesamt 5

Zeilen zu maxımal je 40 Zeichen dargestellt werden. Der Text
kann direkt in den Befehl geschrieben, als String-Ausdruck oder
auch als String-Variable übergeben werden.

Def Button%

Es wird die Nummer (1,2,3) des Buttons übergeben, der außer
durch Mausklick auch durch die <Return>-Taste (default) bestä-
tigt werden kann. Dieser Button wird in der Box stark umrandet

gezeichnet (0 = kein Default-Button).

364 Das große GFA-BASIC-Buch ————

Buttontext$

Hierdurch erfolgt die Beschriftung der Buttons. Auch hier gilt
das |-Zeichen als Trennstrich zwischen den einzelnen Button-

Texten.

Backvar%

Numerische Variable, in der der Befehl die Nummer des be-

stätigten Button (1,2,3) zurückgibt.

Beispiel:

boxtext$="Klicken Sie bitte eines!der unteren Kästchen an!"
boxtext$=b „oxtextSrtiich sage Ihnen dann, welchesles war!"
buttontextS="XX 1 XX;XX 2 XX 1 XX 3 XX"

ALERT 0,boxtext$,0, buttontext$, backvar%
boxtext$="Es war : !das Kästchen "+STR$(backvar%)
buttontext$=" OKAY ! OKAY 1" OKAY ©
ALERT 0,boxtext$,2,buttontext$,backvar%

Diese Form der Alert-Box ist aus Griinden der Sicherheit nicht
besonders variabel. Vom Interpreter werden sämtliche Eingaben
auf ihre Zulässigkeit überprüft. Werden z.B. mehr als 40 Zeichen
Boxtext in einer Zeile angegeben, wird die Zeile vom Interpreter
nach dem 40sten Zeichen abgeschnitten.

Wer die eigentliche Request-Box kennt, der wird verstehen, daß

man Einschränkungen in der Bemessung gemacht hat.

FILESELECT { FILE } Datei auswählen

FILESELECT "Titel" "OKText", "Pfad" Backvar$

Erstellt ein Dialog-Formular zur Dateiauswahl und liefert den
gewählten Dateinamen (ggf. inkl. Pfad).

Bei Rückkehr zum Programm sind vier verschiedene Eintrags-
möglichkeiten in Backvar$ möglich:

m Interaktionen (Programm/Benutzer) 365

1. Wurde vom Anwender eine Datei gewählt, steht ihr Name
auch anschließend zusammen mit dem vollständigen Pfad in
Backvar$.

2. Wurde die OK-Box ohne Auswahl bedient, gibt es zwei Va-
rianten:

2a. Es wurde durch Auswahl ein Dateiname übergeben, der
noch in der Eintragszeile steht und die Ok-Box bedient,
dann steht dieser Name oder Pfad-Eintrag auch in Backvar$.

2b. Es wurde keine Auswahl getroffen und auch kein Name
ubergeben, bzw. die Eintragszeile wurde vom Anwender ge-

loscht und die OK-Box wurde bedient, dann wird in Back-

var$ ein Leer-String zurückgegeben.

3. Wird Abbruch angeklickt, ist Backvar$ absolut leer.

Dies ist einer der wichtigsten Befehle zur Bewältigung von
Diskettenoperationen. Die Menge an Funktionen, die dieser so

einfach scheinende Befehl in sich vereinigt, kann man nur er-
messen, wenn man schon einmal versucht hat, auf die her-

kömmliche Weise Dateien zu speichern, zu laden, zu löschen

oder zu verändern.

Diese Box listet in einem Fenster die unter dem angegebenen

Pfadnamen (Zeile unter den File-Einträgen) verfügbaren Dateien
auf. Alle mit einem Stern gekennzeichneten Dateien stellen soge-

nannte Subdirectories (Unter-Inhaltsverzeichnis) dar, in denen
weitere Dateien unter dem für dieses Subdirectory typischen
Pfadnamen abgespeichert sein können. Durch Anklicken des
Sub-Dir-Namens wird es geöffnet, und die darın befindlichen
Dateien können angewählt werden. Verlassen wird ein Unter-
Verzeichnis, indem man das kleine Feld links oben unter der

Titelzeile anklickt.

Da GFA-BASIC immer die Disk-Station zur aktuellen erklärt,

von der das Programm geladen wurde, kann es notwendig wer-

den, im Pfadnamen die Stationsangabe zu ändern. Sie können

366 Das große GFA-BASIC-Buch ~————

dazu einmal aus den zur Verfügung stehenden Geräten auswäh-
len, die von GFA-BASIC in der Zeile unter der File-Tabelle

aufgelistet werden, indem Sie mit dem Mauszeiger in dieser

Zeile ein Feld anklicken. Ein anderer Weg ergibt sich durch ei-
genständige Eingabe des Pfadnamens ın dem String-Gadget.

Klicken Sie dazu auf dieses Gadget. Nach der Änderung brau-
chen Sie jetzt nur noch die <Return>-Taste zu betätigen, und
das neue Directory wird angezeigt.

Es folgt eine fast unscheinbare Routine, die es aber in sich hat.

Wie oft stellt sich die Aufgabe, die Richtigkeit einer Datei-
namen-Eingabe zu überprüfen oder ein Backup-File anzulegen.
Während der eigentliche Dateiname in den allermeisten Fällen
für den Anwender frei bestimmbar ist, hat man als Program-

mierer doch oft ein Interesse daran, daß die Extension richtig

gesetzt ıst. Um sicherzustellen, daß garantiert die richtige Ex-

tension verwendet wird, kann man diese Prozedur folgender-

maßen aufrufen:

FILESELECT "Titel", "OK", "RAM:#?.ABC" a$! Eingabe des Dateinamens
Dextend(a$, "ABC", *n_file$) I Extension überprüfen

PRINT n_file$
i

PROCEDURE extend(pr$,ex$,ps%)
' Pr$ = Dateipfad u. -name
ı Ex$ = gewünschte Extension

' Ps% = String-Rückgabe
)

LOCAL nl%,dn$, i%
IF RIGHTS(pr$)<>"/" AND pr$>""

I Gültiger Dateiname?

FOR i%=LEN(pr$) DOWNTO 1 ! Namen von hinten aus nach dem

' I erstem Backslash durchsuchen
INC nl% I Zeichen mitzahlen

EXIT IF MID$(pr$,i%,1)="/" I Exit, wenn Backslash erreicht

NEXT 1%

dn$=RIGHTS(pr$,ntl%) ! Reinen Dateinamen bilden
IF INSTRCdN$,".")=0 I Keine Extension enthalten?

*ps%=pr$+"."+ex$ I Pfad und Extension zurückgeben
dn$=dn$+"."+ex$! Namen komplettieren

ENDIF

IF RIGHTS(dn$,4)<>"."+ex$! Falsche Extension?
IF LEFTS(dn$,1)<>"." I Name größer als nur Extension?

“psa=LEFTS$(pr$, LEN(pr$)-nI%)+LEFT$Cdn$, INSTR(dn$, "."))tex$
I Pfad + Name + Extension zurück

ELSE I Name besteht nur aus Extension!

——— Interaktionen (Programm/Benutzer) 367

*ps%="000" I Unbrauchbaren Namen zurückgeben
ENDIF

ELSE I Richtige Extension!

*psZ=LEFTS(pr$, LEN(pr$)-nl%)+dn$! Pfad + Name zurück
ENDIF

ELSE I Ungültiger Dateiname!

*psX="000" I Unbrauchbaren Namen zurückgeben
ENDIF

RETURN

Wurde in diesem Beispiel in der FILESELECT-Box ohne Ände-
rung einfach die OK- oder ABBRUCH-Box angeklickt, erhält
man in N_file$ nach Extend-Aufruf den Ausdruck 000. Das
gleiche geschieht, wenn vom Anwender entweder die Auswahl-
zeile ersatzlos gelöscht wurde oder nur die Extension geändert,
aber kein Name dazu eingegeben wurde. In allen anderen Fällen
wird die Extension des eingegebenen Namens mit der Vorgabe
im zweiten Parameter-String des Extend-Aufrufs verglichen und
bei Nicht-Übereinstimmung durch die Vorgabe ersetzt. An-
schließend erhalten Sie den gesamten Dateinamen mit evtl. geän-
derter Extension in N_file$ zurück.

Bei Backup-Files kommt noch eine zweite Mini-Routine zum
Einsatz. Die Auswirkung einer Backup-Routine begegnet Ihnen
immer dann, wenn Sie ein .GFA- oder .LST-File abspeichern,

dessen Name bereits auf der Diskette existiert. GFA-BASIC än-

dert dann automatisch die Extension der bereits bestehenden

Datei in .BAK um.

Diese Routine Backup erwartet zwei Parameter-Strings. Der
erste gibt den Namen an, unter dem die Datei abgelegt werden

soll. Der zweite bestimmt die Extension, die Sie jener Datei
geben wollen, die evtl. unter demselben Namen wie die neue

Datei schon auf Diskette existiert und nun als Backup gesichert

werden soll.

Die Backup-Routine erledigt nun das Finden und Umbenennen
mit Hilfe der Extend-Routine, so daß Sie anschließend Ihre
neue Datei anlegen können. Als Beispiel lege ich hier die erste
BitPlane des Workbench-Screen auf Diskette ab. Der Backup-
Effekt wird erst deutlich, wenn Sie das Programm zweimal star-

368 Das große GFA-BASIC-Buch ————

ten und sich die Dateien mit FILES im Direktmodus anschauen.
Sie haben nun zwei Dateien mit gleichem Namen, aber unter-
schiedlicher Extension.

FILESELECT “Backup Test", "Test", "RAM:",a$! Eingabe des Dateinamens
oabackup(a$,"BAK") ! Evtl. Backup anlegen

adextend(a$, "SCR", *n$) I Extension überprüfen
IF n$<>"000" I Brauchbarer Pfad + Name?

BSAVE n$,SCREEN(0)+184,20480!1 Datei anlegen
ENDIF
I

PROCEDURE backup(pr$, ex$)
' Pr$ = Dateipfad u. -name
' Ex$ = Backup-Datei-Extension
LOCAL xn$

IF EXIST(pr$) Datei auf Diskette vorhanden?
a@extend(pr$, ex$, *xn$) Backup-Extension einbauen
IF xn$<>"000"

IF EXIST(xn$)
Brauchbarer Dateiname?
Schon Backup-File vorhanden?

KILL xn$ Dann löschen
ENDIF | |

NAME pr$ AS xn$ 1! Alte Datei auf Backup umbenennen
ENDIF

ENDIF

RETURN

MOUSE { MOU } Maus-Status ermitteln (gesamt)

MOUSE Xpos, Ypos, Tasten

In Xpos und Ypos wird die aktuelle X- bzw. Y-Koordinate des

Mauszeigers sowie in Tasten der Status der Maustasten tiber-

geben.

O = Keine Taste gedrückt

= Linke Taste gedrückt (BitO -> 2°0 = 1)

2 = Rechte Taste gedrückt (Bit 1 -> 2” = 2)

3 = Beide Tasten gedrückt (BitO+1 -> 2°0+2%1 = 3)
4 = Mittlere Taste gedrückt (Bit2 -> *2 = 4)

Als Bit-Vektor betrachtet, sind von Tasten nur die untersten 2
Bits interessant. Dabei steht Bit 0 für die linke Maustaste und

Bit 1 fiir die rechte.

——— Interaktionen (Programm/Benutzer) 369

Anmerkung:

Beispiel:

In Version V3.0 werden (bzw. bei CLIP OFFSET)

in Xpos und/oder Ypos auch negative Werte gelie-
fert, wenn sich der Mauszeiger links und/oder
oberhalb des Windows (bzw. des CLIP-Nullpunkts)
befindet.

Im Zusammenhang mit der Maus stellt sich immer
wieder das Problem, einen Bildschirmbereich zu
umrahmen, um ıhn für spätere Zwecke zu definie-

ren oder zu kennzeichnen. Aus diesem Grund habe
ich eine Prozedur entworfen, die Ihnen weitgehend
freie Hand läßt und die nach eigenem Bedarf ver-
ändert oder erweitert werden kann. Diese Routine
stellt allerdings DEFLINE 0,0,0,0, COLOR 1 und

GRAPHMODE | ein, so daß ggf. nach Aufruf die
vorher gültigen Einstellungen restauriert werden
müssen. Sie können diese Einstellungen natürlich
auch in der Routine verändern, um andere Effekte

zu erzielen (z.B. in GRAPHMODE 3 oder COLOR

0). |

Grundsätzlich funktioniert die Prozedur exakt genauso wie die
Workbench-Funktion. Hier ist es allerdings gleichgültig, ob die
linke, die rechte oder beide Maustasten gedrückt wurden.
Ebenso wie die Workbench-Funktion muß die Prozedur mit ge-
drückter Maustaste aufgerufen werden, da sie sonst sofort wie-
der beendet wird. Ein wesentlicher Unterschied ist, daß diese

Prozedur auch negative Minimalwerte verarbeitet, das heißt die

Koordinaten der Endposition des Mauspfeils können kleiner sein

als die Koordinaten der Startposition. In diesem Fall erhält man
in den beiden Rückgabevariablen auch negative Box-Ausmaße.

Deffill ‚2,4 I DEFFILL grau
Pbox 10,10,200,200 I Hintergrund zeichnen
Do ! Endlos-Schleife

If Mousek I Maustaste gedrückt?

Mouse X%,Y%,K% I Startkoordinaten holen
Rubberbox(X%,Y%,-30,-30,*Xx%,*Yy%) ! Aufruf
Box X%,Y%,X%tXx%,Y%tYy%! Box zeichnen

Endif
Loop
i]

370 Das große GFA-BASIC-Buch ————

Procedure Rubberbox(Xp%, Yp%,Xmin%, Ymin%,Xret%,Yret%)

Xp% = X-Startkoordinate
Yp% = Y-Startkoordinate
Xmin&é = Minimale Breite der Gummi-Box (auch neg.)
Ymin% = Minimale Höhe der Gummi-Box (auch neg.)

Xret% = Pointer auf 4-Byte-Integer, die nach Abschluß
die letzte Breite der Box enthält (auch neg.)

Yret% = Pointer auf 4-Byte-Integer, die nach Abschluß
die letzte Höhe der Box enthält (auch neg.)

Local Sc1$,Sc2$,Sc3$,Sc4$,Mx1%,Mx2% ,Mx2% ,My2% ,Mk%
Defline 0,0,0,0 I DEFLINE voll/dünn
Color 1 ! COLOR schwarz
Graphmode 1 ! Replace-Modus
Repeat

Mouse Mx1%,My1%,Mk% ! Neue Koordinaten holen
Mx2%=Max (Xp%+Xmin%,Mx1%) ! X-Koordinate auf Minimum trimmen
My2%=Max(Yp%+Ymin%,My1%) ! Y-Koordinate auf Minimum trimmen
Get Min(xp% ,Mx2%) ,Min(yp%,My2%),... !--. Es wird der
. . „Max (Mx2%,xp%) ‚Min(yp%,My2%) ,Sc1$% Hintergrund
Get Max(xp%,Mx2%) ,Min(yp%,My2%),... jeder Box-Linie
. « „Max(Mx2%,xp%) ,Max(yp%, My2%) , Sc2$ einzeln

« « -Max(Mx2%, xp%) ,Max(yp%,My2%) , Sc3$ (Speicherplatz-
Get Min(xp%,Mx2%) ‚Min(yp%,My2%),... Ersparnis!)
...Min(Mx2%,xp%) ‚Max(yp%,My2%) ,Sc4$!
Box Xp%, Yp%,Mx24%,My2% 1-1
Repeat I Warte...

On menu I Ereignis-Überwachung !
Until Mousex<>Mx1% Or Mousey<>My1% Or Mousek=0

' ...bis die Maus bewegt oder ein Mausknopf gedrückt wird

!

!
i

Get Min(xp%,Mx2%) ,Max(yp%,My24),... I gesichert
'
N

Put Min(Xp%,Mx2%) ‚Min(Yp%,My2%),Sc4$!--.
Put Min(Xp%,Mx2%) ‚Max(Yp%,My2%) , Sc3$ I Box-Hintergrund
Put Max(Xp%,Mx2%) ,Min(Yp%,My2%) , Sc2$! restaurieren
Put Min(Xp%,Mx24) ,Min(Yp%,My2%),Sci$!--!

Until Mk%=0 ! Exit, wenn Maustaste = 0
*Xret%=Mx2%-Xp% I Letzte Breite der Box zurück
*Yret%=My2%-Yp% I Letzte Höhe der Box zurück

Return

Weitere Beispiele zur Maus-Abfrage finden Sie in Hülle und

Fülle im Buch verteilt.

——— Interaktionen (Programm/Benutzer) 371

MOUSEX, MOUSEY, MOUSEK Maus-Status ermitteln

(einzeln)

Var=MOUSEX => X-Position

Var=MOUSEY => Y-Position

Var=MOUSEK => Maustastenstatus (siehe MOUSE)

Einzelabfrage-Funktionen für den jeweils gewünschten Maus-
Status. In Version V3.0 siehe Anmerkung zu MOUSE.

STICK { STI } Maus-Port-Abfragemodus bestimmen

STICK(Modus) - Befehl - Version 3.0

Bestimmt den Abfragemodus der Maus-/Joystick-Ports. Aller-
dings wurde er im Amiga-GFA-BASIC nur aus Kompatibilitäts-
gründen implementiert und hat selbst keine Wirkung.

Modus:

O0 Mausmodus

1 Joystick-Modus

MOUSE-Befehle und STICK() schalten automatisch den ent-
sprechenden Modus ein, wodurch der Befehl STICK in den

meisten Fällen überflüssig ist.

Ein Beispiel finden Sie unten unter STICK().

372 Das große GFA-BASIC-Buch ————

STICK() Maus-Port im Joystick-Modus abfragen

Var=STICK(Maus-Port) - Funktion - Version 3.0

Ermittelt den aktuellen Status des angegebenen Maus-Ports (0
oder 1). STICK(1) kann auch abgefragt werden, wenn durch den

STICK -Befehl nicht der Joystick-Modus eingeschaltet ist.
STICK(0) liefert dagegen nur im Joystick-Modus brauchbare
Werte.

Es werden folgende Werte geliefert:

Als Bit-Vektor betrachtet sind von STICK() nur die untersten 4

Bits interessant:

BitO Joystick hoch

Bit 1 Joystick runter

Bit2 Joystick links

Bit3 Joystick rechts

Beispiel: Dieses Programm erwartet, daß ein Joystick in Port 0

(eigentlich Maus-Port) angeschlossen ist.

I --,

I
it I- Pseudo-Sprite bauen

‚13 !
‚15 I ——!

x%=160 I X-Startkoordinate
I Y-Startkoordinate

I Joystick-Modus einschalten

PRINT AT(1,1);" "ATI, 2); om
IF STICK(O) AND 1 ! Joystick nach oben?

y%=MAX(0,y%-1) I Y-Koordinate vermindern

——— Interaktionen (Programm/Benutzer) | 373

ENDIF

IF STICKCO) AND 2 ! Joystick nach unten?
yA=MINC 199, y%+1) ! Y-Koordinate erhöhen

ENDIF
IF STICK(O) AND 4 ! Joystick nach links?
x4=MAX(0,x%-1) 1! X-Koordinate vermindern

ENDIF

IF STICK(O) AND 8 ! Joystick nach rechts?
x%=MIN(319,x%+1) ! X-Koordinate erhöhen

ENDIF

VSYNC

IF STRIG(O) ı Fire-Button gedrückt?

PRINT AT(1,1);"Feuer"
COLOR 0
FOR i%=0 TO 6 ! .

CIRCLE x%+7 ,y%+7,i% I- Grafischer Effekt
NEXT i% I ‘
PRINT AT(1,1);" "u

ENDIF

PUT x%,y%,a$ I Pseudo-Sprite setzen
LOOP

STRIG() Joystick-Fire-Buttons abfragen

Var=STRIG(Maus-Port) Version 3.0

Ermittelt den aktuellen Status des Fire-Buttons am angegebenen

Maus-Port (gedrückt = 1, nicht gedrückt = 0).

Ein Beispiel finden Sie oben unter STICK().

374 Das große GFA-BASIC-Buch ~————

——— Window- und Screen-Programmierung 375

14. Window- und Screen-Programmierung

Der Amiga ist in der Lage, beliebig viele Windows zu verwalten.
Das steht in einem großen Gegensatz zum Atari ST, auf dem die
Programmiersprache GFA-BASIC ihren großen Siegeszug be-

gann. Trotzdem sind viele Befehle so übernommen worden. Sıe
haben einige zusätzliche Parameter bekommen. Außerdem hat
der Amiga die Fähigkeit, diese vielen Windows auch noch auf
unterschiedlichen Screens mit ganz verschiedenen Grafikeigen-
schaften zu verwalten. Auch dazu bietet die GFA-BASIC-Ver-
sion 3.0 auf dem Amiga einige Befehle.

Zur Unterscheidung der Window- und Screen-Kommandos, die
größtenteils mit gleichen Namen zu besetzen sind (siehe OPEN,
CLOSE, MOVE ...), hat man sich überlegt, daß ein Buchstabe

am Ende des Befehls ausreichen müßte, um den Unterschied

deutlich zu machen. Deshalb enden alle Window-Befehle mit ei-
nem "W" und alle Screen-Kommandos mit einem "S".

14.1 Die Window-Befehle des GFA-BASIC

CLEARW { CL W } Fenster-Inhalt löschen

CLEARW Nummer

CLEARW (#]Nummer (nur V3.0)

Das Fenster, dessen Nummer (0 - 15) hiermit übergeben wird,
wird gelöscht. Der Befehl CLS kann ebenfalls verwendet werden.
Allerdings kann dadurch nur das jeweils aktuelle Window ge-
löscht werden, und dieser Befehl kann Grafiken, die im rechten

oder unteren Rand stehen, nicht erfassen.

Das Löschen des Fensterinhaltes ist immer dann notwendig,
wenn das Fenster bewegt oder verkleinert wurde. Sie werden

376 Das große GFA-BASIC-Buch ——

feststellen, daß bei Bewegungen oder Größenänderungen der
Fenster die Inhalte der übrigen Fenster überzeichnet werden.

Die Verwaltung der jeweiligen Fensterinhalte ist allein Ihre
Aufgabe, da niemand außer Ihnen wissen kann, was mit den In-
halten bei bestimmten Zuständen geschehen soll. Es gibt aller-
dings eine von Intuition angebotene Window-Verwaltung, die
zusätzlichen Speicherplatz kostet. Lesen Sie dazu unter OPENW

nach!

PRINT- sowie sonstige Text-Ausgaben können leicht durch eine
Schleife restauriert werden, die die Textinhalte des Fensters neu

in das Fenster hineinschreibt. Dagegen ist die Restauration von
Grafik-Inhalten allerdings eine recht komplizierte Angelegen-

heit. In diesem Fall sollte man nicht auf die Hilfe von Intuition
verzichten.

CLOSEW {CLW} Fenster schließen

CLOSEW Nummer

CLOSEW [#]Nummer (nur V3.0)

Das Fenster mit der angegebenen Window-Nummer wird ge-

schlossen. Dabeı sind Werte zwischen 0 und 15 zugelassen.

FULLW { FUW } Fenster auf maximale Größe bringen

FULLW Nummer

FULLW [#] Nummer (nur V3.0)

Nummer bestimmt die Nummer des Windows (0 - 15), das an

die oberste Screen-Zeile gesetzt und bis zur untersten vergrößert
werden soll. Auch die Breite des Windows wird auf den Maxi-
malwert gebracht.

———— Window- und Screen-Programmierung | 377

OPENW{OW} | Fenster öffnen

OPENW Nummer

OPENW Nummer, Xpos, Ypos, Breite, Höhe, IDCMP, Flaggen [, ScreenNrL,

BitMap]]

OPENW ’Nummer’ öffnet bzw. aktiviert das Window, dessen

Nummer (0 - 15) übergeben wird. Die Fenster sind dabei zuerst
ohne Überlappungen folgendermaßen auf dem Workbench-

Screen angeordnet:

Window 0: Füllt den gesamtem Screen abzüglich der Screen- |
| Titelleiste aus.

Window 1-4:

Window 1 Window 2

Bildschirmitte

Window 3 Window 4

Window 5 - 15:Sind in der gleichen Größe wie Window | - 4,
allerdings zentriert in der Screen-Mitte.

Die zweite Syntax-Variante gilt für V3.0 und ermöglicht es,
über einen einzigen Befehl das gesamte Fenster zu definieren.
Dadurch kann die umständliche Vorgehensweise, die bei Be-

triebssystem-Programmierung nötig ist, entfallen. Mit Hilfe der
Positionsangaben kann man die linke obere Ecke des Windows
auf dem Screen bestimmen. Dazu kommt noch die Höhe und
Breite des Windows in Grafik-Pixeln der aktuellen Screen- Auf-
lösung. Wichtig, weil unbedingt von Intuition benötigt, sind die
nächsten zwei Parameter, die über die Eigenschaften des Win-
dows Auskunft geben. Der erste Wert IDCMP steht für die
Kommunikation des Windows mit dem Benutzer. Er gibt an,
welche Nachrichten vom Window an das Programm gesendet

378 Das große GFA-BASIC-Buch ———

werden können, um so z.B. die Mitteilung über eine Verände-
rung der Größe loszuschicken. Dazu steht in direkter Abhängig-
keit der zweite Wert, mit dem man speziell die Eigenschaften
des Windows charakterisiert. Es ist hier möglich, aus den Sy-
stem-Gadgets bestimmte herauszuwählen oder aber etwas über
die Verwaltung des Grafik-Speichers dieses Windows anzugeben.

Die nachfolgenden beiden Tabellen geben Auskunft darüber,
welche Werte bei den beiden Parametern welche Wirkung haben.
Da diese Werte aus der Betriebssystem-Programmierung stam-

men, hat man sie als Binär-Flags konstruiert. Das heißt, wir ha-

ben es bei jeder Eigenschaft mit einem korrespondierenden Bit-
Flag zu tun, was im Dezimalsystem ungewöhnliche Werte er-
zeugt. Deshalb ist die Tabelle mit drei Werte-Spalten ausgerüstet.
Die erste Spalte gibt den Wert in dezimal, die zweite in hexade-

zimal und die dritte in binär an, so daß es Ihnen überlassen

bleibt, ein passendes Zahlensystem auszuwählen.

IDCMP-Einstellungen

dezimal | hexadezimal | binär Flag-Name

1 &HO000000 1 &X00000000000000001 SIZEVERIFY

2 &H00000002 &X00000000000000010 | NEWSIZE

4 &HO0000004 &X00000000000000100 | REFRESHWINDOW

8 &H00000008 &X0000000000000 1000 MOUSEBUTTONS

16 &HO0000010 &X00000000000010000 MOUSEMOVE

32 &H00000020 &X00000000000100000 | GADGETDOWN

64 &H00000040 &X00000000001000000 | GADGETUP

128 &HO0000080 &X000000000 10000000 REQSET

256 &H00000100 &X00000000100000000 | MENUPICK

512 &HO00000200 &X00000001000000000 | CLOSEWINDOW

1024 &HO0000400 &X00000010000000000 | RAWKEY

4096 &H00001000 &X0000 1000000000000 REQCLEAR

16384 &H00004000 &X00100000000000000 | NEWPREFS

32768 &HO0008000 &X0 1000000000000000 DISKINSERTED

65536 &H00100000 &X10000000000000000 | DISKREMOVED

262144 | &H00400000 &X00000000000000000 | ACTIVEWINDOW

524288 | &H00800000 &X00000000000000000 INACTIVEWINDOW

1048576 | &H00100000 &X00000000000000000 | DELTAMOVE

2097152 | &H00200000 &X00000000000000000 | VANILLAKEY

4194304 | &H00400000 &X00000000000000000 | INTUITICKS

m Window- und Screen-Programmierung

Flaggen-Einstellungen

379

dezimal | hexadezimal | binär Flags-Name

0 &HOO0000000 &X000000000000000000 | SMARTREFRESH

1 &HO0000000 1 &X000000000000000001 | WINDOWSIZING

2 &H00000002 &X000000000000000010 | WINDOWDRAG

4 &H00000004 &X000000000000000100 | WINDOWDEPTH

8 &H00000008 &X000000000000001000 | WINDOWCLOSE

16 &HO0000010 | &X000000000000010000 | SIZEBRIGHT

32 &HO0000020 | &X000000000000100000 | SIZEBOTTOM

64 &H00000040 | &X000000000001000000 | SIMPLEREFRESH

128 &H00000080 &X000000000010000000 | SUPERBITMAP

256 &H00000100 &X000000000100000000 | BACKDROP

512 | &H00000200 &X000000001000000000 | REPORTMOUSE

1024 &H00000400 &X000000010000000000 | GIMMEZEROZERO

2048 &HO0000800 &X000000100000000000 | BORDERLESS

4096 &H00001000 &X000001000000000000 | ACTIVATE

65536 &HO0010000 | &X010000000000000000 | RMBTRAP

131072 &H00020000 &X100000000000000000 | NOCAREREFRESH

Beispiel

Um z.B. ein Window zu öffnen, bei dem
vorhanden sind und das aktıv dargestellt

Zeile eingegeben werden:

OPENW 0,0,0,640,256,0,4111

alle System-Gadgets

wird, muß folgende

Zur Anwendung des IDCMP-Flags und zur Nachrichten-Über-
mittlung können Sie bei den Menü-Befehlen mehr erfahren.

TITLEW { TI} Fenster-Titelzeile bestimmen

TITLEW Nummer, "Window-Titel"[, "Screen-Titel"]

TITLEW (#]Nummer, “Window-Titel"[, "Screen-Titel"]

Das Fenster mit der angegebenen Nummer erhält im Titel-Bal-
ken diese neue Uberschrift. Damit kann der Standard-Titeltext

380 Das große GFA-BASIC-Buch ————

"GFA-BASIC" ersetzt werden. Weiterhin ist es damit möglich,
den Screen-Titeltext zu verändern. Und zwar wird dazu einfach

ein weiterer Text angegeben, der dann bei Aktivierung in der
Screen-Leiste erscheint. Dort steht sonst auf dem Workbench-

Screen "Workbench Screen" zur Information an den Benutzer. Sie
können diese Zeile z.B. für Programm-Infos oder andere Anga-
ben benutzen.

FRONTW {FR} Fenster in den Vordergrund

FRONTW Nummer Version 3.0

Mit dieser Funktion wird das angegebene Window, das sich
vielleicht im Hintergrund befindet, in den Vordergrund ge-
bracht. Das ıst wichtig, wenn eine aktuelle Ein- oder Ausgabe
dort vorgenommen werden soll. Aber auch bei Informations-
Fenstern, die vom Benutzer gesteuert werden können, geht man

so sicher, daß sie im Vordergrund liegen.

Dieser Befehl ist besonders dann wichtig, wenn es keine Depth-

Arrangement-Gadgets im Window gibt, mit denen der Benutzer
die Lage bestimmen kann.

BACKW {BA} | Fenster in den Hintergrund

BACKW Nummer Version 3.0

Dieser Befehl legt das über Nummer identifizierte Fenster in
den Hintergrund. Damit gibt man Teile des Screens frei, die für

andere Fenster gebraucht werden.

Dieser Befehl ist besonders dann wichtig, wenn es keine Depth-
Arrangement-Gadgets im Window gibt, mit denen der Benutzer
die Lage bestimmen kann.

—— Window- und Screen-Programmierung 381

MOVEW { MOV} Fenster verschieben

MOVEW Nummer, Xpos, Ypos Version 3.0

Das Fenster mit der angegebenen Window-Nummer wird an die
neue Position innerhalb des Screens bewegt. Damit kann die Be-
nutzer-Operation, das "Draggen", auch vom Programm nach-
vollzogen werden.

Allerdings ist darauf zu achten, daß an der neuen Position auch

noch die aktuelle Fenster-Größe möglich ist. Ist dies nicht der
Fall, "schmiert" der Amiga hoffnungslos ab!

SIZEW {SIZ} Fenstergröße bestimmen

SIZEW Nummer, Breite, Höhe Version 3.0

Die Größe eines Fensters läßt sich bei vorhandenem Sizing-Gad-
get vom Benutzer selbst einstellen. In einigen Fällen sollte aber
diese Beeinflussung nur dem Programm überlassen sein, das dies
mit wesentlich mehr Kompetenz durchführen kann (man weiß ja

nie, was nicht alles vom Benutzer zerstört werden könnte).

Der Befehl SIZEW erlaubt nun die Angabe neuer Breiten- und
Höhen-Maße für das betreffende Window, das mit der Nummer

identifiziert wird.

Auch beı diesem Befehl ist darauf zu achten, daß die Angabe
eines Wertes, der es erzwingt, das Window außerhalb des aktu-

ellen Screens abzubilden, zu einem unbearbeiteten Absturz führt.

Überprüfen Sie also zuerst, ob eine Vergrößerung in gewolltem
Maße zulässig ıst!

382 Das große GFA-BASIC-Buch ———

LIMITW { LIM } Fenstergröße einschränken

LIMITW Nummer, Xmin, Ymin, Xmax, Ymax Version 3.0

Selbst wenn man dem Benutzer mit dem Sizing-Gadget gestattet

hat, die Größe des Windows einzustellen, muß dies trotzdem

nicht in vollem Screen-Umfang geschehen. Es reicht durchaus,

wenn man z.B. nur in einem Bereich von 100 - 400 Bildpunkten

den X-Wert variieren kann.

Dazu gıbt es das LIMITW-Kommando, das unter Angabe der

Window-Nummer diesem neue Maxımal- und Minimal-Werte
zuweist. Intuition, also die Verwaltungsroutinen für alle Win-
dows, Screens und andere Bedienelemente, kümmert sich dann

selbst darum, daß keine anderen Werte gewählt werden.

SETWPEN { SETWP } Zeichenstifte festlegen

SETWPEN LinienStift, FlachenStift Version 3.0

Der Rahmen eines jeden Window ist uns von der Workbench her
in ganz einheitlichen Farben bekannt. Die Linien werden in
Weiß und der Korpus in Blau dargestellt. Das ist aber nicht un-
bedingt festgelegt. Wir können durchaus unter den vorhandenen
Farben auswählen und dafür andere verwenden.

SETWPEN gibt mit seinen beiden Parametern neue Standard-
Werte an. Das heißt, man muß diesen Befehl VOR dem Öffnen
eines Fensters verwenden, um so die neue Farbgestaltung sicht-

bar zu machen. Es ist leider nicht möglich, nachträglich die Far-
ben zu ändern.

——— Window- und Screen-Programmierung 383

WINDOW() { WINDOW() } Window-Daten holen

WINDOW(Nummer) | Version 3.0
WINDOW(Adresse)

Unter GFA-BASIC verwalten wir die Windows mit Nummern.

Es ist viel einfacher, alle Funktionen mit einer Nummer aufzu-

rufen, als sich die Position im Speicher zu merken, unter der die

Window-Daten abgespeichert sind. Allerdings bleibt es nicht aus,
daß man auch diese Adresse erfahren muß, um z.B. eine Be-

triebssystem-interne Funktion aufzurufen, die nur mit der
Adresse arbeitet.

Mit WINDOW(Nummer) können wir einer Variablen die Adresse
zuweisen, unter der die Window-Daten im Speicher stehen.

Umgekehrt läßt sich auch die Nummer eines Windows ermitteln,

das von GFA-BASIC geöffnet wurde!

14.2 Die Screen-Befehle des GFA-BASIC

OPENS { OPENS } Screen öffnen

OPENS Nummer [, Xpos, Ypos, Breite, Höhe, BitPlanes, Modus] Version 3.0

Dieser Befehl öffnet einen neuen Screen. Dafür können Indizes
von 0 bis 15 (wie auch bei den Windows) verwendet werden.
Voreingestellt ist unter der Nummer 0 der Workbench-Screen zu

verstehen, auf der auch alle Ausgabe-Windows geöffnet werden,
wenn man nichts anderes angibt.

Beim Öffnen eines neuen Screens muß man einige Parameter an-

geben, die die Eigenschaften des neuen Screens bestimmen. Wir
haben es dabeı quasi mit einem neuen Bildschirm zu tun, der

genauso wie der Workbench-Screen gehandhabt werden kann.

384 Das große GFA-BASIC-Buch —

Dabei kann die X- und Y-Position des Screens auf dem wirk-
lichen Bildschirm bestimmt werden. Allerdings interessiert In-
tuition momentan nur der Y-Wert, weil bei dem jetzigen Gra-
fik-Chip eine X-Verschiebung noch nicht möglich ist. Aus
Kompatibilitätsgründen wurde aber der X-Wert implementiert.

Sie sollten ihn immer auf 0 setzen, damit später keine Uber-

raschungen zu erwarten sind.

Weiterhin ist die Breite und die Höhe für den Screen sehr wich-
tig. Sie entscheiden, wie viele Punkte maximal abgebildet wer-
den können. Abhängig vom Grafikspeicher kann ein Screen bis
zu 1024 x 1024 Bildpunkte groß sein, wenn genügend Grafik-
speicher zur Verfügung steht (man benötigt schon für eine Bit-
Plane 131072 Bytes, was 128 KByte entspricht). Es hängt dann

allerdings vom Grafikmodus ab, wie viele dieser Punkte des
Screens wirklich innerhalb des Ausschnitts dargestellt werden
können, der auf dem Bildschirm sichtbar ist. Dieser Bereich be-

schränkt sich nämlich auf 640 x 256 Punkte, von denen man

noch einige wenige abrechnen kann, die durch den Rand verlo-

ren gehen, in dem aber sowieso keine scharfe Abbildung mög-

lich ist (das liegt aber nicht am Amiga, sondern am Monitor).

Zu den Auflösungen sehen Sie am Ende der Beschreibung eine
Tabelle, aus der Sıe dıe Werte entnehmen können. So wichtig

wie die Auflösung ist auch die Anzahl der BitPlanes. Oben
wurde schon darauf verwiesen, daß jede BitPlane Speicher in

Anspruch nımmt. In diesem Speicher werden die gesetzten oder

nicht gesetzten Punkte der Grafik verwaltet. Jedem Punkt ist ein

Bit zugeordnet. Bei gesetztem Bit sehen wir den Punkt, und bei

gelöschtem Bit sieht man nur die Hintergrundfarbe.

Zur Darstellung von mehr Farben als nur diesen beiden kombi-

niert man mehrere BitPlanes und definiert einen Code, unter

dem sich die richtige Farbe berechnen läßt. Allgemein steht die
Anzahl der Farben in folgender Abhängigkeit zu den BitPlanes:

Farben = 2°BitPlanes

——— Window- und Screen-Programmierung

Dabei gilt diese Tabelle:

BitPlanes Farben

0 1 (die Hintergrundfarbe und mehr nicht!)

1 2

2 4

3 8

4 16

5 32

385

Der Amiga ist nicht in der Lage, mehr als 6 BitPlanes zu ver-
arbeiten. Obwohl man alle 4096 verschiedenen Farben darstellen

kann, wird dabei immer noch mit 6 BitPlanes gearbeitet. Aller-
dings ist das Verfahren zur Farbkodierung dann anders gewählt.

Hier kommt als Abschluß noch die Tabelle der Screen-Modi und

eine Auflösungstabelle, anhand derer Sie ablesen können, wie-

viele Grafikpunkte auf dem Bildschirm beı welchem Modus zu
sehen sind:

Die Screen-Modi:

dezimal | hexadezimal | Modus

2 $0002 GENLOCK VIDEO

4 $0004 INTERLACE

128 $0080 EXTRA_HALFBRITE

2048 $0800 HOLD_AND_ MODIFY

16384 $4000 SPRITES

32768 $8000 HIRES

386 Das große GFA-BASIC-Buch ——

Die verschiedenen Auflösungsstufen:

Bezeichnung hexadezimal | Auflösung max. | Bitplanes

LORES $0000 320 x 256 5
HIRES | $8000 640 x 256 4
INTERLACE $0004 320 x 512 5

HIRES INTERLACE $8004 640 x 512 4
EXTRA_HALFBRITE $0080 320 x 256 6

EXTRA_HALFBRITE LACE $0084 320 x 512 6
HOLD AND MODIFY $0800 320 x 256 6
HOLD AND MODIFY $0804 320 x 512 6

CLOSES { CLOSES } Screen schlieBen

CLOSES Nummer Version 3.0

Mit diesem einfachen Kommando wird ein geöffneter Screen
wıeder geschlossen. Dabei werden auch alle auf dem Screen be-
findlichen Windows gleich mit geschlossen, so daß man sich
darum nicht kümmern muß.

FRONTS { FRONTS } Screen in den Vordergrund

FRONTS Nummer Version 3.0

FRONTS holt den mit Nummer angegebenen Screen in den Vor-

dergrund. Dabei wird die gleiche Funktion ausgeführt, wie es
auch der Fall ist, wenn man mit der Maus das entsprechende

Depth-Arrangement-Gadget des Screens betätigt. Nur hier er-
folgt die Kontrolle über das Programm.

——— Window- und Screen-Programmierung 387

BACKS { BACKS } Screen in den Hintergrund

BACKS Nummer Version 3.0

BACKS legt den über die Nummer identifizierten Screen in den
Hintergrund, so daß der zweitoberste Screen sichtbar wird. Da-
bei wird die gleiche Funktion ausgefiihrt, wie es auch der Fall
ist, wenn man mit der Maus das entsprechende Depth-Ar-
rangement-Gadget des Screens betätigt. Nur hier erfolgt die
Kontrolle über das Programm.

|
| MOVES { MOVES } Screen verschieben

MOVES Nummer, Xpos, Ypos Version 3.0

Bewegt den angegebenen Screen zur absoluten X-, Y-Position.

Man kann damit einen im Hintergrund liegenden Screen teil-
weise sichtbar machen, und so unterschiedliche Auflösungen
gleichzeitig auf dem Bildschirm darstellen. Das eignet sich be-
sonders für gemischte Text- und Grafik-Ausgabe.

TITLES { TITLES } Screen-Titel setzen |

TITLES Nummer, "Titel" Version 3.0

Wie auch jedes Window einen Titel in seiner Kopf-Zeile be-

inhaltet, so haben auch Screens die Möglichkeit, in der Titel-
Zeile einen Text aufzunehmen.

Mit diesem Befehl wırd der Text definiert, der ın der obersten

Zeile des Screens mit der angegebenen Nummer steht. Diesen
Titel bezeichnet man als Default-Title, weil er nur dann ange-
zeigt wird, wenn kein Fenster innerhalb der Screen aktiv ist. Je-

388 Das große GFA-BASIC-Buch ———

des Fenster hat nämlich zusätzlich zum Fenster-Titel auch noch

einen Text, der bei Aktivierung in der Screen-Zeile ausgegeben
werden soll. Nur wenn dieser zweite Text fehlt, benutzt der

Screen den Default-Title.

SETSPEN { SETSPEN } Screen-Farben wählen

SETSPEN LinienStift, FlächenStift Version 3.0

Genau wie auch bei den Windows werden zum Zeichnen der

Screen-Elemente wie Titelleiste und Gadgets zwei Farbstifte be-
nutzt. Diese sind auf die Werte I und 0 eingestellt, können aber
beliebig (je nach Auflösung) gewählt werden. Dazu dient dieser
Befehl, der VOR dem Öffnen des Screens aufgerufen werden
muß, da sonst die Einstellungen nicht bekannt sind.

SCREEN() { SCREEN() } Screen-Daten holen

SCREEN(Nummer) Version 3.0
SCREEN(Adresse)

Für die interne Programmierung der Intuition-Elemente ist es
notwendig, daß man die Adresse kennt, ab der die Screen-Daten

abgespeichert werden. Diese läßt sich mit der ersten Funktion

ermitteln, die die entsprechende Speicherstelle zurückliefert.

Kennt man nur die Speicherstelle und benötigt für die GFA-
Befehle die Screen- Nummer, so kann diese mit der zweiten

Variante der Funktion ermittelt werden.

7 Menüprogrammierung mit BASIC-Befehlen 389

15. Menüprogrammierung mit BASIC-Befehlen

MENU Menü _ Meniipunkt-Attribute bestimmen

MENU Menüpunkt ‚Attribut

Mit diesem Befehl kann bestimmt werden, ob ein Menüpunkt

ghosted (inaktiv) dargestellt werden soll oder klar (aktiv).
Außerdem können vor einem Menüpunkt-Text Häkchen

(Checkmarks) gesetzt werden. Diese kennzeichnen üblicherweise,

daß die Funktion, die durch den gewählten Menüpunkt reprä-

sentiert wird, z.Zt. aktiv ist.

Dazu wird dem Befehl in Menüpunkt der Index des zu markie-

renden bzw. des zu desaktivierenden Menüpunktes sowie nach

einem Komma das gewünschte Attribut übergeben.

Attribut:

64 Checkmark löschen

256 Checkmark setzen (abhaken)

16 Menüpunkt desaktivieren (hell)

64 Menüpunkt aktivieren

Bei MENU Menütext$ sind für den Fall, daß Checkmarks

(Häkchen) gesetzt werden sollen, vor der jeweiligen Menüpunkt-

Bezeichnung zwei Leerzeichen vorzusehen.

MENU Text Menüpunkt mit neuem Text versehen

MENU Menüpunkt , Text

Sollte es der Fall sein, daß einer der schon über das Feld defi-

nierten Menüpunkte nicht mehr den richtigen Text besitzt, weil

390 Das große GFA-BASIC-Buch ——

Sie z.B. eine Funktion entfernt, erweitert oder verändert haben,

dann ist diese Funktion genau die richtige!

Mit Menüpunkt geben Sie die Nummer des gewünschten Menü-
punktes an, und in Text wird ein String übergeben, der als
neuer Text gesetzt werden soll. Beachten Sie dabei, daß dieser
neue Text auf keinen Fall länger sein darf, als es der erste war.

Denn GFA-BASIC verwendet für den Menüpunkt die alte Text-

Struktur und schreibt nur den neuen Text dort hinein. Deshalb
ist kein zusätzlicher Speicher für längere Texte reserviert.

MENU KEY Menüpunkt mit Shortcut versehen

MENU KEY Menüpunkt ,ASCIIcode

Wie Sie wissen, kann jeder Menüpunkt auch über eine Tasten-

kombination aufgerufen werden. Zusammen mit der rechten

Amiga-Taste kann jede andere Taste mit dem Aufruf eines
Menüpunktes belegt werden. Dazu wird dem Befehl zur Num-

mer des Menüpunktes noch der ASCII-Wert der zu drückenden

Taste übergeben. Zur Verdeutlichung dieser Möglichkeit für den

Anwender erscheint dann im Menü die Amiga-Taste als Symbol

zusammen mit dem Zeichen. Wenn Sie dies beabsichtigen, dann

sollten Sie aber gleich beim Menütext vier oder mehr Zeichen

freihalten, damit das Symbol zusammen mit dem Tastenwert

nicht in den Menütext hineinragt, was einigen grafischen Müll
erzeugt.

MENU Menütext$() PullDown-Menii erstellen

MENU Array$()

Mit diesem Befehl wird dem Interpreter gesagt, wo er im Spei-

cher die einzelnen Menüeinträge findet. Sie übergeben ihm dazu

——— Menüprogrammierung mit BASIC-Befehlen 391

den Namen eines eindimensionalen String-Arrays, das die
Menütexte enthält. Dieses Array muß so viele Elemente auf-
weisen, wie insgesamt an Menüpunkt-Texten zugewiesen werden

sollen. Hierbei ist zu beachten, daß das erste Menü (Desktop-

Menü für Accessories) etwa folgenden Aufbau haben sollte (der
sich an den ST-Standard anlehnt, aber deshalb nicht unbedingt

schlecht ist):

1. String = Menütitel (evtl. Programmname).

2. String = Beliebige Überschrift (üblich: Programm-Info).
Unter diesem Menüpunkt können Sie eine beliebige Pro-
gramm-Funktion einordnen. Da das aber der einzige ver-
wendbare Menüpunkt in diesem ersten Menü ist, wird er

normalerweise für die Ausgabe einer allgemeinen Pro-
gramm-Information (z.B. Copyright) verwendet.

3. String = Reihe von Minuszeichen (bzw. Bindestrichen). Die
Anzahl der Striche bestimmt hier die Menübreite. Da in
diesem Menü grundsätzlich die evtl. vorhandenen Desk-Ac-
cessories aufgeführt werden, sollten Sie hier die Länge des
längsten Accessory-Titels berücksichtigen. Dieser Strich un-
terteilt ein Menü in verschiedene Funktionsblöcke.

4. String = ab hier folgen die einzelnen Funktionen des ersten
Menüs, die allgemein mit Service-Aufgaben belegt sein
sollten. Bis wir dann zu den letzten Menüpunkten kommen:

9.

10. String = Null-String. Dieser Null-String gilt als Abschluß
für jede einzelne Menüreihe. |

An diesen ersten Menüaufbau werden nun die von Ihnen frei
benennbaren weiteren Menüs angehängt. Diese sind so aufge-
baut, daß sich an den Menütitel (der String, der immer in der
Menüleiste sichtbar bleibt) die einzelnen Menüpunkt-Bezeich-

392 Das große GFA-BASIC-Buch ——

nungen anschließen. Dabei muß auch hier, wie beim ersten
Menü, ein Null-String ("") den Abschluß zu jedem einzelnen
Menü bilden.

Nachdem alle Menüeinträge gelesen wurden, muß dem gesamten

Menüaufbau noch ein Null-String als Endmarkierung angehängt
werden. Wollen Sie, daß bei Anwahl eines Menüpunktes dieser

mit einem Häkchen (Checkmark siehe MENU Menü-
punkt, Attribut) versehen wird, sollten Sie vor dem Text des ge-
wünschten Menüpunktes zwei Leerzeichen vorsehen, damit die-
ses Checkmark genügend Platz hat. Außerdem ist es möglich, ei-
nen Menüpunkt-Text ghosted (verschleiert = inaktiv) darzustel-

len. Dazu muß das erste Zeichen des Text-Strings ein Minuszei-
chen (bzw. Bindestrich: --) sein. Nachdem das Menü eingelesen
wurde, wird es durch diesen Befehl gleichzeitig aktiviert.

Beispiel:

DIM array$(40)

REPEAT ©

READ array$(i%)
PRINT arrayS(1%)
INC 1%

UNTIL array$(i%-1)="XxXX"

array$(i%-1)=""
DATA DESKTITEL ‚Menüpunkt
DATA --------- oo

DATA Acc1,Acc2,Acc3,Acc4,Acc5,Acc6,
DATA MENU1, Punkti, Punkt2, Punkt3,
DATA MENÜ2, Punkt1, Punkt2, Punkt3,
DATA MENU3, Punkt1, Punkt2, Punkt3,
DATA MENÜ4, Punkt1, Punkt2, Punkt3,
DATA XXX

MENU array$()

MENUKILL Menüzeile löschen

MENU KILL

MENU KILL desaktiviert das PullDown-Menü. Es kann keine
Auswahl mehr vorgenommen werden, weil die gesamte Menü-

———— Menüprogrammierung mit BASIC-Befehlen 393

leiste vom Window entfernt wurde. Auf den Inhalt des Menü-
text-Arrays hat dieser Befehl keinen Einfluß. Das desaktivierte
Menü kann also jederzeit durch MENU Menütext$ wieder in-
stalliert werden.

394 | Das große GFA-BASIC-Buch ————-

Ereignis-Überwachung mit BASIC-Befehlen 395

16. Ereignis-Überwachung mit BASIC-Befehlen

MENU(Index) Event-Puffer (Menü- und Fensterverwaltung)

Var=MENU(Index)

Hinter dieser Funktion verbirgt sich ein Datenfeld (Event-Puf-
fer = Integerfeld), in dem permanent verschiedene Daten zu ak-
tuellen Intuition-Ereignissen eingetragen werden.

Index steht für das jeweils interessante Feldelement. Dabei kann
der Bereich von MENU(0) bis MENU(10) abgefragt werden, in

dem wir alle nötigen Daten zur Ereignis- Verwaltung finden. Se-
hen Sie in der ersten Tabelle die Funktion der jeweiligen Feld-
Einträge, die dann noch speziell in Abhängigkeit von dem
Nachrichtentyp betrachtet werden:

Die Inhalte von MENU(Index):

MENU(0) Menu Nummer des ausgewählten Menüpunktes in-

nerhalb des String-Arrays der Menüs, das
bei der Definition übergeben wurde.

MENU(1) Class Enthält die IDCMP-Flags, die diese Nach-
richt ausgelöst haben. Je nach. Flaggen-Typ

müssen die nächsten drei Felder unter-

schiedlich ausgewertet werden.

MENU(2) Code Dieser Wert enthält ın Abhängigkeit der
Message-Class eine Zahl, die z.B. bei einer
Menüauswahl die Nummer des ausgewählten
Menüpunktes beinhaltet.

396

MENU(3) Qualifier

MENU(4) lAddress

MENU(5) MouseX

MENU(6) MouseY

MENU(7) Seconds

MENU(8) Micros

Das große GFA-BASIC-Buch ————

In dieser Variablen sind die Qualifier, also

die Sondertasten wie SHIFT, CTRL etc.

vermerkt. Das ist bei der Abfrage der Ta-
statur von entscheidender Bedeutung.

Der hier abgelegte Wert ist ein Zeiger (eine
Speicheradresse) auf das Intuition-Objekt,
das für die Nachricht verantwortlich war.
Das kann ein Gadget sein oder auch ein
Window.

Egal, welche Nachricht empfangen wurde,

in dieser Variablen ist die relative X-Posi-
tion des Mauspfeils zu finden. Sie können

auch damit die Mausposition auswerten!

Hier steht passend zu MENU(5) die Y-Po-

sition der Maus. Diese wird relativ zur obe-

ren linken Ecke des Windows berechnet.

Befindet sich das Window also nicht ganz ın
der oberen Ecke des Screens, kann es bei

beiden Koordinaten-Teilen negative Werte
geben.

So, wie die Position der Maus zum Zeit-

punkt der ausgelösten Nachricht festgehalten

wird, speichert Intuition, von dem diese

Nachricht stammt, auch die System-Zeit,

damit bei einer verzögerten Auswertung der
Zeitpunkt genau bekannt ist.

Im Gegensatz zu MENU(7) stehen hier nicht
Sekunden, sondern Mikrosekunden.

MENU(9) WindowAddress
Hier steht immer ein Zeiger auf das Win-
dow, von dem die Nachricht stammt.

——— Ereignis-Uberwachung mit BASIC-Befehlen 397

Ein Menü abfragen:

Um die Auswahl eines Menüs abzufragen, empfiehlt sich fol-
gendes Vorgehen, das neben der hier besprochenen Funktion

noch weitere GFA-BASIC-Befehle benutzt. Bitte lesen Sie auch

dort die Informationen nach.

Im Hauptprogramm wird nach der Definition der Menüleiste ein

Unterprogramm definiert, in dem die Auswertung stattfindet.
Das sieht so aus:

ON MENU GOSUB Auswertung

Die Hauptprogramm-Schleife kann im einfachsten Fall sogar so

aussehen:

REPEAT

SLEEP

UNTIL Loop=FALSE

Damit wird solange auf eine Nachricht gewartet, bis eine globale

Variable (hier Loop) von irgendeiner Unterroutine auf FALSE
gesetzt wird. Sie können aber natürlich auch etwas mehr vom

Programm abarbeiten lassen, bis die erste Menü-Nachricht ein-
trifft.

Die Unterroutine selbst kann mit Hilfe der MENU()-Funktion

die jeweilige Nummer des augewählten Menüpunktes ermitteln
und entsprechend zu einer weiteren Routine verzweigen, die

eine gewünschte Aufgabe erfüllt oder Prozedur ausführt.

PROCEDUR Auswertung

Menu%=MENU(O) ' Die Menü-Nummer wird der Variablen übergeben

MENU KILL ' damit keine weitere Auswahl für den Benutzer

möglich ist

IF Menu%=1 THEN GOSUB Speichern
IF Menu%=2 THEN GOSUB Laden

MENU Menu.Leiste$()

RETURN

Es gibt natürlich noch andere und sehr verschiedene Nachrich-

ten, die alle über die MENU()-Funktion abgefragt werden kön-

398 Das große GFA-BASIC-Buch ———

nen. So lassen sich alle IDCMP-Flags des Windows nutzen. Diese
Flaggen geben Sie bei der Definition eines neuen Windows an.
Dadurch sagen Sie dem verwaltenden Intuition-System, bei
welchen Ereignissen Sie eine Information wünschen. Die Zahlen,

die von MENU(I) dabei geliefert werden, entsprechen exakt
denen, die auch als Flags bei der Window-Definition angegeben

werden müssen.

Menü-Nachrichten:

Neben der einfachen Abfrage über MENU(0), wo sich der
Menü-Index befindet, gibt es natürlich eine spezielle Intuition-
Nachricht, die die Auswahl eines Menüpunktes genau beschreibt.
Allerdings wird hier eine genauere Auswertung vom Benutzer
verlangt.

MENU(1) = 256 Es wurde ein Menüpunkt der bestehenden
| Menüleiste ausgewählt.

In MENU(2) steht die genaue Nummer
des Menüpunktes in einem Bitmuster ver-

schlüsselt. Sie können dabei genau ausle-

sen, in welchem Menü welcher Menü-

punkt und welcher Untermenüpunkt ange-

wählt wurde. Verwenden Sıe dazu die fol-
gende Dekodierung: MenüNummer = ME-
NU(2) AND 31, MenüPunkt = SHR(ME-
NU(2), 5) AND 63, UnterMenüPunkt =
SHR(MENU(2), 11) AND 31.

Window-Nachrichten:

MENU(1) = 1 Das Size-Gadget des Window wurde beti-
tigt.

In MENU(10) findet man jetzt die Intui-
tion-Adresse des Fensters.

——— Ereignis-Überwachung mit BASIC-Befehlen 399

MENU(I) = 2

MENU(I) = 4

MENU(I) = 512

MENU(1) = 8192

MENU(1) = 262144

Die Größe des Fensters wurde verändert.

In MENU(10) steht auch hier wieder die
Adresse der Window-Struktur (Sie kom-

men mit WINDOW(Adresse) an die GFA-
BASIC-Nummer, unter der das Window

verwaltet wird).

Eine Aufforderung an das Programm, den
Grafik-Inhalt (auch Texte werden als
Grafik behandelt) des Windows wieder
herzustellen, weil er durch vorhergehende
Überlagerung zerstört wurde.

In MENU(10) steht die Adresse des Win-
dows.

Das Close-Gadget des Windows wurde
betätigt.

In MENU(10) steht die Adresse der Win-
dow-Struktur.

Das Fenster ist nicht in der Lage, die über
die rechte Maustaste angeforderte Menü-

leiste auszugeben.

In MENU(10) steht die Adresse des Win-
dows.

Eın Fenster wurde über einen Mausklick

aktiviert.

Die Adresse des Fensters steht in ME-

NU(10) und kann mit WINDOW(Adresse)
in die GFA-Nummer des Windows umge-
wandelt werden.

400

MENU(1) = 524288

Maus-Nachrichten:

MENU(1) = 8

MENU(I) = 16

MENU(I) = 1048576

Das große GFA-BASIC-Buch ————

Ein Fenster wurde desaktiviert, weil ein

anderes aktiviert wurde oder der Benutzer

mit der Maus auf den Screen geklickt hat.

Die Adrese des Fensters steht ın

MENU(10) und kann mit WINDOW(Ad-
resse) in die GFA-Nummer des Windows

umgewandelt werden.

Eine Maustaste wurde betätigt (Sie erhal-
ten nur Nachrichten von der rechten
Maustaste, wenn innerhalb dieses Fensters

die Menü-Steuerung ausgeschaltet wurde
und die rechte Maustaste wie die linke ge-

handhabt wird).

In MENU(2) steht der Status der Maus-
tasten, aus dem sich auslesen läßt, welche

Taste gedrückt oder losgelassen wurde. So

steht der Wert 104 für das Drücken der
linken Maustaste und die Zahl 232 für die
rechte. Es ist jeweils 1 dazu zu addieren,
wenn die Taste losgelassen wurde.

Die Maus wurde bewegt

In MENU(5) und MENU(6) lassen sich
die absoluten X- und Y-Koordinaten

relativ zum Fenster auslesen.

Die Maus wurde bewegt.

In MENU(5) und MENU(6) lassen sich
die relativen X- und Y-Koordinaten-
veränderungen zur letzten Position inner-
halb des Fensters auslesen.

——— Ereignis-Überwachung mit BASIC-Befehlen 401

Gadget-Nachrichten:

MENU(1) = 32

MENU(I) = 64

Ein Gadget wurde gedrückt.

In MENU(4) finden Sie den Zeiger auf
die Gadget-Struktur (die Spei-cheradresse,
ab der Gadget-Daten abgelegt sind) und
in MENU(10) die Window-Adresse des
Windows, in dem sich das Gadget be-

findet.

Ein Gadget wurde wieder losgelassen.

Auch hier steht in MENU(4) die Adresse
der Gadget-Struktur und in MENU(10)
die der Window-Struktur.

Requester-Nachrichten:

MENU(I) = 128

MENU(1) = 2048

MENU(1) = 4096

Innerhalb des Fensters ist ein Requester

geöffnet worden.

MENU(4) enthält die Adresse der Reque-
ster-Struktur und MENU(10) die des be-

troffenen Windows.

Es ist nicht möglich, den Requester im
Fenster darzustellen.

In MENU(I0) steht die Adresse des Fen-
sters.

Der letzte im Fenster geöffnete Requester
wurde gerade geschlossen (das Window ist
wieder zur Ein- und Ausgabe freigege-
ben). |

In MENU(I0) steht die Adresse des Fen-
sters.

402

Tastatur-Nachrichten:

MENU(I) = 1024

MENU(1) = 2097152

Andere Nachrichten:

MENU(1) = 16384

MENU(1) = 32768

MENU(1) = 65536

MENU(I) = 131072

MENU(1) = 4194303

Das große GFA-BASIC-Buch ————

Eine Taste wurde betätigt.

In MENU(2) ist der Tastatur-Code der
gedriickten Taste abgelegt, zu dem noch

der entsprechende Qualifier kommt, der

den Status der Tastatur anzeigt. Er steht in
MENU(3).

Eine Taste wurde betätigt.

In MENU(2) steht der ASCII-Code der
betätigten Taste. Es erfolgte also schon
eine Auswertung anhand der Tastaturta-
belle.

Von irgendeinem anderen Programm wur-
den die Grundeinstellungen des Systems
verändert (die Preferences-Daten sind neu
eingestellt worden).

In irgendein Laufwerk wurde eine Dis-
kette neu eingelegt.

Aus irgendeinem Laufwerk wurde die
Diskette entfernt.

Die Workbench schickt diese Nachricht,

wenn auf ihr Veränderungen vorgenom-
men wurden.

Bei Anforderung von Zeit-Nachrichten
erhält man über jeden IntuiTick eine
Nachricht. Dies geschieht alle 1/10tel Se-
kunde!

—— Ereignis-Uberwachung mit BASIC-Befehlen 403

ON MENU Verzweigung zur Ereignisfeststellung

ON MENU

ON MENU [Zeit]

Dieser Befehl wartet darauf, daß eine Nachricht eingetroffen ist
und verzweigt sogleich zu der definierten Stelle im Programm.
Er sollte innerhalb einer Schleife durchlaufen werden, denn nur

bei einer permanenten Abfrage ist es möglich, keine Nachricht

zu übersehen. Wird der Befehl nicht eingesetzt, kann auch keine
der ON MENU... GOSUB-Prozeduren angesprungen werden.

Es kann optional der Parameter Zeit eingesetzt werden. Dieser
Wert gibt in 1000stel Sekunden an, nach welcher Zeitspanne ON

MENU (siehe EVNT_MULTI) spätestens abgeschlossen werden

soll und die Kontrolle wieder an BASIC zurückgegeben wird.
Bei ausreichender Zeitvorgabe hat so das Input-Device Zeit, ggf.
das Loslassen des Mausknopfes zu registrieren. Dazu ist aller-

dings unbedingt erforderlich, ON MENU BUTTON GOSUB

einzusetzen, da sonst der Zeitwert unberücksichtigt bleibt.

Vergessen Sie nicht, diesen Befehl auch innerhalb von internen
Warteschleifen anzuführen (z.B. REPEAT... UNTIL MOUSEK),
da sonst solange kein Ereignis bearbeitet werden kann, wie sich
das Programm in dieser Warteschleife befindet.

SLEEP | | Auf eine Nachricht warten

SLEEP

Der SLEEP-Befehl ist eine Vereinfachung des ON- MENU-
Kommandos. Er setzt einfach für die Zeit-Variable den Wert |
ein und wartet auf irgendeine Nachricht, die über den Nach-
richten-Kanal des Intuition geschickt wurde.

404 Das große GFA-BASIC-Buch ————

ON MENU GOSUB Procedure-Bestimmung (Menü-Event)

ON MENU GOSUB Prozedurname

Prozedurname gibt die Prozedur an, zu der verzweigt werden
soll, wenn ein Pull-Down-Menüpunkt (Menüeintrag) angeklickt
wurde. Über MENU(0) kann dann dort der gewählte Menüpunkt
ermittelt und dementsprechend reagiert werden. Existiert Proze-
durname nicht, wird die Menü-Überwachung abgeschaltet. Soll-
ten Sie diesen Befehl aufrufen, bevor ein Fenster mit einem Me-

nü definiert wurde, stürzt das Programm ab!

ON MENU BUTTON GOSUB Procedure-Bestimmung

ON MENU BUTTON GOSUB Prozedurname

(Mausknopf-Event) Durch diesen Befehl kann eine Prozedur
bestimmt werden, zu der verzweigt werden soll, sobald eine oder

mehrere Maustasten ein- oder mehrmals gedrückt oder auch
nicht gedrückt wurden. Innerhalb der Routine muß dann eine
Auswertung über die MENU()-Funktion geschehen, in der ja

ausgelesen werden kann, welche Taste wann wie oft gedrückt

wurde.

ON MENU KEY GOSUB Proc.-Bestimmung (Tastatur-Event)

ON MENU KEY GOSUB Prozedurname

Die Tastatur wird überwacht und bei eingetretenem Ereignis
(ON MENU nicht vergessen) zu Prozedurname verzweigt, wo
man dann durch MENU(14) den Code der gedrückten Taste er-

fahren kann. Existiert Prozedurname nicht, wird die Tastatur-

Überwachung abgeschaltet.

——— Der GFA-Compiler 405

17. Der GFA-Compiler

Compiler? Was ist ein Compiler?

Dieser Begriff sollte am besten durch einen Vergleich erklärt
werden. Wenn Sie normalerweise mit GFA-BASIC arbeiten,

werden Sie ein Programm in den Editor eingeben und dieses mit
RUN starten. Danach macht sich GFA-BASIC an die Arbeit:
Zeile für Zeile untersucht es die Befehle und führt sie nachein-
ander in der vorgegebenen Reihenfolge aus. Dieses Verfahren
nennt man interpretieren. Das GFA-BASIC ist also ein /nterpre-
ter.

Interpreter

Fluß

| 1.Befehl Interpreter Code

Lat 2.Befehl Interpreter Code

Loy 3.Befehl Interpreter Code

3 Befehle
3 interpreter Vorgange
3 Teilcodes

h
u
n

Interpreter

Schleife

> | 1.Befehl Interpreter Code

3 Befehle
x interpreter Vorgänge
x Teilcodes

Ps Interpreter Code

Ly 3.Befehl Interpreter Code

_
T
L
T
 UU

Abbildung 17.1/1: Arbeitsweise eines Interpreters

406 Das große GFA-BASIC-Buch ————

Man kann sich schon als Laie vorstellen, daß dieses Verfahren

zwar - weil es sehr plausibel und einfach verständlich ist - auf
der Hand liegt, jedoch in dieser Einfachheit auch einige Tücken
liegen. Man kennt diese Technik aus dem Alltag. Jemand möchte
einem anderen Aufgaben zuteilen und schreibt diese auf. Derje-

nige, für den diese Aufgaben gedacht sind, liest sie sich nach-

einander durch und führt (je nach Gewissenhaftigkeit) ein nach
der anderen aus. Das Problem beim Computer liegt nun darin

begründet, daß er selber diese Anweisungen so nicht versteht.
BASIC ist eine Hochsprache, d.h. sie ıst für den Menschen ver-
ständlich, muß aber erst auf die tiefere Ebene der Computer-

sprache (Maschinensprache) übersetzt werden. Dieser Überset-
zungsvorgang nimmt, wie man es aus der Simultanübersetzung
her kennt, einige Zeit in Anspruch. Je nach Güte des Überset-
zers kann es schnell oder weniger zügig von Statten gehen.

Compiler

Fluß

| 1.Befehl Compiler I

3 Befehle
| 2.Befehl Comiler r— Code 3 compilier Vorgänge

1 Code

| 3.Befehl Compiler rm>

Conpiler

Schleife

| 1.Befehl Compiler >

3 Befehle in Wah.

| 2.Befehl Comiler r> Code 3 Compiler Vorgänge
1 Code

| 3.Befehl Comiler rm>

Abbildung 17.1/2: Arbeitsweise eines Compilers

——— Der GFA-Compiler 407

Es gibt dafür eine grundsätzlich schnellere Methode. Man über-
setzt die Sprache zuvor einmalig (so z.B. bei Computerbüchern)
und kann sich dann bei der Ausführung die Übersetzung sparen.
Diese Vorübersetzung nennt man compilieren, das passende Pro-

gramm dazu Compiler.

Damit sind wir endlich bei unserem Thema, dem Compiler. Die
obenstehende Grafik will noch einmal den Unterschied zwischen
den beiden Techniken der Befehlsausführung verdeutlichen.

In der Praxis

Wie wirkt sich nun dieser recht deutliche Unterschied in der

Verarbeitung bei der täglichen Arbeit aus? Würde nur eine Me-
thode die deutlich bessere sein, gäbe des die andere nicht. Doch

dies ist nicht der Fall. Man kann aber ohne ein schlechtes Ge-

wissen gegenüber den Entwicklern haben zu müssen sagen, daß
es um einiges einfacher ist, einen Interpreter zu entwickeln, als

einen Compiler.

Trotzdem ıst der Interpreter kein schlechtes Werkzeug. Besonders

im Stadium der Entwicklung eines Programms, macht es sich oft
viel einfacher, den Code, wenn auch langsamer interpretieren zu

lassen, dafür aber schnell eine Veränderung durchführen zu
können. Sie kennen das sicherlich aus eigener Erfahrung:

Man schreibt ein Programm, das mit der Zeit immer länger wird
und damit eine solche Komplexität erreicht, daß es nıcht mehr

ohne weiteres überschaubar ist. Nun wird eine Änderung vorge-

nommen. Diese läßt sich auf ihre Funktionsfähigkeit ganz leicht
dadurch überprüfen, daß man das Programm startet. Der Inter-

preter wird schon an der neuen Stelle einen Fehler melden,

wenn einer vorhanden sein sollte.

Nicht so beim Compiler. Dieser benötigt für die Übersetzung
zwar insgesamt nicht viel länger. Muß aber auch Programmteile
übersetzen, die bisher schon vollkommen funktionsfähig waren.
Man hat also einige Zeit zu warten. Tritt während der Überset-
zung ein Syntax-Fehler auf, bricht der Compiler ab (meistens
ohne eine Hilfestellung, wo der Fehler liegen mag). Während der

408 Das große GFA-BASIC-Buch -————

Interpreter also bei der Fehlersuche sehr hilfreich ist, verweigert

der Compiler jede konstruktive Zusammenarbeit.

Ist ein Programm aber fertig entwickelt, und soll dieses dann
unter besten Voraussetzungen laufen, empfielt es sich, dieses mit

dem Compiler zu beschleunigen. Wenn das Programm ausrei-

chend nach Fehlern untersucht wurde, sollten Syntax-Fehler

nicht mehr vorliegen, die Compilierung kann ohne Probleme
ablaufen. Als Ergebnis erhält man ein wesentlich schnelleres

Programm.

Der Compiler auf dem Amiga

Nach dieser grauen Theorie zum Thema Compiler soll es jetzt an
die Arbeit gehen. Der GFA-Compiler wird auf einer Diskette

zusammen mit Hilfsdateien geliefert. Von dieser Diskette sollten
Sie sich - ganz gleich, welche Computer-Konfiguration Sie ha-
ben - eine Kopie anfertigen.

Wir skizzieren diesen Weg noch einmal in kurzen Zügen:

Von der Workbench aus legen Sie die Original-Diskette in ein
beliebiges Laufwerk. Sollten Sie nur eines besitzen, bleibt dafür
natürlich nur DFO. Sie klicken nun das auf dem Workbench-

Screen erschienene Symbol der Diskette einmal an und wählen

im Menü Workbench den Punkt Duplicate aus. Nach einer Auf-

forderung die Workbench-Diskette einzulegen (diese erscheint
immer dann, wenn Sie bisher noch keinen Gebrauch von der

Funktion gemacht haben) erfolgt der erste Lesevorgang. Nach

einiger Zeit werden Sie dann aufgefordert, die Zieldiskette ein-
zulegen. Halten Sie dafür eine leere Diskette bereit. Diese muß
nicht zuvor formatiert werden. Die Duplicate-Funktion erledigt

diesen Vorgang gleich mit. Nach einigen Wechseln ist der Ko-
piervorgang beendet.

Für diejenigen unter Ihnen, die das Kopieren lieber vom CLI
aus durchführen, sei auch dieser Weg beschrieben. Der dort zu

verwendende Befehl heißt DiskCopy und wird mit zwei Para-
metern aufgerufen. Die Kommandozeile könnte z.B. so aussehen:

——— Der GFA-Compiler 409

DiskCopy df0: to df1:

Damit würde vorausgesetzt werden, daß im Laufwerk DFO: die

Quelldiskette und im Laufwerk DF]I: die Zieldiskette liegt. Be-
achten Sie, daß auch dieser Befehl zuvor von der Workbench-
Diskette nachgeladen werden muß! Den größten Vorteil, den das
Kopieren über das CLI bietet ist der Umstand, daß man bei
zwei Diskettenlaufwerken gleichzeitig liest und schreibt. Von der
Workbench aus läßt sich dies nur realisieren, wenn die Zieldis-

kette schon einmal vorformatiert wurde.

Nach diesen Vorbereitungen, die der Datensicherheit dienten,
können wir jetzt eine Arbeitsdiskette anfertigen. Da Sie natür-
lich schon eine Arbeitsdiskette für das GFA-BASIC besitzen,

ohne das wäre der Compiler ja schließlich vollkommen sinnlos,
sollte man zuerst nachschaun, ob dort nicht noch genügend Platz

vorhanden ist. Sie können in diesem Fall, gleich mit dem Ein-
richten des Compiler-Verzeichnisses beginnen. Wir wenden uns
zuerst dem Einrichten einer komplett neuen Arbeitsdiskette zu.

Die Arbeitsdiskette einrichten

Nehmen Sie sich dazu die oben erstellte Kopie der GFA-Com-
piler-Diskette. Dieser Diskette geben wir mit Rename (im Work-

bench Menü) einen neuen Namen. Wir schlagen an dieser Stelle
z.B. "GFA-Workdisk" vor und werden uns immer wieder darauf

beziehen. Es bleibt aber Ihnen überlassen, ob Sie auch diesen

Namen wählen.

Öffnen Sie nun nach erfolgreichem Umbenennen das Hauptver-

zeichnis der Diskette mit einem Doppeklick. Außer dem Compi-

ler-Symbol ist noch nichts zu sehen. Legen Sie nun die Kopie
Ihrer GFA-BASIC Diskette ins Laufwerk (wir haben an dieser

Stelle darauf verzichtet, zu zeigen, wie man davon eine Kopie

anfertigt; einerseits sollten Sie das schon längst erledigt haben
und andererseits können Sie ja oben nachschauen, der Vorgang
ist der gleiche) und öffnen Sie ebenso das Hauptverzeichnis.

Nun geht es daran, den Interpreter auf die Arbeitsdiskette zu
kopieren. Wir ersparen uns damit einen ständigen Wechsel zwi-

410 Das große GFA-BASIC-Buch

schen BASIC- und Compiler-Diskette. Dazu klicken Sie eines

der Symbole an (ggf. halten Sie die <Shift>-Taste und klicken

auch das zweite Symbol an) und bewegen es mit der Pfeilspitze
auf das Disketten-Symbol der GFA-Workdisk. Nach dem Los-
lassen der linken Maustaste setzt die Workbench mit dem Ko-

piervorgang ein. Je nach Systemkonfiguration kann es zu bis zu
vier Diskettenwechseln kommen.

Hinweis: An dieser Stelle sei angemerkt, daß es nicht sinnvoll
ist, den Run-Only-Interpreter auf die Diskette zu

kopieren. Schließlich werden Sıe programmieren und
nicht nur die Programme anwenden. Außerdem
benötigt er fast nocheinmal so viel Platz, wie der
komplette Interpreter. Damit wird es nachher

schwierig, den Compiler vollständig einzurichten.

Nun soll - der besseren Ordnung wegen - noch eine Programm-

Schublade anfertigen. Bewegen Sie dazu das Icon der Work-
bench-Diskette mit dem Namen "Empty" auf das Symbol der
Workdisk und lassen es dort los. Nach Beendigung des
"Kopiervorgangs" müssen Sie noch den Namen der neuen

Schublade in "Programme" verändern. Wie das geht, haben wir
bereits oben gezeigt.

Damit ist alles überstanden. Die Arbeitsdiskette ist fertig. Zur
besseren Übersicht und zum Abschluß sehen Sie hier das kom-
plette Verzeichnis der Arbeitsdiskette. Das einzige, was noch

fehlt, sind die zu compilierenden Programme, die kommen spä-

ter:

Programme (dir)

.info Disk.info

GFABasic GFABasic.info

GfaLib GfaLibrary

GfaLibrary. Index GFA_BCOM
Gl MakeDP

menux MENUX.GFA

menux. info Programme. info

readme.asc

——— Der GFA-Compiler 411

Mounted disks:

Unit Size Used Free Full Errs Status Name

DF2: 880K 1216 542 69% 0 Read/Write GFA-Workdisk |

GFA und die Festplatte

Für alle glücklichen Besitzer einer Festplatte (man hat es da ja
fast mit einer Modeerscheinung zu tun) sei an dieser Stelle noch
kurz die Einrichtung des Compilers erwähnt.

1. Unterverzeichnis anlegen

Zuerst soll für eine bessere Ordnung ein entsprechendes Unter-
verzeichnis eingerichtet werden. Dies geschieht über die Work-
bench ganz einfach durch Kopieren des Empty-Drawers und
dessen Umbenennung in z.B. "GFA". Sıe sollten dies spätenstens
jetzt tun, wenn Sie GFA kombiniert als BASIC- und Compiler-
System betreiben.

2. BASIC ggf. hineinkopieren

Natürlich gehört in das GFA-Verzeichnis der Interpreter. Auch
diesen können Sie über die Workbench kopieren. Bewegen Sie
dazu das Symbol von der Kopie ihrer BASIC-Diskette auf das
neue Schubladen-Symbol. Sollte es sich schon im Hauptverzeich-
nis der Festplatte befinden, können Sie es mit der gleichen Be-
wegung in das neue Verzeichnis legen. Ob Sie den RUN-Only-
Interpreter dazunehmen, bleibt Ihnen überlassen.

3. Compiler komplett kopieren

Nun kommt endlich der Compiler an die Reihe. Diesen können

wir allerdings nicht über die Workbench kopieren. Gehen Sie
dazu also ins CLI und kopieren mit folgender Zeile die gesamte
Compiler-Diskette in das GFA-Verzeichnis ihrer Festplatte:

Copy DFx:#? TO DHy:GFA

Für das x müssen Sie natürlich die Laufwerksnummer einsetzen,

in der die Quelldiskette liegt, und für das y die Festplatten-Par-
titition.

412 Das große GFA-BASIC-Buch ———

4. Programme-U nterverzeichnis einrichten

Der letzte Schritt zur Ordnung führt über eine weiteres Unter-
verzeichnis, das diesmal in dem GFA-Verzeichnis eingerichtet
wird. Hierbei duplizieren Sie wieder einmal das Empty-Icon und
bewegen es auf die GFA-Schublade. Dort drin ändern Sie den
Namen noch in "Programme" um. Fertig! Ihre Programme kön-
nen Sie jetzt immer in diesem Verzeichnis ablegen. Für eine
weitere Ordnung sei es Ihnen freigestellt, ob Sie noch tiefere
Ebenen anlegen, um z.B. Spiel-, Rechen- und Zeichenpro-

gramme zu trennen.

17.1 Beispiele und Ergebnisse

Endlich! Der Compiler ist eingerichtet, es kann losgehen. Als
erstes wollen wir ein Beispielprogramm compilieren, um den
Geschwindigkeitszuwachs zu beobachten.

Sie können dafür natürlich jedes beliebige (möglichst Fehler-
freie) Programm von sich verwenden. Tun Sie das ruhig. Es
empfielt sich aber auch, das im folgenden abgedruckte zu ver-
wenden, damit wir uns bei Vergleichen darauf beziehen können.

2 KRKKKKKKEKKEKAKEKEEEECKREEEREEEERKKKK KKK

i* *

' * Programm: Apfelmännchen *
ı %* *

I RHEKAKKHKKAKKEKREKAEKAKKEAEKAKKK KKK

|

anzfa%=4

maxfa%=anzfa%- 1

xo=10 I Zeichenbereich im
yo=5
xg=600 ! Ausgabe-Window

yg=150

x1=-2.25 I Eckkoordinaten des

y1=-1.75
x2=1 ! Ausschnitts
y2=1.75

|

ı tiefex=4 I Berechnugstiefe (Anzahl der Durchläufe)

' genau=2

INPUT "Bitte geben Sie die Genauigkeit ein ",genau

———— Der GFA-Compiler 413

INPUT "Bitte geben Sie die Tiefe der Verschachtelung ein ",tiefe%
|

dx=(x2-x1) i Breite und Hvhe des

dy=(y2-y1) ! Ausschnitts
a

FOR y=0 TO yg-1 STEP genau

b=y1+dy*y/yg
FOR x=0 TO xg-i STEP genau*2

a=x1+dx*x/xg

wert=0

c1=0.1

c2=0.5

flag%=1

Z%=0

WHILE wert<anzfa% AND flag%=1
erw1=c1

crw2=c2

cl=crwi*crwi-crw2*crweéta

c2=2*crwi*crwetb

wert=c1*c1+c2*c2

INC z%

IF z%=tiefe% THEN

flag%=0

ENDIF

WEND

IF z%=tiefe% THEN

COLOR 0

DRAW x,y
ELSE |

COLOR 2%- INT(2%/3)*3+1
DRAW x,y

ENDIF

NEXT x

NEXT y

Listing 17.1: Erster Compiler Test

Nehmen Sie nun dieses oder ein anderes Programm und halten

Sie es auf der Diskette zur Compilierung bereit. Wir werden nun

gleich den einfachsten Weg beschreiten, um ein Programm zu

compilieren. Gehen Sie dazu ins CLI oder die Shell und starten

Sie auf Ihrer Diskette das Programm "menux". Dieses Programm
hilft beim Erstellen von Compilaten und wird im allgemeinen als

Shell bezeichnet.

Sie finden nun vor sich einen Bildschirm der wie folgt aussieht:

414 Das große GFA-BASIC-Buch ————

Auswahl: *,GFA =
OBJ : TEST.O
cob ject: [Parent]
LIB : GfaLibrary info
PRG : TEST :

Com: S& S{ Fi APFEL.ASC.info

EN [RAD: |
APFEL .ASC DHE

Lnk: APFEL .BAK
APFEL .GFA Et
APFEL .GFA. inf - 2 info Leill

|
KA

QUADRAT . BAK
QUADRAT .GFA
QUADRAT .GFA. info
QUIX.BAK

| OK | [_ Abbruch
-Horküisk: |

Abbildung 17.2: Die GFA-Compiler-Shell

Diese File-Select-Box dürfte Ihnen noch vom GFA-BASIC her
bekannt sein. Mit ihr wird nun das Programm ausgesucht, daß
compiliert werden soll. Achten Sie darauf, daß es sich um ein

Programm und nicht ein ASCII-File (mit SAVE,A; Endung
"LST") handelt. Nach der Bestätigung mit OK beginnt der Com-
piler seine Arbeit.

Nun erkennt man auch den Zweck der Aufteilung in zwei Fen-
ster. Das obere beinhaltet die zur Verfügung stehenden Daten,

das untere gibt die Meldungen während des Compilier- Vorgangs

aus. Diese könnten etwa wie folgt lauten:

Compiling ...
GFA-BASIC 3.0 Compiler
Zeit 2.34 Sekunden

Return: -1

Linking ...

GFA-BASIC 3.0 Linker

Zeit 7.1 Sekunden

Return: -1

Damit ist der gesamte Vorgang erfolgreich abgeschlossen und
auf der GFA-Workdisk befindet sich unter dem Namen TEST

——— Der GFA-Compiler ; 415

das compilierte Programm. Dieses kann man nun über das CLI

oder auch mit Hilfe der Shell starten, um das Ergebnis zu be-

trachten.

Wählen Sie dazu in der Shell über das Menü "File" den Punkt
"Test" oder betätigen Sie die Tasten <Control>+"T". Das File
"Test" wird automatisch ausgewählt. Die Shell startet das Pro-
gramm und der Ausgabebildschirm erscheint.

Es wird sich schon bei diesem kleinen Test gezeigt haben, wel-
che Geschwindigkeitssteigerung der GFA-Compiler bietet. Al-
lerdings bietet der Compiler selbst auf dem Weg zu dieser Stei-

gerung noch einiges mehr, mit dem man ganz gezielt ein Pro-
gramm beschleunigen kann. Es soll deshalb als nächtes die Be-
dienung besprochen werden.

Vorher möchten wir noch ganz deutlich darauf hinweisen, daß
nach dem Compilieren das BASIC-Listing natürlich immernoch
benötigt wird. Kommen Sie nicht auf die Idee, dieses vielleicht
zu löschen. Der Compiler arbeitet wie eine Kodiermaschine.
Nach dem Vorgang ist nichts mehr zu entschlüsseln. Eine
Verbesserung oder Veränderung ist danach nicht mehr möglich.

17.2 Die Bedienung im Detail

Nicht nur zum Komfort ist eine gute Bedienung notwendig.
Auch damit das Programm optimal vom Compiler übersetzt wer-
den kann, sprich für eine effektive Ausnutzung, ist das sorgfäl-
tige Studium der Bedienungsmöglichkeiten unbedingt zu emp-
fehlen

Der GFA-Compiler bietet neben dem Standard - ein Programm

funktionsfähig zu compilieren - auch zusätzliche Optionen an,

mit denen der aus einem Programm entstehende Code beeinflußt
werden kann. Wir wollen uns diese Optionen ein nach der an-

deren ansehen. Damit diese Einstellungen möglichst leicht zu be-
dienen sind, werden sie über eine Shell angesteuert, die den
mühsamen Weg ım CLI spührbar erleichtert.

416 | Das große GFA-BASIC-Buch ——

17.2.1 Auf der Workbench

Für die nun folgenden Beschreibungen starten Sie bitte aus dem
CLI heraus die Shell mit der Zeile:

GFA-Workdisk:menux

Hinweis: Sicherlich ist der Weg über das CLI wesentlich weni-
ger komfortable, als er es über die Workbench wäre.
Gerade weil es ein Icon für MENUX gibt, werden

Sie sich besonders über diese Vorgehensweise wun-
dern. Unsere Arbeit mit der Shell hat aber gezeigt,
daß es in einer unveränderten Version nur zu
Problemen kommt, wenn man sie von der Workbench
aus startet. Eine Korrektur des Programms, das dann
beliebig gestartet werden kann, finden Sie unter den

Programmiervorschlägen zur Shell am Ende dieses
Kapitels!

Es zeigt sich der oben schon abgedruckte Bildschirm. Verlassen
Sie aber entgegen dem zuerst beschriebenen Weg die File-Select-

Box durch Klick auf das Feld "Abbruch" (In einer neuen Ver-
sion erscheint diese zu Anfang nicht, dann entfällt dieser Punkt).
Nun befinden wir uns in der Compiler-Umgebung. Im Gegen-
satz zur Standard-Ansteuerung im CLI bietet diese Umgebung
(fast) alle Funktionen über Menüs an. Das macht die Bedienung
so einfach.

Das erste, hier nicht abgebildete, Menü ist nur zum Aufruf der
Programm-Informationen vorgesehen. Es gibt eine Meldung über
die Version des Compilers im Ausgabefenster aus.

Hinweis: Bei der uns vorliegenden Version der Shell war ein
kleiner Fehler vorhanden. Die Ausgabe der Versi-
onsnummer erfolgte nicht im Ausgabe-Fenster, son-

dern im Status-Window. Das macht aber im Prinzip

nichts. Sehen Sie dazu bei Gelegenheit einmal im
Kapitel über die Veränderung der Shell nach.

— Der GFA-Compiler 417

Kommen wir jetzt zu den eigentlich wichtigen Menüs. Als erstes
zeigt sich dort das File-Menü. In ihm werden alle Funktionen
angeboten, die einen File-Zugriff erforderlich machen. Dies sind
im Einzelnen:

1. Auswahl (<CTRL>-A)

Man wählt das Programm aus, daß compiliert werden soll. Dazu

erscheint die schon bekannte File-Select-Box. Dieser Punkt wird
automatisch (je nach Version der Shell) nach dem Start der Shell
aufgerufen. Ebenfalls aufgerufen wird diese Funktion, wenn
man den Compilier-Befehl gibt, obwohl noch kein Programm
festgelegt wurde.

2. Compiler (<CTRL>-C)

Haben Sie zuerst die File-Select-Box mit "Abbruch" beantwortet,
weil Sie die Compiler-Optionen verändern wollten, dann kann

der Aufruf des Compilers später mit der als zweites im Menü
angebotenene Funktion erfolgen.

3. Linker (<CTRL>-L)

Der Linker bindet das vom Compiler erzeugte Modul zu einem
lauffähigen Programm zusammen. Diese Funktion muß unbe-
dingt nach dem Compilieren aufgerufen werden, damit das fer-

tige Programm erstellt werden kann. Erst nach dem Linken
"versteht" der Amiga die Übersetzung als ein Programm.

4. Interpreter (<CTRL>-I)

Von der Shell aus läßt sich jederzeit mit dieser Funktion der
GFA-BASIC-Interpreter aufrufen. Dadurch können Sie

(genügend Speicher vorausgesetzt) kleine Änderungen an dem
Programm vornehmen und es dann ein weiteres Mal compilieren.
Es entfällt das lästige Verlassen der Shell, Starten des Interpre-
ters, Verlassen des Interpreters und erneutes Starten der Shell.

Allerdings kann der Amiga im Multitasking natürlich sowieso
beide Programme gleichzeitig laufen lassen.

418 Das große GFA-BASIC-Buch ————

5. Test (<CTRL>-T)

Hier haben wir einen sehr praktischen Menüpunkt vor uns. Die

Funktion Test führt das unter gleichem Namen vorhandene Pro-
gramm sofort aus. Damit kann man im allgemeinen Fall sofort
das fertige Programm anschauen und seine Funktionsweise über-
prüfen. Wählt man die Option Programmname=GFA-Name, sie

ist bei neueren Versionen der Shell Standard-Einstellung, dann

wird auch das Compilat automatisch gestartet. Man erspart sich

die Auswahl des Programms.

6. Execute (<CTRL>-X)

Diese weitere Funktion arbeitet im Prinzip genauso wie die vor-
hergehende, jedoch kann man hier den Namen des auszuführen-
den Programms bestimmen. Dadurch lassen sich einerseits Pro-
gramme starten, die früher schon einmal compiliert wurde. Dies
kann zum Vergleich dienen, oder aber man startet irgendein an-
deres Tool, Utility oder eine Erweiterung, wofür keine Grenzen
gesetzt sind.

Zu beachten bleibt aber, daß die GFA-Compiler-Shell so lange
funktionsunfähig bleibt, wie das andere Programm läuft, da es

kein Multitasking unterstützt.

7. Quit (<CTRL>-O)

Hiermit wird der Compiler verlassen. Es findet an dieser Stelle

keine Sicherheitsabfrage statt. Diese ist auch nicht nötig, da alle
zu erhaltenden Daten auf dem Datenträger (Diskette, RAM-Disk
oder Festplatte) gespeichert sind. Denken Sie nur daran, ggf. das
Programm TEST mit Rename umzubenennen, damit es nicht bei
einem neuen Compiliervorgang überschrieben wird.

Nachdem Ihnen diese Befehle im Einzelnen wohl keine Schwie-
rigkeiten gemacht haben werden. Wollen wir uns jetzt an deren
praktische Anwendung machen. Schließlich reicht es nicht zu
wissen, welche Möglichkeiten es gibt, sondern man muß gleich-
zeitig auch erfahren, wie man diese richtig anwendet.

———— Der GFA-Compiler | | 419

Als ersten und einfachsten Weg gibt es folgenden:

Menux übers CLI starten. |
Programm-File (Endung .GFA) auswählen (F10).
Programm wird automatisch compiliert und gelinkt.
Programm mit Test (<CTRL>-T) starten. P

W
N
I
Z

Wie Sie sehen, kann man schon mit vier Schritten, die ersten

drei dauern bei einem kleinen Programm nicht länger als eine
Minute, wirkungsvolle Ergebnisse erzielen. Das Ergebnis im De-
taıl hängt aber immernoch von Ihrem Programm ab.

A propos Programm. Nicht immer geht alles so reibungslos ab,

wie in unserem Beispiel. Das nächste Beispiel soll zeigen, welche

Probleme beim Compilieren auftreten können.

l. Menux übers CLI starten.

2. Programm-File (Endung .GFA) auswählen.

3. Das Programm wird compiliert: ein Fehler tritt auf.

An dieser Stelle wollen wir kurz einhaken. Eine Fehlermeldung

tritt dann auf, wenn z.B. die Syntax des Programms fehlerhaft
war. Die Ausgabe im unteren Fenster könnte dann etwa so aus-

sehen:

Compiling ...
GFA-BASIC 3.0 Compiler

Programm enthält Strukturfehler

-- mit Interpreter prüfen --
Zeit 1.24 Sekunden

Return: -1

Sie haben jetzt die Möglichkeit, mit dem Interpreter diesen
Fehler zu korrigieren und dann erneut einen Compilier- Versuch
zu starten. Hier die Reihenfolge der Vorgehensweise nach dem
Auftreten des Fehlers:

4. Interpreter mit <CTRL>-I starten.
5. Programm mit der Funktion TEST in der Menüleiste

durchchecken.

420 Das große GFA-BASIC-Buch ———

6. Fehler korrigieren.

7. Programm abspeichern und Interpreter wieder verlas-

sen.
8. Erneut das Programm compilieren.

. Programm linken. |
10. Programm mit der Test-Funktion in der Shell

(<CTRL>-T) aufrufen.

Fertig!

Somit haben Sie schon eine sehr häufig auftretende Fehlerquelle
kennengelernt. Sicherlich gibt es noch einige Fehlermöglichkei-
ten mehr, doch dazu kommen wir in einem gesonderten Ab-
schnitt.

Kommen wir nun zum zweiten Menü. Es heißt "Optionen" und
wird für die Einstellungen von Compiler und Linker verwendet.
Alle diese Einstellungen weichen vom Standard ab und müssen,
wenn sie gewünscht werden, speziell angegeben werden. Es sind

dies im einzelnen:

Interrupts

Interrupts, zu Deutsch Unterbrechungen, werden in jedem Com-

puter(-programm) benötigt, um gleichzeitig ablaufende Opera-
tionen zu ermöglichen. Dies sind z.B. auch Tastatur-Eingaben
während der Rechenphase eines beliebigen Programms. Im Nor-
malfall nimmt das Programm selbst die Abfrage der Tastatur zu
einem bestimmten Zeitpunkt in arbeit. Dies gibt aber zumeist
nicht für die Tasten zum Unterbrechen eines Programms. Glei-

chermaßen werden die vom GFA-BASIC unterstützen periodisch

auftretenden Routinen mit EVERY xx oder AFTER xx gehand-

habt. Auch sie laufen auf der Basıs von Unterbrechungen.

In einem Multitasking-System kann man sich dies als parallel
laufende Prozesse vorstellen. Allerdings verbaucht jeder zusätz-
liche Prozeß neue Systemzeit, die nur in begrenztem Maße vor-
handen ist. Deshalb sollte man sich beim Compilieren genau
überlegen, ob es sinnvoll ist, eine Abfrage der Tastenunterbre-

——— Der GFA-Compiler 421

chung zuzulassen. Genauso sollte die Unterbrechung nicht erfol-
gen, wenn in dem Programm kein EVERY xx oder AFTER xx
verwendet wurde.

Zu diesem Themengebiet gehört auch eine Option, die innerhalb

des Programm-Codes gesetzt wird. Man bezeichnet solche nur
Teile des Programms betreffenden Optionen als Flags, die an
bestimmten Stellen gesetzt und gelöscht werden können.

$U

$U+

$U-
I-

I+

Select

Die CASE-Anweisung ist eine besonders strukturierte Befehls-
variante. Mit ihr lassen sich aufwendige Fallunterscheidungen
leicht bearbeiten. Allerdings vermeidet es ihre Flexibilität, daß

der Compiler einen besonders schnellen Code daraus produzieren

kann. Deshalb gibt es die Möglichkeit, über insgesamt zwei
Optionsangaben die Compilierung zu beeinflussen.

Grundsätzlich wird die CASE-Anweisung auf Geschwindigkeit
optimiert. Mit der Angabe S< läßt sich ein anderer Algorithmus

bestimmen, der eine Optimierung bezüglich der Programmlänge
durchführt.

Der zweite Parameter heißt S& und ändert den Umstand, daß

der Compiler immer von 4-Byte-Werten ausgeht. Danach wird
der Bereich auf 2-Byte-Werte eingeschränkt und kann so viel
schneller bearbeitet werden.

S<

S>

S%

S&

422 Das große GFA-BASIC-Buch ——

Functions

Diese Menü-Funktion ist zusammen mit einer Flagge kombi-
niert, die die Kontrolle des Compilers steuert. Im Normalfall

sollte eine Funktion, bevor ENDFUNC erreicht wird, mit RE-

TURN einen Wert an den aufrufenden Programmteil
zurückgeben. Dieses prüft der Interpreter in jedem Fall. Der
Compiler kann sich zwischen zwei Varianten entscheiden.

Zum ersten wird die Fehlermeldung Nr. 69 ausgegeben. Dies
warnt vor unbekannten Programmierfehlern. Gibt man aber die
Option F< an, wird der Fehler übersprungen und die Ausfüh-
rung des Programms setzt hinter der Funktion fort. Dies kann
einerseits erwünscht sein, wenn er z.B. in eine weitere Funktion
mündet, führt aber in den meisten Fällen zu unvorhersehbaren

Aktionen.

F%

F>

F<

Procedures

Eine weitere Funktion zum Beschleunigen des Compilats! Proze-
duren werden bei der Ubersetzung des GFA-Compilers wie-
derum als Prozeduren angesehen. Dies hat die Eigenschaft, daß
man sie rekursiv (aus sich selbst) aufrufen kann und die GFA-
Umgebung für alle dafür notwendigen Vorkehrungen Sorge
trägt. Allerdings, diese Maßnahmen erfordern einigen
Rechenaufwand, der sich in der Zeit niederschlägt. Benötigt man
diese Verwaltung nicht, weil weder die Rekursion noch die
Verwendung von RESUME nötig ist, kann eine schnellere Art
der Übersetzung gewählt werden. Dann überträgt der Compiler
eine Prozedur in eine einfache 68000er-Unterroutine.

P>

P<

— Der GFA-Compiler 423

IntDiv

Im Normalfall gibt es keine besonderen Rechenroutinen. Bei der

Verknüpfung von Integer-Zahlen eignen sich aber ganz beson-
ders spezielle Routinen dafür, Geschwindigkeit zu gewinnen.

Mit der hierunter laufenden Einstellung ist es möglich, die Di-
vision von Integer-Variablen gesondert durchzuführen.

%0

%3

IntMul

Hier gilt das gleiche, wie auch bei der Integer-Division.

* %

FR

Error

Die Fehlermeldungen werden, sollten sie beim Compilat benötigt
werden, nur als Nummern ausgegeben. Sie können dann z.B. in
diesem Buch nachschlagen. Möchten Sıe die erklärenden Texte

haben, hilft diese Option. Das Programm wird damit aber um
einiges länger, da alle Texte vorhanden sein müssen. Der Com-
piler "weiß" schließlich nicht, welche der Fehlermeldungen
benötigt wird.

E$
E#

Memory

Für jedes Programm muß zur ordnungsgemäßen Arbeit ein sog.
Stack angelegt werden. In diesem Stack werden während des
Programmablaufs Daten kurzfristig abgelegt. Man kann sich das
wie einen Merkzettel vorstellen, den man während einer Re-

chenaufgabe mit Nebenrechnungen beschreibt. Diese Zwischen-
speicherung ist besonders bei vielen Prozeduren nötig. Je tiefer

424 Das große GFA-BASIC-Buch ————

also die Verschachtelung innerhalb des Programms ist, desto nö-
tiger bedarf es eines größeren Stacks. Die Speichergröße wird
mit der Memory-Angabe eingestellt. Nach dem Buchstaben "m"
folgt ohne Lücke gleich die Anzahl der Bytes, die reserviert
werden sollen.

mXXXX

Alle Compiler-Optionen können auch innerhalb des Programm-
Codes definiert werden. Damit erspart man sich einerseits (wie
Sie beim CLI später besonders merken werden) die zusätzliche
Angabe vor dem Compilieren und kann außerdem eine feste
Einstellung vorgeben.

DebugSym

Diese Einstellung bezieht sich nicht, wie es bei den anderen Pa-

rametern zu sehen war, auf den Compiler. Es handelt sich hier-

bei um einen Link-Parameter, d.h. nur der Link-Vorgang wird
dadurch beeinflußt.

Will man das Programm später in seiner compilierten Form un-

tersuchen, ist es hilfreich, wenn dazu die Bezeichnungen des
Quelltextes zur Verfügung stehen. Der Linker bindet deshalb die
Symbole zum Debuggen (zur Fehlersuche) in das fertige Pro-
gramm ein. Sogenannte Debugger können dann während das

Programm läuft anzeigen, wo man sich gerade befindet.

-S

17.2.2 Vom CLI

Die Ansteuerung des Compilers und Linkers von CLI ist eigent-
lich die urspriingliche. Sie erfolgt analog zu den Aufrufen, die
Ihnen aus der Shell bekannt sind. So wird der Compiler mit fol-

gender Zeile fiir das Programm Test.GFA aufgerufen:

GFA_BCOM Test

——— Der GFA-Compiler | 425

Die Endung .GFA wird automatisch angehängt. Sie können sie
angeben, müssen es aber nicht. Als Ausgabe erhält man bei feh-
lerfreiem Ablauf die schon bekannte Meldung:

GFA-BASIC 3.0 Compiler

Mehr nicht!

Möchten Sie nun eine Einstellung ändern, so schauen Sie die

entsprechende Flagge nach. Sie fanden oben unter jedem Para-
meter eine kurze Angabe. Diese müssen Sie nun hinter dem
File-Namen angeben. Sollen z.B. die Fehlermeldungen als Texte
ausgegeben werden, sieht die Compiler-Zeile wie folgt aus:

GFA_BCOM Test E$

Jede weitere Flagge wird getrennt durch eine Lücke hinter den

File-Namen geschrieben. Sehen Sie in der folgenden Tabelle eine
Übersicht aller Flaggen und ihrer Bedeutung:

Flag Bedeutung

U Die Abbruch-Tastenkombination (<Control>-<SHIFT>-<ALT>)

wird nur einmal überprüft.

U+ Nach jedem Befehl wird ein Tastatur-Abbruch überprüft.

U- Die Prüfung des Tastatur-Abbruchs entfällt.

I+ _ Interrupt-Routinen sind eingeschaltet.

I- |. Interrupt-Routinen sind ausgeschaltet.

%0 Integer-Division wird nur bei Ubertragung in eine Integer-Variable

| durchgeführt. |
%3 Integer-Division wird immer als Integer-Division durchgeführt.

%6 Integer-Addition vermischt mit anderen Zahlentypen wird als Fließ-

komma-Addition durchgeführt.

N+ Die zusätzliche Überlaufprüfung des Compilers wird eingeschaltet.

N- Es findet keine zusätzliche Überlaufprüfung statt.
*& Langwort-Multiplikationen werden mit dem speziellen Assembler-

Befehl "muls" durchgeführt.

*% Langwort-Multiplikationen werden mit der Unterroutine LMUL

durchgeführt.

E$ Fehlermeldungen werden als Text ausgegeben.

E# Fehlermeldugnen werden als Nummer ausgegeben.

426 Das große GFA-BASIC-Buch -————

Flag Bedeutung

F% Die von Funktionen zurückgegeben Parameter werden als Integer

interpretiert.

F> Erzeugt ENDFUNC als Funktionsabschluß.

F< Erzeugt keine ENDFUNC bei Funktionen.

P> Unterroutinen werden von GFA-BASIC verwaltet.

P< Unterroutinen werden als 68000er-Unterroutinen gehandhabt.

S& Die Parameter von SELECT werden als 2-Byte-Werte verwaltet.
5% Die Parameter von SELECT werden als 4-Byte-Werte verwaltet.

S< SELECT-Auswahl wird auf Programmlänge hin compiliert.

S> SELECT-Auswahl wird auf Geschwindigkeit hin compiliert.

C+ Die Register A3-A6 werden beim Aufrufen von Assembler-Routinen

mit CALL gerettet. - |
C- Die Register A3-A6 werden nicht gerettet.

M xxxx Reserviert xxxx Bytes separaten Speicher.

X name Bindet die Routine "name" aus einer Link-Datei ein.

Bisher noch nicht dokumentiert wurden die folgenden Flaggen:

Unterroutinen einbinden

In manchen Situationen eignet es sich besser, nicht in BASIC zu
programmieren und dafür eine Routine aus einer anderen Pro-
grammiersprache zu wählen. Dies mag daran liegen, daß es in
BASIC zu kompliziert wäre oder aber auch daß BASIC nicht

schnell genug ist.

In diesem Fall ersetzt der GFA-Linker aufgrund der Markierung
im Quelltext diese Routine mit der in der GFA-Library vorhan-
denen. Dazu finden sie mehr Hinweise ım Kapitel

"Fortgeschrittene Compiler-Nutzung".

X name

Registerverwaltung

Die schon als Standard bekannte Möglichkeit, innerhalb der
GFA-BASIC Programme Assembler-Routinen anzuspringen, er-
fährt durch diese Parameter neuen Komfort. Im Normalfall

——— Der GFA-Compiler 427

dürfen die Register A3-A6 nicht verwendet werden, da sie
wichtige Werte enthalten. Mit der Option C+ wird eine automa-
tische Speicherung eingestellt, die zwar mehr Speicherplatz und
Zeit verbraucht, dafür aber Sicherheit garantiert.

C+

Uberlauf priifung

Aufgrund der Organisation des Compilers gibt es Feh-
lermöglichkeiten, die durch fehlende Abfragen entstehen kön-
nen. Dies liegt an dem Bestreben, möglichst schnelle Compilate

zu erzeugen. So wird die Abbruchbedingung der Schleife FOR-
TO-NEXT (Erreichen des letzten Zahlenwertes) erst nach dem
NEXT durchgeführt. Hierbei wurde die Abfrage vor dem Erhö-
hen der Laufvariablen eingespart. Dies kann aber besonders bei
Integer-Variablen zu Problemen führen, da nach dem höhsten
Wert wieder der kleinste folgt, sich somit also eine Endlos-
schleife ergibt. Durch die Option N+ fügt der Compiler eine

zusätzliche Abfrage ein, die diese Endlosschleifen verhindert.

N+

N-

Fließkommaaddition

Leider treten bei der Verbindung von Fließkomma- und Inte-
ger-Addition Rundungsfehler auf. Dies liegt an der Konvertie-
rung der Fließkommazahlen zu Intergerwerten, bei der die
Nachkommastellen überlicherweise abgeschnitten werden. Führt

dies zu starken Berechnungsfehlern, kann mit der Option %6

eine Umwandlung der Werte ın Fließkommanzahlen erzwungen
werden. Es ist zu beachten, daß damit ein erheblicher Ge-

schwindigkeitsnachteil erzeugt wird. Verwenden Sie diese An-
gabe deshalb nur für ganz bestimmte ProgrammteHe. Die teil-
weise Nutzung der Compiler-Flaggen wird im Kapitel über die
fortgeschrittene Compiler-Nutzung erklärt.

yee)

428 Das große GFA-BASIC-Buch ——

Damit sind Sie über alle Möglichkeiten zur Einstellung bei der
Compilierung informiert. Es soll jetzt der Link-Vorgang be-
trachtet werden, bei dem weitere Einstellungen möglich sind.

Nach dem Compilier-Vorgang folgt zwangsläufig das Linking.
Dieses wird als separates Programm aufgerufen. Das Programm
bindet, wie oben schon erwähnt, das Programm-Modul (es kön-

nen auch mehrere sein) zu einem lauffähigen Programm zusam-
men. Der Linker wird wiederum mit dem Programm-Namen
bzw. dem Namen des Objekt-Moduls aufgerufen:

GL Test

Diese Befehlszeile reicht im Normalfall aus. Jedoch gibt es für
den Linker genauso wie für den Compiler weitere Optionen, die

Spezialfälle zulassen. Sehen Sıe auch dazu eine Tabelle:

Flagge Bedeutung

-S Die Symboltabelle wird dazugelinkt.
+Lib Fur das Linking wird die Library "Lib" verwendet und nicht die stan-

dard-eingestellte "GFALibrary".

-Lname Entspricht dem obigen.

Name Fugt zusatzlich die Objekt-Datei "Name.O" zum Standard-Objekt

"TEST.O".

Die Objekt-Datei "TEST.O" wird nicht dazugelinkt.

-Oname | Ersetzt den Namen "TEST.O" durch "name.O" als Haupt-Linkdatei.

-Pname | Nennt das erzeugte Programme "name" und nicht "TEST".

-W Schaltet die Wait-Flag ein, damit auf Diskettenwechsel gewartet

wird.

17.2.3 Die Fehlermeldungen des Linkers

2... Das oben nach dem Fragezeichen genannte Symbol ist nicht be-
kannt. Diese Fehlermeldung kann auftreten, wenn im Quellpro-
gramm über die Option |
$ X name

——— Der GFA-Compiler 429

eine externe Funktion eingebunden werden soll, diese aber beim
Linking vergessen wurde.

Zur Behebung des Fehlers kann entweder untersucht werden, ob
vergessen wurde, die dazugehörige Link-Datei anzugeben oder
aber der Name im Quelltext falsch geschrieben wurde.

+... Das angegebene Symbol wurde zweimal definiert. Innerhalb des
gesamten Objekt-Codes existiert zweimal die gleiche Funktion.
Das kann z.B. daran liegen, daß innerhalb zweier dazugefügter
Objekt-Dateien das gleiche Untermodul definiert wurde.

Entfernen Sie zur Fehlerkorrektur das doppelte Untermodul in ei-
nem der Objekt-Sources. Handelt es sich nicht um den gleichen
Code, müssen Sie die Namen ändern, damit der Fehler nicht ein
zweites Mal auftritt.

>... Ein 16-Bit-Offset ist zu groß. Der Abstand zwischen Daten und
dem Programmteil, der auf diese Daten zugreift ist zu groß. Das
kann neben dem Auslesen von Daten auch der Sprung in eine
Routine sein, die zu weit weg liegt.

Eine Möglichkeit, die leider nicht immer hilft, ist das Linken des
Programms in anderer Reihenfolge der Objekt-Module. Dabei
muß auf die Beziehung der einzelnen Routinen geachtet werden.
Allerdings helfen hier nur Details weiter, die ganz speziell vom
Source-Code abhängen. Sorry.

17.3 Effektives Compiler-BASIC

Sicherlich sollte sich der Einsatz eines Compilers auch lohnen.

Programme sollen schneller und damit leistungsfähiger werden.
Grundsätzlich wird aber nicht jedes Programm meßbar schneller.
Dies liegt ganz einfach daran, daß das GFA-BASIC in manchen
Bereichen schon die maximale Geschwindigkeit ausgenutzt hat.

An dem folgenden Beispiel sehen Sie ein optisch sehr schönes
Programm, daß leider in der Compilierung nur wenig schneller
wird: |

430 Das große GFA-BASIC-Buch ——

Demonstrationsprogramm für Compiler I

|

' Obwohl dieses Programm grundsätzlich nicht sehr schnell ist,

ı kann es mit dem Compiler nur wenig beschleunigt werden.

' Dies zeigt die Zeitangabe im Window.
I

t

|

|

(c) 1989 by DATA BECKER, Düsseldorf
(p) 1989 by Wgb, Großhansdorf

DEFINT "a-z"
i

COLOR 1

begin%=1

ende%=360

breite%=320

hoehe%=128
i]

DRAW 16000,600

WHILE INKEY$="""

t1%=TIMER

FOR i%=begin% TO ende% STEP 1

DRAW TO 320+SIN(i%)*Cbreite%/ (i%/50)), 128+COS(1%)* (hoehe%/(1%/50))

COLOR 1% AND 3

NEXT 1%

FOR i%=ende% TO begin% STEP -1

DRAW TO 320+SIN(i%)*(320/(1%/50)) , 128+COS(1%) * C(hoehe%/ (14/50))

COLOR i% AND 3

NEXT 1%

t2%=TIMER

PRINT AT(0,0);(t2%-t1%)/200

WEND

Listing 17.2: Stern-Zeichner

Wie Sie sehen, besteht ein großteil der Arbeit, die dieses Pro-

gramm verrichtet, darin, zu zeichnen. Gerade aber diese Arbei-

ten werden vom Betriebssystem durchgeführt. Sie können nicht
beschleunigt werden. Diese Gesetzmäßigkeit läßt sich auf alle
Ein- und Ausgaben übertragen. So werden Grafiken nicht

schneller gezeichnet, wenn man das Programm compiliert.

Was sich allerdings steigern läßt sind aufwendige Berechnungen.
Hier werden sehr auffällige Geschwindigkeitssteigerungen regi-
striert. Nehmen wir dazu zum Beispiel die Primzahlenberech-

nung nach dem Verfahren "Das Sieb des Erathostenes". Dabei
wird ein Feld mit allen zu untersuchenden Zahlen definiert.

——— Der GFA-Compiler 431

Dieses Feld geht man nun Zahl für Zahl durch und entfernt alle
Vielfachen der Zahl. Nun geht man zur nächsten vorhandenen
Zahl und fährt so fort. Zum Schluß bleiben nur noch ganz we-
nige der Zahlen. Das Verfahren kann bei der Hälfte der Menge
abgebrochen werden, da alle übrigen Zahlen nicht mehr als
Vielfaches vorhanden sind. |

Das nun abgedruckte Listing verwendet dieses Verfahrung und
wurde unter Ausnutzung der GFA-BASIC Eigenheiten pro-
grammiert. Dadurch ist es schon in BASIC besonders schnell.
Aber warten Sie ab ...

' Das Sieb des Erathostenes
8

' Programm zur Demonstration der
' Beschleunigung der Rechengeschwindigkeit
|

' (c) 1989 by DATA BECKER, Düsseldorf
' (p) 1989 by Wgb, Großhansdorf
i

DEFINT "a-z"

anzahl%=2000

abbruch%=anzahl%/2
DIM feld%(Canzahl%)

zaehler%=2

t1%=TIMER
|

WHILE zaehler%<abbruch%

' PRINT zaehler%

anz%=2

WHILE zaehler%*anz%<=anzahl%

entfernen%=zaehler%*anz%

feld%(entfernen%)=1

INC anz%

WEND

INC zaehler%

WHILE feld%(zaehler%) AND zaehler%<=abbruch%

INC zaehler%

WEND

WEND
8

t2%=TIMER

PRINT "Es wurden ";(t2%-t1%)/200;" Sekunden für ";anzahl%;" Primzahlen
benvtigt"
WHILE INKEY$=""
WEND

FOR i%=1 TO anzahl%
IF feld%(i%)=0 THEN

432 | Das große GFA-BASIC-Buch ————

PRINT 1%

ENDIF

NEXT i%

Listing 17.3: Das Sieb des Erathostenes

Dieses doch recht einfache Programm vermeidet innerhalb der
Schleifen jede Standard-Berechnung. Aus diesem Grund wird
die Abbruch-Bedingung <anzahl%/2 vorher berechnet und in

abbruch% niedergeschrieben.

Compilieren Sie nun dieses Programm mit den Standard-Optio-
nen. Sie werden einen enormen Geschwindigkeitsgewinn fest-
stellen. Bei einem Feld von 2000 Zahlen benötigt der Interpreter
3.8 Sekunden. In der compilieren Version werden maximal 0.4

Sekunden gebraucht! Das ıst das 9,5 Fache!

Es lassen sich aber noch weitere Steigerungen erzielen. Dazu
kann z.B. die Multiplikation, die sich alleine auf Integer-Zahlen

beschränkt, mit einer besonders schnellen Routine durchgeführt

werden. Setzen Sie dazu im Menü "Optionen" das Flag "IntMul",
Die Verbesserung macht sich deutlich bemerkbar.

Ganz allgemein läßt sich sagen, daß es besonders sinnvoll ist, die
Verfahren, mit denen gerechnet wird, gut auszuwählen. Dies
hängt aber in erster Linie von den Variablen ab. Man sollte sich
deshalb angewöhnen, für ganze Zahlen keine Fließkomma-Va-

riablen, sondern Integer-Variablen zu verwenden. Dies macht es
für den Compiler einfacher, eine Geschwindigkeitssteigerung
durchzuführen. Aber auch hier sollten Sie noch genau auf die
Bereiche achten. Benötigen Sie wirklich 4-Byte-Integer oder
reichen 2-, wenn nicht gar 1-Byte aus.

17.4 Fortgeschrittene Compiler-Nutzung

Compiler-Optionen innerhalb des Quelltextes

Wie Sie bei der Beschreibung der Compiler-Shell gesehen haben,
führen verschiedene Flaggen zu anderen Ergebnissen im Compi-

——— Der GFA-Compiler 433

lat. Diese Flaggen haben aber nicht alle globalen Charakter. Das

heißt es können auch nur Teile eines Programms durch diese
Einstellungen beeinflußt werden. Anhand einiger Beispiele soll
dies jetzt gezeigt werden. |

Grundsätzlich ist es auch möglich, Optionen innerhalb des Pro-
gramms zu wählen. Sie können also die Einstellungen, die sie
mit der Shell über die Menüs anwählen, genausogut ın den Pro-
grammtext eintragen. Will man z.B. das Programm durch die
Tastenkombination <CTRL>-<SHIFT>-<ALT> unterbrechbar
machen, setzt man an den Anfang des Listings die Zeile:

$ Ur

Damit wird die Unterbrechung zugelassen. Das ist besonders

sınnvoll, wenn es sich um eine Endlosschleife im Hauptpro-

gramm handelt, die unterbrochen werden muß. Aber auch bei
vermuteten Fehlern, die zu Endlosdurchläufen führen, ist diese
Option hilfreich.

Optionen für Programmabschnitte

Das nun folgende Programm macht an zwei Stellen das gleiche.

Es addiert zu einer Variablen immer wieder Zufallszahlen im

Bereich von 0-1,9. Da es sich um eine ganzzahlige Variable han-

delt, wird die Wahrscheinlich in gleichen Teilen zu 0 und | ste-
hen, da immer abgerundet wird. Allerdings ist die Ausführungs-
geschwindigkeit sehr unterschiedlich.

Compiler-Test

Optionen innerhalb des Quell-Textes

(c) 1989 by DATA BECKER, Düsseldorf
(p) 1989 by Wgb, Großhansdorf

DEFINT "a-z"

PAUSE 10
8

$ %6

t1%=TIMER

CLR 3%

FOR i%=1 TO 10000

a%=a%+(RND(1)*2)

434 Das große GFA-BASIC-Buch ——

NEXT 1%

t2%=TIMER
a

$ %3

CLR a%

FOR j%=1 TO 10000

a5%=a%t+ (RND(1)*2)

NEXT j%

t3%=TIMER
t

PRINT "1. Schleife: ";(t2%-t1%)
PRINT "2. Schleife: ";(t3%-t2%)

WHILE INKEY$="""

WEND

Wenn Sie dieses Programm compilieren werden Sie unabhängig
von den Einstellungen über die Integer-Addition ein Ergebnis
erhalten, daß die erste Schleife wesentlich langsamer klassif1-
ziert. Dies ist auch verständlich, denn die dortige Addition wird
in Fließkommanzahlen durchgeführt und erst danach in das In-
teger-Format umgewandelt. In manchen Fällen ist es aber nötig,
diese Addition zu wählen. Dann können Sıe den entsprechenden

Bereich über die Flaggen kennzeichnen.

17.4.1 Ergänzungen für die Compiler-Shell

Nachfolgend sehen Sie das Listing der Compiler-Shell, die ım
Mittelpunkt dieses Kapitels steht. Auf der uns vorliegenden

Version befanden sich einige Fehler, die wir anhand des abge-
druckten Quelltextes korrigieren wollen. Außerdem haben Sie
die Möglichkeit, einige Verbesserungen einzubauen.

$ m2000

$ s&,s<,f<
-pl96
nd
d

RESERVE 2000

' Programmnamen

gfaint$="GFABasic"

gfacom$="GFA_BCOM"

gfalnk$="GL"
;

' Environment Variablen

tobj$="TEST.O" IErzeugtes O-File

Der GFA-Compiler 435

tprg$="TEST" IErzeugtes PRG

tl ib$="G6fal ibrary" IName der Library
cobj$="" Izusätzliche O-Files für Linker
|

' Aktueller Pfad

p$=DIR$(0)
|

DIM a$(50)
FOR 14=0 TO 50

READ a$(i%)
EXIT IF a$li%)= "#1

NEXT i%

ag i%) =
|

coi&=0 Iikein I

cos&=3 1S& und s<

cof&=1 IF<

cod&=0 Ikein %3

com&=0 Ikein *&

coe&=0 Ikein E

cop&=0 Ikein P>
dbsym&=0 Ikeine DebugSymbole
auto&=1 Ixxx aus Xxx.gfa
|

DATA "About "
DATA GFA-BASIC 3.0 Compiler
DATA

DATA "File "

DATA Auswahl “A
DATA Compiler “C
DATA Linker “L
DATA Interpreter I

DATA -----------------
DATA Test “T
DATA Execute X

DATA --------------..

DATA Quit Q

DATA

DATA "Optionen "
DATA +I Interrupts

DATA +S Select

DATA +F Functions

DATA +P Procedures

DATA +/ IntDiv

DATA +* IntMul

DATA +E Error

DATA ----------- --. - .-

DATA +M Memory

DATA ---------- nun.

DATA +D DebugSym
DATA

DATA Sets
DATA G3WAIT MW

436 Das große GFA-BASIC-Buch

DATA G3MOVE M

DATA --------------
DATA G30BJ 0
DATA G3PRG P
DATA G3LIB L

DATA PRG=GFA F2

DATA C-Object C

maxy&=255
s$="GFA-BASIC 3.0 Compiler"
SSS$=""CON:0/"+STRSC INT (maxy&/2))+"/640/"+STRSC INT (maxy&/2))+""/Ausgabe: "

OPEN “o" #1,sss$
OPENW #0,0,0,639,maxy&/2-1,0,&H100F
TITLEW #0,s$,s$
MENU a$()

amenu34
ON MENU GOSUB men

com_opt
|

DO

ON MENU

1S=INKEYS
IF 1$<>u

a%=BYTE(V:i$)
key

ENDIF

IF MOUSEK=1 AND MOUSEX<138 AND MOUSEX>70

IF MOUSEX<75+28

fl!=TRUE

ELSE

fl!=FALSE

ENDIF

IF MOUSEY>12

IF MOUSEY<24

twait!=fli

com_opt

ELSE IF MOUSEY<34

tmove!=f |!

com_opt

ENDIF

ENDIF

WHILE MOUSEK

WEND

ENDIF

LOOP
a

> PROCEDURE men

check(-MENU(0))
RETURN

> PROCEDURE key

SELECT BYTE(a%) AND &HDF Idiese ascii-codes ohne scan-code
CASE "x 7 vor, vu npu run ya pH

——— Der GFA-Compiler 437

aZ=BYTE(a%) AND &HDF

check (a%)
CASE 127 Idelete (amiga has no undo-key !!!)

check (127)
CASE 155

al=BYTE{SUCC(V:i$)}
SELECT al
CASE 63 !Help

check(1000)
DEFAULT

check(ADD(1000-47,al))
ENDSELECT

CASE 1 TO 26 !Control+Key
check (a%)

ENDSELECT
RETURN
> PROCEDURE check(x%)

SELECT x%

CASE -1

PRINT #1,"Version 3.0"
RELSEEK #1,0

CASE -4,1001,1 IA
do_fsel(".GFA", f$)
IF auto& AND 1

IF RIGHTS(f$,4)=".GFA"

zS=LEFTS(f$, LENC f$)-4)
IF z$<>tprg$

tprg$=z$
' com_opt

ENDIF

ENDIF

ENDIF
CASE -5,3 °C

IF achk_file(f$)
keyclr

compile
ENDIF .

CASE 1010 !F10
IF achk_file(f$)

compile
Link

ENDIF

CASE -6,12 !°L
Link

CASE -7,9 17]

IF LENC FS)
#1$=" - Hef Sei u

ELSE
#1$=" ul

ENDIF

PRINT #1,"Starting ";gfaint$;f1$
RELSEEK #1,0 Iclear buffer
t%=TIMER

438 Das große GFA-BASIC-Buch

EXEC gfaint$+f1$,0,0
tmx

CASE -9,20 I °T
PRINT #1,"Executing ";tprg$
RELSEEK #1,0 Iclear buffer
t%=TIMER

e%=EXEC(tprg$,0,0)
tmx

CASE -10,24 IX
do_fsel("Programmn:", x$)
IF LEN(x$)

PRINT #1,"Executing ";x$
RELSEEK #1,0 Iclear buffer
t%=TIMER

e%=EXEC(x$,0,0)
tmx

ENDIF —
CASE -12,17 !°Q

END
CASE -15 !I

INC coi&

CASE -16 IS

INC cos&
CASE -17 !F

INC cof&
CASE -18 !P

INC cop&

CASE -19 !/

INC cod&

CASE -20 !*

INC com&

CASE -21 IE
INC coe&

CASE -23 IM
in(m$)
n=INT(VAL(m$))
IF n>1000000000 OR n<=0
moat

ELSE

m$=STR$(n)
ENDIF

CASE -25 ID

INC dbsym&
CASE -28,"w"

twait!=NOT (twait!)
com_opt

CASE -29,"M"
~ tmove!=NOT (tmove!)

com_opt
CASE -31,"0"

in(tobj$)
CASE -32,"P"

in(tprg$)

———— Der GFA-Compiler 439

CASE -33,"L"

inCtlib$)

CASE 127,1000 !undo,help

com_opt

CASE -34,1002 !F2

INC auto&

CASE -35,"C#

in(cobj$)

ENDSELECT

MENU a$()

menu34

ON MENU GOSUB men

ON MENU KEY GOSUB key

com_opt

keyclr
RETURN

> PROCEDURE com_opt
co$=" u

IF com& AND 1

co$=co$+!! *gı

ENDIF

IF cod& AND 1

co$=co$+" 43"

ENDIF

IF cos& AND 1

co$=co$+" Sg

ENDIF

IF cos& AND 2

co$=co$+" S<"!

ENDIF .

IF coe& AND 1

co$=co$+" ES"

ENDIF

IF coe& AND 2

co$=co$+" E-"

ENDIF

IF coi& AND 1

co$=co$+" I+!

ENDIF

IF cof& AND 1

co$=co$+" F<"!

ENDIF

IF cop& AND 1
co$=co$+" p>"

ENDIF

IF LEN(m$)

co$=co$+" m''+ms

ENDIF

IF auto& AND 1

IF RIGHTS(f$,4)="".GFA"

Z$=LEFT$(f$, LEN(£$)-4)
IF z$<>tprg$
tprg$=z$

440 Das große GFA-BASIC-Buch ————

' com_opt
ENDIF

ENDIF
ENDIF
i

COLOR 0
PBOX 70,12,138,34
COLOR 1
TEXT 7,100, "Com: "'+co$+SPACE$(10)
TEXT 7,110,"Lnk: "
IF dbsym& AND 1

TEXT 43,110,"-s"
ENDIF
8

TEXT 7,20,"WAIT: ON OFF"
TEXT 7,32,"MOVE: ON OFF"
BOX 70,12,138,22
BOX 70,24, 138,34
invert(12,twait!)

invert(24, tmove!)

sss$=SPACE$(8)

LINE 75+28,12, 75+28,22
LINE 75+28,24,75+28,34
TEXT 7,45,"Auswahl: "+f$+sss$
TEXT 7,55,'0BJ : "+tobj$+sss$
TEXT 7,65,"CObject: "+cobj$+sss$

TEXT 7,75,"LIB : "+tlib$+sss$

TEXT 7,85,"PRG : "+torg$+sss$

RETURN

> PROCEDURE invert(y0&, f!)
LOCAL y1&,a$, x0&,x1&

INC yO&

y1&=y0&+8
IF f!

x0&=71

x1&=75+27
ELSE

x0&=75+29
x1&=137

ENDIF

GET x0&, yO&,x1&, y1&, a$
PUT x0&, yO&, aS, &H30

RETURN

> PROCEDURE do fsel(x$,VAR f$)
CLR f$
FILESELECT x$,"OK", pS, f$
fS=TRIMS(FS)

com_opt
RETURN

> PROCEDURE tmx

PRINT #1,"Zeit ";(TIMER-t%)/200;'" Sekunden"
PRINT #1,"Return: ";e%
RELSEEK #1,0 Iclear buffer

——— Der GFA-Compiler 441

RETURN
> PROCEDURE link

PRINT #1,"Linking ... "
RELSEEK #1,0 Iclear buffer
t%=TIMER |

IF dbsym& AND 1
sH=l -s u

ELSE
s$=" u

ENDIF

env

sss$=s$+cobj$+env$+CHR$(10)
e%=EXEC(gfalnk$+sss$,0,1)
tmx

keyclr

RETURN

> PROCEDURE compile
PRINT #1,"Compiling ... "

RELSEEK #1,0 Iclear buffer
t%=TIMER

env

sss$=""_ N+f$+Cco$renv$+CHR$C10)

ion

e%=EXEC(gfacom$+sss$,0,1)

i_off

tmx

RETURN

> PROCEDURE env

envS=""_-O "+tobjSt" -P "+tprg$+" +"+tl ibs

IF twait!

env$=env$+!" -Wı

ENDIF

IF tmove!

env$=env$+" -M"

ENDIF

RETURN

> PROCEDURE in(VAR a$)

OPENW #1,70,105,500,25,0, 15+4096

TITLEW #1,"Eingabe:"

FORM INPUT 60 AS a$

CLOSEW #1

a$=TRIM$(a$)

RETURN

> PROCEDURE i_on

RETURN

> PROCEDURE i_off

RETURN

> PROCEDURE keyclr

WHILE INKEY$<>M

WEND

RETURN

> PROCEDURE menu34

IF auto& AND 1

442 Das große GFA-BASIC-Buch ————

menu34&=&H52+&H101

ELSE

menu34&=&H52

ENDIF

MENU 34,menu34&

RETURN
|

FUNCTION chk_file(VAR f$)

$ F%

IF LENCfS)

IF EXISTCf$)
RETURN TRUE

ENDIF

ENDIF _

do_fsel(".GFA", f$)
IF LENCf$)

IF EXISTCf$)

RETURN TRUE

ENDIF

ENDIF

RETURN FALSE

ENDFUNC

Listing 17.4: Die Compiler-Shell "MenuX"

Wie Sie an den Procedure-Pfeilen sehen, unterteilt sich das Li-

sting in folgende Gruppen:

PROCEDURE men

PROCEDURE key
PROCEDURE check (x%)
PROCEDURE com_opt
PROCEDURE invert(yO&,f!)
PROCEDURE do_fsel(x$,VAR f$)
PROCEDURE tmx
PROCEDURE Link
PROCEDURE compile
PROCEDURE env
PROCEDURE in(VAR a$)
PROCEDURE i_on
PROCEDURE i_off
PROCEDURE keyclr
PROCEDURE menu34 V
V

V
V
V
V
V
V

V
V

V
V

V
V

OV

Jede einzelne Procedure erledigt eine Aufgabe, die sich bei den
meisten schon am Namen ablesen läßt. Wir wollen diese Aufgabe

je nach Wichtigkeit nun besprechen.

———— Der GFA-Compiler 443

Das Hauptprogramm-Modul dient zur _ Initialisierung der
Stammdaten und des Menü-Systems. Alle Ergänzungen, die die

Funktionen der Shell betreffen, müssen in diesen Menü-Daten

verankert werden. Dazu gibt es später einige Beispiele. Widmen

wir uns zuerst der Einstellung eigener Standard-Parameter. Die
Festlegung finden wir in den folgenden Zeilen:

coi&=0 Ikein I

cos&=3 IS& und s<

cof&=1 IF<

cod&=0 Ikein %3

com&=0 Ikein *&

coe&=0 ikein E

cop&=0 Ikein P>
dbs ym&=0 Ikeine DebugSymbole
auto&=1 Ixxx aus xxx.gfa
|

Programm-Ausschnitt 17.5: Die Environment Variablen

Die erste Variable coi& steht für Interrupts. Setzen Sie hier eine

l hin, wenn Interrupts (s.o.) zugelassen werden sollen.

Cos& steht für die Select-Optimierung. Eine 1 bedeutet eine
Verwaltung der Select-Parameter als 2-Byte-Variable. Standard
ist die Verwaltung als 4-Byte-Variable. Setzen Sıe dort eine 2,

so wird der Programmtext bezüglich der Programmlänge und
nicht wie sonst bezüglich der Geschwindigkeit optimiert. Sie
können beide Optionen addieren, um sie gleichzeitig zu erhalten.
So ist es auch ım Original eingestellt.

Cof& steht für die Funktions-Option. Eine 1 bedeutet, daß

ENDFUNC nicht erzeugt wird.

Cod& steht für die Integer-Addition. Der Wert 1 würde die Flag
%3 setzen, die eine Integeraddition erzwingt.

Com& steht für die Integer-Multiplikation. Auch hier bedeutet
eine 1, daß *& gesetzt ist und damit Langwortmultiplikationen
mit dem Assembler-Befehl muls durchgeführt werden.

444 Das große GFA-BASIC-Buch ————

Coe& ist die Error-Flagge, eine | steht für Fehlermeldungen als

Text und die 2 für Fehlermeldungen-Unterdrückung (E-).

Cop& verwaltet die Prozeduren Flag. Setzt man eine | ein, wer-

den die Unterroutinen, die sonst als 68000er Routinen laufen,

als von GFA-BASIC verwaltete Unterprogramme compiliert.

dbsym& dient als Linker-Flag. Bei einer gesetzten 1 wird zum
späteren Programm auch die Symbol-Tabelle gelinkt. Dies ver-
braucht wesentlich mehr Speicherplatz.

Die auto&-Flagge sorgt nicht dafür, daß die Shell wegfährt,
sondern ist für die automatische File-Namen-Umsetzung zustän-
dig.

Die Prozedur men ist für die Menü-Abfrage zuständig. Sıe dient
als Anlaufstelle für das im Hauptprogramm aufgerufene

ON MENUE GOSUB men

und beinhaltet nur eine Abfrage der Menüpunkte, die im ent-
sprechenden Fall den negativen Wert an die Prozedur Check()

weitergibt.

Die Prozedur key ist für die Tastaturabfrage. Hierbei werden
alle Sondertasten ausgemustert. Einfache Tastendrücke bekom-
men die Zahlen ab 1000.

Die Prozedur check(x%). Hier werden die Weichen für die
Funktionen des Programms gestellt. Zu jeder möglichen Taste
existiert in der SELECT-Auswahl ein CASE, das die entspre-
chenden Aktionen auslöst.

Die Prozedur com_opt ist für die Text-Gestaltung der Options-

Flags zuständig. Hier wird überprüft, ob die nötigen Variablen
gesetzt wurden und der String um den nötigen Text ergänzt.

Die Prozedur invert(yO&,f!) sorgt für die Invertierung der
Kästen WAIT und MOVE im Options-Window.

——— Der GFA-Compiler 445

Die Prozedur do_ fsel(x$,VAR f$) führt den Aufruf der File-
Select-Box durch und liefert den ausgewählten File-String zu-
rück.

Die Prozedur tmx bemißt die Zeit während einer Zeitschleife.

Dafür wird zu Anfang immer die Variable t% auf TIMER ge-
setzt. Innerhalb der Prozedur wird nur die Differenz zwischen

t% und dem aktuellen TIMER berechnet.

Die Prozedur link erledigt das Linking. Dafür wird in den String
sss$ das komplette Argument für den Link-Befehl zusammenge-
baut. Dieses besteht aus der Compiler-Option, der Objekt-Liste,

den Umgebungs-Einstellungen (siehe Prozedur env) und dem
Textabschluß CHR$(10). Diese wird zusammen mit dem Be-
fehlsnamen über EXEC aufgerufen.

Die Prozedur compile erledigt das Compilieren. Auch hier wird

in der Variblen sss$ das gesamte Argument zusammengesetzt. Es

besteht hier aus dem File-Namen, den unter com_opt berech-

neten Optionen und den bekannten Umgebungs-Einstellungen
mit dem Textabschluß.

Die Prozedur env: Diese bisher noch nicht dokumentierte Proze-
dur erstellt einen String, der immer die Angaben über das Ob-
jekt-File ("-O "+tobj$), das Programm-File ("-P "+tprg$) und die
Compiler-Library ("+"+tlib$) enthält. Diese Angaben werden für
beide, Compiler und Linker, benötigt.

Die Prozedur in öffnet ein kleines Window in der Mitte des
Bildschirms, in das ein Text eingegeben werden kann.

Die Prozeduren 1_on und i_off enthalten selbst keine Befehle,
wahrscheinlich wurden sie nur innerhalb der Testphase ge-
braucht. Eine Anwendung ist zur Zeit nicht bekannt.

Die Prozedur keyclr dient, wie der Name schon sagt, dazu den
Tastaturpuffer zu löschen. Dies geschieht auf einfach Weise: Es
werden so lange Zeichen eingelesen, bis keine mehr vorhanden
sind. Der Puffer ist leer.

446 Das große GFA-BASIC-Buch ————

Die Prozedur menu34 verwaltet den Menüpunkt mit der Num-

mer 34. Dies ist die Funktion zur Auswahl, ob das Programm
später den gleichen Namen wie das ursprünglich ausgewählte
File haben soll. Da die Menü-Verwaltung des GFA-BASIC das
Abhaken nicht übernimmt, wird es von dieser Funktion über-

nommen.

Korrektur der Fehler

Leider bestehen innerhalb des Programms einige kleine Pro-
grammierfehler, die wir an dieser Stelle korrigieren wollen.

Die Versionsnummer wurde in der uns vorliegenden Version
nicht im Ausgabe-Fenster, sondern im Status-Fenster ausgege-
ben. Dies ıst nicht nur unschön, sondern enthält uns auch eine

Information vor.

Deshalb kann man in der Prozedur mit zwei kleinen Ergänzun-
gen diesen Fehler beheben. Gleich zu Anfang wird bei CASE -I
dıe Versionsnummer ausgegeben:

CASE -1

PRINT "Version 3.0"

Fügen Sie hinter den PRINT-Text noch die Angabe des Daten-
kanals für das Ausgabe-Fenster an und gleich hinter dieser Zeile
den Befehl RELSEEK zum Zurücksetzen des Zeigers, so daß der

Text auf dem Bildschirm erscheint:

CASE -1

PRINT #1,"Version 3.0"

RELSEEK #1,0

Damit ist auch diese Ausgabe funktionsfahig.

Ein schwerwiegenderer Fehler befindet sich zwischen den fol-
genden Zeilen der Eingabe-Auswertung. Die Abfrage des Menü-
punktes Speicherauswahl (Memory) ist leider um eine Stelle
verrückt.

—— Der GFA-Compiler 447

Die CASE-Anweisung hat in der uns vorliegenden Shell die
Nummer -22. Damit wird aber die Trennleiste im Menü abge-
fragt, die man nicht auswählen kann. Korrigieren Sie die Num-
mer in eine -23 und schon läuft das Programm und besonders

diese Funktion ohne Probleme.

Verbesserungen

Gleich das richtige Verzeichnis!

Da Sie sicher immer mit dem gleichen Datenverzeichnis arbeiten
werden, ist es eigentlich unsinnig, den Quelltext der Shell so all-
gemein formuliert zu lassen. Warum soll man nicht seine Stan-
dard-Einstellungen übernehmen.

Dies ıst besonders empfehlenswert, wenn Sıe die Shell von der

Workbench aus starten möchten, da hier - wie schon ganz zu

Anfang erwähnt wurde - leider jeder Bezug zu einem Verzeich-
nis fehlt und einfach die Diskette im Laufwerk 0 angesprochen
wird.

Für eine Abhilfe reicht es nun aus, einfach die Zeile im Haupt-

programm zu verändern, in der sie folgenden Text finden:

ı Aktueller Pfad

pS=DIR$(0)
t

Tragen Sie dafür einfach in die Zuweisungszeile anstelle von
DIR$(0) den von Ihnen gewählten Pfad ein. Das könnte die Pro-
grammdiskette sein:

p$="GFA-Workdisk:Programme"

oder auch das Festplattenverzeichnis

p$="DHO:GFA/Programme"

448 - Das große GFA-BASIC-Buch ———

Damit ist dieses Problem schon gelöst. Compilieren Sie einfach

die Shell neu und haben Sie viel Spaß bei der Arbeit.

Standard-Pfad auch für Kommandos

Die GFA-Commandos GFA_BCOM und GL werden immer im
aktuellen Verzeichnis vermutet. Dies mag beim Diskettenbetrieb
zwar der Fall sein, aber spätestens mit verschiedenen Disketten

oder einer Festplatte wird es zu Qual. Man möchte auch hierfür

eine Regelung treffen.

Diese Pfad-Einstellung können Sie ebenfalls am Anfang des
Shell-Listings vornehmen. Folgende Zeilen sind zu ändern:

' Programmnamen

gfaint$="GFABasic"

gfacom$=""GFA_BCOM"

gfalnk$="GL"
U)

Tragen Sie z.B. "C:...." davor ein, dann werden alle Kommandos
wie CLI-Kommandos verstanden. NAtürlich müssen die Befehle

auch im C-Verzeichnis zu finden sein.

Sie können aber auch den Interpreter von einer anderen Diskette

holen, weil sie vielleich keinen Platz mehr hatten. Das sieht dann
SO aus:

' Programmnamen

gfaint$="GFABASIC:GFABasic"

gf acom$="": GFA_BCOM"
gfalnkS="":GL"

Auch hier sollten sich die Einstellungen ganz nach den persön-
lichen Bedürfnissen richten. Vergessen Sie aber danach nicht,

den Programmtext zu: compilieren, sonst haben sie nur wenig
von Ihren Verbesserungen!

— Der GFA-Compiler 449

Druckerprotokoll

Möchten Sıe die Texte, die im Ausgabe-Fenster der Compiler-

Shell erscheinen für länger festhalten, gibt es eine ganz einfache

Möglichkeit, dies zu tun.

Da es sich bei dem Fenster nicht um ein Standard-Fenster han-

delt, das über ein OPENW geöffnet wurde, sonder dieses als
Datenkanal existiert, reicht es aus, die Kanalbezeichnung zu 4n-

dern. Die vorher so lautende Zeile:

sss$="CON:0/"+STRSCINT (maxy&/2))+"/640/"+STRSC INT (maxy&/2))+"/Ausgabe:"

heiBt danach z.B. so:

sss$="PRT:"

Damit werden alle Zeilen auf dem Drucker ausgeben und kön-
nen später untersucht werden, wenn ein Programm sehr viele
Fehler hatte, oder die Ausgabe zu schnell lief.

Sie können die Daten natürlich auch in ein File schreiben. Vor-

aussetzung dafür ist allerdings, daß genügend Speicher auf der
Diskette oder Festplatte vorhanden ist, da sonst Probleme auf-

treten, die die Compilierung aufhalten. Die Zeile könnte so lau-

ten:

sss$="DHO:Compiler-Protokoll"

Multitasking bei Execute

Stört es Sie auch, daß Programme zwar von der Shell gestartet
werden können, aber diese dann so lange nicht mehr reagiert,

bis das Programm abgelaufen ist? Dieses Problem macht sich
besonders bemerkbar, wenn das Compilat einen Fehler hat und

sich nicht mehr zuriickmeldet. Weder das Programm noch die
Shell kann dann bedient werden. Ein Reset wird nötig.

Dabei kann mit einer klitzekleinen Änderung das Multitasking
eingeführt werden. Suchen Sie sich dazu in der Prozedur Check
die Abfrage nach der Taste "T":

450 Das große GFA-BASIC-Buch ——

CASE -9,20 !°T
PRINT #1,"Executing ";tprg$
RELSEEK #1,0 Iclear buffer

t%=TIMER

e%=EXEC(tprg$,0,0)
tmx

Hierbei reicht es, wenn Sie die vorletzte Zeile wie folgt ergän-
zen: |

EX=EXECC"RUN"+tprg$,0,0)

Der CLI-Aufruf wird damit nämlich ins Multitasking gelegt und
die Shell meldet sich sofort zurück.

Es gibt dabei nur einen - wie ich meine - verschmerzbaren
Schönheitsfehler; die Zeitmessung arbeitet nicht mehr ordnungs-

gemäß. Dies können Sie aber leicht beheben, indem Sie das ent-
sprechende Programm mit Execute starten.

——— Vektor- und Matrizenberechnungen 451

18. Vektor- und Matrizenberechnungen

Auf den folgenden Seiten werden die neu hinzugekommenen
Befehle der Version 3.5 erläutert. An den alten Befehlen hat sıch
grundsätzlich nichts geändert. Es wurden kleinere Fehler besei-
tigt und auch einige Ausführungsgeschwindigkeiten verbessert.
Für den Programmierer hat sich damit aber nichts Bedeutendes
getan. Allein die neuen Befehle sind es, die ihn interessieren
werden.

Einleitend wollen wir mit der Frage beginnen, was überhaupt
Vektoren und Matrizen - der Titel dieses Kapitels - sind.

Schließlich stammen diese Begriffe aus der Mathematik und
nicht jeder läuft mit dem Wissen eines Mathematikstudenten
herum.

Um so ärgerlicher wird derjenige reagieren, dem nun gesagt
werden muß, daß man als Vektor letztendlich alles auffassen

kann, was sich nur in Zahlen kleiden läßt, und daß Matrizen

vereinfachend gesehen nur eine Ansammlung von Vektoren sind.
Da diese "hochmathematische" Definition zwar sehr komplex und
zugleich allgemein gehalten ist, können wir praktisch noch nichts
damit anfangen. Erst wenn man ein Beispiel einführt, werden
Ihre Augen zu leuchten beginnen!

Vektoren sind Zahlen, Paare, Tripel oder allgemein n-Tupel. Das

heißt, eine beliebige, aber festgelegte Anzahl von Zahlen ist ein
Vektor. Einige Beispiele:

1. Beispiel |

Die Zahl 253 ıst ein Vektor; auch die Zahl 7 ist ein Vektor.

Jede Zahl r ist ein Vektor. Dabei kann r sowohl eine reelle -
eine Zahl mit Nachkommastellen - als auch natürliche - also

ganze - Zahl sein.

452 Das große GFA-BASIC-Buch ———

2. Beispiel

Das Zahlenpaar 5, 7 ist ein Vektor; das Zahlenpaar 2557, 964 ist

auch ein Vektor. |

Allgemein gesprochen ist jedes Zahlenpaar r, s ein Vektor. Für

die Variablen gilt auch das oben Gesagte.

3. Beispiel

Jede Anzahl von Zahlen ist ein Vektor. Allerdings können wir
nur Tupel (so nennt man eine beliebige Anzahl von zusammen-
gehörenden Zahlen) gleichen Grades vergleichen, d.h. die Anzahl
der Zahlen, die sich zu einem Vektor zusammenfassen, muß

immer gleich sein.

Vektoren als grafische Punkte

Nun kommt das Geniale daran! Wir können z.B. den Bildschirm
als eine endlich große Anzahl von Vektoren auffassen. Die Zah-
lenpaare bilden sich hierbei aus der X- und Y-Koordinate. Je-
der Vektor auf dem Bildschirm hat nun die folgende Form:

v=(x,y)

Dabei meinen wir aber nicht nur den Punkt, der zu dieser Ko-
ordinate führt, sondern auch gleichzeitig den Strahl, der vom
Koordinatenursprung zu diesem Punkt führt. Ein Vektor ist also
ein Strahl oder Pfeil mit dem Ursprung des Koordinatensystems
als Anfangspunkt und den Vektorkoordinaten als Endpunkt. Den

bezeichnet man als Ortsvektor: Der Vektor zeigt zum Ort des
Punktes.

Ebenso gibt es Verbindungsvektoren; sie zeigen von einem Punkt
zu einem anderen. Man verwendet sie z.B. bei Gitternetz-Mo-
dellen.

—— Vektor- und Matrizenberechnungen 453

Zur Praxis:

Als Voraussetzung für die Vektorrechnung werden die Vektor-
werte in ein- oder zweidimensionalen Feldern gespeichert. Wir
benutzen also zum Beispiel

DIM a(2)

für einen Vektor mit zwei Koordinaten. Darin läßt sich dann fir

unsere Arbeit ein Bildschirmpunkt speichern.

Klärung von Fachbegriffen

Matrix

Als Matrix bezeichnet man jedes Feld, das zur Speicherung von
Zahlen verwendet wird. Es gibt zwei- und dreidimensionale
Matrizen (so der Plural). Viele Anwendungen werden aber mit
zweidimensionalen Matrizen berechnet. Mehr als drei Dimen-
sionen sind zwar theoretisch bei einer Matrix möglich, entziehen
sich aber der Anschaulichkeit und werden von den meisten Be-

fehlen auch nicht mehr unterstützt.

Vektor

Ein Vektor ist eine eindimensionale Matrix. Das heißt, wir ha-

ben es mit einer "Reihe" von Zahlen zu tun, die zusammenge-
hören, wie z.B. die Bildschirmkoordinaten. x, y und vielleicht z

bilden einen Vektor.

Die Befehle im einzelnen:

Alle Befehle tragen das Schlüsselwort MAT am Anfang!

454 Das große GFA-BASIC-Buch ———

18.1 Grundbefehle zur Matrizenhandhabung

MAT BASE {MB} Index-Offset festlegen

MAT BASE 0

MAT BASE 1

Dieser Befehl bestimmt wie auch OPTION BASE fir Felddi-

mensionen die Dimension einer Matrix oder eines Vektors. Es
wird der Startwert festgelegt, bei dem GFA-BASIC die Feld-In-

dizes verwaltet.

Voreingestellt ist hier MAT BASE 1, was auch der mathemati-
schen Grundlage und Vereinbarung entspricht.

Es ist nur sinnvoll, diesen Befehl zu verwenden, wenn man vor-
her mit OPTION BASE 0 den Startindex für Felder verändert .
hat. Dann paßt man hiermit die Matrizenverwaltung den Gege-
benheiten an.

Der Standard-Wert für MAT BASE ist 1!

MAT CLR { MCL } Eine Matrix löschen

MAT CLR m()

Um ein Feld schnell und zügig zu löschen, empfiehlt sich dieser
Befehl. Er setzt unabhängig von der Dimensionierung alle Ele-
mente des Feldes auf Null.

Gleiches können Sie auch über ARRAYFILL m(),0 erreichen.
Die Befehle führen die gleiche Operation aus. Dieser wurde nur
geschaffen, damit er sich ın die Gruppe der Matrizenbefehle

eingliedert.

———— Vektor- und Matrizenberechnungen 455

Sinnvoll ist die Anwendung z.B. bei Feldern, bei denen bei

großer Dimension nur weniger Felder Werte enthalten. Diese
setzt man dann explizit.

MATSET{MSE} Eine Matrix auf einen Wert setzen

MAT SET m()=x

Dieser Befehl arbeitet ähnlich dem obigen, nur daß die Matrix

nicht auf Null, sondern auf einen beliebigen Wert gesetzt wird.
Auch hier ist wieder der Bezug zum Befehl ARRAYFILL m(),x.

Nützliche Funktion erfüllt dieser Befehl ebenfalls bei Matrizen,
die viele gleiche Werte enthalten. Nur anderslautende werden
dann noch eingetragen. Man erspart sich damit viel Program-
mierarbeit und Dateneingabe.

MATONE {MO} Eine Einheitsmatrix erzeugen

MAT ONE m()

Auch dieser Matrizen-Befehl gehört zu denjenigen, die in die
Matrix Werte schreiben. Hierbei wird allerdings eine Einheits-
matrix erzeugt.

Mit einer Einheitsmatrix bezeichnet man Matrizen, die fast

vollständig auf Null gesetzt sind, außer den Elementen mit
paarweise gleichem Index (1,1), (2,2), (3,3)... Diese enthalten den
Wert 1. |

Hinweis: Beachten Sie, daß die Matrix quadratisch sein muß.

Das heißt, die Matrix muß zweidimensional sein (ein
Feld mit zwei Indizes) und ihre Indizes müssen die
gleiche Mächtigkeit besitzen.

456 Das große GFA-BASIC-Buch ———

18.2 Ein- und Ausgabe der Matrizendaten

MAT READ {MR} Eine Matrix aus DATAs einlesen

MAT READ m()

Zur Vereinfachung der Dateneingabe in eine Matrix können
vorgegebene Matrizen in DATA-Zeilen abgespeichert sein. Um
sich die sehr häufig vorkommende Arbeit des Einlesens der Da-
ten zu ersparen, wurde ein Befehl in die Sammlung der Matri-

zen-Befehle aufgenommen, der dies in einem Atemzug erledigt.

MAT READ liest ab der bestehenden Position des DATA-Zei-
gers soviele Daten, wie für das angegebene Feld nötig sind. Je
nachdem also, ob es ein ein- oder mehrdimensionales Feld ist,

werden entsprechend Spalten und Zeilen gelesen.

Die Anzahl ist von der durch MAT BASE und in DIM festge-
legten Feld-Dimension abhängig.

Hinweis: Es war in der uns vorliegenden Version nicht mög-
lich, mehrere Felder bzw. Vektoren/Matrizen gleich-
zeitig hintereinander einzulesen, wie es bei READ
möglich ist. |

Für Beispiele schauen Sie in eines der folgenden Beispielpro-

gramme. Wir werden diesen Befehl immer wieder verwenden,
um Beispieldaten aus DATA-Zeilen einzulesen.

MAT PRINT{MPoderM?} Eine Matrix ausgeben

MAT. PRINT [#c,J]m()[,9,n]

Zur einfachen Ausgabe einer Matrix wurde dieser Befehl ge-
schaffen, der genauso wie der allseits bekannte PRINT-Befehl

arbeitet. Es entfällt hier, genau wie bei MAT READ, die lästige

——— Vektor- und Matrizenberechnungen 457

Schleife, die nötig wäre, um alle Elemente auszugeben. MAT
PRINT berechnet automatisch die Anzahl der Zeilen und Spal-

ten.

Zusätzlich können noch Angaben über das Format der Zahlen
gemacht werden. Mit g und n sind diese Einstellungen zu beein-
flussen: g bestimmt die gesamte Breite der Zahlendarstellung und
n die Anzahl der Nachkommastellen (die Formatierungsmethode
wurde aus Pascal übernommen und wurde schon bei der Funk-
tion STR$() verwendet).

g bestimmt die gesamte Breite in Zeichen. Das bedeutet, daß für

die Zahl vor dem Komma genau (g-n-1) Zeichen freibleiben
(abzüglich der Nachkommastellen und dem Komma selbst).

Weiterhin kann der MAT PRINT-Befehl durch eine Dateiken-
nung ergänzt werden. Die Ausgabe erfolgt dann nicht auf dem
Standard-Bildschirm, sondern auf dem Datenkanal. Dies kann
einerseits eine Datei sein, andererseits aber auch eine andere

Bildschirm-Ausgabe (CON:) bzw. der Drucker!

Für Anwendungsbeispiele schauen Sie bitte in den nachfolgen-

den Programmen nach. Auch diesen Befehl werden wir immer

wieder zur Kontrolle und zu Demonstrationszwecken verwenden.

MAT INPUT { MI } Eine Matrix aus einer Datei einlesen

MAT INPUT #c,m()

Genauso wie es möglich ist, eine Matrix aus DATA-Zeilen ein-
zulesen, können die Daten auch aus einer Datei geholt werden.
Dies erscheint besonders plausibel, wenn man bedenkt, daß mit
MAT PRINT die Daten ja auch in eine Datei geschrieben wer-
den können (siehe dort).

Als einzige Angaben werden die Kanalnummer des Ausgabe-
Kanals und die Feldbezeichnung angegeben.

458 Das große GFA-BASIC-Buch ———

Es ist hierbei nicht zulässig, nur Teilbereiche des Feldes einzu-

lesen. Achten Sie auch darauf, daß noch genügend Daten lesbar
sind, da sonst eine Fehlermeldung auftritt.

Beispielprogramm:

' Beispiel: MAT I/0

Speichern und Ausgeben von vorhandenen Matrizen

Programm zur Demonstration der
Vektor- und Matrizen-Befehle

(ce) 1990 by DATA BECKER
(p) 1990 by Wgb

OPTION BASE 0
MAT BASE 1

i]

DIM v(3),m(2,5)
|

MAT READ v()
MAT READ m()

I

PRINT "Die gelesenen Werte der Matrizen ..."

MAT PRINT v(),5,1
PRINT
MAT PRINT m(),5,1
PRINT
’

PRINT "Die Daten werden geschrieben ..."

OPEN "o",#1,"ram:Matrizen"
MAT PRINT #1,vC)

MAT PRINT #1,m()

CLOSE #1

PRINT
8

PRINT "Matrix m() und v() werden verändert ..."

MAT SET v()=5

MAT SUB m(), INTCRND(1)*5)

MAT PRINT m(),5,1

PRINT
8

PRINT "Matrix vC) und m() werden wieder eingelesen ..."

OPEN "i" #1,"ram:Matrizen"
MAT INPUT #1,v()

MAT INPUT #1,m()
CLOSE #1
MAT PRINT v(),5,1
PRINT

MAT PRINT m(),5,1

——— Vektor- und Matrizenberechnungen 459

PRINT
L

' DATA-Zeilen

ı Vektor

DATA 7,5,2

' Matrix

DATA 1,2,7,3,%

DATA 9,4,1,8,3

MATCPY{MC} Eine Matrix kopieren

MAT CPY aC Li, j])=bCk,l1])[,h,w]

Dieser Befehl kopiert eine bestehende Matrix in eine andere

hinein. Dabei kann man damit sowohl eine Matrix duplizieren,

d.h. ein genaues Abbild der vorhandenen Matrix schaffen, als
auch einen Teilbereich in eine größere Matrix einsetzen.

l. Eine Matrix duplizieren

Benötigt man fir Nebenrechnungen eine Arbeitsmatrix, ist es
ratsam, den Inhalt der Ausgangsmatrix in ein separates Feld zu
kopieren. Dafiir eignet sich dieser Befehl. Mit der Zeile

MAT CPY n()=a()

enthält das Feld n(), das in diesem Fall die gleichen Dimensio-
nen besitzen wie die Matrix a() muß, deren Inhalt. Man kann
diesen Befehl hier wie eine einfache Variablenzuweisung auf-
fassen. |

Sollte die Ziel- oder Ausgangsmatrix andere Indexmaxima be-
sitzen, werden nur die Elemente kopiert, die in beiden Matrizen
die gleichen Indizes besitzen. Dies gilt auch für alle weiteren
Varianten!

460 Das große GFA-BASIC-Buch ————

2. Eine Zeile in eine andere Matrix kopieren

Um nur eine Zeile einer Matrix ın eine andere zu kopieren,
benötigt man weitere Angaben. Wesentlich ist die Angabe der
Zeile, die kopiert werden soll. Man gibt dafür die Eckkoordina-
ten der linken oberen Ecke an, also z.B. (1,1) für die oberste
linke Ecke einer Matrix. Außerdem benötigt GFA-BASIC die
Anzahl der Zeilen, also eins, und die Anzahl der Elemente ın

der Zeile, in unserem Beispiel (s.u.) 5. Damit ist der Quellbe-
reich definiert. Nun fehlt nur noch der Zielbereich, den wir
auch als Koordinaten in der Matrix definieren.

Sehen Sie hier unser kleines Beispiel:

' Zeile kopieren
|

DIM a(5,5),6(5,5)
t

MAT SET a()=3
MAT SET b()=2
|

MAT PRINT a()
PRINT
MAT PRINT b()
PRINT
8

MAT CPY a(2,1)=b(1,1),1,5 ! von b nach a
|

MAT PRINT aC)

PRINT

Beachten Sie hierbei die Angaben beim Kopierbefehl. a(2,1) be-

deutet, daB die Daten in der zweiten Zeile ab dem ersten Ele-

ment abgelegt werden.

b(1,1) setzt die Quellposition auf die erste Zeile und erste Spalte
im Feld b(). 1,5 heißt, daß eine Zeile und genau fünf Elemente
(die Breite der Matrix) kopiert werden. _

3. Eine Spalte kopieren

Um eine Spalte zu kopieren, müssen wir ähnlich wie beim Ko-

pieren von Zeilen verfahren. Es ändern sich lediglich die am

————— Vektor- und Matrizenberechnungen 461

Ende angefügten Parameter. Sie geben bei den Zeilen das
Maximum des definierten Feldes an und bei den Spalten eine
Eins. Sehen Sıe dazu ein ähnliches Beispiel wie oben:

' Spalte kopieren

DIM a(5,5),b(5,5)

MAT SET a()=8
MAT SET b()=1
|

MAT PRINT a()
PRINT
MAT PRINT b()
PRINT
t

MAT CPY a(1,2)=b(1,1),5,1 ! von b nach a
|

MAT PRINT a()
PRINT

4. Einen rechteckigen Ausschnitt kopieren

Hierfür verwenden wir die oben schon benutzen Parameter und
beschränken uns nicht auf eine Zeile oder eine Spalte, sondern

nutzen einen rechteckigen Bereich.

Die Angaben beim Feld auf der linken Seite des Gleichheitszei-
chens geben immer noch die linke obere Ecke im Zielfeld an
(Zeile, Spalte). Die Angaben im Feld auf der rechten Seite ste-

hen für die Quelldaten (auch hier Zeile, Spalte).

Allein die Werte hinter dem Feld für die Quelldaten werden nun
vollständig ausgenutzt. Auch hier bezeichnet die erste Zahl die

Anzahl der Zeilen und die zweite die Anzahl der Spalten. Das

nachfolgende Kurzprogramm verdeutlicht dies:

Bereich kopieren
8

DIM a(5,5),b(5,5)
|

MAT SET a()=0
MAT SET b()=1
|

MAT PRINT a()
PRINT

462 Das große GFA-BASIC-Buch ———

MAT PRINT b()
PRINT
|

MAT CPY a(2,2)=b(1,1),3,3 ! von b nach a
ı

MAT PRINT a()

PRINT

MAT XCPY { M X } Kopiert eine Matrix transponiert

MAT XCPY aC[i, J] =bC[k, l1])[,h,wl

Eine Variante des Matrizen-Kopierbefehls liegt mit diesem Be-

fehl vor. Er kopiert mit den anderen Möglichkeiten, denn es

werden hierbei Zeilen und Spalten vertauscht.

Dadurch können Sie Spalten-Vektoren in Zeilen-Vektoren und

umgekehrt umwandeln. Dies eignet sich besonders fiir die Ein-
fügung in Matrizen, die anders organisiert sind.

l. Eine Zeile in eine Spalte kopieren

Die Parameterangaben des XCPY-Befehls sind genau die glei-
chen wie die der normalen CPY-Version. Verändern Sie für
einen einfachen Test eines der obigen Beispiele, indem Sie vor

das Befehlswort noch den Buchstaben X setzen. Im Ergebnis
wird sich zeigen, daß eine Zeile (z.B. mit den Angaben ,1,5) nun
in eine Spalte kopiert wird.

Die Parameter in der Zielmatrix a() geben dabei immer noch die
linke obere Ecke an. Auch die Koordinaten aus der Quellmatrix
stehen für die linke obere Ecke, ebenso wie die Werte für Zei-

lenzahl und Spaltenelemente. Verändert ist hierbei nur der Ein-

tragung in die Zielmatrix: senkrecht statt waagerecht und waa-
gerecht statt senkrecht.

——— Vektor- und Matrizenberechnungen 463

2. Einen Bereich spiegeln

Um einen Bereich zu spiegeln, reichen ebenfalls die Standard-
Angaben aus. Leicht demonstrieren läßt sich dies an einem Bei-
spielprogramm, das mit einem Feld arbeitet, in dem jedes Ele-
ment den Wert seiner Position enthält. Sehen Sıe dafür einfach
unser nachfolgendes Beispiel:

DIM a(5,5),b(5,5)

MAT SET a()=0

FOR i=1 TO 5

FOR j=1 TO 5

INC z

b(i,j)=z

NEXT j

NEXT i
|

MAT PRINT a(),2,0

PRINT

MAT PRINT b(),2,0

PRINT
U)

MAT XCPY a(2,2)=b(1,1),3,3
I

MAT PRINT a(),2,0

PRINT

Die Spiegelachse verlauft bei diesen Kopiervorgang diagonal von
links oben nach rechts unten.

MAT TRANS {MT} Kopiert und transponiert eine Matrix

MAT TRANS aC) [=b()]

Auch hierbei handelt es sich um einen Kopierbefehl, der aber
anders als die beiden vorgehenden arbeitet, weil er nicht die

Spalten- und Zeileneinteilung beachtet. So ist es mit MAT
TRANS möglich, eine vierspaltige und dreizeilige Matrix in eine
dreispaltige und vierzeilige umzukopieren.

Dies ist auch gleich die Bedingung fiir den Befehl. Wendet man
MAT TRANS auf zwei Matrizen an, muß die erste als Zeilen-

464 Das große GFA-BASIC-Buch ———

zahl die Anzahl der Spalten der zweiten Matrix besitzen. Glei-

ches gilt für die Spaltenzahl der ersten Matrix.

Handelt es sich um eine quadratische Matrix, kann der Befehl
auf sie selbst angewendet werden, da ja beide Bedingungen er-
füllt sind.

Das Ergebnis dieses Befehls können Sie am einfachsten am fol-
genden Beispiel erkennen. Es erzeugt eine Matrix, deren Zeilen
gleiche Werte haben. Da diese Matrix quadratisch ist, kann sie

"in sich" kopiert werden.

DIM a(8,8)
FOR i=1 TO 8

FOR j=1 TO 8
ali,j)=i

NEXT j
NEXT j

MAT PRINT a(),2,0
PRINT |

MAT TRANS a()
MAT PRINT a(),2,0
PRINT

a
>

= a
w
h

= = = = = =

= = = = = = -

= = = «=

= = =

= D‘

=
 n a
 = =

= bo)

= = = = =

b = = = = Ld)

=

=

=

=

=

.

o
a

o
n
c
o
u
r
u
n
g
e

N
N
N
N
N
A
N
N
N
O
E
N
G
S
M
P
A
R
=
>
=

C
O
B
O

A
D
A
D
O
A
O
A
N
A
U
A
W
N
 =

= a
 ~ =
 »

=

=

=
 = = >

=
 ~ = =
 - =

7.

= = = =
 >

7 = - = -

= =
 = b = =

= = ™ ba)

= =

e
n
2
>
2
>
2
>
2
>
2
>
0
9
0
N
U

R
U
N

N
N
N
N
N
N
N
N
A
O
N
A
M
E
W
N

W
W

W
W
W

W
O

N
O

UI
E

W
N

R
E
L

P
P
P
R
P

O
N
D
E

W
N

=

I
M
I

T
T

O
O

N
O
U

E

W
N

=
=

=
=

=
=

L
=

= ™ = n n =

18.3 Rechnen mit Matrizen

Kommen wir nun zu den Rechenbefehlen fiir Matrizen. Sie bil-
den einen wichtigen Bestandteil der Matrizen-Befehle. Mit ihnen
können die Werte ganzer Felder (so man sie im herkömmlichen

——— Vektor- und Matrizenberechnungen 465

Sinne betrachtet) auf einmal addiert oder subtrahiert werden.
Von hohem rechnerischen Interesse sind aber auch Produktbil-
dungen, mit denen innerhalb der Matrizenrechnung recht kom-
plizierte, aber auch mächtige Operationen durchgeführt werden

können. |

MATADD{MA} Addiert zwei Matrizen

MAT ADD a()=b()+c()

MAT ADD al),b().

MAT ADD a(),x

"Mit MAT ADD können zwei Vektoren oder Matrizen addiert

werden. Das Ergebnis liegt dabei elementweise vor, d.h. das er-
ste Element der ersten Matrix wurde zum ersten Element der

zweiten Matrix addiert usw. Die Funktion des Befehls ist also

sehr einfach zu verstehen.

In der ersten Befehlsvariante schreibt man die Addition wie eine
Wertzuweisung von normalen Variablen. MAT ADD weist da-
nach der Matrix a das Ergebnis der Elementaddition von b und
c zu. In der zweiten Variante werden auch a und b addiert. Al-
lerdings steht hier das Ergebnis wiederum in a. Damit geht der
alte Inhalt der Matrix a verloren (Sie können ihn natürlich durch
Subtraktion von b wiedererhalten). Beachten Sie dies, wenn Sie
auf die Werte später wieder zurückgreifen wollen. Die letzte
Befehlsvariante addiert zu jedem der Elemente der Matrix a den
festen Wert x. Es wird z.B. allen Einträgen 7 dazuaddiert.

Beachten Sıe, daß die Addition nur für Vektoren und Matrizen

gleicher Ordnung definiert ist. Das bedeutet, Sie können nur
Felder mit gleichen Dimensionen verwenden. Im Einzelfall
müßten Sie zuvor mit MAT CPY, MAT XCPY oder MAT

TRANS die Matrix in eine Matrix der benötigten Größe über-
führen.

466 Das große GFA-BASIC-Buch ——

Interessant für diesen Befehl sind noch die Abkürzungen. Es
existiert nicht nur die oben im Kopf genannte Möglichkeit von
{MA }, sondern es gibt auch einen Spezialfall: Für die erste
Variante reicht es, { M a()=b()+c() } zu schreiben, denn der In-
terpreter erkennt selbständig, daß es sich um eine Matrizen-Ad-
dition handelt.

Das folgende Beispielprogramm soll die Arbeit dieses Befehls
verdeutlichen:

Beispiel: MAT ADD

Konstantenaddition

Feldaddition mit Datenverlust

Feldaddition ohne Datenverlust

Programm zur Demonstration der

Vektor- und Matrizen-Befehle

(c) 1990 by DATA BECKER
(p) 1990 by Wgb

OPTION BASE 0 I Setzt den Beginn der Feldindizes auf 1

MAT BASE 1 I s.o. für Matrizen
'

DIM a(3,4),b(3,4),c(3,4)
MAT READ a()

MAT READ b()
|

PRINT "Feld a(), Urzustand"

MAT PRINT a(),5,1

PRINT

PRINT "Konstantenaddition x=1"
|

MAT ADD a(),1 ! Dies ist die Beispielzeile
PRINT "Feld a(), nach der Addition"
MAT PRINT a(),5,1

PRINT
6

PRINT "1. Feldaddition Feld b() ist Invers zu a()"
I

MAT ADD a(),b() I Dies ist die Beispielzeile
PRINT "Feld a() nach der Addition"
MAT PRINT a(),5,1
PRINT
' |

PRINT "2. Feldaddition Feld b() zu sich selbst addiert in c()"
8

MAT ADD c()=b()+b() I Dies ist die Beispielzeile

——— Vektor- und Matrizenberechnungen 467

MAT PRINT c(),5,1

PRINT
t

' DATA-Zeilen .

DATA 1,2,3,4,5,6,7,8,9, 10,11, 12

DATA -2,-3,-4,-5,-6,-7,-8,-9,-10,-11,-12,-13

MAT SUB {MS} Subtrahiert zwei Matrizen

MAT SUB a()=b()-c()

MAT SUB a(),b()
MAT SUB a(),X

Der Befehl MAT SUB dient zum Subtrahieren zweier Vektoren
oder Matrizen. Die Elemente werden dabei einzeln miteinander
verknipft. Das Ergebnis wird wie auch bei MAT ADD gehand-
habt. Das bedeutet für die erste Variante, daß das Ergebnis in

a() gespeichert wird. Beim zweiten Befehl wiederum in a(), dort
muß aber beachtet werden, daß die Daten verlorengehen., Und

bei der letzten Möglichkeit werden grundsätzlich die Daten im
Feld a() verändert.

Achten Sie darauf, daß dieser Befehl nur für Matrizen und
Vektoren gleicher Ordnung definiert ist.

Zur Schreibweise innerhalb von Programmen: Die Abkürzung
lautet {MS } und kann bei der ersten Befehlsvariante auch { M
a()=b()-c() } heißen, da der Interpreter den Befehl am Rechen-
zeichen erkennt.

Beispielprogramm:

Das folgende Beispielprogramm führt ähnliche Operationen

durch, wie es auch das Programm zur Erläuterung des Befehls
MAT ADD tat. Sie können daran die Funktion der Befehle sehr
leicht erkennen, indem Sie beide Listings miteinander verglei-
chen. Beachten Sie allerdings, daß die Daten am Ende geändert
wurden, damit auch das vorletzte Beispiel funktioniert!

468

Beispiel: MAT SUB

Konstantensubtraktion

Feldsubtraktion mit Datenverlust

Feldsubtraktion ohne Datenverlust

Programm zur Demonstration der

Vektor- und Matrizen-Befehle

(c) 1990 by DATA BECKER
(p) 1990 by Wgb

Das große GFA-BASIC-Buch ————

OPTION BASE 0 I Setzt den Beginn der Feldindizes auf 1

MAT BASE 1 I s.o. für Matrizen

DIM a(3,4),b(3,4),c(3,4)
MAT READ a()
MAT READ b()

q

PRINT "Feld a(), Urzustand"

MAT PRINT a(),5,1
PRINT
s

PRINT "Konstantensubtraktion x=1"
| .

MAT SUB a(),1 I Dies
PRINT "Feld al), nach der Subtraktion"
MAT PRINT a(),5,1
PRINT
|

PRINT "1. Feldsubtraktion Feld b() ist
‘

MAT SUB a(),b() ! Dies
PRINT "Feld aC) nach der Subtraktion"

MAT PRINT a(),5,1

PRINT
t

ist die Beispielzeile

invers zu a()"

ist die Beispielzeile

PRINT "2. Feldsubtraktion Feld b() von sich selbst subtrahiert in
c()"

6

MAT SUB c()=b()-b() ! Dies
MAT PRINT c(),5,1 |
PRINT

|}

' DATA-Zeilen

DATA 1,2,3,4,

1,2,3

,6,7,8,9,10,11,12

DATA 0,1,2,3,4,5,6,7

5

4,5,6,7,8,9,10,11

ist die Beispielzeile

——— Vektor- und Matrizenberechnungen 469

MATMUL{MM} Multipliziert zwei Matrizen

MAT MUL a()=b()*c()

MAT MUL x=a()*b()

MAT MUL x=a()*b()*c()

MAT MUL a(),x

Fir die Multiplikation von Matrizen in den hier beschriebenen

Befehlen zustandig. Eine Matrix mit einer anderen zu multipli-
zieren, bedeutet, jedes Element mit jedem einzeln zu multipli-
zieren und die Summe aller Ergebnisse fiir ein Element an des-
sen Position als Ergebnis auszugeben. Da dies etwas komplizier-
ter wird, sollen einige Beispiele das verdeutlichen:

Wir haben die folgenden Matrizen:

s(2,2)
0.5 0.2
0.5 0.8

und

Oo

ı
9
0
-
2
0

1

Multipliziert man nun die erste mit den zweiten unter Anwen-

dung des folgenden Befehls

MAT MUL b()=m()*s()

so ergibt sich folgendes Ergebnis:

b(4,2)
0.5 0.2
0.5 0.8

470 Das große GFA-BASIC-Buch ————

Erwähnenswert ist, daß die Ergebnismatrix die Dimensionierung
besitzt, die sich aus der Anzahl der Spalten der zweiten Matrix
und der Anzahl der Zeilen der ersten Matrix zusammensetzt.
Aber wie kommt man nun zu diesem Ergebnis? Hier ist die
Lösung:

0.5*1+0.5*0=0.5 0.2*1+0.8*0=0.2
0.5*0+0.5*1=0.5 0.2*0+0.8*1=0.8
0.5*-1+0.5*0=-0.5 0.2*-1+0.8*0=-0.2
0.5*0+0.5*-1=-0.5 0.2*0+0.8*-1=-0.8

Allgemeine Regeln für die Matrizenmultiplikation:

Damit zwei Matrizen miteinander multipliziert werden können,

muß die Spaltenzahl der einen mit der Zeilenzahl der anderen

übereinstimmen.

Zur Multiplikation verwendet man folgendes Verfahren: Um die
Zahl in der i-ten Zeile und j-ten Spalte der Ergebnismatrix zu
erhalten, multipliziert man je die Zahl der i-ten Zeile aus der
ersten Matrix mit den entsprechenden Zahlen der j-ten Spalte
der zweiten Matrix. Alle Ergebnisse addiert man und hat damit
die gesuchte Zahl. So verfährt man mit allen Elementen der

Matrix.

Beispielprogramm:

Beispiel: MAT MUL

Abbildungen

Programm zur Demonstration der

Vektor- und Matrizen-Befehle

(c) 1990 by DATA BECKER

(p) 1990 by Wgb

' Variablen

dimension=2

anzahl=4

xdarst=100

ydarst=100

xof f=320

yof f=128
|

——— Vektor- und Matrizenberechnungen 471

' Vektoren

DIM p(anzahl ,dimension),b(anzahl ‚dimension)
8

' Abbildungsmatrix

DIM m(dimension, dimension)
i

' Daten einlesen: Matrix ... Punkte

MAT READ m()

MAT READ p()
a

' Daten ausgeben »
t

PRINT "Abbi ldungsmatrix"
MAT PRINT m(),5,2
PRINT
PRINT "Punkte ..."
MAT PRINT p(),5,2
PRINT
ı

COLOR 3
adrawp

]

' Punkte abbilden
|

COLOR 1

FOR i=1 TO 15

PAUSE 50
LOCATE 1,12

MAT PRINT p(), 7,4

MAT MUL p()=p()*m()

adr awp
NEXT i

END
t

PROCEDURE drawp
DRAW p(4, 1)*xdarst+xoff, yoff-p(4,2)*ydarst
FOR j=1 TO anzahl

DRAW TO p(j,1)*xdarst+xoff, yoff-p(j,2)*ydarst
NEXT j

RETURN

' DATA Zeilen

DATA 0.5,0.2 ! Experimentieren Sie ruhig mit der
DATA 0.5,0.8 I Abbildungsmatrix (Werte zwischen 0

' ! und 1)
' I zentr. Streckung vom Ursprung

' 1. Element: tend. x-Richtung
' 2. Element: tend. y-Richtung
|

DATA 1,0 I Koordinaten der Urpunkte
DATA 0,1

DATA -1,0
DATA 0,-1

472 Das große GFA-BASIC-Buch ——W—

Das obenstehende Programm dient zur Abbildung von Punkten ©
(hier als Vektoren). Die Punkte wurden allesamt in einem Feld
gespeichert, wodurch die Berechnung der Bildpunkte in einem
Rechenschritt durchgeführt werden kann. Außerdem ist es so
möglich, beliebig viele Punkte gleichzeitig abzubilden.

Die Abbildungsvorschrift selbst wird aus der Abbildungsmatrix
übernommen.

MAT NORM {MNO} Normiert eine Matrix

MAT NORM v(),0

MAT NORM v(),1

Matrizen sind nichts anderes als zweidimensionale Vektoren.
Unter der Normierung eines Vektors versteht man die Stauchung
oder Streckung des Vektors auf die Länge I. Dabei bleiben
Richtung und Vorzeichen des Vektors erhalten.

Der Betrag (die Lange) eines Vektors berechnet sich aus seinem
Qudrat:

sqr(v?)

Dabei ist zu beachten, daß beim Quadrieren eines Vektors eine

reelle Zahl als Ergebnis herauskommt. Davon ziehen wir die
Wurzel. Die Rechenoperationen heben sich also nicht auf, wie

bei der normalen Rechnung mit reellen Zahlen.

Dividiert man nun einen Vektor durch seine Länge, wird er
-normiert. Wir erhalten den Einheitsvektor.

Das nachstehende Programm führt folgende Arbeiten aus: Zuerst
wird der Vektor zusammen mit seiner Länge ausgegeben. Dann
wird dieser "per Hand" normiert. Dieses Ergebnis wird ausgege-
ben und mit dem des vorliegenden Befehls verglichen.

——— Vektor- und Matrizenberechnungen 473

Beispiel: MAT NORM

Vektoren normieren

Programm zur Demonstration der

Vektor- und Matrizen-Befehle

(c) 1990 by DATA BECKER

(p) 1990 by Wgb

DIM v(10)
|

MAT READ v()
PRINT "Der Vektor ..."
MAT PRINT v(),6,4

i]

MAT MUL l=v()*v()
PRINT "besitzt die Länge ";SQR(L)

PRINT
|

MAT MUL vC),1/SQRCL) .

PRINT "Der 'von Hand! normierte Vektor ..."
MAT PRINT v(),6,4
MAT MUL l=v()*v()
PRINT "besitzt die Lange ":SQR(L)
PRINT
|

RESTORE

MAT READ v()
MAT NORM v(),1
PRINT "Der ‘per Befehl' normierte Vektor ..."
MAT PRINT v(),6,4
MAT MUL l=v()*v()
PRINT "besitzt die Länge ";SARCL)

PRINT

DATA 1,3,1,2,2,3,1,2,1,0

Das Verfahren für quadratische Matrizen läufte dabei ebenso ab,
wobei hier eine Matrix entweder zeilenweise (man verwendet die
Angabe O0 hinter dem Befehl) oder spaltenweise (1) normiert
werden kann. Dies hängt von der Auffassung der Zusammen-

setzung einer Matrix ab. Bei Vektoren ist diese Angabe irrele-
vant.

474 Das große GFA-BASIC-Buch ————

MATDET{MD} Berechnet die Determinante

MAT DET y=m¢Ci,j])[,d]

Dieser Befehl berechnet die Determinante einer quadratischen
Matrix der Ausdehnung d. Bei einer Angabe von i und j wird
nur die Determinante eines Teils der quadr. Matrix berechnet.

Die Determinante liefert dabei eine Aussage über die Lösbarkeit
der Matrix.

MAT ODET { M QD } Schnellere Determinanten-Berechnung

MAT QDET y=m(CLli,j]))L[,dl

Dieser Befehl liefert im Prinzip das gleiche Ergebnis wie der
Befehl MAT DET. Jedoch wird hierbei eine geschwindigkeits-
optimierte Routine verwendet. Es kann also zu leichten Diffe-

renzen in der Genauigkeit kommen.

MAT RANG {MRA} Berechnet den Rang einer Matrix

MAT RANG y=m([i,j])[,d]

Diese Funktion berechnet den Rang einer quadratischen Matrix.

Die Parameter bezeichnen dabei bei Angabe einen Ausschnitt
aus der Matrix. i,j geben die linke obere Ecke des Ausschnitts
und d die Ausdehnung in x- und y-Richtung an.

———— Vektor- und Matrizenberechnungen 475

MAT INV { M INV } Bestimmt das Inverse einer quadr. Matrix

MAT INV iC)=m()

Das Inverse einer quadratischen Matrix ist definiert als Ergebnis

der Multiplikation zweier Matrizen. Dabei muß die Einheitsma-
trix herauskommen.

Als Ergebnis steht in i() die zu m() inverse Matrix.

476 Das große GFA-BASIC-Buch ———

——— Mehr Bedienkomfort 477

19. Mehr Bedienkomfort

Zusätzlich zu Vektor- und Matrizenbefehlen sind noch ein paar

andere hinzugekommen, die wir hier zusammen mit den Ergän-
zungen und Änderungen des Editors besprechen wollen.

19.1 Mathematische Befehle

FACT {FACT} Berechnet die Fakultät

f=FACT(n)

Funktion zur Berechnung der Fakultät. Damit ist folgendes Re-
chenverfahren definiert:

n! (man liest n-Fakultät)

n! = n*(n-1)!

Beispiel:

4! = 4*(4-1)! = 4%3%l3-1)1 = 4*3*2*(2-1)! = 4*3*2*1 = 24

Die Fakultät ist damit das Produkt über die Zahlen 4 bis 1 oder

allgemein gesprochen n bis 1.

O! ist definiert als 1, damit dies bei der Multiplikation als das
neutrale Element verwendet werden kann (ähnlich wie beim Po-
tenzieren mit Null). Die Funktion ist außerdem nur für ganz-
zahlige Werte definiert. Das Ergebnis kann ebenfalls nur ganz-
zahlig sein.

GFA-BASIC ist in der Lage, die Fakuktät bis zu dem Wert 421
zu berechnen. Im Vergleich kann ein normaler Taschenrechner
gerade noch den Wert 69 verkraften!

478 Das große GFA-BASIC-Buch ———

PRINT FACT(421)
4.967094384179E+923

VARIAT { VARIAT } Berechnet die Anzahl der Variationen

n=VARIAT(m,k)

Diese Funktion berechnet die Anzahl der Variationen, der ange-
gebenen m Elemente zur k-ten Klasse. Wiederholungen werden
dabei ausgeschlossen. Die Berechnung kann man "zu Fuß" mit
folgender Formel nachvollziehen:

n = (m!)/(m-k)!

Aus der Formel ergibt sich logischerweise, daß für die Variablen
m und k folgende Beziehung gilt:

m >= k

Sehen Sie eine Beispieltabelle, die ausgehend von m=10 die er-
sten zehn Klassen darstellt:

10
90

720
5040

30240
151200
604800
1814400
3628800

3628800 O
O
O
N
O
A
V
F
T
U
N
-

=
_

—— Mehr Bedienkomfort 479

COMBIN {COMBIN} Berechnet Anzahl der Kombinationen

n=COMBIN(m,k)

Ähnlich wie der Begriff der Variationen bildet auch die Anzahl
der Kombinationen einen mathematischen Begriff. Auch dieser
Funktion liegt eine Definition zugrunde.

n = (m!)/C(m-k)!*k!)

Beachten Sie ebenfalls, daß hier wiederum die oben genannte

Bedingung

m>=k

gelten muß, damit die Funktion definiert ist.

Sehen Sie abschließend auch hier eine Wertetabelle der ersten

zehn Klassen mit m=10:

10
45

120
210
252
210
120
45
10

1 O
S

OO

S
O
A
V
U
R
W
D
N
D
-

=
_
_

_DATA{ DATA} Operationen mit dem DATA-Zeiger

_DATA
_DATA=

Diese neu eingeführte Variable ermöglicht unabhängig von
RESTORE die Manipulation der DATA-Tabellen.

480 Das große GFA-BASIC-Buch —

Die Variable _DATA enthält bei der Abfrage einen Integer-
Wert, der die aktuelle Position des DATA-Zeigers wiederspie-

gelt. Diesen können Sie in einer Variablen zwischenspeichern
und ggf. wieder verwenden.

Um die Position des DATA-Zeigers zu manipulieren, reicht es

im Programmablauf aus, der Variablen _DATA einen vorher
gelesenen Wert zuzuweisen. Damit wird der Lese-Zeiger wieder
an die derzeitige Position gesetzt.

Beachten Sie folgendes: Setzen Sie den Zeiger niemals an ir-
gendeine Position. Verwenden Sie immer nur bisher gelesene
Werte.

Beispielprogramm:

Beispiel: _DATA

Arbeiten mit dem DATA-Zeiger

Programm zur Demonstration der

neuen GFA-BASIC-Befehle V3.5

(c) 1990 by DATA BECKER

(p) 1990 by Wgb

DIM d(10) ! Feld für die DATA-Zeiger-Positionen
i

RESTORE ı Position des DATA-Zeigers auf den

' Anfang der Liste setzen und ausgeben

PRINT _DATA

PRINT
|

PRINT "Liste vorwärts lesen ..."
WHILE DATA I Der Wert DATA ist beim Erreichen des

t Endes der DATA-Liste gleich Null!

INC i

dCi)=_DATA ! Die Zeigerpositionen werden gespeichert
READ a

PRINT a

WEND

PRINT
a

PRINT "Liste rückwärts lesen ..."

FOR j=i TO 1 STEP -1

_DATA= d(j)
READ a

PRINT a

——— Mehr Bedienkomfort 481

NEXT j
Aa

END
'

'

DATA 10,20,30,40,50,60,70,80,90, 100

19.2 Die neuen Editor-Kommandos

Der GFA-Editor wurde um einige wenige Tastaturkommandos
ergänzt, die wiederum beweisen, wie wenig verbesserungsbe-
dürftig ein so komfortabler Editor ist.

Einige Ergänzungen hat die Tab-Taste erfahren. Sie war bisher
nur wenig differenziert nutzbar. Das hat sich nun gewaltig ge-
ändert.

Folgende Kombinationen sind mit Shift und Ctrl möglich, um
schnelle Formatierung besonders von Kommentaren zu ermögli-
chen:

Tab

Wie gewohnt wird der Cursor auf die nächste Tabulatorposition
gesetzt. Der Programmtext wird weiterhin nicht verschoben.

Tab+Ctrl

Hiermit kann man den Cursor auf die links von der aktuellen

Position liegende Tabulatorposition setzen.

Tab+Shift-links

Dieser Tastendruck fügt bis zur rechts auf die Cursorposition
folgenden Tabulatorstelle Leerzeichen ein. Damit kann man
Kommentare auf den nächsten Tabstop ausrichten.

482 Das große GFA-BASIC-Buch ———

Tab+Shift-rechts

Ein Tastendruck und die Editorfunktion löscht alle Leerzeichen

der Zeile, in der sich der Cursor befindet.

Leider waren die letzten beiden Funktionen des Editors bei un-
serer letzten Testversion noch nicht implementiert. Probieren Sie
bei Ihrer Version also aus, ob es schon möglich ist. Die Anwen-
dungsmöglichkeiten sind aber auf jeden Fall für den ständigen
Anwender unbestreitbar.

Anhang 483

Anhang A: ASCII-Tabelle

8 [CTRLI-[@] 64 @ 128 0 192 A
1 [CTRLI-[A] 65 A 129 0 (Fi) 193 A
2 (CTRLI-(B] 66 B 138 0 <F2) 194 &
3 {CTRLI-{C] (Break) 67 C 131 0 (F3) 195 K
4 [CTRL]-[D] 68 D 132 0 (F4) 196 Ä
5 (CTRLI-(E] 69 E 133 0 (F5) 197 A
6 (CTRLI-(F] 78 E 1340 (F6) 198 A
7 LCTRLI-IG] (Beep) 71 G 135 0 (F?) 199 C
8 [CTRLJ-{H] (BACKSPACE) 72 H 136 O (FB) 200 £
9 [CTRLI-LI] (TAB) 731 1370 (E99 201 £

18 [CTRLI-[J) (Line feed) 74 J 1380 (Fi8) 282 8
11 {CTRLI-(K] 75 K 139 0 (HELP) 283 ¢
12 [CTRLI-[L] (Löschen) 76 L 148 D 284 t
13 LCTRLI-IM] (RETURN) 77 M 141 D 205 tf
14 [CTRLI-IN] 78 N 142 0. 206 t
15 {CTRLJ-{0] 79 0 143 0 207 i
16 [CTRL]-L[P] 88 P 144 0 208 D
1? [CTRLI-LQ] 81 Q 145 0 209 N
18 LCTRLI-ER] 82 R 146 D 218 d
19 [CTRL]-[S$] 83 S 147 0 211 6
28 [CTRLI-LT] 84 T 148 O 212 8
21 [CTRLI-LU] 85 U 149 D 213 3
22 (CTRLI-[V] 86 V- 158 D 214 ©
23 [CTRLI-IW] 87 H 151 0 215 O
24 [CTRLI-IX] 88 X 152 0 216 9
25 [CTRLI-IY] 89 Y 153 D 217 0
26 (CTRL]-[2Z] 98 2 154 0 218 d
27 LCTRLI-LL] (ESC) 91 { 155 0 219 6
28 {CTRLJ-{\) (hoch) 92 \ 156 0 228 ü
29 (CTRLI-(1] (runter) 93] 157 0 221 ¥
38 [CTRLI-[A] (rechts) 94 A 158 0 222 PB
31 (CTRLI-{_] (links) 95 _ 159 0 223 B
32 96 ° 168 224 a
33 ¢ 97 a 161 i 225 &
34 " 98 b 162 ¢ 226 &
35 # 99 c 163 £ 227 &
36 $ 108 d 164 # 228 ä
37 % 181 e 165 ¥ 229 3
38 & 182 f 166 } 238 2
39 ' 183 g 167 § 231 ¢
48 (184 -h 168 ” 232 &
41) 105 i 169 8 233 6
42 % 106 j 178 2 234 &
43 + 187 k 171 « 235 &
44 , 108 1 172 ~ 236 }
45 - 189 m 173 - 237 {
46 . 118 n 174 0 238 f
47 / 111 0 175 ” 239 i
48 8 112 p 176 © 248 a
49 1 113 q 177 ¢ 241 ff
38 2 114 r 178 2 242 d
sl 3 115 s 179 3 243 6°
v2 4 116 t 188 ’ 244 6
33 9 117 u 181 U 245 6
4 6 118 v 182 9 246 ö
39 7 119 u 183 : 247 0
36 8 128 x 184 248 ¢g
37 9 121 y 185 1 249 ü
38 : 122 z 186 2 258 ü
39; 123 { 187 » 251 a
68 < 124 | 188 4 252 ii
61 = 125 } 189 % 253 y
62 > 126 198 4 254 b
63 ? 127 4 191 é 255 y

484 Das große GFA-BASIC-Buch —

Anhang B: Fehlermeldungen

System-Fehler

-54 Objekt wird schon benutzt| Lock

-53 Objekt existiert schon

-52 Verzeichnis nicht gefunden

-51 Objekt nicht gefunden

-50 Ungultiges Fenster

-49 Unbekannter Fehler 207

-48 Unbekannter Fehler 208

-47 Unbekannter PACKET REQUEST TYPE

-46 Unerlaubter Dateiname

-45 Unbekannter OBJECT LOCK

-44 Objekt-Typ passt nicht

-43 Diskette NOT VALIDATED

-42 Diskette schreibgeschützt

-41 RENAME mit verschiedenen Geräten

-40 Verzeichnis nicht leer

39 Unbekannter Fehler 217

-38 Gerat nicht bereit

-37 SEEK-Fehler

-36 Datei-Kommentar zu umfangreich

35 Diskette voll

-34 Datei ist gegen Löschen geschützt

-33 Datei ist schreibgeschützt

-32 Datei ist lesegeschützt

-31 Keine DOS-Diskette

-30 Keine Diskette im Laufwerk

-29 Unbekannter Fehler 227

28 Unbekannter Fehler 228

-27 Unbekannter Fehler 229

-26 Unbekannter Fehler 230

-25 Unbekannter Fehler 231

-24 Keine weiteren Verzeichnis-Eintrage

——— Anhang

GFA-BASIC-Fehler
o
o

9

a
B
O
N

=|

O
D
B
S
S
I
S
A
H
A
L

A
R

2
3

=
O
A
N
A

A
P
W
N

=
O

22

23

24

25

27

28

31

32

S
B
I
S
a
R
R
S

39

Division durch Null

Uberlauf
Zahl nicht Integer | -2147483648 .. 2147483647

Zahl nicht Byte |0 .. 255

Zahl nicht Wort |-32768 .. 32767

Quadratwurzel nur für| positive Zahlen

Logarithmen nur für | Zahlen größer Null

Unbekannter Fehler

Speicher voll

Funktion oder Befehl |noch nicht möglich

String zu lang |max. 32767 Zeichen
Kein GFA-BASIC-3.03-Programm

Programm zu lang | Speicher voll | NEW

Kein GFA-BASIC-Programm | EOF - NEW

Feld zweimal dimensioniert

Feld nicht dimensioniert

Feldindex zu groß

Dim zu groß

Falsche Anzahl Indizes

Procedure nicht gefunden

Label nicht gefunden

Bei Open nur erlaubt: |"I"nput "O"utput "R"andom |

"A'ppend "U"pdate

File schon geoffnet

File # falsch

File nicht geöffnet

Falsche Eingabe, keine Zahl

Fileende erreicht] EOF

Zu viele Punkte für | Polyline/Polyfill|maximal 128

Feld muß eindimensional sein

Anzahl Punkte größer als Feld

Merge - Kein ASCII-File

Merge - Zeile zu lang - Abbruch
==> Syntax nicht korrekt| Programmabbruch

Marke nicht definiert

Zu wenig Data

Data nicht numerisch

Unbekannter Fehler 036

Diskette voll

Befehl im Direktmodus | nicht möglich

Programmfehler | Kein Gosub möglich

Clear nicht möglich in | For-Next-Schleifen oder | Proceduren

485

486 Das große GFA-BASIC-Buch ————

GFA-BASIC-Fehler

41

S
a
G
R
S
S

47

49

51

52

53

55

59

61

62

63

65

67

69

70

71

72

73

74

75

76

S
E
A
R
S
:

Cont nicht möglich

Zu wenig Parameter

Ausdruck zu komplex

Funktion nicht definiert

Zu viele Parameter

Parameter falsch | keine Zahl

Parameter falsch |kein String

Open "R" - Satzlänge falsch

Zu viele "R"-Files (max. 31)

Kein "R"-File

Unbekannter Fehler 051

Fields größer als Satzlänge

Unbekannter Fehler 053

GET/PUT Field-String | Lange falsch
GET/PUT Satznummer falsch

Unbekannter Fehler 056

Unbekannter Fehler 059

Sprite-String-Länge falsch

Fehler bei RESERVE

Menu falsch

Reserve falsch

Pointer falsch

Feldgröße < 256

Kein VAR-Array

ASIN/ACOS falsch

Falsche VAR-Type

ENDFUNC ohne RETURN

Unbekannter Fehler 070

Index/Parameter zu groß

Zu viele Einträge

Kann Fenster /Screen nicht öffnen

Fenster fehlt

Library nicht geöffnet

Unbekannter Fehler 076

Unbekannter Fehler 083

Object. Fehler

Drucker-Fehler

Unbekannter Fehler 086

Unbekannter Fehler 087

——— Anhang

GFA-BASIC-Fehler
L
E
N
2

88
58

100

101

102

103

104

105

119

120

121

122

Speicheranforderung fehlgeschlagen

Sprite-Fehler

Fehler bei Local

Fehler bei For

Resume (next) nicht möglich | Fatal, For oder Local

Stapel-Fehler

Unbekannter Fehler 094

Unbekannter Fehler 099

GFA-BASIC Version 3.03 D| * Copyright 1986-1988 | GFA

Systemtechnik GmbH

Unbekannter Fehler 101

Unbekannter Fehler 102

Unzureichender Speicher

Task-Tabelle voll

Unbekannter Fehler 105

Unbekannter Fehler 119

Argument-Zeile ungiltig | oder zu lang

Kein ausfuhrbares Programm

Ungültige residente Library | beim Laden angesprochen

Neue Fehlermeldungen ab Version 3.5

Anmerkung

487

Fehlermeldungen, die sich mit der neuen Version nicht geändert
haben, wurden in dieser Liste nicht aufgezählt. Bitte sehen Sie
dazu in der Standard-Liste der GFA-BASIC-Fehlermeldungen
nach, die Sie auch in diesem Buch finden.

Doppelt aufgeführte Meldungen haben sich in der neuesten
Version geändert!

488 Das große GFA-BASIC-Buch ————

11 Kein GFA-BASIC-3.5-Programm

76 _ Matrizenoperationen nur für ein- oder zweidimensionale Felder

77 _ Matrizen haben nicht die gleiche Ordnung

78 _ Vektorprodukt nicht definiert

79 _ Matrizenprodukt nicht definiert

80 Scalarprodukt nicht definiert

81 _Transposition nur fur zweidimensionale Matrizen

82 Matrix nicht quadratisch

83 _ Transposition nicht definiert

85 FACT/COMBIN/PERMUT nicht definiert

100 GFA-BASIC Version 3.5 D|c Copyright 1986-1989 | GFA Systemtechnik

GmbH |

109 Guru Meditation
110 Bus Error

111 _ Address Error

112 _ illegal Instruction

113 Zero Divide

114 CHK Instruction

115 TRAPV Instruction

116 Privilege Violation
117 Trace

118 Line A Emulator

119 Line F Emulator

120 Argument-Zeile ungültig oder zu lang

121. Kein ausführbares Programm

122 Ungültige residente Library beim Laden angesprochen

—— Anhang 489

Anhang C: DOS-Fehlermeldungen

103 insufficient free store

(Der Speicherplatz reicht nicht aus)

Ein Programm kann nicht geladen werden, weil eines oder meh-
rere Programm-Segmente nicht im Speicher untergebracht wer-
den können.

104 task table full

(Die Prozeß-Tabelle ist voll)

Im CLI können maximal 20 Prozesse vom AmigaDOS verarbeitet
werden. Diese Zahl ist erreicht.

120 argument line invalid or too long
(Die Parameter der Eingabezeile sind ungültig oder zu lang)

Das AmigaDOS kann die eingegebenen Parameter nicht aus-
werten, oder aber es wurden mehr als 255 Zeichen eingegeben.

121 file is not an object module |

(Es handelt sich bei dem File nicht um ein ladbares Programm)

Nur Programm-Files können durch einfache Eingabe des Na-
mens gestartet werden. Daten-Files sind nur vom Programm aus
ladbar. Dieser Fehler tritt auf, wenn man eine Batch-Datei nur
über ihren Namen starten will. Das ist erst ab Version 1.3 über
das Flag S möglich.

122 invalid resident library during load

(Die residente Library ist während des Ladens ungültig)

Während des Ladens einer residenten also im Speicher befind-
lichen Library ist ein Fehler aufgetreten.

202 object in use

(Das angesprochene File-Objekt wird gerade benutzt) |

Der Zugriff auf das Directory, File oder Programm wird nicht ge-
stattet, wenn ein anderer Task darauf einen exclusiven Zugriff an-
gemeldet hat. Sehen Sie dazu auch die Open()-Funktion und File-
Handles.

490 Das große GFA-BASIC-Buch ———

203 object already exists

(Das Objekt existiert bereits)
Das Erstellen des Objektes mit dem gewünschten Namen ist
nicht möglich, weil darunter schon ein anderes Objekt existiert.
Man kann nicht ein Verzeichnis und File mit gleichem Namen in-
nerhalb eines Directories einrichten.

204 directory not found

(Das Verzeichnis existiert nicht)

Das angegebene Verzeichnis existiert nicht unter diesem Pfad.

205 object not found

(Das Objekt konnte nicht gefunden werden)

Der von Ihnen angegebene Name weist auf eine Datei hin, die in
diesem Verzeichnis nicht zu finden ist. Entweder stimmt der

Name oder der Pfad nicht.

206 invalid windows |

(Die Angaben für das Window liegen nicht im erlaubten Bereich)

Beim Öffnen eines neuen Fensters müssen die Koordinaten an-
gegeben werden. Diese dürfen nur in dem über den Screen defi-
nierten Bereich liegen. Außerdem muß das Format eingehalten
werden. Achten Sie auch auf die Schrägstriche!

209 packet requested type unknown

(Der Typ eines Packets ist dem System nicht bekannt)

Bei der Programmierung einer Nachrichten-Kommunikation ist
ein Packet-Typ falsch eingegeben worden. Im System kann die-
ser Fehler nicht auftreten. Nur wenn Sie eigene Programme
schreiben, wird hier wohl der Packet-Typ nicht stimmen oder
aber dieses Packet an ein Gerät gesendet, das diese Nachricht
nicht kennt.

210 invalid stream component name

(Der Name des Daten-Kanals ist ungültig)

Jeder Daten-Kanal muß einen eindeutigen Namen haben, damit
ohne Probleme die Nachricht verschickt werden kann. Dies ist
hier nicht der Fall.

——— Anhang 491

211 invalid object lock

(Der Lock zu einem File oder Directory ist fehlerhaft)

Der Lock auf ein File ist nicht mehr gültig. Das kann auftreten,
wenn ein Lese-Zugriff von einem Schreib-Zugriff übertrumpft wird
und das File nicht mehr in der Art existiert.

212 object not of required type

(Das angesprochene Objekt ist nicht vom geforderten Typ)

Es fand eine Verwechselung zwischen File und Directory statt.

213 disk not validated

(Die Diskette ist nicht validiert) u
Der Zugriff auf eine Diskette wird nur gestattet, wenn diese vali-
diert ist. Wurde eine Diskette eingelegt und ist sie nicht validiert,
so wird automatisch der Disk-Validator geladen und gestartet.
Konnte er nicht geladen werden, erhält man diese Nachricht.

214 disk write-protected

(Die Diskette ist schreibgeschützt)

Ein Schreibzugriff auf diese Diskette ist nicht möglich!

215 rename across device attempted

(Das Umbenennen über Devices hinweg ist nicht gestattet)

Es ist mit Rename durchaus möglich, den gesamten Pfad-Namen
zu verändern. Dies beinhaltet aber nicht das Device, was ja einem
Kopieren gleichkäme.

216 directory not empty

(Das Verzeichnis ist nicht leer)

Zum Löschen eines Verzeichnisses muß zuerst der Inhalt selbst
gelöscht werden, bevor das Verzeichnis vernichtet werden kann.

218 device not mounted

(Das Device ist nicht in das System eingebunden)

Es wird versucht, ein Device anzusprechen, das sich nicht in der
System-Liste befindet.

219 seek error

(Die Seek-Funktion kann nicht ordnungsgemäß arbeiten)

Der Seek-Befehl hat falsche Parameter erhalten, so daß er nicht
ordnungsgemäß arbeiten kann.

492 Das große GFA-BASIC-Buch ——

220 comment too big

(Der Kommentar ist zu lang)

Ein Kommentar zu einem File oder Directory darf maximal 80
Zeichen lang sein. Dies wurde hier überschritten.

221 disk full

(Die Diskette ist voll)

Es gibt keinen freien Speicher mehr auf der Diskette, so daß der
Schreibvorgang abgebrochen werden mußte.

222 file ist protected from deletion

(Das File ist gegen Löschen geschützt)

Dieses File oder Directory kann nicht gelöscht werden.

223 file ist protected from writing

(Das File ist gegen Schreiben geschützt)

Dieses File kann nicht überschrieben werden.

224 file ist protected from reading

(Das File ist gegen Lesen geschützt)

Dieses File kann nicht gelesen werden.

225 not a DOS disk

(Es ist keine DOS-Diskette)

Die im Laufwerk liegende Diskette hat kein DOS-übliches Format.

226 no disk in drive

(Keine Diskette im Laufwerk)

Es liegt keine Diskette im angegebenen Laufwerk.

232 no more entries in directory

(Es gibt keine weiteren Einträge im Verzeichnis)

Beim Auslesen eines Verzeichnisses mit der Funktion ExNext()
tritt diese Meldung nach dem letzten Eintrag auf.

——— Anhang

Anhang D: Verzeichnis der GFA-BASIC-Befehle

Ä 167
$ 355
Men 186

* 315

ABS() 206
ABSOLUTE { AB } 305
ACOS() 210
ADD { AD } 202
ADD() 204
AFTER CONT { AF CONT } anna. 349
AFTER STOP { AF STOP } ans. 349
AFTER x GOSUB { AF } 347
ALERT { A} 363
AND() 215
ARRAYFILL { ARR } 291
ARRPTR 316
ASC() 279
ASIN() cccccsssescssssscccssssscssssecessssccesssseeeen 210
ATN() 210

BACKS { BACKS } 387
BACKW { BA } 380
BCHG() 216
BCLR() 217
BGET { BG} 104
BIN$() 279
BLOAD { BL} ... 94
BMOVE {B} 306
BOUNDARY { BOU } 225
BOX, PBOX { BO, PB} 238
BPUT {BP} 105
BSAVE { BS } 95
BSET() 217
BTST() 217
BYTE() 217
BYTE{}, CARD{}, LONG{} „u... 306

CALL { CAL } 187
CARD() 218
CFLOAT() 284

CHAIN { CHAI }
CHAR{} „nennen

CHDIR { CHD }
CHR$\()
CINT()
CIRCLE, PCIRCLE { Cl, PC }

CLEAR { CLE }
CLEARW { CLW}
CLIP { CLI}
CLOSE { CL }
CLOSES { CLOSES } ..
CLOSEW { CLW }
CLR oo. eeecsecceeeeeees

COLLISION()cccecsesseersenees

COLOR { C} „une

COMBIN { COMBIN }
CONT { CON }
COS() VO .
COSQ\) | ;
CRSCOL | Br
CRSLIN see

CVI), CVL(), CVS(), CVDY

DATA{D}
DATE$

DEC ...

DEFBIT { DEFBI } ou...
DEFBYT { DEFB }un.....
DEFFILL { DEFF }

DEFFLT { DEFFL }........... ua
DEFFNccescccsseeresrenees

DEFINT { DEF! }
DEFLINE { DE}...

DEFLIST { DEFLIS } .

DEFMOUSE { DEFM }............
DEFNUM { DEFN }

DEFSTR { DEFS }....
DEFWRD { DEFW }
DEG(.
DELAY { DELA}

493

494 Das große GFA-BASIC-Buch

DELETE { DEL} '291
DFREE() 97
DIM 292
DIM?() sessuesssneeessuees 298
DIR cceseccsesccsssccsssccssssecsssscsssssecssssensaseens 97
DIRG() cessssesscssecssseccssssessssscsssssssssssscsseses 98
DIV 203
DIV?) .. 204
DO ... LOOP { DO... L} . 145
DOUBLE{}, SINGLE{} ... 307
DRAW $ { DR } 248
DRAW { DR} . 246
DRAW() 250
DUMP { DU } 352

EDIT {ED}... 331
ELLIPSE, PELLIPSE { ELL, PE F} ann 243
ELSEIF{E} cesssssscscscssssscssssseccssscersees 150
nn 332
ENDSELECT 162
EOF () cseccsecccsessscussccsssccssseessssecssssecssseess 106
EQV() cecsssescsssecscsssccssscessusccsssvecesesecesene 218
ERASE { ERA } ana... 299
ERR 341
ERR scscsssstssssssssstsstsssssssesnene 341
ERROR { ER } cssssceccsssssssssscsssssssssssnsn 341
EVEN) ceeecsscsccsccecssssseccsececseccerseesesseses: 206
EVERY CONT { EV CONT } ana. 352
EVERY STOP { EV STOP } anna. 352
EVERY x GOSUB { EV} aan. 350
EXEC { EXE } cccccsccsescssssscccsuccssnsscensers 188
EXIST () .cccccccsscccsesccsseccecssscsssescessesesseeses 98
EXIT IF { EX}... 149
EXP() anne. 206

FACT { FACT } cecsssecscssessssescssseecssseees 477
FALSE 357
FATAL ...scesecssescssessccsseceree 342
FIELD { FIAS bzw. FIAT Yan. 106
FILES 98
FILESELECT { FILE} aaa 364
FILL { FU} cccssccscecccsssccssseccsseccessnecerseee 243
FIX() 206
FLOAT{} 308
FN { @ } cccccssecssscecsssscessesssssscsssescessess 175

FOR ... NEXT{F...N} ana: 146
FORM INPUT AS ..eeesesenenennnonnnennnensnnnnnnn 76

FRACH) re 207
FRE() ...cccsscssscssscssessressesssesseeseessneesasens 345

FRONTS { FRONTS }nenneeen: 386

FRONTW { FR } ceccecsccsssscsecsecsecseceeseees 380
FULLW { FUW } uesccsccscsscsscsssssssessessen 376
FUNCTION..RETURN..ENDFUNC

{ FU..RET..ENDF }usssneneeenereeeeneennn 176

GET. . 256

GET # ..nnnnneesennesennnnanennnnnnnnnennnnnnnnnnanne 107

GOSUB { G oder @ }neeeenenene 178

GOTO { GOT }unssneerenerenennnnenenn 180

GRAPHMODE { GR}... 233

HARDCOPY { H } csccscssssssessesssssssssenes 132
HEX$()csccssccssecssessecsssessecsesessessseeeses 286

HTAB { HT } cecccccscccsscsecsecsecsesseessesscsecens 89

IF [ELSE] ENDIF { 1... [E...] EN } 150
IMP() c.ecscessssssesessesessessesssessrsessceessesvasens 218
ING {IN} ccsccsesssssccssessessessessessssesesses 203
INKEY$ccsscscccccsssssseeceeseesssseeeseeeeees 76

INLINE { INL } aaneseensennnennensensnnnannnanen 310
er 119

INPUT { F } cccccscsssssssecesctestssssseeeseesee 75
INPUT { INP }eessssesssnnenenenenenneneennnnn 78

INPUT$() ceescssessseesessee sessessessneesensen 81
INSERT { INS} ...eeesssresseseneenennnnnnnnn 299

INSTR()ccsccsscsstessecsssessseeseeessseceteeens 194

INT () cesecsescecssecsscstcssssscsesssecueceececseceeseees 207
INT{} /WORD{} viccsccscscsessessescesesseens 308

KILL{K} eneneneensensnnnennnnennnnnnnnennnnnnennenn 99

LEFT$()cssessccssscssecsssesseeeseeesnevsesenss 195

LEN() ...csccssccsccssccssscsecsssceseresseecsesesees 196

LET { LE } uuu eesccsecsscssreesecsteesseees 357

LIMITW { LIM } uu... cesecscssssseesesereeens 382

LINE INPUT { LI} oo. eeeeeeeenes 82

LINE { LI} we ecsccsscetecsreeseeseeeseees 252

LIST{LISY re 99
LLIST { LL } cceccecesssesssccscsstssesceesesessenns 134
LOAD { LOA } aan. een 100

——— Anhang 495

LOC() 107 MOUSE { MOU } uuu. cesses 368
LOCAL { LOC } 180 MOUSEX, MOUSEY, MOUSEK 371
LOCATE { LOCAT } 90 MOVES { MOVES } .eeeennnnnnnennnn 387
LOF() 108 MOVEW { MOV } 381
LOG() 207 MUL { MU } ... 203
LPOS() 134 MUL() 205
LPRINT { LPR } . 135
LSET {LS} 193 NAME { NAAS } .nnsssesesesennenenennnenannne 102

NEW 335

MALLOC() 312 OBJECT.AX 272
MAT BASE {MB} 545 OBJECT.AX() ceccccccscsssssssssssescsescscssessees 276
MAT CLR { MCL } 545 OBJECT.AY Aa 272
MAT SET { M SE } 455 OBJECT.AY() 277
MAT ONE {MO} „ 455 OBJECT.CLIP nennen 270
MAT READ {MR}... nee 456 OBJECT.CLOSE . .. 269
MAT PRINT { M P oder M ? } 456 OBJECT.HIT aneeeeeeenennnnnnnesennnnnnnnnnnanenn 275
MAT INPUT { M1} 457 OBJECT.OFF wicccccscssssscssssstesstseses 270
MAT CPY { MC } . 459 OBJECT.ON ..aeeasnesenenennnnnnnennnnenenennnnn 270
MAT XCPY {MX} 462 OBJECT.PLANES .eneeeeeennnnananennnenen 273
MAT TRANS { MT}. nn 463 OBJECT.PRIORITY cnesesesenenenennnnenennnnne 274
MAT ADD { MA} sesesee 465 OBJECT.SHAPE ou. csescscssssscsssssssees 269
MAT SUB {MS } 467 OBJECT.START sessseaeavaveeavasscen 271
MAT MUL { M M } .. 469 OBJECT.STOP 271
MAT NORM { MNO } „472 OBJECT.VX ennennnennnnsenenennnnnnenennanannnann 272
MATDET{MD} .. 474 OBJECT.VX anne. .. 276
MAT QDET { M QD} 474 OBJECT.W eneeerennnenennnnnnnnnnnennnnnnnnannnn 273
MAT RANG { M RA} . 474 OBJECT.VY(.... . va 276
MAT INV { M INV } 475 OBJECT.X viccscscscscscscsssssssssssssssssssseseees 271
MAX() 214 OBJECT.X() ecesenenenennnnnsnnnennnnnnnnnnannnnen 275
MENU KEY uuu. cccsescscsssssssesesescsesesseees 390 OBJECT.Y eeneennssnsnnenennnnnnnnanensnenenenannnn 271
MENU KILL 392 OBJECT. VD) eeeeernenennnnnnnnennnennenennnnnannnn 276
MENU Menü seen 389 OCTS$(...... seueeeucesaneeuecseeeseesseess 287
MENU Meniitext$()cccsscccsseeees 390 ODD()ceessccsssssreeeeeees 208

MENU Text nennen 389 ON ... GOSUB .neaeneneneneanaennnnnnennennenennnn 181
MENU(Index) . 395 ON BREAK [CONT] [GOSUB] 182

MFREE() 314 ON COLLISION GOSUB „nennen 277
MID$() 196 ON MENUsssssseseneneaennneannnneennnennnnnn 403
MID$() = 193 ON MENU BUTTON GOSUB 404
MIN() 214 ON MENU GOSUB eee 404
MKDIR { MK } anne 101 ON MENU KEY GOSUBcccess 404
MKI$(), MKL$(), MKS$(), MKD$() 286 OPEN { O } .ensssseseseseseneneenenenennnnnnanann 108
MOD() 205 OPENS { OPENS } ..enesenesesennnnnnnennn 383
MODE { MOD } vas 358 OPENW { OW } cncccccccssscsssesssssssssees 377
MONITOR { M } .eesssssesesnsesennnnnnnnnen 190 OPTION BASE { OPT BASE} 300

Das große GFA-BASIC-Buch ———— 496

OR() 218
OUT { OU} 119

PAUSE { PA} 337
PEEK, DPEEK, LPEEK 309
PI 212
PLOT { PL} 252
POINT() 252
POKE,DPOKE,LPOKE { PO,DP,LP } 309
POLYFILL { POLYF } 244
POLYLINE { POL } 253
POS(). 90
PRED() cescccccssssccssssscssssscessssecersseceesnees 196
PRED() 208
PRINT USING { P USING } aan. 85
PRINT { ? oder P } 83
PROCEDURE { PRO }...ENDPROC
{ ENDP } 184
PROCEDURE { PRO }...RETURN
{RET}. sesuseessuvessseseensecessaes 183
PSAVE {PS} cesscsssescscsssscsssssesersseeeeen 102
PUT # { PU } ‚111
PUT { PU } 261

QSORT { QS } nennen 301
QUIT { Q)} ceecssesssssssscssssssseesssssesssesen 332

RAD() sessussessssssessussecsssseensneeens 213
RAND() .neccssecccsssccscssssscssesscsssssccssnsessen 223
RANDOM(.. .. 223
RANDOMIZE {RAY} anenneannnennnninn 223
RCALL{ RC } aeeseesnssennnssennnnennennnennnn 191
READ { REA } ccccccssescssssesccssseecesssecesee 169
RECALL { RECA } anne 11
RECORD { REC } aan 112
RELSEEK { REL } anna 113
REM { Roder ’ oder ! } . 169
RENAME { REN } ana 103
REPEAT ... UNTIL { REP... U } au... 147
RESERVE { R.ESE } kennen 315
RESTORE {RES} aan. 170
RESTORE {RES} aanneaeannnennnnnnn. 191
RESUME { RESU } anansseennaneennannnnnn 343
RIGHTS () ceeccssscscssscscsscccssseccssscessescersese 197
RINSTR() 198

RMDIR { RM } ceccscseccccssecccsseessssssseesees 103
RND() 224
ROL() .. 220
POR() csceccccsecccssssccccsssecssseccscsuscesesecessees 221
ROUND() sesucesssutensuccenserersesess 208
RSET {RS} cccccccssseccsssececssscscessessrseeess 194
RUN {RUF ccscecccscecccssecccsssecesseesesseeees 333

SAVE { SA} cccssscsccsssecccsssececsssescessseees 103
SAY cecccssecscsssecccssucccssuccssusecssusecssucesssess 142
SCREEN() { SCREEN() } 388
SCROLL { SC } ceccccsecccsseeccsssececseserseees 245
SEEK { SEE } cecccccscccsescsssecccsseecssseeeeee 113
SELECT cecceccsssescsssecscssscccscsescssseesesseses 162
SETCOLOR { SET} ana ... 235
SETDRAW { SETD} anannnenannnnnanunnnn 254
SETSPEN { SETSPEN } maanannnnnnnn 388
SETTIME { SETT } on 338
SETWPEN { SETWP } nn. 382
SGN sesesssussessussessueesssees 209
SHL() cecccssscccssssccsssecsessesecssssessssecsssseees 219
SHRÜ) sccscscscsssecscssssscessecsessuccessecsessersere 219
SIN(). cescccsveccssseeccssececssssecssssccssssecsseesene 213
SINQ() veesseescccssscccsssccssssccssseccasseeessseeeen 213
SIZEW { SIZ} anne 381
SLEEP onesccecsccssseccsssescssecsccssessssseeesssees 403
SOUND { SO } cecssecccsssesccssesessseesessecess 140
SPACE) scsecccsssscsccsssecssssseccssssessssseeees 199
SPC) ceesssseccccsscscssssscssssccssssecessecersnsecesees 91
SPRITE { SPR } aan 265
SOR() coecsssecccsssseccssscscssssscsssecessnsecssseses 209
SSORT { SS }. csssescsssessssseccesseecesseeenee 304
STICK { STI} cccccssecscsssescsssesessseecssseees 371
STICK() cssseccssssescssseeccssesccssesessssesesseeses 372
STOP { ST } ccccccsssecccssscscssececssscecssseees 333
STORE { STOR } anne. 114
STRG() csssssescccseeccscsecscssececssseccsssvecesneses 287
STRIG() ceesecsssessscssssssssecssssscsssesesssesceen 373
STRINGS () ceccssescsssecscsssescsssescsssecssseees 199
SUB { SU } sssvusesssuecsssuetessuseesenees 203
SUB { SU }...ENDSUB { ENDSU } ... 183
SUB() ceccccsscccssescsssecccrseesessecssssescerseseeen 205
SUCC() ccesecccssesscsssesssssssecsssseessneessseeee 199
SUCC() cescessccssescscsecscssssscsssecssssseessseses 209
SWAP { SW } ceccccssssssessssseesesssseseees u... 360

——— Anhang

SWAP() vesscsesscssssesscstsscssssssssseesesesssnsees 222
SYSTEM { SYS } ...eenessnesnsnennnnnnennnenn 334

TABQ) 91

TAN() ..ccscccsscecssscsssescsesscsressscessesesseeeaes 213

TEXT { T } ccccsssscssesssecescessseeeseesseeseeees 245

TIME$.. 339

TIMER 339

TITLES { TITLES } 387

TITLEW { TI} .ccccccssssecsseesssesseeeseetees 379

TOUCH { TOU } .. 114

TRACEScccssssscssesscsscecsssseesssesenseeenenes 354

TRANSLATE$()ccssccsssessesssssersseeeees 144

TRIM$()ccsscccsssssssccseesesceesssessresenaeens 200

TROFF { TROF }cccscssscssseessreeees 354

TRON Proc { TR } .. 355

TRUE 358

TRUNC()ccsscccssssssssseeessseseseesetserseees 210

TYPE() ..sscccssssssscesseesscccsscseseersaetsseeeees 346

UPPER$() .. 200

VAL () ..ccsscccsscesstccssseessersssessneesaseseecenes 288

VAL?() . 289

VAR .usssssscssssccsctsessscessescseeeenscesnecsseeesaes 185

VARIAT { VARIAT }:ccssseccsseesereees 478

VARPTR 317

VOID { V } .neeessserssnenenennnnnenneerenennnnnnne 361

VSYNC {VS} uu. .ceseccsscsseessseesseesnenees 268

VTAB { VI} uu. cessccsssssssscseesseesseeseseeesaes 92

WAVE { WA } ; we 141

WHILE ... WEND { W... WE } 148

WINDOW() { WINDOW(}008 383

WORD() un. 222

WRITE {WR} saeeeuensacecssecseesstceess 88

XOR() vescssesscssssssssesssssssssesssssssesesssnsen 222

497

498 3 Anhang ——

Anhang E: Quellenhinweis

Die Idee des Abbildungsbeispiels auf Seite 470 wurde aus dem

Buch "Lineare Algebra mit dem Computer" von E. Lehmann
entnommen (ISBN 3-519-02511-6) und anstelle ın Pascal in
GFA-BASIC programmiert.

——— Stichwortverzeichnis

Stichwortverzeichnis

$U | 421

$U+ 421

$SU- ec ecccccsssceeceesceeessecesssesseseeseseceseneaes 421

%0 | we. 423, 425

%3 423, 425

%6 425, 427

*% 423, 425

*& 423, 425

+Lib . 428

-Lname 428

-Oname we 428

-S 424, 428

1-Byte-Integer ... 171

1-Byte-Integer-Feldvariable 347

1-Byte-Integervariable cee 347

1-Byte-Integervariablen deklarieren .. 172

1/1-Sek.-Wartefunktion oo... cece 336

1/50-Sek.-Wartefunktion nn 337
16-Bit-Integer-Zufallszahl 223

2 Byte als Vorzeichen-Integer

schreibenerereenensnnnnnenersnensonsnnnnonenn 308

2-Byte-Integer 171

2-Byte-Integer-Feldvariable 347

2-Byte-integerformatcccceseee 308

2-Byte-Integervariable sn O47

2-Byte-Integervariablen deklarieren .. 173

32-Bit-Integer-Zufallszahl 223

4-Byte-Integer 171

4-Byte-Integervariablen deklarieren .. 173

8 Byte in GFA-3.0-BASIC-Realformat 308

8 Byte in GFA-3.0-Realformat

schreiben 308

8-Byte-Fließkommavariablen

deklarieren .. 172

8-MByte-Kartecccssssseeeessseeeseees 38

Ber-Tetradeseereonanennenoonnnenennnnennsnnen 284

9.5 MByteueseesnnnsssennnnnennnsnsnennonnnnnnnnen 38

Abbruchbedingungen 149

Abbruchtasten .. 69

499

Addieren zweier Matritzen 465

Additionsbefehlccccccccssssseeevees 202

Aktionspunktennerensssersnnensnenennenenen 232

Cursor-Spalte bestimmen. 89

Cursor-Spalte liefernccssccssssecees 344

Cursor-Zeile bestimmennc. 92

Cursor-Zeile liefern 344

Zugriffspfad ermittelns 98

Alert-Box erstellenccccsssesesseesenes 363

American Standard Code for

Information Interchange- 279

AND ..cssssessennensnnnnannonnnonnenenennnannnenn 40, 201

AND-Kettencccssssssecsececessessscenenes 216

AND-ModusSsesssnnsnnnoononnennnneennnnensnnnn 215

Anzahl wandelbarer Textzeichen

ermittelnccsseeresnanonennennnnnnnnnenen nr ren 289

Apfelmannchen wee 412

Appenduensessensereeenennnonennannsnennennnennn 109

Äquivalenz ...uessseseseneneenenenennnnnnnnnnnnnenen 201
Äquivalenz-Funktion „nes. 218
Arbeitsdisketteccccccccccsssnssceeeeees 409

Arcuscosinus-Funktioncccceeeee 210

Arcussinus-Funktionssssneeseeenennen 210

Arcustangens-Funktion ...ceeeresneeeeeeennnn 210

ÄrtayS ee 55

ASCIl pevsusuceusceceeseceeaeeeeuens 279

ASCI = > Textzeichen oo... eccscecceeees 284

ASCHH-Filec.cccscseseseeseenseesneenvvevevsens 99

ASCII-Wertccccccccsccssccccesssessscesseeeeues 163

Aufnahmevariablenliste 179

Ausgabeformateeenessssnssnsennenneneeennnn 85

Ausgangsbedingungen5 145

Auswahl sousuecanesccessuauceeenacuces 417

Auswahl-Vorgabenccccsessseesseees 164

AutO& vessssssccsssesssecsessssssesssessessssssesssesens 444
Autostart ar 95, 102

Backslashcccccccsssscsscssssssssssenssseenens 366

Backspaceccsssssccesesssssrecceseesssees 80

Backup -Fileeersesserssnennenennesnenennnnnne 366

BASIC-Arbeitsspeicher 335

500 Das große GFA-BASIC-Buch ———

BASIC-Arbeitsspeicher festlegen 315

BASIC-Fehlerssccccccsssssccceesssseenes 342

BASIC-interne Speicherreservierung 310

Bedingte Schleife 147, 148

Bedingte Verzweigung zu

Prozeduren 181

Bedingter Schleifenabbruch 149

Bedingungen un 40

Bedingungsabfrage . 150

Bedingungsstellung 215

Bei Objektkollision verzweigen. 277

Beliebigen Teil-String ermitteln 196

Benchmark-Testuusensssensseeennnnnns 340

Benutzer-Muster u. 228

Beschleunigung in X-Richtung

ermittelnnseseeneeenoononnnnnssnennenonnnnnnnnnn 276

Beschleunigung in Y-Richtung Ä

ermittelnunsseesesserenennnnnnnnnennnnnnnnnnnnn 277

Betrags-Funktion sestesenceeens 206

Bildpunkte veeeeeeserenaaaees 39

Bildschirm auf Drucker ausgeben 132

Bildschirm löschen.ssssecccceceees 335

Bildschirmbereich setzen. 261

Bildschirmbereich speichern 256

Bildschirmpunkt-Farbwert ermitteln . 252

Bildschirmrechteck 255

Binär-Divisioneessssreersssnenenanennnnennnnnen 44

Binär-Stringceeeesnnerennenenenonsnnnnnennnennen 279

Binärsystemcccsssscscssseseerseneesesees 281

Binary Digit wee 32

Bit-Flag-Verwaltung 358 |

Bit-Mull 264

Bit-Nummercccccesssseseseneees 216

Bit-Plane . 39, 229, 273

Bit-Summe , .. 264

Bit-VektOr ...eeneeneessesssenonnnnnnnnnnnnnnnnnnnnann 368

BitMap-Bereich verschieben 245

Bits links rotieren sevenseeeeees 220

Bits links verschiebencc0000 219

Bits logisch rechts verschieben 219

Bits rechts rotiereneeeeeneeesenersennennn 221

Bitweise Division seseeessanenees 44

BOB seeeesasessssaeneessaases 268

BogenmaB | 213

Boole-Variablencccsssseecesseees 1708

Boolesche Algebraeerrrersrerenenennn 39

Break-Funktionusssesererereeen 182, 337

Break-Funktion behandeln 182

Buchstabenumwandlung

klein = > grOB ..ereeenensnensenennennnnnennnnnenn 200

Button-Texte ...ueeneenesesnnnenennnnnnnnnenennnn 364

C+ u. . 426f

O= unnnenesnnnsnnennensnenünnnnnnnnsnsnsernenssananenennn 426f

C-Konventionenc:cccssseeesssteeeeees 186

C-TOXtccccccsssssssccsssrssccsssseeererseseesessees 307

Carriage Return cece 75, 83, 112

Check (x%) 444
Checkmark eteenens u... 389, 392

Chip-RAM bees . 36f

CLEANUP v.eeessseeessessnnnenaennnnnnnnnensnnnnnnnenn 23

CLI oo eccessseesecseeceessssneecessssacessessaes 24

COX w..ceecccssteccssseecssscessseseeestsseceseneees 443

0) -). .nneeeensensensennensennnnnenansnnnnnsnnanenennnnn 444

COf& eee 443

COME .eeccccsssteccesstteeeesssneeeteeseeeesessees 443

COM _OPt ...cessssssssecsessesseseesesseensssseees 444
Compilatccccsssececesssteessessseeeeeeess 413

Compile .. seceeeesessasenaeeeeesessuanas 445

Compilerccccesceseee un . 417

Compilierung 0... cesses 413

COMPLEMENTc.sessssssssessesseseeseee 233
COp& ecsesccssscscstssssssessssssssssesesessssseseeees 444
COSK eeeesennnnnennnnennonnonnennennensnnennnnnnnnnanenn 443

Cosinus-Funktionc.cccccssecsseeeeeees 211

CPU .nneesssneessonsnnnonsssnnunennnunnnsnnnnnnnennnenn 30

CPU-Registerccsscccssseccsssrecesseees 191

Cursor positionierencsssccccssssneees 89

Cursor-Position:cssscccssssssssseesesseenes 83

Cursor-Spalteccscccssssecsssseseesenes 344

Cursor-Spalte ermittelncccsccccees 89

DATA-Werte auslesenunnnneeneenn- 169

DATA-Zeigercssssccccessssssrtseeeeeesssaees 168

DATA-Zeiger, Operationen 479

DATA-Zeiger setzen. 88, 170, 191

Datei auf Dateiende prüfen. 106

Datei auswählen22sssssnernnnennnennn 364

Datei in Speicherbereich laden. 94

Datei umbenennenccccsesscessees 102f

———— Stichwortverzeichnis 501

Datei-Zeiteintrag aktualisieren 114 Disk-Station 365

Dateilänge ermitteln 108 DiskCopy ... 409

Dateizugriff 92, 105 Diskettenoperationen 365

Daten an Drucker ausgeben 135 Divisionsbefehl { Di } 203

Daten ausgeben 83, 88 Do_fsel(x$,VAR f$) 445
Daten byteweise an Peripherie Doppelt bedingte Schleife 145

ausgeben 119 DRAW-Turtle positionieren 254

Daten byteweise von Peripherie Drehpunkt 212

lesen 119 Dreiecksfläche 226

Daten formatiert ausgeben. 85 Drop-Down-Menü 256

Daten zuweisen 357 Druckerprotokoll 449

Daten-Speicher deklarieren 168 Druckkopfposition ermitteln 134

Datenbus 31 Dummy-Zuweisungccccseeessessennees 361

Dateneingabe 78

Datenfelder 115 E# 423, 425

Datenkanal 119 ES eeneeenannensnansnnnnnensnnnnnnnnsssnennnnnnnnne 423, 425

Datenkanal öffnen 108 Editoresssssneersonennnnnnnnnnnsnnennnnnnnnnnennnn 331

Datenkanal schließen 105 Einheitsmatrix erzeugen- 455

Datensatz 107, 115 Einzel-Bit auf an/aus testen 217
Datensatz in Felder unterteilen 106 Einzel-Bit löschen 217

Datensatz lesen . 107 Einzel-Bit setzen 217

Datensatz schreiben 111 Einzel-Bit wechseln (XORen) 216

Datensatzlange sesseees 111, 116 Einzelelement aus Feld löschen. 291

Datum einstellen 338 Einzelelement in Feld einfügen 299

Dbsym& 444 Einzelvariablen löschenuene 335

Debugger ..recressnennsesnannnnennnnnnnsennnnnnnnnen 190 Einzelzeichen von Tastatur holen 76

DebugSym 424 Elekronenstrahl . .. 268

Default-Button 363 Elementarfarben 236

Default-Title 387 Elemente pro Dimension 293

Dekrementierung 202 Ellipse (nbogen) zeichnen 243

Delete 80 Endlosschleife sevveees 145

Descriptor 315, 360 Env 445

Desktop-Menü fiir Accessories 391 EQV 42, 201

Determinante berechnen 474 EQV-Modus 218

Determinante, schnellere EMTOF ...cccssssssssssccccccsccsssecssssesscnasanseceeeees 423

Berechnung 474 Error-Handling 342

Dezimalstellen-Funktion 207 Ersatzkriteriumccccccccccssssssereceeseeees 303

Dezimalstellen-Zufallszahl 224 Eulersche Zahl u... 206

Dezimalsystem .. 280 Europa-Format 358

Directory ausgebenensseeonerenseennnneo g7f Event-Puffer (Menü- und

Direkte Variablen-Übergabe 185 Fensterverwaltung):scsscccssseesseees 395

Direktmoduscssceseeees 69, 331, 333 EXclusivOR-Funktion 222

Disassembler 190 Execute 418

Disjunktionzsessesnsnsesnennnnennnnnennnnennnnnn 201 Existenz einer Datei prüfen 98

Disk-Datei löschen . 99 Exklusives Oder 201

502 Das große GFA-BASIC-Buch ———

86 Exponentenstellen

Exponential-Funktion

Exponentialformat 51,

F% 422,

F< 422,

F> 422,

Fakultät berechnen

Fall-Entscheidung

Farb-Bildschirm

Farb-Register

Farbberechnung

Farbeinstellung des Objekts

festlegen

Farbmischung

Farbregister

Fast-RAM

252,

206

289

426

426

426

477

162

264

227

264

273

235

264

38

Fataler Systemfehler

Fehler simulieren

Fehler-Abfangroutine

Fehler-Code ermitteln

Fehler-Routine

Fehlerindex

Fehlertext liefern

Feld (-Bereich) Quick-Sortierung

Feld (-Bereich) Shell-Sortierung

Feld mit Wert belegen

Feld(er) dimensionieren

Feld(er) löschen

Feld-Basiselement bestimmen.

Felder und Variablen löschen.

Fenster auf maximale Größe

bringen

Fenster in den Hintergrund

Fenster in den Vordergrund

Fenster öffnen

Fenster schließen

Fenster verschieben

Fenster-Inhalt löschen ...

Fenster-Titelzeile bestimmen.

Fenstergröße bestimmen .

Fenstergröße einschränken

Fest-speicher

342

341

333

341

343

341

341

301

304

291

292

299

300

334

376

377

376

381

375

379

. 381

382

94

Festplatte

File-Ende

411

106

File-Pointer sonne 105

File-Pointer setzen 113

File-Pointer verschieben ... 113

File-Pointer-Position 104, 107

Flächen mit Muster füllen 243

Flags u... 48

Fließkommaaddition 427

Fließkommavariablen 172

Fließkommawert = > Integerwert 285

Format-String . 266

Format-Zahl => String 286

Formatierte String-Eingabe 75

Formatzeichenccccccccccccsccsssersereeee 87

Freien Disketten-Speicherplatz

ausgebeneunnesseeesennnnnnenennenennnne 97

Freien Speicherplatz ermitteln 345

Füllmuster bestimmen. 228

Füllvorgang ...rezsessessnnnssnnensnnnsennenssnnenn 243

FUNCTIONSessssssesensonensnonnonnonennnnnnnnnnn 422

Funktion .. 176

Funktion aufrufen2222000022002022220 175

Funktion definierenr22e222000» 173

Funktionsaufrufe222222222nneenneneenene 57

Funktionsname | 173

Funktionstypencccccsesessssssseeeeeees 174

Ganzzahl-Funktion 206f, 210

Ganzzahldivision . 201

Garbage-Collectionccscccsccsseees 346

Geometrische Figurenc:ccs0 225

Geschwindigkeit in X-Richtung

ermitteln se eseesssstesceesesssseeeeeeereeees 276

Geschwindigkeit in Y-Richtung

ermittelnzuuussenennnnnnnnneenennnnnnnnneenn 276

GFA-Compiler-Shellcssscccceseees 414

GFA_BCOM 424

Ghosted ...ccccsccsscsscssessssessessessen 389, 392
GL Testeeeeessnenessennenoonnnnnnnnunensnnnnnnnen 428

Globalen Deklarationcccccsssseeeee 170

Goethesche Farbkreisssscceseres 236

Grad 213

Grad-Winkelangabecccscssseees 213

Grafik-Speicher 39

Grafikausgabe begrenzen/Null-

Punkt setzenccsecccccssssssrreceesesesseees 255

——— Stichwortverzeichnis 503

Grafikmodus see 261 Interpolierte Cosinus-Funktion 211

Grafikmodus bestimmen 233 Interpolierte Sinus-Funktion 213

GroBbuchstaben saseeeees 178, 200, 303 Interpreter 417

Größten String ermitteln 214 Interrupt 420

Größten Wert ermitteln 214 Interrupt-Routine freigeben. 352

Interrupt-Routine sperren- 352

Interrupt-Routinenaufruf 350

Hardware-Farbregister einstellen 235 IntMUlccssecccccesessssteccceesessssreeseenees 423

Hauptverzeichnis 96 INVERSEVID 1. 234

Hexadezimalsystem 34, 281 Invert(yO&,f!) oo... ccessssreesessseeeeeeses 444

HI- und LO-Word vertauschen 222

Home 335 JAM1 233

Hüllkurve festlegen 141 JAM2 233

Joystick-Fire-Buttons abfragen 373

I+ 421, 425 Joystick-Modus essen 372
l- Liscesssssssssteceeceesesssesssecceeereesesseees 421, 425 Joystick-Port eeeeeseececeesecesneesens 371

Off .neesnesnensennennnnnennnnnnnsnnansntensennennenen 445

| on 445 Kanal-Nummeruerseesesenneeneneneennnn 105
Identifikator0sessrss ernennen 94, 104 KOY ZRPPRRRRRRRRERREFFREFFFRRRERERERREFEEEEPEREEERRERFEPFR 444

IEEE-Double/Single-Realformat Keyclr ee 445

lesen saneeeeseesesssaaeaasens 307 Kickstart sasneceeeeeseessesesauees 38

IFF-Brushes . 269 Klammerrechnungsccccscccccesseeeees 158

IFF_TO_BOB.GFA ... ; 269 Klammersetzung cece 156
illegal-Instruction-Exception. 190 Kleinbuchstabencccccsssees 178, 303

IMP 41, 201 Kleinsten Wert/String ermitteln 214

IMP-ModusScccccssssseeessssceseessanees 218 Klickpause ...eeeessuusnnennenneeennnnnnnnnnanennnenn 337

Implikation 201 Kniffelcccssccceccccscseeessssseeeeseccceeeeas 159

Implikations-Funktionrsrreeer000.. 218 Kollision0020020220nnnennnnneennnnnnnnnnnnan 275

Index-Offset festlegen .. 454 Kollisionssart feststellen 277

Indirekte Übergabe von Feldern 361 Kombinationen, Anzahl berechnen ... 479

Indizierte Wiederholungschleife 146 Kombinierte Abbruchbedingungen .. 147

Inkrementierung 203 Kommentar . 167

INPUt ..zzcseessennanssnnnnennennonnnnensnnnnnnnnnnsnnnn 109 Kommentar einfügenussereereerennne 169

INSTR-Abfragenccsccesssssssscessseeees 162 Komplementwerteeesenneeesnnnennnnneennn 220

INtDiV22ecsssassnnsnsnennenenonnnnnnnnnennnnnnennnn 423 Konjunktion000... un 201

Integer-Additionsfunktion 204 Koordinaten-Nullpunkt0.. 255

Integer-Division 219 Koordinatenpaare 247, 253

Integer-Divisionsfunktion 204 Kreis(bogen)rsrersseeeenennnnneenennannen 242

Integer-Modulo-Funktion 205 Kreiszahl .. beceeeeee 212

Integer-Multiplikation wee 219

Integer-Multiplikationsfunktion. 205 Laufwerksvorgabe 102

Integer-Subtraktionsfunktion 205 Laufzeit ermittelncccsssssreeceeeeees 339

Integeranteil 204 Leerzeichen 200

Integerwert = > Fließkommawert 284 Leerzeichen ausgebeneeen 91

Interferenzenzueneenesssonnenenreenerenneennn 268 Leerzeichen-String bilden. 199

504 — Das große GFA-BASIC-Buch ——

Length Of File 108

Lesezeiger 107, 112

Lesezugriffe u... 109

Line Feed 75

Linie zeichnen 252

Linien-Modi bestimmen 230

Liniendicke 231

Linienfarbe bestimmen 227

Linienstil 230

Linienzug 246, 253

Link 445

Linker 417

Linksbündigen Teil-String ermitteln . 195

Listing-Format festlegen 356

LOAD 22

Locationccseceressescesseceeeesseccecneceeeees 107

Logarith MUS ..eeeeesesseseeensenennensenennnennnn 207
Logische Operatoren 157, 202

LOGO-Turtle-Grafik u... 248

Lokale Variablen deklarieren 180

Lokales Swap-Feld 259

LOWESccssseccsscscecccassscsceenssecesseessceees 177

Lupe 239

M ..csscsccsssscsssvssssesssssscseccscucsssscsesesnnanss 426

MALLOC()-Speicher freigeben 314

Marker-Attribute 253

Maschinen-Monitor 190

Maschinen-Programm aufrufen 190

Maschinenroutinessscccccseneeveesee 187

Maschinenprogramm (assembliert)

aufrufencccccrresssssssssetsecsens 187

Maschinenprogramm (C-kompiliert) —

aufrufencccccccccrccscccccersererseceeseeeeees 186

Matritzen subtrahieren .. 467

Matrix auf einen Wert setzen 455

Matrix aus DATAs einlesen 456

Matrix aus einer Datei einlesen 457.

Matrix ausgeben .. 456

Matrix kopieren 459

Matrix löschen 454

Matrix nomierenccccccccccssssssseceenes 472

Matrix, Rang berechnen 474

Matrix transponiert kopieren. 462

Maus-Port im Joystick-Modus

abfragen ... 372

Maus-Port-Abfragemodus

bestimmen vn 371

Maus-Status ermitteln (einzeln) 371

Maus-Status ermitteln (gesamt) 368

Mausbildccccccssssssssssceessseeeseeees 232

Mausform bestimmen. 231

Mausmaske.ussseeenennnennnnsnennnnanennnenn 232

Mauszeiger 00... ccccsssssteccesseesssecreeeees 368

Max. Zeilenlange sens 82

Maximal mögliche String-Länge 81

Maximale Eingabezeilenlänge 175

Mehrfach-Zeichenkette bilden. 199

Memory u 423

Mencccccccccccccccccccceeeerecessececsssesecceeeess 444

Menge der Feidelemente ermitteln ... 298

Menü-Indexzuu2r00s0nesnnennsnnnnnr nenn 0 259

Menü-Überwachungcssesseeeeees 404
Menu34 ae 446

Menüpunkt mit neuem Text

versehencccsssssssssssseressceseseeeerevesseees 389

Menüpunkt mit Shortcut versehen 390
Menüpunkt-Attribute bestimmen. 389

Menux knsnssesensansssssnunsnssnnen 413

Menüzeile löschencccscsessveceeens 392

Menüzeilentext ‚257

Minus-Identifikator un. D2

Mischwertcccccscsssscscssssccecessvcnsacess 235

Modulo-Berechnungcccccenes 201, 205

Müll-Sammlung.essrrerenonnnnnenennnnenenen 345

Multiplikationsbefehl 203

Multitaskingeerereesseenennnnneensnnnnennennn 449

Multitasking-System-eeesceeeeeneeeeennne 38

Muster-Definitionencccccccccsssssenns 228

Muster-Rückgabec:ssscceessessees 230

MIXXXXcssccsssssscsssecssececeseuuscescseesvsneees 424

N+ cccccccssecsesecccesecsesssssseccsscesesseees 425, 427

N- ...cccccccsceveccsssececreccessevesessceseennees 425, 427

Nachkommabereich vee 356

Nachkommastellen 207, 356

Nächstgrößere Ganzzahl ermitteln ... 209

Nächstgrößeres ASCll-Zeichen |

ermitteln Kennsensnsssnsnenassnne 199

——— Stichwortverzeichnis 505

Nächstkleinere Ganzzahl ermitteln ... 208 Parallelprozeß 340

Nachstkleineres ASCII-Zeichen Pen 249

ermitteln 196 Pen-Status 251

Name 428 Pfad 94, 447

Namensspezifikation 170 Pfadnamen 365

Negation | 201 Pfadstruktur Ä 100

Neigungswinkel 212 Pixel pro Sekunde 272

NEUE NAMEN 23 Plane-Bits 264

NEUE NAMEN (New Names) 23 Plotter-(Turtle-)Attribute liefern 250

NEWCLI 24 Plotter-(Turtle-) Grafik 248

Nibble 284 Plotter-Simulation 248

NOT , 42, 201 Pointer-Variablen 185, 316

Numerisch = > Binar 279 Pointer /Feld-SWAP 360

Numerisch = > Hexadezimal 285 Polygon zeichnen 244, 253

Numerisch = > Oktal 287 Polygon-Ecken 253

Numerisch = > String 287 Pop-Up-Menu 256, 259

Positionsliste 195

Objekt beschleunigen 272 Postfix 171

Objekt entfernenz222sr22onnennernneenn 269 Preferences wee .. 336

Objekt sichtbar machen . 269 Priorität 23, 65, 274

Objekt unsichtbar machen 270 Procedure-Bestimmunge. 404

Objekt-Animation 268 Procedures seeesseees 422

Objekt-Aussehen definieren 269 Programm (nach STOP-Befehl)

Objekt-Bewegung anhalten 271 fortsetzen kenssserensnorsersnannenn 331

Objekt-Bewegung starten 271 Programm beenden. 331f

Objekt-Geschwindigkeit festlegen ... 272f

Objekt-Kollision Auswahl treffen 275

Objekt-Reihenfolge einstellen 274

Objekt-Wirkungsbereich festlegen ... 270

Oktal-String 287

Oktalsystem 281

Opcodes 36

OR 41, 201

OR-Kette 153

OR-Modus 218

Ordner erzeugen 101

Ordner löschen 103

Ordner wechseln 96
Original-Diskettecccsesssessssseees 408

Output 109

P-Grafikumrandung an/aus 225

P< 422, 426

P> 422, 426

Parallelfeld ... 302

Programm in Arbeitsspeicher laden . 100

Programm listen /speichern (ASCIl) 99

Programm nach Error-Routine

fortsetzen serene 343

Programm speichern (codiert) 103

Programm speichern (listgeschützt) . 102

Programm starten 333

Programm unterbrechen- 333

Programm-Listing une 331

Programm-Listing ausdrucken 134

Programmende

(Interpreter verlassen) ven OO4

Programmende

(Rückkehr zu CLI od. Workbench) 332

Programmspeicher löschen. 335

Prozedur-Titelccccsssssssecsreerecceees 183

Prozeduraufruf . 58

PrOZESSOr ne 30

Pseudo-Sprite ... 372

Pull-Down-Menü 257

506 Das große GFA-BASIC-Buch ————

Pull-Down-Menü erstellen 390 SAVE .23
Punkt zeichnen 252 SAVE ICON sevesaee 24

Punkte zeichnen und verbinden. 246 Schleife eee 58

Punkte-Speicher . 248 Schleifenwendepunkter...222222.» 61

Punktekette 246 Schnittstellen 110

Punktfarbe 241 Schrittweite u... 146

PUT-Box 242 Screen in den Hintergrund 387

PUT-Fläche 238 Screen in den Vordergrund 386

Screen öffnenccsssssessseecesseresessees 383

Quadratwurzel 209 Screen schließen 386

Quit 418 Screen verschieben 387

Screen-Daten holen 388

R-Datei 115 Screen-Farben wählen 388

Radiant 211 Screen-Titel setzen 387

RAM 38 Select .. 421

Random setesesaaeesesseneeses 109 Shell ; un 24, 413

Random-Access-Datei 106, 115, 194 Single-Interrupt-Routine freigeben. ... 349

Rasterindex u... 241 Single-Interrupt-Routine sperren. 349

Rechteck zeichnen 238 Single-Interrupt-Routinenaufruf 347

Rechtsbündigen Teil-String Sinus-Funktion 213

ermitteln a 197 Sondertasten .. ae. 16
Rechtwinkliges Dreieck 225 Sonderzeichenzusseresonnnnnenennonnnnnnnn 80

Referenzliste seeeesssneeesesanees 353 Sortier-Algorithmenccccsssscccesesees 304

Registerverwaltungcssccssccsseeees 426 Sortierfeld oo 301

Rekursion ; .. 184 SOrtierUNGg .nzneeneresennnnennenennennnnnnenennen ... 301

Request-BoxX ...esserersnnnnnenennnnanenennnnnn 364 Sortiervorgabeueeernennnnnennnennnnnnennnne 303

ROM ves 38 Space . , leseeenesssnes 2OO

Rubberbox::.:sccrsssserceesessereseeesens 370 Space-Zeichen eliminieren 200

Rücksprunganweisung essen 177 Spaltenposition aeeeessaneeueeesas 344

Rückgabevariablencccsssesesees 316 Speicherbereich auf Disk speichern ... 95

Rücksprungadressecccesssseeees 187 Speicherblock kopieren:006 306

RUN sessesaeenes 23 Speicherblock-Transfersce0ee0e 306
RUN-Only-Interpreter 24 Speicherinhalt ändern 309

Rundung von Ziffern-Ausgaben 356 Speicherinhalt auslesen- 309

Rundungsfunktionusserrresnnnn een 208 Speichermanipulationen.- 310

Speicherplatz-Ermittlung 346

SW eennnnesenssnnnsenunnansnenennnnsnenennnnennen 421, 426 Sprite setzen und löschen 265

S& .. 421, 426 Sprite-Datenccssscsssessseeesseeessees 266

S< 421, 426 Sprite-Form .. 266

S> vccssccssesssecsssessrscsecesesessersneesseens 421, 426 Sprungziel 180

Satz des Pythagorasccccsesesseeess 50 Stackcccssccsssssrscesececsssesserecsseeesseeses 186

Satz-Pointer fur GET#/PUT# setzen 112 Standard-Pfad , . 448
Satz-Zeiger sevaaueesetessaneeanes 112 Startup-Sequencec:cccssssesseeeeees 336

Satzlange wee 117 Stellenwertigkeiten ... 281

Satznummer pesesecceansens 107 Steuerbus sesssscacesaneces 31

—— Stichwortverzeichnis 507

Strahlrücklauf 268 Token-Code 100

String => Format-Zahl 285 Ton erzeugen 140

String => Numerisch 288 TOS-Cursor-Zeile 344
String-/Feld-Descriptoradresse Total-Absturz 342
ermitteln 316 Trace-Modus ausschalten 354

String-Eingabe m. Vorgabe 76 Trace-Modus in Prozedur lenken. 355

String-Feld in Datei ablegen 114 Trennfunktion 197

String-Länge ermitteln 196 Trennzeichen 197

String-Liste 214 Turtle-Kommandos 248

String-Variablen 172 Turtle-Position 249

Strukturfehler 419 Turtle-Status 251

Subdirectories 365

Subtraktionsbefehl { SU} 203 U 425

Suchpfad 92, 98 Ur 425

Swap-Feld löschen 260 U- en. 425

Switch/ Case ...ccccccccssesensrees 163 Ubergabevariablen sesceeeceeseeeeneneesaaeans 316
System-Fehler 342 Überlappungen oo... 377

System-Gadgets 378 Überlaufprüfung ...c.cccccescseessseeeen 427
System-Speicher-Reservierung 312 Uhrzeit 338

System-Uhrzeit ermitteln. 339 Umkreisradius ... 212

Systemdatumzssssnneseneneenenneenenennnn 336 Umlauteccesssecccesscreccesssscesessenees 200

Umwandlung in Grad ... 211

Tabulator setzenusesreeeesonnnennenennennn 91 Umwandlung in Radiant

Tangens-Funktion 213 (Bogenmaß)ccs 213

TASKPRI O a 23 Unbedingter Sprung zu einem Label 180

TASKPRI 1 23 Unter-Bedingungsabfrage 150

Tastatur-Überwachung een 404 Unter-Verzeichnis 365
Tastaturspeicher 77 _ ÜUnterordneresssseeesenenennnnnnnnnnnnnenenen 93

Tausendertrennung 86 Unterroutinen 426

Teil-String zuweisen 193 Unwahr-Konstante 357

Teil-String-Position .. 197 Unwahrheitswert . 157

Teildatei lesen 104 Update kersnnnonsssssnnnensenenn 109

Teildatei schreibencccesseeeeees 104 Uppercaseunessssssnneensnnnensnnnnsnnnnnnnnn 200

Test .nenssssessssnsnnsssnnnnonsennnnnnnnnenensnennnen 418 Utilitiesuneen 299

Tetrade 284 |

Text im Grafikmodus ausgeben 245 Variable auf Adresse setzen. 305

Text sprechen ... 142 Variablen-Adresse ermitteln {V:} 317

Textbereich für V3.0- Compiler Variablen-Pointer............... 315

deklarieren 355 Variablen/Felder/Pointer tauschen .. 360

Textfeldindex00u020020000000nennnen nn 259 Variableninhalte/Namen ausgeben .. 352

Textverarbeitung 111 Variablentyp ermitteln202.2..... 346

Textzeichen = > ASCll-Wert0. 279 Variablenzeigercsccccssccesseresesees 54

Ticks 7 347, 350 Variationen, Anzahl berechnen 478

Titelzeile . 365 VBL-Synchronisationccsseee 268

TMX eensseennnnnnnersonnnnonenennnsnnnnnsnnnnssnnnnenn 445 Vektor .ueresesesneesnonnennennenene u. 55

508 Das große GFA-BASIC-Buch ————

Verschachteln 48 Zeichen(kette) in einem String

Vergleichsoperatoren 63 suchen 194, 198

Verknüpfungsfunktion 215 Zeichen(kette) linksbündig

Verknüpfungsmodi 40 einsetzen 193

Vertikal-Blank 268 Zeichen(kette) rechtsbündig

Vertikale Synchronisation. 268 einsetzen 194

Verzweigung bei Fehler 342 Zeichenketteneingabe 81

Verzweigung zu einer PROCEDURE 178 Zeichenkettenvariable(n)

Verzweigung zur Ereignisfest- deklarieren 173

stellung we 403 Zeichenrichtung 254

Verzweigungskriterien 165 Zeichenstifte festlegen 382

Virtuelle Datei 110 Zeilentrennzeichen 82

Virtueller Druckkopf 134 Zeilenvorschub 75

Vorkomma-Anteil 204 Zeit-Zähler 339

Vorzeichen ermitteln 209 Zufallswert 224

Vorzeichenlos .. 206, 218 Zufallszahlengenerator initialisieren . 223

Vorzeichenloses LO-Byte Zugriffsmodus 110

eines Wertes liefern 217 Zwei Matritzen multiplizieren 469

Vorzeichenloses LO-Word Zweierkomplement . 52

eines Wertes liefern un 218

Wagenrücklauf 75

Wahr-Konstante 358

Wahrheitswert 52, 64, 156

Warten auf eine Nachricht 403

Wert auf 32 Bit erweitern 222

Wertepaare 197

Wertetabelle 55

Window-Daten holen 383

Wurzel-Funktion 209

X . 426

K MAMEcssssssssssscccsessssessserrseceesesssesees 426

X-Position bestimmen 271

X-Position ermitteln 275

XOR 41, 201

XOR-Modus 73, 222

Y-Position bestimmen 271

Y-Position ermitteln 276

Zahl auf "gerade" testen ... 206

Zahl auf "ungerade" testen 208

Zählschleife 146

Zeichen löschen .. 80

Jede Menge
Programme und
Utilities.

Fast 800 Seiten über AmigaBASIC - von Fans (das
bekannte Duo Rügheimer/Spanik) für Fans. Im
ersten Teil werden Sie Schritt für Schritt - und das

vor allemaufverständ-
liche Weise - in die

RÜGHEIMER Programmierung des

SPANIK 6. Amiga eingeführt, im
Auflage . T . fi d Si

Diskette zweiten leıl finden oie
im Buch alle gelernten Befehle

mit Syntax und Para-
meterangaben zum

schnellen Nachschla-
gen. Dazu gibt es
Programme und Utili-
ties in Hülle und Fülle:
ein Videotitel-Pro-
gramm (OBJECT-Ani-
mation), ein Balken-
und Tortengrafik-Pro-
gramm, ein Malpro-
gramm (mit Windows,
Pulldowns, Mausbe-

fehlen, Füllmustern und dem Einlesen sowie Ab-
speichern von IFF-Bildern), ein Statistikdaten-Pro-
gramm, ein Sprach-Utility, ein Synthesizer-Pro-
gramm u.v.a.m. |

Rügheimer /Spanik
AmigaBASIC
Hardcover, 777 Seiten
inkl. Diskette, DM 59,-
ISBN: 3-89011-209-X

Kleine Helfer, die
sich sehen lassen

können.

Utilities sind immer eine feine Sache - je nach
Programm können sie die Arbeit am Rechner
erheblich erleichtern, oder auch schon ‘mal den

einen oder anderen
Fehler wieder gutma-
chen. Einziger Haken:
„Dank” der meist un-
zureichenden Be-
schreibung ist man off
nicht in der Lage, den
gesamten Leistungs-
umfang des jeweiligen
kleinen Helfers zu
überblicken. Daher
dieses Buch: Die be-
sten Amiga Utilities.
Und tatsächlich bietet
Ihnen dieser Bandeine
detaillierte Beschrei-
bung der beliebtesten
und stärksten Hilfspro-
gramme - von der
Installation über die

Bedienung bis hin zu nützlichen Tips. Hier die
Utility-Hitliste: Diskmaster, Butcher V2, Discovery,
der Editor CygnusEd Professional, Quarterback.
Aztec C-Compiler, Power Windows, Create-A-
Shape, Zenon und Zing!Keys. Eben alles, was in
der Amiga-Utility-Szene Rang und Namen hat,
wird in diesem Band besprochen. Umfassend,
detailliert und mit vielen praktischen Anwendungs-
hinweisen. Die besten Amiga-Utilities -— das
„Handbuch” zu Ihren Hilfsprogrammen.

Polk
Die besten Amiga Utilities
403 Seiten, DM 39,-
ISBN 3-89011-108-4

beim Druck alles
stimmt.

Ärgern Sie sich nicht über fehlende Umlaute oder
Papierstaus beim Ausdruck Ihrer Dokumente.
Schlagen Sie einfach i im grofen Amiga-Drucker-

Buch nach. Hier fin-
den Sie die Lösungen
zu allen möglichen
Problemen, die bei der

- Arbeit mitlhrem Druk-
ker entstehen können.
Beginnend mit der
einfachen Installation
des Druckers be-
schreibt dieser Band
umfassend und leicht-
verständlich alles
Wichtige zu Ihrem
Drucker: Aufbau und
Schnittstellen, die un-
terschiedlichen Trakto-
ren, Druckersteue-
rung, Softwareanpas-
sung, Ändern beste-
hender Workbench-

Druckertreiber, alles über den Grafikdruck, Feh-
lererkennung und Beseitigung... Dazu zahlreiche
Tips und Hilfestellungen. Eine beiliegende Disket-
te bietet darüber hinaus noch eine Reihe nützlicher
Utility-Programme für eine komfortable Drucker-
steuerung.

Ockenfelds/Sanio
Das große Amiga-Drucker-Buch
Hardcover, inklusive Diskette
314 Seiten, DM 59,-
ISBN 3-89011-362-1

Endlich Schluß

mit den
Computerviren.

Schlimm genug, aber am leidigen Thema Compu-
ter-Viren kommt keiner vorbei. Speziell auf Ami-
ga-Rechnern treten immer häufiger die sogenann-

| ten Boot-Block-Viren
auf. Sorgen Sie schon
im voraus für den
nétigen Schutz: Im
grolsen Amiga-Viren-
Schutzpaket inden Sie
Programme, die diese
Viren sofort erkennen
und entfernen. Sei es
auf der Festplatte oder
auf der Diskette. Auch
zukünftige Störenfrie-
de, beispielsweise
Link-Viren, werden
dabei schon berück-
sichtigt, denn jede
Veränderung an Pro-
grammen und Daten
wird sofort gemeldet.

Selbst wenn ein Virus bereits den Boot-Block eines
Ihrer Programme zerstört hat, läßt sich dieser ohne
weiteres mit einem der mitgelieferten Hilfspro-
ramme wiederherstellen. Das Buch selbst bietet

Ihnen detaillierte Anleitungen zu den einzelnen
Anti-Viren-Programmen und natürlich auch das
entsprechende Hintergrundwissen zu Verbreitung,
Funktionsweise und Aufbau der verschiedenen
Virenprogramme.

Bleek /Jennrich
Das große Amiga-Viren-Schutzpaket
172 Seiten, inkl. Disk., DM 69,- (unverb. Empf.)
ISBN 3-89011-802-X

Das große
GFA-BASIC-Buch

Seiteiniger ZeitistGFA-BASIC fürden Amigaerhältlich.
Endlich ist auch der Compiler da. Zudem umfangreichen
BASIC gehört auch ein umfangreiches Buch, in dem
jeder Befehl detailliert behandelt wird. Dieses Buch

liefert keine nackte Befehlsübersicht, sondern
Informationen, Hinweise und Tips in Hülle und Fülle.

Anhand zahlreicher Beispielprogramme lernen Sie das

leistungsfähige GFA-BASIC spielendkennen. Umdem
Inhalt des Buches abzurunden, ist dem neuen GFA-
BASIC-Compiler ein eigenes, ausführliches Kapitel

gewidmet.

Aus dem Inhalt:

¢ Das Editor-Menü
° Variablen- und Speicherorganisation
¢ Strukturierte Programmierung
¢ Maus- und Menüabfrage im eigenen Programm
¢ Intuition-Programmierung

« Abfrage von Ereignissen

« Programmierung von Menüs mit Unterpunkten

¢ Nutzung der ROM-residenten Libraries
° und vieles mehr ...

Durch viele anschauliche Beispielprogramme lernen
Sie schnell den Umgang mit GFA-BASIC und dem
neuen GFA-BASIC-Compiler, der Ihre Programme erst
richtig schnell macht.

ISB N 3-89011-399-0 DM +049.00

DM 49,-
OS 382- — Dar
sFr 47-

DATA
BECKER 9' 00

 3890"113999

