
Markt&Technik

Frank Kremser
Jörg Koch

AIR
MN
Mh

I MN

IM

/ iM] i

I Mi

HH} IM
u

if

i) \
MN

Tür Amig 00
Eine detail ae 7 bung: MC68000

* Custom-Chi tstellen x Floppy
* Hardware-ER

* Genlo
jererößerter Speicher

nner x Zahlreiche
d Assembler

Auf 3 %”-Diskette enthalten:
Alle Programme als Source-Code

und in lauffähiger Version.

Frank Kremser
Jörg Koch

AUNENGEAN
SYSTE M-
HANDBUCH

Für Amiga 500, 1000 und 2000
Eine detaillierte Hardware-Beschreibung:
MC68000 * Custom-Chips * Slots

* Schnittstellen * Floppy * Hardware-
Erweiterungen wie vergrößerter Speicher

* Genlock-Interface * Scanner
* Zahlreiche Beispiele in C und Assembler

Markt&Technik Verlag AG

CIP-Titelaufnahme der Deutschen Bibliothek

Kremser, Frank:

Amiga-System-Handbuch : für Amiga 500, 1000 u. 2000 ;

e. detaillierte Hardware-Beschreibung: MC 68000, Custom-Chips, Slots, Schnittstellen, Floppy,

Hardware-Erweiterungen wie vergrößerter Speicher, Genlock-Interface, Scanner,

zahlr. Beispiele in C u. Assembler / Frank Kremser ; Jörg Koch. -

Haar bei München : Markt-u.-Technik-Verl., 1988

ISBN 3-89090-550-1
NE: Koch, Jörg

Die Informationen in diesem Produkt werden ohne Rücksicht auf einen eventuellen Patentschutz veröffentlicht.

Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.

Bei der Zusammenstellung von Texten und Abbildungen wurde mit größter Sorgfalt vorgegangen.

Trotzdem können Fehler nicht vollständig ausgeschlossen werden.
Verlag, Herausgeber und Autoren können für fehlerhafte Angaben und deren Folgen weder eine juristische

Verantwortung noch irgendeine Haftung übernehmen.

Für Verbesserungsvorschläge und Hinweise auf Fehler sind Verlag und Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien.

Die gewerbliche Nutzung der in diesem Produkt gezeigten Modelle und Arbeiten ist nicht zulässig.

Amiga ist eine Produktbezeichnung der Commodore-Amiga Inc., USA

Amiga-BASIC ist ein eingetragenes Warenzeichen der Microsoft Inc., USA

DevPac ist ein eingetragenes Warenzeichen der HiSoft Corp., UK

Lattice C ist ein eingetragenes Warenzeichen der Lattice Corp., USA

Aztec C ist ein eingetragenes Warenzeichen der Manx Software Inc., USA

154 123 2 1 109 8 765 4

91 90

ISBN 3-89090-550-1

© 1988 by Markt&Technik Verlag Aktiengesellschaft,

Hans-Pinsel-Straße 2, D-8013 Haar bei München/Germany
Alle Rechte vorbehalten

Einbandgestaltung: Grafikdesign Heinz Rauner
Druck: Schoder Druck GmbH & Co. KG, Gersthofen

Printed in Germany

Inhaltsverzeichnis 5

Inhaltsverzeichnis

Vorwort 11

Einführung 13

1 Die Amiga-Serie 32

1.1 Der Amiga 1000 35

1.2 Der Amiga 500 37

1.3 Der Amiga A2000 und B2000 41

2 Der Bootvorgang 45°

2.1 Funktion des Boot-ROMs 45

2.2 Initialisierung des Systems 46

2.2.1 Die Abfangvektoren 48

3 Der MC68000 53

3.1 Der MC68000 im Detail 53

3.2 Die Exceptions 57

4 Die Custom-Chips 59

4.1 Agnus und FatAgnus 59

4.1.1 Die Pinbeschreibung zu Agnus 64

4.1.2 Die Pinbeschreibung zu FatAgnus 65

4.1.3 Der Copper 67

4.1.4 Der Blitter 81

4.1.5 DMA-Kontroll-Logik 90

4.2 Denise 91

6 Inhaltsverzeichnis

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.4

4.5

5

5.1

5.11

5.1.2

5.2

5.2.1

5.2.2

5.3

5.3.1

5.3.2

5.3.3

5.4

5.4.1

5.4.2

5.4.3

5.4.4

5.5

5.5.1

5.5.2

5.6

5.61

5.6.2

Die Pinbeschreibung zu Denise
Die Sprite-Hardware

Die Playfield-Hardware

Die Video-Prioritatsregister

Das Video-Interface

Paula

Die Pinbeschreibung zu Paula

Die Audio-Hardware

Die Interrupt-Kontroll-Logik

Der Game-Port

Gary

Buster

Die Amiga-Slots |

Der 86-Pin-Slot
Die 86-Pin-Slot-Belegung

Die Signale des 86-Pin-Slots

Der 100-Pin-Slot

_ Die 100-Pin-Slot-Belegung

Die Signale des 100-Pin-Slots

Timing-Abläufe

Der Standard-Lesevorgang

Der Standard-Schreibvorgang

Die Takte des Amiga

DieVideo-Slots des Amiga A/B2000

Die Pinbelegung des Standard-Video-Slots

Die Signale des Standard-Video-Slots

Die Pinbelegung des erweiterten Video-Slots

Die Signale des erweiterten Video-Slots

Der PC-Slot

Die Pinbelegung des PC-Slots

Die Signale des PC-Slots

Der AT-Slot |

Die Pinbelegung des AT-Slots

Die Signale des AT-Slots

Die Autokonfiguration

Das Hardware-Beispiel

Die CIA-Hardware

Die 8520-Bausteine

92

94

118

142

142

144

145

146

172

175

180

183

185

185

187

190

194

194

198

202

202

203

204

205

206

207

209

210

212

213

215

217

218

219

221

224

226

230

Inhaltsverzeichnis 7

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.10.1

8.10.2

8.10.3

8.10.4

8.10.5

8.10.6

8.10.7

8.10.8

8.10.9

8.11

8.11.1

8.11.2

91
9.2
921

10

10.1

10.2

10.3

10.4

10.5

10.6

11

11.1

11.2

Die Amiga-Floppy

Der Aufbau des Amiga-Laufwerks

Der Diskettenantrieb

Die Positionierung des Schreib-/Lesekopfes

Der Schreib-/Lesekopf der Floppy

Der Schreibvorgang

Der Lesevorgang

Die 3.5-Zoll-Diskette

Die physikalische Aufzeichnung

Die Standard-Floppy-Schnittstelle

Paula, der Floppy-Controller

GCR oder MFM?

Das MFM-Aufzeichnungs- und Codierungsverfahren

Das GCR-Aufzeichnungs- und Codierungsverfahren

Das Amiga-Disk-Kontroll-Register ADKCON

Das Disk-Sync-Register

Die Disk-Pointer-Register DSKPTH und DSKPTL

Das DSKLEN-Register

Das Disk-Byte-Read-Register DSKBYTR

Die Disk-Daten-Register DSKDAT und DSKDATR

CIA 8520, die Diskettensteuerung

Das Drive-Select-Register

Das Drive-Status-Register

Die Schnittstellen

Die parallele Schnittstelle

Die serielle Schnittstelle

Paula, der VARTdes Amiga

Die Tastatur

Der Tastaturprozessor

Der Watch-Dog-Timer

Die Initialisierung der Tastatur

Die Kommunikation zwischen Tastatur und Rechner

Die Tastaturverbindung zum Amiga

Der Tastencode-Empfänger im Amiga

Die Maus

Aufbau und Funktionweise der Maus

Empfang der Mausdaten

233

233

233

236

239

241

243

244

245

247

249

249

249

251

252

253

253
254

254

255

255

255

— 256

269

269
273
277

279

280

282

285

286

290

291

292

294

294

8 Inhaltsverzeichnis

12

121

12.1.1

12.2

12.2.1

12.3

12.3.1

12.4

13

13.1

13.2

13.3

13.3.1

13.3.2

13.3.3

13.3.4

14

14.1

14.1.1

15

15.1

15.2

16

16.1

16.2

16.3

16.4

16.5

17

171

17.2

17.3

17.4

MS-DOS-Erweiterungen

Das SideCar

Das SideCar am Amiga 500

Die PC/XT-Karte

Die Speicher- und I/O-Belegung der PC/XT-Karte

Die AT-Karte

Die Speicher- und I/O-Belegung der AT-Karte

Die PC/AT-I/O-Register

RAM-Erweiterungen

Statisch oder dynamisch?

Statische RAMs am Amiga

Dynamische RAMs am Amiga

Mehr DRAM per Kontroll-Chip

Die 256-Kbyte-RAM-Erweiterung des A 1000

1-Meg-Amiga 1000 -

Die 512-Kbyte-RAM-Erweiterung des Amiga 500

Die Monitore des Amiga

Verbesserungsmöglichkeiten des A1081/A 1084

Ein Grün-Monitor sieht Blau

PAL für den Amiga

Amiga 1000: Aus NTSC wird PAL

PAL-Modulator für den Amiga

Bastelanregungen

Der Amiga-Sound-Digitizer

Der Amiga-Scanner

Der Amiga als Schalter

Das low-cost-Genlock-Interface

DieVerwandlung: Aus Genlock wird ein Digitizer

Das Janus-Library

AllocJanusMem

CheckJanusInt

FreeJanusMem

GetJanusStart

296

297

300

301

303

306

306

308

316

316

319

324

325

326

328

331

336

337

337

339

340

343

344

344

345

349

351

354

355

357

357

357

358

Inhaltsverzeichnis 9

17.5

17.6

17.7

17.8

17.9

17.10

17.11

17.12

17.13

17.14

17.15

17.16

18

18.1

18.2

18.3

18.4

18.5

18.6

18.7

18.8

18.9

18.10

18.11

18.12

18.13

18.14

18.15

18.16

18.17

18.18

18.19

18.20

GetParam Offset

JBCopy

JanusLock

JanusMemBase

JanusMem ToOffset

JanusMemType

JanusUnLock

SendJanusInt

SetJanusEnable

SetJanusHandler

SetJanusRequest

SetParam Offset

Das Expansion-Library

AddDosNode

MakeDosNode

AddConfigDev

AllocBoardMem

AllocConfigDev

AllocExpansionMem

ConfigBoard

ConfigChain

FindConfigDev

FreeBoardMem

FreeConfigDev

FreeExpansionMem

GetCurrentBinding

ObtainConfigBinding

ReadExpansionByte

ReadExpansionRom

ReleaseConfigBinding

RemConfigDev

SetCurrentBinding

WriteExpansionByte

358

358

358

359

359

359

360

360

360

361

\ 361

362

364

364

364

365

365

366

306

366

367

367

368

368

369

369

369

370

370

370

270

371

10 Inhaltsverzeichnis

Anhang A Kartengrößen

B Speicherbelegung

C Die Hardwareregister

D Registeradressen der Portbausteine

E Einsprungadressen der Bibliotheksfunktionen

5 Der Befehissatz des MC68000

Die Jumper des Amiga B2000

Literaturnachweis =z

a
|
 Die beigefügte Diskette

J Schaltplan für die Erweiterungskarte aus Kapitel 6.1

Stichwortverzeichnis

372

376

377

393

395

406

409

409

410
414

418

Vorwort 11

Vorwort

| |

Technologischer Fortschritt und technische Innovation haben im Computerbereich kei-

nen Halt gemacht. Der Amiga bietet derzeit das Neueste vom Neuen. [Er ersetzt die

8-Bit-Spielkameraden im Kinderzimmer, bringt dem Vater Leistungsfähigkeit beim

Arbeiten mit CAD, Hausverwaltung oder Entspannung mit einem kleinen Spiel].

Um ein so komplexes System zu beherrschen, dem Anwender Spaß bei der Arbeit oder

vielen Jugendlichen Freude beim Spielen zu bereiten, muß der Profi, Freak oder Hob-

byprogrammierer näher in die Tiefen des Amiga-Systems einsteigen, denn nur auf die-

ser Ebene wird er die Lösungen finden, die seine Software leistungsfähig machen. Dies

wird als maschinennahes Programmieren bezeichnet und soll ein Bestandteil unseres

Hardware-Buches sein.

Maschinennah programmieren bedeutet nicht gleich den verstaubten Assembler aus

der Diskettenbox zu holen, denn maschinennahe Programmierung läßt sich auch in C

verwirklichen. Zwar wird damit nicht die maximale Geschwindigkeit des Systems

erreicht, es lassen sich jedoch Programme einfacher entwickeln und in andere

Programme einbinden. An die Assembler-Freaks haben wir auch gedacht und Demos

in Maschinensprache dem Buch beigefügt. Alle Programme befinden sich auf Diskette,

so daß ein aufwendiges Abtippen der Programme entfällt.

Auch an die Hobbybastler, die keinen Rechner kaufen können, ohne ihn aufzuschrau-

ben und auseinandernehmen zu wollen, haben wir gedacht. Tips und Tricks zu System-

erweiterungen, Funktion des Systems und eine Bauanleitung für ein 20-DM-Genlock-

Interface sind sicher große Leckerbissen für solche Freaks.

Wir haben in diesem Buch versucht, alle Anwender der Amiga-Serie zufriedenzustellen

und gleich das Buch für die gesamte Amiga-Palette geschrieben. Dadurch kam oftmals

Chaos in unserem »Entwicklungslabor« auf, denn bei drei »Freundinnen« mit Zubehör

weiß man oftmals nicht, welche Schraube zu welchem Rechner gehört.

Alle Schaltungen und Programme sind weitgehend erprobt, so daß es keine Schwierig-

keiten beim Nachbau bzw. der Anwendung der Software geben dürfte. Hobbybastler

12 Vorwort

mit nicht allzu großer Erfahrung können sich ruhig an den Nachbau einiger kritischer

Schaltungen, wie interne RAM-Aufrüstungen, wagen. Die Amigas sind sehr robust

und können einiges vertragen. Spätestens jedoch, wenn ihr Amiga bei dem Anzeigen

einer Guru-Meditation abstürzen sollte, raten wir, das jeweilige Kapitel der Bauanlei-

tung nochmals durchzulesen und den Aufbau der Schaltung sorgfältig zu überprüfen.

Zum Schluß möchten wir noch einigen Personen danksagen, denn an der Entwicklung

eines solchen Buches sind meistens nicht nur die Autoren, die zwar den größtenTeil der

Arbeit haben, sondern auch viele andere Personen beteiligt, die Tips und Hilfestellun-

gen zu diesem Projekt geben. Unser Dank gilt insbesondere

— allen Mitarbeitern von Markt & Technik, die zur Verwirklichung dieses Buches

beigetragen haben, vor allem Christine Baumann, die uns die Anregung zu diesem

Buchprojekt und permanente Unterstützung während der Verwirklichung dieses

Projektes gegeben hat.

— den Mitarbeitern des Commodore State Support in Frankfurt, hier besonders dem

Leiter Herrn Härtel und Herrn Kakadures, die sicherlich an unseren umfangreichen

Fragestellungen fast verzweifelt sind.

— Herrn Knobel von der Firma Electronic Medical, der uns bei der Entwicklung des

Genlock-Interfaces mit seinem fachlichen Wissen im Bereich der Fernsehtechnik und

mit Meßgeräten mit Rat und Tat zur Seite stand.

— unseren Eltern, die großes Verständnis gezeigt haben, daß so manche selbstverständ-

liche Arbeit unerledigt blieb, weil wir noch einige Verbesserungen an dem Buch vor-

nehmen wollten.

Marburg/Karlsruhe im Jahre 1988

Einführung 13

| |

In dieser Einfiihrung gehen wir auf die C-Programmierung und auf die Bedienung des

Seka-Assemblers ein, den wir fiir die Entwicklung der Assembler-Programme verwen-

det haben. Natürlich können nicht alle Einzelheiten dargestellt werden, da dies den

Rahmen des Buches sprengen wiirde. Als Einstieg diirften die Informationen allerdings

ausreichend sein.

Die C-Programme, die in diesem Buch aufgeführt sind, sind mit dem Lattice-Compiler

Version 3.10 erstellt worden. Aber mit den unten aufgeführten Batch-Files dürften sie

auch auf den anderen Versionen, bzw. dem Aztec-Compiler fehlerfrei laufen.

Zur Vereinfachung des Kompiliervorganges bei C-Programmen haben wir ein Batch-

File geschrieben, das alle Kompilier- und Linkphasen selbständig durchführt. Dieses

Batch-File haben wir für eine Harddisk geschrieben, aber es ist ohne Änderungen auch

für die Arbeit mit zwei Laufwerken geeignet.

/

Für die Lattice-Version 3.02 oder 3.03:

stack 20000

ifnot exists <prg>.c

echo "File ist nicht vorhanden"

skip end

endif

echo "--kompilieren --"

lcl-i:include/ -i:include/lattice/ <prg .c

ifnotexists <pre .q

echo "Compiler-Fehler"

quit 20

endif

lc2 <pre>

alink: lib/lstartup.obj+<pre@ .olibrary : lib/lc.libt

:lib/amiga.libto <prg> mapnil:

delete <pre> .o

echo "--Kompilier-undLinkvorgangist zu Ende --"

lab end

14 Einführung

Für die Lattice-Version 3.10:

stack 20000

ifnot exists <prg@.c

echo "Fileist nicht vorhanden"

skip end

endif

echo '-- kompilieren --"

LC1-f-i:include/ -i:include/lattice/ <prg .c

ifnot exists <prg .q

echo 'Compiler-Fehler"

quit 20

endif

LC2 -cdb <pre>

BLINK FROM LIB:c.o+<prg>.oTO <prg> LIBLIB:lc.libt+lcmffp.libt

LIB: amiga.1lib+LIB:lcm.lib

delete <prg>.o

echo ''-- Kompilier- und Linkvorgang ist zu Ende --"

lab end

Fur die Lattice-Version 4.00:

stack 20000

ifnot exists <prg .c

echo "File ist nicht vorhanden"

skip end

endif

echo '-- Kompilieren --"

LC1-f-i:include/ -i:include/lattice/ <prg>.c

ifnot exists «pr» .q

echo 'Compiler-Fehler'

quit 20

endif

LC2 <pre>

BLINK FROM LIB: c.o0+<prg>.oTO <prg> LIBLIB:1lc.libt+lcmffp.libt

LIB: amiga.lib+LIB:lcm.lib
delete <prg .o

echo "--Kompilier- und Linkvorgang ist zu Ende --"

lab end

Anmerkung: Leider funktionierte bei uns nicht die Compiler-Option »-cdb« — Pro-

grammdaten nur im Chip-Mem - in Verbindung mit LC2.V4.00. Abhilfe

schafft ein Trick von Peter Wollschlaeger, den Sie im »Liesmich«-File sei-

nes Buches »Amiga Programmierpraxis Intuition« finden:

Variablen wie IntuitionBase sind systemglobal. Deklariert man Sie als extern, kann

man z.B. den Data-Hunk ins Chip-Memory bringen mit:

lc -L-adnone

Den auftretenden Fehler »b ignored« können Sie ignorieren.

Einführung 15

Für den Aztec-Compiler:

cco -t<pre>.ctl

In <pre> .o -1m32 -1c32

echo "-- Kompilier- und Linkvorgang ist zu Ende --"

Dieses File muß mit dem Editor »ed« eingegeben und gespeichert werden. Dazu gehen

Sie von der Workbench aus in das CLI. Dort erscheint »1>«. Nun kommen Sie mit »ed

comp« in den Editor und können das Batch-File, das für Ihre Compiler-Version angege-
ben ist, eingeben. Wenn Sie fertig sind, können Sie es abspeichern, indem Sie »ESC«

und anschließend »x« drücken. Das Batch-File steht nun unter dem Namen »comp« auf

Ihrer Diskette, bzw. Harddisk. Wenn Sie später ein selbstgeschriebenes C-Programm

compilieren wollen, starten Sie es mit dem CLI-Befehl »EXECUTE comp« und dem

Programmnamen des C-Programms ohne das ».c«-Kürzel.

Beispiel: Ihr C-Programm steht unter dem Namen >test.c< auf der Harddisk, bzw. Dis-

kette. Kompilieren Sie es nun, indem Sie >execute comp test<eingeben. Nach

Beendigung des Kompiliervorgangs steht das ausführbare Programm unter

dem Namen >test< auf der Harddisk, bzw. Diskette.

/

Nun, was bewirkt dieses Batch-File fiir den Lattice. Zu Beginn wird der Programm-

name der Variablen »prg« übergeben und anschließend der Stack auf eine Größe von

20 000 Byte gesetzt, was nötig ist, da der Compiler eine Vielzahl von Daten zwischen-

speichern muß. Anschließend überprüft es, ob das gewünschte Programm zum Kompi-

lieren überhaupt existiert. Ist das Programm nicht vorhanden, steigt das Batch-File aus

und druckt die Fehlermeldung »File ist nicht vorhanden«. Ist kein Fehler aufgetreten,

so beginnen nun die Kompiliervorgänge »lc1« und »Ic2«. »lc1« überprüft hauptsächlich

die Syntax des Hauptprogramms und der eingeladenen Include-Files. »lc2« generiert

anschließend den Programmcode. Tritt beim Kompiliervorgang »lc1« ein Fehler auf, so.

wird auch hier der Ablauf des Batch-Files gestoppt und eine Fehlermeldung »Compiler-

Fehler« ausgegeben. Verliefen jedoch die Kompiliervorgänge ohne Fehler ab, beginnt

das Programm mit dem Zusammenfügen, sprich »Linken«, der Bibliotheksmodule mit

dem Programmcode. Eine Meldung teilt dem Benutzer anschließend mit, daß dieser

Prozeß beendet ist. Danach kann das »kompilierte« und »gelinkte« Programm gestar-

tet werden. Das Programm muß unter dem gewünschten Namen, mit angehängtem
».c« erstellt und abgespeichert worden sein, also beispielsweise »test.c«. Nach dem

Kompilier- und Linkvorgang steht der startbare Programmcode in der Datei »test«.

Dieser Programmcode läßt sich nun einfach durch Eintippen des Dateinamens starten.
Bei den meisten Programmen bietet sich auch noch die Möglichkeit an, eine ».info«-

Datei zu kopieren, beispielsweise »copy cli.info to test.info«. Dann können die Pro-

gramme auch von derWorkbench aus gestartet werden. Eine Ausnahme bilden hier die

Programme, die »printf«, »scanf« oder DOS-Befehle benutzen und mit der Lattice-Ver-

sion 3.02 oder 3.03 kompiliert wurden, da diese Befehle ihre Ein- und Ausgabe über

16 Einführung

CLI abwickeln. Aus diesem Grund besitzen auch nicht alle Demonstrationsprogramme

auf der mitgelieferten Diskette sog. Icons, sind also von derWorkbench aus nicht sicht-

oder startbar. Sie können nur von CLI aus gestartet werden.

Für alle nachfolgenden Erklärungen möchten wir Sie bitten, alle Schritte direkt am

Computer nachzuvollziehen, da es dann leichter für Sie wird. Zu Beginn müssen Sie na-

türlich den Computer starten. Falls Sie es nicht schon zuvor getan haben, müssen Sie

das Preferences-Programm starten und den CLI-Schalter auf »ON« setzen, da nur in

diesem Fall CLI zu verwenden ist. Anschließend können Sie wieder Preference verlas-

sen, am besten mit »Save«, da dann das CLI-Icon auch nach dem Einschalten des Com-

puters erscheint. Nun starten Sie bitte CLI durch einen Doppelklick auf das CLI-Icon.

Kurz darauf erscheint das CLI- Window. Ist es das einzige CLI-Window auf dem Bild-

schirm, so müßte das »1>«-Prompt darin erscheinen. Dahinter ist der Cursor zu erken-

nen. Nun können Sie sämtliche CLI-Befehle verwenden. Als Beispiel dafür tippen Sie

bitte »dir« mit anschließendem »RETURN« ein. Sie sehen nun das Inhaltsverzeichnis

der Hauptdiskette.

Nun wollen wir mit der Einführung in »C« beginnen. »C« ähnelt in vielen Punkten den

Programmiersprachen PASCAL und MODULA, weshalb PASCAL- und/oder MO-

DULA-Programmierer keine Schwierigkeiten haben dürften, auf »C« umzusteigen.

»C« wurde 1972 in den USA entwickelt, 1973/74 verbessert und anfangs vornehmlich

unter dem Betriebssystem UNIX verwendet. Da diese Sprache möglichst flexibel sein

sollte, wurden ihr nur sehr wenige Befehle fest implementiert. Darunter sind:

— if » Bedingte Anweisung

— switch dy” Bedingte Anweisungen

- for, while)» Zähl- und bedingte Schleifen

Es sind noch einige Befehle mehr vorhanden, auf die wir allerdings nicht eingehen wer-

den, da sie nicht von größerer Bedeutung sind. Diese Befehle genügen allerdings, um

alle programmkontrollierenden Funktionen durchführen zu können, zumal sich die

meisten Befehle in Include-Dateien oder in Bibliotheken befinden, die der Sprache
»C« zu ihrer Leistungsfähigkeit und Flexibilität verhelfen.

Ein C-Programm setzt sich normalerweise aus drei Grundteilen zusammen. Im ersten

Teil gibt der Programmierer an, welche Include-Dateien oder Bibliotheken er verwen-

den will und somit beim Kompilieren eingelesen werden müssen. Im anschließenden,

zweiten ‘Teil werden die globalen Variablen deklariert. Auf diese Variablen kann von

jeder Routine des Programms aus zugegriffen werden. Der dritte Teil besteht aus dem

eigentlichen Progamm. Dieser Teil gliedert sich allerdings wieder in zweiTeile auf. Da

ist zum einen der Teil mit den Unterroutinen — In Pascal auch Procedures oder Func-

tions genannt — und zum anderen der sogenannte »main«-lIeil. Dieser Teil stellt die

Hauptroutine des Programms dar, die beim Start des Programms aktiviert wird. Der

Einführung 17

Unterschied zu Pascal besteht darin, daß Unterroutinen und Hauptprogramm keine

festgelegte Reihenfolge haben müssen. Es können in »C« also auch Unterroutinen auf-

gerufen werden, die erst später im Programm folgen.

C-Programme wirken leider teilweise sehr undurchsichtig, was aber durch das Einfü-

gen von Kommentaren und Unterroutinen wettgemacht werden. Solche Kommentare
werden mit »/*« und »*/« geklammert. Aufpassen sollte man auf solche »Kleinigkeiten«

wie Semikolons oder Kommata, da der Compiler oftmals solche Fehler nicht erkennt,

sondern weiterkompiliert, was zum Absturz beim späteren Starten des Programms füh-

ren kann. Mit »C« zu arbeiten heißt also korrekt und sauber arbeiten, sonst kann für

nichts garantiert werden.

Zusätzlich zu den oben genannten Befehlen besitzt »C« noch eine Reihe von Funktio-

nen, von denen »printf« und »scanf« die wichtigsten sind. »printf« dient zur Ausgabe

von Iexten, Zahlen u.a. Mittels »scanf« können Texte und Zahlen eingelesen werden.

Zu der Funktion »printf« wollen wir an dieser Stelle ein erstes Programm erstellen. Es

soll nur den Text »Mein erstes C-Programm« ausgeben. Da Sie sich schon in CLI befin-

den, müssen Sie nur noch den Editor »ed« aktivieren. Zusätzlich muß noch der Name

angegeben werden, den unser Programm haben soll, gefolgt von ».c«:
\

l» edtest.c

Nun befinden Sie sich im Editor. Da wir nur den Befehl »printf« verwenden wollen, der

von »C« bereitgestellt wird, müssen wir keine Include-Dateien einlesen oder Variablen

deklarieren. Also können wir gleich mit dem Programm beginnen. Das Programm

besteht in unserem Fall nur aus der Hauptroutine, die mit »main()« eingeleitet wird.

Anschließend folgen die Anweisungen, die zur Hauptroutine gehören. Sie müssen mit

den zwei geschweiften Klammern »{« und »}« geklammert werden. Zwischen diesen

Klammern steht also das Hauptprogramm. In unserem Fall besteht es nur aus »printf-

(“Mein erstes C-Programm/n“);«. »printf« gibt, wie schon zuvor erwähnt, einen Text

aus. Der Text steht anschließend in Klammern und von Hochkommata eingegrenzt.

Ein Sonderfall ist noch mit eingebaut: »/n« bewirkt einen Zeilenvorschub, was nötig

ist, da »printf« keinen automatischen Zeilenvorschub bewirkt. Neben »/n« gibt es unter

anderem noch »/0«, was den ASCII-Code Null darstellt. Nun sieht unser Programm

also folgendermaßen aus:

main()

{
printf("MeinerstesC-Programm/n");

}

Betätigen Sie nun die »ESCe«-Iaste und anschließend »X« und »RETURN«, um das

Programm unter dem Namen »test.c« zu speichern. Um das Programm nun starten zu

können, muß es zuerst mit dem Compiler in Maschinensprache übersetzt werden. Dies

kann mit dem oben angegebenen Batch-File geschehen:

1> EXECUTE comp test

18 Einführung

Nach einer Weile ist der Kompilier-Vorgang beendet und es erscheint wieder das »1>«-

Prompt. Nun kann das Programm mittels der Eingabe von »test« mit anschließendem
»RETURN« gestartet werden. Das Ergebnis ist zwar nicht aufregend, aber es zeigt

doch die Vorgehensweise beim Erstellen eines C-Programms.

Nun wollen wir einen Schritt weitergehen, wir wollen weitere Funktionen verwenden,

die sich in einer Include-Datei auf der Diskette befinden. Diese Funktionen sind »get-

char« und »putchar«, die sich in der Datei »stdio.h« befinden. Zusätzlich deklarieren

wir zwei Variablen. Die Variable »global« kann in allen Routinen verwendet werden.
»lokal« kann nur in der Hauptroutine verwendet werden. Wäre eine weitere Routine

vorhanden, so könnten in ihr nur die Variable »global«, sowie ihre eigenen lokalen

Variablen verwendet werden.

»getchar« und »putchar« haben im Prinzip die gleiche Funktion wie »scanf« und

»printf«, nur daß sie für einzelne Zeichen ausgelegt sind. Um das Programm erstellen

zu können, müssen Sie als erstes in den Editor mit »ed test2.c«. Das Programm sieht

dann folgendermaßen aus:

+include <stdio.h>

char global;

main()

SZ

char lokal;

lokal = getchar();

global = lokal;

putchar(global) ;

SZ

Auch dieses Programm muß nach dem Speichern kompiliert werden. Dies geschieht

mit »EXECUTE comp test2«.

An dieser Stelle wollen wir auf die möglichen Datentypen eingehen, mit denen Varia-

blen deklariert werden können:

Datentyp Wertebereich Speicherlänge

int -32 768 bis 32 767 2BYTE

long int —2*10 hoch 9 bis 2*10 hoch 9 ABYTE

unsigned int 0 bis 65 535 2BYTE

char 0 bis 255 (ASCII) 1 BYTE

FLOAT +10 hoch -37 bis £10 hoch 38 ABYTE

DOUBLE +10hoch-307 bis + 10 hoch 308 8 BYTE

BYTE —128 bis 255 | 1BYTE

WORD -32 768 bis 32 767 2BYTE

LONG. —2.15*10hoch9 bis2.15*10 hoch 9 4ABYTE

Einführung 19

UBYTE 0 bis 255 1 BYTE

UWORD 0 bis 65 535 2BYTE

ULONG 0 bis 4.3*10 hoch 9 4 BYTE

Nun wollen wir noch ein Programm schreiben, das Unterroutinen verwendet. Solchen

Routinen können Parameter übergeben werden, sie können aber auch Werte zuriick-

geben. Hier das Programm:

*#include <stdio.h>

char eingabe;

routine(wert) /* Routinenkopfmit Parameter */

char wert; /* Datentyp des Parameters */

{
putchar(wert) ;

eingabe = getchar();

return(eingabe) ;

}
main() /* Hauptroutine */

{
eingabe = getchar();

eingabe = routine(eingabe); /* Routine aufrufen */

putchar(eingabe);

} ~~

Nun wissen Sie tiber die Struktur von C-Programmen Bescheid. In den nachfolgenden

Teilen gehen wir näher auf die Programmierung ein.

Datentyp-Umwandlungen

»C« bietet die Möglichkeit, Daten innerhalb des Programms auf einfache Weise in an-

dere Datentypen zu wandeln. Dazu braucht nur vor den zu wandelnden Wert, bzw. vor

die Variable, in runden Klammern der Datentyp gesetzt werden, in den gewandelt wer-

den soll. Wenn beispielsweise eine Integerzahl in einer Integervariablen gespeichert ist,

aber einer FLOAT-Variablen zugewiesen werden soll, so geschieht das folgender-

maßen:

floatvar = (FLOAT) intvar;

Dies gilt auch für Structures, die später erläutert werden. Als Besonderheit gilt an

dieser Stelle, daß in solchen Fällen das Wort »struct« noch davor gesetzt werden muß.

Beispiel: |

struct testl /* erste Structure deklarieren */

FLOAT float;

int int;

};

20 Einführung

struct test2 /* zweite Structure deklarieren */

FLOAT float;

intint;

}
main()

{
struct testlvarl; /* VariablenvomTyptestl */

struct test2var2; /*undtest2 deklarieren */

var2 = (struct test2) varl; /* Zuweisenundumwandeln, */

/* danicht vom gleichen Typ */

}

Zeiger

Ein sehr wichtiges Thema sind die Zeiger. Sie gibt es zwar auch in Pascal und Modula,

doch ist ihre Verwendung in »C« besonders flexibel.

Ein Zeiger, auch Pointer oder Ptr genannt, ist eine Adreßvariable. Die Adresse, die sie

enthält, ist das erste Byte einer Variablen. Man sagt auch, der Zeiger zeigt auf die

Variable. Deklarieren kann man einen Zeiger folgendermaßen:

FLOAT *flt;

Wir haben also einen Zeiger auf eine Float-Variable deklariert. Durch den Stern »*«

wird »flt« zum Zeiger. Es muß aber beachtet werden, daß durch diese Deklaration nur

Speicherplatz für den Zeiger, nicht aber für die Variable bereitgestellt wird.

Zu den Zeigern gehört auch der Adreßoperator »&«. Er ermittelt die Adresse einer

Variablen. Das bedeutet, wenn man einen Zeiger auf eine bestimmte Variable setzen

will, so geht man folgendermaßen vor:

FLOAT *flt; /* Zeiger deklarieren */
FLOAT var; /*Variable deklarieren */

flt =&var; /* Zeiger auf Variable setzen */

Durch den Adreßoperator kann man also die Adresse einer Variablen ermitteln. Umge-

kehrt kann durch den Stern »*« auf den Speicherbereich zugegriffen werden, auf den

*f1t zeigt:

FLOAT *flt; /* Zeiger deklarieren */
FLOAT var; /* Variable deklarieren */

flt =var; / Variablenwert in Bereich kopieren,

auf flt zeigen */

Einführung 21

Bedingungen

In der Sprache »C« sind verschiedene Möglichkeiten vorhanden, zu testen, ob eine Be-

dingung wahr oder falsch ist.

Die erste Möglichkeit ist die Verwendung des »if«-Befehls. Er hat folgende Syntax:

if(BEDINGUNG)

DANN;

else

ANSONSTEN ;

Alle kleingeschriebenen Worte sind in dieser Form anzugeben. Auf den »else«-Zweig

kann verzichtet werden. »DANN« gibt den Befehl, bzw. die Befehle an, die ausgeführt

werden sollen, wenn die Bedingung wahr ist. Wenn nur ein Befehl ausgeführt werden

soll, so wird dieser normal angegeben:

if(x==y)

printf("xistgleichy");

Sollen mehrere Befehle ausgeführt werden, so müssen diese geklammert werden:

printf("xist gleichy,/n");

printf("alsoistyauchgleichx");

};

Das Gleiche gilt auch für den Else-Zweig.

Die Bedingung besteht immer aus dem Vergleich zweier Werte miteinander. Folgende

Vergleichsoperatoren stehen zur Verfügung:

> — Größer als

>= — Größer als oder gleich

< — _ Kleiner als

<= -— Kleiner als oder gleich

== - Gleich

= — Nicht gleich

Wenn x gleich 4 und y gleich 7 ist, dann ist also die Bedingung (x != y) wahr, da x

ungleich y ist.

Eine weitere Möglichkeit, einen Programmteil nur unter bestimmten Bedingungen

ablaufen zu lassen, stellt der Befehl »switch« dar. Er hat folgende Syntax:

22 Einführung

switch (AUSDR)

case AUSDRI1 : DANN;

case AUSDR2 : DANN;

USW.

};

AUSDR ist ein Wert, der mit den Ausdrücken nach den »case«-Marken verglichen

wird. Sind dann beide Werte gleich, so wird der Befehl, bzw. werden die Befehle nach

dem Doppelpunkt ausgeführt.

Schleifen

Wiederholungen innerhalb eines Programms nennt man Schleifen. »C« kennt verschie-

dene Arten von Schleifen. Der erste Typ ist die Zählschleife:

for(INIT; BED; INC)
BEFEHLE;

Bei INIT muß die Schleifenvariable, die für die Zählschleife benötigt wird, auf den

Anfangswert gesetzt werden. Diese Schleifenvariable muß von einem ganzzahligen

Typ sein.

BED stellt die Abbruchbedingung der Schleife dar. Wenn diese Bedingung nicht mehr

erfüllt ist, wird die Schleife abgebrochen. Welche Bedingungen möglich sind, können

Sie aus Kapitel 1.3 ersehen.

Da die Schleifenvariable nicht automatisch erhöht oder erniedrigt wird, müssen Sie

selbst diese Aufgabe übernehmen. Dies geschieht bei INC.

Als Beispiel führen wir nun eine Zählschleife an, die von 0 bis 1000 zählt:

int zaehler;

for(zaehler =0; zaehler <= 1000; zaehler++)
printf("n%d",zaehler);

»zaehler + +« hat die gleiche Bedeutung wie »zaehler = zaehler+1«.

Eine weitere Méglichkeit, Schleifen zu bilden, ist die While-Schleife. Sie wird solange

durchlaufen, bis die Bedingung nicht mehr gilt. Ihre Syntax:

while(BEDINGUNG)

BEFEHL ;

Die Bedingung entspricht der der If-Anweisung.

Einführung 23

Ähnlich wie die While-Schleife funktioniert die »do..while«-Schleife. Die Besonder-

heit liegt darin, daß das Abbruchkriterium erst nach einmaligem Durchlaufen der

Befehle innerhalb der Schleife geprüft wird:

do

BEFEHL;

while(BEDINGUNG) ;

Auch in diesem Fall müssen die Befehle innerhalb der Schleife geklammert werden,

wenn die Schleife aus mehr als einem Befehl besteht.

Strukturen

Von grundlegender Bedeutung sind die Strukturen, auch Structures oder Listen ge-

nannt. In ihnen können verschiedene Variablen unter einem Oberbegriff zusammenge-

faßt werden. Eine Structure, wie wir sie nachfolgend nennen wollen, wird von dem

Wort »struct« eingeleitet. Ihm folgt der Name, den die Structure haben soll, gefolgt von

den Einträgen, die in der Structure zusammengefaßt werden sollen. Solche Einträge

können auch weitere Structures sein. Ein Beispiel:

struct Bsp

{
FLOAT flt;

int i;

struct Test demostruct;

structBsp *ptr;

}

Die Structure Bsp besteht also aus den Einträgen fit, 1, demostruct und dem Zeiger ptr,

der auf eine weitere Structure vom Typ Bsp zeigt.

Bsp stellt nun einen neuen Datentyp dar. Um ihn verwenden zu können, muß eine

Variable von diesem Typ deklariert werden. Dies geschieht folgendermaßen:

struct Bsp beispiel;

Will man nun auf die einzelnen Einträge zugreifen, so geschieht das folgendermaßen:

Aufflt, i und demostruct kann sehr einfach zugegriffen werden:

beispiel. flt=2.45;

beispiel.i=3;

also einfach durch einen Punkt zwischen dem Variablennamen und dem Eintrag, auf

den zugegriffen werden soll.

Um auf ptr zugreifen zu können, muß ein »Pfeil« zwischengesetzt werden:

beispiel—>ptr=....;

24 Einführung

Man muß nicht unbedingt eine Variable vom diesem Structuretyp deklarieren. Es kann

auch ein Zeiger darauf verwendet werden, für den die gleichen Bedingungen gelten,

wie für die Zeiger in Kapitel 1.2. Ein solcher Zeiger wird folgendermaßen deklariert:

struct Bsp *beispiel;

Die Bibliotheken

Die Hardware des Amiga ist von einer Vielzahl von leistungsstarken Software-Modulen

umgeben. Durch diesen modularen Aufbau bieten sich ungeahnte Möglichkeiten. Das

System wird somit flexibler und leistungsstärker. Module können hinzugefügt oder,

falls notwendig, verändert werden.

Einen Teil dieser Amiga-System-Software-Module bilden die Libraries, zu deutsch

(Software-)Bibliotheken. Das Amiga-System enthält bisher 16 Module. Hier eine

Übersicht :

clist.lib: Enthält einige nützliche Routinen, die den Umgang und die

Anwendung von Zeichenketten vereinfachen.

console.lib: Dieses Library enthält Programme für den Umgang mit der Tasta-

tur, der sogenannten Console.

diskfont.lib: Das diskfont.lib ermöglicht die Verwendung der verschiedenen

Schrifttypen,die sich auf der Workbench-Diskette befinden.

dos.lib: Durch dieses Library wird dem Amiga unter anderem der Zugriff

auf die Diskette ermöglicht. Der Zugriff auf die Diskette ist dank

dieses Libraries fast so einfach, wie von der Benutzerschnittstelle

CLI aus.

exec. lib: Dieses Library bildet den System-Kern des Amiga. Dieser Kern

entscheidet z.B. welche Tasks zum Laufen kommen (in der Com-

putersprache bezeichnet man dies mit Scheduling) oder wieviel

Speicherplatz fiir ein Programm bereitgestellt werden muB.

graphic. lib: Ohne Grafik geht heutzutage nichts mehr. Das graphic.lib ist ein

sehr leistungsstarkes und umfangreiches Bibliotheksmodul, des-

sen Funktionen unter anderem durch den direkten Zugriff auf

den Blitter und Copper phantastische Geschwindigkeitenin

punkto Grafik sowie Animation ermöglichen.

icon.lib: Hier sind verschiedene, durchaus nützliche Utilities für den

Umgang mit den, von derWorkbench her bekannten Icons enthal-

ten. Es ist ebenfalls eines der wenigen Libraries, die sich auf der

Workbench-Disk befinden.

Einführung 25

info.lib: Dieses Library wird dazu verwendet, um Information über
Dateien, Datei- Verzeichnisse oder ganze Disketten zu be-

kommen.

Es wird kaum verwendet und befindet sich auf der Workbench-

Diskette.

intuition.lib: Das intuition.lib ist eines der wichtigsten Libraries des Amiga.
Ohne dieses Library wäre keine Bedienung mit der Maus oder die

einfache Handhabung von Menüs denkbar.

janus.lib:

layers.lib:

mathffp.lib:

mathieeedoubbas.lib:

mathtrans.lib:

timer.lib:

translator.lib:

Dies ist bisher das letzte Bibliotheks-Modul, das dem Amiga

beigefügt wurde. Es befindet sich ebenfalls auf der Diskette

und wird zur Steuerung der SideCar-Hardware benötigt.

In diesem Bibliotheks-Modul sind Routinen enthalten, die

dem Anwender beispielsweise das Handling von überlappen-

den Display-Elementen erleichtern.

Mit diesem sogenannten FFP-Basic-Mathematik-Library kön-

nen einfache mathematische Aufgaben, wie z.B. die Multipli-

kation oder Division, gelöst werden.

Dies ist das erweiterte FFP-Basic-Mathematik-Library. Es be-

findet sich auf der Workbench-Diskette und enthält eine Viel-

zahl von mathematischen Funktionen, die Zahlen im IEEE-

Standard mit doppelter Genauigkeit verarbeiten.

Für schwierigere mathematische Aufgaben, wo Funktionen

wie arcsin, arccos usw. Verwendung finden, enthält dieses

Bibliotheks-Modul genügend Befehle. Da diese Funktionen

nicht ständig verwendet werden, ist dieses Library auf der

Workbench-Disk enthalten.

Wenn Sie zeitlich im Bilde sein wollen, bietet sich die Verwen-

dung dieses Libraries an. Leider kann beim Amiga 1000 nur

die Software-Uhr angesprochen werden. Bei den Versionen

500 und 2000 ist diese Uhr jedoch batteriegepuffert.

Das translator.lib hat die Aufgabe, Sätze, die in englisch

verfaßt sind, für die Sprachausgabe vorzubereiten. Es findet

kaum Verwendung und ist deshalb auf der Systemdisk
enthalten. |

Je nach Art des Programms, das der Programmierer entwickeln will, muß er selbständig

entscheiden, welche Bibliotheks-Module er benötigt. Sicherlich werden Sie nun den-

ken, je mehr Libraries verwendet werden, desto besser wird das Programm. Im Gegen-

teil! Für sehr gute Programme reichen schon 2 bis 3 Libraries aus.

26 Einführung

Beim Umgang mit den Libraries müssen bestimmte Regeln eingehalten werden, damit

die jeweiligen Funktionen ansprechbar sind. So hat es z.B.keinen Zweck, Funktionen

eines Libraries aufzurufen, wenn das jeweilige Library nicht geöffnet wurde.

Bevor jedoch das jeweilige Library geöffnet wird, muß der »Basis« des Libraries ein

Zeiger zugewiesen werden, hier am Beispiel des Intuition-Library demonstriert, der

von OpenLibrary zurückgegeben wird:

IntuitionBase = (struct IntuitionBase *)

OpenLibrary("intuition.library",0);

AnschlieBend enthalt IntuitionBase die Einsprungadresse der Intuition-Library. Ent-

hält diese Variable den Wert »NULL«, war es nicht möglich, das Library zu öffnen.

Ist der Wertungleich »NULL«, verlief alles normal und das Library konnte geöffnet

werden.

Nachdem Sie ein Library geöffnet haben, muß es natürlich auch wieder geschlossen

werden:

CloseLibrary(IntuitionBase);

schließt das jeweilige Library.

Hier zum besseren Verständnis nochmals ein Beispiel :

/*ÖffnenundSchließen einesBibliotheksmodules */

struct GfxBase *GfxBase; /* Zeiger für die Einsprungadresse */

main()

GfxBase = (struct GfxBase *)

OpenLibrary("graphics.library'",O); /*Libraryöffnen */

if (GfxBase == NULL)

}
printf("Öffnendes graphics. library nicht möglich !/nT);

exit(FALSE);

{
/*

*/

/* ZumSchlußBibliotheks-Module schließen */

CloseLibrary(GfxBase);

}

IntuitionBase und GfxBase dürfen mit

Hier das jeweilige Programmeintragen

struct IntuitionBase *IntuitionBase;

bzw.

struct GfxBase *GfxBase;

deklariert werden, da sie die Einsprungadressen der Intuition- und der Graphics-

Library darstellen. Fiir alle anderen Libraries gilt folgende Deklaration:

Einführung 27

Beispiel Diskfont-Library

DiskfontBase = OpenLibrary("diskfont.library",O);

if (DiskfontBase == NULL)

printf("Öffnendesdiskfont.librarynichtmöglich !/n");

exit(FALSE);

}
*

Y Hier das jeweilige Programm eintragen

/* ZumSchlußBibliotheks-Module schließen */

CloseLibrary(DiskfontBase);

}

Die Devices

Neben den Libraries, die für den Programmierer Erleichterungen und für das System

eine große Flexibilität darstellen, steht dem Programmierer weiteres großes Hilfsmittel

zur Verfügung: Die Devices.

Devices, zu deutsch Vorrichtungen, sind die Bindeglieder zwischen der (externen)

Hardware und der Software des Amiga. Durch sie können Daten zur Hardware

gesendet oder von ihr empfangen werden. Somit ist, z.B. durch das Verändern von Pa-

rametern der Trackdisk-Device, das Lesen von fremden Diskettenformaten, wie IBM-

Format möglich. Der Amiga enthält 17 verschiedene Devices, die sich um die Vorrich-

tungen wie Tastatur, der Seriell- und Parallelschnittstellen und einiges mehr kümmern.

Nicht alle werden ständig benötigt, sondern befinden sich im »Devs«-Directory auf der

Workbench-Disk.

Die Devices des Amiga im Überblick:

audio.device: Mit ihr wird der »Sound« des Amiga gesteuert. Je nach Belieben

richtet sie die 4 Audio-Kanäle des Amiga ein, bestimmt die Ampli-

tute des Tons und vieles mehr.

bootblock.device: Testet, ob es sich um eine Kickstart- oder um eine DOS-Diskette

handelt. Bei den neuen Amiga’s ist diese Vorrichtung weggefallen,

da bei ihnen keine Kickstartdiskette mehr erforderlich ist.

clipboard.device: Wird benötigt, um Daten zwischen zwei Anwendungen zu transfe-

rieren. Da dies nicht häufig vorkommt, befindet sich diese Device

auf derWorkbench-Disk.

console.device: Regelt die Ein- und Ausgabe des Systems über die Tastatur und

den Bildschirm.

28 Einführung

gameport.device:

input.device:

inputevent.device:

jdisk.device:

keyboard.device:

keymap.device:

narrator.device:

parallel.device:

printer.device:

prtbase.device:

serial.device:

timer.device:

trackdisk.device:

Gameport.device übernimmt die Steuerung der Ein- und Aus-

gabe über die GamePorts 1 und 2.

Diese Device regelt die gesamte Ein- und Ausgabe des Amiga. Es

ist eine Kombination aus timer-, gameport- und keyboard.device.

Inputevent.device erfaßt die Ereigniseingaben, wie z.B.

Gadgets.

Dies ist die neuste Device des Amiga. Sie übernimmt die Steue-

rung der Harddisk des Amiga, die sich auf der IBM-PC-kompati-

blen Seite des Amiga2000 oder im SideCar befindet. Da sie sehr

neu ist, befindet sie sich ebenfalls auf der Workbench-Disk.

Hiermit wird der Zugriff auf die Tastatur des Amiga gesteuert.

Damit kann die Belegung der Tastatur verändert werden.

Narrator.device ist für die Steuerung der Sprachausgabe notwen-

dig. Da sie nicht ständig benötigt wird, befindet sie sich auf der

Workbench-Disk.

Hiermit kann der Parallelport gesteuert werden. Diese Device

befindet sich ebenfalls auf derWorkbench-Disk.

Diese Device dient zur Kommando-Steuerung des Druckers, um

z.B. einen Wagenvorlauf des Druckers zu bewirken. Printer.

device befindet sich ebenfalls auf derWorkbench-Disk.

Prtbase.device übernimmt die Datendefinition der printer.-

device.

Diese dient zur Deklaration des seriellen Ports des Amiga. Sie be-

findet sich ebenfalls auf derWorkbench-Disk.

Mittels timer.device kann auf die Systemzeit zugegriffen werden.

Diese Device kontrolliert die Floppies des Amiga. Sie übernimmt

Funktionen, wie das Lesen und Schreiben von Daten und einiges

mehr.

Um mit einer Device arbeiten zu können, muß ein Port angelegt werden. Dies

geschieht mit

printerPort = CreatePort("printer.port",0);

wobei printerPort zurückgegeben wird.

Danach muß die Device geöffnet werdem, in diesem Fall “printer.device“:

fehler = OpenDevice("printer.device",0,&request,0);

Einführung 29

Wenn Fehler gleich ungleich 0 ist, konnte die Device nicht geöffnet werden. &request

ist der Pointer auf eine Structure der jeweiligen Device, die bestimmte »Routinen« wie

z.B. das Drucken eines Screens enthalten oder auf die allgemeine Ein- und Ausgabe-

Structure von EXEC.

Nachdem die Device und der Port geöffnet sind, kann die benötigte Ein- und Ausgabe-
Structure initialisiert werden. Nach der Initialisierung wird die jeweilige »Funktion«,

wie z.B. das Drucken eines Textes, mit

DoIO(&request);

gestartet.

&request ist der Pointer auf die Ein- und Ausgabe-Structure der jeweiligen »Funktion«.

Nachdem die Ein- und Ausgabe beendet ist, muß der Port und die Device wieder ge-

schlossen werden. Dies kann mit

DeletePort(printerPort);

CloseDevice(&prefrequest) ;

erledigt werden.

Der Seka-Assembler

Zur Entwicklung der Assembler-Programme haben wir den Seka-Assembler verwen-

det. An dieser Stelle wollen wir nun auf die Bedienung dieses Assemblers eingehen.

Ist der Assembler gestartet worden, fragt er nach dem Speicherplatz, der ihm zur Verfü-

gung gestellt werden soll. Anschließend befindet man sich in der Befehlsebene. Will

man nun ein Programm eingeben, so kann dies durch Drücken der Escape-Taste gesche-

hen. Durch sie gelangt man in den Editor, der zwar etwas umständlich und einfach ist,

dem Zweck aber durchaus genügt. Durch nochmaliges Betätigen der Escape-Taste ge-

langt man wieder in die Befehlsebene.

Zum Editor ist lediglich noch zu sagen, daß beliebig mit dem Cursor »herumgefahren«

werden kann und im Text manipuliert werden kann. Äußerst positiv fiel uns auf, daß

TAB’s als solche unterstützt wurden und nicht nur ein Einfügen von Leerzeichen zur

Folge hatten. In der Befehlsebene stehen folgende Befehle zur Verfügung:

T Cursor in die oberste Zeile setzen

Tn Setzt den Cursor in Zeilen

B Setzt den Cursor an den Schluß des Textes

U Cursor eine Zeile hochsetzen

Un Cursor um n Zeilen hochsetzen

30 Einführung

D

Dn

nw

RO

RI

RL

WI

WX

WL

Cursor eine Zeile heruntersetzen

Cursor um n Zeilen heruntersetzen

Löscht die aktuelle Zeile

 Löscht n Zeilen ab der aktuellen Zeile

Zeileneditor für aktuelle Zeile

Zeileneditor für Zeilen

Sucht ab der aktuellen Zeile nach dem eingegebenenText. Dabei wird Groß-/

Kleinschreibung und Leerzeichen berücksichtigt

Sucht weiter nach dem obigen Text

Fügt eine Zeile an der aktuellen Zeile ein

Löscht den Quelltext

Macht die Löschung wieder rückgängig

Druckt die aktuelle Zeile aus

Druckt n Zeilen ab der aktuellen Zeile aus

Gibt das Inhaltsverzeichnis aus

Löscht eine Datei von Diskette

Liest ein Sourcefile von Diskette

Liest ein Objectfile (assembliertes File) von Diskette

Liest eine Datei in den Speicher. Es wird nach der Anfangs- und der

Endadresse des Bereiches gefragt, in den geladen werden soll

Hat die gleiche Funktion wie RI, nur das von der seriellen Schnittstelle

gelesen wird

Liest ein mit Seka erstelltes Linkfile in den Speicher

Schreibt den Sourcecode auf Diskette

Speichert einen Speicherbereich auf Diskette ab

Funktion wie WI, nur das über die serielle Schnittstelle übertragen wird

Schreibt ein Linkfile auf Diskette

Einführung 31

G

Glabel

Jlabel

Assembliert den Quellcode. Folgende Optionen stehen zur Verfiigung:

V Ergebnisse werden auf dem Bildschirm ausgegeben

P Ausgabe wird auf den Drucker umgeleitet

H Nach jeder Seite wird die Ausgabe gestoppt und auf einen Tastendruck

gewartet

O Alle Branch-Befehle werden optimiert

L Es wird ein linkfähiger Programmcode erzeugt, der mit WI abgespeichert

werden kann

Starten des assemblierten Programms

Starten des assemblierten Programms ab dem Label label

Wie Glabel, nur das der Aufruf über einen JSR-Befehl bewirkt wird.

Dies war nun eine Auflistung der Befehle, die Seka zur Verfügung stellt. Wir hoffen, daß

Sie sich mit diesem Assembler anfreunden können, denn er hat große Stärken, wenn es

darum geht, schnell eine Maschinenroutine auszuprobieren. os

Anwendern, die größere Projekte in Assembler bearbeiten müssen, sei das DevPac von

HiSoft/Markt & Technik empfohlen.

32 Die Amiga-Serie

Die Amiga-Serie.

Die Amiga-Serie besteht zur Zeit aus zwei grundlegend verschiedenen Amigas. Aufder -

einen Seite haben wir die Amiga 500 und 1000 für den »Heim«-Bereich, auf der anderen

Seite den A2000 für den »Geschäftsbereich«. Beide Seiten sind untereinander kompati-

bel. Der große Vorteil des A2000, im Vergleich zum A500 bzw. A1000, besteht jedoch in

seinem offenen Aufbau. Er kann durch Erweiterungskarten MS-DOS oder sogar

UNIX-fähig oder durch Einsatz eines anderen Prozessors beschleunigt werden. Für

den Einstieg in die MS-DOS-Welt mit dem A500 und A1000 besteht die Möglichkeit,

eine Hardware-Emulation, das SideCar, anzuschließen. Beim A500 stößt man dabei zu-

nächst auf ein großes Problem beim Anschließen, da der 86-Pin-Erweiterungsstecker

um 180 Grad gedreht wurde.

Der technische Fortschritt hat auch bei den Amiga’s keinen Halt gemacht. So ist das

Motherboard der neuen Generation, das des Amiga 500 und Amiga B2000, durch Ein-

satz der FatAgnus und des Garry stark geschrumpft. Somit konnten auch Kosten und

die damit verbundenen Preise der Amigas gesenkt werden. Auch das SideCar wurde in

eine kleine Platine umgesetzt. Die Produktion des Amiga 1000 und des Original-Side-

Cars wurden somit unrentabel, weshalb sie eingestellt wurde.

Die Amiga-Serie 33

Nm

B2888 |
—

USSSZUGUBEIEREGEEEAR mm cose

/slitsecstessteseesstosdeae “same, u
[III 003 ee S'S

ASOB A2BBB

ALBBB

Die Amiga-Familie

Es steht also eine reichhaltige Amiga-Palette zur Verfügung, die bei uns auf dem Markt

erhältlich ist, bzw. war. Hier ein »geschichtlicher« Überblick über die Amiga-

volution:

Ende 85: |

Anfang 86:

Mitte 86:

Ende 86:

Anfang 87:

Mitte 87:

Erste, aus den USA importierte Amiga 1000 werden verkauft. Sie sind

daran erkennbar, daß sie ein zusätzliches Netzteil benötigen, eine NTSC-

Version der Agnus besitzen und ein anderer Monitor mitgeliefert wurde.

Der Amiga 1000 als eingedeutschte Version mit Netzteil für 220 Volt, aber

noch mit NTSC-Agnus.

Nun erhält der Amiga 1000 auch eine PAL-Agnus, besitzt aber noch einen

NTSC-Composite-Video-Ausgang.

Der Amiga 1000 verfügt nun auch über eine PAL-Version des Composite-

Video-Ausgangs. Die Hucke-Pack-Platine, in die das Kickstart geladen

wird, ist auf die Grundplatine verpflanzt worden. Das SideCar wird auf

den Markt gebracht. |

Die Amiga-Offensive: Der A1000 erhält Nachwuchs in Form des Amiga

500 und des Amiga A2000. Gleichzeitig werden die ersten Erweiterungs-

karten für den Amiga A2000 präsentiert: PC-Karte und RAM-Erweite-

rungen.

Der Amiga A2000 wird runderneuert. Seine Platine wird durch Einsatz

der FatAgnus und des Garry, die schon im Amiga 500 eingesetzt wurden,

erheblich verkleinert. Sein neuer Name ist Amiga B2000.

34 Die Amiga-Serie

| FLOPPY |
| poRT |

DATA |.
BUFFER |

C
o
n
n
e
c
t
o
r

86
pi

n
MM

U

Z 1.1: Amiga 1000-Blockdiagramm (Teil 1)

Die Frage ist nun, wie es mit der Entwicklung weitergeht. Commodore hält sich in die-

ser Frage eher bedeckt, auch wenn zur Zeit Gerüchte über einen Super-Amiga im Um- ©

lauf sind. Aber diese Strategie verfolgte Commodore auch vor der Vorstellung der

A1000, A500 und A2000. Während sich der Amiga 1000 seinen Weg zum Renner unter

den Computern bahnte, hatte Commodore schon den Amiga 2000 und Amiga 500 im

Schrank stehen. Im Bereich des Amiga 500 wird sich wohl zunächst nicht sehr viel tun,

was wohl auch nicht nötig ist, da der A500 sich zum 64er-Nachfolger avanciert. Im

2000er-Bereich werden demnächst einige Neuerungen auf dem Markt vorgestellt, die

die Leistung des jetzigen A2000 um ein Vielfaches übertreffen werden.

Die Amiga-Serie 35

PAULA nn

VIDEOCONTROLLER | | SERIAL INTERFACE
| JOY-STICK INTERFACE | _
| STEREO AUDIO INTERFACE | _
| WITH 4 D/A CONVERTER |

AGNUS
BITDMA |

BLITTER

GRAPHIC |
CONTROLLER | — | BUFFER |

A.
DRAM

CHIP - RAM

512K * 8 bit

>| ADDRESS |
MUX

Z 1.1: Amiga 1000-Blockdiagramm (Teil 2)

1.1: Der Amiga 1000

Der Amiga 1000 ist der Ursprung aller Amigas. Er wurde von einer Joystick-Firma ent-

. wickelt, die Commodore aufkaufte und somit an die Rechte dieses fantastischen Com-

_ puters gelangte. Er sollte neue Maßstäbe im Computerbereich, speziell im Business-

Bereich, setzen. Seine fantastischen Fähigkeiten ließen ihn jedoch schon früh als einen

Super-Spielcomputer erscheinen. Neben den großartigen Soundfähigkeiten, überzeugt

er die Fachwelt besonders im Grafikbereich. Custom-Chips sind mit Erscheinen dieses

Rechners das Schlagwort. Sie verleihen diesem Rechner ungeahnte Möglichkeiten und

nehmen dem Hauptprozessor einen Großteil der Arbeit ab. Ein Blockdiagramm veran-

schaulicht das Zusammenwirken dieser Komponenten (Zeichnung 1). (Siehe auch Bild

5 im Farbteil). |

36 Die Amiga-Serie

Diese Custom-Chips im A1000 erhielten die Spitznamen Agnus, Denise und Paula. Sie

entlasten den MC 68000 enorm und kümmern sich um die Grafik, Sound, DMA und

noch einiges mehr. Mausbedienung, ein 16-Bit-Prozessor und Multitasking gehören

seit der Markteinführung dieses Rechners zum Standard. Jedoch kann bisher

kein anderer Computerhersteller mit seinen Produkten diesem Computer das Wasser

reichen. |

Beim Amiga 1000 gehen wir in diesem Buch von der Version, die ab Mitte ’86 ausgelie-

fert wurde, aus. Diese hat eine PAL-Agnus, konnte somit vertikal 256 bzw. 512 Punkte

anstatt 200/400 Punkte darstellen, hatte aber unter Umständen noch einen NTSC Com-

postite-Videoausgang. Ein Piggy-Pack (Huckepack-Platine) war ebenfalls noch vor-

handen. Hier seine Merkmale im Überblick:

— Prozessor MC 68000 mit 7.16 Mhz getaktet.

— 256 Kbyte internes RAM, erweiterbar bis 1 Mbyte intern.

- 256 Kbyte RAM (WOM) für System-Software (Kickstart).

— Eingebautes 3,5 Zoll Floppy, Speicherkapazität brutto 880 Kbyte.

— Anschlußmöglichkeit für 3 weitere Floppies.

— Programmierbare serielle Schnittstelle.

— Programmierbare paralle Schnittstelle.

— Mitgelieferte Maus.

— Game-Port-Anschliisse für Maus, Joystick usw.

— Frei bewegliche Tastatur.

— Multifunktions-Videoausgang, extern synchronisierbar.

— Audioausgänge, Stereo zweikanalig.

— Vier'Ion- und Geräuschkanäle.

— Erweiterungsport.

— Grafikauflösung 320 x 256, 320 x 512, 640 x 256, 640 x 512, mit speziellen Grafikmodi

bis zu 4096 verschiedene Farben gleichzeitig

— 3 Custom-Chips: Agnus, Denise, Paula kontrollieren beispielsweise die DMA

Dies war sicherlich nur eine grobe Zusammenfassung der Fähigkeiten des Amiga 1000.

Besonders zu erwähnen wäre noch, daß sein Betriebssystem, das »Kickstart«, geson-

dert geladen werden muß, bevor mit derWorkbench das eigentliche »System« aktiviert

wird. Dies hat denVorteil, daß man nicht nur eine andere Kickstart-Software (Kickstart

1.1 oder 1.2) verwenden, sondern auch seine eigene Version schreiben kann. |

Vom äußeren hebt er sich erheblich von den Designs des IBM-PCs, oder C64 ab. Intern

zeigt sich der A1000 solide aufgebaut. Ist das Piggy-Pack abgehoben, so erkennt man

die Custom-Chips in voller Pracht. In Bild 7 (Farbteil) sehen Sie das Motherboard i

voller Größe. |

Die Amiga-Serie 37

Eine Besonderheit bei den älteren Amiga-Rechnern ist,wie schon erwähnt, das Piggy-

Pack (eine Huckepack-Platine). In das RAM, das sich auf dieser Platine befindet, wird

nach dem Einschalten des Rechners die Kickstart-Software geladen. Zudem enthält sie

3 wichtige PALs (Programmierbare Logik-Chips), die für die Erzeugung der Refresh-

Signale der RAM-Chips, für das Chip-Select-Signal und noch einiges mehr zuständig

sind. Bei dem neueren Amiga 1000 ist diese Platine in. das Motherboard integriert. Bild

28 (Farbteil) zeigt das Piggy-Pack.

1.2: Der Amiga 500

Der Amiga 500 stellt die low-cost-Version des Amiga 1000 dar. Er basiert auf der Grund-

konzeption des Amiga 1000 und ist fast vollständig kompatibel zur älteren Schwester.

Während bei der 1000er-Serie das Kickstart in das Piggy-Pack geladen werden mußte,

steht beim A500 ein ROM zurVerfügung, das die neuste Version der Kickstart-Software

enthält. Die Frage, ob der Amiga 500 softwaremäßig 100prozentig kompatibel zum

A1000 ist, ist nicht so leicht zu beantworten. Ohne 512-Kbyte-Erweiterung kann man

sagen, sie sind zu 99 Prozent kompatibel. Es gibt ein paar wenige Programme, die nur

auf 1000er-Amiga’s laufen, auch wenn man bei beiden Rechnern die Kickstart-Version

1.2 verwendet. Die Gründe dafür konnten wir selbst noch nicht herausfinden.

Mit 512-Kbyte-Erweiterung können ein paar Probleme auftauchen, da verschiedene

Software nur für 512-Kbyte-Amigas geschrieben wurde. Hat jedoch ein Amiga 1 MByte

RAM zur Verfügung, kann es passieren, daß Daten in den oberen 512 Kbyte (FAST-

MEM) abgelegt werden und somit von den Custom-Chips nicht erreichbar sind.

Auf der Hardwareseite sind verschiedene externe Logik-Chips entfallen und in die

FAT-AGNUS, die Weiterentwicklung des AGNUS-Chips und in Gary integriert wor-

den. Vereinfacht wurde auch die Schaltung zum Composite-Video-Signal, das beim

A500 aus einer Mischschaltung, einem sogenanntem Hybrid, gewonnen wird. Beim

A1000 mußte hier ein RGB-Encoder herhalten, der jedoch den Vorteil hatte, ein Farb-

signal zu liefern. An den Schnittstellen, seriell und parallel, hat sich ebenfalls einiges ge-

tan. Die Pin-Belegungen sind im Gegensatz zum A 1000 nun der IBM-Norm angepaßt.

Bild 6 im Farbteil zeigt den A500.

Daß der Amiga 500 stark zusammengeschrumpft ist, ist auch deutlich an seinem Block-

diagramm (Z 1.2-1) zu erkennen. Viele verschiedene Komponenten wurden zusam-

mengefaßt. Sein Aufbau ist somit noch einfacher und kostensparender geworden.

Äußerlich hat sich dieser Amiga sehr verändert. Die portable Tastatur wurde in das Ge-
häuse eingebaut, das Floppy, welches beim A1000 von vorne zugängig war, wurde auf

die rechte Seite verpflanzt, was den Nachteil hat, daß der 86-Pin-Erweiterungsport auf

die linke Seite weichen mußte. Eine 100prozentige Hardwarekompatibilität zum A 1000

ist somit nicht mehr gegeben, denn Geräte wıe das SideCar können ohne zusätzlichen

Adapter nicht angeschlossen werden, da der Erweiterungsport im Vergleich zum A 1000

um 180 Grad gedreht wurde.

38 Die Amiga-Serie

. 68000 | REAL | |ExPAnsIoN PORT|

..„ | _ | (Upto 8M Bytes) |

Z 1.2-1: Amiga 500-Blockdiagramm (Teil I)

Hier die Merkmale der Amiga 500 im Uberblick:

— Prozessor MC 68000 mit 7.16 Mhz getaktet.

— 512 Kbyte internes RAM, erweiterbar bis 1 MByte intern.

— 256 Kbyte ROM.

— Eingebautes 3,5 Zoll Floppy, Speicherkapazität brutto 880 Kbyte.

— Anschlußmöglichkeit für 3 weitere Floppies.

— Programmierbare serielle Schnittstelle.

— Programmierbare paralle Schnittstelle.

— Mitgelieferte Maus.

Die Amiga-Serie 39

Tn

512 K Std.
1 MB optional

Z 1.2-1: Amiga 500-Blockdiagramm (Teil 2)

~ Game-Port-Anschliisse für Maus, Joystick usw.

_ — Multifunktions-Videoausgang, extern synchronisierbar.

— Audioausgänge, Stereo zweikanalig.

— VierTon- und Geräuschkanäle.

— Erweiterungsport im Vergleich zum A1000 um 180 Grad gedreht.

— Grafikauflösung 320 x 256, 320 x 512, 640 x 256, 640 x 512, mit speziellen Grafikmodi

mit 4096 verschiedenen Farben gleichzeitig.

— 4 Custom-Chips Agnus, Denise, Paula, Gary sorgen beispielsweise für die DMA-

Kontrolle.

40 Die Amiga-Serie

fe] fg] PRINTER FLOPPY :
Ol 10] a ext int.

jo] Pf |
E |] |] 4
‘ox | Q 1

N |: N |: j

= [sl | | PARALLEL | | FLOPPY |
8| at |8 BATTERY — | Port | | PORT |
.-> | je ae Cc — =

[et al dD AD |
1 © © : ' al del : 2 oe |
ro 2 — nen : - | is 2 1

1 Am) S| Ae, DATA | ie > 5 | DI DATA JID.
a el BUFFER © | | +» BUFFER .4- ı

cl je]. cl CPU | ceo
O |: O|.: +e ; ey

| Jo} og | [$S| !
[LAS | 4] AC ICONTROL]. © 57 | : |S 15 41 BUFFER [+ at * |

= | 2. Se — {S| | 68000 | KICK |
| ; E|.. a al AA 5] AA appREss|. A |&lA_A | START A!

8 148 14 BUFFER + — ar | | rom |:
= LE} LET 1 0. ro

. : Act:23> — es

AMIGA 2000 3

Z 1.3-1: Das A2000-Blockdiagramm (Teil I)

1.3: Der Amiga A2000 und B2000

Die Weiterentwicklung des A1000 ging nicht nur in Richtung des low-cost-Bereichs

A500, sondern auch in den professionellen Bereich. Für diesen Bereich wurde der neue

Amiga 2000 sehr offen gestaltet. Nach altem Apple-Konzept wurde die Grundplatine

mit verschiedenen Slots bestückt, die kompatibel zum 100-Pin-Zorro-Bus, AT- bzw.

PC-Slot und zum 86-Pin-Amiga-Stecker sind. Eine Vielzahl von Steckkarten, wie PC/-

XT-Emulatur / AT-Emulator-Card und Coprozessor-Karte, lassen den Amiga fiir neue |

Anwendungsgebiete interessant werden. Bild 14 im Farbteil zeigt das Slot-Prinzip des.

2000ers.

Der erste A2000 entstand aus dem A1000. Es wurde, grob beschrieben, ein A1000

Motherboard mit einer Buskontroll-Logik versehen, die fiir die Verwaltung der Amiga-

Slots zuständig ist. Für PC/AT-Anwendungen wurden zu den 5-AMIGA-Slots noch 4

Die Amiga-Serie 41

Na

RS 232 AUDIO MOUSE JOY-STICK VIDEO - RGB | [al . 4 L { a € BRRGR Ale

| PAULA DENIS O
SERIAL INTERFACE VIDEO CONTROLLER =
_MOUSE INTERFACE S|

JOY - STICK INTERFACE |
STEREO AUDIO INTERFACE
WITH 4 D/A CONVERTER

{

{

Le

\

! A Ab Ar AD :

\ | —1.1A<1:8> | A| AGNUS

! ID . za fe 1 5] BITDMA
ge te | 2] CONTROLLER

| eee mux 1%] CONTROLLER ! BUFFER u Loe.

! AA = yiD

A _A| ADDRESS | Io cup. RAM
t Bo = : - ! MUX = [oT |
= 512*8 bit

| A <1:23>

| AMIGA 2000

Z 1.3.1: Das A2000-Blockdiagramm (Teil 2)

PC/AT-kompatible Slots hinzugefügt, die der 2000er Serie den Weg in den Busi-

ness-Bereich ebnen sollen. Zudem enthält der 2000er einen Video-Slot zum internen

Einstecken eines Genlock-Interfaces oder eines UHF-Modulators. Hinzugefügt wurde

auch eine batteriegepufferte Uhr. Ansonsten blieb die Technik gleich, was das Blockdia-

gramm der Zeichnung Z 1.3-1 beweist:

Mit Veränderung des A1000 zum A500 wurde auch der A2000 im Aufbau grundlegend

verändert. Als Basis dient nun bei dem neuen 2000er, B2000 genannt, eine 500er

Grundplatine. Die Kontroll-Logik für die Slots wurde hier wiederum in einen Custom-

Chip, dem »Buster« gepackt. Somit entstand ein kompakter B2000, dem gleich ein 1

Mbyte RAM und ein erweiterter Video-Slot für erweiterte interne Video-Karten ver-

paßt wurde.

42 Die Amiga-Serie

Oo :
—f £& f-
aes .

1 ©

Cc

| Of
1Or
|
= a

| OD beep

= ’ 2 “DATA |
_ | _ | BUF FER

[10
0 p

in A
MIG

A
l
e

n
e

[8

ee

[00
 pi

n A
MIG

A -
 Con

nect
or]

[36
pin

Gon
n]

[62
pin
PO

-G
on

n]

_ . : ne a _BUFFER T 2 z | .„.„ |

who eee
| BUS Oe — =
_ Sonrnot | BUSTER _ > = : en nn Sn m
| ARBITRATION

B 2000.

Z1.3-2: Das B2000- "Blockdiagramm (Zeil I)

Von dieser B2000-Version werden wir auch in diesem Buch ausgehen, da sie die neuste

und auf absehbare Zeit die meist verbreiteste Version sein wird. Vom optischen Aufbau

der Grundplatine hat sich einiges geändert, da, wie schon erwähnt, verschiedene Klein-

teile gegen neue und erweiterte Custom-Chips ausgetauscht wurden. Bild 8 (Farbteil) _

zeigt Ihnen die Platine des B 2000.

Hier die Merkmale und Fähigkeiten eines Amiga B2000 auf einen Blick:

— Prozessor MC 68000 mit 7.16 Mhz getaktet.

— 1.Mbyte internes RAM, intern aufrüstbar bis 9.5 Mbyte.

— 256 Kbyte ROM.

— Eingebautes 3,5 Zoll Floppy, Speicherkapazität brutto 800 Kbyte, vorgesehene Ein-

Die Amiga-Serie 43

"aes sae FLOPPY DATA. : _ COMPOSITE/MONOCHROME | Boe
nn 2 5% VIDEO- -RGB_ r ae DATA AUDIO. I ee aay “MOUSE |

as:
VIDEO CONTROLLER

PAULA
SERIAL INTERFACE
MOUSE INTERFACE |

| JOY-STICK INTERFACE | |
[STEREO AUDIO INTERFACE]
| WITH4D/ACONVERTER | |

FAT

— | | AGNUS

—lieotss | Brom it

| BLITTER

GRAPHIC : : > n a Se ; :

DRAM

CHIP - RAM
512K * 8 BIT

DRAM

NONCHIP - RAM a
512K * 8 BIT nn

Z1.3-2: Das B2000-Blockdiagramm. (Teil 12)

44 Die Amiga-Serie

schübe für ein 5 1/4 und ein 3 1/2 Zoll Floppy.

— Anschlußmöglichkeit für 3 weitere Amiga-Floppies.

— Programmierbare serielle Schnittstelle.

— Programmierbare parallele Schnittstelle.

— Mitgelieferte Maus.

— Game-Port-Anschliisse fiir Maus, Joystick usw.

— Multifunktions-Videoausgang, extern synchronisierbar.

— Audioausgänge, Stereo zweikanalig.

— VierTon- und Geräuschkanäle.

— Grafikauflösung 320 x 256, 320 x 512, 640 x 256, 640 x 512, mit speziellen Grafikmodi

4096 verschiedene Farben gleichzeitig.

— 4 Custom-Chips Agnus, Denise, Paula, Gary beispielsweise für DMA.

— Externe Tastatur PC-kompatibel.

— Insgesamt 7 Systemsteckplätze, davon

— einen 86-Pin-Expansionsport, Kompatibel zum Amiga 500 bzw. 1000,

— 5 Zorro-Bus-Steckplätze mit AutoConfig-Funktion,

— 4PC/AT-kompatible Steckplätze.

Der Bootvorgang 45

Kapitel 2

Der Bootvorgang
u |

Unter dem Booten des Amiga wird die Initialisierung des Amigas und seiner Hardware

verstanden. Dies ist, wie wir meinen, ein sehr wichtiges Thema, da hier grundlegende

Vorgänge stattfinden, die dem Hardwarefreak die Lösung zu einigen Problemen bie-

ten, denn das »Hochfahren« des Rechners bewirkt neben der Initialisierung eine soge-

nannte System-Diagnose, die das Innenleben des Amiga »durchcheckt«.

Dieses Booten des Amiga findet in zwei Schritten statt. Zu Amiga-1000er-Zeiten waren

dies beim Einschalten der Aufruf des Boot-ROM und nach dem Laden der Kickstart-

Software die Initialisierung von EXEC, des sogenannten Multitasking-Betriebs-

systems des Amiga. Vorgesehen waren bei der 1000er-Serie auch mögliche Kickstart-

ROMs, die unterhalb der Ur-Lader-ROMs (Boot-ROMs) eingesetzt werden konnten.

Ein nachträglicher Umbau zu einem ROM 1000er ist also möglich. Bild 24 im Farbteil

zeigt zwei ROM’s im Amiga 1000.

Beim 500er und 2000er wird das Laden der Kickstart-Software nicht mehr benötigt, da

hier sowohl Boot als auch EXEC in einem ROM (Festwert-Speicher) vorhanden sind.

Ein großer Teil der Boot-Routinen ist eigentlich überflüssig geworden, man hat aber

auf Grund der Kompatibilität zum 1000er nur wenig gändert und einfach alles in ein

ROM gepackt. Beim Einschalten des Rechners verhält er sich dann einfach so, als ob

die Kickstart-Diskette schon geladen ist. Bild 18 (Farbteil zeigt das ROM im 500er/

2000er.

Kickstart im ROM hat sicherlich ein paar Nachteile. So können z.B. keine einfachen

Manipulationen am System vorgenommen werden. Der große Vorteil, der sich hin-

gegen ohne Laden der Kickstart bietet, ist, daß sofort beim Einschalten der Amiga be-

reit ist und man nicht erst noch die Kickstart-Disk suchen muß.

2.1: Funktion des Boot-ROMs

Das Boot-ROM übernimmt das eigentliche »Hochfahren« des Amiga. Dieses Boot-

ROM beginnt bei $F80000 und endet bei $F81E86. Es wird immer dann aufgerufen,

wenn CTRL Amiga Amiga bzw. Commodore Amiga betätigt oder das Netzteil einge-

schaltet wurde. Beim Amiga 1000 blinkt hier, nach diesem Kalt- bzw. Warm-Start die Po-

wer-LED fünfmal, anschließend verfärbt sich der Monitor dunkelgrau.

46 Der Bootvorgang

Nach dieser Verfärbung des Bildschirms wird die Power-LED dunkel aufleuchten und

die DMA und Interrupts werden abgeschaltet. Durch eine Checksum-Prüfung des

Bereiches $FC0000 bis $FFFFFF wird getestet, ob sich die Kickstart schon im RAM-

(bzw. ROM-) Bereich findet. Ist dies der Fall, so wird mit der Initialisierung von EXEC

fortgefahren, wenn nicht, wird das Amiga-System getestet, da man davon ausgehen

muß, daß es sich um einen Kaltstart handelt. Zunächst werden die RAM-Bereiche

überprüft, hier zuerst das Kickstart-RAM. Tritt hier ein Fehler auf, so verfärbt sich der

Monitor blaugrün und das Boot-ROM wird erneut gestartet. Anschließend findet ein

Check des unteren RAM-Bereiches statt. Ein Fehler bewirkt die Grün-Färbung des

Bildschirms und ebenfalls einen Neustart des Boot-ROMs. Danach beginnt ein Check

der allgemeinen Hardware des Amiga, so wird kurz eine Tonfolge über die 4 Audio-Ka-

näle des Amiga ausgegeben. Anschließend werden die Ausnahmevektoren (2 bis 47)

auf eine kleine Routine gesetzt, die aktiviert wird, falls ein Busfehler oder Interrupt

eintritt. Tritt ein solcher Fehler auf, so verfärbt sich der Monitior gelb und es wird der

Neustart des Boot-ROMS eingeleitet. Verlief bis hierhin alles klar, so wird das interne

Laufwerk eingeschaltet und bei eingelegter Disk der Block 0 eingelesen. Befindet sich

hier in dem ersten Long-Word die Kennung »KICK«, so wird von Spur 0 an steigend die

eingelegte Diskette eingelesen und von dort aus in das Kickstart-RAM geschrieben. |

Wird die Kickstart-Disk nicht erkannt oder tritt ein Fehler beim Lesen auf, so erscheint

eine Hand mit der Kickstart-Disk. Konnte das Kickstart eingelesen werden, so verfärbt

sich der Bildschirm schwarz. Das Urlader-ROM wird abgeschaltet und EXEC gestar-

tet.

Die Veränderung der Farben beim Booten ist eine sehr gute Systemdiagnose. Möchte

man intern seine Amigas mit mehr RAM aufrüsten, kann so festgestellt werden, ob der

Eingriff gelungen ist. Bei der Entwicklung der 512 Kbyte-Erweiterung zum Amiga 500

hatten wir z.B. einen Schluß auf dem Adreßbus der RAM-Erweiterung, der Bildschirm

verfärbte sich grün beim Einschalten des Amiga. Der Fehler konnte mit dieser Hilfe

schnell analysiert und beseitigt werden.

2.2: Die Initialisierung des Systems

Nachdem das Kickstart geladen bzw. gefunden wurde und das Urlader-ROM sich abge-

schaltet hat, beginnt die Initialisierungsphase des Systems. Für diese Initialisierung ist

EXEC zuständig. Am Anfang der Initialisierung wird, wie bei dem Starten der Ur-

Lader-Software im Boot-ROM, die LED dunkel, die DMA und Interrupts werden

gesperrt, der Bildschirm verfärbt sich dunkelgrau und die Ausnahmevektoren werden

hier ebenfalls auf eine Fehlerroutine gesetzt, falls eine Ausnahmebedingung, wie z.B.

ein Busfehler, auftritt. Danach wird gepüft, ob EXEC schon initialisiert ist und mittels

Check-Summen-Prüfung wird getestet, ob es in Ordnung ist. Da der Abfangvektor

ColdCapture durch den Speichertest des Boot-ROM auf 0 gesetzt wurde, wird mit der

Der Bootvorgang 47

eigentlichen Datenprüfung, nach dieser Prüfung der Initialisierung von EXEC, fortge-

fahren. Der ColdCapture-Vektor kann jedoch auch vom Anwender auf die Startadresse

eines eigenen Programmes gesetzt werden. EXEC wird dieses Programm automatisch

durch kurzes Verzweigen auf diesen Vektor starten, bevor mit der eigentlichen Daten-

prüfung fortgefahren wird. Zunächst wird getestet welcher, ob Fast- oder Chip-Me-

mory und wieviel Speicher zur Verfügung steht. Befindet sich im Bereich von $C00000

bis $DC0000 Fast-Memory, so wird der EXEC-Datenbereich bei $C00000 angelegt,

ansonsten bei $676. Danach wird der maximale Speicher durch Abfragen des Bereiches

von 0 bis 2 Mbyte festgestellt. Ist dieser Bereich kleiner 256 Kbyte, so verfärbt sich der

Bildschirm grün und es wird mit einer Endlosschleife, die ständig die Power-LED blin-

ken läßt, fortgefahren. Wenn dieser Bereich größer oder gleich 256 Kbyte ist, verfärbt

sich der Bildschirm mittelgrau. Anschließend beginnt die Einrichtung des EXEC-

Datenbereiches. Die Prozessorbestückung wird ermittelt und verschiedene Listen und

Header werden installiert. Die EXEC-Sprungliste zu den verschiedenen Befehlen wird

eingerichtet. Die Ausnahmevektoren 2 bis 47 werden belegt, der Interrupt-Server,

sowie der Task-Kontroll-Block und das Debugger-System installiert. Nun ist der Initia-

lisierungsvorgang von EXEC fast am Ende, es wird nur noch der Supervisor-Modus

abgeschaltet und die Tasks werden zum Scheduling freigeben. Die Anfangsadresse der

Libraries wird in einer Liste gesammelt und im EXEC-Datenbereich abgelegt.

Anschließend wird die Power-LED auf hell umgeschaltet. An dieser Stelle befindet sich

wieder ein Abfangvektor. Dieser Vektor wird mit CoolCapture bezeichnet. Ist dieser

Vektor im RAM-Base gesetzt, so findet hier nochmals eine Verzweigung statt. Nach

dieser möglichen Verzweigung werden alle residenten Module durch die EXEC-Rou-

tine InitCode initialisiert. Das letzte residente Modul, das initialisiert wird, ist die

DOS-Bootstrap-Routine. Hierbei werden, falls eine Diskette im internen Laufwerk 0

eingelegt ist, die Sektoren 0 und 1 gelesen, in denen sich die DOS-Initialisierungs-

routine befindet. Anschließend wird überprüft, ob die Kennung »DOS« vorhanden

und die Checksumme fehlerfrei ist. Wird diese Erkennungsmarke nicht gefunden, oder

die Checksumme ist fehlerhaft, so erscheint eine Hand, die das Einlegen der Work-

bench-Disk verlangt. Ist hingegen die Diskette erkannt worden und die Checksumme

fehlerfrei, so wird die gelesene DOS-Initialisierungsroutine gestartet. Diese Routine

öffnet das DOS-Library und übergibt die Kontrolle an Amiga-DOS. Mißlingt diese

Übergabe beispielsweise wegen eines fehlerhaften Programms, so gibt InitCode die

Kontrolle an EXEC zurück. Falls der WarmCapture-Vektor gesetzt ist, wird an dieser

Stelle verzweigt, andernfalls wird der residente Debugger-ROM-Wack aufgerufen.

Dieser kann jedoch nur mit einem Terminal an der seriellen Schnittstelle betrieben

werden.

48 Der Bootvorgang

2.2.1: Die Abfangvektoren

Von großem Nutzen für Anwender können die Abfangvektoren ColdCapture und Cool-

Capture sein, da hier EXEC bei der Initialisierung des Systems auf ein eigenes Pro-

gramm verzweigen kann. Der Vektor WarmCapture hingegen ist von keiner großer

Bedeutung, da er nur bei einem Fehlschlagen der DOS-Inititalisierung aufgerufen

wird.

Durch Verändern der Cold- bzw. CoolCaptureVektoren kann der Anwender sein Pro-

gramm direkt in die Initialisierung des Systems einbinden, wodurch die Programmie-

rung von Vieren oder Reset-Fester-RAM-Disks möglich ist. Bevor jedoch unser Pro-

gramm aufgerufen werden kann, muß der Vektor auf die Startadresse des jeweiligen

Programms gesetzt werden, das aufgerufen werden soll. Der erste Vektor, der aufgeru-

fen wird, ist der ColdCapture. Er befindet sich bei $2A (AbsExecBase). Ist dieser Vek-

tor ungleich Null, wird das adressierte ColdCapture-Programm mit »JMP« von EXEC

angesprungen. Da der Stack noch nicht initialisiert wurde, kann das Programm nicht _

mit »JSR« aufgerufen werden. Um dennoch von dem ColdCapture-Programm zurtick

zum EXEC zu kommen, wurde die Riickkehradresse in das AdreBregister A5 abgelegt.

Eine Rückkehr von dem aufgerufenen Cold-Capture-Programm zum EXEC ist

dadurch nur mit »JMP (a5)« möglich. Hier sollte niemals »RTS« verwendet werden.

Vor dem Sprung in die ColdCapture-Routine löscht EXEC den gesetzten Vektor. Dies

hat zur Folge, daß bei nochmaligem Reset das Programm nicht mehr aufgerufen wird.

Soll dies nicht der Fall sein, muß am Anfang des Programms der Vektor nochmalsneu _

gesetzt werden.

Bei dem CoolCapture-Vektor, er ist zu finden bei $2E(AbsExecBase), ist die Initialisie-

rung des Systems fast am Ende. Im Gegensatz zum ColdCapture wird der CoolCapture |

mit JSR aufgerufen, sobald der Vektor ungleich Null ist. Hier kann problemlos mit
»RTS« zum EXEC zurückgekehrt werden. Dieser Vektor wird nicht gelöscht, ein Neu-

setzen ist somit nicht notwendig. ;

Leider genügt es nicht, einfach die Startadresse eines beliebigen Programms in einen

der beschriebenen Vektoren einzutragen. Eine Checksumme sorgt hier fiir die notwen-

dige Verwirrung. Es braucht jedoch keine eigene Routine fiir die Checksummenberech-

nung entwickelt zu werden. Hierzu kann man einfach die Checksummenberechnung

von EXEC ($160 bis $182(EXEC)) verwenden.

Bei dem Programmieren von Reset-Routinen sollte man etwas vorsichtig sein, denn

einmal gesetzt und aufgerufen, kann es bei fehlerhaften Programmen dazu führen, daß

nur noch Ausschalten weiterhilft.

Der Programmierung von resetfesten Programmen steht nun nichts mehr im Wege. Bei

unserem resetfesten Programm wird der ColdCapture-Vektor auf den Beginn einer

Copperanimation gesetzt, die nach dem Betätigen der Maustaste endet und anschlie-

Bend zum System zurückkehrt. Der CoolCapture-Vektor dient hier zum Neu-Initiali-

Der Bootvorgang 49

sieren des Speichers für die Reset-Routine. Dies ist notwendig, da beim Reset die

Memory-List-Header neu initialisiert werden und somit der Speicher für unser Pro-

gramm frei wird. Dies hätte zur Folge, daß die Reset-Routine von anderen Program-

men überschrieben werden kann. So jedoch bleibt das Programm solange erhalten, bis

der Rechner ausgeschaltet wird.

a;
3 ; Demonstration für

4 ; resetfeste Programme

5 ; last update 10/03/83

6 ; vonFrankKremser und JörgKoch

7 ; ©Markt & Technik 1988

10 ;

ll ; Diesist eine Demonstration, wiemanresetfeste Programme kon-

12 ; struiert. Das Programm setzt die zwei Resetvektoren>ColdStart<«

13 ; und>CoolStart<. VonColdStart aus wird das Hauptprogramm ge-

14 ; startet, das neue Copperlistenaufstellt. Wurde dann eine Maus-

15 ; taste gedrückt, so fährt der Rechner weiter fort mit der

16 ; Initialisierung. Dabei wirddann auch dieMemory-Listeerstellt.

17 ; Anschließendwirddannüber denCoolStart eine kurze Routine

18 ; aufgerufen, diedenSpeicherplatz, der vomProgramm benötigst

19 ; wird, inderMemory-Listealsbelegt eintragt. Damitist das

20 ; Programm dann weitgehend vor demÜberschreiben geschützt. Das

21 ; bedeutet, das Programm läßt sich nur noch durch Ausschalten

22 ; desRechners beseitigen.

23 ; Mittels dieser Routine könnte man also ohne größere Probleme

24 ; einen AMIGA-Virus schaffen, wovonwir aber ausdrücklichabraten

25 ; wollen.

26 ;

28

29 move.l1 4,36.

30 move.l #10000,d0 ‚10000 Byte für dieses Programm

31 lea start(pc),al ;AbProgrammstart bereitstellen

32 jsr -$0cc(a6) ‚(AllocAbs)

35 start: move.l 4,36 ‚Startadresse von EXEC

34 lea reset(pc),a0 ;Startadresse desHauptprogramms

35 move.l a0.$2a(a6) ‚indenColdCapture-Vektor speichern

36 lea mem(pc),a0 ;und Adresse der Mem-Allocation-Rout.

37 move.l a0,$2e(a6) ;indenCoolCapture-Vektor speichern

38

39 move.w #0,$24(a6) ‚anschließendneue Checksumme für den
40 moveq #0,dl ;sunterstenDatenbereicherstellen,

41 lea $22(a6),a0 ‚damit EXECc keinen Fehler erkennt

42 moveq +$18,d0

43 sum: add.w (a0)+,dl

50 Der Bootvorgang

44 dbra dO, sum

45 not.w dl

46 move.w dl,$24(a6)

4'7 moveq #0,dl

48 lea $22(a6), a0

49 moveq +$18,d0

50 sum2: add.w (a0)+dl

51 bra dO, sum2 |

52 not.w dl ;Ende der Initialisierung

53 rts

54

55 mem: move.l #+10000,d0 ‚10000 Byte flr dieses Programm

56 lea start(pc).al ;AbProgrammstart bereitstellen

57 jsr -$00c(a6) ‚(AllocAbs)
58 rts ‚EndederSpeicherallokierung

9
2 ; KHEKEKHKHKHKEKKKEKRKEKHHKEKKKKEKKHKHKKEKKKKE

61 ;

62 ; Dieswar der erste Teil des Programmes.

63 ; Abhier kann ein eigenes Programm eingeftigt werden.

64 ;
65 ; KKK KK KEK KK KKK KKK KK KKK KKK KK KKKKKHS

66

67 reset: movem.1 d0-d7/a0-a6,-(a7) ;Registerretten

68 lea.l $50000, a0 ;Bitplane ab$50000

69 move.l #6645,d0 ‚6645 Byte

70 clear: clr.l (a0)+ ‚löschen

71 dbf dO,clear . ;dekrementiere, teste

72 ‚dO=0O,neindannclear

73

74 jsr start ;Resetvektorenneusetzen

75 lea.l coltab(pc),al ‚Zeigerauffarbtabelle;

76 bsr copperinit ;Cooperlisteinitialisieren

77 jsr -132(a6) ‚—>Fortbid();

78 ;Multitaskingabschalten

79 lea.l $Aff000,a5 ‚a5 = Customchipbase

80 move.w +#$03e0,$96(a5) ;DMA-Controlwrite
8l ;dieBitsDMA enable,

82 ;Bit-Plane DMA enable,

83 ; Coprocessor DMA enable,

84 ;Blitter DMA enable,

85 ;sowie Sprite DMA enable,

86 ;werdenimDMA-Register

87 ‚gelöscht

83

89 | move.1 #%55000,$80(a5) ;COPILCH : = $55000

90 ‚indirekte JMP - Adresse des

91 ;Copper locationregister

92 ‚wirdaufdieAdresse

93 ;$55000 gesetzt (Copperliste)

Der Bootvorgang 51

94 clr.w

95 move.w

96 clr.l

97 clr.l

98

99 move.w

100

101

102

103

104

105 move.l

106 main: andi.b

107 beq
108

109 lea.l

110 add.1

lll cmp. 1

112 bne

113 move. 1

114 adda.l

115 bsr

116 move.l

117 loop: tst.l

118 dbra

119 bra

120

121 ende: lea.l

122 jsr

123 move.l

124 move.l

125 clr.w

126 move.w

127

128 jsr

129

130

131 movem. 1

132 move. 1

133 jmp

134 |

135 copperinit:

136 clr.l

137 lea.l

138

139 move.l

140 move.l

141 move.l

142 move.l

143 loopl: move.b

$88 (a5)

+1100, $100(a5)
$102(a5)

$108(a5)

+#$8380 , $96 (ad)

#0,a2

#64 ,$bfe001l

ende

coltab(pc),al

#1,a2

#32,a2

cont

#0,a2

ar,al

copperinit

#$ff,d3

(a6)
d3, loop

main

gfxname(pc),al

—408 (a6)

do0,a4

38(a4) ,$80(a5)
38 (a5)
+ $8060 ,$96(a5)

—138(a6é)

(a7)+,d0d7/a0-a6

#reset.$2a(a6)

(a5)

dl

$55000, a0

+8$00e00005, (a0)+
+$00e20000, (a0)+
+$01800f00, (a0)+
#+80,d0
d0,(a0)+

; COPJMP1 loeschen

; BLCONO = #$1100

;léschenvonBLCONL

‚löschen von BLIMOD

;DMAcontrolwrite

;die Bits DMA enable,

;Bit-Plane DMA enable,

; Coprocessor DMA enable

‚werden gesetzt

;Initialisierungvona2

;Ist Bit 6 gesetzt?

;Wenn ja, dannwar Maustaste

‚gedrückt, Programmbeenden

‚ZeigeraufColortabelle

‚aZumlerhöhen,

;vergleichenobgleich32

;wennnicht, dann fortfahren

;wennnein, danna2zurückset.

‚a2zualhinzuaddieren

;undneue Copperlisteerstel.

;Wert fur Warteschleifesetzen

;Dummybefehl zur Verzögerung

‚d3erniedrigenundggsf. fortf.

‚Das ganzenocheinmal

‚Zeigeraufgfxnameinal

;—> 01ld0OpenLibrary();

‚alteCopperlisteholen

;undinCOP1LCHsetzen

; COPJMP1 löschen

;SpriteundBlitter DMA

;setzen

;—> Permit();

;Multitaskingein

‚Register zurückgeben

‚Resetvektornocheinmalset.

‚Rückkehr

‚dl1löschen

‚Startadresse für

;Cooperliste

;BitPlanel Zeiger setzen

;ColorOauf rot setzen

;AbZeile80Farbrotation

;Wait—VP

52 Der Bootvorgang

144 move.b

145 move.1

146 clr.l

147 move.b

148 eori

149 move

150 addq

151 cmpi

152 bne

153 clr.l

154 loop2: add. 1

155 cmp. 1

156 beq

157 bra

158 loops: move.1l

159 move.l

160 move.l

161 rts

162

163

164 ;daRotation

165 even

166 coltab: dc.b

167 dc.b

168 dc.b

169 dc.b

170 dc.b

171 dc.b

172 dc.b

173

174

#1,(a0)+

+$fffe0180, (0)+

d6

(al,dl),d6

#$0ffO0,d6

d6,(a0)+

#1l,dl

#32,dl

loop2

al

#1,d0

+255, d0

loop3

loopl

+$ffOlfffe, (ad)+

#$01800f00, (ad) +

+$fffffffe, (ad)+

;Wait —HP+Bit 0 gesetzt

;Wait +ColorO

;neue Farbe aus Tabelleholen

; bearbeiten

;u. inCopperli. f. ColorQeintr.

‚Farbindexumlerhöhen

;Wenn 32 Farben gezeigt,

‚dann Index zurücksetzen

‚Zeilenindexumlerhöhen

‚undmit255vergleichen

‚warten, bisZeile255erreicht

‚dannColor0Oaufrotsetzen

‚Endekennzeichnung für Copper

‚Rückkehr

;Farbtabelle, doppelt so lang, wie Farbanzahl,

$00,$10,$20,$30,$40,$50, $60, $70, $80, #90

$a0,$b0,$c0,$8d0, $60, $f0,$¢f0,$e0, $do

$c0,$b0, $a0, $90,480,970, #60, $50,$40, $30

$20,$10,$00,$00,$10,$20,$30,$40,$50, $60

$70,$80,$90,$a0,$b0,$c0,$d0,$e0,¢f0,$f0

$e0,$d0,$c0,$b0, $a0, $90, $80, $70, $60, $50

$40, $30, $20,$10, $00

efxname:dc.b"graphics.library",0O

Der MC68000 53

Kapitel 3

Der MC68000
|

10 Jahre müssen wir zurückblicken, um die Anfänge dieses Mikroprozessors an das

Tageslicht zu holen. Wir schrieben das Jahr 1977, als man begann, Software auf Silizium-

chips mit minimalen Abmaßen zu bringen. Auch Motorola versuchte dies. Mit neuer

MOS-Technologie und auf den Grundlagen des MC6800, startete Motorola mit ihren

Spezialisten Tom Gunter und Co. das Projekt MC68000. Daraus entstand 1979 der

XC68000, der Mikroprozessor der 80er Jahre, der insgesamt 68000 Transistorfunktio-

nen auf einem Siliziumchip der Größe 6,2 mal 7,1 mm beherbergt. Bild 20 im Farbteil

zeigt das „Herz“ des Amigas.

Doch erst 1984 kam dieser Mikroprozessor zu großem Glanz, in dem Platinencomputer

Gepard, der als Zusatz zum damals populären Apple oder als Einzelgerät erhältlich

war. Es zeigte erstmals, welche faszinierenden Möglichkeiten mit diesem Mikroprozes-

sor im Bereich Grafik und Berechnungen von Daten möglich sind. Die Firma Amiga,

damals eine Joystick-Firma, sah in diesem Prozessor die Zukunft und begann 1984 mit

der Entwicklung eines Supercomputers: dem Amiga.

Im Amiga ist er einer der »vier Großen«, die diesem Rechner unglaubliche Fähigkeiten

verleihen. Heute sprechen viele Fakten für den Einsatz des MC68000: 16-Bit-Bus,

komfortabler Befehlssatz, ansprechbarer Speicher bis 16 Megabyte usw. Doch der

Irend geht schon zum Einsatz von noch leistungsfähigeren Prozessoren, wie dem

MC68020, dem MC68030 oder sogar dem, noch in Entwicklung befindlichem

MC68040.

3.1: Der MC68000 im Detail

Der MC68000 verfügt über 24 Adreßleitungen, wobei AO nicht als solche gekennzeich-

net ist, 16 Datenleitungen, 3 Leitungen zur Interrupt-Prioritäts-Mitteilung usw. Die

Anschlüsse im Überblick zeigt folgendes Blockschaltbild (Z 3.1-1):

54 Der MC68000

Adressleitungen

A, Ags

Datenleitungen

D, - D,;

MC68000

Z3.1-1: Einteilung der Leitungen des M68000

Der MC68000 55

Wie die Anschlüsse bei dem Originalgehäuse verteilt sind, zeigt Abbildung 3.1-2:

M68000

Z3.1-2: Pinbelegung des Dual-In-Line-Gehäuses

56 Der MC68000

Die Signale des MC68000:

A1-A23

DO0-D15

AS

R/W

23 Adreßleitungen zum direkten Ansprechen von 8 Mbyte. AO könnte aus

UDS und LDS erzeugt werden, so daß 16 Mbyte ansprechbar sind.

16 Datenleitungen. Daraus resultiert, daß der normale Speicherzugriff

beim MC68000 ein Word-Zugriff ist.

Adreß-Strobe gibt an, daß die auf dem Adreßbus liegende Adresse gültig ist.

Zeigt an, ob ein Lese- oder ein Schreibzugriff vorliegt.

UDS/LDS Zeigt an, ob das obere/untere Byte auf dem Datenbus gültige Daten ent-

DTACK

BR

BG

BGACK

IPLO-2

BERR

RESET

HALT

VMA

VPA

FCQ-2

CLK

VCC

GND

halt.

Zeigt an, daß der Datentransfer beendet ist.

Fordert den Adreß- und den Datenbus an.

Gibt die Busse frei.

Zeigt an, daß die Busfreigabe empfangen wurde.

Diese Interruptleitungen lösen eventuell einen Interrupt aus, wenn nicht

bereits ein Interrupt höherer Priorität vorliegt.

Signalisiert dem MC68000, daß ein Busfehler vorliegt.

Setzt den Prozessor zurück, wenn mindestens 10 Taktzyklen lang der Pin auf

Low liegt.

Hält den MC68000 so lange an, bis an diesem Pin wieder ein High-Signal

anliegt.

Synchrontakt.

Gültige Speicheradresse liegt vor.

Gültige Peripherieadresse liegt vor.

Funktioncode-Ausgänge zeigen an, in welchem Zustand sich der MC68000

gerade befindet.

Systemtakt

Versorgungsspannung +5V

Masse

Der MC68000 57

3.2: Die Exceptions

Der MC68000 hat drei definierte Zustände:

1. Normalzustand, d.h. Programmausführung.

2. Haltezustand, d.h. am HALT-Eingang des Prozessors liegt ein Low-Signal an.

3. Ausnahmezustand (Exceptions).

Im dritten Zustand behandelt der Prozessor bestimmte Routinen. Er kann auf die ver-

schiedensten Arten dazu gebracht werden, solche Routinen abzuarbeiten. Diese Mög-

lichkeiten sind beispielsweise:

Interrupts

— Busfehler

— Reset

— Durch die Befehle TRAP, TRAPV, CHK und DIV

— Adreßfehler

— Durch den Trace-Modus

Jeder Möglichkeit ist dabei ein bestimmter Vektor zugeteilt, der die Adresse der auszu-

führenden Exception-Routine enthält. Diese Vektoren befinden sich im Speicherbe-

reich $000 bis $3FFund können auch vom Benutzer gesetzt werden, wobei die Routine

dann mit RTE verlassen werden muß. Beim Amiga jedoch besteht dazu noch ein Hin-

dernis, denn das EXEC arbeitet in diesem Bereich mit einer Checksumme, so daß eine

einfache Änderung nichts nutzt. Zusätzlich muß noch eine neue Checksumme berech-

net werden. Wie diese Checksummenberechnung funktioniert, ersehen Sie aus dem

Programmbeispiel zu Kapitel 2. Welche Exceptions nun welche Vektoren benutzen,

ersehen Sie aus folgender Tabelle:

Adr Nr. Funktion

000 00 Supervisor-Stackpointer 0

004 01 Anfangsadresse für Programmcounter nach RESET

008 02 Busfehler

00C 03 Adreßfehler

010 04 nicht implementierter Befehl

014 05 Division durch Null

018 06 Befehl CHK

O1C 07 BefehITRAPV

020 08 Privilegverletzung

024 09 Traceroutine

028 OA Emulator fiir 1010-Befehlscode

Q2C OB Emulator fiir 1111-Befehlscode

58 Der MC68000

Adr Nr. Funktion

30 0C

_ _ reserviert

038 OE

03C OF nicht initialisierter Interrupt

040 10

— _ reserviert

05C 17

060 18 falscher Interrupt

064 19 Interruptvektor Ebene 1

068 1A Interruptvektor Ebene 2

06C 1B Interruptvektor Ebene 3

070 1C Interruptvektor Ebene 4

074 1D Interruptvektor Ebene 5

078 1E Interruptvektor Ebene 6

07C 1F Interruptvektor Ebene 7

080 20

_ _ Trap-Befehlsvektoren

OBC 2F

OCO 30

— — reserviert

OFC 3F

100 40

_ - Anwender-Interruptvektoren

3FC FF

Die Custom-Chips 59

Kapitel 4

Die Custom-Chips
— |

Der Amiga besitzt neben dem MC68000 noch weitere »intelligente« Bausteine, die we-

sentliche Aufgaben übernehmen. Diese Bausteine sind:

Amiga 1000: Agnus, Denise und Paula

Amiga 500: FatAgnus, Denise, Paula und Garry

Amiga A2000: Agnus, Denise und Paula

Amiga B2000: FatAgnus, Denise, Paula, Garry und Buster

Die wichtigsten Bausteine sind wohl Agnus, bzw. FatAgnus, Denise und Paula, da sie

Funktionen übernehmen, die sofort erkennbar sind, wie beispielsweise die Disk-Kon-

trolle oder die Sprite-Darstellung. Bild 23 (Farbteil) zeigt die Custom-Chips des A 1000.

Garry und Buster sind lediglich Bauteile, die verschiedene Steuerschaltungen erset-

zen, aber nicht softwaremäßig angesprochen werden können.

4.1: Agnus und FatAgnus

Im Amiga 1000 wurde als einer der Custom-Chips Agnus eingesetzt. Dieser Chip wurde

in den späteren Amiga-Produkten, ausgenommen Amiga A2000, durch eine Nachfolge-

version, FatAgnus genannt, ersetzt. Dieser neue Chip enthält einige Steuerschaltun-

gen, die zuvor noch auf der Platine zu finden waren. Zudem enthält er die komplette

Refresh-Logik für 1 Mbyte, so daß die RAM-Erweiterung beim A500 sehr einfach ge-

halten werden konnte, bzw. auf dem Amiga B2000 1 Mbyte direkt auf der Platine inte-

griert werden konnten. Außerdem erzeugt er alle Takte, die daß System benötigt, aus

dem Grundtakt von 28,63636 MHz, was zuvor von einer externen Schaltung übernom-

men wurde. Vergleiche Bild 21 und 22 im Farbteil.

Die folgenden Abbildungen zeigen die Pinbelegungen von Agnus und FatAgnus, sowie

das Blockschaltbild zu FatAgnus:

60 Die Custom-Chips

E
R
O
N
D
U
A
w
W
n
m
D
-
|
 |

U
4
C

> ©

EE
GG
Er
E

836
1

AG
NU

S

U
U
U
U
U
U
O
U
U
U
U
U
U
O
U
U
U

O
O
!

A ®)

SS

N

O1

Zu

24.1-1: Die Pinbelegung des Agnus-Chip

Die Custom-Chips 61

Custom Animation chip
Fat als

RD
3

R
D
4

RD
5

|
R
D
6
 ~

R
D
.

R
D
O

B
D

R
D

R
D

R
D
1
3

R
D
1
4

R
D
1
5

H
S
Y
*

C
S
Y
*

VS
Y*

ER
’

A
1
8

A1
7

A1
6

2 ys
1qQ)U
>

9 109876 P49 21 84 Notre

8370

“o
j

|
D.

|

1
I
|

1
ot

te
t

ot
E
I
G

T
E
L

B
U

t
t
l

1
t
t
i
d
t

t
t
t

&
t
t

t
t

t
t

bt
t
t

to
l

>

O1

RGA2 32 54
os 33 4 35 RAN 39 40 4442 4544 45 96 4748 4990 51 9° 53

CC
K

TE
ST

V
S
S

MA
O

MA
1

_M
A2

_M
A3

MA
4

MA
S MA
6

MA
T MA
8

LD
S?

_ U
DS
*

_
X
C
L
K

~
XC
LK
EN
*

~—
C
D
A
C
*

~
7
M
H
Z
.

R
G
A
.

-2
8M
HZ

. C
CK
Q

2 4.1-2: Die Pinbelegung des FatAgnus-Chips

62 Die Custom-Chips

Register Address Decoder

RAM Address Generator

~~ Register Address Encoder _ :

P
r
i
o
r
i
t
y

_
oe
s

>
Co
nt
ro
l

Lo
gi
c]

U
N

Sprite DMA
Control Logic

| _ Sprite Vertical
| Positon Compare

Co
pr

oc
es

so
r

(C
op
pe
r)

Sync. Counters Position and |.
and Light Pen

Control a PEN Registers Registers .

Z 4.1-3: Das Blockschaltbild von FAT-Agnus (Teil 1)

Die Custom-Chips 63

Control
Logic

Disk and
Refresh
DMA

| Control
Logic

| BLITTER
DM
| Control
| Logic

Audio
Control
Registers _ .

| | Registers |
Control

__| Disk and
| Refresh
- |Control | |

Registers | |

| BLITTER
| Control
_ | Registers

BLITTER |*

64 Die Custom-Chips

Weitere wichtige Funktionen, die diese Chips übernehmen, sind die Kontrolle von 25

DMA-Kanälen, über die externe Bauteile auf den Systemspeicher zugreifen können,

ohne die CPU damit zu belasten, die Copperfunktionen, die displaysynchronisierte Än-

derungen der Custom-Chip-Register erlauben, Blitterfunktionen, um Speicherberei-

che des ChipRams zu manipulieren, fast ohne die CPU zu bremsen, sowie das Erzeu-

gen der Kontrollsignale für das ChipRam und die 1Meg-Erweiterungskarte und das zu-

gehörige Multiplexen der Ram-Adressen.

4.1.1: Die Pinbeschreibung zu Agnus

Name PIN VO Beschreibung

DO-D8 1-9 VO Datenbusleitungen 0 bis 8

VCC 10 I +5 Volt-Versorgungsspannung

RES 11 I Systemreset. Setzt den Custom-Chip zurück.

INT3 12 O Interrupt-Level 3 Ausgang. Fordert bei der MC68000 CPU

einen Interrupt an.

DMAL 13 I DMA-Request-Leitung. Ein direkter Speicherzugriffv wird

angefordert.

BLS 14 I Der Blitter wird verlangsamt (BLITTER- SLOWDOWN)

DBR 15 O Datenbus-Anfrage an die Busverwaltung.

ARW 16 O Agnus-RAM-Write-Signal

RGA8&8-1 17-24 TO RegisteradreBleitungen 8 bis 1

CCK 25 I Eingang für Farbsignaltakt

CCKO 26 I Eingang für Farbsignaltakt-Verzögerung

VSS 27 I Masse

DRAO-8 28-36 I/O Dynamische SpeicheradreBleitungen 0 bis 8

LP 37 I LightPen-Eingang

VSY 38 VO Vertikales Synchronsignal

CSY 39 O Synchronsignal fiir Composite-Ausgang

HSY 40 I/O Horizontales Synchronsignal

VSS 41 I Masse

D15-D9 42-48 VO Datenbusleitungen 15 bis 9

Die Custom-Chips 65

4.1.2: Die Pinbeschreibung zu FatAgnus

Name PIN VO Beschreibung

A19-A1 59-77 I

RD15-0 1-14 TO
83/84

AS 24 I

RGEN 23 I

RAMEN 25 I

PRW 22 I

RRW 21 O

MA0-8 43-51 O

LDS 52 I

UDS 53 I

CASL 54 O

Adreßbusleitungen. Die Leitungen Al bis A8 werden
auch von der CPU benutzt, um die internen Register zu

adressieren.

Dies sind gepufferte Datenbusleitungen, die auch

während eines DMA-Zugriffes verwendet werden.

Dieses Signal zeigt an, daß die Daten auf dem Adreßbus

verwendbar sind.

Ist dieses Signal zusammen mit AS aktiviert, so werden die

Daten aufdem Adreßbus als interne Registeradressen

verstanden.

Ist dieses Signal zusammen mit AS aktiviert, so werden die

Daten des Adreßbusses gemultiplext und aufdem

Adreßbus MA bereitgestellt.

Ist dieses Signal low, so liegt einWrite-Zugriff vor.

Bei einem High-Signal liegt ein Read-Zugriff vor.

Dieses Signal kennzeichnet einen Read-/Write- Zugriff an

weitere Systemteile. Sonst wie bei PRW.

Auf diesem Adreßbus liegen die gemultiplexten

“ Adreßdaten an. Diese Daten werden in zwei Phasen

übergeben. In der ersten Phase werden die Zeilen-

adressen, in der zweiten die Spaltenadressen übergeben.

Die Adressen beziehen sich auf 256Kbyte-DRAM's, wobei

nur die unteren 512 Kbyte angesprochen werden können.

Allerdings liegen nur gemultiplexte Adressen an, wenn auf

eine Ram-Adresse zugegriffen wird (RAMEN ist low),

oder wenn ein DMA-Zugriff vorliegt (DBR ist low).

Dies ist der Lower-Data-Strobe der CPU. Entsprechend

dem Eingangssignal wird CASL gesetzt.

Dies ist der Upper-Data-Strobe der CPU. Entsprechend

dem Eingangssignal wird CASU gesetzt.

Wird entsprechend LDS gesetzt und beeinflußt die

Spalten-Adressierung der DRAMs. Ist dieses Signal aktiv,

entspricht das einem Zugriff auf das Lowbyte des

Datenwortes.

66 Die Custom-Chips

Name PIN VO Beschreibung

CASU

RASO

RAS1

DBR

RGAS-1

HSY

VSY

CSY

LP

RST

INT3

DMAL

BLS

55 O

57 O

56 O

20 O

26-33 O

81 VO

79 VO

80 O

78 I

16 I

77 O

18 I

19 I

Wird entsprechend UDS gesetzt und beeinflußt die

Spalten-Adressierung der DRAMs. Ist dieses Signal aktiv,

entspricht das einem Zugriff auf das Highbyte des

Datenwortes.

Dieses Signal wird aktiv, wenn auf die unteren 512 Kbyte

zugegriffen wird.

Dieses Signal wird aktiv, wenn auf die oberen 512 Kbyte

zugegriffen wird, die FatAgnus verwalten kann.

Dieses Signal ist aktiv, wenn ein DMA-Zyklus bevorsteht.

Dies ist ein Register-Adreß-Bus. Über diesen Bus kann

FatAgnus auf Register weiterer Custom-Chips zugreifen.

Ist dieses Signal als Eingang geschaltet (Genlock Video on),

so kann über diesen Pin der horizontale Rasterstrahl-

Zähler extern synchronisiert werden. Ansonsten liegt hier

der Horizontalsynchronimpuls des Systems an.

Ist dieses Signal als Eingang geschaltet (Genlock Video on),

so kann über diesen Pin der vertikale Rasterstrahl-Zähler

extern synchronisiert werden. Ansonsten liegt hier der _

Vertikalsynchronimpuls des Systems an.

An diesem Pin liegen die Synchronisationssignale für den

Composite-Video-Ausgang an. HSY, VS Yund CSYsind

NTSC-Kompatibel.

Wird dieses Signal auf low gesetzt, so zeigt dies an, daB die

Lightpen-Position mit der des Rasterstrahls übereinstimmt.

Setzt FatAgnus zurück.

Fordert einen Interrupt der Stufe 3 bei der CPU an. Ein

solcher Interrupt wird immer dann angefordert, wenn der

Blitter einen Datentransfer beendet hat und für neue

Aufgaben bereitsteht. :

Dieses Signal wird aktiv gesetzt, wenneineexterne __

Komponente einen Audio- und/oder Disk-DMA-Zugriff

benötigt.

Ist dieses Signal aktiv, so wird der Blitter gestoppt, —

so daß die CPU diesen Zyklus verwenden kann.

Die Custom-Chips 67

Name PIN VO Beschreibung

28MHZ 34 I An diesem Pin muß der Systemtakt von 28,63636 MHz

anliegen. Dieser Takt gilt als aktiv, wenn XCLKEN High

ist. |

XCLK 35 I An diesem Pin kann ein alternativer Systemtakt anliegen,

der als Takt verwendet wird, wenn XCLKEN Low ist. Ein

solcher alternativer Takt ist nötig, wenn das System mit

einer externen Videoquelle 0.4. synchronisiert werden

soll. | |

XCLKEN 36 I Dieses Signal kontrolliert, welcher Systemtakt verwendet

werden soll.

O CCK 40 Dies ist der Takt, der als Farbtragersignal dient.

CCKO 39 O Dies ist der gleiche Takt wie CCK, allerdings um

90 Grad nachhängend.

7MHZ 38 O Dies ist der Takt, der beispielsweise von der CPU

verwendet wird.

CDAC 37 O Dies ist der gleiche Takt wie 7MHZ, nur um 90 Grad

vorlaufend.

TEST 41 I Ist dieses Signal aktiv, so wird der Prozessorzyklus

unterbrochen und die internen Register können in jedem

CCK-Zyklus angesprochen werden

(Copper-Befehlsliste).

4.1.3: Der Copper

Agnus und FatAgnus enthalten einen CoProzessor, der wohl das interessanteste Bau-

stück des Amiga-Systems darstellt. Er ist mit dem Rasterstrahl synchronisiert. Durch

diese Synchronisierung ist dieser Copper in der Lage, Register der Custom-Chips in

Abhängigkeit der Rasterstrahlposition zu modifizieren. Dazu muß eine sogenannte

Copper-Liste aufgestellt werden, die im ChipMem abzulegen ist, damit die DMA diese

Daten fortlaufend an den Copper übertragen kann.

Der große Vorteil des Copper’s besteht darin, daß ohne großen Aufwand Videomanipu-

lationen möglich sind, die ohne ihn gar nicht, oder nur schwer möglich wären. Beispiele

dafür lassen sich in großer Zahl finden. Hier nur zwei davon:

— Die Möglichkeit, mehrere Screens auf einmal auf einem Bildschirm übereinander

darzustellen, wird erst durch den Copper ermöglicht, da dieser an den jeweiligen Po-

sitionen die Chip-Register auf die Videodaten eines neuen Screens setzt (Bilddaten,

Farbregister, Sprites usw.).

68 Die Custom-Chips

— Durch den Copper ist es möglich, Sprites mehrmals auf einem Bildschirm zu zeigen,

indem, nach der Beendigung der Darstellung des Sprites, die zugehörigen Register

zu diesem Sprite auf neue Daten gesetzt werden.

Im Normalzustand des Rechners steuert der Copper alle Displayfunktionen. Das

heißt, das eine Copperliste besteht, die alle Farben, Screendaten usw. fortlaufend setzt.

Das hat natürlich auch zur Folge, daß es keinen Zweck hat, eine neue Hintergrund-

farbe zu setzen, indem einfach ein neuer Wert in das entsprechende Farbregister ge-

schrieben wird, da der Copper bei einer normalen Copperliste auch Befehle vorfindet,

um die Farben zu setzen. Man muß also direkt die Copperliste manipulieren. In diese

Copperliste können natürlich auch eigene Befehle eingeschrieben werden, bzw. es

kann eine ganz neue Copperliste gesetzt werden. Wenn allerdings eine ganz neue Liste

gesetzt wird, bedeutet dies, daß die bisherige Darstellung verschwindet, da sie ja nicht

mehr durch den Copper gesetzt wird. Welche Register vom Copper umgesetzt werden

können, entnehmen Sie bitte dem Anhang. Der Copper versteht drei Befehle, aus

denen eine Copperliste zusammengesetzt wird. Diese Befehle sind:

WAIT: Wartet, bis der Rasterstrahl eine bestimmte Bildschirmposition erreicht

hat. Diese Position kann auch in X-Richtung bestimmt werden.

MOVE: Setzt ein Chip-Register auf einen spezifizierten Wert.

SKIP: Überspringt den nächsten Copperbefehl, wenn eine spezifizierte Raster-

strahlposition schon erreicht wurde.

Jeder Befehl besteht aus zwei 16-Bit-Worten. Die Copperliste wird sequentiell gelesen,

wobei die zwei Befehlsworte immer zusammen gelesen werden.

Der MOVE-Befehl hat folgende Syntax:

Erstes Befehlswort:

Bit 0 Ist immer auf 0 zu setzen.

Bit8-1 Enthält die Registeradresse des Chip-Registers, das gesetzt werden soll. Das

Color0-Register hat beispielsweise die Adresse $DFF180, es ist der Wert $180

einzutragen.

Bit 15-9 Diese Bits werden nicht benutzt, sollten aber auf 0 gesetzt werden.

Zweites Befehlswort:

Bit 15-0 Diese 16 Bits enthalten den Wert, der in das Chip-Register, das im ersten

Befehlswort spezifiziert wurde, geschrieben werden soll.

Die Custom-Chips 69

Der WAIT-Befehl hat folgende Syntax:

Erstes Befehlswort:

Bit 0 Ist immer auf 1 zu setzen.

Bit 15-8 Vertikale Rasterstrahlposition, auf die gewartet werden soll.

Bit 7-1 Horizontale Rasterstrahlposition, auf die gewartet werden soll.

Zweites Befehlswort:

Bit 0

Bit 15

Bit 14-8

Bit 7-1

Ist immer auf 0 zu setzen.

Blitter-Finished-Disable-Bit. Wenn über den Copper Blitterregister gesetzt

werden sollen, muß erst gewartet werden, bis dieser seine Operationen been-

det hat. Um auf den Blitter zu warten, muß dieses Bit auf 0 gesetzt werden.

Normalerweise ist es auf 1 gesetzt. ;

Diese Bits bestimmen, welche Bits der vertikalen Position beim Vergleich mit

der Rasterstrahlposition zu verwenden sind. Soll ein Bit verwendet werden,

so ist hier das entsprechende Bit zu setzen.

Für diese Bits gilt das Gleiche, wie für die Bits 14 bis 8, nur für die horizontale

Position.

Der SKIP-Befehl hat folgende Syntax:

Erstes Befehlswort:

Bit 0 Ist immer auf 1 zu setzen.

Bit 15-8 Vertikale Rasterstrahlposition, auf die gewartet werden soll.

Bit 7-1 Horizontale Rasterstrahlposition, auf die gewartet werden soll.

Zweites Befehlswort:

Bit 0

Bit 15

Bit 14-8

Bit 7-1

Ist immer auf 1 zu setzen (einziger Unterschied zu WAIT).

Blitter-Finished-Disable-Bit. Wenn über den Copper Blitterregister gesetzt

werden sollen, muß erst gewartet werden, bis dieser seine Operationen been-

det hat. Um auf den Blitter zu warten, muß dieses Bit auf 0 gesetzt werden.

Normalerweise ist es auf 1 gesetzt.

Diese Bits bestimmen, welche Bits der vertikalen Position beim Vergleich mit

der Rasterstrahlposition zu verwenden sind. Soll ein Bit verwendet werden,

so ist hier das entsprechende Bit zu setzen.

Für diese Bits gilt das Gleiche, wie für die Bits 14 bis 8, nur für die horizontale

Position.

70 Die Custom-Chips

Die Werte für die horizontalen Rasterstrahlpositionen können Werte zwischen $00 und

$E2 annehmen. Das bedeutet, es können alle 4 LoRes- oder alle 8 HiRes-Pixel abge-

fragt werden.

Für die vertikale Position stehen Werte zwischen $00 und $FF, also 255, zur Verfügung.

Da der Screen aber 262 Zeilen besitzt, gibt es Probleme, wenn die untersten Zeilen per

Copper angesprochen werden sollen. Hier eine Lösungsmöglichkeit:

— Warten, bis Zeile 255 erreicht.

— Dann die folgenden Zeilen als Zeilen 0 bis 6 ansprechen.

Hat man eine Copperliste erstellt, so trägt man den Zeiger auf diese Liste entweder in

die Register COPILCH/COPILCL oder aber in die Register COP2LCH/COP2LCL

ein. Anschließend muß noch ein beliebiger Wert in Register COPJMP1 oder in

COPJMP2 geschrieben werden. COPJMP1 bewirkt den Neustart des Coppers mit der

Copperliste aus den Register COPILCH/COPILCL, während COPJMP2 einen Neu-

start mit der Liste aus COP2LCH/COP2LCL bewirkt.

Wie man eine Copperliste erstellt, ersehen Sie aus den folgenden Programmen.

JFRFRRRRRRRRRERRERRRERRRRRRRR RR RR RK

1. Cooper-Demonstration

last update 16/02/88

vonFrankKremser und JörgKoch

© Markt & Technik 1988

[FRRFRRRRRRRRRRRERRRRRRRKRRRRRKRRRR

O
M
A
N
o
O
O
A
R

W
D

FP

Diese Demonstration andert die Copper-Listesoab, daß die Workbench

Flagge zeigt. Zusatzlich werden noch die Zeichenfarben geändert.

e
e

oo

ee

oe
WN

N
F

O

[EERE EKEEKEKKEKKKKKKKKKKKKKKKEKKEK

u
n

(0

y&

#+include <exec/types.h> /* Include-Files laden */

#include <exec/tasks.h>

#include <exec/memory.h>

+#include <exec/interrupts.h>

#+include <exec/execbase.h>

+#include <exec/io.h>
#include <exec/libraries.h>

#include <exec/devices.h>

+#include <exec/ports.h>

+include <exec/lists.h>

#include <exec/nodes.h>

#include <graphics/gfxmacros.h> D
O
D
V
O
D
V
D
O
D
v
O
D
O
D
h
r

H
H

Hr

D
P
D

H
O
O
M
X
O

S
I
D

Die Custom-Chips 71

at

28

29

50

Sl

32

35

54

55

56

37

38

59

40

41

42

43

44

49

46

AT

48

49

50

ol

2

95

54

55

56

97

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Te

73

74

#include <graphics/copper.h>

#include <graphics/view.h>

#include <hardware/custom.h>

struct IntuitionBase * IntuitionBase; /* Zeiger für Libraries */

struct GfxBase *GfxBase;

extern struct Custom custon; /* Externe Structure bereitstellen */

/* Sie enthalt eine Vielzahl von */

/* Systemvariablen */

/* siehe inhardware/custom.h */

main() /* HAUPTPROGRAMM * /

struct UCopList *clist;

struct View *view;

GfxBase = OpenLibrary ("graphics.library",0); /* Libraries 6ffnen */

IntuitionBase = OpenLibrary(»intuition.library«,O);

/* Speicher für eigene Copper-Liste bereitstellen */

clist = AllocMem(sizeof(struct UCopList), MEMF__PUBLIC:MEMF__CLEAR);

view = ViewAddress();

view->View->UCopIns = clist; /* Neue Copper-Liste eintragen */

/* Neue Copper-Listeerstellen */

CWAIT(clist,0,0); /*Warten, bisCopper obersteBildpos. erreicht */

CMOVE(clist,custom.color[0],0x000); /*DannFarbenändern */

CMOVE(clist,custom.color[1],0x777) ;

CMOVE(clist,custom.color[3],OxFFF) ;

CWAIT(clist,85,0); /* Warten, bis Copper Zeile 85 erreicht */

CMOVE(clist,custom.color[0],0xF0O0O); /* Dann Farben andern */

CMOVE(clist,custom.color[1],OxFFF);

CMOVE(clist,custom.color[3],0x000);

CWAIT(clist,171,0); /*Warten, bis Copper Zeile 171 erreicht */

CMOVE(clist,custom.color[0],OxFEO); /* Dann Farben andern */

CMOVE(clist,custom.color[1],0x000);

CMOVE(clist,custom.color[3],0xFO0);

CEND(clist); /* Eintragen, daßdasEnde der Liste erreichtist */

RethinkDisplay(); /* Neue Displaydaten zur Darstellung bringen */

CloseLibrary(IntuitionBase); /*Librariesschließen */

CloseLibrary(GfxBase);

72 Die Custom-Chips

v
o
v
o
ı
o
9
0

w
m

Hr

o
A

A
KR

BR

A
K

H
R
A

KR

R
D
P
W
W
W
N
W
N
D
W
W
N
W
N
W
N
D
W
N
N
n
N
N
N
N
N
N
N
N
N
D
N
H
P
R
P
H
P

R
P
P

RP

RP

R
P
E

O
O
M
A
N

O
T
A

W
N
H
F
H
O
O
A
M
A
N
O
N
A
N
N
F
O
O
A
W
A
N
O
O
A
W
N
D
K
F
O
O
W
O
N
O
U
A
N
N
E
F
 O

[ERR KEEEKRKKKKKEKK KKK KEKKKKKEEK KKK

2.Copper-Demonstration

last update 16/02/88

von Frank Kremser und Jorg Koch

© Markt & Technik 1988

KHKEKEKKKHKKKKKKHHHKKKRKKKKKRKRKHKKKKKE

Diese Demonstration zeigt ein Rechteck, das sich laufend in der Größe

ändert. Dabei wirdaber nicht etwaindenscreen gezeichnet, sondern

es wirdan den entsprechenden Stellen die Hintergrundfarbe geändert.

Diese Aufgabe übernimmt der Copper.

KEKE KEKKEKKKKKKKEKKKKKKKKKKKKKEEE /

+#include <exec/types.h> /* Include-Files laden */

#+include <exec/tasks.h>

#include <exec/memory.h>

#include <exec/interrupts.h>

+#include <exec/execbase.h>

#include <exec/io.h>

+#include <exec/libraries.h>

+tinclude <exec/devices.h>

#+include <exec/ports.h>

+#include <exec/lists.h>

#+include <exec/nodes.h>

#+include <graphics/gfxmacros.h>

#+include <graphics/copper.h>

#+include <graphics/regions.h>

#+include <graphics/gels.h>

#include <graphics/gfxbase.h>

#+include <graphics/gfx.h#

#+include <graphics/clip.h>

+#include <graphics/view.h>

#include <graphics/rastport.h>

+include <graphics/layers.h>

#+include <intuition/intuition.h>

+ include <hardware/custom.h>
#include <hardware/blit.h>

struct IntuitionBase *IntuitionBase; /* Zeiger fir Library-Pointer */

struct GfxBase *GfxBase;

externstruct Customcustom; /*ExterneStructure, siehel. Copperdemo */

struct NewWindow nw = /* NewWindow-Structure für eigenes Window */
{ .

0,
0,

Die Custom-Chips 73

51 316,

on 10,

53 ok,

54 1

55 CLOSEWINDOW,

56 WINDOWDRAGIWINDOWCLOSE I SMART_REFRESH,

57 NULL,

58 NULL,

59 'Copperdemo",

60 NULL,

61 NULL,

62 0,

65 0,

64 0,

65 0,

66 WBENCHSCREEN

67 };
68

69 main() /* HAUPTPROGRAMM * /

70 {

71 struct Window *window;

72 struct ViewPort *vp;

73 struct UCopList *ucop[26];

74

75 UWORDi,j,w=0;

76

77 GfxBase=OpenLibrary("graphics.library",0O); /*Librariesöffnen*/

78 IntuitionBase=OpenLibrary("intuition.library",0O);

79

80 window=OpenWindow(&nw); /* Windowöffnen */

81 vp=ViewPortAddress(window); /*undViewport ermitteln */

82

83 for(j=10;j<=35;j++) /*26Copperlisten für die verschiedenen */

84 { /* Größen des Rechteckes erstellen */
85 ucop[j-10]=AllocMem(sizeof(struct UCopList) ,MEMF_CHIPIMEMF_CLEAR) ;

86 for (i=(j*2);i>0;i—) /* Speicher für die Copperliste */

87

88 CWAIT(ucop[j-10],127-1,140-(j*2));

89 CMOVE(ucop[j-10],custom.color[0],0x0F00);

90 CWAIT(ucop[j-10],127-1,140+(j*2));

91 CMOVE(ucop[j-10],custom.color[0],0x0000);

92 } |
93 for (i=0;i<(j*2);it++)

94 {

95 CWAIT(ucop[j-10],127+i1,140-(j*2));

96 CMOVE(ucop[j-10],custom.color[0],0x0OFOO);

97 CWAIT(ucop[j-10],127+i1,140+(j*2));

98 CMOVE(ucop[j-10],custom.color[0],0x0000);

99 }

100 CEND(ucop[j-10]); /* Copperliste beenden */

74 Die Custom-Chips

101 }

102

103 j =O;

104 while(!GetMsg(window->UserPort)) /* Solange, bis Closegadget */

105

106 WaitTOF(); /*Warten, bis oberer Bildschirmrand erreicht */

107 if(w==0) j+=3;

108 if(w==1) j-=3;

109 if(j==24)w=];
110 if(j==0)w=0;

lll

112 vp->UCopIns=ucop[j]; /* dann neue Copperliste setzen */

113 RethinkDisplay();
114}
115 for(j=0;j<=25;j++) /* Alle 26 Copperlisten löschen */

116 {
117 vp->UCopIns=ucop[j];
118 FreeVPortCopLists(vp);

119 RemakeDisplay();
120 }

121 CloseWindow(window); /*Windowschließen */.

122 £=CloseLibrary(IntuitionBase); /* Libraries schlieRRen */

123 CloseLibrary(GfxBase) ;

124 }

125

126

1 [EER EKREEREKKEKKKKKKEKKKKKKKKKKKKEKE

2

3 3.Copper-Demonstration

4 last update 16/02/88

5 vonFrankKremser und JörgKoch

6 © Markt & Technik 1988

7
8 KHHKHKKEKEKHKKKHKKEKKKKKHHKHHKRKKKKKKKKE

9

10 Diese Copper-Demonstration setzt laufend neue Copperlisten, soda ein

ll Screenmit laufenden Farben entsteht.

12
13 EN a 2 2 2 2 2

14

15 #include <exec/types.h> /* Include-Files laden */

16 #include <exec/tasks.h>

17 #include <exec/memory.h>

18 #include <exec/interrupts.h>

19 #include <exec/execbase.h>

20 #include <exec/io.h>

21 #include <exec/libraries.h>

22 +#include <exec/devices.h>

23 #include <exec/ports.h>

Die Custom-Chips 75

24 #include <exec/lists.h>

25 #include <exec/nodes.h>

26 +#include <graphics/gfxmacros.h>

27 +#include <graphics/copper.h>

28 +#include <graphics/regions.h>

29 #include <graphics/gels.h>

30 +#include <graphics/gfxbase.h>

31 #include <graphics/gfx.h>

32 #include <graphics/clip.h>

33 +#include <graphics/view.h>

34 +#include <graphics/rastport.h>

35 +#include <graphics/layers.h>

36 #include <intuition/intuition.h>

37 +#include <hardware/custom.h>

38 +#include <hardware/blit.h>

39

40 struct IntuitionBase *IntuitionBase; /* Zeiger für Libraries */

41 struct GfxBase *GfxBase;
42 |

43 externstruct Custom custon; /* Externe Structure, siehe 1.Copperdemo */

44

45 UWORDcolors|[]=/* Farben, die zur Animation verwendet werden*/

46 {

A'T Oxce3,0xae3,0x8e3,0x7e3,0x5e3,0x4e3,0x3e4,0x3e5,0x3e7,0x3e8,

48 Ox3ea, Oxdeb, Oxdec, Ox3ee, 0x3de, 0Ox3ce, 0x3ae, 0x39e, 0Ox37e, 0xd4e,

49 0x33e , 0x43e, Ox63e,0Ox'73e,0x83e,0Oxade,Oxb3e,Oxcö3e,Oxede,0Oxedd,

50 Oxe3b, Oxe3a,0xe39,0xe37,0xe36,0xe34,0xe33,0xe53,0xe63,0xe83,

51 Oxe93, Oxead, Oxeb3, Oxec3, Oxee3, Oxde3, Oxbe3, 0Ox8e3, Ox7ed, Ox4ed,

52 Ox3e4,0x3e5,0x3e6, 0x3e8, 0Ox3e9, OxSea, Ox3ec, Oxded, Oxdee, Oxdde,

53 Oxd3be, Oxdae, 0x38e, 0x37e

54};

55

56 struct NewWindow nw = /* NewWindow-Structure für eigenes Window */

57 {

58 0,

59 O,

60 640,

61 10,

62 2,

63 1

64 CLOSEWINDOW,

65 WINDOWCLOSE | SMART_REFRESH,

66 NULL,

67 NULL,

68 'Diesist eine Copper-Demonstration, diedenWorkbench-Screen 'animiert'",

69 NULL,

70 NULL,

71 0,

72 0,

735 0,

76 Die Custom-Chips

74 0,

75 WBENCHSCREEN

76 };
77

78

79 main()

80 {
8l struct Window *window;

82 struct ViewPort *vp;

83 struct UCopList *ucop;

84

85 void*dspins,*sprins,*clrins;

86

87 UWORDi, j=1;

88

89 GfxBase=OpenLibrary("graphics.library",0O); /* Libraries 6ffnen */

90 IntuitionBase=OpenLibrary("intuition.library",0);

91

92 window=OpenWindow(&nw); /*Windowöffnen */

95 vp=ViewPortAddress(window); /*undViewport ermitteln */

94

95 while(!GetMsg(window->UserPort)) /*Solange, bis CloseGadget */
96 { /* Speicher für Copperliste *

97 ucop=AllocMem(sizeof(struct UCopList),MEMF_CHIP | MEMF_CLEAR) ;

98

99 for (i1=0;i<64;i++) /* Copperliste mit 64ver. Farbenerstellen */

100

101 CWAIT(ucop,i*4,0);

102 CMOVE(ucop,custom.color[0], colors[(i+j)%64]):

103 }

104

105 CEND(ucop) ;

106 jtt;

107 /* Alte Instruktionslisten sichern */

108 dspins=vp->DspIns; sprins=vp->sprins; clrins=vp->ClrIns;

109

110 Forbid(); /* Intuition vorübergehend 'abschalten' */
111

112 vp->DspIns=vp->sprins=vp->Clrins=0; /* Listen zurücksetzen */

113 FreeVPortCopLists(vp); /* Alte Copperliste löschen */

114

115 /* Alte Instruktionslisten wieder setzen */

116 vp->DspIns=dspins; vp->SprIns=sprins; vp->Clrins=clrins;

117 vp->UCopIns=ucop; /* Neue Copperliste setzen */

118

119 Permit(); /* Intuition wieder einschalten */
120 #=RethinkDisplay(); /* Anderungen in die Darstellung tibernehmen * /

121 }

122

123 /* Alle Listen löschen und neuerstellen */

Die Custom-Chips 77

124 FreeVPortCopLists(vp);

125 RemakeDisplay();

126

127 CloseWindow(window); /* Window schließen */

128 CloseLibrary(IntuitionBase); /*Librariesschließen */

129 CloseLibrary(GfxBase);

130 }

2;
3 ; 1.Copper - Demonstration

4 ; last update 10/03/88

5 ;von Frank Kremser und JörgKoch

6 ; ©Markt & Technik 1988

1; |

9;
10 ;Diese Demonstration setzt eine neue Copperliste, sodaßihr

ll ;Amiga 'Flagge' zeigt.

12 ;

14

15 DMACON = $daff096

16

17 ExecBase =4

18 Permit = -138

19 Forbid = -132

20 OpenLibrary = -408

21 CloseLibrary = -414

22

23 move.l ExecBase,a6

24 lea GfxName,al ‚GfxLibraryöffnen

25 jsr OpenLibrary(a6)

26 move.l dO,GfxBase

aT

28 move.l ExecBase,a6

29 jsr Forbid(a6) ;Multitaskingabschalten
30

31

32 lea.1 $50000,a0 ;Bitplane ab $50000

33 move.l #6645,d0 ‚6645 Longwords

34 clear: clr.l (a0)+ ‚löschen

35 dbf dO,clear ;dekrementiere, teste

36 ;dO=0, neindannclear

37

38

39 move.l GfxBase,a0

40 add.1 #$32,a0 ;Zeiger auf LOFlist

4l

78 Die Custom-Chips

42

43

44

45

46

AT

48

49

o0

ol

52

05

54

55

56

97

58

59

60

61

62

63

64

65

66

67

68

69

70

T1

72

75

74

75

76

77

wait:

Copperl:

GfxName:

even

GfxBase:

OldCopper:

move.

move.

move.

move. u
&

btst

bne

move.]l

add.l

move.w

move.l

move.w

move.l

jsr

move.l

jsr

rts

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc. ed

e
e

dc.b

blk.1

blk. 1

++ $0080 , DMACON

(a0) ,OldCopper

+Copperl, (a0)

##80A0 ,DMACON

#6,$bfe001l

wait

GfxBase, a0

+$32,a0

#$#0080 , DMACON

OldCopper, (a0)

+-$8180, DMACON

ExecBase,a6

Permit(a6)

GfxBase,al

CloseLibrary (a6)

$00e00005

$00e20000

$01800000

$7001fffe

$01800f00

$d00lfffe

$01800ffO

$frffrffffe

; Copper DMA stoppen

‚ZeigeraufalteCopperliste

‚NeueListesetzen

;undCopper starten

;WurdeMaustaste gedrückt,

;Wennnein, dannweiterwarten

‚ZeigeraufLOFlist

;CopperundSoundabschalten

;AlteCopperlistesetzen

; Copper einschalten

;Multitaskingeinschalten

;GfxLibrary schlieBen

‚Rückkehr

;BitPlanel Zeiger setzen

;ColorOaufschwarzsetzen

;Warten, bisZeile$70erreicht

;ColorOaufrotsetzen

;Warten, bisZeile$dO0erreicht

;ColorQ auf gelbsetzen

‚Endekennzeichnung für Copperliste

'sraphics.library',O

1,0

1,0

Die Custom-Chips 79

KFEREERRERKKHRRRTT RR RR RR. RK KR KT KHK NR RE
3

;2.Copper - Demonstration

‚last update 10/03/88

‚von Frank Kremser und JörgKoch

‚© Markt & Technik 1988

>

KEK KKKKKKKKKKKKKKKHKRKKKKKKEKKKHKKREEK
3

o
v
o
n
ı
9
m

A
a

D
H

.

>

10 ;Diese Demonstration setzt laufend neue Copperlisten, sodaßder

11 ;Eindruck entsteht, die Farben wandern. Dieser Programmteil

12 ;taucht auch in dem Programm 'Resetfest.s' auf.

13 ;
14 KERERRERERRERRERK RETTET RR RR RR RR

3

15

16 DMACON = #dff096

17 BxecBase =4

18 Permit = -138

19 Forbid = -132

20 OpenLibrary = -408

21 CloseLibrary- -414

22 =

23 move.l ExecBase,a6

24 lea GfxName,al

25 jsr OpenLibrary(a6)

26 move.l dO,GfxBase

27

28 move.l ExecBase,a6

29 jsr Forbid(a6)

30

Sl

32 lea.1 %50000,a0

33 move.l #6645,d0

34 clear: clr.l (a0)+

35 dbf dA0O,clear

36

37

38 lea.l coltab(pc),al

39 bsr copperinit

40

41 move.l GfxBase,a0

42 add.1 +$32,a0

43

44 move.w #$0080 , DMACON

45 move.l (a0),OldCopper

46 move.l +#55000, (a0)

AT move.w #80A0,DMACON

48

49 move.l #0,a2

50 main: btst #6,$bfe00l

;GfxLibrary 6ffnen

;Multitaskingabschalten

;Bitplane ab $50000
;6645 Longwords

‚dekrementiere, teste

;:dO=0, neindannclear

;ZeigeraufFarbtabelle;

;Copperlisteinitialisieren

‚ZeigeraufLOFlist

; Copper DMA stoppen

‚ZeigeraufalteCopperliste

‚NeueListesetzen

;undCopper starten

‚Initialisierungvona2

;WurdeMaustaste gedrückt,

80 Die Custom-Chips

ol

52

O35

54

0

06

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

172

73

74

75

76

77

78

79

80

81

82

85

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

cont:

loop:

ende:

beq

lea.

add.

cmp.

bne

1

1

1

move.l

adda.l

bsr

move.]l

tst.

dbra

bra

1

move.l

add. 1

move.

move.

move.

move.

jsr

move.

jsr

rts

copperinit:

loopl:

loope:

clr.

lea.

1

1

move.

move.

move.

move.

move.

move.

move.

clr. 1

move.b

eori

move

addq

cmpi

bne

clr.

add.

cmp.

beq

1

1

1

ende

coltab(pc),al

;Wenn ja, dann Programm beenden

;Zeiger auf Colortabelle

#1l,a2 ‚aZumlerhöhen,

#32,a2 ‚vergleichenobgleich32

cont ;wennnicht, dann fortfahren

#0,a2 ;wennnein, danna2 zurücksetzen

a2,al ‚a2zualhinzuaddieren

copperinit ;undneue Copperlisteerstellen

+$f£f,d3 ;Wert fürWarteschleifesetzen

(a6) ;Dummybefehl zur Verzögerung

a3, loop ;d3erniedrigenundgegf. fortfahren

main ‚Das ganze nocheinmal

GfxBase, a0

+ $32,a0 ‚ZeigeraufLOFlist

+##0080 , DMACON

OldCopper, (a0)

+-$8180,DMACON

ExecBase,a6

Permit(a6)

;CopperundSoundabschalten

;AlteCopperlistesetzen

;Copper einschalten

;Multitasking einschalten

GfxBase,al ;GfxLibrary schlieBen

CloseLibrary (a6)

‚Rückkehr

dl ;‚dllöschen

$55000, a0 ‚Startadresse für

;Copperliste

+$00e00005, (a0)+ ;BitPlanel Zeiger setzen

+$00e20000, (a0)+
+$01800f00, (a0)+ ;ColorO auf rot setzen

M
F
O

O
r

H
E
H

4++80, dO ;AbZeile80Farbrotation

a0,(a0)+ ;Wait-VP

#1,(a0)+ ;Wait -HP+Bit 0 gesetzt

+$fffe0180, (a0)+ ;Wait +ColorO

d6

(al,dl),d6 ;neue Farbe aus Tabelleholen

+ HOF FO, d6 ; bearbeiten

d6,(a0)+ ‚undinCopperliste fürColorOeintr.

#Fl,dl ;‚Farbindexumlerhöhen

#32,dl ;Wenn 32 Farben gezeigt,

loop2

dl ‚dann Index zurücksetzen

+#1,d0 ;Zeilenindexumlerhöhen

+#255 , dO ;sundmit 255 vergleichen

loops

Die Custom-Chips 81

101 bra loopl

102 loops: move.l ##ffOlfffe, (a0)+ ;warten, bisZeile255erreicht

103 move.l #$01800f00, (a0)+ ;dannColorOauf rot setzen

104 move.l +#¢fffffffe,(a0)+ ;Endekennzeichnung für Copper

105 rts

106

017 ;Farbtabelle, doppelt so lang, wie Farbanzahl,

108 ;daRotation

109 even

110 coltab: dc.b $00,$10,%20,$30,$40,$50,860,%70,$80,$90

111 dc.b $a0,$b0,$c60,$d0,$e0,$f0,$f0,$e0, $d0o

112 dc.b $c0,$b0,$a0,$90,$80,$70,$60,$50,$40, $30

113 dc.b $20,$10,$00,$00,$10,$20,$30,$40,$50, $60

114 dc.b $70,$80,$90,$a0,$b0,$c0,$d0,$e0,$f0,$f0

115 dc.b $e0,$d0,$c0,$b0, $a0, $90, $80, $'70, $60, $50

116 dc.b $40,$30,$20,$10, $00

117

118 GfxName: dc.b ‘graphics.library' ,0

119 even

120 GfxBase: blk.1 1,0

121 OldCopper:

122 blk.1 1,0

4.1.4: Der Blitter

Der Blitter ist ein sehr machtvoller Speichermanipulations-Komplex, der hauptsäch-

lich für Grafikanwendungen verwendet wird. Er benötigt bis zu vier DMA-Kanäle

gleichzeitig, um die Daten zu manipulieren. Diese Manipulationen laufen durch den

Blitter erheblich schneller ab, als sie mit dem MC68000 programmiert werden könnten.

Der Blitter kann

— Speicherbereiche kopieren,

— rechteckige Bildbereiche kopieren,

— bis zu drei verschiedene Speicherbereiche miteinander logisch verknüpfen usw.

Die drei DMA-Kanäle für die Speicherbereiche, die miteinander verknüpft werden

können, werden mit Source-A, -B und -C bezeichnet. Der vierte DMA-Kanal, über

den die verknüpften Daten geschrieben werden, wird mit Destination-D benannt.

Damit nicht alle vier Kanäle gleichzeitig verwendet werden müssen, können sie mit den

Bits 8 bis 11 des BLTCONO-Resisters einzeln aktiviert, bzw. deaktiviert werden.

Um nun einen Speicherbereich zu kopieren, setzt man die Register BLIAPTH/

BLIAPTL auf die Startadresse des zu kopierenden Speicherbereiches und BLTDPTH/

BLIDPTL auf die Startadresse des Bereiches, in den kopiert werden soll. Anschlie-

Bend setzt man noch das Register BLISIZE, das unten noch beschrieben wird. Nun

82 Die Custom-Chips

braucht man nur noch die Kanäle für Source-A und Destination-D im BLTCONDO-Regi-

ster zu aktivieren und die Blitter--DMAÄ zu starten. Schon wird der angegebene Spei-

cherbereich kopiert.

Will man Datenbereiche manipulieren, so können sie entweder aufsteigend oder ab-

steigend eingelesen werden. Dies ist beispielsweise von großer Bedeutung, wenn sich

beim Datentransfer der Source-Bereich mit dem Destinations-Bereich überschneidet.

Aufsteigend wird eingelesen, wenn Bit 1 des BLTCON1-Registers gelöscht ist.

Der Blitter kann lineare Speicherbereiche genauso bearbeiten, wie »rechteckige«. Gra-

fiken sind beispielsweise rechteckig, sind aber im Speicher linear abgelegt. Um nun aus

dieser Grafik einen rechteckigen Teilbereich herauszukopieren, muß zum einen in

BLIxPTH/BLIxPTL die Startadresse des Teilbereiches angegeben sein und in

BLTSIZE muß in den Bits 0 bis 5 die Breite des Bereiches und in den Bits 6 bis 15 die

Höhe des Bereiches angegeben sein. Zudem muß man am Ende einer Zeile dieses Teil-

_ bereiches eine bestimmte Anzahl von Words hinzuaddieren, um auf die Startadresse der

nächsten Zeile des Teilbereiches zu kommen. Dazu dienen die BLIxMOD-Register.

Diese enthalten die Anzahl der Words, die hinzuaddiert werden sollen. Will man aber

einen linearen Speicherbereich bearbeiten, so gibt man als Höhe oder als Breite den

Wert 1 an, setzt den anderen Wert auf die Länge des Bereiches und setzt die

BLIxMOD-Register auf 0.

Die oben beschriebenen Handlungen bewirken lediglich ein Kopieren eines Speicher-

bereiches. Der Blitter bietet aber noch die Möglichkeit, die Speicherbereiche, die mit

Source-A bis -C bezeichnet sind, miteinander zu verknüpfen und dann zu speichern.

Um festzulegen, auf welche Weise die drei Speicherbereiche miteinander verknüpft

werden sollen, müssen die Bits 0 bis 7 im BLTCONO-Register, die auch als LF-Kon-

troll-Byte bezeichnet werden, gesetzt werden.

Im folgenden werden die Source-A- bis -C-Bereiche nur noch mit A, Bund C bezeich-

net. Bei den logischen Verknüpfungen bedeutet ein Kleinbuchstabe, daß eine 0 logisch

wahr ist, und ein Großbuchstabe, daß eine 1 logisch wahr ist. Beispielsweise ist der Aus-

druck AbC nur dann logisch wahr, wenn ein Bit aus Source-A gleich 1, eines aus B gleich

0 und eines aus C gleich 1 ist. Dann wird auch das Bit in Destination-D auf 1 gesetzt.

Die Bits des LF-Kontroll-Bytes haben folgende Bedeutungen:

Logik: ABC ABc AbC Abc aBC aBc abC abc

Bit: 7 6 5 4 3 2 1 - 0

Wird das LF-Byte auf % 10000000 gesetzt, wird ein Bit in Destination-D nur dann auf 1

‚gesetzt, wenn die Bits in A, Bund C gleich 1 sind. Wird das LF-Byte hingegen auf

% 10000001 gesetzt, so wird D nur dann gleich 1, wenn A, B und C alle gleich 1 oder

gleich 0 sind.

Die Custom-Chips 83

Eine weitere Möglichkeit, die der Blitter zur Verfügung stellt, ist der Barrel-Shifter.

Dieser Shifter ermöglicht es, die Daten, die über die Source-A- und -B-Kanäle gelesen

werden, um 0 bis 15 Bits zu shiften. Hierzu wird nicht mehr Zeit benötigt, als ohne die-

ses Shiften, wodurch ein sehr schnelles Bit-Scrolling ermöglicht wird. DerWert, um den

»geshiftet« werden soll, ist für Source-A in den Bits 12 bis 15 von BLTCOND zu setzen,

und für Source-B in den Bits 12 bis 15 von BLTCON1.

Die nächste Funktion, die der Blitter noch zur Verfügung stellt, nennt sich »Masking«.

Nicht immer sind die Speicherbereiche, die bearbeitet werden sollen, genau nach

Words ausgerichtet. Um auch diese Bereiche bearbeiten zu können, bietet der Blitter

die Möglichkeit, bis zu 16 Bits links und rechts auszumaskieren. BLTAFWM beinhaltet

die 16 Bit, die links auszumaskieren sind. BETALWM die, die rechts auszumaskieren

sind. Beginnt eine Zeile beispielsweise mit % 1100110011001100 und ist BLTAFWM auf

%0000000011111111 gesetzt, so bleibt nur noch % 0000000011001100 übrig. Das Gleiche

gilt für den rechten Rand.

Der Blitter bietet auch die Möglichkeit, beliebig geformte Bereiche zu füllen. Dazu

muß BLIxPTH/BLIxPTL auf die rechte, untere Ecke des Ausschnittes gesetzt werden,

in dem sich der zu füllende Bereich befindet und BLTxMOD muß ebenfalls entspre-

chend gesetzt werden. Es wird lediglich ein Source-Kanal benötigt. Der Destination-

D-Kanal muß auf die gleiche Adresse gesetzt werden, wie der Source-Kanal. Anschlie-

Bend wird festgelegt, daß Ausschnitt abzählend durchlaufen werden soll, dazu Bit 1 von

BLTCONI auf 1 setzen. Nun muß noch angegeben werden, ob der Bereich außerhalb

des umrahmten, oder der innerhalb gefüllt werden soll. Wird Bit 2 von BLTICONI auf

0 gesetzt, wird innerhalb gefüllt.

[FRFRRRERRRRRRRRRKRRRRKRRR KR

Blitter-Demonstration

last update 16/02/88

von Frank Kremser und Jorg Koch

© Markt & Technik 1988

KKEKERKEKHEKKKKKKKKRKKKEKKKKKKEKKKEKEKE

_—

O
O
W
M
A
N

oO

o
K
R

W
Y
P

Diese Demonstration kopiert den Workbench-Screen laufend auf einen

eigenenscreen, wobei er standig etwas verschoben kopiert wird.

ll

oe

od

WN

W
F

b
b

O
1

+ include <exec/types.h> /* Include-Files laden */
++include <exec/tasks.h>
+#include <exec/libraries.h>
+ include <exec/memory.h>
#+include <exec/devices.h> a

wel
ll

cu

oa
O

O
N
 O
D

84 Die Custom-Chips

20 +#include <devices/keymap.h>

21 +include <graphics/copper.h>

22 #include <graphics/display.h>

23 #include <graphics/gfxbase.h>

24 +#include <graphics/text.h>

25 +#include <graphics/view.h>

26 +include <graphics/gels.h>

27 +#include <graphics/regions.h>

28 +#include <graphics/sprite.h>

29 +#include <hardware/blit.h>

30 +#include <intuition/intuition.h>

Sl +#include <intuition/intuitionbase.h>

32

55 struct GfxBase *GfxBase; /* Lib Zeiger */

34 struct IntuitionBase *IntuitionBase;

35

56 struct Screen *screen; /* Screen-Structure-Zeiger */

37 struct Window *window;

38 struct RastPort *rpl, *rp2;

39

40 struct NewScreenns= /* Die New-Screen Structure */

al {

42 0, /* Linke Ecke */

43 0, /* Obere Ecke */

44 640, /* Breite */

45 256, /* Hoehe */

46 2, /* Tiefe */

4'7 0, /* DetailPen */

48 l, /* BlockPen */

49 HIRES, /* ViewModes */

50 CUSTOMSCREEN, /* Type */

51 NULL,

52 NULL,

53 NULL,

54 NULL

55};
56 |

57 struct NewWindow nw = /* NewWindow-Structure */

58 1

59 0,

60 0,

61 640,

62 10,

63 2,

64 l,

65 NULL,

66 NULL,

67 NULL,

68 NULL,

69 "Diesist eine Blitter-Demonstration, die den Workbench-Screen "animiert",

Die Custom-Chips 85

70

ral

12

73

74

75

76

77

78

79

80

Sl

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

lil

112

113

114

115

116

117

118 }
119

NULL,
NULL,
QO,

0,

0,
0,
WBENCHSCREEN

};

main() /* HAUPTPROGRAMM * /

intx,y=0(;

/*öffnenderLibs */

if ((IntuitionBase = (struct IntuitionBase *)

OpenLibrary("intuition.library",0))==0)exit();

if ((GfxBase = (struct GfxBase *)

OpenLibrary("graphics.library", 0)) ==0) exit();

/* Screen und Window öffnen */

if ((screen = (struct Screen*) OpenScreen(&ns)) == NULL) exit();

if ((window = OpenWindow(&nw)) == NULL) exit();

rpl = &screen->RastPort;

rp2 = &window->WScreen->RastPort;

/* RastPort des WBScreens ermitteln */

SetDrMd(rpl,JAMl):
SetAPen(rpl,0);

ClipBlit(rp2,0,0,rpl,0,0,640, 256, 0xc0); /* Screen kopieren */
for(x=5;x <640; xt=5) /* Screen laufend etwas verschoben kopieren */

yt=2;

ClipBlit(rp2, 0,0,rpl,x,y,640-x,256-y, oxc0);

RectFill(rp1,0,0,x,255);/*und freibleibende Flächen löschen *#/

RectFill(rpl,0,0,639,y): Ä
} |

ClipBlit(rp2,0,0,rpl,0,0,640,256,0xc0);

for(x=5;x <640; x+=5) /*Der gleiche Effekt mit SorollRaster */

ScrollRaster(rpl, -5,-2,0,0,639, 255);

CloseScreen(screen) ; /* Screen und Libs */

CloseWindow(window) ;

CloseLibrary(GfxBase); /* schliessen */

CloseLibrary(IntuitionBase);

86 Die Custom-Chips
O
M
O
N

o
a
»

U
N

D
H

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

50

Sl

32

33

34

55

56

37

58

59

40

41

42

43

44

45

46

47

48

49

o0

scroll

Text

setFont

CloseFont

Move

InitBitMap

InitRastPort

ScrollRaster

ClearScreen

AllocAbs

OpenLibrary

CloseLibrary

Forbid

Permit

OpenFont

ExecBase

movem. 1

move.b

move.l

lea

move.]l

jsr

lea

jsr

move.]l

lea

jsr

move. 1]

SHKKEKKKKHKKKKKKKKKKHKKKRKKKKKHKKKKEK
3

; 1. Blitter - Demonstration

; last update 10/03/88

;von Frank Kremser und Jorg Koch ;

© Markt & Technik 1988

—HHKKKKHKKKEKKKHKKKHKKKKKRKEKKKKKHKE
,

KKERRRRKRKKRRRRRKR RK RR RR KK. TR KK KR NR RT
’

;Diese Demonstration scrollt einen Text vonrechts nach links ein,

‚wobei der Befehl ScrollText verwendet wird. Dieser wiederrum

;greift auf die Blitterfunktionen zurück.

= $55000; Zwischenspeicher fuer Laufschrift

-60

ee
|

|
|

|
i;

t
b
o

re

W
N
W

A
O

O
o

A
O

OD

o
o
o

I | ON

00

= $04

d0-d7/a0-a6,-(a”7)

#$02,rows

ExecBase,a6

$50000,al

+#8000,d0

AllocAbs(a6)

gfxname,al

OpenLibrary(a6)

dO, gfxbase

diskfontname,al

OpenLibrary(a6

dO, fontlbase

;Registerretten

;ab Adresse $50000

;8000 Byteals belegt kennzeichnen

;GfxLibrary 6ffnen

;Basisadresse merken

;DiskfontLibrary 6ffnen

;Basisadresse merken

Die Custom-Chips 87

ol

52

95

54

99

56

O7

58

9

60

61

62

63

64

65

66

67

68

69

70

Tl

72

15

74

75

76

77

78

79

80

8l

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

coloop2:

move.

move.

move.l

lea

jsr

move.1

lea

move.

move. H
r

move.

move.

move.

move.

add.w

dbra

2
8

3
2

move.l

jsr

move.l

add.l

move.

move.

u

move.]l

lea

move.l

move.l

move.l

jsr

move.l

lea

jsr

move.l

lea

move.l

jsr

lea

jsr

move.l

move.]l

move.]l

fontlbase, a6

textattr,a0

OpenFont (a6)

dO, fontbase

waitab, a0°

+$df09,d1

+13, d0

dl, (a0)+

+$fffe,(ad)+

+$0182,(a0)+

+$Offf,(ad)+

+$0100,d1

ad0,coloop2

ExecBase, a6

Forbid(a6)

gfxbase, a0

+$32,a0

+$0080, $dff096

(a0),oldcopper
#newcopper, (a0)

+$8080, $dff096

gfxbase, a6

bitmap,a0

#$01,d0

#352,dl

#200,d2

InitBitMap(a6)

+$50000 ,planel

RastPort,al

InitRastPort(a6)

+bitmap, r_bitmap

RastPort,al

fontbase, a0

SetFont(a6)

RastPort,al

ClearScreen(a6)

‚Zeichensatz laden

‚Basisadresse Zeichensatzmerken

;Copperlistemit WAIT'sergänzen
;abZeile$df spalte $09

; L4WAIT's einftigen

;WAIT in Copperliste schreiben

; Vordergrundfarbe

;auf schwarz setzen

;WAIT-WertumeineZeileerhöhen

‚schonalleWAIT'seingefügt?

;Multitaskingabschalten

;Zur Basisadresse vonGfxLibrary
;$32addieren => Anfangsadr.

;deraltenCopperListe

; Copper DMA stoppen

; Alte Adresse merken
;Neue CopperListesetzen

; Copper DMA starten

;Zeigerauf structure

‚1BitPlane

‚Breite 352 Punkte

;Höhel5dZeilen

;Default Werte schreiben

; Anfangsadresse desGrafik-

;Speichers erganzen

;Zeigeraufstructure

;Rastport DefaultWerte

;Bitmap-Structure inRastport eintr.

;Neuen Zeichensatz

‚installieren

;Grafikspeicher löschen

+scrollmsg,mesptr ;Anfangsadressed.ScrollText

$6c,oldirgq

+newirg,$6c
;AltenIRQ-Vektorretten

; IRQ-Vektor auf eigene Routine setzen

88 Die Custom-Chips

101

102

103

104 newirg:

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120 continuel:

121

122

123

124

125 verloopl:

126

127

128

129

130

131

132

133 coloopl:

134

135

136

137

138

139 oldirg:

140

141 printchar:

142

143

144

145

146

147

148

149

150

bra. l wait ;Weiter zur Mausabfrage

movem.1 d0-d7/a0-a6,-(sp) ;Registerretten

105 ;scrolltext imGrafikspeicher um einen Punkt nach links scrollen

move.1

lea

move.

move.

move.

move.

move.

clr.l

jsr

ed

or

e
o

sub.b

bne.s

move.b

bsr.s

lea

lea

move.w

move.w

move.w

dbra

move.w

move.l

lea

lea

move.w

add.l

dbra

movem. 1

dc.w

dc. l

move.]l

lea

jsr

lea

move.l

move.]l

jsr

lea

move. 1

gfxbase, a6

RastPort,al ‚RastPort, dergescrolltwerdensoll

#0,d2 ‚linke, obereKoordinatedes

+#179,d3 ‚zuverschiebendenRechtecks

#352,d4 ‚rechte, untereKoordinate

+198,d5 ;desRechtecks

#$01,d0 ;1 Punkt inx-Richtungverschieben

dl ;keinen Pkt iny-Richtung verschieben

ScrollRaster(a6) ‚ScrollingüberBlitterausführen

#$01l,rows ‚schonlZeichen (16 Punkte)
continuel ‚gescrollt?

+#16,rows ;Wenn ja, dann

PrintChar ;neues Zeichen ausgeben

coltab, a0 ;Farbtabelleverschieben

coltab+t2,al

+28 , dO

coltab,dl

(al)+,(a0)+
dO,verloopl

dl,coltab+56

+13, d0 ‚14FarbeninCopperliste

coltab,a0 ‚schreiben

waitabt6,al

(a0)+,(al)

+$08,al -AbstandzunachstemWAIT4Worte

d0O,coloopl

(sp)+,d0-d7/a0-a6 ;Register zurückholen

$4ef9 ;Interruptroutine mit Sprung zu

‚altemIRQ-Vektor beenden

gfxbase,a6

RastPort,al ‚vorhandenesBitmusterimScroll-

ClearScreen(a6) ;zwischenspeicher löschen

RastPort,al ‚imZwischenspeicher Grafikcursor

#320,d0 ;nachx-position 320

+193, d1 ‚undy-pos 14

move(a6) ‚bewegen

RastPort,al ;inZwischenspeicher

mesptr,a0 ;Zeichenab Adresse (mesptr)

Die Custom-Chips 89

151

152

153

154

155

156

157 return:

158

159 wait:

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179 newcopper:

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194 waitab:

195

196

197 even

198 scrollmsg:

199

200 even

move.l

jsr

add. 1

cmp. 1

bne.s

move.l

rts

btst

.bne.s

move.l

move.l

move.l

jsr
move.l

move.]l

jsr

move.l

jsr

move.1

add. 1

move.w

move. 1
move .W

move. 1

jsr

movem. 1

rts

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc

dc.

dc.

dc.

dc.

dc. 2
2
2
3
2
2
3
8

=

blk.w

dc.w

dc.b

+1, dO

text (aé)

#$01,mesptr

#ende,mesptr

return

+Sscrollmsg,mesptr

+6,$bfe001

wait

oldirg,$6c

gfxbase, a6

fontbase,al

CloseFont(a6)

execbase, a6

fontlbase,al

CloseLibrary(a6)

gfxbase,al

CloseLibrary(a6)

gfxbase, a0

+$32,a0

+ $0080, $dff096

oldcopper, (a0)

+ $8080, $dff096

ExecBase,a6

Permit (a6)

(a7)+,d0-d7/a0-a6

$0180,$0000

$0182,$0ddd

$008e ,$2c81

$0090 ,$fAcl

$0092,$0038

$0094, $00d0

$0108, $0004

$010a, $0004

$0102, $0000

$0104, $0000

$0100, $1200

$00e0, $0005

$00e2, $0000

56,0

$ffffj,éfffe

‚lzeichen

‚anPositiondesGrafikcursorsprinten

;1zumTextzeigeraddieren

;Ende des Texteserreicht?

;Wennnein, dann zurück

; Ansonsten Zeiger zurücksetzen

;Warten, bis linkeMaustaste gedrückt

‚altenIRQ-Vektorzurückschreiben

;Font schlieRen

‚DiskfontLibraryschließen

;GfxLibrary schlieBen

;zur Basisadresse der GfxLibrary $32

‚addierenerg. Zeiger auf Copperliste

; Copper DMA stoppen

;alte CopperListesetzen

;Copper DMA starten

;Multitasking einschalten

;Register zurucksetzen

;Ruckkehr

;‚NeueCopperliste

‚Speicher für WAITBefehle

;Ende der Copperliste

"Diesist eineBlitterdemo, dieScrollRaster verwendet" ,0

90 Die Custom-Chips

l ende: dc.b

2 even

3 gfxbase: dc.l 0

4 bitmap: blk.w 4,0

5 planel: blk.1 10,0

6 rastport:

7 blk.1 1,0

8 r_bitmap:

9 blk.1 26,0

10 oldcopper:

11 dc.l 0)

12 gfxname: dc.b !"sraphics.library",O

13 diskfontname:

14 dc.b "diskfont.library'",O

15 even

16 fontname: ‚Name des Zeichensatzes

17 dc.b “opal. font",0

18 even

19 textattr: ;Struktur des Zeichensatzes

20 ;wird bei OPENFONTübergeben

21 dc.l fontname ;Zeiger auf Fontname

RA dc.w 12 ;Hdheder Schrift in Punkten

23 dc.w 0 ;Flags

24 fontlbase:

25 dc.l 0

26 fontbase:

27 dc.w 0

28 rows: dc.b 0

29 even |

30 mesptr: dc.l 0

31 ;Laufschriftfarben

32 coltab: dc.w SOffO, $HOcfO, GO9fO, FO6 FO, $OSFO, $OOFO, FOOFS, FOOTE

33 dc.w $o0f9, FOOfc, Foo, FOOcf, $o09f, Foo0SL, FoO3L, FoOOL

34 dc.w B030f,$060f,$090f,$0c0f,H0fOf,$0fOc,$0f09

35 dc.w $0f06,$80f03,$0f00,$0f30,$0f60,$0f90,$0fcO

4.1.5: DMA-Kontroll-Logik

Agnus und FatAgnus kontrollieren die 25 DMA-Kanäle, die für eine Vielzahl von Funktio-

nen des Systems von »lebenswichtiger« Bedeutung sind. Die beiden Chips enthalten zwei

Register, über die die DMA-Hardware softwaremäßig gesteuert werden kann. Diese Regi-

ster heißen DMACONR und DMACON. DMACONR ist lesbar und enthält die DMA-

Zustände. Dabei bedeuten gesetzte Bits, daß der zugehörige DMA-Kanal aktiv ist. Ist ein

Bit nicht gesetzt, ist der zugehörige DMA-Kanal nicht aktiv. Will man den Zustand eines

oder mehrerer DMA-Kanäle verändern, so kann dies über das Register DMACON

geschehen.

Die Custom-Chips 91

Die Beschreibung zu DMACONR/DMACON:

Bit Name Funktion

15 SET/CLR Dieses Bit bestimmt beim Schreibzugriff auf DMACON, ob bestimmte

Bits gesetzt oder gelöscht werden sollen. Ist dieses Bit gleich 1, so werden

alle DMA-Kanäle, deren korrespondierendes Bit auf 1 gesetzt sind,

aktiv gesetzt. Die Kanäle, deren Bits auf 0 gesetzt sind, bleiben unver-

ändert. Das Gleiche gilt für das Inaktivieren von Kanälen, wenn dieses

Bit auf 0 gesetzt wird. |

14 BBUSY Dieses Bit hat nur im Lesezugriff eine Funktion. Dort zeigt es an, daß der

Blitter noch arbeitet.

13 BZERO Dieses Bit hat ebenfalls nur im Lesezugriff eine Funktion. Es ist gleich 1,

wenn das Ergebnis einer Blitteroperation durchweg gleich 0 war.

12 Keine Funktion.

11 Keine Funktion.

10 BLIPRI Ist dieses Bit gesetzt, hat der Blitter Vorrang vor dem MC68000.

9 DMAEN Master-DMA-Enable. Ist dieses Bit gelöscht, sind alle DMA-Kanäle ge-

schlossen. |

8 BPLEN Bit-Plane-DMA.

7 COPEN Copper-DMA.

6 BLIEN Blitter-DMA.

5 SPREN Sprite-DMA.

4 DSKEN Disk-DMA.

3-0 AUDxEN Audio-DMA für Kanal x (x = 3,2,1,0).

Kapitel 4.2: Denise

Denise ist für die gesamte Videodarstellung verantwortlich, einschließlich der Sprite-

Kontrolle und der Playfield-Darstellung. Foto 11 im Farbteil zeigt Denise.

92 Die Custom-Chips ~

Hier die Pinbelegung und das Blockschaltbild von Denise:

O
O
N
O
M
A
R
W
M
=
|

U
4
A

83
62

D
E
N
I
S
E

Z4.2-1: Die Pinbelegung von Denise

4.2.1: Die Pinbeschreibung zu Denise

Name PIN VO Beschreibung

DO-D6 7-1 VO Datenbusleitungen 0 bis 6.

M1H 8 I Maus-Eingang von Port 1 horizontal.

MOH 9 I Maus-Eingang von Port 0 horizontal.

RGAI-8 17-10 I Diese Leitungen werden benutzt, um die internen Register ~

zu adressieren.

BST 18 O Color-Burst-Indikator.

VCC 19 I +5Volt Versorgungsspannung.

RO-3 20-23 O RotesVideosignal digital Bit 0 bis 3.

BO-3 24-27 O Blaues Videosignal digital Bit 0 bis 3.

Die Custom-Chips 93

Detect
Logic

oO
)

| Bit Plane | :

. . | Serial.

llision nn _ Bit Plane | nn —.
Control | | Data ee In en

Register _ Register ln en

Collision . oN | a Bit Plane Se ee 2 8

Storage | | | | Control K
Register . ee Register es oe = _

i

Name. PIN VO Beschreibung

G0O-3 - 28-31 O Griines Videosignal digital Bit 0 bis 3.

N/C 32 Nicht belegt.

ZD 33 O Indikator fiir Hintergrundfarbe. Wird Hintergrundfarbe

| gezeigt, ist dieses Signal low.

N/C 34 Nicht belegt.

CLK 35

CCK 36

VSS 37

MOV 38

M1V 39 Mauseingang von Port 1 vertikal.

D7-D15 48-40 VO Datenleitungen 7 bis 15.

Systemtakt von 7 MHz fiir Denise.

Dies ist derTakt, der als Farbträgersignal dient.

Masseanschluß.

Mauseingang von Port 0 vertikal.

nn

EE
E

u
BE

E
nn

EE
E

nn

EE
E

|

94 Die Custom-Chips

a ZN Color

_— /| Select |
| Decode |

‘[BitPlane] I ya
Priority | [32 R

OES + Cont. oo Color

. |Registers}

EN Priority
—__/| Control

Logic

. ISpite KL) 7
 ..|Sernaize) r a

| Sprite

- |Registers} AN |
6 2 Se ZEN

'__| Horizontal |
oe Sync. :
-— Counter

Registers - —

Oe

Sprite
Horizontal

| Position eb |
| Registers | | | |

|
Mo

us
e

[|
_

|
Co
un
te
rs

|"

|]

ee

Z 4.2-2: Das Blockschaltbild von Denise (Teil 2)

4.2.2: Die Sprite-Hardware

Denise unterstützt 8 Hardware-Sprites, die als unabhängige Grafikteile dargestellt wer-

den können. Die Sprites werden allerdings immer, also unabhängig von der Screen-

Auflösung in einer LoRes-Auflösung dargestellt. Sie sind 16 LoRes-Punkte breit, belie-

big hoch und können mit drei Farben dargestellt werden, als auch teilweise durchsichtig

sein. Wenn ein Sprite komplett dargestellt wurde, kann es nochmals zur Darstellung

eines weiteren Images verwendet werden. |

Um ein Sprite darstellen zu können, muß zuerst eine Datenliste im ChipMem erstellt

werden. Das Spriteimage selbst setzt sich aus zwei Planes zusammen, wodurch der Zu-

griff auf die drei verschiedenen Farben möglich ist. Ist ein Bit in der ersten Plane gleich

0 und das korrespondierende Bit in der zweiten Plane ebenfalls, so erscheint dieser

Punkt transparent. Die Sprites sind immer in Zweiergruppen zusammengefaßt, so daß

immer zwei Sprites auf die gleichen Farben in der Farbtabelle zugreifen. Hier eine Auf-

stellung der Kombinationen:

Die Custom-Chips 95

Sprites Planel/2 Farbregister

01 00 Transparent

01 01 17

01 10 18

01 11 19

23 00 Transparent

23 01 21

23 10 22

23 11 23

45 00 Transparent

45 01 25

45 10 26

45 11 27

67 00 Transparent

67 01 29

67 10 30

67 11 31

Die Datenliste hat folgende Form: |

Word Funktion

1 Legt die vertikale und horizontale Startposition des Sprites fest, wobei die Position nicht rı

lativ zum Screen festgelegt ist, sondern relativ zur physikalischen Screenposition. Das erst

Byte legt die vertikale und das zweite Byte die horizontale Position fest.

2 Legt die vertikale Endposition des Sprites fest. Diese Position errechnet sich aus der vert

kalen Startposition plus der Höhe des Sprites.

3 Spritedaten für die erste Zeile und erste Plane.

4 Spritedaten für die erste Zeile und zweite Plane.

5 Spritedaten für die zweite Zeile und erste Plane.

USW.

n 2 0-Words am Ende der Datenliste

Um ein Sprite, zu dem eine solche Datenliste erstellt wurde, darzustellen, müssen die Reg

ster SPRxPTH/SPRxPTL des Sprites, das verwendet werden soll, auf den Anfang der Dateı

liste gesetzt werden. Bevor dann die Sprite-DMA eingeschaltet wird, müssen aber die Sprit

Datenzeiger für die nicht verwendeten Sprites auf eine leere Datenliste gesetzt werden, dam:

sie nicht auch dargestellt werden. Da die Zeiger aber in jedem Darstellungsdurchlauf durc

die Hardware verändert werden, müssen sie laufend neu gesetzt werden. Dies geschieht ir

Normalfall durch die Copperliste. |

96 Die Custom-Chips

[FRFRRRRRRRRRRRRERRRRKRRERRRKRRRRR

Sprite-Demonstration

last update 16/02/88

von Frank Kremser und Jorg Koch

© Markt & Technik 1988

KEKEKKKKEKKKKKKKKKKKKKKKKKKKKEKKEKE

O
W
O
N
o
»
K

W
N
E
H

10 Diese Demonstration bewegt einSprite 'natürlich' über den Bildschirm

14 +include <exec/types.h> /* Include-Files laden */

15 #include <exec/tasks.h>

16 +#include <exec/libraries.h>

17 #include <exec/memory.h>

18 +#include <exec/devices.h>

19 +#include <devices/keymap.h>

20 +#include <graphics/copper.h>

21 +#include <graphics/display.h>

22 #include <graphics/gfxbase.h>

23 +#include <graphics/text.h>

24 +#include <graphics/view.h>

25 +#include <graphics/gels.h>

26 #include <graphics/regions.h>
27 +#include <graphics/sprite.h>

28 +#include <hardware/blit.h>

29 +#include <intuition/intuition.h>

30 +#include <intuition/intuitionbase.h>

31

32 struct GfxBase *GfxBase; /* LibZeiger */

55 struct IntuitionBase *IntuitionBase;

34

35 struct Screen*screen; /* Screen-Structure-Zeiger */

36 |

37 USHORTDatal|[] = /*Sprite-Image */

38 1

39 0,0,

40 OxOFCO, OxOFCO,

Al OxSFFO, 0x3030,

42 Ox7FF8, 0x4008,

43 Ox7FF8, 0x4008,

44 OxF33C, 0x8CC4,

A5 OxFFFC, 0x8004,

46 OxFFFC, 0x8004,

A'7 OxFCFC, 0x8304,

48 OxFFFC, 0x8004,

49 OxFFFC, 0x9024,

50 Ox7FF8, 0x4848,

Die Custom-Chips 97

Sl 0Ox7FF8&, 0x4788,

O2 0Ox3FF0O, 0x3030,

55 0xOFCO, OxOFCO,

54

55 0,0

56 };
57

58 structSimpleSpritespritel = /* Sprite-Structure */

59 { | |
60 &Datal[O],

61 14, /* Hoehe */

62 100, /* X- Position */

63 0, /*Y¥- Position */

64 2 /* Sprite Nummer */

65 };
66

67 struct NewScreenns = /* New-Screen-Structure */

68 on

69 0, /* Linke Ecke */

70 0, /* Obere Ecke */

71 320, /* Breite */

12 256, /* Hoehe */

73 2, /* Tiefe */

74 0, /* DetailPen */

75 l, /* BlockPen */

76 SPRITES, /* ViewModes */

77 CUSTOMSCREEN, /* Type */

78 NULL,

79 NULL,

80 NULL,

81 NULL

82 };
83

84

85 main() /* HAUPTPROGRAMM * /

86 {

87 intwarte,step,x;

88 USHORT schleife,schleife2,v;

89

90 /* Libraries 6ffnen */

91 if ((IntuitionBase = (struct IntuitionBase *)

92 OpenLibrary("intuition.library", 0)) ==0) exit();

93
94 if ((GfxBase = (struct GfxBase *)

95 OpenLibrary('"graphics.library", 0)) ==0) exit();

96 /* Screen offnen */

97 if ((screen= (struct Screen*) OpenScreen(&ns)) == NULL) exit();

98
99 SetRGB4(&screen->ViewPort,20,9,9,9); /* Farben setzen */

100 SetRGB4(&screen->ViewPort,21,11,11,11);

98 Die Custom-Chips

101 SetRGB4(&screen->ViewPort,22,13,13,13);

102 SetRGBA (&screen->ViewPort,23,15,15,15);

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

schleife =GetSprite(&spritel,3); /* Sprite 'holen'! */

v=0; /* Variablen auf Start setzen */

x = 80;

step =10; /*waagerechte Schrittweite */

/* Sprite über denScreen bewegen */

for(schleife2 =0; schleife2<10; schleife2++)

for (schleife=1; schleife<22; schleife++)

{
x+t=step;

if(x>300)

x = 290;

step =-10;

}
if(x<0)

{
x= 10;

step = 10;
\

v+=schleife; /*senkrechteSchrittweitewirdständiggrößer */

MoveSprite(&screen->ViewPort, &spritel, x, v);
for (warte =0; warte < 5000; warte+t);

}
for (schleife = 21; schleife >0; schleife--)

{
x += step;

if(x>300)

{
x=290;

step=-10;

}
if(x<O)

{
x=10;

step=10;

}
v-=schleife; /*senkrechte Schrittweitewirdständigkleiner */

MoveSprite(&screen->ViewPort, &spritel,x,v);

for (warte =0; warte <5000; wartet+);

}
}

FreeSprite(3); /* Sprite löschen */

CloseScreen(screen); /*ScreenundLibs */

Die Custom-Chips 99

151

152

153

o
o
ı
9
1

A
A

D
H

10

11

15

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

50

Sl

32

55

54

55

56

37

58

39

40

Al

42

43

44

45

CloseLibrary(GfxBase) ;

CloseLibrary(IntuitionBase);

}

—KHKKKKEKKKKHEKKEKKKKKEKKKEKKEKKKKKHKEKEE
’

.

>

; 1. Sprite-—Demonstration

; last update 10/03/88

;von Frank Kremser und Jorg Koch

; © Markt & Technik 1983

>

SKK KEKKKKKEKKEKKKKKKKKKKKEKKEKKKKKKEKE
,

.

3

/* schließen */

‚Diese Demonstration bewegt einSprite diagonal über den Screen.

3

_KKFRRRRERRKRKKRRKRRRR KK RR. KK KK KH KR KR KT TR RT
s

loop:

OpenLibrary

Freesprite

GetSprite

= -350 -378

= -50 -584

= -50 -378

ChangeSprite = -30 -390

ExecBase

move.]l

lea.l

jsr

move.l

move. 1

move.l

lea.l

jsr

move.

move.

move.

move.

lea. 1

lea.l

move.l

sub.l

bne

add.w

add.w

move.w

move.w

jsr

cmp.w

M
r
s

=4

ExecBase, a6

GfxName,al

OpenLibrary(a6)

d0,GfxBase

GfxBase,a6

#1,d0

SimpleSprite,a0

GetSprite(a6)

#0,d5

+#0,d6

GfxBase,a6

0,a0

SimpleSprite,al

Image,a2

+#+5000,d0

#1,d0

wait

+5, d5

+4,d6

;Dazu werden die Befehle aus der Gfx-Library verwendet.

12 ; 7

;Graphics Library 6ffnen.

‚SpriteNr. lverftigbar machen

;setzt auchspriteNr inder

‚SimpleSprite-Structure

‚Variable fürx-posinitialisieren

‚Variable füry-posinitialisieren

‚aktueller ViewPort (keiner)

‚ZeigeraufSimpleSprite-Structure

‚ZeigeraufSpritedaten

;Warteschleifewait:

‚X-Positionerhöhen

‚Y-Positionerhöhen

aA5,SimpleSprite+t6 ;NeueX-Possetzen

d6,SimpleSprite+8 ;Neue Y-Pos setzen

ChangeSprite(a6)

+#+300,d5

‚Spriteneusetzen

;WennX-Positionerreicht

100 Die Custom-Chips

46 bne loop

47

48 wait2: btst #6,$bfe00l ‚Warten, bisMaustaste gedrückt

49 bne wait2

50

51 move.l GfxBase,a6

52 move.l +#1,d0 ;‚SpriteNr. Lwirdals

53 jsr FreeSprite(a6) ;frei gekennzeichnet

54 rts ‚Rückkehr

55

56 even

57 GfxName: dc.b 'sraphics.library',O

58 even

59 GfxBase: blk.1 1,0

60 even

61 SimpleSprite: ‚SimpleSprite-Structure

62 dc.w 0,0 ;Zeiger auf Image(wirdspater gesetzt)

63 dc.w 16,0,0 ‚Höhe, X-undY-Position(wirdspäter gesetzt)

64 dc.w 0 ; Sprite Nummer (wirdspäter gesetzt)

65 even

66 Image: dc.l 0) ‚Spritedaten |

67 dc.l $0'7e00000, $1818076e0, $20041ff8, $5e7a2184

68 dc.l $7ffe0c30, $pffd5042, $bffd5042, $brfd4002

69 dc.l $9ff96186,$80017ffe, $80017ffe, $H46623ffc

70 dc.l $47e235ffo, $23c41ff8, $181807e0, $07e00000

T1 dc.l 0

2;
5 ;2.9prite-Demonstration

4 ; last update 10/03/88

5 ; vonFrank Kremser und Jérg Koch

6 ; ©Markt & Technik 1988

T |

9;
10 ;Diese Demonstration zeigt zwei Sprites, die direkt über die

ll ;Hardwareregister angesprochen werden

12 ;Lauft nur tiber Seka einwandfrei!

13 ;

15

16 BxecBase =4

17 Level3Int = #6c

18 SprBuffer = 45000

19 INTREQR =$dffOle ; Interrupt request read

20 DMACON = $aff096

21 INTENA = $arfogva

22 Permit = -138 Forbid=-132

Die Custom-Chips 101

23

24

25

26

27

28

29

50

31

32

55

54

55

36

37

58

59

40

41

42

43

44

45

46

47

48

49

50

ol

52

95

54

55

56

57

58

9

60

61

62

65

64

65

66

67

68

69

70

71

Te

OpenLibrary

CloseLibrary = -414

loopl:

wait:

move.

move.l

move.l

lea

jsr

move.l

move.l

lea

lea

move.l

move.b

sub

bne

move.]l

jsr

move.]l

add.l

movVve.W

move.

m
r

move.W

move.

move.

move.

move. S
e
e
a
s

btst.

bne.

move.l

add.]l

move.w

move.l

move.w

move.w

move.]l

move.w

move.]l

jsr

= -408

sp, initialSP

ExecBase,a6

GfxName,al ;GfxLibraryöffnen

OpenLibrary(a6)
a0,GfxBase

d0,d6

SprBuffer,al ‚SspritesindenSpritepufferkopieren

Sprites,a0

+144,d0

(a0)+,(al)+

#1,dO

loopl

ExecBase, a6

Forbid(a6) ;Multitaskingabschalten

GfxBase, a0

+ $32, a0 ;Zeiger auf LOFlist

#$%4000, INTENA Master Interrupt Enable OFF

Level3öInt,OldVector ;AltenInterrupt sichern

+Handler,Level3Int ;Neuen Interrupt setzen

#$c000, INTENA

#$0080 , DMACON ; Copper DMA stoppen
(a0),OldCopper ‚ZeigeraufalteCopperliste

+CopList, (a0) ;Neue Liste setzen

#$80A0 ,DMACON ‚undCopper starten

#6,$bfe001 ‚warten, bis linkeMaustaste
wait ‚gedrückt

GfxBase, a0

#$32,a0 ‚ZeigeraufLOFlist

#$0080 ,DMACON :Copper undSoundabschalten

OldCopper, (a0) ;AlteCopperlistesetzen

+ $8180, DMACON ; Copper einschalten

##4000, INTENA ;Interruptsabschalten

OldVector,Level3Int ;AltenInterrupt setzen

#$c000,INTENA ;Interruptseinschalten

ExecBase, a6

Permit(a6) ;Multitasking einschalten

102 Die Custom-Chips

73

74

75

76

77

78

79 Handler:

80

8l

82

83

84

85

86 VBlank:

87

88

89

90

91

93

94

95

96 cont:

97

98

99

100

101

102

103

104

105

106

107

move.l

jsr

move. 1

clr.l

rts

movem. 1

move

move.w

btst

bne.s

bra

lea

lea

lea

move.b

move.b

move.b

add.b

cmp.b

bne

move.

move.

move.

move.

move.

move.

add.b

move.b

move.b

add.

move.b

move.b

T
O
O

O
O
F

108 EndHandler:
109

110

111

112

move

movem. 1

dc.w

113 OldVector:
114

115

116 GfxName:

117

118 even

119 Sprites:

120

lel

122

dc.l

dc.b

dc.

dc.

dc.

dc. e
e

GfxBase,al ;GfxLibrary schliefien

CloseLibrary (a6)

initialSP,sp

do

‚Rückkehr

d0O-d2/a0-al,-(a7) ;Registerretten

SR,-(sp) ‚Statusregister retten

INTREQR, dO ;‚Interruptrequestregister lesen

+#5,d0 ‚undprüfen, obVBlank-Interrupt

VBlank ;wenn ja, dannweiter

EndHandler ;sonst Interrupt beenden

x_position,al

y_position,a2

index, ad

(a3),d2 ;Pos.-Index laden

O(al,d2.b),d0 ;neue Position laden

O(a2,d2.b),dl |

+1, (ad) ‚Index erhöhen

#+42,(a3) ;Wennalle Positionen geladen,

cont

+0, (ad) ;dann neu beginnen

d0,SprBuffer ;neuex-position
dl,SprBuffer+t+l ;Neue y-position

xpos,sprBuffert+72 ;Letztex-pos. fir2. Sprite

ypos,sprBuffer+73 ;Letztey-pos.

d0,xpos ;Neue Positionensichern

+#16,dl ‚Y-Pos + Höhe desSprites

dl,SprBuffer+2 ‚eintragen

ypos,dl ;Das gleichemit2. Sprite

+16, d1

dl,SprBuffer+74

SprBuffer+tl,ypos

(sp)+,SR ‚Statusregister zurückspeichern

(sp)+,d0-d2/a0-al ;Register zurück

$Adef9 ‚Interrupt beenden

$0

'gsraphics.library' ,0

$a0a0b000 ; x-Pos, y-Pos, y-Pos + Höhe
$0'7e00000, $181807e0, $20041ff8, $5e7a2184 ;SpriteDaten

$7ffe0c30, $bffd5042, $bffd5042, $offd4002

$9ff96186,$80017ffe, $80017ffe, $46623ffco

Die Custom-Chips 103

123 ac.l

124 dc.l

125

126 Image: ac.1l

127 dc. l

128 de.l

129° dce.1
130 ac.l

131 dc.l

132

133 CopList: dc.l

134 dc.l

135 dc.l

136 dc.l

137 dc.l

138 de.l

139 dc.l

140 dc.l

141 dc.l

142 dc.l

142

143 dc.l

144 dc.l

145 ac.l

146 dc.l

14'7 dc.l

148

149 dc.l

150 dc.l

151

152 dc.l

153 dc.l

154

155 dc.l

156 x_position:

157 dc.b

158 dc.b

159 dc.b

160 dc.b

161

162 y_position:

163 dc.b

164 dc.b

165 dc.b

166 dc.b

167

168 GfxBase: blk.1

169 initialSP:

170
171 OldCopper:

blk.l

$47e23ffo,$23c41ff8,$181807e0, $07e00000

0

$b0b0cC000 ;x-Pos, y-Pos, y-Pos + Höhe

$0'7e00000 , $181807e0 ,$20041ff8,$5e7a2184 ;SpriteDaten

$7ffe0c30, $bffd5042, $bffd5042, $bffd4002

Of f96186,$80017ffe, $80017ffe, $46623Fffc

o47e25ffo,$23c41ff8,$181807e0 , $07e00000 0

$008e2c8l ; DIWSTRT

$0090fAcl ;DIWSTOP

$00920038 ; DDFSTRT

$009400d0 ; DDFSTOP

$00e00005

$00e20000 |

$01080000 ;Modulo odd Planes
$01001200 ;2BitPlanes
$01020000

$01040024

$01800000 ;ColorO
$01820000 ;Colorl
$Ola2000f ;Colorl7
$01a400af ;Colorl18
$01a600dd ;Colorl9

$01200004 ;ZeigerauferstesSprite
$01225000

$01240004 ;Zeiger auf zweitesSprite
$01265048

$frffffffe ;Ende der Copperliste

90,95,100,105,110,115,120,125,130,135,140

145,150,155,160,165,170,175,180,185,190

185,180,175,170,165,160,155,150,145, 140

135,130,125,120,115,110,105,100,95,90

90,95,100,105,110,115,120,125,130,135, 140

145,150,155,160,165,170,175,180,185,190

185,180,175,170,165,160,155,150,145,140

135,130,125,120,115,110,105,100,95,90

1,0

1,0

104 Die Custom-Chips

172 blk.1

173 xpos: dc.b

174 ypos: dc.b

175 index: dc.b

1 -KFRKRRRKRRRKRRRT RK RR RR KK KR TR KK KK TR RT
?

2;
3 ;,3.Sprite-Demonstration

4 ; last update 10/03/88

So ; von Frank Kremser und Jorg Koch

T 5
6 ; ©Markt & Technik 1988

8 HK KKKRKEKKKKKKKKKHKEKKKKKKKRKKEKKKKKEEN
9

9;
10 ;Diese Demonstration zeigt nundiedritteMöglichkeit Sprites

ll ;darzustellen. Ständigwirdeinneuer Mauszeiger gesetzt, so daß

12 ;der Eindruck entsteht, der Mauszeiger rotiert.

13 ; .
14 SEREREERERRERRRRRKKRTERRTNETRRERKREENN.

15

16 OpenLibrary = -30 -378

17 CloseLibrary = -$19e

18 ViewPortAdr = -30 -270

19 SetPointer = -30 -240

20 SetRGB4 = -30 -258

21 WaitTOF = -30 -240

22 Delay = -30 -168

23 ExecBase = 4

24

25 jsr Init

26 jsr setsprCol

27 jsr Rotate

28 rts

29

30 Init: move.l ExecBase,a6

Sl lea.1 GfxName,al ;GfxLibrary 6ffnen

32 jsr OpenLibrary(a6)

33 move.l d0,GfxBase

54

35 move.1l ExecBase,a6

36 lea.1 IntName,al ;‚IntuitionLibraryöffnen

37 jsr OpenLibrary(a6)

38 move.l dO,IntBase

39

40 move.l ExecBase,a6

41 lea.l DosName,al ;DosLibrary 6ffnen

42 jsr OpenLibrary (a6)
43 move.l d0,DosBase

44

&

Die Custom-Chips 105

45 move.l IntBase,a0 ;AktuellesWindowermitteln

46 move.l 52(a0),AktWin

4'7

48 move.l IntBase,a6

49 | move.l AktWin,a0

50 jsr ViewPortAdr(a6) ;ViewPort ermitteln

51 move.l dO,AktVP
52 rts

53

54 SetSprCol:

55 move.l AktVp,a0 ;ViewPort

56 move.l GfxBase,a6

57 move.l #17,d0 ;Colorl7

58 move.l #0,dl ;Rot

59 move.l #0,d2 ‚Grün

60 move.l #0,d3 ‚Blau

61 jsr SetRGB4(a6) ‚Farbe setzen

62 move.l AktVP,a0 |

63 move.l #18,d0

64 move.l #13,dl

65 move.l #2,d2

66 move.l #2,d3

67 jsr SetRGB4(a6)

68 move.l AktVP,a0

69 move.l #19,d0

70 move.l #15,dl

T1 move.l #12,d2
72 move.l #12,d3
73 jsr SetRGB4(a6)

74 rts

75

76 Rotate: move.l IntBase,a6

77 move.l AktWin,a0 ‚AktuellesWindow

78 lea.l Image0O,al ‚Image setzen

79 move.l #14,d0 ;X-Positionsetzen

80 move.l #16,dl ;Y-Position

sl move.l #-7,d2 ‚HotSpot x

82 move.l #-7,d3 ;HotSpot y

83 jsr SetPointer(a6) ;Mauszeiger setzen

84 jer Warte ;Warten
85 ptst +6, So fe00 ‚Ist Maustaste gedrückt?

86 bne contl ;Wennnein, dannweiter

87 bra ende ; Ansonsten beenden

88 contl: move.l IntBase,a6

89 move.l AktWin,a0

90 lea.l Imagel,al

91 move.l #14,d0

92 move.l #16,dl

93 move.l #-6,d2

94 move.l #-8,d3

106 Die Custom-Chips

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

conte:

conts:

cont4:

contd:

jsr

jsr

btst

bne

bra

move.l

move. 1]

lea.1

move.

move.

move.

move.

jsr

jsr

btst

bne

bra

move.l

move.l

lea.l

move.l

move.l

move.l

move.l

jsr

jsr

btst

bne

bra

move.l

move.l

lea.l

move.

move.

move.

move.

jsr

jsr

btst

bne

bra

move.l

move.l

lea.l

move.

move.

move.
move.

jsr

jsr

e
e

h
b

e
e

HH

SetPointer (a6)

Warte

+6, $b fe001

conte

ende

IntBase,a6

AktWin, a0

Image2,al

#14,d0

#16,dl

#+-5,d2

+#+-7,d3

SetPointer(a6)

Warte

+6, $bfe001
conts

ende

IntBase, a6

AktWin,a0

Image3,al

+#14,dO

#16,dl

+-4,d2

+-6,d3

SetPointer(a6)

Warte

+6, $bfe001

cont4

ende

IntBase, a6

AktWin, a0

Image4,al

+14, d0

#16,dl

#+-5,d2

+-5,d3

SetPointer(a6)

Warte

#6, $bfe001l

cont5 ~
ende

IntBase, a6

AktWin, a0

Image5,al

#14,d0

#16,dl

+#+-,d2

+#-4,d3

SetPointer(a6)

Warte

Die Custom-Chips 107

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173 Warte:

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193 even

194 GfxName:

cont6:

contT:

ende:

btst

bne

bra

move.

move.

lea.l

move.

möve.

move.

move.

jsr

jsr

btst

bne

bra

move.

move.

lea.l

move.

move.

move.

move.

jsr

jsr

btst

bne

bra

move.

move.

jer

move.

jsr

move.

jsr

rts.

move.

move.

jsr

move.

jsr

move.

jsr

rts

dc.b

1

1

1

1

1

1

1

e
e

+6, $bfe001

cont6

ende

IntBase, a6

AktWin,a0

Image6, al

+14,d0

+16,d1

+-7,d2

+#+-5,d3

SetPointer(a6)

Warte

#6,$bfe00l

cont’

ende

IntBase, a6

AktWin, a0

Image7,al

+14, d0

#16,dl

+-8,d2

+-6,d3

SetPointer(a6)

Warte

#6,$bfe00l

Rotate

ende

DosBase, a66
#2,dl

Delay(a6)

GfxBase,a6

WaitTOF(a6)

GfxBase, a6

WaitTOF (a6)

ExecBase, a6

GfxBase,al

CloseLibrary(a6)

IntBase,al

CloseLibrary (a6)

DosBase,al

CloseLibrary (a6)

graphics.library ,0

- 2 Sekunden warten

‚BiszumnächstenBildaufbauwarten

:Noch einmal

;GfxLibrary schlieBen

‚IntuitionLibraryschließen

‚DosLibraryschließen

108 Die Custom-Chips

195 IntName:

196 DosName:

197 even

198 GfxBase:

199 IntBase:

200 DosBase:

201 AktWin:

202 AktVP:

203

204 even

205 Image0:

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

Rae even

223 Imagel:

ARA

225

226

ART

228

229

230

231

232

233

254

235

236

237

238

239

240 even

241 Image2:

242

243

244

dc

dc

blk.1l

blk.1

blk.1

blk.1l

blk. 1

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

.b

.b

H
S

SS
g
s

2
2
3
2
2
3
2
2
3
2
2
2
4

H
S

s
s

s
s

zz

3
3

s
s

3
S
H

42
84

4
2
h

‘intuition.library' ‚OÖ

'dos.library' ,0

%0000000000000000 , %0000000000000000
%#0111111000000000 , Z0O000000000000000
%#0111111100000000 , 40011111000000000
%0100001100000000 , Z0011111000000000
%0100011000000000 , 0011110000000000
%0100001100000000,%0011111000000000
%0100100110000000,%0011011100000000
%0011010011000000 , 40000001110000000
%0000001001100000 , 40000000111000000
%0000000100110000 , 40000000011100000
%0000000010100000 , Z0000000001000000
%0000000001000000 , %0000000000000000
%0000000000000000 , %0000000000000000
%0000000000000000, %0000000000000000
6) .

0
%0000001100000000 , Z0000000000000000
%0000010110000000 , Z0000001100000000
%0000100011000000 , 40000011110000000
%0001000001100000,%0000111111000000
%0001000111100000,%0000111111000000
%0000110111000000,%0000001100000000
%0000010110000000,%0000001100000000
%0000010110000000 , %0000001100000000
%0000010110000000 , 40000001100000000
%0000010110000000 , 40000001100000000
%0000010110000000 , 40000001100000000
%0000010110000000 , Z0000001100000000
%#0000011110000000 , Z0000000000000000
%0000000000000000 , ZO000000000000000
0

0
%0000000000000000 , %0000000000000000
%0000000111111000,%0000000000000000
%0000001000011000,%0000000111110000

Die Custom-Chips 109

245 dc. Ww %0000001000011000 , Z0000000111110000

246 dc.w %0000000100011000 , Z0000000011110000

RAT dc.w %0000001001011000, 40000000111110000

248 dc.w %0000010011111000, 40000001110110000

249 dc.w %0000100110110000 , Z0000011100000000

250 dc.w %0001001100000000 , 40000111000000000

251 dc.w Z0010011000000000,%0001110000000000

252 dc.w %0001110000000000 , Z0000100000000000

253 dc.w %0000100000000000 , %0000000000000000

254 dc.w %0000000000000000 , 40000000000000000

255 dc.w Z0000000000000000, %20000000000000000

256 dc.l 0)

257

258 even

259 Image3: dc.l 0)

260 dc.w Z0000000000000000, %0000000000000000

261 dc.w %0000000000000000 , ZO0O00000000000000

262 dc.w Z0000000000000000, ZO0O00000000000000

263 dc.w %0000000001100000 , GOO00000000000000

264 dc.w %0000000010010000, 40000000001100000

265 dc.w %0111111110001000, 40000000001110000

266 dc.w %0100000000000100,%0011111111111000

267 dc.w %0111111111001100, 40011111111111000

268 dc.w %0111111111011000, Z0000000001110000

269 dc.w %0000000011110000 , Z0000000001100000

210 dc.w %0000000001100000 , GOO00000000000000

271 dc.w Z0000000000000000, Z0000000000000000

272 dc.w %0000000000000000 , ZO000000000000000

273 dc.w Z0000000000000000 , ZOO00000000000000

274 dc.l 0

R15

276 even

277 Image4: dc.l 0)

278 dc.w Z0000000000000000 ,%20000000000000000

279 dc.w Z0000000000000000, %20000000000000000

280 dc.w %0000100000000000 , ZO0O00000000000000

281 dc.w %0001010000000000 , 40000100000000000

282 dc.w %0011001000000000 , Z0001110000000000

283 dc.w Z0001100100000000, 40000111000000000

284 dc.w %0000110010110000, Z0000011100000000

285 do.w Z0000011001001000,%0000001110110000

286 dc.w Z0000001100001000,%0000000111110000

287 dc.w %0000000110001000 , Z0000000011110000

288 dc.w %0000001100001000 , 40000000111110000

289 dc.w Z0000001111111000,%0000000111110000

290 dc.w %0000000111111000,Z0000000000000000

291 dc.w Z0000000000000000, 20000000000000000

292 dc.l 0

293 !

294 even

110 Die Custom-Chips

295

296

297

298

299

500

501

302

303

504

505

506

307

308

509

510

S11

312

5135

514

515

516

317

518

519

S20

Sel

S22

525

524

S29

526

S27

528

529

550

551

352

5535

554

5355

336

357

558

339

540

541

542

543

544

Imaged:

even

Image6:

even

Image’:

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

H
S

SS
s
s

32

2
2
3
2
3
2
2
3
2
2
3
2
3

2
2
F
4
h

H
S

SS

s
s

2
3
2
2
3
2
3
2
2
3
2
3
2

2
2
2
4

s
s

g
s

g
s

3
s
s

S
s

HH

0

%0000000000000000 , ZGO000000000000000

%0000011110000000 , ZO000000000000000

%0000011010000000 , 40000001100000000

%0000011010000000 , Z0000001100000000

%0000011010000000 , 40000001100000000

%0000011010000000 , Z0000001100000000

%0000011010000000 , Z0000001100000000

%0000011010000000 , 40000001100000000

%#0000111011000000 , Z0000001100000000

%#0001111000100000 , 40000111111000000

%0001100000100000 , 40000111111000000

%0000110001000000 , Z0000011110000000

%0000011010000000 , %0000001100000000

%0000001100000000 , ZO000000000000000

0

0

%0000000000000000 , %0000000000000000

%0000000000000000 , Z0000000000000000

%0000000001000000 , Z0000000000000000

%0000000011100000 , Z0000000001000000

7%0000000110010000,%0000000011100000

%0000001100100000,%0000000111000000

%0011011001000000 , 40000001110000000

%#0111110010000000 ,, 40011011100000000

%0110100100000000 , 40011111000000000

%0110001000000000 , %0011110000000000

%0110000100000000 , 40011111000000000

%0110000100000000 , 40011111000000000

%#0111111000000000 , Z0000000000000000

%0000000000000000 , ZO000000000000000

0

0

%0000000000000000, %0000000000000000

%0000000000000000 , %0000000000000000

%0000000000000000 , %0000000000000000

%0001100000000000 , ZO000000000000000

%0011110000000000 , 40001100000000000

%0110111111111000,%0011100000000000

%1100111111111000,%0111111111110000

%1000000000001000,%0111111111110000

%0100011111111000,%0011100000000000

%0010010000000000, %0001100000000000

%0001100000000000 , %0000000000000000

%0000000000000000, %0000000000000000

%0000000000000000 , ZO000000000000000

Die Custom-Chips 111

545 dc.w %0000000000000000 ,20000000000000000
546 dc.l 0

EEK EKER E KEKE EKER KEKE KKK KER KERR ERE

; 4.Sprite-Demonstration

; last update 10/03/88

; von Frank Kremser und Jorg Koch

; ©Markt & Technik 1988

’

KRRKRKFRRRKRRRRKRRR RR RR RR RK KR RR
,

o
w
m
o
n
N
o
a
n
s
A

W
N

+?

‚Diese Demonstration gleicht der 3. Demonstration, läßt den Mauszeiger

ll ‚aber Kreise ziehen.

a
]

©

12 ;
= SERRERRRRERRRRRERRKRRRTKETERKNNK NER

14

15 OpenLibrary = -30 -378

16 CloseLibrary -$19e

17 ViewPortAdr = -30 -270 |
18 SetPointer =-30-240

19 SetRGB4 =-30-258 ~

20 WaitTOF = -30 -240
21 Delay = -30 -168

22 ExecBase =4

23

24 jsr Init

25 jsr SetSprCol

26 jsr - Circle

at rts

28 |

29 Init: move.l ExecBase,a6

30 1 ea.l GfxName, al ;GfxLibrary 6ffnen

31 jsr OpenLibrary (a6)
32 move.l dQ,GfxBase

33

34 move.l ExecBase,a6

35 lea.l IntName,al ;IntuitionLibrary 6ffnen

36 jsr OpenLibrary(a6)

37 move.l dO,IntBase

38

59 move.l ExecBase,a6 .

40 lea.l DosName,al ;DosLibrary 6ffnen

Al jsr OpenLibrary (a6)

42 move.l dO,DosBase

43

44 move.l IntBase,a0 ;Aktuelles Windowermitteln

45 move.l 52(a0),AktWin

A6 ’

112 Die Custom-Chips

47

48

49

0

51

52

035

54

55

56

57

58

9

60

61

62

63

64

65

66

67

68

69

70

Tl

72

13

74

75

76

77

78

79

80

8l

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

move.l

move.l

jsr

move.l

rts

setsprCol:

Circle:

contl:

move.

move.

move.

move.

move.

move.

jsr

move.

move.

move.

move.

move.

jsr

move.

move.

move.

move.

move.

jsr

rts

a

e
e

e
e

a

Hr

move.

move.l

lea.l

move.l

move.l

move.l

move.]l

jsr

jsr

btst

bne

bra

move.l

move.l

lea.l

move.

move.

move.

move.

jsr

jsr

btst

H
H
r
H
b
 ee

IntBase,a6

AktWin, a0

ViewPortAdr (a6)

dO, AKtVP

AktVp, a0

GfxBase,a6

#17,d0

#0,dl

#0,d2

+#0,d3

SetRGB4(a6)

AktVP, a0

#18,d0

#13,dl

#+2,d2

#2,d3

SetRGB4(a6)

+19, dO

#15,dl

#12,d2

#12,d3

SetRGB4(a6)

IntBase, a6

AktWin,a0

ImageO,al

#14,d0

#16,dl

#-14,d2

#1,d3

SetPointer(a6)

Warte

#6,$bfe00l

contl

ende

IntBase, a6

AktWin, a0

Imagel,al

+14, d0

+16, a1

#-17,d2

+#-6,d3

SetPointer(a6)

Warte

#6, $bfe00l

‚ViewPort ermitteln

‚ViewPort

;Colorl7

‚Rot

‚Grün

‚Blau

;Farbe setzen

AktVP,a0

;Aktuelles Window

‚Spriteimage

;X-Position

;Y-Position

‚HotSpot x

;Hotspoty

;neuen Mauszeiger setzen

;Warten

‚Ist linkeMaustaste gedrückt?

;Wennnein, dannweiter

‚Ansonstenbeenden

Die Custom-Chips 113

97

98

99

100

101

102

103

104

105

106

107

108

109

110

lil

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

1350

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

cont2:

conts:

cont4:

contd:

bne

bra

move.

move.

lea.l

move.

move.

move.

move.

jsr

jsr

btst

bne

bra

move.

move.

lea.l

move.

move.

move.

move.

jsr

jsr

btst

bne

bra

move.

move.

lea.l

move.

move.

move.

move.

jsr

jsr

btst

bne

bra

move.

move.

lea.l

move.

move.

move.

move.

jsr

jsr

btst

bne

bra

b+

bY

u

1

1

H
F
r
r
r

1

e
e

1

1

1

1

e
e

conte

ende

IntBase, a6

AktWin,a0

Image2,al

#14,d0

#16,dl

#+-14,d2

+-14,d3

SetPointer(a6)

Warte

#6,$bfe00l

conts

ende

IntBase, a6

AktWin, a0

Image3,al

4:14, d0

#16,dl

+#+-7,d2

#-17,d3

SetPointer(a6)

Warte

#6,$bfe00l

cont4

ende

IntBase, a6

AktWin, a0

Image4,al

#14,d0

+16,d1

#1,d2

+-14,d3

SetPointer(a6)

Warte

+6, $bfe00l

cont5

ende

IntBase, a6

AktWin, a0

Image5,al

#14,d0

#16,d1

+#4,d2

#+-7,d3

SetPointer(a6)

Warte

#6,$bfe00l

cont6

ende

114 Die Custom-Chips

147 cont6: move.l IntBase,a6

148 move.l AktWin,a0

149 lea.1 Image6,al

150 move.l #14,d0

151 move.l #16,dl

152 move.l #1,d2

153 move.l #1,d3

154 jsr SetPointer(a6)

155 jsr Warte

156 btst #6,$bfe00l

157 bne cont7

158 bra ende

159 cont7: move.l IntBase,a6

160 move.1 AktWin,a0

161 lea.l Image7,al

162 move.l #14,d0

163 move.l #16,dl

164 move.l #-6,d2

165 move.l #4,d3

166 jsr SetPointer(a6)

167 -Jsr Warte

168 btst #6,$bfe00l

169 bne Circle

170 bra ende

171

172 Warte: move.l DosBase,a6

173 move.l +#2,dl ;2Sekundenwarten

174 jsr Delay(a6)

175 move.l GfxBase,a6 ;Bis zumnachsten Bildaufbau warten

176 jsr WaitTOF(a6)

177 move.l GfxBase,a6 ;Noch einmal

178 jsr WaitTOF(a6)

179 rts ende:

180 move.l ExecBase,a6

181 move.l GfxBase,al ‚GfxLibraryschließen

182 jsr CloseLibrary(a6)

183 move.l IntBase,al ‚IntuitionLibraryschließen

184 jsr CloseLibrary(a6)

185 move.l DosBase,al ;‚DosLibraryschließen

186 jsr CloseLibrary(a6)

187 rts

188

189 even

190 GfxName: dc.b 'sraphics.library' ,0

191 IntName: dc.b 'intuition.library' ,0

192 DosName: dc.b 'dos.library' ,0

193 even

194 GfxBase: blk.1 1,

195 IntBase: blk.1 1,

196 DosBase: bIk.l 1 O
o
o
 o
O

3

Die Custom-Chips 115

197 AktWin: blk.l 1,0

198 AktVP: blk.1 1,0 >

199

200 even

201 ImageO: dc.l 0)

202 dc.w Z0000000000000000, Z0000000000000000

203 dc.w %0111111000000000 , Z0000000000000000

204 dc.w %0111111100000000 , 40011111000000000

205 dc.w %0100001100000000, %0011111000000000

206 dc.w %0100011000000000 , Z0011110000000000

207 dc.w %0100001100000000 , 0011111000000000

208 dc.w %0100100110000000 ,%0011011100000000

209 dc.w %0011010011000000 ,%0000001110000000

210 dc.w %0000001001100000 ,%0000000111000000

211 dc.w %0000000100110000 , 40000000011100000

212 dc.w %0000000010100000 , 40000000001000000

213 dc.w %0000000001000000 , ZO000000000000000

214 dc.w Z0000000000000000, 20000000000000000

215 dc.w Z0000000000000000 , Z0000000000000000

216 dc.10

217

218 even

219 Imagel: dc.l 0

220 dc.w %0000001100000000 , ZO0O00000000000000

221 dc.w %0000010110000000 , Z0000001100000000

Ran dc.w %0000100011000000, 40000011110000000

RQO dc.w %0001000001100000 , 40000111111000000

224 dc.w %0001000111100000 , 0000111111000000

225 dc.w %0000110111000000 , Z0000001100000000

226 dc.w %0000010110000000 , Z0000001100000000

pat dc.w %0000010110000000 , 40000001100000000

228 dc.w %0000010110000000 , 40000001100000000

229 dc.w %0000010110000000 , Z0000001100000000

250 dc.w . Z0000010110000000,%0000001100000000

231 dc.w %0000010110000000,%0000001100000000

232 dc.w %0000011110000000 , ZOO00000000000000

233 dc.w %0000000000000000 , %0000000000000000

234 dc.l 0.
235

236 even

237 Image2: dc.l 0

238 dc.w %0000000000000000 , Z0000000000000000

239 dc.w %0000000111111000 , 2Z0000000000000000

240 dc.w Z0000001000011000 ,%20000000111110000

241 dc.w %0000001000011000, 40000000111110000

242 dc.w %0000000100011000 , Z0000000011110000

243 dc.w Z0000001001011000,%0000000111110000

244 dc.w Z0000010011111000,%0000001110110000

245 dc.w Z0000100110110000,%0000011100000000

246 dc.w %0001001100000000 , Z0000111000000000

116 Die Custom-Chips

247 dc.w %0010011000000000, Z0001110000000000

248 dc.w %0001110000000000 , Z0000100000000000

RAQ dc.w %0000100000000000 , Z0000000000000000

200 dc.w Z0000000000000000, %20000000000000000

251 dc.w %0000000000000000 , Z0000000000000000

252 dc.l 0

253

254 even

255 Image3: dc.l 0

206 dc.w %Z0000000000000000 , Z0000000000000000

257 dc.w %0000000000000000 , Z0000000000000000

208 dc.w Z0000000000000000 , Z0000000000000000

259 dc.w %0000000001100000 , Z0000000000000000

260 dc.w %0000000010010000 , 40000000001100000

261 dc.w %0111111110001000 , 40000000001110000

262 dc.w %0100000000000100, 40011111111111000

263 dc.w %#0111111111001100,%0011111111111000

264 dc.w %40111111111011000 , 40000000001110000

265 dc.w Z0000000011110000 , 40000000001100000

266 dc.w %0000000001100000 , 20000000000000000

267 dc.w Z0000000000000000, %20000000000000000

268 dc.w %0000000000000000 , Z0000000000000000

269 dc.w Z0000000000000000 , JOOO0000000000000

270 dc.l 6)

271

AT2 even

273 Image4: dc.l 0

274 dc.w %0000000000000000 , %20000000000000000

215 dc.w %0000000000000000 , Z0000000000000000

216 dc.w %0000100000000000 , ZOO0O0000000000000

277 dc.w %0001010000000000 , J0000100000000000

218 dc.w %0011001000000000 , Z0001110000000000

219 dc.w %0001100100000000 , Z0000111000000000

280 dc.w Z0000110010110000 , 40000011100000000

281 dc.w Z0000011001001000,%0000001110110000

282 dc.w %0000001100001000 , 40000000111110000

283 dc.w %0000000110001000 , 40000000011110000

284 dc.w %0000001100001000 , 40000000111110000

285 dc.w %0000001111111000, 40000000111110000

286 dc.w %40000000111111000, ZO000000000000000

287 dc.w %0000000000000000 , J0000000000000000

288 dc.10

289

290 even

291 Image5: dc.l 0

292 dc.w *%0000000000000000 , Z0000000000000000

293 dc.w %0000011110000000,20000000000000000

294 dc.w %0000011010000000 , 40000001100000000

295 dc.w %40000011010000000 , 40000001100000000

296 dc.w %0000011010000000 , 40000001100000000

Die Custom-Chips 117

297 dc.w %0000011010000000 , 40000001100000000

298 dc.w %0000011010000000 , Z0000001100000000

299 dc.w %0000011010000000 , 40000001100000000

300 dc.w %0000111011000000 , 40000001100000000

301 dc.w %0001111000100000,%0000111111000000

302 dc.w %0001100000100000 , 40000111111000000

303 dc.w %0000110001000000 , 40000011110000000

304 dc.w Z0000011010000000,%0000001100000000

305 dc.w %0000001100000000 , Z0000000000000000

306 dc.l 0)

307

308 even

309 Image6: dc.l 0)

310 dc.w %40000000000000000 , ZO000000000000000

311 dc.w %0000000000000000 , ZO000000000000000

312 dc.w %0000000001000000 , Z0000000000000000

313 dc.w %0000000011100000 , Z0000000001000000

314 dc.w 70000000110010000,%0000000011100000 —

315 dc.w _ %0000001100100000,%0000000111000000

316 dc.w %0011011001000000 , 40000001110000000

317 dc.w %0111110010000000 ,%0011011100000000

318 dc.w %0110100100000000, 40011111000000000

319 dc.w %0110001000000000, 40011110000000000

320 dc.w %0110000100000000,%0011111000000000

321 dc.w %0110000100000000, Z0011111000000000

522 dc.w %0111111000000000 , Z0000000000000000

323 dc.w Z0000000000000000, %0000000000000000

324 dc.l 0

325

326 even

327 Image7: dc.l 0

328 dc.w %40000000000000000 , ZO000000000000000

329 dc.w %0000000000000000 , %20000000000000000

330 dc.w %0000000000000000 , 20000000000000000

331 dc.w %0001100000000000 , Z0000000000000000

332 | dc.w %0011110000000000 , 40001100000000000

333 dc.w %0110111111111000, 40011100000000000

534 dc.w %1100111111111000, 40111111111110000

335 dc.w %1000000000001000,%0111111111110000

336 dc.w %0100011111111000,%0011100000000000

337 dc.w %0010010000000000 , Z0001100000000000

338 dc.w %0001100000000000 , ZO0O00000000000000

339 dc.w %0000000000000000 , ZO000000000000000

340 dc.w %0000000000000000 , ZO000000000000000

341 dc.w Z0000000000000000, ZOO00000000000000

1 O | 342 dc.

118 Die Custom-Chips

Eine besondere Möglichkeit der Darstellung bietet noch der Attached-Mode. Es kann

Sprite1zu0,3zu2,5zu4 und 7 zu 6 geschaltet werden. Dazu muß das Bit 7 des zweiten

Datenwortes der Sprites 1, 3, 5 oder 7 gesetzt werden. Der Attached-Mode bewirkt,

daß aus den zwei angegebenen Sprites jeweils ein einzelnes Sprite wird, das aber nicht

mehr aus drei Farben plus Transparent, sondern aus 15 Farben plus Transparent besteht.

Dazu muß erstens das oben erwähnte Attached-Bit gesetzt werden, und jeweils eine

Datenliste für die beiden Sprites, die zusammen dargestellt werden sollen, erstellt wer-

den. Die Positionsdaten von beiden Sprites müssen übereinstimmen, aber bei dem

zweiten Datenwort des zugewiesenen Sprites (1, 3, 5 oder 7) muß Bit 7 gesetzt werden.

Die Imagedaten der Sprites 0, 2, 4 oder 6 werden als Planes 0 und 1, die der Sprites 1,

3, 5 oder 7 als Planes 2 und 3 interpretiert. Als Farben werden die Farbregister 17 bis 31

verwendet.

4.2.3: Die Playfield-Hardware

Fast die gesamte Videodarstellung des Amiga beruht auf den Playfields. Alle normalen

Screens sind als Playfield aufzufassen. Um nun ein solches Playfield zu erstellen, miis-

sen einige Vorarbeiten erledigt werden.

Als erstes muß natürlich genügend Speicherplatz für das Playfield bereitgestellt wer-

den, das erstellt werden soll. Soll das Playfield 320 x 200 Punkte groß sein, so werden

8000 Byte für ein BitPlane benötigt. Als BitPlanes werden die logischen Speicher-

ebenen eines Playfields bezeichnet, die die verwendeten Farben kennzeichnen. Ein

Playfield mit 3 BitPlanes kann beispielsweise 2 hoch 3, also 8 Farben repräsentieren.

Für ein solches Playfield müssen demnach 3 mal 8000 Byte, also 24000 Byte bereit-

gestellt werden. Maximal kann ein Playfield 6 BitPlanes (im HAM-Modus) besitzen.

Im LoRes-Modus sind maximal 5 Planes möglich und im HiRes-Modus maximal 4.

Hat man diesen Speicherplatz reserviert, so müssen die Zeiger BPLxPTH/BPLxPTL

für die Startadressen der einzelnen BitPlanes gesetzt werden. Als nächstes gibt man im

BPLCONDO-Register die ViewModi an, die verwendet werden sollen:

Registerbeschreibung BPLCONG:

Bit Name Funktion

15 HIRES Setzt den HiRes-Modus.

14-12 BPU2-0 Setzt die Anzahl der verwendeten BitPlanes (010 = zwei BitPlanes).

11 HOMOD Setzt den Hold-And-Modify-Mode.

10 DBLPF Setzt den Dual-Playfield-Modus.

2 LACE Setzt den Interlace-Mode.

Die Custom-Chips 119

Als nächstes müssen die Register BPLIMOD und BPL2MOD auf 0 gesetzt werden.

Um die genaue Auflösung und Bildpositionierung zu bestimmen, müssen weiterhin die

Register DIWSTRT, DIWSTOP, DDFSTRTund DDFSTOP gesetzt werden.

DIWSTRT legt die Display-Position fest, ab der das Playfield gezeigt werden soll. Das

erste Byte von DIWSTRTlegt die vertikale und das zweite Byte die horizontale Posi-

tion fest. Im Normalfall ist DIWSTRT gleich $2C81. DIWSTOP hingegen legt die

rechte untere Endposition des darzustellenden Playfields fest. Sowohl DIWSTRTT, als

auch DIWSTOP sind nicht vom Display-Modus abhängig, bleiben also auch im HiRes-

Modus unverändert. Das erste Byte bei DIWSTOP enthält die vertikale Endposition.

Das höchste Bit dieses Bytes wird zusätzlich invertiert und als 9. Bit erkannt, wodurch

auch Werte, die größer als 256 sind, angegeben werden können. Von der physikalischen

horizontalen Endposition wird $100 (=256) abgezogen und im zweiten Byte angege-

ben. Wenn DIWSTRT gleich $2C81 ist, ist der Normalwert für DIWSTOP gleich

$F4C1.

Die Register DDFSTRT und DDFSTOP legen Datenzugriffsstart und -stop fest. Für

DDFSTRT wird zuerst die horizontale Startposition, aus obigem Beispiel ist dies $81,

durch zwei geteilt. Ist die Darstellung im LoRes-Modus, muß dann noch der Wert 8*5

und im HiRes-Modus der Wert 4*5 abgezogen werden. Das ergibt fiir DDFSTRTeinen

Wert von $38 im LoRes-Modus und $3C im HiRes-Modus. Der Wert fiir DDFSTOP

errechnet sich dann wie folgt:

DDFSTOP = DDFSTRT + (8*(Screenbreite/16-1)) für LoRes

DDFSTOP = DDFSTRT + (4*(Screenbreite/16-1)) fiir HiRes

Mit Screenbreite ist die Breite des darzustellenden Playfields in Punkten gemeint.

Hat man alle oben erwähnten Schritte durchgeführt, so braucht man nur noch die Bit-

Plane-DMA zu starten. Wie dies geschieht, ersehen Sie aus dem Kapitelzur DMA-Kon-

troll-Logik. Besonders angemerkt werden muß noch, daß es keinen Zweck hat, durch

einfaches Setzen der Register ein Playfield zu erzeugen. Dies sollte durch eine Copper-

liste geschehen.

Das oben erwähnte Vorgehen erzeugt ein normales Playfield, das auch als Screen be-

kannt ist. Doch es bestehen noch eine Vielzahl von weiteren Möglichkeiten. Zum er-

sten ist hier der Dual-Playfield-Modus zu erwähnen. Ist dieser Modus durch Setzen von

Bit 10 in BPLCONG eingeschaltet, so werden die BitPlanes mit ungerader Nummer

unabhängig von denen mit gerader Nummer behandelt. Das bedeutet, das die Bit-

Planes 1, 3 und 5, sowie die BitPlanes 2, 4 und 6 jeweils ein eigenes Playfield darstellen,

die weitgehend unabhängig voneinander behandelt werden können. Jedes dieser bei-

den Playfields kann also bis zu 3 BitPlanes besitzen, also bis zu 8 Farben darstellen. Das

Playfield mit den ungeraden Planes spricht die Farbregister 0 bis 7 an, während das

andere Playfield die Register 16 bis 23 anspricht. Ist ein Bildpunkt im ersten Playfield

120 Die Custom-Chips

auf Register 0 gesetzt, so erscheint dieser Punkt als transparent, wodurch das zweite

Playfield sichtbar wird.

Ein weiterer Punkt, der Playfields so interessant macht, ist der, daß sie größer sein kön-

nen als der dargestellte Ausschnitt.

Soll ein Playfield höher sein als der dargestellte Ausschnitt, so ist dies ohne allzu großen

Aufwand möglich. Dazu erstellt man lediglich genügend große BitPlanes, wobei natür-

lich die gewünschte Höhe berücksichtigt werden muß. Die Höhe des dargestellten Aus-

schnittes ist ja durch DIWSTRTund DIWSTOFP festgelegt. Soll der Ausschnitt nun ver-

tikal »bewegt« werden, so addiert, bzw. subtrahiert man einfach Anzahl der Worte pro

Zeile zu den Startzeigern BPLxPTH/BPLxPTL der jeweiligen BitPlane-Zeiger.

Will man aber Playfields erstellen, die breiter sind als der dargestellte Ausschnitt, so

wird es etwas schwieriger. Um dies überhaupt durchführen zu können, sind die Register

BPL1MOD und BPL2MOD notwendig. Wurde eine Zeile komplett dargestellt, so wird

zu dem momentanen Display-BitPlane-Zeiger der Wert aus BPLxMOD hinzuaddiert,

um bei der nächsten Zeile an der neuen Speicherposition mit der Darstellung der Da-

ten zu beginnen. In den Registern BPLxMOD muß die Anzahl der Words stehen, die

übersprungen werden sollen. Wenn man also einen Ausschnitt von 320 Punkten Breite

(=20 Words) hat, das Playfield aber 640 (=40 Words) breit ist, muß BPLxMOD auf den

Wert 40-20 = 20 gesetzt werden. Es existieren zwei BPLxMOD-Register, damit im

Dual-Playfield-Modus die zwei Playfields verschiedene Abmaße haben Können.

BPL1MOD bezieht sich auf alle ungeraden BitPlanes und BPL2MOD auf alle geraden.

Soll ein solches breites Playfield horizontal »bewegt« werden, braucht man nur noch

die einzelnen BitPlane-Zeiger um die Anzahl der Words zu erhöhen, bzw. erniedrigen.

Dies verschiebt das Playfield aber immer um 16 Punkte. Um nur um einen Punkt ver-

schieben zu können, muß noch das Register BPLCONI entsprechend gesetzt werden.

Die Bits 0 bis 3 beeinflussen das Scrolling des ersten Playfields und die Bits 4 bis 7 das

Scrolling von Playfield 2. Will man beispielsweise das erste Playfield um 16 Punkte nach

links bewegen, so setzt man die Bits 0 bis 3 von BPLCON1 auf 0 und die BitPlane-Zei-

ger auf die Startposition des Playfields. Anschließend inkrementiert man BPLCONI

jeweils um 1, bis die Bits 0 bis 3 gleich % 1111, bzw. $F sind. Dann setzt man sie wieder

zurück und erhöht den BitPlane-Zeiger um einWord. Soll ein Playfield höher und brei-

ter sein als der gezeigte Ausschnitt, so muß man nur noch die beiden oben angeführten

Methoden kombinieren.

Die Custom-Chips 121

1 [BRERKREKKEKKKEEKEKEKREKKEK ERE KR TR

2

3 1. Playfield-Demonstration

4 last update 16/02/88

5 vonFrank Kremser und JörgKoch

6 ©Markt & Technik 1988

7
8 FF RR RR KR RR IKK IR RR RR RR RR

9 ,

10 Diese Demo zeigt ein einzelnes Playfieldmit einer Größe von 960 x 600

11

13

14 #include <exec/types.h> /* Include-Files laden */

15 #include <exec/memory.h>

16 +include <graphics/gfxbase.h>

17 +#include <graphics/copper.h>

18 +#include <graphics/view.h>

19 #include <graphics/rastport.h>

20 +#include <devices/gameport.h>

21 +#include <devices/inputevent.h>

22

25 UWORD colors[] =

24 {

20 0,

26 0x555,

27 OxAAA,

28 OxFFF

29};
30

Sl struct View v, *oldview;

32 struct ViewPort Vp;

33 struct ColorMap *cm;

34 structRasInfo ri;

35 structBitMap *bm;

36 structRastPort rp;

37

38 structGfxBase *GfxBase; /* Library-Zeiger */

39

40 main() /* HAUPTPROGRAMM * /

al {

42 inti,x,y;

43 /* Library öffnen */
4A if(!(GfxBase = OpenLibrary ("graphics.library",0)))

45 exit();

46 /* Speicher für BitMap-Structure bereitstellen */

AT if(!(bm=AllocMenm ((long) sizeof (*bm), MEMF_CHIPIMEMF_CLEAR)))

48 exit(); =
49

50 InitView (&v); /* Neue View-Structureinitialisieren */

122 Die Custom-Chips

ol

52

53

54

55

6

7

58

9

60

61

62

63

64

65

66

67

68

69

70

71

TR

73

74

75

76

TT

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

InitVPort (&vp); /* Neue Viewport-Structure initialisieren */

InitBitMap (bm, (long) 2, 960, 600); /*BitMap-Structureinit. */

InitRastPort (&rp); /* Rastport-Structure initialisieren */

v.ViewPort = &vp; /* ViewPort eintragen */

ri.BitMap = bm; /* BitMap eintragen */

ri.RxOffset =ri.RyOffset = ri.Next = NULL;

vp.DWidth = 320; /* dargestellte Ausschnittgröße festlegen */

vp.DHeight = 256;

vp.RasInfo = &ri; /* RasInfo-Structure eintragen */

vp.ColorMap = GetColorMap(4); /* Color-Map eintragenundinit. */

rp.BitMap = bm; /* BitMap eintragen */

for (i=0; i<2; i++) /* Speicher für Bitplanes bereitstellen */

if(!(bm->Planes[i] =AllocRaster (960, 600)))

exit();

MakeVPort (&v, &vp); /* ViewPort in View-Structure eintragen */

MrgCop (&v); /* View in Copperliste eintragen */

LoadRGB4 (&vp, colors, 4); /* Farben setzen */

oldview = GfxBase->ActiView; /* Alten View sichern */

LoadView (&v); /* Neuen View darstellen */

i=1; /* Muster zeichnen */

SetDrMd (&rp, JAM1) ;

SetRast (&rp, 0);
SetAPen (&rp, 1);

for (x=0, y=0; x<960; x+=8, y+=5)
{
Move (&rp, (long) x, 0);
Draw (&rp, 959, (long) y);

Draw (&rp, 959-x, 599);
Draw (&rp, 0, 599-y);
Draw (&rp, (long) x, OL);
if (!(++i&3))it+:
SetAPen (&rp, (long) i);

}
SetAPen (&rp, 3); /* Text zeichnen */

Move (&rp, 429, 301);

Text (&rp, "EinSuperplayfield', 18);

SetAPen (&rp, 1);

Move (&rp, 428, 300);

Text (&rp, "EinSuperplayfield', 18);

for(x=0;x<640;x+=4) /* Playfieldnach links bewegen */

{
ri.RxOffset =x;

Die Custom-Chips 123

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

}

WaitTOF ();

ScrollVPort (&vp) ;

} |
for(y=0;y<344;y+=2) /* Playfieldnach oben bewegen */

{

ri.RyOffset =y;

WaitTOF ();

ScrollVPort (&vp);

}
for(x=640;x>0;x-=4) /* Playfield nach rechts bewegen */

{ a |

ri.RxOffset =x;

WaitTOF ();

ScrollVPort (&vp);

}
for (y=344; y>0; y-=2) /* Playfield nah unten bewegen */

{
ri.RyOffset =y;

WaitTOF ();

ScrollVPort (&vp);

}
y=12;
for(x=0;x<640;x+=4) /* Playfield diagonal bewegen */

{
yt=2;
ri.RxOffset =x;

ri.RyOffset=y;

WaitTOF ():
ScrollVPort (&vp) ;

}

LoadView (oldview); /* Alten View setzen */

WaitTOF (); /* Warten, bis oberer Bildschirmranderreicht */

FreeVPortCopLists (&vp); /* Alte Copperlisten löschen */

FreeCprList (v.LOFCprList) ;

FreeColorMap (vp.ColorMap); /* Colormap löschen */
for (i=0; i<2; i++) /* Bitplanes löschen */

if(bm->Planes[i])

FreeRaster (bm-> Planes[i], 960, 600);

FreeMem (bm, (long) sizeof (*bm)); /* BitMap-Structure löschen */

CloseLibrary(GfxBase); /* Library schließen */

124 Die Custom-Chips

[FRFRRRRRRRRRRRKRRRRRRRKRKRRRRKRK

2. Playfield-Demonstration

last update 16/02/88

von Frank Kremser und JörgKoch

© Markt & Technik 1988

KHEKHEKKKKKEKKKHKKKKKKKKKKHKKKEKE

O
O
o

S
I
T

R
A

D
H

10 Diese Playfieldzeigt einGittermuster, das sich bewegt. Dabei werden

ll jeweils die Linien einer Richtung auf ein eigenes Playfield gezeichnet.

12 Die Bewegung kommt dadurch zustande, daß eines der Playfields bewegt

13 wird. Optisch besteht allerdings zwischen einer Bewegung nach links

14 undunten, bzwnach rechtsundobenkeinUnterschied. .

15
16 KERRRKRRKERKERRRRKERRRRRRRRRRRRRRRR]

17

18 #include <exec/types.h> /* Include-Files laden */

19 +include <intuition/intuition.h>

20 +#include <graphics/gfxbase.h>

21

22 struct View v, *oldview;

25 struct ViewPort Vp;

24 struct ColorMap *cm;

25

26 structBitMap b, b2;

27 structRastPort rp,rp2;

28 structRasInfo ri,ri2;

29

30 LONG i;

31 SHORT k,n;

32

53 struct GfxBase *GfxBase; /* Library-Zeiger */

34

35 UWORD colors[] =

36

37 0x000, 0xf00, 0, 0,

38 O, 0, 0, 0,

39 0, Ox4f8

40};
Al

42 UWORD *colorpalette;

43 shortw;

44

45 main() /* HAUPTPROGRAMM * /

46 {

47 intx;

48 /* Library öffnen */

49 =GfxBase = (struct GfxBase *)OpenLibrary("graphics.library'",O);

50 if (GfxBase ==NULL) exit();

Die Custom-Chips 125

51

52 oldview = GfxBase->ActiView; /* Alten View sichern */

53

54 InitBitMap(&b,1,400,400); /* BitMap-Structures initialisieren */

55 InitBitMap(&b2,1,320, 320) ;

56

57 for(i=0; i<l; i++) /* Speicher für Bitplanes des1. Playfields */

58 ; /* bereitstellen */
59 b.Planes[i] = (PLANEPTR)AllocRaster (400,400);
60 if(b.Planes[i] ==NULL) exit();

61 BltClear(b.Planes[i],RASSIZE(400,400) ,0);

62 }

63

64 for(i=0; i<l; i++) /* Genauso bei zweitem Playfield */

65 {

66 b2.Planes[i] = (PLANEPTR) AllocRaster (320,320);
67 if(b2.Planes[i] ==NULL) exit();

68 BltClear(b2.Planes[i],RASSIZE(320,320),0);
69 =}

70

71 ri.BitMap = &b; /* BitMap-Structure eintragen */

72 ri.RxOffset =0;

73 ri.RyOffset =0;

74 ri.Next = &kri2; /* Zeiger auf nachstes Playfield*/

75

76 ri2.BitMap = &b2; /* BitMap-Structure eintragen */

77 ri2.RxO0ffset =0;

78 ri2.RyOffset=0;

79 ri2.Next=0;

80

81 InitView(&v); /*NeuenViewinitialisieren */

82 v.ViewPort = &vp; /* und ViewPort eintragen */

83

84 InitVPort(&vp); /* ViewPort initialisieren */
85

86 cm=(struct ColorMap *)GetColorMap(10); /* ColorMap bereitstellen*/

87 colorpalette = (UWORD *)cm->ColorTable; /* und eintragen */

88 for(i=0; i<10; i++)

89 *colorpalette++ =colors[i]|; /* Farben setzen */

90

91 vp.ColorMap = cm; /* ColorMap eintragen */

92

93 vp.DWidth =320; /* Breite des Ausschnittes */

94 vp.DHeight = 256;

95 vp.RasInfo = &ri; /* RasInfo eintragen */

96 vp.Modes =DUALPF; /*Dual-Playfield-Mode einschalten */

97 |

98 MakeVPort(&v, &vp); /* ViewPort eintragen */

99 MrgCop(&v); /*ViewinCopperliste eintragen */

100

126 Die Custom-Chips

101 InitRastPort(&rp); /*RastPortinitialisieren */
102 rp.BitMap = &b; /* BitMap-Structure eintragen */

103

104 InitRastPort(&rp2); /* zweitenRastPort initialisieren */

105 rp2.BitMap = &b2; /* zweite BitMap-Structure eintragen */

106

107 SetRast(&rp,0);

108 SetRast(&rp2,0) ;

109 LoadView(&v); /* Neuen View darstellen */

110

111 SetAPen(&rp2,1); /* Muster zeichnen */

112 for(x=0; x<320; x+=16)

113

114 Move (&rp2,0,319-x);

115 Draw(&rp2,x,319);

116 Move (&rp2,x,0);
117 Draw(&rp2,319,319-x);
118 }
119

120 SetAPen(&rp,1);

121 for(x=0; x<400; x+=20)

122 {
123 Move (&rp,0,x);
124 Draw(&rp,x,0);
125 Move (&rp,x,399) ;
126 Draw(&rp,399,x);
127 }

128

129 for(w=0; w<70;w++) /*1. Playfieldnach links bewegen */

130 {

131 ri.RxOffsett++;

132 MakeVPort(&v, &vp);
133 MrgCop(&v) ;

134 LoadView(&v);
135 WaitTOF();

136 |}

137

138 for(w=0; w<130; w++) /*1. Playfieldnach oben bewegen */

139 {

140 ri.RyOffset++;
141 MakeVPort (&v, &vp);
142 MrgCop(&v);
143 LoadView(&v);

144 WaitTOF();

145 }

146

147 for(w=0; w<”70;w+t+t) /*1. Playfieldnach rechts bewegen */

148 {

149 ri.RxOffset--;

150 MakeVPort(&v, &vp);

Die Custom-Chips 127

151 MreCop(&v);
152 LoadView(&v);

153 WaitTOF();
154 }
155

156 for(w=0; w<130; w++) /* 1. Playfieldnach unten bewegen */

157

158 ri.RyOffset--;

159 MakeVPort (&v, &vp);
160 MregCop(&v) ;

161 LoadView(&v);

162 WaitTOF();

163 }}

64

165 LoadView(oldview); /* Alten View darstellen */

166

167 for(i=0; i<l;i+t+) /* Bitplanes löschen */

168

169 FreeRaster(b.Planes[i],400,300) ;

170 FreeRaster(b2.Planes[i],320,200);

171 .

172 FreeColorMap(cm); /* ColorMap löschen */

173 FreeVPortCopLists(&vp); /* Copperliste löschen */
174

175 CloseLibrary(GfxBase); /* Library schließen */

176 }

1 [FE RRRRRERRRRRKRRRRTKRRKKRRRRR RR

2

3 3. Playfield-Demonstration

4 last update 16/02/88

5 vonFrank Kremser und J6érg Koch

6 ©Markt & Technik 1988

7
8 KFERRERTRRERRER RR FT RR RR TR KR RR RT RR

9

10 Diese Demo zeigt eineinzelnes Playfieldmit einer Größe von 960 x 600

11 Der Unterschiedzurl. Playfielddemonstration besteht darin, das die

12 volle Auflösung von 352 x 362 Punkten zur Darstellung verwendet wird.

13

15

16 +#include <exec/types.h> /* Include-Files laden */

17 +#include <exec/memory.h>

18 +#include <graphics/gfxbase.h>

19 +#include <graphics/copper.h>

20 +#include <graphics/view.h>

21 +#include <graphics/rastport.h>

22 +#include <devices/gameport.h>

128 Die Custom-Chips

23

24

25

26

al

28

29

50

Sl

52

535

54

35

36

37

58

39

40

41

42

43

44

45

46

AT

48

49

50

ol

2

53

54

OO

6

OT

58

9

60

61

62

63

64

65

66

67

68

69

70

71

72

#include <devices/inputevent.h>

UWORD colors[] =

{
0,
0x555,

OxAAA,

OxFFF

};

struct View v, *oldview;

struct ViewPort vp;

structColorMap *cm;

struct RasiInfo ri;

struct BitMap *bm;

structRastPort rp;

struct GfxBase *GfxBase; /* Library-Zeiger */

main() /* HAUPTPROGRAMM * /

{
inti, x, y;

/* Library öffnen */

if (!(GfxBase = OpenLibrary ("graphics.library", 0)))

exit();
/* Speicher für BitMap-Structure bereitstellen */

if (!(bm= AllocMen ((long) sizeof (*bm), MEMF_CHIPIMEMF_CLEAR)))

exit();

InitView (&v); /* Neue View-Structure initialisieren */

InitVPort (&vp) ;/* Neue Viewport-Structureinitialisieren */

InitBitMap (bm, (long) 2, 960, 600); /*BitMap-Structureinit. */

InitRastPort (&rp); /*Rastport-Structureinitialisieren */

v.ViewPort = &vp; /* ViewPort eintragen */

ri.BitMap = bm; /* BitMap eintragen */

ri.RxOffset =ri.RyOffset = ri.Next = NULL;

vp.DWidth = 352; /* dargestellte Ausschnittgröße festlegen */

vp.DHeight = 262;

vp.RasInfo=&ri; /*RasInfo-Structure eintragen */

vp.ColorMap = GetColorMap(4); /*Color-Map eintragenundinit. */

rp.BitMap = bm; /* BitMap eintragen */

for (i=0; i<2; i++) /* Speicher für Bitplanes bereitstellen */

if(!(bm->Planes[i] =AllocRaster (960, 600)))
exit();

Die Custom-Chips 129

73 MakeVPort (&v, &vp); /* ViewPort in View-Structure eintragen */

74 MrgCop (&v); /* ViewinCopperliste eintragen */

75 LoadRGB4 (&vp, colors, 4); /* Farben setzen */

76 oldview = GfxBase->ActiView; /* Alten View sichern */

77 LoadView (&v); /* Neuen View darstellen */

78

79 i=1; /* Muster zeichnen */

80 SetDrMd (&rp, JAM1);

81 SetRast (&rp, 0);
82 SetAPen (&rp, 1);

83 for (x=0, y=0; x<960; x+=8, y+=5)

84

85 Move (&rp, (long) x, 0);
86 Draw (&rp, 959, (long) y);

87 Draw (&rp, 959-x, 599);
88 Draw (&rp, 0, 599-y);
89 Draw (&rp, (long) x, OL);

90 if (!(+4+i&3)) it+4;
91 SetAPen (&rp, (long) i);
92 }

93 SetAPen (&rp, 3); /* Text zeichnen */

94 Move (&rp, 429, 301);

95 Text (&rp, 'EinSuperplayfield", 18);

96 SetAPen (&rp, 1);

97 Move (&rp, 428, 300);

98 Text (&rp, "EinSuperplayfield', 18);

99

100 for(x=0;x<608;x+=4) /* Playfieldnach links bewegen */

101 {

102 ri.RxOffset =x;

103 WaitTOF ();

104 ScrollVPort (&vp);

105 |}

106 for(y=0;y<238;y+t=2) /* Playfieldnach oben bewegen */

107

108 ri.RyOffset =y;

109 WaitTOF ();

110 ScrollVPort (&vp);
111}

112 for(x=608;x>0;x-=4) /* Playfield nach rechts bewegen */

113

114 ri.RxOffset =x;

115 WaitTOF():
116 ScrollVPort (&vp);

117} |
118 for(y=238; y>0;y-=2) /* Playfield nah unten bewegen */

119

120 ri.RyOffset =y;

121 WaitTOF ();

122 ScrollVPort (&vp);

130 Die Custom-Chips

123 }

124 y=12;

125 for(x=0;x<608;x+=4) /* Playfield diagonal bewegen */

126 {

127 y+t=1;

128 ri.RxOffset =x;

129 ri.RyOffset =y;

130 WaitTOF ();
131 ScrollVPort (&vp);

132

133 LoadView (oldview); /* Alten View setzen */

134 WaitTOF (); /* Warten, bis oberer Bildschirmranderreicht */
135 FreeVPortCopLists (&vp); /*AlteCopperlisten löschen */
136 FreeCprList (v.LOFCprList);

137 FreeColorMap (vp.ColorMap); /* Colormap löschen */

138 for (i=0; i<2; i++) /*Bitplanes löschen */

139 if (bm->Planes[i])

140 FreeRaster (bm->Planes[i], 960, 600);

141 FreeMem (bm, (long) sizeof (*bm)); /* BitMap-Structure löschen */

142

143 CloseLibrary(GfxBase); /* Library schlieBen */

144 }

1 sERKER EKER EERE KEKE ERR ERE EKER EERE

2;
3 ; 1. Playfield- Demonstration

4 ; last update 10/03/88

5 ; von Frank Kremser und Jorg Koch

6 ; ©Markt & Technik 1988

1;
8 SERKKKKERRRRRRRRRKRKERRRRTRTKKKRTERNR

9;
10 ;Diese Demonstration erstellt vier Bitplanes mit der Größe 640 x 256.

ll ;Der DisplayScreen ist aber lediglich 320 x 256 Punkte groß.

12 ;Das Programm verschiebt nun denBitplaneausschnitt ständig

13 ;bitweiseinhorizontaler Richtung.

14 ;
15 ZERKRKKERRRRRRRKRRKRRRTRRRKRERRNRNR

16

17 BitPlanel = $50000

18 BitPlane2 = $58000

19 BitPlane3 = $60000

20 BitPlane4 = $68000

21 ExecBase =4

R2 Permit = -138

23 Forbid = -132

24 OpenLibrary = -408

25 CloseLibrary = -414

26 InitRastPort = -198

Die Custom-Chips 131

at

28

29

50

Sl

32

53

54

55

56

ST

58

59

40

Al

42

43

44

45

46

47

48

49

50

ol

2

95

54

DD

6

97

58

59

60

61

62

63

64

65

66

67

68

69

70

71

TR

13

74

75

76

InitBitMap

loopl:

loop2:

move.l

jsr

move. 1

lea.l

jsr

move.l

lea

jsr

move.l

move. 1

add. 1

move. 1

lea

moveg

move.l

move.]l

jsr

lea

jsr

move.

move.

move.

move.

move.

swap do
move.w

move.l

move.b

move.b

dbf

a
o
e
 ee

move.
move.
move.
move.
swap
move.
move.
move.
move.
dbf

a
Oo

O
r

r
 move.

move.

move.l

_

= -390

ExecBase, a6

Forbid(a6)

ExecBase,a6

dosname,al

OpenLibrary(a6)

d0,dosbase

efxname,al

OpenLibrary(a6)

dO, gfxbase

d0,a6

+$32,d0

dO, copptr

bitmap, a0

+4,d0

#320,dl

#256,d2

 InitBitMap(a6)

rastport,al

InitRastPort(a6)
+bitmap,R_BitMap

+bitplanel, dO

d0Q,planel

a0,a0

dO,lol

aA0,hil

#20480,d0

#$00,dl

dl,(a0)+

dQ, loopl

+bitplanez2, dO

dO,plane2

dO, a0

a0,1o2

do

do,hi2

+20480, d0

+ $00, d1

dl,(a0)+

dQ, loop2

+bitplanes, dO

dQ, plane3

dO,a0

;Multitaskingaus

;DosLibrary öffnen

;GfxLibrary 6ffnen

;ZeigeraufalteCopperliste

;Bitmap-Structure initialisieren

;Tiefe(4Bitplanes)

;Breite

;Hohe

;Bitmapinitialisieren

;Rastportinitialisieren

;1.Bitplaneinitialisieren

;ZeigerinCopperlisteaktual.

;Hi-Byteebenfalls

;inCopperlisteeintragen

;Bitplane löschen

132 Die Custom-Chips

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

lll

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

loops:

loop4:

loop’:

loops:

loop9:

loop10:

move.

swap

move.

move.

move.

move.

dbf

move.

move.

move.

move.

swap

move.

move.

move.

move.

dbf

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move

move

move.

move.

move.

move.

sub

bne

sub

bne

andi.

beq

move.

sub

bne

m

o
o
v
r
-
S
s
&

S
r
-
H
H
r

O
O
F
 S

s
b
h

M
m
M
e
r
E
r
E
 S&

S
S
S

Ez

SB

P
e
r
)

d0,103

do

d0,hi3

+#20480 , dO

#$00,dl

dl,(a0)+

A0,100p3

+bitplane4, dO

dO, plane4

do, a0

d0,104

do

do,hi4

#20480,d0

#$00,dl

dl,(a0)+

dO, loop4

copptr,a0 ‚Adresse der Copperlistenacha0

(a0) ,oldcop ;AlteListesichern

*#copper, (a0) ;Neue Copperliste setzen

+10, flag ;Variablenmit Startwerten

lol,adrl ;initialisieren

lo2,adr2

lo3,adr3
lo4,adr4

+bitplanel,al

+tbitplane2,a2

+bitplane3,a3d

+bitplane4, a4

#256, dO ;GrafikindieBitplane zeichnen

#20,dl

+$ffFfOOO00, (al)+

+$00ffOOff, (a2)+

#$ff000000, (ad) +

+h fffFfOOff, (a4)+

#1,dl

loops ©

#1,d0

loop7

+64, $bfe001 ;Wurde linke Maustaste gedrtickt

ende ;Wenn ja, dann beenden

+#2000 , dO ;Warteschleife

+#1,d0

loop1lO

Die Custom-Chips 133

127

128

129

130

131

152

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

etl

172

173

174

175

176

‚Die folgende Routine scrollt das Display bitweise horizontal.

;Soll vertikal gescrollt werden, benötigt man die Finescrolling-

;routine nicht(die ersten3 Zeilen), sondern man braucht zu

;lol-104 lediglich die Breite der Bitplane in Bytes

;hinzuaddieren. Natürlichmuß die Bitplane auch entsprechend

‚höher sein, als jetzt.

sub.w #11, finescrl ‚Even/OddScrollvalue dekrementieren

cmp.w =#%0000, finescrl ;Wennnochkeine 16Bitsgescrollt,
bne loop9 ‚dannweiterscrollen

add.w #2,1lol ‚ansonstenum2Byteweiterscrollen

add.w #2,1o2

add.w #2,103

add.w +#2,104

move.w +#00ff,finescrl ;undEven/OddScrollvalue zurücksetzen

sub.w #1, flag ;Wenn Ende des BitMapserreicht,

bne loop9

move.w #20,flag ‚dannWerteaufStartposition

move.w adrl,lol ‚zurücksetzen

move.w adr2,1lo2

move.w adr3,103

move.w adr4,104

bra loop9

ende: move.l copptr,a0

move.l oldcop, (a0) ;AlteCopperlistewieder setzen

move.l ExecBase,a6

move.l gfxbase,al ;Gfxlibraryschließen

jsr CloseLibrary(a6)

move.l dosbase,al ;DosLibrary schließen

jsr - CloseLibrary(a6)

move.l ExecBase,a6

jsr Permit(a6) ;Multitaskingeinschalten

rts ‚Rückkehr

even

Copper: dc.w $0180, $0000 ;ColorO
dc.w H0182,H0fff ;Colorl

dc.w $0184, f000f ;Color2
dc.w $0186, $0f00 ;Color3

dc.w $0188, f000f ;Color4

dc.w $018a, $OfOf ;Color5

dc.w $018c,00ff ;Color6

dc.w $018e,$foff ;Color7

dc.w $0190, $0620 ;Color8

dc.w $0192, $0e50 ;Color9

dc.w $0194, $09f1 ;ColorlO

dc.w $0196, $0eb0 ;Colorll

dc.w $0198, $O55f ;Colorle2

dc.w $019a, $o92f ;Color13

134 Die Custom-Chips

177 dc.w

178 dc.w

179 dc.w

180 dc.w

181 dc.w

182 dc.w

183 dc.w

184 dc.w

185 dc.w

186 dc.w

187 dc.w

188 dc.w

189 dc.w

190 dc.w

191 dc.w

192 dc.w

193 dc.w

194 dc.w

195 dc.w

196 hil: dc.w

197 dc.w

198 lol: dc.w

199 dc.w

200 hie: dc.w

201 dc.w

202 lore: dc.w

203 dc.w

204 hi3: dc.w

205 dc.w

- 206 103: dc.w

207 dc.w

208 hi4: dc.w

209 dc.w

210 104: dc.w

all dc.w

212 dc.w

213 finescrl:

214 dc.w

215 dc.w

216 dc.w

217 dc.w

218 dc.w

219 dc.w

220 dc.w

Ral dc.w

222 BitMap:

225 BytesPerRow:

R24 blk.w

220 Bytes: blk.w

226 Flags: blk.b

$019c,$00f8

$019e,$0ccc

$01a0, $0000

$01la2,$0d22

$01a4, $0000

$01a6,$0fca

$01a8s , $0444

$Olaa, $0555

$Olac, $0666

$Olae, $0777

$01b0, $0888

$01b2 , $0999

$01b4, $0aaa

$01b6, $0bbb

$01b8,$0ccc

$01ba,$Oddd

$01bc , $0eee

$Olbe, $O0fff

$00e0

$0002
$00e2

$1000

$00e4

$0002

$00e6

$1000

$00e8

$0002
$00ea

$1000

$00ec

$0002

$00ee

$1000

$0100 , ZO100000000000000
$0102

goorr
$0108, $0026
$010a, $0026
$0092, $0030
$0094 , $00d0
$008e, $2481
$0090, $24cl
greff,$éfffe

1,0

1,0

1,0 9

;Colorl4

;Colorl5

;Color16

;Color17

;Color18

;Color19

;Color20

;Color2l

;Color22

;Color2s3

;Color24

;Color25

;Color26

;Color27

;Color28

;Color29

;Color30

;Color3l

;BitPlane Pointer

;BPLCONO: 4Bitplanes

; BPLCON1

;BPL1IMOD: Anzahl der Bytes, dieam

;BPL2M0D: Endeder Zeilehinzuaddiert |

;DDFSTRT;werdensollen, damit der

; DDFSTOP; neue Zeilenanfang stimmt

; DIWSTRT; so k6nnenBitplanes breiter

;DIWSTOP; sein, alsdasDisplay

;Ende der Copperliste

Die Custom-Chips 135

227 Depth:

228 Pad:

229 Planel:

230 Plane2:

231 Planes:

232 Plane4:

233 Planes:

234 RastPort:

235

236 R_BitMap:

237

238

239

240 cp_x:

241 cp_y:

RAL

243

244 even

245 gfxname:

246 dosname:

247

248 even

249 copptr:

250 oldcop:

201 gfxbase:

252 dosbase:

205 X:

204 flag:

205 adrl:

206 adr?:

257 adr3:

258 adr4:

.

,

.

>

O
M
O
N

o
u
k
h

W
N
P

.

u

blk.

blk.

blk.

blk.

blk.

blk.

blk. M
r
e
m
M
r
E
H
E
H

&
oO

blk. >

blk.

blk.

blk.

blk.

blk.

blk.

blk. 2
o
v
a

32

0
0
F

dc.b

blk.

blk.

blk.

blk.

blk.

blk.

blk.

blk.

blk.

blk. ed

H-

1,0
2+4+4+4+8,0
4,0
1,0
1,0
8+22+[7*2]+[2*4]+8,0
6,0

'sraphics.library' ,0

'dos.library' ‚OÖ

ee

e
e

e
e

o
o
o
o
o
0
0
o
0
0
0
0
o
0
 O
0

“

“

“

.

“

“

"KEKKKRRRRRRERRRKRRR KR RR TR KR TR TR HK RK TR NR NR
>

; 2. Playfield - Demonstration

; last update 10/03/88

; von Frank Kremser und Jorg Koch

; ©Markt & Technik 1988

KKK KKKKKKHKKKRKEKKHKKKKKKKKKKKKKKKE
3

10 ;Diese Demonstration erstellt 6 Bitplanes der Größe 640 x 256.

11 ;Dabei werden durch den eingeschalteten Dual-Playfield-Modus

12 ;dieBitplanes 1, 3und5 für das vordere Playfield verwendet und

13 ;die Planes 2, 4und6 für das hintere. |

14 ;Das vordere und das hintere Playfield werden gegenläufigverschoben.

15 ;
16 -KEREREHRRRERERKRR RK RR RK. RR RR RR RR RR

3

136 Die Custom-Chips

17

18

19

20

21

22

23

24

25

26

27

28

29

50

Sl

52

35

54

35

36

37

58

59

40

41

42

43

44

45

46

47

48

49

50

ol

2

05

54

55

56

07

58

59

60

61

62

63

64

65

66

BitPlanel

BitPlane2

BitPlane3

BitPlane4

BitPlane5

BitPlane6

ExecBase

Permit

Forbid

OpenLibrary

= $50000

= $56000

= $5c000

= $62000

= $68000

= $6e000

=4

= -138

=-132

= -408

CloseLibrary =-414

InitRastPort =-198

InitBitMap

move.l

jsr

move.1

lea.l

jsr

move.1

lea

jsr

move. 1]

move.l

add.l

move.l

lea

moveq

move.l

move.]l

jsr

lea

jsr

move.l

move.
move.
move.
move.
swap
move.
move.
move.
move.
dbf

Z
t
r
H
r
H
r

On

O
r
s

loopl:

ExecBase, a6

Forbid(a6)

ExecBase,a6

dosname,al

OpenLibrary(a6)

dO, dosbase

gfxname,al

OpenLibrary(a6)

dO, gfxbase

d0,a6

#$32,d0

dO, copptr

bitmap, a0

+6 , dO

#320,dl

#256,d2

InitBitMap(a6)

rastport,al

InitRastPort(a6)

#+bitmap,R_BitMap

#bitplanel,dO

dO, planel

dO, a0

d0,lol

do

d0,hil

+-20480, dO

+ $00, d1

di, (a0)+

dO, loopl

;Multitaskingaus

;DosLibrary 6ffnen

;GfxLibrary 6ffnen

‚ZeigeraufalteCopperliste

‚Bitmap-Structureinitialisieren

‚Tiefe(6Bitplanes)

‚Breite

‚Höhe

‚Bitmapinitialisieren

‚Rastportinitialisieren

‚1. Bitplaneinitialisieren

;Zeiger inCopperlisteaktualisieren

;Hi-Byte ebenfalls

‚inCopperlisteeintragen

‚Bitplane löschen

Die Custom-Chips 137

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

loope:

loops:

loop4:

loops:

move. 1

move. 1

move. l

add. 1

move .w

swap

move.

move.

move.

move.

dbf

O
O
F

Ss

move.
move.
move.
move.
swap
move.
move.
move.
move.
dbf

i
O
O
F

=

move.l

move.l

add.l

move.Ww

swap

move.

move.

move.

move.

dbf

O
O
F

&s

move.
move.
move.
move.
swap
move.
move.
move.
move.
dbf

S
r
r
 P

r
O
O
F

Ss

move. 1]

move.l

move.l

add.l

move.w

#+bitplane2,dO

dO, plane2

d0,a0

#40,d0

d0,1o2

do

d0,hi2

+20480, dO

+$00,d1

dl, (a0)+

dO, loop2

+bitplanes, dO

dO, plane3

dod ,a0

d0,103

do

do, hid

#20480,d0

#$00,dl

dl,(a0)+

a0, loops

+bitplane4, dO

dO, plane4

+40, dO

dO, lo4

do

do,hi4

+:20480, dO

+ $00, d1

di, (a0)+

dO, loop4

+bitplane5d, dO

a0, planed

d0,a0

d0,105

do

aA0,hi5-

#20480, dO

#$00,dl

dl,(a0)+

aA0,100p5

+bitplane6, dO

dO, plane6

d0,a0

+40, dO

dO, 106

‚Bei2.PlayfielddierechteHälfte

;zuerst anzeigen

‚Bei2.PlayfieldrechteHälfte

‚zuerstanzeigen

‚Bei2.PlayfieldrechteHälfte

‚zuerstanzeigen

138 Die Custom-Chips

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

loop6:

loop”:

loops:

loopg9:

looploO:

swap

move.

move.

move.

move.

dbf

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

Move.

move.

move.

move.

move

move

move.

move.

move.

move.

move.

move.

sub

bne

sub

bne

andi.

beq

move.

sub

bne

sub.

add.

cmp.

bne

add.

add.

add.

a
e
l

ca
2

O
O
F
 S

s
e
e

do

d0,hi6

#20480,d0

#$00,dl

dl,(a0)+

d0,100p6

copptr,a0 ; Adresse der Copperlistenacha0O

(a0) ,oldcop ;AlteListesichern

*#copper, (a0) ;‚NeueCopperlistesetzen

#10, flag ;Variablenmit Startwerten

lol,adrl ;initialisieren

lo2,adr2

1lo3,adr3

1o4,adr4

lod5,adr5

106, adr6

+bitplanel,al

#+bitplane2,a2

+bitplaneds,ad

+bitplane4, a4

+bitplaned,ad

+bitplane6,a6

+256 , dO

#20,dl

#$0f0000f0, (al)+ ;Grafik fürvorderesPlayfield
+$ ffOO00ff, (a3)+

#$f000000f, (ad) +

+$fffFfO000, (a2)+ ;Grafikftirhinteres Playfield
+$ffffO000, (a4)+

#$0000ffff,(a6)+

#1,dl

loop8

#1,d0

loop7

+64, $bfed001 - ;Wurde linkeMaustaste gedrückt

ende ;Wenn ja, dann beenden

+4000, dO ;Warteschleife

#1,d0

looplO

#1, finescrl ‚Scrollvalue für OddPlane erniedrigen

+610, finescrl ;Scrollvalue für EvenPlane erhöhen

#$00f0, finescrl ;Wenn nochkeine 16Bits gescrollt,

loop9 ;dannweiterscrollen

#2,1lol ‚ansonstenum2Byteweiterscrollen

#2,108 ;OddPlanes

#2,105

Die Custom-Chips 139

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

ende:

even

Copper:

sub.w

sub.w

sub.w

move.

sub.w

bne

move.

move.

move.

move.

move.

move.

move.

bra

move.

move.

move.

move.

jsr

move.

jsr

move.

jsr

rts

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc. z
a

8
2
2
2

8
3
2
2
2
3
2
2
2
2
2
2
2

2
3
2
2
3
2
2
2
8
2

W

#
2
2
3
2
3
2

2
2
8

es

e
o

+42, 102

+#2, 104

+42, 106

+000f, finescrl

+1,flag

loop9

#20, flag

adrl,lol

adr3,103

adr5,105

adr2,1o2

adr4,104

adr6,106

100p9

copptr, a0

oldcop, (a0)

ExecBase,a6

efxbase,al

CloseLibrary (a6)

dosbase,al

CloseLibrary (a6)

ExecBase, a6

Permit (a6)

‚Rückkehr

$0180 , $0000

$0182, $0fff

$0184, $000f

$0186, $0f00

$0188, $000f

$018a,$OfOf

$8018c,$00ff

$01l8e,$foff

$0190 , $0620

$0192 ,$0e50

$0194, #09f1

$0196 , $Oeb0

$0198, $055f

$019a,$o092f

$019c,$00f8

$019e, $Occc

$01a0, $0000

$Ola2,$O0d22

$01a4, $0000
$01a6,$Ofca

$01as , $0444

$Olaa, $0555

‘Even Planes

‚undOddModulo zurücksetzen

;WennEnde desBitMapserreicht,

‚dannWerteaufStartposition

‚zurücksetzen

;Alte Copperliste wieder setzen

;Gfxlibrary schlieBen

;DosLibrary schließen

;Multitasking einschalten

;Color0O

;Colorl

;Color2

;Colord3

;Color4

;Colord

;Color6

;Color7

;Color8

;Color9

;Colorl0

;Colorll

;Color12

;Colorl13

;Colorl4

;Colorl5

;Colorl6

;Colorl7

;Colorl8

;Colorl9

;Color20

;Color2l

140 Die Custom-Chips

217 dc.w $0lac,$0666 ;Color22

218 dc.w $0lae,$0777 ;Color23

219 dc.w $01b0, $0888 ;Color24

220 dc.w $01b2, $0999 ;Color25

221 dc.w $01b4, $0aaa ;Color26

222 dc.w $01b6, $Obbb ;Color27

223 dc.w $01b8,$0cocc ;Color28

224 dc.w $Olba, $Oddd ;Color29

225 dc.w $Olbc, $Oeee ;Color30

226 dc.w $Olbe, $offf >Color3l

227 dc.w $00e0 ;BitPlane Pointer

228 hil: dc.w $0002

229 dc.w $00e2

250 lol: dc.w $1000

251 dc.w $0004

232 hi2: dc.w $0002

233 dc.w $00e6

234 102: dc.w $1000

235 dc.w $00e8 -

256 hid: dc.w $0002

237 dc.w $00ea

238 103: dc.w $1000

259 dc.w $00ec

240 hid: dc.w $0002

241 dc.w $00ee

242 104: dc.w $1000

243 dc.w $00 f0

244 hid: dc.w $0002

245 dc.w $OOf2

246 105: dc.w $1000

247 dc.w $00 f4

248 hi6: dc.w $0002

249 dc.w $00f6

250 106: dc.w $2000 “
251 dc.w $0100,%0110010000000000 ;BPLCONO: 6BitPl. +DUALPF

202 dc.w $0102 ;BPLCONI! finescrl:

253 dc.w $OO0Of

254 dc.w $0108, $0026 ; BPLIMOD

205 dc.w $010a, $0026 ; BPL2MOD

256 dc.w $0092, $0030 ; DDFSTRT
257 dc.w $0094, $00d0 ; DDFSTOP

258 dc.w $008e, $2481 ; DIWSTRT

209 dc.w $0090, $24cl ; DIWSTOP °

260 dc.w $ffff,Hfffe ‚Ende der Copperliste

261

262 BitMap:

263 BytesPerRow:

264 blk.w ’ 1,0

265 Bytes: blk.w 1,0

266 Flags: blk.b 1,0 3

Die Custom-Chips 141

267 Depth:

268 Pad:

269 Planel:

270 Plane2:

271 Plane3:

272 Plane4:

273 Planed:

274 Plane6:

275 Planes:

276 RastPort:

277
278 R_BitMap:

279

280

281

RER CP:

283 cp_y:

284

285 |

286 even

287 gfxname:

288

289

290 even

291 copptr:

292 oldcop:

293 gfxbase:

294 dosbase:

295 x:

296 flag:
297 adrl:

298 adre:

299 adr3:

300 adr4:

301 adrd:

302 adr6:

blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk. M

e

P
P
P
 et

ot

blk. eH

blk.
bik.
blk.
blk.
blk.
blk.
blk. 4

2
o
0
8

2
0

0
F
H

dc.b

dc.b

blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk. e

e

“

“

“

“

“

e
e

e
e

e
e

O
o
o
o
0
o
o
0
o
0
0
 0

“

“

“

Hm

©

1,0
2+4+4+4+8,0
4,0 ;
1,0
1,0
8+22+[7*2]+[2*4]+8,0
6,0

‘'graphics.library' ,Odosname:

‘dos.library' ‚0

“

“

“

“

“

a

e
e

o
o
o
o
o
o
o
o
0
o
0
0
 O

O
“

“

142 Die Custom-Chips

4.2.4: Die Video-Prioritätsregister

Der Bildschirm hat normalerweise nur zwei Dimensionen. Aber es existiert noch eine

imaginäre dritte Dimension. In dieser Dimension ist festgelegt, in welcher Reihenfolge

die Playfields und Sprites dargestellt werden.

Die Reihenfolge der Spritedarstellung kann nicht geändert werden. Das bedeutet, daß

Sprite 0 immer vor Sprite 1, dieses wiederum vor Sprite 2 usw. dargestellt wird. Verän-

dert werden kann allerdings die Videopriorität der Sprites zu den Playfields. Ist nur ein

normaler Screen dargestellt, so ist dieser als Playfield 1 aufzufassen.

Zu den Sprites ist anzumerken, daß sie in Zweiergruppen aufgeteilt sind. Das bedeu-

tet, Sprite 0 und 1, 2 und 3, 4 und 5, sowie 6 und 7 bilden jeweils eine Gruppe. DieVideo-

priorität kann also immer nur für zwei Sprites zusammen geändert werden. Die Video-

prioritäten werden mit Register BPLCON? festgelegt. Nachfolgend die Funktionen

der Bits:

Bit Name Funktion

15-7 Nicht benutzt, sollte aber auf 0 gesetzt werden.

6 PF2PRI Priorität von Playfield 2 zu Playfield 1. Ist dieses Bit

gesetzt, wird Playfield 2 vor Playfield 1 dargestellt.

5-3 PF2P2-PF2PO Playfield 2 Priorität zu den Sprites.

2-0 PF1P2-PF1PO Playfield 1 Priorität zu den Sprites.

Die Bits PF2P2-PF2P0 und PF1P2-PF1P0 können nach folgender Tabelle gesetzt wer-

den. PFsteht dabei für Playfield 1 oder 2, SPxy steht für die Spritegruppe der Sprites x

und y. Links steht dabei das Objekt mit der höchsten Videopriorität:

Wert Darstellung

000 PF sSP01 SP23 SP45 SP67

001 SPO1 PF SP23 SP45 SP67

010 SPO1 SP23 PF SP45 SP67

011 SPO1 SP23 SP45 PF SP67

100 SPO1 SP23 SP45 SP67 PF

4.2.5: Das Video-Interface

Die Video-Signale, die Denise liefert, werden noch durch nachgeschaltete Baugruppen

nachbearbeitet, bei den Rechnern Amiga 500 und B2000 beispielsweise durch einen Vi-

deo-Hybrid-Baustein. Dadurch wird erreicht, daB ein Composite-Video-, ein Digital-

Die Custom-Chips 143

RGB- und ein Analog-RGB-Signal zur Verfügung stehen. Das Digital-RGB-Signal

steht allerdings nur als 4-Bit-Signal zur Verfügung, so daß nur 15 verschiedene Farben

dargestellt werden können. Die 4096 Farben, die Denise über die 12 Digital-Video-Aus-

gänge zur Verfügung stellt, können nur über einen Analog-Ausgang dargestellt werden,

was ım Normalfall auch geschieht. Hier die Pinbelegung des RGB-Video-Steckers:

RGB-Schnittstelle AMIGA 500/1000/2008

[1] [2] (3) (4) Cs) C6) C2) 28) (9) fae) Ga] fa]

[13] [14] [15] [16] [17] [tel [29] (28) [aa] (22) 123

23 - Pin D-SUB-Stecker

Die einzelnen Pins haben folgende Funktionen: |

Name PIN Bedeutung

XCLK 1 Externer Takt

XCLKEN 2 ‚Externer Takt »Enable«

RED 3 Analog Rot

GREEN 4 Analog Grün

BLUE 5 Analog Blau

DI 6 Digitale Intensität

DB 7 Digital Blau

DG 8 Digital Griin

DR 9 Digital Rot

CSYNC 10 Composite-Synchronisationssignal |

HSYNC 11 Horizontales Synchronisationssignal

VSYNC 12 Vertikales Synchronisationssignal

GNDRTN 13 Riickkehreingang für XCLKEN

ZD 14 ~Null-Level-Kennzeichnung

144 Die Custom-Chips

Name PIN Bedeutung

Cl 15 Taktausgang

GND 16-20 Masseanschluß

-12V 21 -12-Volt-Versorgung (50 mA)

+12V 22 +12-Volt-Versorgung (100 mA)

+5V 23 +5-Volt-Versorgung (100 mA)

4.3: Paula

Paula enthält 4 Audio-Kanäle, die als Stereoausgänge geschaltet sind, über neun Okta-

ven reichen und komplexe Schwingungen beherrschen. Zudem besteht die Möglichkeit

der Amplituden- und der Frequenz-Modulation. Der zweite Aufgabenschwerpunkt die- —

ses Chips ist die Disk-Kontrolle. Paula enthält die I/O-Kontrollogik für die Diskdaten

und die Kontroller-Ports, sowie einen Microdisk-Controller. Ein weiterer Aufgaben-

bereich ist die Interrupt-Kontrolle für das System (siehe auch Bild 12 im Farbteil).

=
0
m
n
a
u
n
A
w
n
-
|
 |

83
64

P
A
U
L
A

Z4.3-1: Die Pin-Belegung von Paula

Die Custom-Chips 145

4.3.1: Die Pinbeschreibung zu Paula

Name PIN I/O. Beschreibung

D2-D7 7-1 VO Datenbusleitungen 2 bis 7.

VSS 8 I Masseanschluß.

D0,D1 10,9 TO Datenbusleitungen 0 und 1.

RES 1 I SetztPaulazuriick.

DMAL 22 O Ist dieses Signal aktiv, fordet Paula einen DMA an.

IPLO-2 13-15 O Interrupt-Leitungen 0 bis 2.

INT2,3,6 16-18 I Interrupt-Level 2, 3 und 6.

RGA1-8 26-19 I Diese Leitungen werden benutzt, um die internen Register.

zu adressieren.

VCC 27 I +5-Volt-Versorgungsspannung.

CCK 28 I Dies ist der Takt, der als Farbträgersignal dient.

CCKQ 29 I Dies ist der gleiche Takt, wie CCK, allerdings um 90 Grad.

nachhängend.

AUDB 30 O Rechter Audioaus gang.

AUDA 31 O Linker Audioausgang.

POTOX 32 VO Anschluß PotX an Port 0.

POTOY 33 VO Anschluß PotYan Port 0.

VSSANA 34 I Masseanschluß zum Analog-Ausgang.

POTIX 35 VO Anschluß PotX an Port 1.

POTIY 36 VO Anschluß PotYan Port 1.

DKRD 37 I Disk-Read-Leitung.

DKWD 38 O _ Disk-Write-Leitung.

DKWE 39 O _ Disk-Write-Enable-Leitung.

TXD 40 O _ Serielle Übertragungsleitung.

RXD 41 I Serielle Empfangsleitung.

D9-D15 48-42 VO Datenbusleitungen 9 bis 15.

146 Die Custom-Chips

Left Audio Output Right Audio Output

DMAL a

ll Logic
Zn

"DioA DtoA
Conv. Conv.

| | Ok | | 2&3

—| Audio _ Audio
Control | |Control :

ee ~|Counters |; |Counters | —

1D Code =. > Data | |Data |
to 68000 +— nn Registers | . [Registers)

Interrupt — Status
| Registers + Inputs -

Register Address Decode 8

| Paula Block Diagram

a

a

Z 4.3-2: Das Blockschaltbild von Paula (Teil 1)

4.3.2: Die Audio-Hardware

Paula verfügt über 4 Audio-Kanäle, die in zwei Gruppen als Stereo-Ausgänge geschal-

tet sind. Die Kanäle 0 und 3 bilden den linken Stereo-, die Kanäle 1 und 2 den rechten

Stereo-Ausgang. Alle vier Kanäle sind völlig unabhängig in Lautstärke und Frequenz

modulierbar. Jeder Kanal kann sogar über eigene Wavedaten verfügen. Diese Wave-

daten stellen wohl den interessantesten Aspekt der Audiohardware des Amiga dar.

Durch diese Wavedaten wird festgelegt, ob ein Kanal als Geräuschkanal, Musikkanal

o.ä. benutzt wird. Jedes Musikinstrument besitzt beispielsweise eine individuelle Wave,

die durch den Amiga, wenn sie digitalisiert wurde, imitiert werden kann. So kann

jeder Audiokanal ein Instrument imitieren, ein komplettes Musikstück abspielen oder

sogar gesprochene Worte wiedergeben.

Um überhaupt etwas über die Audiokanäle wiedergeben zu können, muß also eine

solche Wave im Speicher, im ChipMem, vorhanden sein. Die Register AUDxLCH/

Die Custom-Chips 147

Terre

Data are REC ITAN| Latches
u pom | (Bi-Dir) a

Control a Control | Control Q

Logic m Logic | Counters 8
Data 3 N Ä Data mee | Data a

Registers | | | Registers | | Registers | — 38
mee : se : of a © Ai n.

as:

re

Paula Block Diagram

Z 4.3-2: Das Blockschaltbild von Paula (Teil 2)

AUDxLCL (das x steht für den betreffenden Kanal) müssen auf die Startadresse der

Wave zeigen. Die Wave selbst muß Word-weise ausgerichtet und immer eine gerad-

zahlige Anzahl von Bytes lang sein. Jedes Byte repräsentiert dabei einen Teil der Wave.

Die Audiohardware arbeitet mit 8 Bit. Jedes Byte wird aber nicht als Wert von 0 bis 255

aufgefaßt, sondern als Wert von -128 bis + 127. Wenn beispielsweise ein Ton mit einer

Rechteckschwingung gespielt werden soll, so muß das erste Byte der Wave den Wert

-127 (oder -128) und das zweite Byte den Wert +127 besitzen. Es geht natürlich auch

umgekehrt.

Als nächster Punkt muß das Register AUDxLEN auf die Länge der Wave gesetzt wer-

den, wobei die Länge inWords anzugeben ist. Wenn dieWave also 100 Byte lang ist, muß

AUDXLEN auf 50 gesetzt werden. Anschließend wählt man die Lautstärke, die mit

AUDxVOL gesetzt wird. Als Lautstärkewerte können Werte zwischen 0 und 64 angege-

ben werden, wobei 64 die lauteste Wiedergabe bewirkt.

148 Die Custom-Chips

Ein weiterer, äußerst wichtiger Punkt ist die Angabe der »Period«, der Wiedergabe-

geschwindigkeit. Die »Period« läßt sich wie folgt berechnen: Das System benötigt

0.279365 ms pro Wavedata, um es über DMA einzulesen und auszugeben. Soll nun ein

Ton von 1 kHz ausgegeben werden, also 1000 Hz, so wird diese Zahl durch die Anzahl

der Wavedaten geteilt. Hat man beispielsweise eine Wave von 8 Byte Länge, so ergibt

sich ein Wert von 125 ms pro Wavedata. Dieser Wert muß wiederum durch die oben

angegebenen 0.279365 ms geteilt werden, was 447.xxxx ergibt. Dieser Wert muß dann

als Period angegeben werden, damit ein Ion von 1 kHz bei einer Wave von 8 Byte Länge

gespielt wird. Hier noch einmal die Formel:

Period = Frequenz /Wavelänge / 0.279365

Hat man alle vorher beschriebenen Schritte durchgeführt, so muß nur noch die Audio-

DMA für den betreffenden Kanal gestartet werden. Dies geschieht durch DMACON.

Die Bits 3 bis 0 repräsentieren die Audio-DMA-Kanäle der Audiokanäle 3 bis 0. Soll

beispielsweise die DMA von Kanal 2 aktiviert werden, so schreibt man den Wert

% 1000000000000100 oder $8004 in DMACON. Vorsichtshalber sollte allerdings noch

Bit 9 gesetzt werden, da dieses Bit den Master-DMA-Enable repräsentiert, also es

sollte % 1000001000000100 oder $8204 angegeben werden. Näheres hierzu ersehen Sie

aus dem Kapitel zur DMA-Kontroll-Hardware. Soll ein Audiokanal wieder abgeschal-

tet werden, so gibt man den gleichen Wert wie beim Start an, nur ohne das SET/CLR-

Bit zu setzen, im obigen Beispiel also % 0000000000000100 oder $0004. Hier sollte aller-

dings nicht die Master-DMA-Enable gelöscht werden, da dann alle DMA-Kanäle

gesperrt werden, was zur Folge hätte, das beispielsweise der Copper nicht mehr weiter-

arbeiten könnte, die Bildschirmdarstellung also zusammenbrechen würde.

JFRRRRRRRRRERRRRRKRKRRRRRRRRRRRRR

1. Audio-Demonstration

last update 16/02/88

von Frank Kremser und JörgKoch

© Markt & Technik 1988

KKHKEKEKKKHHKRKEKKHKHKKKKKHKKKKRKKKKKEKEKE

O
M
A
N

O
D
A

W
D
N
E

©
 Diese Demonstration spielt über zwei Soundkanäle verschiedene Töne.

Dabeiwirdnicht eineDeviceverwendet, sonderndieKanälewerdendirekt

angesprochen.

F
P
r
b
P
r
H
r

NM

W
N

F&
F

HKEKKKEKEKEKKEKKKKKKEKEKKEKEKKKKEKEE /

m
r

©
Ol

#+include <exec/types.h> /* Include-Files laden */

#+include <hardware/custom.h>

H
r
 r

oO

0
AN

externstruct Customcustom; /* Externe Structure laden */

Die Custom-Chips 149

20

21

22

23

24

25

26

at

28

29

50

51

32

53

54

395

56

37

38

39

40

41

42

43

44

45

46

47

48

49

50

ol

O
O
N
o
O
O
A

W
D
E

R
R

R
R
R

PR

-

O
o
n
k
K

W
N
F
r
F

CO

/* Uber sie können die Hardwareregister */
/* direkt angesprochen werden */

BYTE data[] = {0,90,127,90,0,-90,-127,-90}; /* Sinus als Wave */

main()

{
ULONG warte,schleife,schleife2;

custom.

_ custom.

custom.

custom.

custom.

custom.

custom.

custom.

custom.

custom.

aud[O].ac_len=4; /* Lange der Wave in Words */

aud[O].ac_per=30; /* Tonhöhe - Period */

aud[O].ac_vol=64; /* Lautstarke */

aud[0O].ac_ptr = &dataé¥ Géiger auf Wave */

dmacon = 0x8000 + 0x200 + Oxl; /* DMA für Kanal O starten */

aud[1].ac_len= 4;

aud[1].ac_per =5;

aud[1].ac_vol = 64;

aud[1].ac_ptr = &data[0];

dmacon = 0x8000 + 0x200 + Ox2; /* DMA für Kanal 1 starten */

for(schleife2=0; schleife2 <5; schleife2++)
for(schleife =0; schleife <65; schleife++t)

{
custom.aud[0].ac_per = schleife; /* Period für Kanal 0 und */

custom.aud[1].ac_vol =schleife; /* Volume für Kanal 1 Aandern */

for(warte = 0; warte<3000; wartet+t);

}

custon.

custom.

}

dmacon = 0x0000 + Oxl; /* DMA abschalten */

dmacon = 0x0000 + Ox2;

[EERE KEKKKEKKKEKKEKEKKEKEKKEKEKKEKKKKEK KKK

2. Audio-Demonstration

last update 16/02/88

von Frank Kremser und JörgKoch

© Markt & Technik 1983

KHKEKKKKKKKKKHKHKHEKKKKKKKKKKKKKKEKEE

Diese Demonstration liefert inetwadas gleiche Ergebnis wiediel. Demo,

aber die Audio-Hardware wird tiber die Device angesprochen.

HKHEKKKEKKKEKKEKKEKKKKKEKKKKKKE KE KEKE /

#include <exec/types.h> /* Include-Files laden */

#+include <exec/memory.h>

150 Die Custom-Chips

17 +#include <hardware/custom.h>

18 +#include <hardware/dmabits.h>

19 +#include <libraries/dos.h>

20 +#include <devices/audio.h>

21

22 externstruct MsgPort *CreatePort();

23 struct IOAudio soundl, sound2;

24

25 UBYTE chan0O=0x01, chanl=0x02, chan2=0x04, chan3=0x08, data[128];

26

27 main()

28

29 WUBYTEi,schleife,schleife2;

30 /* Portserstellen */

31 if((soundl.ioa_Request.io_Message.mn_ReplyPort =

32 CreatePort("rp'",O))==NULL)

33 exit();

34 if((sound2.ioa_Request.io_Message.mn_ReplyPort =

35 CreatePort("rp",0))==NULL)

36 exit();

37

58 soundl.ioa_Request.io_Message.mn_Node.1ln Pri=10;

59 soundl.ioa_Data = &chan0O; /* Kanal O 6ffnen */

40 soundl.ioa_Length = (ULONG)sizeof(chan0O) ;

41 if((OpenDevice (AUDIONAME,O0,&soundl,0))!=NULL)

42 exit();

43

44 sound2.ioa_Request.io_Message.mn_Node.1ln Pri=10;

45 sound2.ioa_Data = &chanl; /*Kanallöffnen */

46 sound2.ioa_Length = (ULONG)sizeof(chanl);

47 if((OpenDevice(AUDIONAME,O,&sound2,0))!=NULL)
48 exit();

49
50 for(i=0; i<128; i++) /*SägezahnalsWave */

51 data[i] =i;

52 /* Request-Structure erstellen */

53 soundl.ioa_Request.io_Command = CMD WRITE;

54 soundl.ioa_Request.io_Flags = ADIOF_PERVOL | IOF_QUICK;

55 soundl.ioa_Cycles =5; /* Dauer des Tones */

56 soundl.ioa_Length = sizeof(data); /* Lange der Wave */

of soundl.ioa_Period = 508; /* Tonhöhe */

598 soundl.ioa_Volume = 64; /* Lautstärke */

599 soundl.ioa_Data = data; /* Zeiger auf Wave */

60

61 sound2.ioa_Request.io_Command = CMD_WRITE;

62 sound2.ioa_Request.io_Flags = ADIOF_PERVOL I IOF_QUICK;

63 sound2.ioa_Cycles=5;

64 sound2.ioa_Length = sizeof(data);s

65 sound2.ioa_Period= 20;

66 sound2.ioa_Volume = 64;

Die Custom-Chips 151

67

68

69

70

Tl

172

73

74

75

76

TT

78

79

80

81

O
M
A
N

o
a

PR

W
N

W
N
W
W
U
N
W
N
Y
N
N
N
N
N
N
N
N
D
N
H
P
H
P
P

E
E
E

P
R
B

M
O
F

O
o
O
O
M
A
N
O
O
K
W
N
F
O
O
W
O
N

O
O
K

W
I

Hr

O

sound2.ioa_Data = data;

for(schleife2=0; schleife2 <5; schleife2++)

for(schleife=0; schleife<64; schleifet+)

{
soundl.ioa_Period = schleife*10+128; /* Periodvon Kanal 0 und */

sound2.ioa_Volume = schleife; /* Volume von Kanal 1 andern */

BeginlI0(&soundl); /* Ton tiber Kanal 0 und */

Beginl0(&sound2); /* tiber Kanal 1 spielen */

WaitI0O(&sound2); /* Warten, bis Ton auf Kanal 1 */

WaitIO(&soundl); /* undauf Kanal 0 fertig gespielt */

}

CloseDevice(&soundl); /* Kanal 0 und */ |

CloseDevice(&sound2); /* Kanal 1 schließen */

}

[FFRRRERKRRRRRKRRRRRRRKRRKRRKRRRR

5. Audio-Demonstration

last update 16/02/88

von Frank Kremser und JörgKoch

© Markt & Technik 1988

KHHEKKKKKKKKKKEKRKKKEKKKKKKKKKEKKKKKE

Diese Demonstration verdeutlicht die Stereomöglichkeiten der Audio-

Hardware. AufKanalOundlwirdder gleiche Ton gespielt. ZuBeginn

steht Kanal Oaufvoller Lautstärke und Kanal lauf0O. Nachund nach wird

die Lautstake von Kanal 0 herabgesetzt und die von Kanal l herauf,

so daß der Eindruck entsteht, der Ton 'wandere' von linksnach rechts.

KKKKKEKKEKEKKKKKEKKEKKKKEKKKKKKK KEE /

#include <exec/types.h> /* Include-Files laden */

#include <exec/memory.h>

#+include <hardware/custom.h>

+#include <hardware/dmabits.h>

+#include <libraries/dos.h>

#include <devices/audio.h>

extern struct MsgPort *CreatePort();

struct IOAudio soundl, sound2;

UBYTE chan0=0x01, chanl=0x02, chan2=0x04, chan3=0x08, data[128];

main()

{

152 Die Custom-Chips

35

54

35

36

37

58

39

40

41

42

43

44

45

46

4'7

48

49

50

ol

2

93

54

OD

6

87

58

9

60

61

62

63

64

65

66

67

68

69

70

T1

172

73

74

75

76

77

78

79

80

81

82 }

UBYTEi,schleife;

/* Ports einrichten */

if((soundl.ioa_Request.io_Message.mn_ReplyPort =

CreatePort("rp",0))==NULL)

exit();

if((sound2.ioa_Request.io_Message.mn_ReplyPort =

CreatePort('"rp",O))==NULL)

exit();

soundl.

soundl.

soundl.

ioa_Request.io_Message.mn_Node.In_Pri=10;

ioa_Data = &chanO; /* Kanal 0 6ffnen */

ioa_Length = (ULONG)sizeof(chan0O) ;

if((OpenDevice(AUDIONAME,0,&soundl,0))!=NULL)

exit();

sound2.

sound2.

sound2.

ioa_Request.io_Message.mn_Node.In_Pri=10;

ioa_Data = &chanl; /* Kanal 1 6ffnen */

ioa_Length = (ULONG)sizeof(chanl);

if((OpenDevice (AUDIONAME,0,&sound2,0))!=NULL)

exit();

for(i=0; i<128; i++) /* Sagezahn als Wave */

data[i] =i;

soundl.

soundl .

soundl.

soundl.

soundl.

soundl.

soundl.

sound2.

sound?2.

sound?2.

sounde.

sound2.

sounde.

sound?2.

/* Request-Structure für Kanal 0 */

ioa_Request.io_Command = CMD_WRITE;

ioa_Request.io_Flags = ADIOF_PERVOL | IOF_QUICK;

ioa_Cycles = 50; /* Dauer des Tones */

ioa_Length = sizeof(data); /* Lange der Wave */

ioa_Period = 200; /* Tonhöhe */

ioa_Volume = 64; /* Lautstarke */

ioa_Data = data; /* Zeiger auf Wave */

ioa_Request.io_Command = CMD_WRITE;

ioa_Request.io_Flags = ADIOF_PERVOL | IOF_QUICK;

ioa_Cycles = 50;

ioa_Length = sizeof(data) ;

ioa_Period = 200;

ioa_Volume = 0;

ioa_Data = data;

for(schleife=0; schleife <65; schleife++t)

{
soundl.ioa_Volume = 64-schleife;

sound2.ioa_Volume =schleife;

BeginI0O(&soundl);

BeginI0(&soundz2) ;

WaitI0(&sound2) ;

}

/* Lautstärke herab-, */

/* bzw. heraufregeln */

/*und Ton auf beiden Kanälen */

/* spielen */

/*Warten, bis Ton gespielt */

CloseDevice(&soundl); /* Device schließen */

CloseDevice(&sound2) ;

Die Custom-Chips 153

o
v
o
_
ı
o
o
v
U

R
U

Dd

Hr

O
M
O
N
o
O
O
I
R
W
N
D
N
 PE

b
b

N
W
F

O

14

15

16

17

18

19

LERRKRERKKERRRERRKERRRRKEKRERKKRNKNEN

; 1. Sound - Demonstration

; last update 10/03/88

; von Frank Kremser und Jorg Koch

; © Markt & Technik 1988

SKHKEKKEKHHKKKKHKKKHKKKKKKEKKKKRKEKKKKEK
3

.

,

Diese Demonstration spielt einen Ton tiber Kanal 0.
.

’

KRKREFRRRRKRRTRRRRT RR RR NR. RK NR IK KH KR TR TR NR
3

lea.l wave(pc),a0 ‚ZeigeraufWave |

move.l a0,$dff0a0 ‚InRegistervonKanal0Ospeichern

move.w #4,d0 ‚Länge der Wave inWords

move.w dO,$dff0a4 ;setzen

move.w #240,$dff0a6 ; Tonhéhe(Period) vonKanal 0

move.w +#64,$dff0as ; Lautstarke von Kanal 0

move.w #%1000000000000001, $dff096 ‚Audio-DMA starten

wait: andi.b #64,$bfe00l ‚linkeMaustaste gedrückt?

bne wait ‚nein, dannweiterwarten

move.w #%0000000000000001 ,$dff096 ;Audio-DMA stoppen

rts ‚Rückkehr

even

wave: DC.B 0,90,127,90,0,-90,-127,-90 ;Wavedaten

EEK KER KKK EKER EKER KERR KER EK KERR RE

; 2. Sound - Demonstration

; last update 10/03/88

; von Frank Kremser und Jorg Koch

; ©Markt & Technik 1988

3

-KEREKKRRRRERRRRKKR RR RR RR RR RK KR RR
>.

.

?

‚Diese Demonstration zwei Töne. Der Ton auf Kanal 0(links) wirdin

;der Tonhöhe und der auf Kanal 1(rechts) inder Lautstärke ver-

‚ändert.

KKK KKKKHKKKKHKKKKKKKKKKKKRKKKKKKE
9

lea.l

move.l

move.l

move.w

wave(pc),a0

a0,$daAffO0a0

a0, #dffOb0

+4 , dO

; Zeiger auf Wavedaten

;inRegister fur Kanal Ound

;Kanal 1 schreiben

;Wavelange inRegister ftr

154 Die Custom-Chips

l move.w d0,$dff0a4 ;Kanal 0 und

2 move.w d0O,#dff0b4 ;Kanal 1 schreiben

3 move.w #0,$dff0a6 ; Tonhohe Kanal 0

4 move.w 4+#200,$dff0Ob6 ;Kanal 1 setzen

5 move.w +#64,$dff0a8 ; Lautstake Kanal 0

6 move.w #0,$dff0b8 ;Kanallsetzen

7 move.w #%1000000000000011,$dff096 ;Audio-DMA ein
8

9 move.w #0,d0 ;Variable für Lautstärke

10 move.w #128,d2 ; fur Tonhöhe setzen

ll loopl: move.w #25000,dl ‚Variable fürWarteschleife

12 waitl: sub #1l,dl ‚vermindernundwenn =0,

13 bne waitl ;dannweiter

14 move.w d2,$dff0a6 ‚neue Tonhöhe setzen

15 move.w dO,$dffO0b8 ;neue Lautstarke setzen

16 add +4,d2 ; Tonhohe um4 erhohen (=tiefer)

17 add 4+¢# 1, dO ;Lautstarke um 1 erhdéhen

18 cmpi 4-64 , dO ;undwenn nicht gleich64,

19 bne loopl ;dannweiter

20

21 wait: andi.b +#64,$bfe001 ;Warten, bisMaustaste gedrückt

22 bne wait

23

24 move.w #%0000000000000011,$dff096 ;Audio-DMA stoppen

25 rts ‚Rückkehr

26

27 even

28 wave: DC.B 0,90,127,90,0,-90,-127,-90 ;Wavedaten

gz
5 ;35. Sound - Demonstration

4 ; last update 10/03/88

5 ; vonFrank Kremser und Joérg Koch

6 ; ©Markt & Technik 1988

T 3

9 ;
10 ;Diese Demonstration spielt einen Ton, der von links nach rechts

11 ;'wandert'.DerTonwirdaufallenvierKanälen gespielt, wobei zu

12 ;Beginn die Lautstärke der linken Kanäle auf höchster Stufe steht

13 ;unddieder rechten Kanale auf 0. Durch herunterstellen(herauf-)

14 ;der Lautstake der linken(rechten) Seite, wirdder 'Wandereffekt'

15 ;erzeugt.

16 ;

18

19 lea.l wave(pc),a0 ;a0 = Zeiger auf Wave

20 move.l a0,#dff0a0 ;Wavezeiger Kanal O

Die Custom-Chips 155

21

22

23

24

25

26

at

28

29

50

Sl

32

33

54

55

56

37

58

59

40

41

42

43

44

45

46

AT

48

49

50

ol

2

55

54

55

06

57

F
O
O
M
A
N
o
O
a
A
W
N
E
H

m
Hr

loopl:

waitl:

even

wave:

move.

Move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

move.

sub

bne

move.

move.

move.

move.

sub

add

cmpi

bne

move.

rts

DC.B

gs
zz

ss
32

2
3
2

2
2
3
2
2
3
2
3
2
3
2

ZZ

H
H
H

=
s
s

a
s

S
s

ad, $dffOb0 ; Kanall

a0,$aAffOcO ; Kanal 2

a0, $affodo ; Kanal 3setzen

+4, dO ;Wavelange =4Words

do, $dff0a4 ;Wavelange Kanal 0

do, $dff0b4 ; Kanal 1

do, $dff0c4 ; Kanal2

do, $affod4 ; Kanal3setzen

#240 ,$dff0a6 ;TonhöheKanalO

#240 ,$dffO0b6 ; Kanall

#240 ,$dff0c6 ; Kanal2

#240 ,$dff0d6 ; Kanal 3 setzen

+64, $Aff0a8 ; Lautstarke Kanal 0

+0, $dffOb8 ; Kanal l

+0, $dffOcs ; Kanal2

+64, $AffOd8 ; Kanal3setzen

#%1000000000001111, $Aff096 ‚Audio-DMA einschalten

#0,d0 ;Anfangslautstarke von linker

#64,d2 ‚undrechter Seite

#25000, dl ‚Wartezeit setzenundsolange

+#1,dl ;sherunterzahlen, bis

waitl — s;Wartezeit =0

d2,$dff0as ; Lautstake Kanal 0

do, $dff0b8 ; Kanall

do, $dff0c8 ; Kanal 2

d2,$dffods ; Kanal 3setzen

#1,d2 ‚d2umlerniedrigen

#1,d0 ;‚dOumlerhöhen

+64, dO ;Falls rechteKanale noch

loopl ‚nichtvolleLautst., weiter

#%Z0000000000001111,$dff096 ;Audio-DMA einschalten

‚Rückkehr

0,90,127,90,0,-90,-127,-90 ;Wavedaten

156 Die Custom-Chips

12 KHKEKKKKEKKKKKKKKKKKKKKKKKKKKEKESE

13

14 lea.l wave(pc),a0 ;a0 = Zeiger auf die Wavedaten

15 move.l a0,$dff0a0 ‚Zeiger ftir Kanal 0

16 move.l a0,#dffOb0 ; Kanal 1

17 move.l a0,$dffOcO ; Kanal2

18 move.l a0,#dff0d0 ; Kanal 3setzen

19 move.w #4,d0 ;Wavelange =4

20 move.w d0,$dff0a4 ;Wavelange Kanal 0

21 move.w d0O,$aff0b4A ; Kanall

22 move.w d0,#dff0c4 ; Kanal2

23 move.w dO,$aAff0d4 ; Kanal3setzen

24 move.w #0,$dff0a6 : Tonhéhe Kanal 0

25 move.w #0,$dff0b6 ; Kanall

26 move.w #0,$dff0c6 ; Kanal2

27 move.w #0,$dff0d6 ; Kanal 3setzen

28 move.w +#64,$dff0a8 ; Lautstarke Kanal 0

29 move.w +#64,$dff0b8 ; Kanal 1

30 move.w #64,$dff0c8 ; Kanal2

31 move.w #64,$dff0d8 ; Kanal 3setzen

32 move.w +#%1000000000001111,$dff096 ;Audio-DMA ein

33

34 jump: move.w #128,d0 ‚Variable Tonhöheinitialisieren

35 loopl: move.w #200,dl ‚Variable fürWarteschleife

36 waitl: sub #+1l,dl ‚solange erniedrigenbis

37 bne waitl ;SiegleichOist

38 move.w dO,$dff0a6 ‚neue TonhöheKanalO

39 move.w dO,$dff0b6 ; Kanall

40 move.w dO,$dff0c6 ; Kanal 2

Al move.w d0O,#dff0d6é ; Kanal3setzen

42 add #1,d0 ;undumlerhöhen

43 cmpi +#400,d0 ;‚fallsObergrenzenicht erreicht,

44 bne loopl ;dann weitermachen

45

46 andi.b #64,$bfe00l ‚FallsMaustaste gedrückt, dann

4'7 beq ende ; Programm beenden

48 ;

49 move.w #400,d0 ;‚Anfangstonhöheinitialisieren

50 loop2: move.w #200,dl_ ;Warteschleife
51 waite: sub +1, dl

52 bne wait2

53 move.w dO,$dff0a6 ; Neue Tonhdéhe Kanal 0

54 move.w dO,$dff0b6 ; Kanal 1

55 move.w dO,$dff0c6 ; Kanal 2

56 move.w d0O,#daff0d6 ; Kanal 3 setzen

57 sub #1,d0 ‚undumlvermindern

58 cmpi #128,d0 ‚FallsuntereGrenzenochnicht

59 bne loop2 ‚erreicht, dannweiter

60 bra jump ‚Erneut Tonhöhe erhöhen

61

Die Custom-Chips 157

62

63

64

65

66

O
O
N
O
I
A
W
N
D
N
E

e
e

e
e

e
e

o
w

W
O
r
F

O

16

17
18

19

20

21

22

23

24

25

26

27

28

29

50

öl

32

55

54

55

56

37

58

59

40

Al

42

43

ende: move.w #%0000000000001111,$dff096 ;Audio-DMAstoppen

rts ;RUckkehr

even

wave: DC .B 0,90,127,90,0,-90,-127,-90 ;Wavedaten

5 EREEKE KER EEK E EKER KEE KEKE KEE KEK EK

; 5. Sound - Demonstration

; last update 10/03/88

; Frank Kremser und Jorg Koch

; Markt & Technik 1988

ICI AGIA IGRI AI

‚Diese Demonstration spielt ein Musiksttck, das nicht digitalisiert

‚ist. |

‚Mit 'j on' kannes gestartet undmit 'j off' gestoppt werden. (SEKA)

;Wir weisen ausdrücklich daraufhin, daß dieses Programm in seiner

;Urfassung nicht vonunsentwickelt wordenist!

RER

irqvec = $00000068

dmacon = $aff096

timerlo = $00

timerhi = $30

talo = $bfe401

tahi = $bfe501

icr = $bfed0l

cra =$bfee0l
audOlch = $a0

audOlcl = $a2
audOlen = a4

audOper = $a6
audOvol = $a8

s_wavedco =0

s_envelope = 32

S_SUS = 48

s_end = 49

s_wavelfo = 50

s_spdlfo = 66+16

s_slctlfo = 684+16

s_typelfo = 68+16

s_phase = 69+16

S_arp ='70+16

s_spdport ='784+16

s_spdbend =80+16

s_egfreq = 82+16

158 Die Custom-Chips

44

45

46

47

48

49

50

ol

2

93

54

D5

06

OT

58

59

60

61

62

63

64

65

66

67

68

69

70

T1

T2

13

74

75

76

77

78

79

80

8l

82

83

84

85

86

87

88

89

90

91

92

93

off:

v_sactive

v_envpoint

v_lfowpoint

v_phmark

v_notetim

v_lfotim

v_arpoint

v_actnote

v_wntnote

v_hardw

v_trkstp

v_cernot

v_trkbck

v_actfrq

v_trnspse

v_savnote

v_add

v_pauspnt

v_actloud

move.l #$1,d0

jmp
move.l

Jmp

saveirgvec:

soundl: dc.

dc. m

dc.

dc.

dc.

dc. o
O

O
O
F

dc.

dc. o’

ey

dc.

dc.

dc. o
0

©

dc.b

dc.b

dc.w

dc.w

dc.w

=0

= 4

=8

=12

= 14

=16

=18

=22

= 24

= 26

= 30

= 34

= 38

= 42

= 46

= 50

= 52

= 54

=56on:

‚SchaltetdenSoundein

progstart

#$0,d0

progstart

‚Schaltet denSoundaus

0

-128,-120,-112,-104, -96, -88, -80,-72, -64, -56, -48

~40,-352,-24,-16,-8,0,8,16,24,32,40,48,56,64, 72

80,88,96,104,112,120

255,255,14,0,0,0,0,0,0,0,0,0,0,0,0,0 ;(Rate/Level)
0,2

0,2,4,6,8,6,4,2,0,-2,-4,-6,-8,-6,-4,-2
0,2,4,6,8,6,4,2,0,-2,-4,-6,-8,-6,-4,-2

0 ; LFO Geschwindigkeit

| ;LFO ein

0 ;Phasentiefe =0

0,0,0,0,0,0,0,0

0) ‚SpeedPortamento

0 ;Bend-Rate

0) ‚EGFrequenz aus

Die Custom-Chips 159

94

95 sound?2:

96

97

98

99

. 100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119 sounds:

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

o
Oo

T
O
O

O
F

o
o

0

0,-16,-32,-48,-64,-80,-96,-112,-128,-112,-96,-80

-64,-48,-32,-16,0,16,32,48,64,80,96,112,127,112

96,80,64,48,52,16,150,150,0,0,0,0,0,0,0,0,0,0,0

0,0,0; Envelope (Rate/Level)

0,1

0,2,4,6,8,6,4,2,0,-2,-4,-6,-8,-6,-4,-2
0,2,4,6,8,6,4,2,0,-2,-4,-6,-8,-6,-4,-2

6) ; LFO Geschwindigkeit

5 ;LFOein

0 ;Phasentiefe =0

0,0,0,0,0,0,0,0 ;Arpeggio

0

0 ;‚Bend-Rate

0) ‚EGPrequenz aus

128,128,128,128,128,128,128,128,128,128,128

128,128,128,128,128,127,127,127,127,127,127

127,127,127,127,127,127,127,127,127,127

255,255,30,0,0,0,0,0,0,0,0,0,0,0,0,0 ;(Rate/Level)
0,2

0,2,4,6,8,6,4,2,0,-2,-4,-6,-8,-6,-4,-2
0,2,4,6,8,6,4,2,0,-2,-4,-6,-8,-6,-4,-2

0 ; LFO Geschwindigkeit

5 ;LFO ein

0 ;Phasentiefe=0

0,0,0,0,0,0,0,0

0

-30 ;Bend-Rate

0) ;EGFrequenzaus

160 Die Custom-Chips

144 sound4: dc.b 128,128,128,128,128,128,128,128,128,128,128,128

145 dc.b 128,128,128,128,127,127,127,127,127,127,127,127

146 dc.b 127,127,127,127,127,127,127,127

147

148 dc.b 40,175,10,100,6,0,0,0,0,0,0,0,0,0,0,0 ;(Rate/Level)

149 dc.b 2,5

150

151 dc.b 0,2,4,6,8,6,4,2,0,-2,-4,-6,-8,-6,-4,-2

152 dc.b 0,2,4,6,8,6,4,2,0,-2,-4,-6,-8,-6,-4,-2

153

154 dc.b 6) ; LFO Geschwindigkeit

155 dc.b 0)

156 dc.b 0) ;LFO ein

157

158 dc.b O ;Phasentiefe = 0

159

160 dc.b 0,0,0,0,0,0,0,0

161

162 dc.w O

163

164 dc.w O ;Bend-Rate

165

166 dc.w 0 ;EGFrequenz aus

167

168

169 even

170 freqtab: dc.w 6848 , 6464, 6096, 57760 , 5424, 5120, 4832, 4560, 4304

171 dc.w 4064, 3840, 3616, 3424, 3232, 3048, 2880, 2712, 2560

172 dc.w 2416,2280,2152,2032,1920,1808,1712,1616, 1524

173 dc.w 1440,1356,1280,1208,1140,1076,1016,0960,0904

174 dc.w 0856, 0808, 0762,0720,0678,0640,0604,0570,0538

175 dc.w 0508, 0480, 0452,0428,0404,0381,0360,0339,0320

176 dc.w 0302, 0285, 0269, 0254, 0240, 0226,0214,0202,0190

177 dc.w 0180,0170,0160,0151,0143,0135,0127

178

179 voicel: dc.l soundl ‚aktiver Sound

180 dc.l 0 ;Zeiger auf Envelope

181 dce.l 0) ;Zeiger auf LFO-Wave

182 dc.w 0 ; Phaser

183 dc.w 0 ;Noten-Timer

184 dc.w 0 ; Timer vonLFO-Speed

185 dc.l 0 ; Zeiger auf Arpeggio

186 dc.w 0) ‚aktuelleFrequenz

187 dc.w 0 ;Gewünschte Frequenz

188 dc.l $dffOaod ;Zeiger auf Hardwareregister

189 dc.1l @) ;Derzeitigespur

190 dc.l 0 ;Derzeitige Note

191 de.1 trackl ; Spur zurücknehmen
192 ac.l 0) ‚aktuelleFrequenz

193 dc.l 0) ; Transpose

Die Custom-Chips 161

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

voice2:

voices:

RS:

ARA
RRO
226
ART
228.
229
230

251

232

233

234

235

236

237

238

239

240

241

242

245

voiced:

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

2
2
3
2
8
3

S
s
e
s
e
s
e
r
e
r
r
r
r
r
e
r

sos

So
re

S
a
s

S
K
Y
E

PR

2
s
e
S
8
2
8
4
r
R
P
r
R
P
e
R
R
r
H
r
P

Pr
P

Se

S
e
s

S
S

r
P
r

HE

2
4

r
P
r
R
R
H

O
O
O
O

U ®)

S a)

Qu
.

>

dffOb0

rack2

o
o
o
o
o
o
r
o
o
#

0
0
0
0
0
0
0

0

soundl

affOcO

rack3

o
o
o
o
o
o
r
o
o
$

0
0
0
0

0
0
0

0

u oO

er
 3 or

|

o
O
o
O
0
 0

‚gesicherteNote

;zuaddierender Wert

‚Pause

‚aktuelleLautstärke

62 Die Custom-Chips

44

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259 trackl:

260

261 track2:

262

265 track3:

264

265 track4:

266

267

268

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc. z
z

s
s

P
H
P

P
H

H
S

S
e
e

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc. en

oe

e
e

ee

269 progstart:

movem.1 d0-d'7/a0-a6, -(a7) 270

271

272

273

274

275 soff:

276 cont:

277

278

tst.1

beq

jsr

bra

jsr

dffodo

rack4
o
O
o

C
o
C
o

C
O
O

e
¢
0

0
8
0
0
0

0

scorel,l,scorel,-3,scorel,-8,score2,-l1

0,0

score3,1l

0,0

score4,0

0,0

score8,l1,score5,1,score5,1,score7,1

score7,1,score6,1,score6,1

0,0

dO

soff

switchon

cont

switchoff

movem.1 (a7)+,d0-d7/a0-a6

rts

279 switchoff:

280

28l

282

2853

284

285

286 notoff:

287

288 switchon:

289

290

291

292

293

cmpi.

bne

move.

move.

move.

jsr

rts

cmpi.

beq

move.

move.

move.

m
Oo

+t+newirqd,irqvec

notoff

+$01,icr-.

saveirqvec,irqvec

#$000f,dmacon

setback

#newirg,irgvec

noton

+$81,icr

+$2f,cra

+$81l,cra

‚Registersichern

‚Testen, on: oderoff:

;Wennoff:, dannausschalten

;Ansonsteneinschalten

;Register zurtickgeben

‚Rückkehr

‚Interrupt prüfen

;Wenn keinneuer, dannzurück

;Ansonsten Irg zurticksetzen

;DMAabschalten

;Prufen, obneuer Interrupt

;Wenn nein, dann zurtick

; Ansonsten Register setzen

Die Custom-Chips 163

294

295

296

297

298

299

300

501

302

503

504

505

506

307

308

309

510

S11

S12

313

314

315

316

317

518

519

520

S21

S22

323

524

525

326

327

528

329

5350

551

332

555

554

555

556

557

338

559

540

541

542

543

noton:

setback:

reset:

setup:

move.

move.

move.

move.
jsr

jsr

move.Ww

move.l

rts

H
r

D0
'

oO

lea

jsr

lea

jsr

lea

jsr

lea

jsr

rts

clr.

clr.

clr.

clr.

rts

move.

move.

move.

move.

clr.

clr.

clr.

clr.

clr.

clr.

clr.

clr.

move.

move.

move.

move.

move.

move.

move.

move.

clr.l

clr.l

clr.l

clr.l

=
3

3
4

bY

be

pb

e
e

e
e

move.l

+#timerlo,talo

#timerhi,tahi

irqvec,saveirqvec ;Interruptvektor sichern

irgqvec,statement+2

setback ;Audioregister zurücksetzen

setup ; Audioregister setzen

+$800f,dmacon ;DMA einschalten

+newirg,irqvec ;neuen Interruptvektor setzen

$affO00, ad Kanal 0

reset ‚zurücksetzen

SAffOlO,a0 ;Kanall

reset ‚zurücksetzen

$aff020, ad ;Kanal2

reset ;zurucksetzen

$affO30, ad ;Kanal 3

reset ;zurucksetzen

audOlch ;Wavedatapointer löschen (a0)
audOlen(a0) ;Wavedatalenght löschen

audOper(a0) ;Periodlöschen

aud0Ovol(a0) ;Volume löschen

+trackl,v_trkstp+voicel ;Datas fürMusikaufbereiten

+track2,v trkstp+tvoiceR

#track3,v trkstp+voice3

+track4,v trkstp+tvoice4

v_lfowpoint+voicel

v_lfowpoint+voice2

v_lfowpoint+voiced

v_lfowpoint+tvoice4

v_notetim+tvoicel

v_notetim+tvoice2

v_notetim+tvoiceö

v_notetim+tvoice4

trackl, v_crnot+voicel

track2,v_crnot+voice2

track3, v_crnot+voice3

track4, v_crnot+voice4

trackl+4,v_trnspse+tvoicel

track2+4,v_trnspse+tvoice2

track3+4,v_trnspse+tvoiceö

track4+4,v_trnspse+tvoice4

v_lfotimt+voicel

v_lfotim+voice2

v_lfotimt+voiced3

v_lfotim+voice4

#s_wavedco+tsoundl , audOlch+$dff000 ‘Wave Kanal 0

64 Die Custom-Chips

‚AA

‚45

‚46

AT

‚48

‚49

‚00

‚ol

‚92

205

‚54

‚55

‚56

37

208

59

60

61

62

65

move.l +#s_wavedco+soundl,audOlch+#dff010; Kanall

move.l #s_wavedco+tsoundl,audOlch+$dff020; Kanal2

move.l #s_wavedco+soundl, audOlch+$dff030 ;Kanal3setzen

move.w +#410,aud0len+#daff000 ;Wavelenght Kan. 0

move.w #$10,audOlen+$dff0lOo ; Kanall

move.w #8$10,audOlen+$dff020 ; Kanal2

move.w #$10,audOlen+$dff030 ; Kanal3setzen

rts

;Neue Interruptroutine

newird:

nottim:

Statement:

movem. 1 d0-d7/a0-a6,-(a7) ;Registerretten

cmp.b +#timerhi-1,#bfe501

bne nottim

jsr playsound

eori.b #$ff,soundd4+16

movem.1 (a7)+,d0-d7/a0-a6 ;Register zurückgeben

jmp BEEFFEEFR ; Interrupt beenden

;Wirdspater noch gesetzt

264 playsound:

265

366

267

268

269

"70

271

272,

2735

214

lea voicel,a0

jsr playvoice
lea voice2,a0

jsr playvoice

lea voice3, a0

jsr playvoice

lea voice4, a0

jsr playvoice

rts

275 playvoice:

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

musll:

subq.w #1,v_notetim(a0)

bpl notyetl

clr.w v_add(a0)

clr.w v_pauspnt(a0)

move.l v_cernot(a0),al

move.l v_trnspse(a0),d3

clr.1l d4

move.w (al),d4

cmp.w #128,d4

bne testarp

clr.1 v_lfowpoint(a0)

move.l 2(al),v_sactive(a0)

addi.1 #6,v_crnot(a0)

move.l 2(al),d5

move.l v_hardw(a0),a3

move.l d5,(a3)

bra musll

Die Custom-Chips 165

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

testarp:

chpause:

chweiter:

gutl:

notset:

notyetl:

cmp.w

bne

move.

move.

move.

addi.

bra

cmp. Ww

bne

move .w

bra

e
e

oo

oe

add.w

cmpi.l

bne

addi.

move.

move.

move.

bne

move.

move.

move.

move.

bra

a

H

e
e

tst.w

bne

clr.l

clr.w

move.

move.

subq.

adda.

move.

move.

move.

move.

subq.

mulu

lea

move.w

move.w

beq

cmp.w

blo

addi.w

cmp.w

bhi

move.w

s
s
,

P
H

Hm
,
S
S
S

#129, d4

chpause

v_sactive(a0),a3

2(al),s arp(a3)

6(al),s arpt4(a3)

+10, v_crnot(aQ)

musll

+130, d4

chweiter
+1, v_pauspnt (a0)

gutl

d4,d3

#$00,d4

gutl .

+8,v_trkstp(a0)

v_trkstp(a0),a2

A(a2),v_trnspse(a0)

(a2),v_crnot(a0)

musll

v_trkbck(a0),v_trkstp(a0)

v_trkstp(a0),a2

A(a2),v_trnspse(a0)

(a2),v_crnot(a0)

musll:

v_pauspnt (a0)

notset

v_envpoint(a0)

v_actloud(a0)

d3, v_savnote(a0)

2(al),v_notetim(a0)

+1 ,v_notetim(a0)

+4,al

al,v_crnot(a0)

v_hardw(a0),a2

v_sactive(a0),ad
v_wntnote(a0),dO

-#1,d0
+2, dO

freqtab, a4

(a4,d0.w),dl

s_spdport(a3),dO

noport

v_actfrq(a0),dl

portdown .

dO, v_actfrq(a0)

v_actfrq(a0),dl

nochklei

dl,v_actfrq(a0)

;pause?

66 Die Custom-Chips

‚44 nochklei:

545 bra

‚46 portdown:

SAT subi.w

548 cmp.w

‚49 blo

550 move.w

551 nochgroe:

552 bra

553 noport: add.w

554 move.Ww

555 portaend:

556 move.l

557 adda.l

558 move.]l

359 clr.l

560 move.b

561 bpl

362 neg.b

363 clr.l

364 move.w

365 sub.w

366 move .w

367 bra

368 positiv: add.w

369 negativ: move.w

370 addq.1

371 cmp.l

372 bne

373 clr.l

374 notnull: move.l

375 tst.w

376 beq

577 clr.w

378 clr.l

379 move.b

380 move.w

581 add.w

382 move.Ww

383 bra

384 ffff: move.w

385 clr.l

586 move.b

387 move.Ww

388 sub.w

389 move.w

390 wasffff: clr.l

391 move.Ww

392 sub.w

393 clr.l

portaend

dO, v_actfraq(a0)

v_actfrq(a0),dl

nochgroe

dl,v_actfrq(a0)

portaend

v_add(a0),dl

dl,v_actfrq(a0)

v_sactive(a0),a3

+S_arp,a3d

v_arpoint(a0),dl

d2

(a3,dl.1),d2

positiv

d2

d3

v_savnote(a0) ,d3

d2,d3

d3,d2

negativ

v_savnote(a0),d2

d2,v_wntnote(a0)

#1l,v_arpoint(a0)

+#+8,v_arpoint(a0)

notnull

v_arpoint(a0)

v_sactive(a0) ,a3

v_phmark(a0)

ffff

v_phnmark (a0)

d2

s_phase(a3),d2

v_actfrq(a0),dl

d2,dl

dl,v_actfrq(a0)
wasffff

#$ffff,v_phmark(a0)
d2

s_phase(a3),d2

v_actfrq(a0),dl

d2,dl

dl,v actfrq(a0)

d2

s_spdbend(a3),d2

d2,v_add(a0)

do

Die Custom-Chips 167

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
A410
All
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

move.w

move.w

beq

bmi

sub.w

bra

dazu: add.w

noteg: move.l

subq.b

bpl

addq.l

cmp. 1

bne

clr.l

nichtnull:

move.l

move.b

notyet2: lea

clr.l

move.b

ext.w

tst.b

beq

add.w

nonelfo: move.w

clr.l

move.]l

clr.l

clr.l

move.b

move.b

cmp. 1

beq

cmp. 1

beg

cmp. 1

bne

cmpi.w

beq

notsustep:

move.l

mulu

lea

clr.]l

clr.l

move.b

move.b

cmp.Ww

bhi

sub.w

v_actfrq(a0),dO

s_egfreq(a3),dl

noteg

dazu

v_actloud(a0),dO

noteg

v_actloud(a0),dO

v_ifowpoint(a0),dl

+#1,v_lfotim(a0)

notyet2

+1,d1

+ $20, d1

nichtnull

dl

dl,v_lfowpoint(a0)

s_spdlfo(a3),v_lfotim(a0)

s_wavelfo(a3),a4

d2

(a4,dl.1),d2
d2

s_slctlfo(a3)

nonelfo

d2,d0

do, $06 (a2)
d2

v_sactive(a0),a2

do

dl

s_sus(a2),dO

s_end(a2),dl

v_envpoint(a0),dl

envelopend

#+$00,d0

notsustep

v_envpoint(a0),dO

notsustep

#+$00,v_pauspnt(a0)
envelopend

v_envpoint(a0),d2

#2,d2

s_envelope(az),a3

da
d4

(a3,d2.w),d3

1(a3,d2.w),d4

v_actloud(a0),d4

loudup

d3,v_actloud(a0)

68 Die Custom-Chips

[44

L45

L46

L4'7

L48

L49

L50

LSI

[52

[53

[54

[55

[56

157

158

159

£60

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

477

178

179

480

481

482

183

184

485

486

48'7

488

489

490

491

492

493

nichtunt:

loudup:

cmp.Ww

ble

move .w

addq.1l

bra

add.w

cmp. Ww

bhi

move .W

addq.

envelopend:

scorel:

score2:

scores:

clr.l

move.

divu

move.

move.

rts

dc.

dc.

dc.

dc.

dc.

dc. S
s
a
r
e
e
a
e
a
e
e

dc.

dc.

dc.

dc.

dc.

dc. z
z
H
s
H
$
H
=

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc. S
B
a
e
a
i
r
a
e
s
e
r
e
z
e
a
s
a
r
e
t

s
e
r
e
r
s

1

W

1

W

.v_actloud(a0),d4

nichtunt

d4,v actloud(a0)

#$1,v_envpoint(a0)

envelopend

d3,v_actloud(a0)

v_actloud(a0),d4

envelopend

d4,v actloud(a0)

#$1,v_envpoint(a0)

dl
v_actloud(a0),dl

#4,dl

v_hardw(a0),al

d1,$08(al)

128

soundl

129

0,0

25,12,25,24,25,6,37,6,25,12,25,36

0,0

123

soundl

129

0,0

25,12,25,24,25,6,23,6,25,12,25,36

0,0

128

sound2

129

$00030700, $00030'700

61,96

129

$00030800, $00030800

61,96

129

$fe0307fe,$fe0307fe

61,96

129

$fe0205fe,$fe0205fe

61,96

0,0

Die Custom-Chips 169

494
495
496
497
498
499
500
501
502
503
504
505
506
>07
508
509
510
511
O12
513
514
515
516
517
518
519
520
521
DAR
5235
524
D295
526
527
528
529
930
531

score4:

scored:

score6:

score”:

scores:

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

dc.

z
z

3
2
r
2
3
2

Fr

8&4

z
z

z
s
H
ä
i

H
S

s
z
ı
z

H
,
s
S
s
H
@

z
z

z
z

H,
äi

H
s

=
=

128

sounds

129

0,0

130,24,45,12,130,36,45,12,45,6,45,6

130,24,45,12,130,36,45,8,44,8,43,8

0,0

128

sound4

129

0,0

49 ,48,52,12,51,12,49,12,47,12,45,48

52,12,51,12,49,12,47,12,52,48

52,12,51,12,49,12,47,12

54,24,51,24,49, 24,47, 24

0,0

128

sound4

129

0,0

49,48,56,12,56,12,56,12,54,24,56,108

52,12,52,24,52,24,52,12

54,24,51,24,49,24,47,24

0,0

128

sound4

129

0,0
49 ,72,56,24,54,12,52,12,49,96

52,12,52,24,52,24,52,12

54,24,51,24,49,24,47,24

0,0

130, 584

0,0

70 Die Custom-Chips

QR
3 ; 6. Sound -Demonstration

4 ; last update 10/03/88

5 ; vonFrank Kremser undJoérg Koch

6 ; ©Markt & Technik 1988

75;
8 ; KREEFRFRERRERFEREER RR RT N FT RK FR RK RT RR NR

Q ;
LO ;Diese Demonstration lädt ein digitalisiertes Musiksttck namens

Ll ;'Sound' von Diskette(aktuelles Laufwerk) und spielt es dann

l2 ;solange, bis die Maustaste gedrückt wird.

LS;

L5

L6 MaxSndLen =131070 ‚Maximale Länge des Sounds

L7 SndBuffer =%50000 ‚Startposition des Puffers

L8

L9 ExecBase = $4

20 OpenLibrary =-408

21 CloseLibrary =-414

22 Open = -30

23 Close = -36

24 Read = -42

25 OPEN_OLD = 1005

26

27 move.l ExecBase,a6

28 lea DosName, al ;DosLibrary 6ffnen

29 jsr OpenLibrary (a6)

30

31 move.l d0,a6

32 move.l #File,dl

33 move.l 4tOPEN_OLD, d2

34 jsr Open(a6) ‚Datei 'Sound' öffnen

35 move.l d0,d7

36 move.l d0,dl

37 move.l #SndBuffer,d2

38 move.l +MaxSndLen, d3

39 jsr Read(a6) ;Datei lesen(Ind0befindet sich

40 lsr.l +#1,d0 ;sanschlieBend die Anzahl der echt

41 move.w d0,SndLen ;gelesenenBytes (/2=Words))

42 move.l d7,dl |
43 jsr Close(a6) ‚Dateischließen

44 move.l a6,al

45 move.l ExecBase,a6 ;‚DosLibraryschließen

46 jsr CloseLibrary(a6)

47 play: move.l +#50000,$dff0a0 ;Wavedata Kanal 0

48 move.1 +#50000,$dffOb0 ; Kanal 1
49 move.l +##50000, $dffO0cO ; Kanal2

50 move.l #$50000, $dff0doO ; Kanalösetzen

Die Custom-Chips 171

51 move.w SndLen, $dff0a4 ;Wavelange Kanal 0
52 move.w SndLen,$dff0b4 ; Kanall

53 move.w SndLen, $dff0c4 ; Kanal2

54 move.w SndLen, $dff0d4 ; Kanal3setzen

55 move.w #340, $dff0a6 ;PeriodKanal 0

56 move.w +#340,$dff0b6 ; Kanall
57 move.w #340,$dff006 ; Kanal2

58 move.w #340, $dff0d6 ; Kanal3setzen

59 move.w #64, $dff0a8 ; Lautstarke Kanal 0

60 move.w #64,$dff0c8 ; Kanall

61 move.w #64, $dff0b8 ; Kanal 2
62 move.w #64,$dff0d8 ; Kanal 3setzen

63 move.w #%1000000000001111,$dff096 ; Audio DMA ein

64

65 wait: btst #6,$bfe00l ;Wartenbis linkeMaustaste gedrückt

66 bne wait

67

68 move.w #4#64,d0 ‚volleLautstärke

69 1loop2: move.w #5000,dl ;Warteschleife

70 loopl: sub #1,dl

Tl bne loopl

72 move.w d0,$dff0a8 ; Lautstarke Kanal 0

73 move.w dO,$dffO0b8 ; Kanall

74 move.w d0,$dff0c8 ; Kanal 2

75 move.w d0O,#dff0d8s ; Kanal 3 setzen

76 sub #1,d0 ‚Lautstärke runterregeln

TT bne loop2 _ ;Wennnicht =0, dannweiter

78

79 move.w #%0000000000001111,$dff096 ;Audio DMA aus

80 rts ‚Rückkehr

8l |

82 File: dc.b 'Sound' ,O

83 DosName: dc.b ‘dos. library' ,0

84 even

85 SndLen: dc.w ©)

Die oben beschriebene Methode, Daten über die Audiohardware auszugeben, ist die

am häufigsten verwendete Methode. Eine weitere stellt die Amplituden- (Lautstärke-)

und/oder die Frequenzmodulation dar. Über das ADKCON-Register kann angegeben

werden, daß die Daten eines Audiokanals zur Amplituden- /Frequenzmodulation eines

anderen Kanals verwendet werden. Ist ein Kanal so geschaltet, daß seine Audiodaten

zur Modulation verwendet werden, so kann über ihn kein Sound mehr ausgegeben wer-

den, da die gelesenen Daten ja nicht mehr als Sounddaten zur Verfügung stehen. Ein

Kanal kann immer nur so geschaltet werden, daß die gelesenen Daten für diesen Kanal

in das Lautstärke-, bzw. Period-Register des nächsthöheren Registers geschrieben wer-

den. Wurde Kanal 2 zur Periodmodulation von Kanal 3 geschaltet, so werden die gelese-

nen Audiodaten in das Period-Register von Kanal 3 geschrieben, das Gleiche gilt für

72 Die Custom-Chips

lie Lautstärkemodulation. Wurde aber Kanal 2 gleichzeitig zur Period- und zur Laut-

tärkemodulation von Kanal 3 geschaltet, so werden die Daten immer abwechselnd als

„autstärkedaten und als Perioddaten aufgefaßt, wobei zuerst die Lautstärke gesetzt

vird. Hier die Möglichkeiten zur Modulation durch das ADKCON-Register:

3it Name Funktion

5 SET/CLR _lIstdieses Bit gesetzt, werden alle Modulationsmodi, deren

korrespondierendes Bit gesetzt ist, »enabled«. Ist dieses Bit

gelöscht, werden alle Modi, deren korrespondierendes Bit gesetzt

ist, »disabled«.

7 ATPER3 _Schaltet die Audio-Ausgabe über Kanal3 ab.

6 ATPER2 Verwendet die Daten von Kanal2, um das Period-Register von

Kanal 3 zu modulieren.

5 ATPERIi Verwendet die Daten von Kanal 1, um das Period-Register von

Kanal 2 zu modulieren. |

4 ATPERO Verwendet die Daten von Kanal, um das Period-Register von

Kanal 1 zu modulieren.

3 ATVOL3 Schaltet die Audio-Ausgabe über Kanal 3 ab.

2 ATVOL2 Verwendet die Daten von Kanal2, um dasVolume-Register von

Kanal3 zu modulieren.

1 ATVOL1 Verwendet die Daten von Kanal 1, um das Volume-Register von

Kanal 2 zu modulieren.

0 ATVOLO Verwendet die Daten von Kanal 0, um dasVolume-Register von

Kanal 1 zu modulieren.

|.3.3: Die Interrupt-Kontroll-Logik

-aula kontrolliert die Interrupts des Amiga-Systems. Alle Interrupts, die von Periphe-

iebausteinen erzeugt werden, werden von Paula in einen der 6 Interrupt-Levels des

AC68000 übertragen. Der MC68000 besitzt zusätzlich noch einen Interrupt des Levels

‚ NonMaskAble-Interrupt genannt, der nicht von Paula unterstützt wird. Er wird auch

on keinem Bauteil des derzeitigen Systems erzeugt. Falls eine externe Erweiterung

liesen Interrupt-Level benötigt, kann er mittels der MC68000-Interruptleitungen IPLO

is 2, die an den Erweiterungports anliegen, direkt erzeugt werden. Auch die Interrupt-

‚eitungen INT2 und INT6 liegen dort an, wodurch externe Baugruppen auch Inter-

upts der Level 2 und 6 über Paula erzeugen können.

Die Custom-Chips 173

Wie schon erwähnt, erzeugt Paula Interrupts der Level 1 bis 6. Um das System vor be-

stimmten Interrupts zu »schützen«, können diese über einige Chip-Register kontrol-

liert, bzw. abgeschaltet werden.

Diese Register sind INTENA, INTENAR, INTREO und INTREOR. INTENAR und

INTREOR sind Leseregister, aus denen gelesen werden kann, welche Interrupts mög-

lich sind, bzw. welche Interruptanfragen zur Zeit bestehen.

Registerbeschreibung zu INTENA: Mit INTENA können einzelne Interrupts zugelas-

sen, bzw. abgeschaltet werden (Aus INTENAR kann der Zustand der Interrupts ausge-

lesen werden, die Bit-Funktionen sind mit INTENA identisch, Bit 15 hat dann keine

Funktion):

Bit Name Lev Funktion

15 SET/CLR Ist dieses Bit gesetzt, werden alle Interrupts, deren

korrespondierendes Bit gesetzt ist, »enabled«. Ist dieses

Bit gelöscht, werden alle Interrupts, deren

korrespondierendes Bit gesetzt ist, »disabled«.

14 INTEN Setzt alle Interrupts »enable«/»disable«.

13 EXTER 6 Setzt Interrupt Level 6, also externe Interruptleitung.

12 DSKSYN 5 Dieser Interrupt zeigt an, daß beim Lesen von Diskette die

Syncbytes gefunden wurden, die im DSKSYNC-Register

festgelegt wurden.

11 RBF 5 Durch diesen Interrupt wird signalisiert, daß der

Empfangspuffer fiir die serielle Schnittstelle voll ist.

10-7 AUD3-0 4 Dieser Interrupt wird immer dann erzeugt, wenn die

Audio-Hardware einen Speicherblock fiir Kanal 3 bis 0 fertig

abgespielt hat und neu beginnt.

6 BLIT 3 Dieser Interrupt signalisiert, daß der Blitter eine Operation

abgeschlossen hat und fiir neue Aufgaben bereitsteht.

5 VERTB 3 SetztVERTB-Interrupt. Dieser Interrupt wird immer dann

erzeugt, wenn der Rasterstrahl wieder neu mit dem

Bildaufbau beginnt.

4 COPER 3 Dieser Interrupt wird benötigt, damit der Copper den |

MC68000 unterbrechen kann, um Daten in die Chip-Register

zu schreiben.

3 PORTS 2 Setzt Interrupt Level 2, also externe Interruptleitung.

[74 Die Custom-Chips

Bit Name Lev Funktion

i
w
 SOFT 1 Dieser Interrupt signalisiert einen Software-Interrupt.

| DSKBLK 1 Dieser Interrupt zeigt an, daß ein Diskblock komplett

eingelesen wurde.

) TBE 1 Durch diesen Interrupt wird angezeigt, daB der

Sende-Datenpuffer fiir die serielle Schnittstelle leer ist.

Registerbeschreibung zu INTREQ und INTREQOR: Mittels INTREQ können Inter-

rupts erzeugt werden und aus INTREOR kann ausgelesen werden, welche Interrupts

zur Zeit erzeugt sind. Da die Bits aus INTREQ mit denen aus INTENA identisch sind,

gehen wir hier nicht mehr genauer darauf ein. Die Funktionen der Bits unterscheiden

sich nur dahingehend, daß jeder Interrupt, dessen korrespondierendes Bit gesetzt ist,

auch erzeugt wird.

a;
5 ; Interrupt- Demonstration

4 ; last update 10/03/88

5 ; vonFrank Kremser undJoérg Koch

6 ; ©Markt & Technik 1988

T |

9 ;
10 ;DieseDemonstrationist zwar lauffähig, aber nicht sehr effektvoll.

ll ;Eswirdein Interruptvektor gesetzt, der eine Unterroutineper

12 ;Interrupt aufruft (etwaalle 60stel Sekunde), während das Haupt -

13 ;programmm fortfährt.

14 ;

16

17 move.w #$4000, $dff09a ‚Interruptsabschalten

18 move.l $6c,0ldVector ;AltenInterruptvektor sichern

19 move.l +#IRQRout, $6c ‚Neuen Vektor setzen

20 move.w #$c000, $dff09a ‚Interruptseinschalten

21

25 ;Andieser Stelle kann Ihr Programmstehen, daswieeinnormales

24 ;Programmausgeftihrt wird.

26

27 wait: btst +6, $ofe001 ;Warten, bisMaustaste
28 bne wait ;gedrtckt

29

30 move.w +4000, $dff09a ; Interrupts abschalten

Die Custom-Chips 175

31 move.l OldVector,$6c ;AltenInterruptvektor setzen

32 move.w #$c000, $dff09a ‚Interruptszulassen
33 rts ‚Rückkehr

34

35 IRQRout: movem.1d0O-d2/a0-al,-(a7) ;Registersichern

36 move SR,-(sp) ‚Statusregistersichern

37
38 EKER EEE KEE KEKE KEE KE KEK KEE RK KEKE

39 ;Andieser Stelle kann nun Ihr Programm stehen, das bei jedem

40 ;Interrupt ausgeführt werden soll.
Al SERRE EKER KEE RK REE KKK EEK K EKER K EEE EK

"42

43 EndIRQ: move (sp)+,SR ‚Statusregister zurück

44 movem.1 (sp)+,d0-d2/a0-al ;Register zurückspeichern

45 dc.w $4ef9 ; Interrupt beenden

46 |

47 OldVector:

48 dc.l $0000

4.3.4: Der Game-Port

In diesem Kapitel wird erläutert, wie ein Joystick, der in Port 0 oder 1 eingesteckt ist, abge-

fragt werden kann. Auf die Abfrage der Maus wird in einem späteren Kapitel eingegangen.

Das Abfragen der Joystick-Stellung ist äußerst einfach. Dazu muß nur das Register JOY-

ODAT fiir Port 0 oder JOY1DATTfür Port 1 ausgelesen werden. Ist Bit 3 dieses Registerwer-

tes gesetzt, so ist die linke Taste gedrückt, bei gesetztem Bit 4 die rechte. Ist Bit 1 gesetzt,

so ist der Joystick nach rechts gedrückt, bei gesetztem Bit 9 nach links. Um zu überprüfen,

ob der Joystick nach oben oder unten gedrückt ist, muß etwas mehr Aufwand getrieben

werden, denn dazu müssen zwei Bits logisch verknüpft werden und zwar mit einer XOR-

Verknüpfung. Ist Bit 1 XOR Bit 0 wahr, so ist der Joystick nach hinten gedrückt und bei 9

XOR 8 nach vorne. j

[FRRRRRRRRRRRKRKRRRRRRRRRRKRRRRR

2. Joyport-Demonstration

last update 16/02/88

von Frank Kremser und Jorg Koch

© Markt & Technik 1988
KKEKEKKKEKKHKKKKKKKKKKKKRKKKEKKKKKKE

Diese Demonstration fragt den Joystickin Port lab.

Mit diesem kann einSprite über den Bildschirm bewegt werden.

10 Betätigung des Feuerknopfes beendet das Programm.
11 HKEKKKKEEKKKEKKKKKKKKKKKKKKKKKEKE /

12 +#include <exec/types.h> /* Include-Files laden */

13 +include <exec/tasks.h>

O
M
O
N

o
u
»
K
h

W
N

F
e

176 Die Custom-Chips

13 +#include <exec/libraries.h>
14 +include <exec/memory.h>

15 +#include <exec/devices.h>

16 #include <devices/keymap.h>

17 #include <devices/gameport.h>

18 +#include <devices/inputevent.h>

19 +#include <graphics/copper.h>

20 +#include <graphics/display.h>

21 +#include <graphics/gfxbase.h>

22 #include <graphics/text.h>

23 #include <graphics/view.h>

24 +#include <graphics/gels.h>

25 +#include <graphics/regions.h>

26 +#include <graphics/sprite.h>

27 +#include <hardware/blit.h>

28 +#include <intuition/intuition.h>

29 +#include <intuition/intuitionbase.h>

35 GPTF_UPKEYSIGPTF_DOWNKEYS,

30

31 struct GamePortTrigger gpt =

32 4

34 0,

35 1,

36 1

37 = }3

38

39 struct InputEvent

40 struct I0StdReq

41 struct MsgPort

42

43 struct GfxBase

44 struct IntuitionBase

45

46 struct Screen

47

48 USHORTDatal|[] =

49 {

50 0,0,

ol

D2 OxOFCO, OxOFCO,

53 Ox3FFO, 0x3030,

54 Ox7FF8, 0x4008,

55 Ox7FF8, 0x4008,

56 OxF33C, Ox8CC4,

57 OxFFFC, 0x8004,

58 OxFFFC, 0x8004,

59 OxFCFC, 0x8304,

50 OxFFFC, 0x8004,

51 OxFFFC, 0x9024,

52 Ox7FF8, 0x4848,

joyreport;

oameio; / Device-Request-Block */

sameport; / Messageport */

GfxBase; / Library-Pointer */

*IntuitionBase;

*screen; /*Screen-Structure-Zeiger */

/* Sprite-Image */

Farbteil I

A500 Grundplatine | Floppy, intern

Wey
AAR

Bild 1: Amiga 500, der 64er-Nachfolger.

5'4-Zoll-Floppy

ee
Mouse- Mouse-
Port 0 Port1 Bild 2: Das Sidecar in der Frontansicht — nicht nur ein Beiwagen.

Farbteil II

durchgeschleifte
Spannungs-
versorgung

E
E
E

|

Floppy-AnschluB

Bild 3: Das Sidecar, von hinten betrachtet.

Mouse-
86-Pin Expansions- AnschluB,

AnschluB durchgeschleift
|r

pen
IUNNTANET ABER RRFAENL RE ACHNSRUR

Bild 4: Der Amiga-Expansions-Port-Stecker des Sidecars.

Farbteil III

Netzteil

Piggy- on Mi MM mu © me: u .::; xpansions-
Pack | A : : ae) bo,

a

fm Floppy
© Intern

£40
wii inci ian
LU. M) TN N

nr
N

FAA fa

Bild 5: Der Amiga 1000.

Composite Ton

Video RGB Netz Parallel Seriell Floppy Mouse-Port’s

CIA 8520
lea |)

wu ah
ann hd ram

Video-Hybrid ——

Denise

VE PTR

Gary

System-ROM— ur Re u lea NND Paula
mon hy itd rot ‘ie a

ne
4

Fat-Agnus
m

” : . .
aa ORT

A iweb NR baal,

p
e
.

3 Expansions-

SEED: Anschluß für
ln, Bei 512 Kbyte und

| ee
86-Pin MC 68000 512Kbyte RAM Timer-Chip

Expansions- CPU
Port Bild 6: Das Amiga 500 — Motherboard.

Farbteil IV

Compo- Modu- RGB Sound Seriell Floppy Parallel Tastatur ie ne if | site Video

Takt- CIA 8520
erzeugung Port Bausteine

Video-Signal 86 Pin
Aufbereitung

Expansions-

Port

MC 68000
CPU

Custom-Chips

Denise, Agnus, Ur-Lader-
Paula

ROM’s

]
Mouse-

Port
256 Kbyte RAM

256 Kbyte RAM-

Aufrüstung Bild 7: Das Motherboard in voller Größe.

Gary CIA aah ,
,' Bac Tne VERVE EPP R REE

IRCA TORO OE \
RN ne

Video-Slots

IBM PC/AT- |
Slots

Paula und

Denise

Fat-Agnus

1 Mbyte RAM
Zorro-Slots

; i Di fe AR System-ROM

ar i: Pe Anschluß
| ee ie hae Bi oh Comes ecg: 9 Man fur Mouse/

86-Pin : , aa | Joystick

Exp. Slot MC 68000 = L Tastatur-
CPU Bild 8: Der Amiga B2000. AnschluB

Farbteil V

w
o
n

B
E
E
R

E
E
E

E
E
E

F
E

ETF
B
R

R
T

F
E

RE
ee

e
e
e

Buster

> mm td em
a

re

€ N We

me ie lle
a le

Buster. Bild 9

on ee ae ee ae sone

a
oe}

H
=

5
r
n

s
u
s

mW

~ 3 = =

wry

ee ee ee A A ee Aa

e

Der Custom-Chip Gary. Bild 10

Farbteil VI

2 x € £ & é £ a & € é € & 5 & E | %

Ld
WO
4

z=.
u
 Q

ise-Chip. ISe Der Den Bild 11

=

-

a

eo

=

=

=

=

-

-

-

a

=

-

ae

7

=

=

+e

Der Paula-Custom-Chip. Bild 12

Farbteil VII

512 Kbyte Floppy- Co-Prozessor
PC-RAM Controller 8087-Sockel

128 Kbyte
Dual-Ported-

RAM

|| Floppy-
| Anschluß

|
Adress- Daten Bus BIOS-ROM PC-Custom-Chip

Bus-Translator Translator 8088-CPU fur Timer
Interrupt+DMA

Bild 13: Ein vollwertiger PC auf kleinstem Raum.

Pa CWT KI

“Ft MY ty
Sih, ses Tua

N ‚A en

Bild 14: Das 2000er Slot-Konzept.

Farbteil VIII

Bild 15: Die 256 KByte-Erweiterung des A 1000

Mouse-Port 2
l

|

| oh

=
Se ps

orks MILE
Rit
Ride

; RVG:
Vier 2 zu 1- So 4 ME
Multiplexer 7 = Reg

zum wi o > ° —
Umsetzen wt oO « mit

der Mouse- of. a I tol =

Port 0- und m & i Et
1-Signale on Bee i

3
0.

'g¢ YBAALGLIZE29 |

Mouse-Port 1

Bild 16: Vier 2 zu 1-Multiplexer setzen die ankommenden Signale
von Port O und 1 zu Denise um.

Farbteil IX

128 Kbyte

Dual-Ported-RAM

PEP eT eC Oe
“see “ee

0888 42

COHORT EHEHEH HEH OH OHS

Bild 17: Das Dual-Ported-RAM der PC-Karte.

DL 227772

winnaar Hann

NR ER ‘in
BN AARNE N \

Ab a a Kal, n

\

8d200089S1

tg

@gizg “A

Bild 18: In diesem kleinen ROM findet beim Amiga 500 und 2000
sowohl das Kickstart als auch der Ur-Lader Platz.

Farbteil X

Jumper 11

Si penton a aca icc eae ciaciiat

we * RO Me

BR sans rar er AOBOBONanS taser anatrs

Schalter 1 Schalter 2

Bild 19: Die Jumper im Überblick.

zn ey BY ye # + 2 2 Me OO) FD A ee Mm fh ory rely

A) 8718 8

TS68000CP8

MUAteN USA!
PUAN

Bild 20: Der 68000er-Chip.

Farbteil XI

Takterzeugung D-Flip-Flops
zum Teilen des Quarz-Taktes

28.6363 MHz

Quarz 1000. iga Die Takterzeugungs-Schaltung im Am Bild 21

+
 =

=

e

- =

®

*

=

&

=

co

=
 =

Eu

=

=

=

4
 =

=

Fat-Agnus

S
e
e

e
e
e
e

e
4
8
4

F
H
S

E
E

Der Fat-Agnus-Chip. Bild 22

Farbteil XII

Paula Agnus Denise

u

a

i

E

Ü

i

i

t

|

3

|

i)

ß

|

Bild 23: Agnus, Denise und Paula im Amiga 1000.

ang,
vn N,
u

TRAIL Bares ee rer

Ay

Mögliche

Kickstart- — a Ur-Lader-

ROM’s ROM’s

Aunt Di, io
tat

a

proce Mp a
na Tere

Bild 24: Die ROM’s im Amiga 1000.

Farbteil XIII

5 _Sidecar-

Interface

A nen neeemengeneninanenn anne N 25772072
GAAP AA A RC BÄNANN r

OEBRBOR ERASER Le A,
-

Bild 25: Das Sidecar ohne Abdeckung.

Dual-

Ported ——

RAM

Auto-
config —_

AnschluB fur PC

om ara

und

Data-

Bit

Shifter

PAL-

Logik

EN Aue AN)
MÄR) JUN

“«

Mi us

df

| AnschluB Amiga

Port

Expansions- an Amiga
Expansions-Port

Bild 26: Das Interface zum Amiga.

Farbteil XIV

3 IBM PC-Slots 512 Kbyte RAM

“BIOS

Fe? Anschluß fur

a = mer m Side Car-,
CPU 8088 — ® Interface

DMA

Floppy- ___ .
AnschluB -Timer

L ______ Floppy-
Controller

Bild 27: Das Sidecar-Motherboard

|— 256Kbyte RAM

DPALCAS

DAUGCAS

DAUGEN

DPALEN

Bild 28: Das Piggy-Pack enthält vier PAL's, die wichtige Kontroll-
funktionen übernehmen. Während die zwei PACs DAUGCAS und
DAUGEN fast nur für das Piggy-Pack zuständig sind, übernehmen

die anderen zwei Chips Kontrollfunktionen für das Motherboard.

Farbteil XV

i Treiber-Bausteine

Video-

Hybrid

4 ne
i Composite

Seh | | Video

| mq i

Bild 29: Das Video-Hybrid sorgt beim Amiga 500 fur alle wichtigen
Schaltfunktionen, um ein RGB- und Composite-Video-Signal zu

erhalten. Leider liegt das Video-Signal nur in schwarz-weiB vor.

Treiber-Bausteine RGB-Encoder Video-
fur Video- Signale | | Anschlusse

RGB-
Endstufe

fur Analog- |
Video

E3
4

e
n

a
a
a

en

E
?

Pf Hy Pout 4

320) weve se sy

e

ih) u | Ku | ue

Bild 30: Der MC 1377 sorgt beim Amiga 1000 fur das notwendig

Composite-Signal.

Farbteil XVI

CIA 8520 Port-Bausteine

EZ)
i
|

|
ae |

t
% i

ee

: er

r $

| 2

a

3 “

U
S

@
—

ö
e
n

So
t

2
4
,

-

a

ne

Bild 31: Die CIA 8520 Port-Bausteine.

Vou

VIIRPTEI7 I tie

a en ee ee

a}

Craig
MALAYSIA. ardour
ip SNTAAL S24SAN

vr a a a a rn a
\ ra a oa ®

eee
MALAYSIA B7400T
{) SNT4AL G245AN

yet Mn Mm wu De re me . „ u. Ma | " *

WENN TT ee
’*r ah

Bild 32: Der 86-Pin-, AT/PC- und Zorro-Slot im Amiga 2000.

Die Custom-Chips 177

63 Ox7FFS8, 0x4788,

64 OxdSFFO, 0x3030,

65 OxOFCO, OxOFCO,

66

67 0,0

68 };
69 |

70 struct Simple Sprite spritel/* Sprite-Structure */
71 {

72 &Datal[O],

75 14, \ /* Hoehe */
74 100, /*X- Position */
75 100, ; /*Y- Position */

76 2 /* Sprite Nummer */

77

78 4};

79

80 struct NewScreenns= /* Die New-ScreenStructure */

el { |

82 QO, /* Linke Ecke */

83 0, /* Obere Ecke */

84 320, /* Breite */

85 206, /* Hoehe */

86 2, /* Tiefe */

87 0, /* DetailPen */
88 l, /* BlockPen */

89 SPRITES, /* ViewModes */

90 CUSTOMSCREEN, /* Type */

91 NULL,

92 NULL,

93 NULL,

94 NULL

95 };
96

97 main() /* HAUPTPROGRAMM * /

98 f{ |
99 intx,y;

100 UBYTE type = GPCT_RELJOYSTICK;

101 USHORT schleife;

102 |

103 x=152;

104 y=120; 5

105 /* Libraries öffnen */
106 if ((IntuitionBase = (struct IntuitionBase *)

107 OpenLibrary("intuition.library", 0)) ==0) exit();

108 \ | "

109 if ((GfxBase = (struct GfxBase *)

110 OpenLibrary("graphics.library",0))==0) exit();
111 /*Screen öffnen */

112 if ((screen= (struct Screen*) OpenScreen(&ns)) ==NULL) exit();

178 Die Custom-Chips

113 SetRGB4(&screen->ViewPort,20,9,9,9); /* Farben setzen */

114 SetRGB4(&screen->ViewPort,21,11,11,11);

115 SetRGB4(&screen->ViewPort, 22,13,13,13) ;
116 SetRGB4(&screen->ViewPort,23,15,15,15) ;
117

118 if (!(g

119 exit()

120 if (!(gameio = CreateStdlIO (gameport))) |

121 exit(); /* Device öffnen */

122 if (OpenDevice ("gameport.device", 1, gameio, 0)) .

123 exit();

124

125 gameio -> io_Command = GPD_SETCTYPE; /* Request-Structure

126 erstellen */

127 gameio -> io=Lenght = 1;

128 gameio -> io_Data = &type;

129 if (DoIO (gameio)) /* Device einstellen */.

130 exit();

131

132 gameio -> io_Command = GPD SETTRIGGER;

133 gameio -> io_Length = sizeof (gpt);

134 gameio ->io_Data = &gpt; |
135 if (DoIO (gameio))

136 exit();

137

138 gameio -> io_Command = GPD READEVENT;

139 gameio -> io_Length = sizeof (joyreport);

140 gameio -> io_Data = &joyreport;

141

142 SendlIO (gameio);

143 | |

144 schleife=GetSprite(&spritel,3); /*Sprite 'holen' */

145 MoveSprite(&screen->ViewPort, &spritel, 152, 120); /*Sprite

146 darstellen */
147 | :

148 for(;;)

149 {

150 WaitIO (gameio); /* Warten, bisSignal vom Gameport */

151 if (joyreport.ie_Code == IECODE_LBUTTON) /* Wenn Button, dann Ende */

152 break;

153

154 x+= joyreport.ie_X; /* Sonst Sprite bewegen */

155 if(x<ollx> 304)

156 x=x<0?0: 304;

157

158 y += joyreport.ie_Y;

159 if (y<Olly > 240)

160 y=y<0?70: 240;

161 MoveSprite(&screen->ViewPort, &spritel, x, y);

162 .

ameport =CreatePort (0,0))) /*Gameport 'öffnen' */
°

3

Die Custom-Chips 179

163 SendlIO (gameio);

164 }

165

166 CloseDevice (gameio); /*Device schließen */

167 DeleteStdI0 (gameio);
t 168 DeletePort (gameport) ;

169 |

170 + FreeSprite(3); /* Sprite loeschen */

171 CloseScreen(screen) ; /* Screen und Libs */

172 CloseLibrary(GfxBase) ; /* schließen */

173 CloseLibrary(IntuitionBase) ;

174 }

180 Die Custom-Chips

4.4: Gary

Gary ist einer der neuesten Custom-Chips des Amiga. Er ist nur bei dem B2000 und

A500 zu finden. Er übernimmt überwiegend verschiedene Kontrollaufgaben, die bei

dem A2000 und A1000 mit diskreter Logik und PAL’ gelöst wurde. Sein Aufbau kann

praktisch in vier Teile gegliedert werden: Adreßdekodierung, Kontrolllogik für das

Floppy DF0:, Bus- und Resetkontrolle (Bild 10 im Farbteil).

‘Gary Block Diagram u

Address decode

68000,
Addresses > | | |

een —— RAM Enable (RAME)
Address | >

- Strobe (AS) =——* —— RGA Enable (RGAE)

UDS, LDS > ROM Enable (ROME)
Clocks Real time clock read
(C2,C3) ~ rand write (RTCR, RTCW).

Override (OVR) > \/PA | |

| Overlay (OVL)

Processor read write —
(PRW)

Expansion Board
7 Present (EXPEN) 1

| nn - : | an _ |. Bidirectional 7
a DBR = Bus > CDW tri-state latch _

-XRDY Control > LATCH | Control

Override en ee
_ (OVR) eg D7ACK

nn + BLS

ad Floppy Control
So Logic

Keyboard Reset ———*| Reset Control >» Halt

Z 4.4-1; Das Blockdiagramm des Custom-Chip Gary

Die Custom-Chips 181

Z 4.4-2: Die Pinbelegung des Custom-Chip Gary

_ Custom Control Chip
| or

c
o
v
o
n
n
e
n
=
]

Hier die Beschreibung der Pins:

Floppy-Funktionen:

/DKWD Diskwrite. Floppy-Schreibsignal.

DKWE Diskwrite Enable. Dient zur Freigabe des Schreibsignals.

IMTR Signal zum Einschalten des Motors von DFO:.

/SELO Select-Signal für Laufwerk DFO:.

DKWDB Gepuffertes Floppy-Schreibsignal.

DKWEB Gepuffertes Freigabesignal.

MTRX Dient zum Einschalten externer Floppymotoren.

MTRON MotorOn-Signal für internes Laufwerk. Dieses Signal wird aus dem

/MTR-Signal intern durch Takten eines D-FlipFlops mit dem /

SELO-Signal gewonnen.

182 Die Custom-Chips

Adreß- und Buskontrolle:

/OVR

OVL

XRDY

/ROMEN

/EXRAM

/CLKRD

/CLKWR

AT/-A23

/DEB

/OEL

/LATCH

[VPA

/LDS

/UDS

R/W

[AS

/DTACK

[BGACK

/ALT

/RST

/RAMEN

/REGEN

/BLISS

/BLIT

/ICDAC

ICCK

/CCKQ

Mit dieser Leitung kann die interne /DTACK-Generierung

abgeschaltet werden.

Dient bei einem Reset zum Umschalten zwischen Urlader- und

Kickstartbereich.

Mit XRDYkann das /DTACK-Signal verzögert werden.

Chip-Select ftir das Betriebssystem-ROM.

Wird diese Leitung auf GND gelegt, so wird die externe

512-Kbyte-Erweiterung in das System eingefiigt.

ClockRead.

ClockWrite. Steuert das Lesen/Schreiben der internen Uhr.

Adreßleitungen A17 bis A23. Sie dienen zum Dekodieren der

Chip-Select-Signale.

Dienen zum Steuern der Bus-Ireiber und Latches des Datenbusses.

VPA-Signal des MC68000. Gültige Prozessor-Adresse.

Datenbus Steuersignale des MC68000. Dienen zum Steuern des

Datenbusses, in oberes und unteres Byte, sowie Word.

R/W-Leitung des MC68000. Schreib-/Leseleitung.

/AS-Leitung des MC68000. Adreß-Strobe signalisiert, daß die

Adressen gültig sind.

/DTACK-Signal. Dient zum Verzögern des Schreib-/Lesevorgangs

beilangsamen Peripherien.

/BGACK-Signal des MC68000.

/HLI-Signal des MC68000. Mit diesem Signal kann der MC68000

angehalten werden.

/RST-Signal. Dies ist das Reset-Signal.

RAM Enable-Leitung für AGNUS.

Register Enable. Register-Gültigkeitsleitung für AGNUS.

Leitungen für Blitter-Aufgaben.

System-Clock 7.16 MHz um 90 Grad verschoben zum System-Takt.

Takte für das Farbträgersignal.

Die Custom-Chips 183

4.5: Buster

Der Custom-Chip Buster ist bisher nur bei den Amiga-B2000-Rechnern zu finden. Er

übernimmt hier die »Kontrolle« über die Slots des Amiga. Diese Funktion wurde beim

Amiga A2000 noch diskret mit PALs und diverser Logik aufgebaut (siehe Farbteil Bild 9).

GND - 1- -48- +5
il - 2- -47- DOE
/BG2 - 3- -46- /DBOE
/BG3 - 4- -45- /D2P
/BG4 - }- -44- PTEST
AG so - 6- -43- TEST
/BRI - In -42- /RST

/BR2 0 - B- -41- /OHN
/BR3 - I. -48- /OVR

/BRA -18- -39- /BOSS
/BRS -11- -38- /UDS

/SLAVEL -12- | -37- /UD$
/SLAVE2 -13- BUSTER -36- /AS

‘SLAVES -14- -30~- READ
/SLAVE4 -15- -34- A23

/SLAVES -16- r33- A22
/BG -17- "32- Adl

ADAG -18- -31- Aza
C1 -19- -30- Ald
C3 -28- -29- /CBG
A -21- -28- ACBR
74 -22- -27- /BR
/OBG = -23- -26- /BEER
GND -24- r25- +9

Z 4.5-1: Die Pin-Belegung des Buster

Hier die Pinbeschreibung zu Buster:

/BR1-BRS, Damit signalisieren externe Erweiterungen, daß sie auf den Bus

/CBR zugreifen möchten.

/BG1-/BG5 Busfreigabe-Signal. Mit diesem Signal wird darauf hingewiesen, daß

/CBG sein /BR-Signal berücksichtigt wird. | |

/SLAVEI- /SLAVE-Signal fiir jeden Slot. Genauere Beschreibung siehe
/SLAVES »Die Signale des 100-Pin-Slot«.

A19-A23 Adreßleitungen A19-A20.

184 Die Custom-Chips

[BEER

/UDS

/LDS

READ

/OVR

/OWN

[AS

/RST

/CDAC, Cl

C1, /C2

C3,/C4

PTEST

TEST

/DBOE

DOE

Diese Leitung signalisiert dem MC68000 einen Busfehler, wenn z.B.

zwei Erweiterungskarten gleichzeitig auf den Bus zugreifen wollen.

Mit dieser Leitung wird die Zugriffsart des Datenbusses signalisiert.

Lese-Signal.

Override. Damit kann die /DTACK-Generierung ausgeschaltet

werden.

DMA-Owner. Beansprucht wird diese Leitung, wenn eine

Erweiterungskarte eine Bus-DM A besitzt und sie die Kontrolle über

den Buserhält.

Adreß-Strobe-Leitung des MC68000.

Reset-Signal.

System-Iakte. Nähere Erläuterung finden Sie im Kapitel
»Die Takte des Amiga«.

Pins zumTesten des Buster.

Data Output Enable. Mit diesen Signalen kann der Datenbus-Puffer

auf einer Erweiterungskarte geschaltet werden.

Die Amiga-Slots 185

Kapitel5

Die Amiga-Slots

Bei der Amiga-Serie stehen inzwischen 6 verschiedene Slots zur Verfügung. Während

beim Amiga 500 und Amiga 1000 die Standard 86-Pin-Slots verwendet werden, kamen

beim Amiga A2000 noch zusätzlich 100-Pin-Zorro-Slots und AT- bzw. PC- Steckplätze

hinzu. Weiterhin enthalten die 2000er einen bzw. der B2000 zwei Video-Slots. Durch

diese Vielzahl an Steckplätzen bietet der Amiga ungeahnte Möglichkeiten in Bezug auf

Erweiterungen.

AT-Slot PC-Slot

86-Pin
Expansion-Slot

F5-1: Der 86-Pin-Slot des Amiga 2000.

186 Die Amiga-Slots

Standard-
Video-Slot

erweiterter

Video-Slot

F5-2: Fur Video-Freaks offen: der Video-Slot des B2000.

Untereinander wird es hingegen etwas schwierig Erweiterungskarten auszutauschen,

da der 86-Pin-Erweiterungsslot beim Amiga 500 sich auf der linken Seite befindet, und

somit um 180 Grad zum A1000-Slot verdreht ist. Der Austausch von 2000er-Karten zu

den Geschwister A500 und A1000 ist ebenfalls etwas problematisch, da hier der 86-Pin-

Slot kein Stecker, sondern eine Buchse ist. Zorro-Slots sind bei den Amiga 500- und

1000-Rechnern leider überhaupt nicht enthalten. Das heißt jedoch noch lange nicht,

daß Anwender dieser Amiga’s auf 2000er-Karte verzichten müssen. Inzwischen sind im

Handel sogenannte Sub-Boards erhältlich, die das Einstecken von zwei 2000er-Karten

ermöglicht. Das wichtigste für Entwickler ist jedoch, daß die Signale an den Slots unter-

einander kompatibel sind.

5.1: Der 86-Pin-Slot

Der 86-Pin-Slot ist sowohl beim Amiga 500 und 1000 als auch beim Amiga 2000 vorhan-

den. Beim Amiga 1000 wird er sichtbar, wenn eine Klappe in der Mitte der rechten Seite

herausgenommen wird. Beim Amiga 500 ist er in der Mitte auf der linken Seite zu su-

chen. Auch beim A2000 ist er leicht zu finden, da er einer der kleinsten Slots in diesem

Rechner ist. Er befindet sich hier neben den 100-Pin-Zorro-Slots. An diesem Slot kön-

nen alle wichtigen Signale des Amiga abgegriffen werden. Der 86-Pin-Slot ist sozusagen

der direkte Draht zum System. Auf der oberen bzw. rechten Seite liegen alle Signale in

ungerader Numerierung an. Auf der unteren bzw. linken Seite befinden sich alle geraden

Nummern. Zeichnung 5.1-1 zeigt die Numerierung des 86-Pin-Expansionsports.

Die Amiga-Slots 187

AMIGA 1080

36-Fin Slot

AZBuB / BZ000 —

AMIGA 506

\ / \ | | BORIEEPRIUPRIEERRIERRIEPRIEEERIERRRFERREEERRERGR 85
Ä Licsecenneseceeseceseeseeccaeseseneseeneneeeeoees 86

Game Port @ und 1 86-Pin Expansion Port

en
Sunnunnnnssnnnansnsnnsnnsnunnnennnnunnnnnannannn 35 — —

Bansesasannnssunnnsnannnanarnnsnsnnnnnnennannen oo

36-Pin Expansion Fort

Z5.1-1: Die Lage und Numerierung des Expansion-Ports bei der Amiga-Serie

Während der 86-Pin-Slot beim Amiga 500 und 1000 direkt für Erweiterungen benutzt

wird, dient er beim Amiga 2000 mehr dazu, spezielle System-Karten, wie ein Turbo-

Board mit 68020-Prozessor, aufzunehmen. Hierzu sind auch ein paar Signale am

2000er- Slot hinzugefügt worden. Bild 32 im Farbteil zeigt den 86-Pin-Slot des Amiga

2000.

188 Die Amiga-Slots

5.1.1: Die 86-Pin-Slot-Belegung

Die nun folgende Tabelle zeigt die Funktion des entsprechenden Pins des 86-Pin-Slots

bei dem jeweiligen Amiga:

Pin Funktion A500 A 1000 A2000 B 2000

1 Ground x x x x

2 Ground x x x x

3 Ground x x x x

4 Ground x x x x

5 +5VDC x x x x

6 +5VDC x x x x

7 nicht belegt x x x x

8 —5VDC x x x x

9 nicht belegt x x

28 MHz Clock x x

10 +12VDC

1 nicht belegt

/COPCFG x

12 Config In x x x x

13 Ground x x x x

14 /C3 Clock x x x x

15 CDAC x x x x

16 /C1 Clock x x x x

17 /OVR x x x x

18 RDY x x x x

19 /INT2 x x x x

/PALOPE x

20 nicht belegt x x

/BOSS x

21 AS x x x x

22 /INT6

Die Amiga-Slots 189
= S Z
S
I
x
X
x
ı

x
x

I
x
I
x
ı
x

I
x

I
x
|
I
x

I
x

I
K
Y

x
ı
x

I
x

I
x

I
x

I
x
k
]

x
I

x
k
]

x
}

x
I

x
I
x
]

x
k
]

x
d
]

x
d

xX

m

.

= Z
S
ı
X
I
X
I
X
I
X
I
X
K
I

X
I
X

E
K

X
I
X

I
X

I
X
I
X

I
X

I
X

I
K

I
X

I
X
I
X

I
X
I

X
I

X
I

X
I

X
I

X
I

X
I
X

|
.

= S
O

I
ı
x
I
ı
x
I
x
I
x
I
x

I
x

I
x

I
x

I
x

I
x

I
x

I
x

I
x

|
I
x
I
ı
x
I
ı
x

I
x

I
x

Iı
x

I
x

I
x

I
x

I
x

I
x

I
K
I

K
I

x

< = wl

L
S
S

P
A
P
A

E
S
E
A
L
S

S
P
R
E
E

R
Y

S
L
A

L
A

R
Y

R
L

A
T

R
T

R
Y

A
L

R
T

R
Y

R
Y

A

cS

E
E

E
5

x
E

—

“4
=

|
=

=
Q

en
<
|
 >

\
S
l
o
/
s
/
2
)
s
2

a
l
a
s
,

#8
8
/
a
l
0

3
8
/
E
\
l
2

2
3
2
3
5

2
2
|
5
|
3
8

5
/
2
)

&
E
I

<
|
D
I
ı
<
/

<
<

<
<

RER
<

L
i

<
zn

|
<

D
I

<<
<<

<<
ı
<
<

<
SS

<
|
ı
I
|

<
|
<
Z
|
D

S
i
n
|
i
s
I
n
l
i
e
/
i
-
/
i
a
l
a

|
o
|
=
-

n
a
|
n
|
s
i
n

o
t

l
a
o
J
a
)
ı
o
|
-

||
a
i
n
ı

w
i
n

o
l

o
|
c
&

S
l
a
l
a
l
a
l
a
j
a
l
a
l
i
a
l
a
i
n
ı
n
i
n
l
a
i
n
ı
n
i
n
/
|
a
i
n
|

stl
ari perl

+
i

atl)
ast)

st]
+
]

+
]

N

190 Die Amiga-Slots

Pin Funktion A500 A 1000 A2000 B 2000

50 E Clock x x x x

51 IVMA x x x x

52 Al8 x x x x

53 /RST x x x x

54 A19 x x x x

55 /HLT x x x x

56 A20 x x x x

57 A22 x x x x

58 A21 x x x x

59 A23 x x x x

60 CBR ° ° ° x

61 Ground x x x x

62 /BGACK x x x x

63 D15 x x x x

4 ICBG ° : * x

65 D14 — x x x x

66 /DTACK x x x x

67 D13 x x x x

68 R/W x x x x

69 D12 x x x x

70 /LDS x x x x

71 Dil x x x x

72 /UDS x x x x

73 Ground x x x x

74 [AS x x x x

75 DO x x x x

Die Amiga-Slots 191

Pin Funktion A500 A 1000 A2000 B 2000

76 D10 x x x x

71 D1 x x x x

78 D9 x x x x

79 D2 x x x x

80 DS x x x x

81 D3 x x x x

82 D7 x x x x

83 D4 x x x x

84 D6 x x x x

85 Ground x x x x

86 D5 x x x x

5.1.2: Die Signale des 86-Pin-Slots

In diesem Kapitel soll auf die Signale des 86-Pin-Slots näher eingegangen werden. An

diesem Slot liegen überwiegend die ungepufferten Signale des MC68000. Neben den

üblichen Spannungsversorgungen sind auch Kontrollsignale und Systemtakte an den

86-Pin-Slot herangeführt.

Die Spannungsversorgung des 86-Pin-Slots:

An diesem Slot stehen drei verschiedene Spannungen, die sich auf GND (Ground =

Masse) beziehen, zur Verfügung. Je nach Amiga kann dieser Spannungsversorgung

eine gewisse Leistung, die durch das jeweilige Netzteil begrenzt ist, entnommen wer-

den. Leider lagen uns keine genauen Werte vor, so daß wir teilweise die totale, also

maximale, vom Netzteil bestimmte Leistung, angeben mußten.

+12V — Dies ist die höchste Spannung, die an dem 86-Pin-Slot anliegt. Sie wird z.B.

für HardDisk’s oder Floppylaufwerke beim Amiga 2000 benötigt:

8 Ampere total beim Amiga 2000

1 Ampere total beim Amiga 1000 und 500

+5V — Diese Spannung wird als Hauptversorgungsspannung bezeichnet, da sie bei

allen Chips in den Amigas benötigt wird. Die totaleVersorgung des A2000 liegt

bei 20 Ampere, beim A500 bei ca. 4.5 Ampere:

192 Die Amiga-Slots

2 Ampere direkt beim Amiga 2000

1 Ampere direkt beim Amiga 1000

unter 1 Ampere beim Amiga 500

-5V — Bei dieser negativen Versorgungsspannung ist die Belastbarkeit bedeutend ge-

ringer als bei einer positiven Spannung:

ca. 0.3 Ampere total beim AMIGA 2000, 1000 und 500

Die MC68000-Signale des 86-Pin-Slots:

Die MC-68000-Signale sind direkt vom MC68000-Prozessor zum 86-Pin-Slot durchge-

schleift. Sie liegen somit nicht in gepufferter Form vor.

A1-A23 A1-A23 geben die Adreßleitungen an, mit dem ein max. Speicher von

8 Mbyte adressiert werden kann.

DO-D15 Dies ist der Datenbus des MC68000. Er ist 16-Bit breit (DO-D15)

und kann Word- oder Byte-Weise angesprochen werden.

FCO-FC3 Die Function-Code-Ausgänge, auch als Status-Anzeige bezeichnet,

signalisieren der Hardware, auf welchen Daten- oder

Programmbereich momentan zugegriffen wird. Diese Signale werden

für eine MMU (Memory Managment Unit), einer sogenannten

Speicherverwaltungs-Einheit benötigt.

/IPLO-/IPL2 Dies sind die 3 Interrupt-Eingänge des MC68000. Entschlüsselt

ergeben sich daraus 7 Interruptprioritätsebenen.

R/W Das Signal R/Wist der Schreib-/Lese-Signalausgang des MC68000.

Ist dieses Signal log. 1, so liegt ein Lesevorgang des Datenbusses

durch den MC68000 vor. Ist das Signal log. 0, so findet ein

Schreibvorgang des MC68000 statt.

[AS Adreß-Strobe (/AS) signalisiert mit abfallender Flanke des Signals,

daß die Adressen auf dem Adreßbus gültig sind.

/LDS+/UDS Mit Lower-Data-Strobe (/LDS) und Upper-Data-Strobe (/UDS)

läßt sich die Steuerung des Datenbusses erkennen. /LDS zeigt hierbei

an, daßessich um einen Zugriff auf den unterenTeil des Datenbusses

DO bis D7 handelt. Dies ist gleichzusetzen mit dem Zugriff auf den

Byte-Zugriff aufeine gerade Adresse. /UDS signalisiert den Zugriff

auf den oberen Datenbus und somit den Byte-Zugriff auf eine

ungerade Adresse.

IVMA /VMA (Valid Memory Adress) wird für den Betrieb externer 8-Bit-

Hardware, wie den 6800 benötigt. Es signalisiert, daß der MC68000

auf das E-Signal synchronisiert ist und daß die Adresse auf dem

Adreßbus gültig ist.

Die Amiga-Slots 193

[VPA /VPA (Valid Peripheral Adress) bewirkt die Synchronisierung des

Datentransfers tiber E-Clock.

/DTACK /DTACK (DataTransfer Acknowledge) bestatigt die

Datenübertragung zum MC68000. Da der Amiga ein System mit

sehr schnellen Bausteinen ist, wird dieses Signal nahezu ohne

Wait-States dem AMIGA zugefiihrt. Somit kann dieses Signal

auch als ein Ausgang am Erweiterungs-Slot angesehen werden.

Wird jedoch ein Bremsen des Systems verlangt, so kann mittels dem

XRDY-Signal das /DTACK-Signal verlängert werden. Eine weitere

Möglichkeit bietet das Abschalten der internen /DTACK-Generierung

mittels/OVR. |

/BERR /BERR signalisiert dem MC68000 einen Busfehler (Buss Error).

Ein solcher Fehler tritt auf, wenn z.B. während eines Zyklusablaufes

auf eine ungültige Adresse zugegriffen wird.

/RST Das bidirektionale Signal /RST(Reset) dient zur Initialisierung des

Prozessors.

/HLT Mit /HLT (Halt) kann der Prozessor am Ende des aktuellen

| Buszyklusses angehalten werden.

E-Clock E-Clock dient zur Synchronisierung externer 8-Bit-Peripherie und

ermöglicht somit die Zusammenarbeit des Systems mit langsameren

Bausteinen.

/BR Möchte eine intelligente Einheit auf die Busse zugreifen, so kann

dies dem MC68000 durch /BR (Bus Request) mitgeteilt werden.

/CBR /CBRist das gepufferte /BR-Signal und liegt nur am

B2000-86-Pin-Slot an.

/BG Die /BR-Anfrage wird mit diesem Signal vom MC68000 bestätigt.

Es dient sozusagen als Busfreigabe (Bus Grand).

[CBG /CBG ist das gepufferte /BG-Signal und liegt nur an den B2000-Slot’s

an.

/BGACK Ein externer Baustein signalisiert mit /BGACK (Bus Grand

Acknowledge) den Empfang des /BG-Signals. Sind alle Bedingungen

erfüllt, werden die Busse und ihre Steuerung von dem externen

Baustein übernommen. |

194 Die Amiga-Slots

Die Amiga-spezifischen Signale des 86-Pin-Slots:

/INT2/INT6 /INT2und/INT6 sind interne Interrupts, die von den Amiga-Chips

benutzt werden. Sie werden von dem Custom-Chip Paula dekodiert.

/OVR Mit dem/OVR (Override)-Signal kann die interne Generierung

des/DTACK-Signals und die Dekodierung der RAM-Bereiche des

Systems außer Kraft gesetzt werden. Die interne Verwaltung des

/OVR-Signals findet beim Amiga 1000 und A2000 mit PAL ss statt.

Beim A500 und B2000 übernimmt hier der Custom-Chip Garry die

Kontrolle. Bei dem letzteren Fall ist die Benutzung des /OVR-Signals

im Bereich außerhalb von $200000 bis $9FFFFFnicht möglich.

XRDY Durch External-Ready (XRDY) ist es möglich, das von dem System

generierte /DTACK-Signal bei z.B. langsamen Speicher-Karten zu

verzögern. Dieses Signal sollte nach Möglichkeit, fallsWait-States

benötigt werden, sehr schnell, ca. 60 ns, nachdem die Adressen gültig

sind, auf Masse gezogen werden, damit eine normale Generierung

des/DTACK-Signals verhindert wird.

/COPCFG Bei den Rechnern Amiga 500, 1000 und A2000 sind diese Pins auf

Masse gelegt, da sie dort keine Bedeutung haben. Beim Amiga B2000

hingegen wird mit diesem Signal der betreffende Slot als erster Slot,

der konfiguriert werden soll, festgelegt.

Die System-Clocks des 86-Pin-Slots:

/C1 Dies ist ein Takt mit der Frequenz von 3.58 MHz, synchronisiert zu der

fallenden Flanke des Systemtaktes von 7.16 MHz.

/C3 /C3 istim Gegensatz zu /C1 zur steigenden Flanke des Systemtaktes

synchronisiert. Die Frequenz von 3.58 MHz ist gleich.

CDAC CDAC ist ein 7.16 Takt, der in Bezug auf den Systemtakt um 90 Grad

nacheilt.

28Mhz Dies ist der Grundtakt des AMIGA, von dem alle Takte des Systems

abgeleitet sind. DieserTakt kann mit dem am RGB-Port vorhandenen,

Signal /XCLKEN abgeschaltet und durch einen eigenen Takt an

XCLK ersetzt werden. Dadurch ist eine Synchronisierung des

AMIGAs mit externen Geräten möglich. Dieser Takt ist leider nicht

beim Amiga 500 und 1000 verfügbar. Beim A2000 und B2000 findet

er Anwendung bei CoProzessor-Karten, die einen hohen Takt

benötigen.

Die Amiga-Slots 195

5.2: Der 100-Pin-Slot

5.2.1: Die 100-Pin-Slot-Belegung

Die nun folgende Tabelle zeigt die Funktion des entsprechenden Pins des 100-Pin Slots

beim Amiga A2000 und Amiga B2000:

Pin | Funktion gepuffert A 2000 B 2000

1 | Ground — x x

2 | Ground — x x

3 | Ground — x x

4 | Ground — x x

5 | +5V DC — x x

6 | +5V DC — x x

7 | /OWN — x x

8 | -5VDC — x x

9 | /SLAVEn — x x

10 | +12VDC — x x

11 | /CFGOUTn — x x

12 | /CFGINn — x x

13 | Ground — x x

14 | /C3 Clock ja x x

15 | CDAC Clock ja x x

16 | /C1 Clock Ja x x

17 | /OVR nein x x

18 | XRDY nein x x

19 | ANT2 nein x x.

20 | -—12V DC — x x

21 | AS ja x x

22 | ANT6 | nein x x

23 | A6 ja x x

196 Die Amiga-Slots

Pin | Funktion gepuffert A2000 B 2000

24 | A4 ja x x

25 | Ground _ x x

26 | A3 ja x x

27 | A2 ja x x

28 | A7 ja x x

29 | Al ja x x

30 | A& ja x x

31 | FCO ja x x

32 | AY ja x x

33 | FCi ja x x

34 | Al0 ja x x

35 | FC2 ja x x

36 | All ja x x

37 | Ground — x x

38 | Al2 ja x x

39 | Al3 ja x x

40 | /EINT7 nein x x

41 | Al4 ja x x

42 | /EINTS ja x x

43 | Al5 ja x x

44 | /EINT4 nein x x

45 | Al6 ja x x

46 | /BEER nein x x

47 | AV ja x x

48 | [VPA nein x x

49 | Ground _ x x

50 | EClock nein x x

51 | /VMA — x x

Die Amiga-Slots 197

Pin | Funktion gepuffert A2000 B 2000

52 | AIS ja x x

53 | /RST nein x x

54 | A19 ja x x

55 | /ALT nein x x

56 | A20 ja x x

57 | A22 ja x x

58 | A21 ja x x

59 | A23 ja x x

60 | /BRn — x x

61 | Ground — x x

62 | /BGACK nein x x

63 | D15 ja x x

64 | /BGn — x x

65 | D14 ja x x

66 | /DTACK nein x x

67 | D13 ja x x

68 | READ ja x x

69 | DR ja x x

70 | /LDS ja x x

71 | Dil ja x x

72 | /UDS ja x x

73 | Ground — x x

74 | /AS ja x x

75 | DO ja x x

76 | D10 ja x x

77 | Dil ja x x

78 | D9 ja x x

79 | D2 ja x x

198 Die Amiga-Slots

Pin | Funktion gepuffert A2000 B 2000

80 | D8 ja x x

81 | D3 ja x x

§2 | D7 Ja x x

83 | D4 ja x x

84 | D6 ja x x

85 | Ground — x x

86 | D5 ja x x

87 | Ground — x x

88 | Ground — x x

89 | Ground — x x

90 | Ground — x x

91 | Ground — x x

92 | 7MHz nein x x

93 | DOE — x x

94 | /BURST ja x x

95 /BG nein x

/GBG ja x

96 | /EINT1 nein x x

97 | nicht belegt = x x

98 | nicht belegt — x x

99 | Ground — x x

100 | Ground — x x

Die Amiga-Slots 199

5.2.2: Die Signale der 100-Pin-Slots

Bei den sogenannten 100-Pin-Zorro-Slots des Amiga A/B2000 sind einige Signale im

Vergleich zum 86-Pin-Slot hinzugekommen. Vollständigkeitshalber wollen wir hier je-

doch nochmals auf alle Signale des 100-Pin-Slots eingehen. Dies dient der Übersicht-

lichkeit und erlaubt das Buch auch als Nachschlagewerk zu nutzen. Im Gegenteil zum

86-Pin-Slot sind sehr viele Signale des 100-Pin-Slots gepuffert, was die Entwicklung von

Erweiterungskarten stark vereinfacht.

Die Spannungsversorgung des 100-Pin-Slots:

An dem 100-Pin-Slot stehen vier verschiedene Spannungen, die sich auf GND (Ground

— Masse) beziehen, zur Verfügung. Die maximal angegebene Belastung, die abgenom-

men werden kann, bezieht sich auf einen Zorro-Slot des AMIGA, andernfalls ist die

totale Belastung des Netzteils für die jeweilige Spannung angeben.

+12V - Dies ist die höchste Spannung, die an dem 100-Pin-Slot anliegt. Sie wird für

z.B. für HardDisk’s oder Floppylaufwerken beim Amiga 2000 benötigt:

8 Ampere total

—12V —Dies ist die negativ höchste Spannung, die der 100-polige Slot zur Verfügung

stellt. Sie wurde zur Kompatibilität zum Zorro-Slot an den 100-poligen

Expansions-Bus herangeführt:

0.3 Ampere total

+5V — Diese Spannung wird als Hauptversorgungsspannung bezeichnet, da sie bei

allen Chips in den Amiga’s benötigt wird:

2 bis 4 Ampere pro Expansionslot

—5V — Beidieser negativen Versorgungsspannung ist die Belastbarkeit bedeutend

geringer als bei einer positiven Spannung:

ca. 0.3 Ampere total beim Amiga 2000

Die MC68000-Signale des 100-Pin-Slots

Während beim 86-Pin-Slot die Signale direkt vom MC68000-Prozessor zum Slot durch-

geschleift sind, liegen die Signale beim Zorro-Slot überwiegend in gepufferter Form

vor. Die Signale sind überwiegend 100-prozentig kompatibel zu den 86-Pin-Signalen.

A1-A23 A1-A23 geben die Adreßleitungen an, mit dem der max. Speicher von

8 Mbyte adressiert werden kann. Bei Speichererweiterungskarten ist

die Speichergröße von 8Mbyte möglich, welche mit der Autokonfigu-

ration in das System eingebunden werden sollte. Ansonsten könnten

Probleme mit anderen Karten auftreten. Beim Zorro-Slot liegen diese

Signale in gepuffert Form vor.

200 Die Amiga-Slots

D0-D15

FCO-FC3

READ

[AS

Dies ist der Datenbus des MC68000. Er ist 16-Bit breit (DO-D15) und

kann Word- oder Byteweise angesprochen werden. Die Datenleitun-

gen sind hier im Vergleich zum 86-Pin-Slot gepuffert. Die Gültigkeit

des Datenbusses beim Lesevorgang ist beim 100-Pin-Slot etwas verzö-

gert worden, um dem Buster (bzw. den entsprechenden PALs beim

A2000) Zeit zu geben, um eine Bus-Collision herauszufinden.

Die Function-Code-Ausgänge, auch als Status-Anzeige bezeichnet,

signalisieren der Hardware, auf welchen Daten- oder Programm-

bereich momentan zugegriffen wird. Diese Signale werden für eine

MMU (Memory Managment Unit), einer sogenannten Speicher-

verwaltungs-Einheit benötigt.

Das Signal READ ist gleichzusetzen mit dem Schreib-/Lesesignal des

86-Pin-Slost. Ist dieses Signal log. 1, so liegt ein Lesevorgang des

Datenbusses durch den MC68000 vor. Ist das Signal log. 0, so findet

ein Schreibvorgang des MC68000 statt.

AdreB-Strobe (/AS) signalisiert mit abfallender Flanke des Signals,

daß die Adressen auf dem Adreßbus gültig sind.

/LDS und /UDS Mit Lower-Data-Strobe (/LDS) und Upper-Data-Strobe (/UDS) läßt

IVMA

[VPA

/DTACK

sich die Steuerung des Datenbusses erkennen. /LDS zeigt hierbei an,

daß es sich um einen Zugriff auf den unteren Teil des Datenbusses DO

bis D7 handelt. Dies ist gleichzusetzen mit dem Byte-Zugriff auf eine

gerade Adresse. /UDS signalisiert den Zugriff auf den oberen Daten-

bus und somit den Byte-Zugriff auf eine ungerade Adresse.

/VMA (Valid Memory Adress) wird für den Betrieb externer 8-Bit-

Hardware, wie den 6800 benötigt. Es signalisiert, daß der MC68000

auf das E-Signal synchronisiert ist und daß die Adresse auf dem Adreß-

bus gültig ist.

/VPA (Valid Peripheral Adress) bewirkt die Synchronisierung des Da-

tentransfers über E-Clock.

/DTACK (Data Transfer Acknowledge) bestätigt die Datenübertra-

gung zum MC68000. Da der Amiga ein System mit sehr schnellen Bau-

steinen ist, wird dieses Signal nahezu ohne Wait-States dem Amiga zu-

geführt. Somit kann dieses Signal auch als ein Ausgang am Erweite-

rungs-Slot angesehen werden. Wird jedoch ein Bremsen des Systems

verlangt, so kann mittels dem XRDY-Signal das /DTACK-Signal ver-

längert werden. Eine weitere Möglichkeit bietet das Abschalten der in-

ternen /DTACK-Generierung mittels /OVR.

Die Amiga-Slots 201

/BERR

/RST

/ALT

E-Clock

/BRn

/BGn

/CBG

/BGACK

/BERR signalisiert dem MC68000 einen Bus-Fehler (Buss Error). Ein

solcher Fehler tritt auf, wenn z.B. während eines Zyklusablaufes auf

eine ungültige Adresse zugegriffen wird.

Das bidirektionale Signal /RST (Reset) dient zur Initialisierung des

Prozessors.

Mit /HLT (Halt) kann der Prozessor am Ende des aktuellen Buszyklus-

ses angehalten werden.

E-Clock dient zur Synchronisierung externer 8-Bit-Peripherie und

ermöglicht somit die Zusammenarbeit des Systems mit langsameren

Bausteinen.

Möchte eine intelligente Einheit auf die Busse zugreifen, so kann dies

dem MC68000 durch /BR (Bus Request) mitgeteilt werden. Das n

steht hier für die Slot-Nummer. Jeder Slot hat sein eigenes Signal. Die-

ses Signal geht zuerst zu einem Schaltkreis, der die Priorität auswertet

und dann zum MC68000. Slot 1 hat hierbei die höchste, Slot 5 die

kleinste Priorität. Beim Amiga B2000 ist der 86-Pin-Slot in diese Prio-

rität mit einbezogen. Er besitzt die Priorität 0 und steht somit an erster

Stelle.

Die /BR-Anfrage wird mit diesem Signal vom MC68000 bestätigt. Es

dient sozusagen als Busfreigabe (Bus Grand). Für das n steht hier

ebenfalls der jeweilige Slot. Es gelten die gleichen Bedingungen wie

beim /BRn.

/CBG ist das gepufferte /BG-Signal und liegt nur an den B2000-Slots

an. |

Ein externer Baustein signalisiert mit /BGACK (Bus Grand Acknow-

ledge) den Empfang des /BG-Signals. Sind alle Bedingungen erfüllt,

werden die Busse und ihre Steuerung von dem externen Baustein über-

nommen.

Die Amiga spezifischen Signale des 100-Pin-Slots:

/INT2

/INT6

/EINT1

/EINT4

/EINTS

/EINT7

/INT2 und /INT6 sind interne Interrupts, die von den Amiga-Chips

benutzt werden. Sie werden von dem Custom-Chip Paula dekodiert.

Wahrend beim 86-Pin-Slot die nicht dekodierten Interrups IPLO bis

IPL2 anliegen, sind beim Zorro-Slot ein Teil dieser Interrupts deko-

diert.

202 Die Amiga-Slots

/BURST

/OVR

XRDY

/SLAVEn

/CFGINn

/CFGOUThn

DOE

[OWN

Dieses Signal ist ein gepuffertes Resetsignal, das nur in Output-Rich-

tung ansprechbar ist.

Mit dem /OVR-(Override-)Signal kann die interne Generierung des

/DTACK-Signals und die Dekodierung der RAM-Bereiche des Sy-

stems außer Kraft gesetzt werden. Die interne Verwaltung des /OVR-

Signals findet beim Amiga 1000 und A2000 mit PAL statt. Beim A500

und B2000 übernimmt hier der Custom-Chip Garry die Kontrolle. Bei

dem letzteren Fall ist die Benutzung des /OVR-Signals im Bereich au-

Berhalb von $200000 bis $9FFFFF nicht möglich.

Durch External Ready (XRDY) ist es möglich, das von dem System

generierte /DTACK-Signal bei z.B. langsamen Speicher-Karten zu ver-

zögern. Dieses Signal sollte nach Möglichkeit, falls Wait-States benö-

tigt werden, sehr schnell, ca. 60 ns, nachdem die Adressen gültig sind,

auf Masse gezogen werden, damit eine normale Generierung des

/DTACK-Signals verhindert wird.

Jeder Slot hat sein eigenes Slave-Signal, welches direkt am Buster an-

liegt. Damit wird erreicht, daß keine Busfehler 0.4. auftreten.

Über diese Pins werden die Konfigurationsprozesse gesteuert. Dabei

ist zu beachten, daß der 86-Pin-Expansionport des B2000 die Priorität

0 besitzt und der letzte 100-Pin-Slot die Priorität 5.

Mit diesem Signal werden die Datenpuffer für die Datenleitungen ak-

tiviert.

Dieses Signal teilt dem System mit, daß die Erweiterungskarte die

DMA selbstständig steuert.

Die System-Clocks des 100-Pin-Slots

/C1

/C3

CDAC

7MHz

Dies ist ein Takt mit der Frequenz von 3.58 MHz, synchronisiert zu der

fallenden Flanke des Systemtaktes von 7.16 MHz. |

/C3 ist im Gegensatz zu /C1 zur steigenden Flanke des Systemtaktes

synchronisiert. Die Frequenz von 3.58 MHz ist gleich.

CDAC ist ein 7.16 Takt, der in bezug auf den Systemtakt um 90 Grad

nacheilt.

Dies ist der 7.16-MHz-System-Iakt, der gleichzusetzen ist mit dem

Takt des MC68000.

Die Amiga-Slots 203

5.3: Timing-Abläufe

Wichtig für Entwickler, die Hardwareerweiterungen für den 86-Pin und 100-Pin-Slot

anfertigen wollen, sind die zeitlichen Abläufe der verschiedenen Signale des Amiga.

Durch genaues Studieren dieser Abläufe lassen sich später bei Anwendungen wie

RAM-Aufrüstungen Laufzeitprobleme der Signale meistens vermeiden. Die wichtig-

sten zeitlichen Abläufe eines Systems sind der Standard-Lese- und der Standard-

Schreibvorgang, da hier erkannt werden kann, welche Daten zu welchem Zeitpunkt

erhalten oder geschrieben werden können. Ebenfalls wichtig für Entwickler sind die

System-Iakte und ihre Abhängigkeit zum Grundtakt des Amiga. Insgesamt sind im Sy-

stem 10 verschiedene Takte vorhanden, von denen aber nur vier an die verschiedenen

Erweiterungen-Slots herangeführt sind.

5.3.1: Der Standard-Lesevorgang

Interessant für den Standard-Lesevorgang sind nur die Adreßbus-, Datenbus-Signale,

sowie /UDS, /LDS, R/W, /DTACK, XRDY und der System-Takt von 7.16 MHz. Ein be-

sonderes Augenmerk sollte den Signalen XRDY und /DTACK gelten. Mit dem Signal

/DTACK wird dem MC68000 mitgeteilt, ob die Datenübertragung beendet ist. Da alle

Bausteine des Systems schnell genug sind, läuft der MC68000-Prozessor nahezu unge-

bremst. Wird eine Verlängerung des /DTACK-Signals benötigt, bei z.B. langsamen

RAM-Chips, so kann mittels XRDY das /DTACK-Signal verzögert werden. Somit legt

der Prozessor Wartezyklen ein. Die Taktzyklen des Systems werden durch die Kennung

SO bis S7 unterschieden. Abbildung Z 5.3.1-1 zeigt den Standard-Lesevorgang.

B@ Si 2 84 SW sw 85 86 87 80

oe BE u u u u
Al-21 KKXXXXX KXXX

/as | |

/UDS /LDS | |

DO-15 XXXXXKKKRXXAXKAKKKKKAKAKKAKKK __—saRK KKK

R/W |

/DTACK |
| m

ARDY |
_ r

60 n= max.

Z 5.3.1-1: Der Standard-Lesevorgang beim Amiga mit Warteschleife

204 Die Amiga-Slots

Während S0 ist noch keine Aktivität bei diesen Leitungen zu erkennen. Bei S1 hingegen

legt der MC68000 die Adreßleitungen auf den Adreßbus, von denen Daten gelesen wer-

den sollen. Nachdem die Adressen auf dem Adreßbus eingeschwungen sind, wird mit

/AS bei S2 die Gültigkeit der Adressen auf dem Adreßbus bestätigt. Gleichzeitig wird

mit /LDS und /UDS die Art des Zugriffs auf den Datenbus signalisiert (hier Word-Zu-

griff). Ebenfalls wird R/W positiv, wodurch ein Lesezugriff signalisiert wird. Wird an

dieser Stelle nun von einem externen Gerät innerhalb von 60 ns XRDY auf logisch low

gelegt, verzögert sich das /DTACK-Signal. Es kann nicht mehr vor dem Zyklus S4 ge-

setzt werden. Somit legt der Prozessor, wo normalerweise die Zyklen S5 und S6 ablau-

fen, zwei Wartezyklen ein. Die Wartezyklen werden allgemein durch SW gekennzeich-

net. In unserem Beispiel ist bei S5 der Wartezyklus zu Ende. Bei S6 werden vom

MC68000 die Daten vom Datenbus gelesen, und bei S7 wird das Ende des Lesezyklus

durch Zurücksetzen der Steuerleitungen signalisiert.

5.3.2: Der Standard-Schreibvorgang

Der Standard-Schreibvorgang ist sehr leicht an dem späten Setzen der /UDS- und

/LDS-Signale, sowie dem langen Vorhandensein des Datenbusses zu erkennen. Rein

theoretischen könnte der Datenbus schon nach /AS die Daten vom MC68000 enthal-

ten. Jedoch werden die Daten erst ab dem Zyklus S4 (Zorro-Slot) gültig, weil der

Buster bzw. die PALs bei den 2000er eine Bus-Kollision überprüfen müssen.

BQ S81 82 83 84 85 86 87 SO

™ TLE Hi u Hi
Al-21 XKKXKX XAKKK

/as = |

/UDS /LDS |

DO-15 XXXXXAXKKKXAKKK ____KXXX

R/W |

/DTACK | |

Z5.3.2-1: Der Standard-Schreibvorgang ohne Warteschleife

Die Amiga-Slots 205 |

Für eine Verzögerung des /DTACK-Signals gilt hier dasselbe wie beim Standard-Lese-

vorgang. Wie beim Lesevorgang schwingen bei S1 die Adreßleitungen ein und werden

durch S2 mit /AS gültig. Gleichzeitig wird das R/W-Signal auf logisch low gelegt,

wodurch der Schreibzyklus signalisiert wird. Die Signalisierung der Zugriffsart durch

/UDS und /LDS findet hier erst ab S4 statt. Die Datenleitungen sind, wie schon er-

wähnt, erst ab S4 gültig.

5.3.3: Die Takte des Amiga

Insgesamt sind in dem Amiga 10 verschiedene Takte vorhanden. Alle Takte unter 28

MHz werden durch logisches Verknüpfen mehrerer Datenflipflops beim Amiga 1000

und A2000 erzeugt. Beim Amiga 500 und B2000 übernimmt Agnus die Teilung der

Takte. Die wichtigsten Takte des Systems sind /C1 und /C3. Aus diesen Takten kann mit

einem Äquivalenzgatter (XNOR) der Systemtakt von ca. 7 MHz erzeugt werden. Also

sind alle Takte, die aus /C1 und /C3 resultieren, miteinander synchronisiert. Da die

Signale /C1 und /C3 so überaus wichtig sind, liegen sie auch an jedem Slot an.

L
a
n
:

om

F
r
a
n
;

= | | Ä

02 _ | UL

“| | | —_

“| | | _

I | | |

oo j ug
- (Grundtakt von 28 Mhz nicht berücksichtigt)

Z 5.3.3-1: Die Systemtakte des Amiga

206 Die Amiga-Slots

5.4: Die Video-Slots des Amiga A/B2000

Um Anwendungen wie das Genlock-Interface oder PAL-Modulatoren intern im Amiga

2000 unterzubringen, haben die Entwickler den Amiga 2000 mit einem Video-Slot ver-

sehen. Dort sind alle wichtigen Signale zusammengeführt, die für eine Video-Darstel-

lung benötigt werden. Da ein Genlock-Interface unter Umständen die parallele

Schnittstelle zur Steuerung benötigt, wurde beim Amiga B2000 ein weiterer Slot zum

vorhandenen Video-Slot hinzugefügt. Beide Stecker sind je ein 36-Pin-Verbinder, die

auch für den 16-Bit-AT-Slot benötigt werden. Die Numerierung des Slot ist sehr ein-

fach: auf der linken Seite befinden sich alle ungeraden, auf der rechten Seite alle

geraden Pin-Zahlen.

i—m m —— 2
3 — IM mi—— 4

3 — I BMI —— ¢
7 —|m m—— ; standard
3 —|— M@— iio yi m gle Video Slot

is—_|m sod |——__ 14
is——|m EB —— 16
iT—_ Ei =m is

1 —- EM IB —— 20

11—m mM—— 2
23 —— EI BMI —— 24
zs— u mM — 2

i—— I mo 2

3 —- BE MM —— 4

SE — 6 erweiterter
om m ,, Video Slot
1—B EM—— ı
s—m 1 —— 14
s—m BI —— 1
ivT—_i Mim iz

13 — gi Mm— 20

22 —- HB EU —— 22

23 — I WM —— 24
2 mM — 2

Z 5.4-1: Die Pinbelegung des Video-Slots beim Amiga B2000

Die Amiga-Slots 207

5.4.1: Die Pinbelegung des Standard-Video-Slots

Gemeinsam beim Amiga 2000 und Amiga B2000 ist der Standard-Video-Slot. Hier sind

alle wichtigen Video-Signale herausgeführt.

Pin | Funktion A 2000 B 2000

1 | nicht belegt x x

2 | nicht belegt x x

3 | Ton links x x

4 | Ton rechts x x

5 | nicht belegt x x

6 | +5VDC x x

7 | Analog Rot x x

8 | +5VDC x x

9 | Video Ground x x

10 | +12VDC x x

11 | Analog Griin x x

12 | Video Ground x x

13 | Video Ground x x

14 | /CSYNC x x

15 | Analog blau x x

16 | /XCLKEN x x

17 | Video Ground x x

18 | BURST x x

19 | /C4 x x

20 | Video Ground x x

21 | Video Ground x x

22 | /HSYNC x x

23 | DI x x

24 | Video Ground x x

25 | DB x x

208 Die Amiga-Slots

Pin | Funktion A2000 B 2000

26 | /VSYNC x x

27 | DG x x

28 | COMPSYNC x x

29 | DR x x

30 | /PIXELSW x x

31 | -SV DC x x

32 | Video Ground x x

33 | XCLK x x

34 | /C1 x x

35 | nicht belegt x x

36 | nicht belegt x x

5.4.2: Die Signale des Standard-Video-Slots

Um flexibler zu sein, und da man nur einen RGB-Stecker herausführen wollte, fügte

man bei der 2000er-Serie einen Video-Slot ein. Fast alle Signale, die am Standard-

Video-Slot der Amiga 2000er vorhanden sind, liegen ebenfalls am RGB-Port des Amiga

1000 und 500.

Die Spannungsversorgung des Standard-Video-Slots:

An dem Standard-Video-Slot stehen, wie auch beim 86-Pin-Slot, drei verschiedene

Spannungen, die sich auf GND (Ground - Masse) beziehen, zur Verfügung. Die maxi-

male Belastung im Vergleich zum 86-Pin-Slot bzw. 100-Pin-Slot ist gleich. Die totale Be-

lastung bezieht sich hier wiederum auf das ganze Amiga-System:

+12V - Dies ist die höchste Spannung, die an dem Standard-Video-Slot anliegt. Sie

+5V -

—5V —

wird fiir z.B. RGB-Encoder-Bausteine bei PAL-Karten oder ein Genlock-In-

terface benötigt:

8 Ampere total

Diese Spannung wird als Hauptversorgungsspannung bezeichnet, da sie bei

allen Chips in den Amiga’s benötigt wird:

maximal2 Ampere

Bei dieser negativen Versorgungsspannung ist die Belastbarkeit bedeutend

geringer als bei einer positiven Spannung:

ca. 0.3 Ampere total

Die Amiga-Slots 209

Die Video-Signale des Standard-Video-Slots:

Dies sind die digitalen Werte der Video-Darstellung:

DI = Digital Intensitat

DR = Digital Rot

DG = Digital Grün

DB = Digital Blau

Mit diesen vier Werten können maximal 16 Farben erzielt werden. Sie werden benötigt,

wenn ein IBM-Farbmonitor an den Amiga angeschlossen werden soll.

Analog

Rot

Grün

Blau

/HASYNC

IVSYNC

ICSYNC

COMPSYNC

BURST

/PIXELSW

Ton

links

rechts

Mit diesen analogen RGB-Werten, die eine max. Spannung von 0.7

Volt besitzen, können alle Farben des Amiga auf einem Monitor darge-

stellt werden, der einen analog-RGB-Eingang hat.

Dies ist das bidirektionale horizontale Synchron-Signal der Video-Dar-

stellung. Wird hier ein externes /HS YNC-Signal angelegt, versucht der

Custom-Chip Agnus dieses Signal mit seinem /HSYNC- “Signal zu syn-

chronisieren.

Dies ist das bidirektionale vertikale Synchron-Signal der Video-Dar-

stellung. Wird hier ein externes /VS YNC-Signal angelegt, versucht der

Custom-Chip Agnus dieses Signal mit seinem /VSYNC-Signal zu syn-

‚ chronisieren.

/CSYNC ist das digitale Gemisch des /HSYNC- und /VSYNC-Signals.

COMPSYNC ist das gepufferte /CSYNC-Signal.

Dieses Signal ist das Farbträger-Signal der NTSC-Norm. Um ein PAL-

Burst zu erhalten, muß dieses Signal mit 1.25 multipliziert werden

(3.55 * 1.25 = 4.433 MHz).

Hintergrundfarben-Indikator.

Dies sind die Audio Signale des linken und rechten Kanals.

Die System-Clocks des Standard-Video-Slots:

/C1

/C4

Dies ist ein Takt mit der Frequenz von 3.58 MHz, synchronisiert zu der

fallenden Flanke des Systemtaktes von 7.16 MHz.

Für NTSC-Geräte ist dies ein Takt von 3.58 MHz, synchronisiert zur

ansteigenden Flanke des CDAC-Taktes von 7.16 MHz. Bei PAL-Gerä-

210 Die Amiga-Slots

ten ist diese Frequnz 3.55 MHz, bezogen auf ein CDAC-Signal von

7.09 MHz.

XCLCK Hier kann ein externer Grund-Systemtakt von ca. 28.64 MHz angelegt

werden. Dies dient zur Synchronisierung des Amiga mit externen Ge-

raten.

/XCLKEN /XCLKEN schaltet die interne Generierung des Grund-Systemtaktes

ab und ermöglicht so die Speisung des Systems mit dem XCLK-Takt.

5.4.3: Die Pinbelegung des erweiterten Video-Slots

Beim Amiga B2000 wurde der Standard-Video-Slot um einen weiteren 36-Pin-Stecker

erweitert. Er dient überwiegend zur Steuerung von Video-Karten über die parallele

Schnittstelle.

Pin | Funktion A 2000 B 2000

1 | Ground x

2 | RO x

3 R1 x

4 | R2 x

5 | Ground x

6 | GO x

7 | Gi x

8 | G2 x

9 | Ground x

10 | Bl x

11 | B2 x

12 | Ground x

13 | CompVideo x

14 | TBASE x

15 | CDAC x

16 | POUT x

17 | /C3 x

Die Amiga-Slots 211

Pin | Funktion A 2000 B 2000

18 | BUSY x

19 | /LPEN x

20 | /ACK x

21 | SEL x

22 | Ground x

23 | PDO x

24 | PD1 x

25 | PD2 x

26 | PD3 x

27 | PD4 x

28 | PD5 x

29 | PD6 x

30 | PD7 x

31 | /LED x

32 | Ground x

33 | Raw Ton links x

34 | Ton Ground x

35 | Raw Ton rechts x

36 | Ton Ground x

5.4.4: Die Signale des erweiterten Video-Slots

Der erweiterte Video-Slot enthält überwiegend Signale der parallelen Schnittstelle.

Diese werden benötigt z.B. für die Steuerung der Hintergrundfarbe des Genlock-Vi-

deos oder anderer Geräte.

Die Spannungsversorgung des erweiterten Video-Slots:

Alle Spannungen, die benötigt werden stehen bei dem Standard-Video-Slot zur Verfü-

gung. Somit wollte man hier keine weitere Spannung zuführen. Der Bezugspunkt

Ground (Masse) der Spannung steht jedoch zur Verfügung. Hier wird unterschieden

zwischen dem Bezugspunkt Audio-GND, Video-GND und Digital-GND. Die Einhal-

tung der Bezugspunkte je nach Schaltung ist erforderlich.

212 Die Amiga-Slots

Die Video-Signale des erweiterten Video-Slots:

Rot 0-2 Dies sind die dekodierten 8 Bit der digitalen Video-Darstellung.

Griin 0-2

Blau 0-2

CompVideo CompVideo ist das monochrome Composite-Video-Signal, auch BAS-

Signal genannt.

/LPEN Uber diesen Pin ist der Anschluß eines Light-Pen möglich. Dies ist der

direkte Light-Pen-Eingang von AGNUS. Wird dieses Signal logisch

low, so ermittelt AGNUS die aktuelle Rasterstrahlposition, an der der

Lichstift an den Monitor gehalten wurde.

RAW Ton Dies sind die Audio-Signale des linken und rechten Kanals, bevor sie

links über einen Line-Filter gehen.

rechts

/LED Uber diesen Pin lassen sich die zweipoligen Low-Pass-Filter der

Audio-Hardware abschalten.

Die Signale der parallelen Schnittstelle:

PDO-PD7 Dies sind die 8-Bit des bidirektionalen Parallel-Ports. Üblicherweise

werden diese 8-Bit zum Steuern eines Centronic-Interfaces benutzt.

Für Video-Anwendungen wie Genlock-Interface wird hier die Aus-

blend-Farbe gesteuert.

/ACK Mit diesem Acknowledge (/ACK) kann iiber einen der CIA-8520-Bau-

steine ein Level-2-Interrupt ausgelöst werden.

BUSY Dies ist das Beschäftigt-Signal des Druckers. Es kann hier z.B. das Be-

schäftigtsein eines Digitalisieres anzeigen.

POUT POUTentspricht bei Anwendungen einer parallelen Schnittstelle dem

Papier-Ende-Signal.

SEL Select-Signal an Peripherie senden.

Die System-Clocks des erweiterten Video-Slots:

/C3 /C3 ist ein Takt von 3.58 MHz bei NTSC und 3.55 MHz bei PAL, der

synchronisiert ist zu der steigenden Flanke des Systemtaktes.

CDAC CDAC ist ein 7.16 MHz Takt bei NTSC und 7.09 MHz bei PAL, der in

bezug auf den Systemtakt um 90 Grad nacheilt.

Die Amiga-Slots 213

5.5: Der PC-Slot

Ein weiterer stark verbreiteter Slot bei der Amiga-Serie ist der PC-S/ot. Er istim Amiga

2000 und B2000 sowie im SideCar zu finden. Dieser Slot ist 100prozentig kompatibel

zum 62poligen PC/XT-Slot von IBM- bzw. IBM-kompatiblen Rechnern. Durch ihn

wird in den Amigas eine Kompatibilität erzielt, die bei entsprechender Zusatzkarte

(PC- oder AT-Emulator) den Betrieb von z.B. einer HardDisk für PC-Rechner im

Amiga erlaubt. Da er sozusagen schon zur Amiga-Familie zählt, werden wir nun auch

näher auf diesen Slot eingehen.

Bl —m wm — Al

Bid — m m—— Aid
—- id E—— ’

—_ EM——

BZ0—|m m—— A220

B3l—|m |—_ A

Z 5.5-1: Pinnumerierung des PC-Slots

214 Die Amiga-Slots

5.5.1: Die Pinbelegung des PC-Slots

Der Original-PC-Slot besitzt einen Standard-Stecker mit 62 Pins. Er wird auch als

8-Bit-Slot bezeichnet, da er einen 8-Bit-Datenbus besitzt. Bei der Durchnumerierung

der Pins haben wir uns an den IBM-Standard gehalten. Alle Pins mit A liegen auf der

rechten Seite, alle Pins mit B liegen auf der linken Seite des Slots. In der nun folgenden

Tabelle steht I/O für Ein-/Ausgang (Input/Output):

Pin Funktion VO

Al TO CH CK I

A2 SD07 VO

A3 SD06 VO

A4 SD05 VO

A5 SD04 VO

A6 SD03 VO

A7 SD02 VO

A8 SD01 VO

A9 SD00 VO

A1O | IOCHRDY I

All | AEN O

Al2 | SA19 VO

A13 | SA18 VO

Al4 |SA77 VO

A15 | SA16 VO

Al6 | SA15 VO

Al7 | SA14 TO

Al18 | SA13 | VO

A19 | SA12 VO

A20 | SA11 VO

A21 | SA10 VO

A22 |SA09 VO

A23 | SA08 VO

Die Amiga-Slots 215

Pin Funktion VO

A24 | SA07 VO

A25 | SA06 VO

A26 | SA05 VO

A27 | SA04 VO

A28 | SA03 VO

A29 | SA02 VO

A30 | SAOI VO

A31 | SA00 VO

Bl GND —

B2 Reset Drv —

B3 +5V DC _

B4 IRQ9 I

B5 — S5VDC _

B6 DRO2 I

B7 — 72V DC —

B8 OWS I

B9 +12V DC —

B10 | GND —

Bil | /SMEMW O

B2 | /SMEMR O

B13 | TOW VO

B14 | AOR VO

B15 |/DACK3 O

B16 | DRO I

B17 | /DACK1 O

B18 | DRO1 I

B19 | /REFRESH VO

B20 | CLK O

216 Die Amiga-Slots

Pin Funktion VO

B21 | IRQ7 I

B22 | IRQ6 I

B23 | IRQ5 I

B24 | IRQ4 I

B25 | IRQ3 I

B26 | /DACK2 O

B27 | T/C O

B28 | BALE O

B29 | +5VDC —

B30 | OSC O

B31 | GND —

5.5.2: Die Signale des PC-Slots

Der PC-Slot enthält die Grundsignale für alle PC-Karten. Neben verschiedenen

systemspezifischen Signalen enthält dieser Slot auch Standard-Signale, wie Adreß- und

Datenleitungen. Die Spannungsversorgung der Slots ist gleichzusetzen mit den Amiga-

Zorro- und 86-Pin-Slots.

Die Spannungsversorgung des PC-Slots:

+12V -

—12V -

+5V -

—5V -

Dies ist die höchste Spannung, die an dem PC-Slot anliegt.

8 Ampere total

Dies ist die negativ höchste Spannung, die der PC-Slot zurVerfügung stellt.

0.3 Ampere total

Hauptversorgungsspannung.

2 bis 4 Ampere pro Slot

Bei dieser negativen Versorgungsspannung ist die Belastbarkeit bedeutend

geringer als bei einer positiven Spannung:

ca. 0.3 Ampere total beim Amiga 2000

Die Amiga-Slots 217

Die PC-System-Signale des PC-Slots:

SA00-SA19

SDO-SD7

TO CH CK

/IOCH RDY

RESETDRV

IRQ 3-7

IRQ9

DRQ 1-3

/DACK 1-3

T/C

BALE

/SMEMW

/SMEMR

[LOW

OR

[REFRESH

Adreßleitungen des SBusses. Als SBus bezeichnet man die Adreßlei-

tungen, die die PC-Slots miteinander verbinden. Die Adreßleitungen

werden erst mit BALE high freigegeben.

Dies sind die Datenleitungen auf dem SBus (s.o0.).

Dieses Signal testet den IO-Bus und erstellt einen NMI (Non-Mask-

able-Interrupt) bei einem Fehler.

Dieses Signal testet den IO-Bus auf Verfügbarkeit (Active low).

Wird benutzt, um das System zu initialisieren.

Interrupt-Leitungen.

DMA-Request-Leitungen. Teilt eine DMA-Anfrage mit.

Bestätigt eine DMA-Anfrage.

Wird verwendet, um einen abgeschlossenen DMA-Zugriff zu signali-

sieren.

Zeigt an, ob ein Zugriff auf den Adreßbus derzeit möglich ist.

Dieses Signal kennzeichnet, daß die Daten, die sich momentan auf

dem Datenbus befinden, geschrieben werden sollen.

Dieses Signal kennzeichnet, daß Daten aus der Adresse gelesen wer-

den sollen, die sich auf dem Adreßbus befindet.

Signalisiert der Peripherie, daß sie Daten vom Datenbus lesen soll.

Signalisiert der Peripherie, daß sie Daten auf den Datenbus schreiben

soll.

Signalisiert, daß ein Refresh-Zyklus bevorsteht.

System-Takte des PC-Slots:

CLK

OSC

System-Takt (4,77 MHz bei PC-Karte).

Video-Iakt mit 14,31318 MHz.

218 Die Amiga-Slots

5.6: Der AT-Slot

Neben dem PC-Slot des Amiga 2000, B2000 und SideCar, ist bei der Amiga 2000er-Se-

rie ein 16-Bit-Slot vorhanden, der mit dem PC-Slot zusammen einen AT-Slot ergibt. Er

ermöglicht den Betrieb eines AT-Emulators und AT-spezieller Karten sowie beispiels-

weise großer RAM-Aufrüstungen. Dieser erweiterte Slot mit 32 Pin ist 100prozentig

kompatibel zu den IBM-AT-Slots.

D1 — m m—Ci

Do — m mi— cia
—_ m —

Dis — m _ m — C18

Z 5.6-1: Der AT-Slot

Die Amiga-Slots 219

5.6.1: Die Pinbelegung des AT-Slots

Der originale AT-Slot besitzt einen Standard-Stecker von 36 Pins. Er wird allgemein

auch als 16-Bit-Slot bezeichnet, da er einen 16-Bit-Datenbus besitzt. Bei der Durchnu-

merierung der Pins haben wir uns, wie bei dem PC-Slot, an den IBM-Standard gehal-

ten. Alle Pins mit C liegen auf der rechten Seite, alle Pins mit D liegen auf der linken

Seite des Slots.

Pin Funktion VO

C1 | SBHE /O

C2 |LA23 VO

C3 | LA22 VO

c4 | LaA21 | vo

C5 | LA20 VO

C6 | LAI9 | VO

C7 |LAI18 vO

cs | LAI vO

C9 | /MEMR mie

C10 | /MEMW vO

Cll | SDO8 VO

C12 | sD09 vO

C13 | SD10 vO

C14 | spu VO

C15 | SD12 vO

C16 | SD13 vO

C17 |sD14 VO

cıs | SD15 vO

D1 | /MEMCS 16 I

D2 | MOCS16 I

D3 |IRO1 I

D4 | IROUW I

D5 | IRQ12 I

220 Die Amiga-Slots

Pin Funktion VO

D6 IRQ15 I

D7 IRO14 I

D8 /DACKO O

D9 DROO I

D10 | /DACKS O

D1l | DRQS5 I

D12 | /DACK6 O

D13 | DRQ6 I

D14 | /DACK7 O

D15 | DRQ7 I

D16 | +5V DC —

D17 | /MASTER I

D18 | GND —

5.6.2: Die Signale des AT-Slots

Die Spannungsversorgung des AT-Slots:

+5V — Hauptversorgungsspannung.

2 bis 4 Ampere pro Slot

Die Signale des Slots:

LA17-LA23 Erweiterte Adreßleitungen für 24-Bit-Adreßbus. Diese Leitungen

sind frei, wenn BALE high ist.

SD08-SD15 Dies sind die erweiterten Datenleitungen fiir den 16-Bit-Datenbus.

IRO10-14 Erweiterte Interruptleitungen.

/DACKO DMA-Anfragebestätigung.

/DACKS5-7

DRQO Leitungen zur DMA-Anfrage.

DROS-7

/SBHE Zeigt an, ob eine 8-Bit- oder 16-Bit-Datenübertragung vorliegt.

Die Amiga-Slots 221

/IMEMR

IMEMW

/IMEMCS16

/[LOCS16

IMASTER

Zeigt an, daß aus der Adresse, die auf dem Adreßbus anliegt, Daten

auf den Datenbus gelegt werden sollen.

Zeigt an, das Daten vom Datenpuffer in die Adresse, die auf dem

Adreßbus anliegt, übernommen werden sollen.

Wird benutzt, um anzuzeigen, daß es sich bei der momentanen Daten-

übertragung um eine 16-Bit-Übertragung handelt.

Kennzeichnet die Datenübertragung mit der Peripherie als 16-Bit-

Übertragung.

Kennzeichnet, daß die Kontrolle über die Speicherverwaltung über-

nommen werden soll.

222 Die Amiga-Slots

Kapitel 6

Die Autokonfiguration

Die Erweiterungskarten für die Amiga-Rechner werden automatisch vom System er-

kannt und eingebunden. Dies gilt nicht nur für die 2000er, sondern auch schon für den

Amiga 1000 und 500. Damit dies aber einwandfrei geschehen kann, benötigt das

System festgelegte Informationen über die Erweiterung. Diese Informationen stehen

in einem PAL auf der Erweiterungskarte. Nach dem Einschalten des Rechners werden

die Erweiterungsplatinen zurückgesetzt. In diesem Zustand korrespondieren alle Kar-

ten mit dem 64Kbyte Konfigurations-Rambereich, der ab $E80000 beginnt, wenn

CONFIGIN aktiv ist. Dieses Signal wird nacheinander bei allen Karten aktiv gesetzt,

so daß die Karten durchlaufend konfiguriert werden. Bei den Amiga 5000- und 1000-

Rechnern ist dies nur für den 86-Pin-Expansionsslot nötig, beim Amiga 2000 allerdings

müssen neben diesem Slot noch die 5 100-Pin-Slots konfiguriert werden. Bei diesen

Rechnern wird von rechts nach links konfiguriert, d.h. zuerst wird der 86-Pin-Slot ein-

gebunden, dann die 5 100-Pin-Slots von rechts nach links.

Bei der Konfiguration liest die CPU Nibbles der Identifikationsdaten über die Datenlei-

tungen D12 bis D15 aus dem PAL der Erweiterungskarte. Aus diesen Daten kann dann

erkannt werden, wieviel Speicherplatz die Karte benötigt, bzw. wieviel sie bereitstellt,

falls es eine RAM-Erweiterungskarte ist. Falls die Karte Speicherplatz benötigt, so

konfiguriert das System die Karte auf den bereitgestellten Speicherbereich hin. Der

kleinste Speicherbereich, auf den eine Erweiterungskarte konfiguriert werden kann, ist

64 Kbyte, der größte ist 8 Mbyte. Anschließend läßt das CONFIGOUT-Signal dieses

Slots das CONFIGIN-Signal des nächsten Slots aktiv werden.

Die Karten müssen so ausgelegt sein, daß sie mit ihrem Speicherbereich in Einklang

stehen. Damit ist gemeint, daß eine Karte, die 64-Kbyte-benötigt, immer mit 64-

Kbyte-Grenzen bei der Adreßdekodierung arbeitet. Eine Ausnahme bilden 4- und

8-Mbyte Karten. 4-Mbyte-Karten dürfen zusätzlich bei den Startadressen $200000 und

$600000 beginnen und 8-Mbyte-Karten bei der Adresse $200000. Dies gilt aber nicht

nur für die Karten, die Speicherplatz benötigen, sondern auch für die Karten, die Spei-

cherplatz bereitstellen.

Die Amiga-Slots 223

Hier nun die Tabelle der Nibbles, die gesetzt werden müssen, d.h. in einem PAL festge-

legt sein müssen. Dabei müssen alle Nibbles außer 00, 02, 40 und 42 invertiert werden:

Nibble 00/02

Nibble 04/06

Nibble 08/0A

Nibble OC/OE

Nibble 10/12

Nibble 14/16

Nibble 18/1A

Nibble 1C/1E

Nibble 20/22

Nibble 24/26

Nibble 28/2A

Nibble 2 C/E

Nibble 30/32

Nibble 34/36

76 Kartentyp: 00,01,10 - reserviert

11 — Erweiterungskarte

5 1 = In MemFreeList eintragen 0 = nicht eintragen

4 Optionelles ROM vorhanden

3 Gibt an, daß die nächste Karte zu dieser hinzu gehört

210 Speichergröße: 000-8 Mbyte 100 - 512Kbyte

001 — 64 Kybte 101- 1 Mbyte

010-128 Kbyte 110-2 Mbyte

011-256 Kbyte 111-4 Mbyte

76543210 Produktnummer. Diese Nummer kann vom Hersteller

frei gewählt werden, um die Karte beispielsweise von

spezieller Software identifizieren zu können.

Diese Nibble müssen wie angegeben gesetzt werden.

7 0 -kein best. RAM-Bereich

_ 1 — Speicherbereich muß im 8-Mbyte-Bereich sein

6 0 - Karte kann abgeschaltet werden

1 - Karte kann nicht abgeschaltet werden

543210 müssen 0 sein

Diese Nibble miissen gleich 0 sein

Highbyte der Herstellernummer

-Lowbyte der Herstellernummer

Anhand dieser Nummer installiert die Config-Software Driver fiir

diese Karte.

Optionelle Seriennummer (MSB)

(LSB)

Falls ein ROM vorhanden ist und daraufhin Bit 4 im 00/02 gesetzt ist,

muß hier der Zeiger auf dieses ROM stehen (28/2A = Highbyte).

Reserviert, müssen im Lesezugriff gleich 0 sein, und im Schreibzugriff

muß das Basisadreßregister zurückgesetzt werden.

reserviert und müssen gleich 0 sein.

Nibble 38/3 A

Nibble 3C/3E

224 Die Amiga-Slots

Nibble 40/42 Optionales Kontroll-Statusregister

Im Lesezugriff:

7 Interrupt-Request 3 keine Bedeutung

6 Interrupt 7 steht bevor 2 muß gleich 0 sein

5 Interrupt 6 steht bevor 1 keine Bedeutung

4 Interrupt 2 steht bevor Q Interrupt aktivieren

Im Schreibzugriff:

7 frei definierbar 3 frei definierbar

6 frei definierbar 2 lokaler Reset

5 frei definierbar 1 frei definierbar

_ 4 frei definierbar 0 Interrupt aktivieren

Nibble 44/46 reserviert

Im Schreibzugriff nicht definiert

Im Lesezugriff muß Nibble gleich 0 sein

Nibble 48/4A Basis-Adreßregister, nur Schreibzugriff.

Diese Nibbles werden mit den Adreßregistern A 16 bis A23 verglichen,

um die Basisadresse der Karte zu ermitteln.

Nibble 4C/4E Falls auf dieses Nibble im Schreibzugriff zugegriffen wird, muß die

Karte abgeschaltet werden, falls Bit 6 in 08/0A gesetzt ist.

Nibble 50/52 sind reserviert und müssen gleich 0 sein.

Nibble 54/56

Nibble 58/5 A

Nibble 5C/S5E

Nibble 60/62

Nibble 64/66

Nibble 68/6A

Nibble 6C/6E

Nibble 70/72

Nibble 74/76

Nibble 78/7A

Nibble 7C/7E

Wenn also die Nibbles mit 0 angegeben sind, so miissen sie in Wirklichkeit gleich $FF

sein, da sie ja invertiert werden müssen, wie oben schon erwähnt. Die Invertierung

wurde deshalb gewählt, da somit Low-Aktive-PALs verwendet werden können, welche

preiswerter sind.

Die Amiga-Slots 225

6.1: Das Hardware-Beispiel

Hier wollen wir nun ein Beispiel für eine Erweiterungsplatine geben. Diese Karte stellt

dem System 16 Kbyte an Speicher zurVerfügung. Da aber nur mindestens 64-Kbyte ver-

waltet werden können, wird diese Karte dann als 64 Kbyte-Karte in das System einge-

bunden. Um die folgende Beschreibung verfolgen zu können, sollten Sie die Abbildung

Z.6.1-2 (siehe Anhang) zur Hand nehmen.

Das Herz der Karte sind die Bausteine U1 (Adreßregister), U2 (Adressen-Kompara-

tor) und U3 (Identifikations-PAL und Kontroll-PAL). Nach dem Reset ist CONFIG-

OUTinaktiv, damit bei der Konfiguration nicht automatisch zur nächsten Karte weiter-

gesprungen wird. Solange CONFIGIN inaktiv ist, ist auch SLAVE inaktiv, was durch

U11 gesteuert wird. Dadurch muß auch BOARD_SEL inaktiv bleiben. Das bedeutet,

das die Karte vollkommen inaktiv ist, da BOARD_SEL ein Eingang zu U3, dem Kon-

troll-PAL ist, und solange dieser low ist, bleiben auch alle PAL-Ausgänge inaktiv.

Sobald CONFIGIN aktiviert wird, beginnt für die Karte die Konfigurationsphase. Wir

wollen hier nur die vier wichtigsten Nibbles aufführen, die in der Konfigurationphase

vom System benötigt werden, und sie unserer Karte entsprechend setzen:

Nibble 00/02 11000001

Nibble 04/06 11111001

Nibble 10/12 11111110

Nibble 40/42 00000000

Nun invertieren wir alle Nibbles, auBer 00/02 und 40/42:

Nibble 00/02 11000001

Nibble 04/06 00000110

Nibble 10/12 00000001

Nibble 40/42 Q0000000

Nun die Nibbles im einzelnen:

Nibble 00/02 76 muß auf 11 gesetzt werden

5 0= nicht in MemFreeList eintragen, da zwar 64 Kbyte eingetra-

gen würden, aber nur 16 Kbyte vorhanden wären.

4 0 = Kein ROM vorhanden |

3 0 = Keine weiteren Karten vorhanden, die physikalisch zu

dieser gehören.

210 001 = 64 Kbyte Karte

Nibble 04/06 = 00000110 = 6 Produktnummer

Nibble 10/12 = 00000001 = Highbyte der Herstellernummer

Nibble 14/16 = 00000000 = Lowbyte der Herstellernummer

Nibble 40/42 = 00000000 = Die Karte erzeugt keine Interrupts.

Das fertige PAL-Programm fiir diese Karte zeigt die Abbildung

Z 6.1-1.

226 Die Amiga-Slots

TABLE 3-4

PAL20L10
TESTRAM
9-11-85
COMMODORE-AMIGA

/ASQ/ASQQ RD/BDSEL/BERR A6 Ad A4 AS Az
Al GND /RES BD12 BD13 BD14 BD15/PREGON / CONOUT /SHUTUP
/RAMOE /WP /DBOE VCC

DBOE =/RES*BDSEL*/BERR*/SHUTUP*/RD + WRITES TURN ON
EARLY

/RES*BDSEL*/BERR*SHUTUP* RD*ASQ ;ASQ DELAYS THE READ

WP = /RES*ASQ*ASQQ*BDSEL*CONOUT*/SHUTUP*/RD*/BERR

RAMOE = /RES*ASQ*RD*CONOUT*/BERR*BDSEL

SHUTUP = /RES*BDSEL*/RD*ASQ/CONOUT*A6*/AS*/A44A3%*A2 +
/RES*SHUTUP |

PRECON = /RES*SHUTUP +
/RES*/RD*BDSEL*ASQQ*A6/AS*/AD*A3*/A2*/Al +
/RES*PRECON

CONOUT= /RES*ASQ*PRECON +
/RES*CONOUT

IF (/RES*BDSEL*/CONOUT*RD*/BERR*/SHUTUP)/BDI5S =
/A6*/AS*/A4*/A3*/Aa%xAl +
A6*/A5*/A4*/A3%/Az

IF (/RES*BDSEL*/CONOUT*RD*/BERR*/SHUTUP)/BD14 =
/AO*/AS*/A4*/A3*/AaxAl +
A6%*/A5*/A4*/A3*/A2

IF (/RES*BDSEL*/CONOUT*RD*/BERR*/SHUTUP)/BDI3 =
/A6*/AS*/A4*/A3*/A2 +
/A6*/A5*/A4*/A3*/A2%*Al +
A6%*/A5*/A4%/A 3%/A2

IF (/RES*BDSEL*/CONOUT*RD*/BERR*/SHUTUP)/BD12 =
/A6*/AS*/A4*/A3*/Aa%xAl +
/A6*/AS*/A4*/A3*/Aa%xAl +
A6*/A5*/A44/A3%*/Az2

DESCRIPTION

Z 6.1-1: Das PAL-Programm für die 16-Kbyte-Erweiterungskarte

Die CIA-Hardware 227

Kapitel 7

Die CIA-Hardware
|

Die Amiga-Rechner verfügen über zwei IO-Bausteine vom Typ 8520, die Weiterent-

wicklungen des 6526-Typs sind, der sich schon im 64er jahrelang bewährt hat. Diese

Bausteine verfügen über 8 Bit-Register zur Ein- und Ausgabe mit Handshaking, d.h.

jede Übertragurig muß durch eine Rückmeldung bestätigt werden. Jeder der zwei Bau-

steine besitzt zwei 16-Bit-Timer, einen seriellen Port zur Ein- oder Ausgabe und einen

24-Bit-Counter mit Alarm-Erkennung (vergleiche Bild 31 im Farbteil).

228 Die CIA-Hardware

8520
„BLOCKSCHALTBILD

Do- Dy

[DATA BUS BUFFERS

SERIAL
PORT

PRA PA
BUFFERS

| Ont I fd
**/BUFFER|

4

TOD —
TOD ||,

"BUFFER ||"

=, burke 2
FLAG ®IBUFFER

IRQ + IRQ

DORA

an

PRB BUFFERSK __/

1

| I ermEeRB
| +

CRB

TIMER A

-|BUFFER| | ul

|

CRA

“CH

RW 92 CE

Fr
P ACCESS CONTROL |

RS3 Ree RS1 RSO RES

Z 7-1: Das Blockschaltbild des 8520

Um die beiden Bausteine im Amiga unterscheiden zu können, werden sie mit 8520-A

und 8520-B bezeichnet. Jeder Baustein ist dabei für bestimmte Funktionen zuständig,

der 8520-A beispielsweise vor allem für die Kontrollsignale der seriellen Schnittstelle

und die Floppysteuerung.

Die CIA-Hardware 229

Hier nun die Auflistung der 8520-Register:

8520-A

PAO: BUSY Schnittstellen-Ausgang mit SP verbunden

PA1: POUT Schnittstellen-Eingang mit CNT verbunden

PA2: SEL Schnittstellen-Eingang

PA3: -DSR Schnittstellen-Eingang tiberTreiber MC1489 A

PA4: -CTS Schnittstellen-Eingang tiberTreiber MC1489A

PAS: -CD © Schnittstellen-Eingang tiberTreiber MC1489A

PAO: -RTS Schnittstellen-Ausgang tiberTreiber MC1488

PA7: -DTR Schnittstellen-Ausgang tiberTreiber MC1488

PBO: -STEP Floppy-Signal Step

PB1: DIR Floppy-Signal Direction

PB2: -SIDE Floppy-Signal Side-Select

PB3: -SELO Floppy-Signal DriveO

PB4: -SEI1 Floppy-Signal Drivel

PBS: -SEL2 Floppy-Signal Drive2

PBO: -SEL3 Floppy-Signal Drive3

PB7: -MTR Floppy-Signal Motor

SP: BUSY Schnittstellen-Ausgang mit PAO verbunden

CNT: POUT Schnittstellen-Ausgang mit PA1 verbunden

-PC: nicht benutzt

-FLAG: -INDEX Floppy-Signal Disk Index

TOD: -BHS gepuffertes HSync zur Spritedarstellung

TIMERA: frei

TIMER B: wird zur Synchronisation des Blitters mit dem Rasterstrahl

benutzt

8520-B

PAO: OVL Memory-Overlay-Bit

PA1: -LED Power-LED-Kontrolle (Lowactive)
PA2: -CHNG Floppy-Signal Diskchange

PA3: -WPRO Floppy-Signal Writeprotected

PA4: -TKO Floppy-Signal Disktrack 0
PAS: -RDY Floppy-Signal Disk-Ready

PAO: -JOYO Port 0 Pin 6 (Feuerknopf)

PA7: -JOY1 Port 1 Pin 6 (Feuerknopf)

PBO: -PO par. Schnittstelle Data 0

PB1: -Pl par. Schnittstelle Data 1

PB2: -P2 par. Schnittstelle Data2

PB3: -P3 par. Schnittstelle Data 3

PB4: -P4 par. Schnittstelle Data 4

PBS: -P5 par. Schnittstelle Data 5

230 Die CIA-Hardware

PB6: -P6 par. Schnittstelle Data 6

PB7: -P7 par. Schnittstelle Data 7

SP: KDAT Keyboard-Data

CNT: KCL Keyboard-Clock

-PC: -DRDY par. Schnittstelle Eingang Strobe

-FLAG: -ACK par. Schnittstelle Ausgang Acknowledge

TOD: TICK 50 Hz Signal fiir Real-Time-Clock

TIMER A: fiirTastatur belegt

TIMER B: Virtual-Timer-Device für Multitasking und Interrupts

Welche Register mit welchen Speicheradressen korrespondieren, entnehmen Sie bitte

dem Anhang D.

Alle Register lassen sich als Ein- oder als Ausgang programmieren. Dazu dienen die

DDR (Data-Direction-Register). Jedes Bit dieses Registers setzt ein bestimmtes Regi-

ster als Ein- bzw. Ausgang. Bit 0 setzt PBO, Bit 1 setzt PB1 usw. Wenn ein Bit auf 1 ge-

setzt ist, so wird das korrespondierende Register als Ausgang gesetzt. Das Gleiche gilt

auch fiir das Datenregister PR.

Ist ein Register als Ausgang geschaltet und auf 1 gesetzt, so liegt am angeschlossenen

Pin eine Spannung von +5Van, wobei zwei TTL-Lasten betrieben werden können. Ist

das Register auf 0 gesetzt, so liegt die Spannung nahe OV.

3 ; LED-Demonstration

4 ; last update 10/03/88

5 ; vonFrank Kremser und JörgKoch

6 ; ©Markt & Technik 1988

7

9 ;
10 ; DieseDemonstration läßt die Power-LED solange blinken, bis die

ll ; linke Mausetaste gedrückt wird.

12 ;

14

15 start: or.b #2,8bfe00l ; LEDhell

16 move. l +¢ 20000, dO ; Warteschleife

17 loopl: sub. l + 1,d0

18 bne loop l

19 andi.b +253,$bfe001 ; LEDdunkel

20 move.l #20000,d0 ; Warteschleife

21 loope: sub. 1 #1,d0

22 bne 100p2

23 andi.b + 64,$bfe001 ; Maustaste gedrtickt?

24 bne start ; Wennnicht, dannweiter

25 rts ‚ Rückkehr

Die CIA-Hardware 231

7.1: Die 8520-Bausteine

Die 8520-Bausteine haben 40 Anschlußpins. Hier die Pinbelegung dieses Bausteins:

S
I

S
R
S

S
i

s
i
s

ai
s

N
ce}

8
5
2
0

U
6
P

N

N

.
I

; N
I

DB

=
N

N

1
3
7

BS
E
8

:

Z 71-1: Pinbelegung des 8520

Die Pins haben folgende Bedeutung:

02 ClockInput Dieses Signal wird

für dieTimer benötigt.

CS ChipSelect Der Baustein wird aktiviert, wenn dieses Signal Low ist.

R/W Read/Write Dieses Signal kontrolliert die Datenrichtung.

Low zeigt einen Schreibzugriff an.

RS3-RSO AdressInput Adresse zur Decodierung der internen Register

232 Die CIA-Hardware

DB7—DBO DataBus 8-Bit-Datenbus zur Übertragung zwischen 8520

und System-Datenbus

IRO InterruptRequest Bei Bedarf wird ein Interrupt-Signal an den Prozessor

gesandt.

RES Reset Ist dieses Signal Low, werden alle internen Register

zurückgesetzt.

Hier nun die speziellen Pinbelegungen des 8520-A und des 8520- B. Die Registerbe-

schreibungen ersehen Sie aus Kapitel 7 und AnhangD:

PORTO -A

end Ef a Pour |
Busy [2 39] BUSY
POUT [3 3a] AS
SEL [4) 37] AQ
DSR [5° 36 Aa10

cs ® 8 An
co 7 32] RES
RTS” [BI 33] DE
DIR © 32] DI
STEP [io] 31] D1o
DIR IT 30 D11

SIDE 2 U8 2] D12
fe, H 8520 28) 013
SEL1 A 27] D14
SEL2 [15 26 D15
SEL3 [16 25] E
MTR [17 22] INDEX
N.C. Bl 23] CS
BHS [19 22) RW.
vec [20] 21] INT6

Z 71-2 Pinbelegung des 8520-A

Die’CIA-Hardware 233

PORT 8520 -B

5 Ol
.

2
|

:

B
C
O
}
:

CO
}

de
];

~
13

U7

8520

Z 71-3: Pinbelegung des 8520-B

234 Die Amiga-Floppy

Kapitel 8

Die Amiga-Floppy
|

Im Gegensatz zu älteren Computer-Modellen enthalten die Amigas in der Grundver-

sion je eine Diskettenstation zum Abspeichern von Programmen. Die Daten werden

auf einem sogenannten Datenträger, einer 3.5-Zoll-Diskette, durch einen magneti-

schen Flußwechsel abgespeichert. Ein solches Aufzeichnungsverfahren ist viel schnel-

ler als eine Speicherung von Daten auf einer normalen Kassette. Eine Diskette hat,

fachlich ausgedrückt, eine niedrigere Zugriffszeit als ein Kassettenlaufwerk. Auch die

Packungsdichte ist höher als bei einer Kassette. Somit können auf einer 3.5-Zoll-

Diskette mehr Daten auf einem kleineren Raum gespeichert werden. Angeschlossen

werden können alle Laufwerke, die mit einer »Standard-Schnittstelle« versehen sind.

Somit ist es auch möglich, ein 3.5-Zoll-Laufwerk als zweites Amiga- oder PC-Laufwerk

zu verwenden, ohne einen Umbau am Floppy vorzunehmen. Amiga-seitig dient der

Custom-Chip Paula als Controller, der für das Schreiben und Lesen zuständig ist, sowie

ein CIA-8520-Chip für Steuerfunktionen, um die Laufwerke auszuwählen und den

Schreib-/Lesekopf zu bewegen. Die Amiga-Laufwerke haben eine reine Daten-Kapazi-

tät von 880 Kbyte, die in je 80 Spuren (Tracks) auf der oberen und unteren Seite aufge-

teilt sind. Jeder Track, auch oftmals als Zylinder bezeichnet, ist in 11 Sektoren mit je

512 Byte Speicherkapazität aufgeteilt. Diese Werte sind durch die Track-Disk-Device

festgelegt und dienen als Richtwerte. Sie können aber unter anderem durch das direkte

Ansprechen der Floppy-Hardware umgangen werden. Aufgezeichnet werden können

die Daten wahlweise im MFM- oder GCR-Format, die man durch den Controller

(Custom-Chip Paula) einstellen kann. Das erstere wird beim Amiga und auch beim

IBM-PC verwendet. Das GCR-Format ist ein spezielles Apple-Format.

8.1: Der Aufbau des Amiga-Laufwerks

Durch die Aufzeichnungsverfahren wird eine große Genauigkeitsanforderung an die

Amiga-Laufwerke gestellt. Der Schreib-/Lesekopf muß 100prozentig positionierbar

sein und jeden Flußwechsel auf fast 1/1000 mm genau erkennen. Diese Laufwerke kön-

nen schon alsWunderwerke der Technik bezeichnet werden, da hier hohe Präzision ver-

langt wird. Ist die Metallabdeckung des Laufwerks entfernt, können schon die wichtig-

sten Teile erkannt werden. Deutlich zu sehen ist der Lesekopf und der große Schritt-
motor.

Die Amiga-Floppy 235

Anschluß

für LED

Disketten-Einschub

Mechanismus
Lesekopf

zum Wegschieben

der VerschliuB-
klappe

; Schritt-Motor

F8.1-1: Die Amiga-Floppy von oben

An der Unterseite des Laufwerks sind über dem Anschluß der Spannungsversorgung

und dem Verbindungsanschluß zum Amiga verschiedene LSI-Chips zu sehen, die

die Regelung und Steuerung des Motors, sowie die Schreib- und Leseelektronik dar-

stellen.

236 Die Amiga-Floppy

| Rotations-
scheibe

Floppy-

Control-Logik

Spannungs- Floppy-
versorgung Anschluß

F8.1-2: Die Amiga-Floppy von unten

8.2: Der Diskettenantrieb

Unter dem Diskettenantrieb wird eine Vorrichtung verstanden, die die Diskette mit

einer konstanten Geschwindigkeit dreht. Dies ist notwendig, damit die Abstände der

verschiedenen »Bit-Zellen« der formatierten Diskette genau eingehalten werden kön-

nen. Der Antrieb des Gleichstrommotors erfolgt beim Amiga-Laufwerk (auch hier gibt

es verschiedene Versionen) direkt, d.h. die Einspannvorrichtung für die Diskette sitzt

bei diesem Laufwerk direkt auf der Welle. Die Drehzahl läßt sich bei verschiedenen

Laufwerken durch ein Poti einstellen, welches bei neueren Laufwerken nicht notwen-

dig ist, da diese von Werk aus auf die Solldrehzahl eingestellt sind. Durch eine Elektro-

nik und über die Schnittstelle zum Amiga läßt sich dieser Motor ein- und ausschal-

Die Amiga-Floppy 237

ten. Diese Aufgabe übernimmt Amiga-seitig einer der CIA-8520-Chips, worauf wir

noch näher eingehen werden.

8.3: Die Positionierung des Schreib-/Lesekopfes

Zur Positionierung des Schreib-/Lesekopfes werden bei den Amiga-Laufwerken

sogenannte Schrittmotoren benutzt. Diese Motoren sorgen dafür, daß der Schreib-/

Lesekopf genau auf den gewünschten Track bzw. Radius gefahren wird. Abbildung Z

8.5-1 zeigt die Schematik eines solchen Motors in stark vereinfachter Form. Vereinfacht

gesagt, besteht ein solcher Motor aus zwei festen Statoren, die je eine Spule mit Mittel-

anzapfung besitzen. An den Enden der Spulen befinden sich je zwei Transistoren, die

den Stromfluß in den Spulen und somit das Magnetfeld des Stators steuern. In der

Mitte des Stators befindet sich der Rotor, der aus einem Permanent-Magnet besteht.

Wird der Transistor TO positiv angesteuert, so schaltet er durch, und durch die Spule SO

kann ein Strom fließen. Somit baut sich im Stator ein magnetisches Feld auf. Da sich

ungleichnamige Pole anziehen und gleichnahmige Pole abstoßen, dreht sich der Rotor

in die Ausgangsposition Bild Z 8.3-1.

+

: LS
a vee rT
18 |

aff oj |-| Co]
S22 BE

r

| NAD
12 IT

si Y $3

Tl . 1 \

Z 8.3-1: Transistor TO ist durchgesteuert, durch die Spule SO fließt Strom

Um den Rotor nun um 45 Grad nach rechts drehen zu können, muß sich in der linken

oberen Ecke beider Statoren der Südpol, und in der unteren rechten Ecke der Nordpol

befinden. Dies erreicht man, indem zu dem durchgesteuerten Transitor TO, Transistor

T1 durchsteuert. Dadurch fließt in der Spule S1 ein Strom, wodurch ein weiterer

magnetischer Fluß in dem Stator entsteht. Der Rotor positioniert sich genau zwischen

den beiden Südpolen, wie das Bild Z 8.3-2 zeigt.

238 Die AMIGA-Floppy

q+

+ Map Is

ml Pan TH

FT, |

Fagen
12 N AA AA

Y oF I 4

a}! t §3 4

Tl 13 (

Z 8.3-2: Transistor TO undT1 sind durchgesteuert, durch die Spulen TO undT1 fließt Strom

Soll nun der Schrittmotor einen weiteren Schritt machen, so muß der Transistor TO

abgeschaltet werden. Dies hat zur Folge, daß durch die Spule TO kein Strom mehr fließt

und somit sich kein Magnetfeld bildet. Der Rotor bewegt sich um weitere 45 Grad nach

links.

{ „Ip
" <6 _SIIN JcH

ane

mi llLAAAA
| II

+a t §%

1 nf nu 13

Z 8.3-3: Transistor T0 ist abgeschaltet, T1 hingegen noch durchgesteuert

Die Amiga-Floppy 239

Wird nun der Transistor T2 durchgesteuert und der Zustand von T1 bleibt erhalten, so

dreht sich der Rotor um weitere 45 Grad.

nf | > = mil
al

"ı tera 2 om
BAe

+ nf ‘ | m | | |

T2 N A n A PR

a} 8

{ _

n 1

Z 8.3-4: TransistorT1 undT2 sind durchgesteuert, durch die Spulen S1 und S2 fließt Strom

Durch ein Wiederholen dieser Wechselspiele der Transistoren kann der Rotor um 360

Grad gedreht werden. Durch mehrere Pole am Rotor und Stator kann ein feinerer

Schritt des Motors erzielt werden.

Die Drehbewegung des Schrittmotors muß nun noch in eine lineare Bewegung des

Schreib-/Lesekopf-Schlittens, z.B. durch eine Gewindespindel, umgesetzt werden.

Um den Schreib-/Lesekopf des Amiga-Laufwerkes zu bewegen, braucht der Hard-

wareprogrammierer nicht die Transistoren direkt anzusteuern. Die Amiga-Laufwerke

besitzen eine Norm-Schnittstelle, wo nur die Signale »STEP« und die Richtung »DI-

RECTION«, nach innen oder nach außen, angegeben werden müssen. Ein Auf-/Ab-

wärtszähler mit nachgeschalteter Dekodierlogik, die sich in einem der LSI-Chips des

Floppy befindet, wertet die »STEP«- und »DIRECTION«-Signale aus und erzeugt die

entsprechenden Phasensignale zum Bewegen des Schreib-/Lesekopfes. Dieses

Dekodieren und Umsetzen dauert natürlich eine Weile, deshalb muß der Programmie-

rer zwischen der Bewegung des Lesekopfes eine kleine Pause machen, damit der Kopf

einwandfrei bewegt werden kann.

240 Die Amiga-Floppy

8.4: Der Schreib-/Lesekopf der Floppy

Der Schreib-/Lesekopf der Floppy dient zum Lesen und Schreiben von Daten. Er befin-

det sich auf einer Art Schlitten, der von dem Schrittmotor auf eine bestimmte Spur

bewegt werden kann. Das Amiga-Laufwerk besitzt zwei Schreib-/Leseköpfe, da die

Daten sowohl auf der oberen, als auch auf der unteren Seite der Diskette aufgezeichnet

werden. Dieser Schreib-/Lesekopf besteht aus einem Ringkern mit einem geringem

Luftspalt. Auf diesem Ringkern ist eine Spule mit Mittelanzapfung gewickelt. Die En-

den der Spule gehen jeweils auf eine Transistor-Stufe, mit der die Richtung des Magnet-

feldes, je nach Einschalten derTransistoren, gewechselt werden kann. Die Mittelanzap-

fung liegt über einem Widerstand an der Versorgungsspannung. Mit diesemWiderstand

wird der Stromfluß zum Lesen/Schreiben reguliert.

EEE EEEERN
4+— Diskettenbewegung

Z 8.4-1: Der Schreib-/Lesekopf in schematischer Stellung

Neben diesem Schreib-/Lesekopf ist ein Löschkopf vorhanden. Dieser Löschkopf hat

die Aufgabe, einen kleinen Bereich links und rechts neben dem Schreib-/Lesekopf zu

löschen, damit geringfügige Fehler beim Einspannen oder Positionieren der Diskette

ausgeglichen werden. Ohne Löschkopf könnte beim Überschreiben einer Aufzeich-

nung ein Gemisch aus 1. und 2. Aufzeichnung entstehen, wenn z.B. bei der 2. Aufzeich-

nung ein anderes Diskettenlaufwerk verwendet wird. |

Die Amiga-Floppy 241

2. Aufzeichnung
Gemisch aus
1. und 2, \
Aufzeichnung

f | 1. Aufzeichnung

Z 8.4.2: Ohne Löschkopf kann ein Gemisch aus 1. und 2. Aufzeichnung entstehen

Mit dem Löschkopf wird der Rest der 1. Aufzeichnung gelöscht. So entsteht kein Ge-

misch aus 1. und 2. Aufzeichnung.

2. Aufzeichnung

gelöschte
Aufzeichnung N

1, Aufzeichnung

Z 8.4-3: Mit dem Löschkopf werden die Reste der 1. Aufzeichnung gelöscht

Wichtig für eine einwandfreie Aufzeichnung und einen optimalen Lesevorgang ist die

Beschaffenheit der Diskette. Sie sollte frei von Staub und anderen strörenden Materia-

lien sein. Nur dies garantiert, daß der Schreib-/Lesekopf dicht an der Diskette anliegt.

Wird hingegen der Schreib-/Lesekopf nur geringfügig abgehoben, z.B. durch ein Staub-

korn, kann dies Fehler beim Lesen und Schreiben verursachen.

242 Die AMIGA-Floppy

Ringkern & - Staubkorn

XK KKK KKK KE
a— Diskettenbewegung

Z 8.4-4: Ein Staubkorn hebt den Schreib-/Lesekopf leicht an. Somit kann der magnetische Fluß
des Ringkerns nicht die Diskette durchsetzen

8.5: Der Schreibvorgang

Erinnern wir uns nochmal an den Aufbau des Schreib-/Lesekopfes. Er besteht aus

einem Ringkern mit einer Spule mit Mittelanzapfung. An beiden Seiten der Spule

befindet sich jeweils ein Transistor, der nach Masse durchgeschaltet wird. Ist nun der

linke Transistor eingeschaltet, so flieBt durch die Spule Strom. Der Ringkern wird dem

Uhrzeigersinn entgegengesetzt magnetisiert. Da sich in dem Ringkern ein Spalt befin-

det, tritt an der Offnungsstelle der magnetische Fluß aus dem Ringkern. Befindet sich

der Ringkern dicht genug an der Diskette (auf den Aufbau der Diskette wird in den

nächsten Kapiteln noch genauer eingegangen), werden die feinen Magnetteilchen der

Diskette in Richtung des magnetischen Flusses des Ringkerns ausgerichtet. Dreht sich

dabei die Diskette, bleibt die Magnetisierung in der Breite des Schreib-/Lesekopfes er-

halten.

Die Amiga-Floppy 243

a— Diskettenbewegung

Z 8.5-1: Die Magnetteilchen der Diskette werden nach rechts ausgerich tet

Wird nun der linke Transistor abgeschaltet und der rechte eingeschaltet, so findet ein

FluBwechsel im Ringkern statt, da die Wicklung zum rechten Transistor einen anderen

Wicklungssinn hat als die zum linken Transistor. Dreht sich die Diskette immer noch, so

entsteht auf derselben Spur nun ein Flußwechsel. Die Magnetteilchen richten sich auf

der Diskette in die entgegengesetzte Richtung aus.

a— Diskettenbewegung

Z 8.5-2: Die Magnetteilchen der Diskette werden nun nach links ausgerichtet. Deutlich zu
erkennen ist der Flußwechsel

244 Die Amiga-Floppy

Sollen keine Magnetteilchen auf der Diskette verändert, somit keine Daten aufgezeich-

net werden, so werden einfach beide Transistoren ausgeschaltet.

8.6: Der Lesevorgang

Der Lesevorgang ist etwas schwieriger als der Schreibvorgang, da hier nur eine Rich-

tungsänderung der Magnetteilchen festgestellt werden soll. Diese Richtungsänderung

der Magnetteilchen der drehenden Diskette erzeugt im Ringkern des Schreib-/Lese-

kopfes eine Spannung. Da diese sehr schwach ist, muß sie verstärkt werden. Nach die-

ser Verstärkung erhalten wir eine analoge Spannungsveränderung. Es werden jedoch

für eine genaue Definition digitale Werte benötigt. Bevor jedoch dieser analoge Wert in

einen digitalen umgewandelt werden kann, muß über einen Filter der gewünschte

Frequenzbereich herausgefiltert werden, so daß z.B. hochfrequente Störungen von au-

Ben keinen Einfluß auf den gelesenen Datenstrom haben. Der so erhaltene analoge

Wert hat seinen positivsten Wert, wenn die Magnetisierung der Diskette von links nach

rechts wechselt. Findet ein Wechsel von rechts nach links statt, ist der analoge Wert am

negativsten. Ein nachgeschalteter Differentiator setzt diese analogen Signale so um,

daß bei jedem positven oder negativen Spannungsmaximalwert ein Nulldurchgang des

Spannungsverlaufes stattfindet. Mit einem Komperator werden diese Nulldurchgänge

herausgefiltert. Ist das Vergleichssignal des Komperators nicht positiver als der Signa-

leingang, so ist der Ausgang logisch 1. Bei umgekehrtem Verhalten der Eingangssignale

ist der Ausgang gleich logisch 0. Man erhält somit ein Signal, das logisch 1 ist, wenn die

Magnetteilchen nach links, und logisch 0, wenn die Magnetteilchen nach rechts auf der

Diskette ausgerichtet sind. Wichtig für eine weitere Verwendung sind die Flußwechsel-

impulse. Diese erhält man, wenn man das Ausgangssignal des Komperators auf ein

bidirektionales Mono-Flop legt. Dieses Mono-Flop gibt jeweils einen Impuls bei einer

ansteigenden und auch bei einer abfallenden Flanke von sich. Abbildung Z 8.6-1 und Z

8.6-2 zeigen diesen Verlauf nochmals schematisch.

HH)4 Hook anıca

Lesekopf Verstärker Filter Differen- Konperator Bi-Mono-Flop
| tiator |

Z 8.6-1: Das Blockschaltbild einer Leseelektronik für ein Diskettenlaufwerk

Die Amiga-Floppy 245

Versfärkt und N Ko va
geillter N 7 Sn /

Differntiator AS fo fo

Fo NLS
Konperator u

Leseinpulse | | . | P|

nach Bi-Mono-F lop |

Daten ala | a | @ fa |

Z 8.6-2: Viele Umwandlungen sind notwendig, um das geeignete Signal zu erhalten

8.7: Die 3.5-Zoll-Diskette

Bevor wir zu den Kapiteln der verschiedenen Aufzeichnungsverfahren kommen, wol-

len wir den Aufbau einer 3.5-Zoll-Diskette kurz beschreiben.

Bei den Amiga-Laufwerken werden 3.5-Zoll-Disketten, doppelseitig, mit doppelter

Dichte verwendet. 3.5 Zoll gibt hier den Durchmesser der Diskette an. Die Hiille hin-

gegen ist 3.54 Zoll (90.0 mm) breit, 3.7 Zoll (94.0 mm) lang und 0.13 Zoll (3.3 mm)

hoch. An der unteren Seite der Hülle befindet sich eine VerschluBklappe, die bei Lese-/

Schreibversuchen des Diskettenlaufwerks durch eine Mechanik zuriickgefahren wird.

An der oberen rechten Ecke der 3.5 Zoll breiten Hiille befindet sich ein Schreibschutz,

der, nach oben geschoben, einen kleinen Taster zum Offnen zwingt (je nach Laufwerk)

und somit die Diskette vor dem Beschreiben schützt. In dieser Hülle befindet sich die

magnetbeschichtete Folie, die als Diskette bezeichnet wird. Sie ist in der Mitte mit

einem Metallring verstärkt. Bei den Daten der Disketten besagt die Angabe doppelsei-

tig oder double sided, daß die Magnetschicht, die nur ca. 0,002 mm dick ist, auf beiden

Seiten aufgetragen ist. Einseitige Disketten können unter Umständen auch benutzt

werden, da bei der Produktion von Disketten die Magnetschicht meistens beidseitig

aufgetragen wird. Jedoch wird bei einseitigen Disketten nur eine Seite getestet, die

zweite Seite kann durchaus noch Fehler enthalten und ist somit eventuell für den

Amiga-Benutzer unbrauchbar. Doppelte Dichte gibt an, wie fein diese Magnetschicht

ist. Je feiner sie ist, desto mehr Daten können auf einem kleinem Raum zusammenge-

packt werden. Diese Daten werden unterteilt in verschiedene Segmente, sogenannte

Tracks bzw. Cylinder. Diese Cylinder enthalten nochmals eine Unterteilung in

246 Die Amiga-Floppy

Sektoren. Der erste Cylinder bzw. Track befindet sich fast in der Mitte der Diskette, der

letzte Track am äußeren Ende der Diskette.

Schreibschutz

Track 0

Track 79

VerschluB-

klappe

Fenster

fur Lesekopf

F8.7-1: Der Aufbau einer Diskette

8.8: Die physikalische Aufzeichnung

Bevor wir zu den Codierungsarten MFM bzw. FM und GCR kommen, wollen wir auf

die physikalische Aufzeichnung von Daten aufeiner 3.5-Zoll-Diskette näher eingehen.

Werden Daten auf eine 3.5-Zoll-Diskette aufgezeichnet, so werden die feinen Magnete

der Diskette in eine bestimmte Richtung ausgerichtet. Hierbei wird der Magnetlese-/

schreibkopf des Diskettenlaufwerks auf einen bestimmten Track (man kann auch

sagen, daß er auf einen bestimmten Radius bzw. Spur bewegt wird) gefahren. Die Dis-

kette rotiert dabei schon mit einer konstanten Geschwindigkeit. Wird durch den

Magnetkopf nun ein Strom geschickt, so werden die feinen Magnete der Diskette je

nach Strom in die eine oder in die andere Richtung ausgerichtet, welches als Flußwech-

sel bezeichnet wird. Es entsteht dabei ein konzentrisch geschlossener Magnetfluß.

Durch die Positionierung des Schreib-/Lesekopfes auf verschiedene Tracks bzw. Cylin-

der können mehrere dieser konzentrischen Spuren aufgezeichnet werden. Wie dicht

diese Spuren gepackt werden können, wird als tpi = Tracks per Inch (Spuren pro Zoll)

angegeben. Nach der Art des Diskettentyps bzw. des Diskettenlaufwerks richtet sich

der Spurabstand, die Spurbreite oder der Flußwechselabstand.

Die Amiga-Floppy 247

System Disk

Spurabstand

Qasr

SS =
——

Flußwechselabstand

Spurbrei te

Z 8.8-1: Die Aufzeichnung von konzentrischen Spuren

Der Flußwechselabstand wird in fci (flux changes per inch = Flußwechsel pro Zoll) an-

gegeben. Dies entspricht dem Kehrwert des kleinsten Abstandes zwischen zwei Fluß-

wechseln auf der innersten Spur. Der Abstand zwischen zwei Flußwechseln ist bei 3.5-

Zoll-Disketten kleiner als 0,005 mm! Je nach Aufzeichnungsverfahren geben verschie-

dene Flußwechsel ein Bit an. Bleibt der Flußwechsel gleich, so ist das Bit gleich Null.

Die Bitdichte berechnet sich aus dem Kehrwert des Abstandes zwischen zwei Bits der

innersten Spur. Diese wird auch als bpi (Bits per inch = Bits pro Zoll) bezeichnet. Bei

dem MFM-Aufzeichnungsverfahren entspricht die Bitdichte dem Flußwechselabstand.

Beim FM-Verfahren hingegen ist die Bitdichte halb so groß wie der Flußwechselab-

stand. Die Aufzeichnungsverfahren sind von dem Controller abhängig.

248 Die AMIGA-Floppy

8.9: Die Standard-Floppy-Schnittstelle

Der Amiga 500 und 1000 sind leider nur mit je einem Floppy ausgestattet. Sehr schnell

kommt so derWunsch auf, beim Kopieren von Daten oder beim Arbeiten mit mehreren

Disketten, ein zweites Laufwerk anzuschließen. Alle Amiga’s besitzen dazu eine
»Floppy-Schnittstelle«, einen sogenannten 23-D-Sub-Stecker. Hier können Standard-

Laufwerke, wie das NEC 1036A angeschlossen werden. Diese Laufwerke haben einen

Shugart-Bus, der den Anschluß sehr vereinfacht.

Alle Signale dieses Shugart-Busses sind low-aktiv, d.h. alle Pegel sind logisch high

(+5V) und erst wenn ein Signal anliegt, geht die jeweilige Leitung auf logisch low (OV).

Da der Amiga extern maximal 3 weitere Laufwerke verwalten kann, wird für das

Selektieren eine kleine Logik benötigt, damit beim Ansprechen eines externen Lauf-

werks nicht alle Laufwerke des Amiga angesprochen werden. Ein D-FlipFlop kann hier

die Funktion des Selektierens übernehmen. Select 1 (DF1), Select 2 (DF2) oder Select

3 (DF3) dient hier alsTakt, der bei einer positiven Flanke das Weitergeben des »Motor

On«-Signals bewirkt. Über ein NAND-Gatter wird der Ausgang des Flip-Flop an den

Ready-Pin gemeldet. Daran erkennt der Amiga beim Abfragen der Laufwerke, wel-

ches Laufwerk angeschlossen ist. Diese Prozedur wird beim Initialisierungsvorgang

durchgeführt. Findet der Amiga eine Rückmeldung, so wird für das jeweilige Laufwerk

ca. 20 Kbyte Speicher reserviert. Schaltet man die Select-Leitung des Laufwerks nach

dieser Initialisierung ab, so bleibt der reservierter Speicherbereich vorhanden. Erst bei

einem Reset wird er gelöscht. Ein weiteres Problem stellt das Signal »DiskChange« dar.

Dieses Signal signalisiert einen Diskettenwechsel und ist leider nicht direkt am Shug-

art-Bus vorhanden. Dieses Signal liegt im Laufwerk an einem Lötstützpunkt an und

muß von dort an den Pin] der Select-Logik-Platine angelötet werden. Abbildung Z 8.9-

2 zeigt den Aufbau einer solchen Logik.

v2) (1a) (16) (9) C8) C2) Ce) C5) C4) C3) 2)

23] [22] [at] 28] 1] [18] [07] (16) (15) (24) [13]

23 - Pin D-SUB-Buchse

Z 8.9-1: Der Amiga-Floppy 23-D-Sub-Stecker

Die Amiga-Floppy 249

53-D-Sub-Sicker 0 777 NEG AOR Pi Co

| an sämtliche unbenüizte e Eingänge s
ar ‚aller Ic’s, um mungen zu

8 vermeiden u

2
=
3:

Oo >.
Qo

® 2 =
©
ed:

=
A
n
s
c
h
l
u
ß

für

—

Z 8.9.2: Eine kleine Logik übernimmt das Selektieren des Laufwerks

Bauteile für das Interface:

IC1 — 74LS00

IC2-74LS74

IC3-74LS38

R1-R5 1 KOhm 1/4 Watt

C1 Kondensator 100 Nanofarad / 50 Volt

1 23poliger D-SUB-Stecker

250 Die Amiga-Floppy

8.10: Paula, der Floppy-Controller

Der Custom-Chip Paula übernimmt im Amiga die Funktion eines Floppy-Controllers.

Dieser Controller liest und schreibt die Daten von bzw. auf die Diskette. Ebenfalls

übernimmt er das Umschalten von Lesen auf Schreiben. Paula kann zwei Formate »ver-

arbeiten«. Das eine ist das schon erwähnte MFM-Format, das andere ist das von

APPLE her bekannte GCR-Format. MFM- bzw. GCR-codiert/decodiert werden die zu

schreibenden/lesenden Daten per Software. Der Controller benötigt nur die Informa-

tion GCR oder MFM für die Erkennung des Sync-Wortes, sowie für die Schreibge-

schwindigkeit und Prekompensation.

8.10.1: GCR oder MFM?

Wie schon erwähnt (siehe Kapitel: Die physikalische Aufzeichnung) ist bei der Auf-

zeichnung von Daten ein Bit logisch 1, wenn ein Flußwechsel vorliegt. Bleibt der Fluß-

wechsel gleich, so ist das Bit gleich logisch 0. Da aber der Controller bei gleichbleiben-

der Magnetisierung durch Laufwerksschwankungen aus der Synchronisation geraten

kann, muß verhindert werden, daß nicht zu viele Nullbits hintereinander folgen. Des-

halb müssen die Daten codiert werden, um eine optimale Datensicherung zu erzielen.

Zudem braucht der Controller eine Start-Markierung, eine sogenannte Sync-(Synchro-

nisations)Markierung, um zu erkennen, ab wann er Daten lesen soll. Dieses Sync-Wort

muß aus einer Bit-Kombination bestehen, die in den normalen Daten nicht enthalten

ist. Verschlüsselt werden die Daten durch Routinen der Track-Disk-Device im MFM-

Format. Möglich ist auch ein Schreiben/Lesen im GCR-Format. Hierfür muß aber der

Anwender eine eigene Codierungs-Routine schreiben, um z.B. Apple-Format lesen zu

können.

8.10.2: Das MFM-Aufzeichnungs- und Codierungsverfahren

Beim Amiga findet das MFM-(modified frequency modulation = modifizierte Fre-

quenzmodulation) Verfahren Verwendung, da hier die Daten in doppelter Dichte

gepackt werden. Jedem Bit wird bei diesem Aufzeichnungsverfahren eine bestimmte

Zeit zugeordnet. Ob eine Bitzelle eine 0 oder 1 enthält, bestimmen die Flußwechsel.

Bei dem MFM-Verfahren ist die Bitzelle 1, wenn in der Mitte der Zelle ein Flußwechsel

stattfindet. Findet keiner statt, so ist die Zelle gleich 0.

Die AMIGA-Floppy 251

Magnetisierung ee — | je mm | eer

Daten ft tf a foe fa ft

waite ILL US
Z 8.10.2-1: Die MFM-Aufzeichnung

Zu diesen Daten-Bits werden noch zusätzlich Takt-Bits geschrieben, die garantieren,

daß der Controller während des Lesens der Daten-Bits nıcht aus der Synchronisation

gerät. Darin liegt die eigentliche Codierung der Daten. Diese Takt-Bits werden so

gesetzt, daß zwischen zwei Daten-Bits ein Takt-Bit eingefügt wird. Dieses Takt-Bit ist

gesetzt, wenn das linke und rechte Daten-Bit gleich Null ist. Ist eines der beiden Daten-

Bits gesetzt, so ist das Takt-Bit gleich Null.

Als Beispiel soll das Byte $1E codiert werden:

Bitmuster Byte

% 00011110 $1E

Jetzt werden die Takt-Bits eingefügt :

Bitmuster Byte/Wort

Daten-Bits % 0 0 0 111 1 0$1E

II | 1 |} ft tod

Takt-Bits “111 00 0 0 0

Daten-Wort % 10 10 10 01 01 01 01 00$A954

Wie man sieht, wird verhindert, daß mehrere Null- und Eins-Daten-Bits hintereinan-

der stehen. Überhaupt kann bei dieser Codierung nie ein gesetztes Daten-Bit auf ein

nächstes gesetztes Daten-Bit folgen. Somit ist es möglich, einen Daten-Fluß beim

Schreiben von 2 ms pro Bit zu erreichen, da kein häufiger Flußwechsel benötigt wird.

Das Einzige, was nun noch benötigt wird, ist die Start-(Sync) Markierung, woran der

Controller erkennt, daß er nun lesen darf. Dies kann eigentlich ein beliebigesWort sein,

es darf nur nicht in den vorhandenen Daten vorkommen, da sonst der Controller even-

tuell mitten im Daten-Satz mit dem Lesen beginnt. Also müssen wir nach einer Kombi-

nation suchen, die im normalen Daten-Satz nicht vorkommt. Eine Möglichkeit sind

mehrere Eins-Bits hintereinander zu setzen, welches aber den Nachteil eines schnellen

Wechsels des Magnetfeldes zur Folge hat, wobei der Controller nicht mehr mitspielt

252 Die AMIGA-Floppy

und es zu Fehlern kommen kann. Eine weitere Möglichkeit ist die Folge von drei aufein-

anderfolgenden Null-Bits. Diese Kombination kann nie bei einer Codierung entste-

hen, da immer zwischen zwei Null-Bits ein gesetztes Takt-Bit eingefügt wird. Eine sol-

che Kombination ist z.B. $4489, die auch beim Amiga-DOS als Sync-Wort verwendet

wird. Findet der Controller diesesWort, so beginnt er von da ab die Daten zu lesen und

synchronisiert erst wieder neu, wenn der Lesevorgang zuende ist.

8.10.3: Das GCR-Aufzeichnungs- und Codierungsverfahren

Ein weiteres Format, das der Controller erlaubt, ist das GCR- (Group Code Recor-

ding) Verfahren. Bei der Codierung muß hier der Binärwert in ein 5-Bit-GCR-Äquiva-

lent umgewandelt werden:

GCR-Aquivalent __ Bindrwert Hexadezimalwert

01010 0000 $0

01011 0001 $1

10010 0010 $2

10011 0011 $3

01110 0100 $4

01111 0101 $5

10110 0110 $6

10111 0111 $7

01001 1000 | $8

11001 1001 $9

11010 1010 $A

11011 1011 $B

01101 1100 $C

11101 1101 $D

11110 1110 $E

10101 1111 $F

Bei dieser Codierung können nur max. acht Einserbits oder max. zwei Nullbits hinter-

einander stehen. Die Datenaufzeichnung nimmt zwar so weniger Platz im Vergleich

zum MFM-Verfahren in Anspruch, da aber beimax. acht hintereinander folgenden Ein-

serbits der magnetische Flußwechsel sehr oft vorkommt, muß der Controller langsamer

schreiben, um die Daten fehlerfrei ablegen zu können. Die Aufzeichnungsgeschwindig-

keit beträgt hier 4 ms pro Bit. Diesen Geschwindigkeitsverlust kompensiert der Apple-

Macintosh mit einem speziellen Trick. Seine Laufwerke ändern die Drehzahl in Abhän-

gigkeit von der Spur. Das ist der Grund, weshalb andere Computer im Regelfall keine

Macintosh-Disketten lesen können. Die Daten müssen jeweils in Blöcke von vier Byte

zu fünf Byte codiert werden, da beim Codieren von nur 2 Byte 2 Bit als Rest übrig blei-

ben würden. Als Sync-Markierung kann hier die Folge von neun Einserbits dienen, da

Die Amiga-Floppy 253

bei dieser Codierung nur max. acht Einserbits möglich sind. Nach der Sync-Markie-

rung muß ein Nullbit folgen, damit der Controller erkennt, ab wann die Datenbits fol-

gen.

8.10.4: Das AMIGA-Disk-Kontroll-Register ADKCON

Die Parameter-Einstellung, ob mit oder ohne Sync-Markierung, MFM- oder GCR-Ver-

fahren, 2 ms oder 4 ms Aufzeichnungsgeschwindigkeit, kann durch das Register ADK-

CON und ADKCONR festgelegt werden. ADKCON ist hierbei die Schreib-, und

ADKCONR die Leseadresse. Die untersten 8 Bit des Register, beziehen sich auf die

Sound-Hardware und sind für unsere Anwendung in diesem Kapitel ohne Bedeutung.

Das wichtigste Bit ist das Bit 15 des Registers. Mit diesem Bit kann, wie bei dem Jnter-

rupt-Register, das Setzen und Löschen einzelner Bits in dem Register gesteuert wer-

den. Ist dieses CLR/SET-Bit gesetzt, so werden alle Bits des jeweiligen Wortes in das

Register übernommen. Ist dieses Bit gelöscht, so werden alle Bits, die in das Register

übernommen werden, gelöscht:

Setzen neuer Bits CLR/SET-Bit = 1:

CLR/SET-Bit

Neuer Wert 1 110010100000000

Alter Wert 0 011011010111000

Ergebnis 1 111011110111000

Löschen neuer Bits CLR/SET-Bit = 1:

CLR/SET-Bit

Neuer Wert 0 110010100000000

Alter Wert 0 011011010111000

Ergebnis 1 001001010111000

Bit Name Bedeutung

15 CLR/SET Dient zum Löschen und Setzen einzelner Bits.

14 PRECOMP1 Höchstes Bit von PRECOMP.

13 PRECOMP2 Niedrigstes Bit von PRECOMP. Diese beiden Bits

geben die Prekompensation beim Schreiben an:

PRECOMP2 PRECOMPI1

0 0 = Ons

0 1 = 140 ns

1 0 = 280 ns

1 1 = 560 ns

254 Die AMIGA-Floppy

Bit Name Bedeutung

12 MFMPREC MFMPREC = 0 MFM-Format

MFMPREC = 1 GCR-Format

11 Keine Bedeutung für Floppy

10 WORDSYNC Wird hier eine Eins gesetzt, so beginnt der Controller

erst mit der Übertragung der Daten nach dem

Auffinden des Sync-Wortes im Sync-Register

$DFFO7E.

9 MSBSYNC Dies dient zum Einschalten der

GCR-Sync-Markierung.

8 FAST Mit diesem Bit wird die Schreibgeschwindigkeit

gesteuert.

Eine 0 entspricht GCR-Format, somit 4 ms pro Bit.

Eine 1 entspricht MFM-Format 2 ms pro Bit.

7-0 Keine Bedeutung fiir Floppy.

8.10.5: Das Disk-Sync-Register

Ist das Word-Sync-Bit (Bit Nr. 10) im ADKCON-Register gesetzt, sucht der Controller

zunächst nach dem Wort, das im Register DSKSYNC abgelegt ist. Erst wenn dieses

Wort gefunden wurde, beginnt er mit der Datentibertragung. Beim Finden des Sync-

Wortes löst der Controller einen Interrupt mit der Priorität 6 aus.

8.10.6: Die Disk-Pointer-Register DSKPTH und DSKPTL

Wenn der Controller Daten lesen bzw. schreiben soll, muß ihm vorher mitgeteilt wer-

den, aus welchem Bereich er Daten holen soll. Dies kann mit dem Disk-Pointer-Regi-

ster DSKPTH und DSKPTL dem Controller mitgeteilt werden. DSKPTL geben die

unteren 8 Bit, DSKPTH die oberen 8 Bit der Startadresse an. Somit stehen rein theore-

tisch 32 Bit für die Adressierung zur Verfügung. Da aber die Custom-Chips des Amiga

nur die unteren 512 Kbyte ansprechen können, d.h. 19 Bits für die Adressierung, sind

die oberen 13 Bits des DISKPTH ohne Bedeutung. Gut gelöst ist, daß beide Register

direkt hintereinander liegen. Somit kann durch einen move.l-Befehl (Long-Word = 32

Bit) die Startdresse auf einmal gesetzt werden. Wird die Übertragung gestartet, so wer-

den die Disk-Pointer-Register hochgezählt.

Die Amiga-Floppy 255

8.10.7: Das DSKLEN-Register

Das DSKLEN-Register steuert den DMA-Zugriff, sowie die Anzahl der zu schreiben-

den und lesenden Daten. Transferieren lassen sich maximal 2°13 Bit Daten. Dies ent-

spricht gleich 16 Kbyte. Bemerkenswert ist, das beim Übertragen von Daten ein Hard-

warefehler vorliegt. So gehen die letzten drei Bits der transferierten Daten zur Disk ein-

fach verloren. Ebenfalls verschwindet das letzte Wort der gelesenen Daten von der

Disk.

Um die Disk-DMA zu starten, muß das Register zweimal beschrieben werden, danach

muß das DMA-Bit wieder abgeschaltet werden, um Fehler zu vermeiden. Wird die

Übertragung gestartet, so wird das DSKLEN-Register heruntergezählt. Erst wenn der

Zählwert im DSKLEN-Register gleich Null ist, wird die Übertragung beendet.

Bit Name Bedeutung

15 DMAEN Dieses Bit steuert den Disk-DMA-Zugriff. Ist dieses

Bit Eins, so wird der DMA-Zugriff ermöglicht.

14 WRITE Ist dieses Bit auf Eins gesetzt, so signalisiert

dies das Schreiben der Daten, eine Null das Lesen.

13-0 LENGTH Länge der Daten.

8.10.8: Das Disk-Byte-Read-Register DSKBYTR

Dieses Register ist eine Art Kontroll-Register, mit dem ein Teil der gesetzten Bits in

dem vorhergehenden Register überprüft werden kann. Zudem kann aus diesem Regi-

ster das gerade gelesene Byte von der Diskette entnommen werden. Wurde ein Byte an-

getroffen, so wird das BYTEREADY-Bit gesetzt. Beim Auslesen dieses Registers wird

dieses Bit automatisch gelöscht.

Bit Name | Bedeutung

15 BYTEREADY Dieses Bitsignalisiert,obein Bytevondem

Diskettenlaufwerk angekommen ist. Bei einem

Auslesen des Registers wird dieses Bit automatisch

gelöscht.

14 DMAON Ist die Disk-DMA zugelassen, so ist dieses Bit

gesetzt. Dieses Bit ist erst logisch 1, wenn das

DMA-Bit im DSKLEN- und auch DMACON-

Register gesetzt ist. |

13 DISKWRITE Dieses Bit signalisiert, ob im DSKLEN-Register

der Schreib- oder Lesemodus eingeschaltet ist.

256 Die Amiga-Floppy

Bit Name Bedeutung

12 WORDEOUEL Wird eine Sync-Markierung gefunden, so ist dieses

Bit gleich 1. Dieses Bit bleibt nur solange gesetzt, wie

die Sync-Markierung erkannt wird.

11-8 Keine Funktion.

7-0 DATA Diese untersten 8 Bit enthalten das Byte, das gerade

von der Diskette gelesen wurde.

8.10.9: Die Disk-Daten-Register DSKDAT und DSKDATR

Diese Register werden nur als Zwischenpuffer von der DMA beim Lesen und Schrei-

ben von Daten benötigt. DSKADATist das Schreib- und DSKDATR das Leseregister.

8.11: CIA 8520, die Diskettensteuerung

Neben dem Controller, der nur für das Lesen und Schreiben der Daten, sowie der Sync-

Erkennung dient, wird ein weiterer Baustein benötigt, mit dem das Laufwerk selek-

tiert, und der Schreib-/Lesekopf bewegt wird. Beim Amiga können diese Funktionen

über die CIA-B ausgeführt werden. Zur Kontrolle, um den Status des Disk-Laufwerks

zu testen, dient CIA-A, mit der überprüft werden kann, ob die Disk im Laufwerk ist,

ob das Laufwerk bereit ist, oder ob sich der Schreib-/Lesekopf auf Track 0 befindet.

8.11.1: Das Drive-Select-Register

Mit dem Drive-Select-Register kann eines der vier Laufwerke ausgewählt, der Schreib-

/Lesekopf bewegt, der obere oder untere Schreib-/Lesekopf ausgewählt, und die Rich-

tung der Bewegung angegeben werden. Alle Signale, außer die Angabe der Bewe-

gungsrichtung, sind low-aktiv. Zu beachten ist bei diesem Register der Vorgang zum

Bewegen des Schreib-/Lesekopfes. Das Bit /DISKSTEP führt erst eine Positionierung

des Schreib/Lesekopfes aus, wenn das Bit durch einen Flankenwechsel von logisch 1

auf logisch 0 gesetzt wird. Nach Beendigung der Positionierung sollte dieses Bit immer

auf Eins gesetzt werden.

Bit Name Bedeutung

7 /DSKMOTOR Dieses Bit kontrolliert den Motor des Laufwerks.

Wenn dieses Bit gleich Null ist, wenn ein

Diskettenlaufwerk selektiert wird, schaltet sich der

jeweilige Motor an.

Die Amiga-Floppy 257

Bit Name Bedeutung

6 /DSKSEL3 Mit diesem Bit kann das Laufwerk 3 selektiert

werden. Ist das Bit gleich Null, so ist das Laufwerk

selektiert.

5 /DSKSEL2 Mit diesem Bit kann das Laufwerk 2 selektiert

werden. Ist das Bit gleich Null, so ist das Laufwerk

selektiert.

4 /DSKSEL1 Mit diesem Bit kann das Laufwerk 1 selektiert

werden. Ist das Bit gleich Null, so ist das Laufwerk

selektiert.

3 /DSKSELO Mit diesem Bit kann das Laufwerk 0 selektiert

werden. Ist das Bit gleich Null, so ist das Laufwerk

selektiert.

2 /DSKSIDE Diese Bit wählt den Schreib-/Lesekopf aus. Ist das

Bit gleich Null, so wird Kopf 1 (oben) ausgewählt.

1 DSKDIREC Wenn dieses Bit gleich Eins ist, so wird der

Schreib-/Lesekopf nach außen bewegt. Ist es Null,

so wird der Schreib-/Lesekopf nach innen bewegt.

0 /DISKSTEP Mit diesem Bit kann der Schreib-/Lesekopf bewegt

werden. Dies geschieht durch einen Flankenwechsel

von high auf low.

8.11.2: Das Drive-Status-Register

Mit dem Drive-Status-Register kann, wie der Name schon sagt, der Status der Disk

überprüft werden. Mit verschiedenen Bits kann getestet werden, ob der Kopf auf Track

0 steht, ob sich eine Diskette im Floppy befindet oder ob die Disk schreibgeschiitzt ist.

Dieses Register wird auch noch für andere Anwendungen benötigt. Wir haben hier nur

die fiir uns wichtigen Floppy-Funktionen herausgenommen. Alle Signale sind low-

aktiv.

Bit Name Bedeutung

5 /DSKRDY An diesem Bit kann erkannt werden, ob das

Laufwerk bereit ist. Ist das Laufwerk bereit, ist dieses

Bit gleich 0. oo

4 /DSKTRACKO _ Signalisiert, ob der Schreib-/Lesekopf auf Track 0

befindet.

258 Die AMIGA-Floppy

Bit Name Bedeutung

3 /DSKPROT Zeigt an, ob die Diskette, die sich im Laufwerk

befindet, schreibgeschiitzt ist.

2 /IDSKCHANGE Mit diesem Bit kann getestet werden, ob sich eine

Diskette im Laufwerk befindet.

[EERE EKEKKEKKEKEKKKEKKEKKKEKKRKEK EEK

Disk-Demonstration

last update 16/02/88

vonFrankKrenser und JörgKoch

© Markt & Technik 1988

KHEKEKEKKKHKKKKKEKKKKKKKHKKKRKKHKKKKKKEE

O
M
O
N

o
n
K

W
N

FE

m

oO

Diese Demonstration verdeutlicht den einfachen Zugriff auf die

ll Floppies.

12 EswirdeineDateiindieersten zwei Sektoren, die Bootsektoren,

13 geschrieben. Besitzt das Programm die imBuch gezeigtenMerkmale,

14 sowirddasProgrammbeimBootenaufgerufen. DasProgrammdarfmaximal

15 1024Bytelangsein. Esistaber recht leichtmöglich, auchden |

16 gesamtenerstenTrack für Bootblocks zu verwenden, so daß 5632 Byte

17 zur Verfügungstehen.

18
19 KEXKKKKEKEKKKEKEK KKK KE KKKKKEKKKKKKE /

20

21 +#include <exec/types.h> /* Include-Files laden */

22 t#include <exec/memory.h>

23 +#include <exec/ports.h>

24 +#include <exec/devices.h>

25 +#include <exec/io.h>

26 +#include <exec/libraries.h>

27 +#include <devices/trackdisk.h>

28 +#include <libraries/dos.h>

29 +#include <libraries/dosextens.h>

30

Sl externstructMsgPort *CreatePort(); /*MsgPort externdeklarieren */

32 externstruct FileHandle *0Open();

33

34 struct IOExtTD *request;

55 struct MsgPort *port;

36 struct FileHandle *fileh;

37

38 BYTE *spbuff;

39 LONG count;

40

41 main() /* HAUPTPROGRAMM * /

a2 { | /* Pufferspeicher bereitstellen */

Die Amiga-Floppy 259

43

44

45

46

47

48

49

50

51

2

95

54

55

56

o7

8

9

60

61

62

63

64

65

66

67

68

69

70

T1

T2

75

74

75

76

TT

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

}

}

{

}

{

spbuff = (BYTE *)AllocMem(1024, MEMF_CLEARIMEMF_CHIP) ;

/* Datei mit Prgöffnen */

fileh = Open('"BOOTBLOCK" , MODE_OLDFILE) ;

Read(fileh,spbuff, 36) ; /* Die ersten 36 Byte wegschmeißen, da */

/* der SEKA-Assembler diese hinzugefigt hat */

Read(fileh, spbuff, 1024); /* Prgin Puffer lesen */

Close(fileh) ; /* Datei schließen */

opendev(); /* Trackdisk-Device öffnen */

checksum(); /* Checksumme der Bootsektoren berechnen */

wrboot(); /* undBootsektoren schreiben */

CloseDevice(request); /* Trackdisk-Device schließen */

FreeMem(spbuff,1024); /* Datenpuffer löschen */

opendev() /* Routine zumÖffnen der Trackdisk-Device */

struct IORequest *io;

port =CreatePort(0,0); /* ReplyPort erstellen */

if (port ==0) exit();

io = (struct I0Request *) /* Requester initialisieren */

AllocMem(sizeof(struct IOExtTD) ,MEMF_CLEARIMEMF_PUBLIC) ;

io->io_Message.mn_Node.1In_Type = NT_MESSAGE;

io->io_Message.mn_Length = sizeof(struct IOExtTD) ;

io->io_Message.mn_ReplyPort = port;

request = (struct IOExtTD*) io;

OpenDevice(TD_NAME,0O,request,0); /* Device oeffnen */

motoron() /* Motor des Laufwerks einschalten */

request->iotd_Req. io_Length=1; /* Motor ein */

request->iotd_Req.io_Command = TD MOTOR; /* Motor-Befehl */

DolO(request); /* Befehl ausfuehren */

motoroff() /* Motor des Laufwerks ausschalten */

request->iotd_Req.io_Length = 0; /* Motor aus */

request->iotd_Req.io_Command = TD MOTOR; /* Motor-Befehl */

DolO(request); /* Befehl ausfuehren */

}

counter() /*Disketten-Identität ermitteln */

260 Die Amiga-Floppy

93 {

94 request->iotd_Req.io_ Command = TD CHANGENUM; DoIO(request);

95 count = request->iotd_Req.io_Actual;

96 }
97
98 wrboot() /* Bootsektoren schreiben */

99 {
100 counter(); /*Disk-Identität ermitteln */

101 motoron(); /*Motor einschalten */
102 request->iotd_Req.io_Length = 1024; /* Länge der beiden Bootsek. */

103 request->iotd_Req.io_Data = (APTR)spbuff;

104 /* Zeiger auf Datenpuffer */

105 request->iotd_Req.io_Offset =0; /*Sektoroffset */

106 request->iotd_Count = count; /* Disk-Identitat */

107 request->iotd_req.io_Command = TD PROTSTATUS; /*Prüfen, ob Disk*/

108 DoIO(request); /* schreibgeschützt */

109 if(request->iotd_Req.io_ Actual ==0)

110 {

lll request->iotd_Req.io_Command = CMD_WRITE; /* Daten in Puffer */

112 Dol0(request) ; /* schreiben */

113 request->iotd_Req.io_Command = CMD_UPDATE; /* Daten auf Disk */

114 DoIO(request); /* schreiben */
115 }

116 motoroff(); /*Motor ausschalten */
117 }

118 checksum()

119

120 ULONGLONG check, *buf;

121 inti;

122

123 check = 0;

124 xbuf = (ULONG*) spbuff;

125

126 for (i=0;i<256;i+t+)

127 {
128 if(i!=]1)

129 {

130 if (i!=0)

131 if ((OxOFFFFFFFF - check) < buf[i]) check +=1;

132 check += buf[i];

133 \

134 }

135 buf[1] = OxOFFFFFFFF - check;

136 }

Die Amiga-Floppy 261

o
o
Ä
ı
o
9
0
1

A
a

D
H

o
m

KH

H
A
A

H
A

KA

DR

KR

N
N
N

N
A
N
N
A
N
D

O
V
Y
O
V
O
V
D
V
O
V
V
V
O
V
V
D
V
D
d
h
r
-

H
-
r
b
r
b
H
r
-
H
r
t
r
H
r
H
H
R
r
H
6

O
O
M
O
N

O
O
A
W
N
E
F
P
O
O
O
N
O
O
A
W
N
K
F
P
O
O
A
W
A
N
O
O
O
T
A
W
N
N
F
O
O
A
N
O
O
T
A
W
N
H
F
r
 O
C

—KEKHKEKKKEKKKHKRKKKHKKHKRKRKKKKKEKKKKRKKKEKE
’

; DOS-Bootblockroutine

; last update 16/02/88

; von Frank Kremser und Jorg Koch

; © Markt & Technik 1988

’

KR RRRR RR RR RR RR KK KR KR FR RR
’
.

3

;Diese Routine stellt einen speziellen DOS-Bootblock dar. Der

‚erste Teil wird benétigt, umDOS zuinstallieren, anschließend

;steht eine eigene Routine, die beliebig ausgewechselt werden kann.

;Es muB dabei aber darauf geachtet werden, das das Objekt-File

;dann nicht länger als 1024 Byte, also zwei Sektorenist.

’

SKHKHKEKKEKKKKEKKKKKKKRKKKKRKKKHKKKKKKHKE
3

3

dc.b "DOS", 0 ;Erkennungsmarke "DOS"-Diskette

dc.l 0 ; Checksumme (wird

dc.l 370 ‚späternachgetragen)

move.l 4,a6

lea.l1 dosname(pc),al ;"dos.library"

jsr -96(a6) ;FindResident();

move.l d0,a0 ;a0 :=d0->D0S-Modul

move.l 22(a0),a0 ‚a0 ->D0S-Initialisierungsroutine

; Dies war der erste Teil der DOS-Bootblock-Routine.

‚Abhierkann ein eigenes Programm eingefügt werden.

clear:

Re ee Am ann

movem.1d0-d7/a0-a6,-(a7) ;Registerretten

lea.1 %50000,a0 ;a0 :=ab#5000

move.l #6645, d0 ;d0 := 6645 Longwords

clr.l (a0)+ ‚löschen

dbf adQ,clear ;dekrementiere, teste

;:dO:=0, neindannclear

bsr copperinit ;Copperlisteinitialisieren

jsr -132(a6) ;Multitaskingabschalten

lea.l $dff000,a5 ;a5 :=Customchipbase

move.w #$03e0,%96(a5) ;DMA-Controlwrite
;BitPlane-DMA disable,

;Copper-DMA disable,

;Blitter-DMA disable,

;Sprite-DMA disable

move.1 +453000,$80(a5) ;NeueCopperlisteab$53000

262 Die Amiga-Floppy

51 clr.w $88(a5) ; Copper mit neuer Adresse starten

52 move.l #$1d7133d1,$8e(a5) ; DIWSTRT/DIWSTOP

53 ;Start-undEndpositiondes

54 ;darzustellenden Windows

55 move.l #$003000f8,$92(a5) ;DDFSTRT/DDFSTOP

56 ;DataFetchStart/Stop

57 move.w #$1100,$100(a5); ;BPLCONO

58 clr.1 $102(a5) ; BPLCON1

59 clr.1 $108(a5) ; BPL1MOD

60 move.w +8380, $96(a5) ;DMAcontrolwrite

61 ;Bit-Plane DMA enable,

62 ; Coprocessor DMA enable

63

64 move +10,d5

65 vpos: move.l 4(a5),d2 ;d2 :=VPOSR

66 and.l +##0001ff00,d2 ;Ist Zeile $10

67 cmpi.1 #$00001000,d2 ‚erreicht

68 bne vpos ‚nein, dannwarteweiter

69

70 move.l d5,d0

TL bsr put ;ja, dannholeund

TR ;zeichne brush

73 andi.b +#64,$bfe001 ‚Ist linkeMaustaste

74 beq ende ‚gedrückt, wenn ja, dannende

75

76 loopl: add.w d(pc),d5

77 lea.1l d(pc),a3

78 cmp.w #1,(a3) ;Wirdnach oben bewegt,

79 bne loop2 ‚dannentsprechendeRoutineaufrufen

80

sl cmpi.w #210,d5 ‚IstBrushschonamunterenRand

82 bne vpos ‚nein, dannweiter

83

84 loop2: move +$fffFf, (ad) ; Ist Brush schonamoberen Rand

85 cmpi.w #1,d5

86 bne vpos ‚nein, dannweiter

87 |

88 move #1,(a3)

89 bra Vpos

90

91 ende: lea.l gfxname(pc),al

92 jsr -408(a6) ;O0ldOpenLibrary();

93 move.l d0,a4 ‚alteCopperlisteholen

94 move.l 38(a4),$80(a5) ‚undinCOPILCHsetzen

95 clr.w $88(a5) ‚undstarten

96 move.w #$8060,$96(a5) ;‚Sprite-undBlitter-DMA

97 ‚setzen

98 jsr -138(a6) ;Multitaskingein

99

100 movem. 1 (a7)+,d0-d7/a0-a6é ; Register zurückgeben

Die Amiga-Floppy 263

101

102

103

104

105

106

107

108

109

110

lil

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

movem.1a7)+,d0-d7/a0-a6

move

clr.l

rts

copperinit:

clr

lea.l

move.l

move.l

move.l

move.l

lea.l

move

move.b

move.b

move.l

clr

move.b

eori

move

addq

cmpi

bne

clr.l

addq

cmpi

bne

move.l

rts

loops:

loop4:

mulu

add.l

move.l

lea.l

move

move.l

move

move.]l

move.l

dbf

add.l

dbf

rts

put:

ploop2:

ploops:

dc.

dc.

dc.

dc.

dc.

brush:

e
e

4+-$8200, $96(A5)
do

dl

$53000, a0

#$000ffffe, (a0)

++$00e00005, (a0)

+#$00e20000, (a0)

#$01800000, (a0)

coltab(pc),al

+1, dO

do, (a0)+

#15, (a0) +

#$fffe0l82, (a0)+

d6

(al,dl),d6

#$0ff0,d6

d6,(a0)+

#1,dl

#32,dl

loop4

dl

#1,d0

#256,dO0

loops

+$fffFffffe, (a0)+

+44 ,d0

+ $5000E, dO

dd, a0

brush(pc),a2

+25 ,d2

aQ,al

#4,d3

(a2), (a0)+

(a2)+,(al)+

d3,ploops

+24, a0

d2,ploop2

‚Register zurückgeben

;DMA einschalten

‚Rückkehr

;Startadresse fürCopperliste

;Warten, bis Zeile $0 erreicht

;BitPlanel Zeiger setzen

;Hintergrundfarbe auf schwarz setzen

;Zeigerauf Farbtabellesetzen

;AbZeilel Waits setzen

;VPsetzen

;HP + Wait-Flagsetzen

; WAIT und COLOR1

‚aktuelleFarbeausTabelleholen

‚undumwandeln

‚undinCListeschreiben

‚SindalleFarbengesetzt?

;Wennnein, dannweiter

‚Sonst Farbindex zurücksetzen

;VP-Indexumeinserhöhen

‚Prüfen, oballeZeilengesetzt

;Wenn, dannweiter

; Endekennzeichnung der Copperliste

:Addresse der BitPlanes

‚ermitteln

‚Höhe desBrush's

; lLongword=4Byte

‚Brushsetzen

$00000000 , 800000000, 800000000, 800000000, 800000000
$00000000 , 800000000, 800000000, $00000000,$00000000
500040383 ,$e781fc00, $40000000, $00000000 , 800000000
$000001c7,$c3070000,8c0000000,%0000e280,$00000000
$001c01c7, $830c0801, $c0000000 , $00002280 , $O0000000

264 Die Amiga-Floppy

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

coltab:

177 ad:

178 gfxname: dc.b

179 dosname: dc.b

o
o
ı
9
v
m

A
u

vd

rm

dc.1 $003c02c9,$83180003, $cO000000, $00002300, $187e07e0

dc.1 $006c02c9,$86180006, $c0000000, $0000a280, $187e07e0

dc.1 $00cc04d3,$0618000c, $c0000000, $00004aa0, $31819818

dc.1 $018c04d3,$06187818, $c0000000, $00000000, $01819818

dc.1 $03fc08e3,$0618303f, $cOO000000, $O0000000, $01819818

dc.1 $060c08e6, $0c0c3060, $c0000000 , $0000e280, $01819818

dc.1 $0c0c18c6,$0c00e60c0,$c0000000,$00008280,$007e07e0

dc.1 #3f3f3c09f,$1e0303f3,$f0000000,$00000300,$007e07e0

dc.1 $00000000, $00000000, $00000000, $00008280, $01801800

dc.1 $00000000,$00000000, $00000000, $00008aa0, $01819818

dc.1 $633f9f87,$8619fcfco, $3e7el8c3, $cc600000, $01819818

dc.1 $633f9f87,$8619fcfco,$3e7el8cf, $cc600000, $01819818

dc.1 $63319866,$66198c0c3,$30619800,$0c60891f,$007e07e0

dc.1 $7f319866, $66d98cc3,$387f98cc ,$0fe0da84,$007e07e0

dc.1 $#7f3f9f86,$66d9fcfc,$387el8cc,$0fe0aa84,$00000000

dc.1 $633f9f86,$67f£9fcfo,$306198cc, $0c608944, $00000000

dc.1 863319907 ,887£f98cce ,$3e7f9fcf,$cc608a84,#00000000

dc.1 $633198c7,$86d98cc6, $3e7f0703, $cc608944, $00000000

dc.1 $00000000, $00000000, $00000000, $00000000, $00000000

dc.1 $00000000,$00000000, $00000000, $00000000, $00000000

dc.1 $00000000, $00000000, $00000000, $00000000, $00000000

dc.b $00,$10,$20,$30,$40,$50,#60,$70, $80, $90

dc.b $a0,$b0,$c0,$d0,$e0,$f0,$f0,$e0,$a0,$c0

dc.b $b0,$a0,$90,$80,$'70,$60,$50,$40,$30,$20,$10,0

blk.wl,l ‚Zähler für Bewegung des Brush's

"“oraphics.library",0O

"dos.library",O

-KERRRERKRRRRRRRRKRRR RR RR KK KR RK TR RT
>

; 1. Floppy - Demonstration

; last update 10/03/88

;von Frank Kremser und Jorg Koch

‚© Markt & Technik 1988

3

.KTERKRERRRKKRRRRRKR RR RK KR RK TR RK. KR TR KR RK
? .

D

3

‚Diese Demonstration fährt den Schreib-—/Lesekopf des 1. Laufwerks

‚auf Track 0 zurück.
.

?

HSH KKKKKKHKKKRKKKKKKKRKEKKEKHKKKKRKKKE
3

CIA_A=$bfe00l

CIA_B = $bfd100

spurn: btst

beq

move.b #%01110010,CIA_B ;StepRichtungTrack 00, driveO

+4,CIA_A ;KopfaufSpur 0?

ende ;Wenn ja, dann beenden

Die Amiga-Floppy 265

20
al
22
23
24
25
26
27
28
29

O
w
M
O
N

oO

a
K

W
N
E

move.l

waitl: tst.l

dbra

move.b

move.1

wait2: tst.l

dbra

bra

ende: rts

#250,d0

(a6)
A0O,waitl

#%01110011,CIA_B

;Warteschleife

;Dummy-Befehl zur Verzögerung

;BitOvonCIA BmußerstO,

;dann 1 gesetzt werden, damit der

;Head bewegt wird

+250, dO ;Warteschleife

(a6) ;Dummy-Befehl

dO,wait2

spurn ;Nocheinmal

‚Rückkehr

KEKRKERRRRRERRKRK RR TR RK RR NR KR RR RR TR RR
3

; 2.Floppy—-Demonstration

; last update 16/02/88

‚von Frank Kremser und Jérg Koch

; ©Markt & Technik 1988

?

-ERFRRRRKRRKRKRRRNK RT RR RK RR KR KH FR NR
3

.

3

;Diese Demonstration liest einen kompletten Track ein, decodiert ihn

;aber nicht, so daB noch alle Steuer- und Synchronisierdaten vor-

‚handen sind.
»

?

KRRERRRERKRKKKRRKR IKK TR RR RR RR KR RR
I

Device

Port

ReplyPort

SigTask

Task

FindName

Anzahl

Track

= 550

= 36

= 174

=16

= 276

= -276

= $£397c

= 20

move.l $4,a6

‚Offset für Laufwerk O

‚ExecBasesetzen

lea Name,al ‚ZeigeraufTrackdisk-Name se

lea Device(a6),a0 ‚ZeigeraufDevicelistesetze

jsr FindName(a6) ;Trackdisk-Device suchen

tst.l do ;Wennnicht gefunden,

beq Error ;dann Fehler

move.l Task(a6),a0

move.l d0,a6

move.l Port(a6),a3

‚ZeigeraufTaskermitteln

‚Laufwerk Osetzen

lea ReplyPort(a3),al

move.l SigTask(al),-(a7)

move.l al,-(a7)

;ReplyPort setzen

;Taskretten

;ReplyPort retten

266 Die Amiga-Floppy

38 move.l a0,SigTask(al) ‚eigenen Task eintragen

39 bset #0,34(a3) ; Trackdisk-Task stoppen

40

41 move.l #1,d0

42 jsr $fea462 ;Motor einschalten

43 move.l +#Track,d0

44 move.w #Track,74(a3) ;Track eintragen

45 jsr $feasda ;Kopf auf Position fahren
A6 move.l 78(a3),a0 ;Zeiger auf Lesepuffer setzen

47 move.l #Anzahl,dO ‚Anzahl der zu lesenden Bytes

48 jsr $fea524 ‚Track einlesen

49 clr.l do

50 jsr $fea462 ;Motorabschalten

51 bclr +0, 34(a3) ‚Task wieder freigeben

52 move.l (a7)+,al ‚Zeiger vonTaskholen

53 move.l (a7)+,SigTask(al) ;undeintragen

54 Error: rts ‚Rückkehr

55

56 Name: dc.b trackdisk.device',O

2 ;

3 ;3.Floppy-Demonstration

4 ; last update 16/02/88

6) ;von Frank Kremser und JörgKoch

6 ; ©Markt & Technik 1988

i ICICI IIIT TR A AIK

9 ;
10 ‚Diese Demonstration liest einen Track ein und decodiert diesen,

11 ‚so

12 ;daB die Daten in lesbarer Formvorliegen.

1 ;

15

16 Device = 350

17 Port = 36 ‚Offset für Laufwerk 0

18 ReplyPort = 174

19 SigTask = 16

20 Task = 276

21 FindName = -276

22

23 Track = 00

24 Ziel = $50000

25

26 move.l $4,a6 ‚ExecBase

27 lea Name,al ‚Zeiger auf Trackdisk-Name setzen

28 lea Device(a6),a0 ‚ZeigeraufDevice-Listesetzen

29 jsr FindName(a6) ‚Trackdisk-Device suchen

Die Amiga-Floppy 267

50

öl

32

55

54

55

56

37

58

59

40

41

42

43

44

45

46

AT

48

49

50

ol

52

53

54

55

6

97

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Te

73

74

75

76

77

78

79

loopl:

loops:

loop2:

tst.1l

beq

move.]l

move.

move.l

lea

move.]l

move.

move.

bset

Hm

H
H

move.

move.

move.

move.

bclr
clr.b

jsr

clr.l

jsr

move.b

cmp.b

bcc

move.b

clr.l

sub.b

bpl

addi.b

mulu

lea

adda.l

lea

clr.l

lea

move.l

move.l

jsr

adda.1

sub.b

beq

add.b

cmp.b

bne

lea

bra

add.l

bra

bclr

move. 1

move.l

z
H
ä
h

do ;Wenn Device nicht

Error ‚gefunden, dann beenden

Task(a6),a0 ;Zeiger auf eigenen Task holen

d0,a6 ‚Zeiger auf Task nacha6

Port(a6),a3 ;Zeiger auf Laufwerkport holen

ReplyPort(a3),al ;ZeigeraufReplyPort holen

SigTask(al),-(a7) ;ZeigeraufTasksichern

al,-(a7) ;Zeiger auf ReplyPort sichern

a0, SigTask(al) ;eigenen Task eintragen

+0, 34(a3) ;Trackdisk-Task stoppen

+-Track, dO ‚Tracknummer

d0,74(a3) ‚inStructureeintragen

78(a3),a2 ;Zeiger auf Datenpuffer

do, (a2 ; Tracknummer eintragen

+40, 2(a2)

66(a3) ;Fehlerzahl löschen

$fea99e ‚Track lesen
do

$fea462 ;Motor ausschalten

3(a2),d0 ;ersteBlocknummer

+$0b, dO ;Prüfen, obNummer größeralsll

Ende ;Wenn ja, dannFehler

#$0b,d6 ;Sektoranzahl

do ;sektor Null

3(a2),d0

loopl

+-$0b , dO ; Adresse des Blockes
+$440,d0 -Null errechnen

1664(a2),a4 ;Zeiger auf Datenanfang
d0,a4 ;Zeiger auf BlockNull

Ziel,a ;Zeiger auf Ziel setzen

a7 ‚AnfangbeiSektorNull

64(a4),al ;Zeiger auf Datenblock

ad,a0 ‚Zielnacha0

#$200,d0 ; Anzahl derzudecodierendenDaten

$feacb2 ;Daten decodieren

++$200,a5 ‚Zielzeiger erhöhen
+#1,d6 ‚Anzahl der Bl6cke dekrementieren

Ende ;wenn fertig, dann Ende

#1,d7 ;Blocknummer erhöhen

3(a2),d7 ;Anfangdes Puffers

loop2 ;wennnein, dannweiter

1664(a2),a4 ;Zeiger auf Pufferanfangsetzen

loops ;weiter decodieren

+$440, a4 ;Zeiger auf nachstenBlock
loops ;weiter decodieren Ende:

+0, 34(a3) ‚Task wieder freigeben
(a7)+,al ;Zeiger auf Taskholen

(a7)+,SigTask(al) ;undinPort eintragen

268 Die AMIGA-Floppy

80 Error: rts ‚Rückkehr

81

82 Name: dc.b trackdisk.devic',O

QR
3 ;4.Floppy-Demonstration

4 ; last update 16/02/88

5 ;vonFrank Kremser und Jorg Koch

6 ; ©Markt & Technik 1988

9
10 ;Diese Demonstration schreibt einen kompletten Track auf Diskette.

13

14 Device = 350

15 Port = 36 ;Offset fur Laufwerk 0

16 ReplyPort =174

17 SigTask = 16

18 Task = 276

19 FindName =-276

20 |

21 Adresse = $50000
22 Track = 20

23

24 move.1 $4,a6 ; ExecBase

25 lea Name, al ‚Zeiger auf Trackdisk-Name setzen

26 lea Device(a6),a0 ‚Zeiger auf Device-Listesetzen

27 jsr FindName(a6) ‚ Trackdisk-Device suchen

28 tst.1 do ;wennnicht gefunden,

29 beq Error ;dann beenden

350 move.1 Task(a6),a0 ;Zeiger auf eigenen Task suchen

31 move.l dO,a6 ‚Zeigernacha6

32 move.l Port(a6),a3 ;Zeiger auf Laufwerksport holen

33 lea ReplyPort(a3),al ;ZeigeraufReplyPort

34 move.l SigTask(al),-(a7) ;ZeigeraufTasksichern

35 move.l al,-(a7) ‚ZeigeraufReplyPort sichern

36 move.l a0,SigTask(al) ‚eigenen Task eintragen

37 bset #0,34(a3) ; Trackdisk-Task stoppen

38

39 move.l #1,d0

40 jsr $fea462 ;Motor einschalten

41 move.l #Track,d2 ‚Tracknummer nach d2

42 move.l d2z,d0 ;unddO

43

44 jsr $feadda ;Kopf positionieren

45 lea Adresse,ad ;Zeiger auf Puffer

Die Amiga-Floppy 269

46

4'7

48

49

50

51 loopl:

52

53

54

55

56

57 loop2:

58

59

60

61

62

63

64

65

66

67

68

69

70

T1

72

73

74

75

76

77

78

79

80

81

82

83 Error:

84

85 Namer:

move.

lea

move.

move.

move.

dbra

lea

lea

moveq

moveq

move.

move.

lsl.l

or.l

or.l

move.

swap

or.l

move.

move.

jsr

addq.

adda.

adda.

subq.

bne.s

lea

lea

move.

jsr

move.

jsr

bclr

move.

move.

rts

dc.b

>

1

1

1

mr

e
e

$52(a3),a2

4(a2),a2

+h fff, d0

+faaaaaaaa, dl

dl, (a2)+

d0,1loopl

82(ad),a2

1664(a2),a2

+$0b, d4

+70, d5

+$ f fOOO0000, dd
d5,dl

+8, dl

dl1,do

d4,d0o

d2,dl

al

d1,do

az,al

ad, a0

$feaadc

#1,d5

+$440,a2

+$200,a5

+1, d4

loop2

$52(a3),a0

4(a0),a0

+$353e,d0

$fea5b4A

#0,d0

$fea462

#0,34(a3)

(a7)+,al

(a7)+,SigTask(al)

‚ZeigeraufSchreibpuffer

‚Zählwert löschen

‚Löschwert

‚Schreibpuffer löschen

‚solange, bis fertig

;Zeiger aufSchreibpuffer

;Zeiger auf Datenanfang

;Blockanzahl

;BlockzahleraufNull

;DOS-Kennung des Headers

;Blocknummer nachdl

‚Nummer auf richtige Pos. schieben

;und inHeader eintragen

; Anzahl der Blécke bis zur Lticke

;Tracknummer nachdl

;Nummer auf richtige Position

;Tracknummer eintragen

;Schreibpuffernachal

;Zeiger auf Datennacha0O

;Datencodierenundinschreibpuffer

‚Blockzähler erhöhen

;Zeiger aufnachstenBlockim Puffer

;Zeigerauf nachstenDatenteil

; Anzahl der Blocke dekrementieren

‚weiter, bis fertigcodiert

‚ZeigeraufsSchreibpuffer

‚AnzahlderSchreibdaten

‚Trackschreiben

;Motorabschalten

;Taskwieder freigeben

;Zeiger auf Taskholen

;undinPort eintragen

‚Rückkehr

trackdisk.device ,0

270 Die Schnittstellen

Kapitel 9

Die Schnittstellen
| u

Die Schnittstellen stellen den Draht zur Außenwelt dar. Bei Computern früherer Gene-

rationen waren Standard-Schnittstellen Luxus, der separat und teuer nachgekauft wer-

den mußte. Der Amiga besitzt gleich zwei Standard-Schnittstellen ab Werk. Eine

serielle Schnittstelle zum Übertragen von Daten per Modem oder zum Betrieb eines

Plotters und eine parallele Schnittstelle für den Betrieb eines Druckers. Während die pa-

rallele Schnittstelle überwiegend durch die CIA-Portbausteine gesteuert wird, über-

nimmt bei der seriellen Schnittstelle Paula die Kontrolle.

9.1: Die parallele Schnittstelle

Die parallele Schnittstelle des AMIGA, auch als Centronics-Schnittstelle bezeichnet,

hat sich im Lauf der Zeit etwas verändert. Die ausgelieferten 1000er besitzen im Ver-

gleich zu den 500er und 2000er eine nicht-IBM-kompatible-Schnittstelle. Dies erkennt

man daran, daß anstatt der DSUB-Buchse ein Stecker verwendet wird. Beim Verwen-

den von Druckerkabel stößt der Amiga-1000-Besitzer daher auf große Probleme, da an

Pin 23 der Centronics-Schnittstelle des A1000 +5V anliegt, der bei handelsüblichen Ka-

beln mit Masse verbunden ist, welchen zu einem fatalen Kurzschluß beim Amiga 1000

führen kann. Hier ist man gezwungen, ein Kabel selbst zu löten. Beim Amiga 500 und

2000 können normale IBM-Druckerkabel verwendet werden.

Die Schnittstellen 271

akafmgogenfulcjeifejeifejen
5) A) (2) A) OH)

23 - Pin D-S$UB-Stecker AMIGA 308 / 28088

ninleiclaialaleleijomkele
FETE RUFC EE ape En

25 - Pin D-SUB-Buchse AMIGA 1088

Z 9.1-1: Diese Abbildung zeigt die Pin-Belegung des D-SUB-Steckers des A1000 und der
D-SUB-Buchse des A500 und 2000

Belegt sind die Pins des Steckers bzw. der Buchse wie folgt:

Pin A1000 A500/2000 Ein-/Ausgang

1 /DRDY /STROBE Ausgang

2 Data0 Data0 Ein-/Ausgang

3 Datal Datal Ein-/Ausgang

4 Data2 Data2 Ein-/Ausgang

5 Data3 Data3 Ein-/Ausgang

6 Data4 Data4 Ein-/Ausgang

7 Data5 Data5 Ein-/Ausgang

8 Data 6 Data6 Ein-/Ausgang

9 Data” Data” Ein-/Ausgang

10 [ACK /ACK Eingang

11 BUSY BUSY Ein-/Ausgang

12 POUT POUT Ein-/Ausgang

13 SEL SEL Ein-/Ausgang

14 GND +5V

15 GND NC

16 GND /RESET Ausgang

17 GND GND

18-22 GND GND

23 +5V GND

24 NC GND

25 [RESET GND Ausgang

272 Die Schnittstellen

Die Beschreibung der Signale:

/DRDY,/STROBE Mit Strobe bzw. Data Ready wird signalisiert, daß die Daten

bereit sind.

Data0—Data7 8 Datenbits, über die der Daten-Transfer läuft.

[ACK Dieses Signal dient als Datentibernahmesignal.

BUSY Busy signalisiert, daß der Drucker beschäftigt ist.

POUT Paper Out-Papierende-Signal.

SEL Select signalisiert, daß der Drucker On-Line ist.

+5V +5V Spannungsversorgung.

/RESET Gepufferte Reset-Leitung des AMIGA.

Bei der Centronics liegt das Datenbyte an den 8 Datenleitungen an. Dadurch wird eine

parallele Ubertragung (daher kommt auch der Name Parallel-Schnittstelle) erreicht.

Neben diesen Datenleitungen stehen verschiedene Leitungen zur Steuerung bereit.

Die Busy-Leitung signalisiert dem Amiga, daß der Drucker (Druckerpuffer) keine Da-

ten mehr annehmen kann und der Amiga mit dem Senden der Daten warten soll.

Ebenso steuert auch der Drucker das Papier-Ende-Signal POUTund das SEL-Signal,

welches anzeigt, daß der Drucker ON-Line (SEL logisch 1) oder OFF-Line (SEL

logisch 0) ist. Strobe und Acknowledge dienen zum Datentransfer. Hat der Amiga ein

gültiges Byte auf den Datenleitungen, so wird die Strobe-Leitung auf Null gelegt. Der

Drucker erkennt dies und quittiert den Empfang der Daten mit dem Acknowledge-Si-

gnal. Erst wenn der Amiga dieses Signal erhält, wird das nächste Byte auf die

Datenleitungen gelegt. Die Parallel-Schnittstelle kann über die CIA-A und CIA-B

angesprochen werden. Während die CIA-A das Übertragen der Datenbits der paralle-

len Schnittstelle übernimmt, dient die CIA-B für Steuerungszwecke. Hier stehen ver-

schiedene Bits zur Verfügung, die die Signalzustände signalisieren. CIA-A übernimmt

das /STROBE- und die Datenbits, CIA-B die Steuerleitungen Busy, PaperOut und Se-

lect. Die parallele Schnittstelle eignet sich nicht nur für den Betrieb eines Druckers. Sie

ist auch ideal für den Betrieb eines Sound-Digitizers, EPROMer oder anderer ähnli-

cher Anwendungen geeignet. Die Adressen, um die einzelnen Bits der Register abfra-

gen zu können, finden Sie im Anhang D. Ein praktisches Beispiel für die Entfremdung

des Parallel-Ports zeigt der M&T-Sounddigitizer, den Sie im Kapitel Hardware-Erwei-

terungen finden.

Die Schnittstellen 273

sERERKKKER EKER EERE EKER EERE EE EEE

; Parallel -Demonstration

; last update 16/02/88

‚von Frank Kremser und Jorg Koch

; © Markt & Technik 1988 ;
SERRE KEKE KEKE ERE KEE KEKE KEKE KEE

;Diese Demonstration zeigt die Programmierung des Parallel-Ports.

“10 ;Dieses Programm stellt gleichzeitig die Software zumDigitalisierer

11 ;dar. Will mandenSound nicht sofort abspielen, sondern nach einem

12 ;Digitalisierungsdurchlauf stoppen und dann auf Diskette speichern,

13 ;mußmannur die mit '#' gekennzeichneten Zeilen löschen.

14 ;

O
m
o
n
N

oo

a
h

W
N

HM

15 EERE KEKE EEE KEKE ERK EEE KEKE KEE KEKE

16

17 buffer $50000 ; Adresse des Soundpuffers

18 len =$ffff ; Lange des PuffersinBytes

19 ; (max. $1fffe)

20 speed = 10 ‚Abspielrate

21

Qa PRA =$bfd000 ‚CIA-Register für Parallelport

23 PRB =$#bfel0l

24 DDRA = $bfd200

25 DDRB = $bfe301

26

27 move.l +#buffer,a0 ;Puffer löschen

28 move.l #len,dO

29 clear: move.b #0,(a0)+

30 dbra dO, clear

Sl

32 move.l 4,a6

33 lea super, a5 ‚IndenSupervisormodusschalten,

34 jmp -30(a6)

35 super: addq.l #8,a7
36 move +$2700,sr ;umInterrupts sperren zu kénnen

37 move.b +%00000000,DDRB ;Parallel-Port zurücksetzen

38 move.b DDRA,dO ;sundinitialisieren

39 andi.b #%11111010,d0

40 ori.b #%00000100,d0

Al move.b dO,DDRA

A2

43 move.l +#buffer,#dff0ad ;+Wavedatazeiger Kanal 0

44 move.l +#buffer,#dff0Ob0 - 4+ Kanal 1 setzen

45 move.w #64, $dff0a8 ;+Lautstarke Kanal 0

46 move.w #64,$dff0b8 4+: Kanal 1 setzen

47 move.w #speed,$dff0a6 ;+Abspielgeschw. (Period) Kanal 0

48 move.w #speed,$dff0b6 ;4¢ Kanal 1
49 move.w #len/2,$dff0a4 ;4+Wavelange Kanal 0

50 move.w #len/2,$dff0b4 ;4+ Kanal 1 setzen

274 Die Schnittstellen

51 move + $8003, $dff096 ;#Audio-DMA ein

52 loop: lea buffer, a0

53 move +len,dddigit:

54 ori.b +%00000100, PRA ‚Prüfen, obschonkomplettesByte

55 andi.b #%11111011,PRA ‚übertragen
56 busy: andi.b #%00000001,PRA

57 beq.s busy ;Wennnein, dannweiterwarten

58 clr dl

59 move.b PRB,dl ;‚Byteübernehmen

60 eori.b #128,dl ‚umwandeln

61 move.b dl,(a0)+ ;undin Puffer speichern

62 ;Der folgende Teil stellt lediglich eine Aussteuerungsanzeige dar,

63 ;kannalso auch gelöscht werden!

64 cmp.b #200,dl ‚IstdergeleseneWertkleiner

65 bpl cont ‚als200

66 move.w #$0f00,$aff180 ‚dannHintergrundfarbe auf rot setzen

67

68 cont: dbra d3,digit ;Wennnochnicht der komplette

69 ;Puffervollist, dannweiter

70 ;Andieser Stelle ist die eigentliche Digitalisierungsroutine amEnde.

71 ;Hier kann nun eine Abspeicherroutineo.a. eingefügt werden.

T2 btst +6, fbofe001 ; Ist die Linke Maustaste gedrückt,

TS bne loop ;Wennnein, dannweiter

74

75 move #+$0003,$Aff096 ;#Audio-DMAabschalten

76 move #0,sr ;User-Modus einschalten

77

78 rts ‚Rückkehr

9.2: Die serielle Schnittstelle

Die serielle Schnittstelle des Amiga entspricht den üblichen Standard-Seriellen-

Schnittstellen, auch als RS232 bezeichnet. Auch hier wurde die eigenwillige Belegung

der RS232 beim A 1000 bei den Amiga 500 und 2000 an den PC-Standard angepaßt. Zu-

dem besitzt die serielle Schnittstelle des Amiga noch weitere Signale, die mit einer se-

riellen Übertragung nichts zu tun haben.

Die Schnittstellen 275

[1] [2] (3) (4) G5) (6) C7) C8) C9) [ae] Cat) [a2] (23)

[14] 15] Ge] [17] De] [29] [2a] [2a] [2a] [23] [2a] [25]

25 - Pin D-SUB-Stecker AMIGA 588 / 2000

DOD ODO
5] (A) (ES) GE) A) Ga) OO) OO) Oe) s)

2) - Pin D-SUB-Buchse AMIGA 1888

Z 9.2-1: Die Pin-Belegung der RS232-Buchse des A1000, sowie des Steckers des Amiga 500 und
2000.

Belegt sind die Pins des Steckers bzw. der Buchse wie folgt:

Pin A1000 A500/2000 Ein-/Ausgang

1 GND GND

2 TxD TxD Ausgang

3 RxD RxD Eingang

4 RTS RTS Ausgang

5 CTS CTS | Eingang

6 DSR DSR Eingang

7 GND GND

8 DCD | DCD Eingang

9 --- +12V

10 --- —12V

11 --- AUDO Ausgang

12 --- ---

13 --- ---

14 -5V ---

15 AUDO --- Ausgang

16 AUDI | --- Eingang

17 EB --- Ausgang

18 /INT2 AUDI Eingang

S
&

0 = ys 0 = 7 Ausgang

276 Die Schnittstellen

Pin A1000 A500/2000 Ein/Ausgang

21 +5V 0 -
22 --- RI Eingang

23 +12V ---

24 /C2 --- Ausgang

25 /RESB --- Ausgang

Sende-/Empfangsleitungen:

TxD Transmit Data. Dies ist die Sendeleitung der RS232, woriiber die Daten

gesendet werden.

RxD Receive Data. Dies ist die Empfangsleitung der RS232, woriiber die

Daten empfangen werden können.

Steuerleitungen/Handshake-Leitungen:

RTS Request to send. Diese Leitung signalisiert dem externen Gerät, daß der

AMIGA nun Daten senden will.

CTS Clear to send. CTS signalisiert, daß das externe Gerät Daten senden will.

DSR Data set ready. Mit diesem Signal teilt das angeschlossene Gerät mit, daß

es bereit ist für den Datenaustausch.

DCD Carrier detect. DCD wird eigentlich nur bei Modems benutzt.

Es stellt die Trägerfrequenz dar.

DTR Data Terminal Ready. Dieses Signal teilt mit, daß der Amiga bereit ist,

Daten zu senden.

RI Ring indicator.

Besondere Signale:

AUDO Audio out.

AUDI Audio in.

/INT2 Interrupt 2.

/RESB Gepuffertes Reset.

/C2 3.58 MHZ Takt.

+12,-12V, Spannungsversorgungen.

+5V,-5V

Die Steuerleitungen sind direkt mit der CIA-B verbunden. Ihre Registeradressen

können Sie im Anhang Registeradressen der Portbausteine erfahren. Die RI-Leitung

ist über einen Transistor mit der SEL-Leitung der Parallel-Schnittstelle verbunden,

Die Schnittstellen 277

kann somit ebenfalls über die CIA abgefragt werden. Die wichtigsten Leitungen sind

TxD und RxD. Über sie wird die eigentliche Datenübertragung abgewickelt. Sie sind

über zwei Pegelumsetzer direkt mit Paula verbunden. Die Pegelumsetzer MC1488/1489

setzen die Signale +5V/0Vind +12V/-12Vum, da bei RS232 meistens eine lange Über-

tragungsstrecke vorliegt. Pegel im Bereich von +12 V/-12V sind nicht so störanfällig wie

+5V/0V. RxD dient zum Empfang der seriell gesendeten Daten und TxD zum Senden

von Daten. Soll nun der AMIGA mit einem Terminal verbunden werden, so muß die

TxD-Sendeleitung mit der Empfangsleitung des Terminals und die RxD-Empfangslei-

tung des Amiga mit der Sendeleitung des Terminals verbunden werden. Bei der seriel-

len Übertragung wird über diese Leitungen dann ein Bitstrom geschickt. Wie schnell

dieser Bitstrom ist, wird in der Baudrate festgelegt, da das Terminal wissen muß, wie

schnell der Amiga die Daten sendet. Üblich sind die Baudraten 300, 1200, 2400, 4800

und 9600. Damit der Empfänger weiß, wann eine Übertragung beginnt, werden alle

8 Datenbits ein Startbit vorgesetzt. Das Ende der Übertragung signalisieren ein oder

zwei Stopbits. Die Startbits sind immer gleich Null. Die Stopbits immer gleich Eins. An

dieser Stelle sei erwähnt, daß eine logische 1 bei der seriellen Übertragung gleich -12V,

+12V dagegen eine logische 0 ergeben:

Die Übertragung eines Byte:

I HINEIN
0 1 0 1 1

| | | | |
Start- Datenbits Stop-
bit bit

Ein Baustein, der eine solche serielle Übertragung ausführen kann, wird als UART,

Universal Asynchronous Receive Transmit bezeichnet. Ein solcher UART befindet sich

beim Amiga im Custom-Chip Paula.

278 Die Schnittstellen

9.2.1: Paula, der UART des Amiga

Paula hat als UARTdes Amiga verschiedene Register zur Verfügung, die das Empfan-

gen und Senden von Daten erheblich vereinfachen. Die empfangenen Datenbits wer-

den vom Amiga im Takt der eingestellten Baudrate in ein Schieberegister geladen.

Anschließend werden sie zu einem parallelen Datenbyte zusammengesetzt (eine Über-

tragung von 9 Bit ist auch möglich, dazu muß im SETPER das LONG-Bit gesetzt wer-

den). Ist das Schieberegister überfüllt, werden die Daten in dem Eingangs-Datenpuffer

abgelegt. Ausgelesen kann nur der Eingangs-Datenpuffer, nicht das Schieberegister.

Das Datenbyte kann dem SERDATR-Register entnommen werden, wobei die ersten

8 Bit die Datenbits darstellen, die letzten zwei die Stopbits. Das Startsignal zum Ausle-

sen des Registers gibt das RBF (Receive-Buffer-Full) in SERDATR und im INTREQ-

Register an. Beide müssen nach dem Auslesen der Daten von SERDATR gelöscht wer-

den. Wird dieses Auslesen und Rücksetzen unterlassen, so werden solange Daten emp-

fangen, bis das Schieberegister voll ist. Ist dies der Fall, so wird das OVRUN-Bit ge-

setzt. OVRUN wird gelöscht, wenn RBF gelöscht wird. Der Sendevorgang des UART

läuft in der Art wie der Lesevorgang ab. Die Daten werden hier in das SETDAT-Regi-

ster geschrieben. Diese Daten werden an das Ausgangsschieberegister übertragen.

Diese Übertragung wird durch dasTBE-Bit (Transmit-Buffer-Empty) signalisiert. Das

TBE-Bit muß wie das RBF-Bit gelöscht werden. Denken Sie hierbei daran, daß es auch

im INTEREQ-Register vorhanden ist. Wenn die Daten nicht schnell genug nachge-

reicht werden, wird dasTSRE-Bit gesetzt (Transmit-Shift-Register-Empty). Dieses Bit

wird auch automatisch beim Zurücksetzen vonTBE zurückgesetzt. Beim Schreiben der

Daten in SERDAT dürfen Sie nicht das Setzen der Stopbits vergessen.

9.2.1.1: Das serielle Datenregister SERDATR und SERDAT

SERDATR wird benötigt, wenn Daten gelesen, und SERDAT, wenn Daten gesendet

werden sollen.

Bit Name Funktion

15 OVRUN Mit diesem Bit wird der Überlauf des Empfangschiebe-

registers signalisiert.

14 RBF Dieses Bit ist gleich 1, wenn der Empfangspuffer voll ist.

13 TBE TBE signalisiert, daß der Sendepuffer leer ist.

12 TSRE TSRE signalisiert, daB das Sendeschieberegister leer ist.

11 RxD Signalisiert den logischen Zustand der RxD-Leitung.

10 --- Nicht benutzt

9 STP Stopbit

Die Schnittstellen 279

Bit Name Funktion

8 STP/DB8 Stop- oder Datenbit 8. Dies wird mit dem SERPER-

Register festgelegt.

7 DB7 Datenpuffer Datenbit 7

6 DB6 Datenputter Datenbit 6

5 DB5 Datenpuffer Datenbit 5

4 DB4 Datenpuffer Datenbit 4

3 DB3 Datenpuffer Datenbit 3

2 DB2 Datenpuffer Datenbit 2

1 DB1 Datenpuffer Datenbit 1

0 DBO Datenpuffer Datenbit 0

9.2.1.2: Das serielle Perioden-Register SERPER

Mit SERPER wird die Lange der Empfangs-/Sendedaten eingestellt (ob 8 oder 9 Bit).

Zudem enthält dieses Register die Baudrate mit der gesendet/empfangen wird. Für die

Baudrate stehen 15 Bits zur Verfiigung. Sie kann nicht direkt eingetragen werden. Als

Grundmaß für die Baudrate werden beim Amiga die Buszyklen verwendet, die zwi-

schen zwei Bits liegen. Ein Buszyklus entspricht 2.79365 * 10°-7 Sekunden. Folgende

Berechnung wird empfohlen:

SERPER =1 I 4
Baudrate * 3 * 10°-7

Das Ergebnis wird einfach auf- oder abgerundet. Somit kann der Benutzer jede belie-

bige Baudrate wählen.

Bit Name Funktion

15 LONG Mit diesem Bit kann die Lange der

Empfangs-/Sendedaten auf 9, LONG = 1, oder auf 8,

LONG = 0, gesetzt werden.

14—0 RATE RATE enthält die berechnete Baudrate.

9.2.1.3: Die UART-Unterbrechung

Soll eine Datenübertragung abgebrochen werden, so kann dies mit dem Bit UART-

BRK im ADKCON-Register vollzogen werden.

Bit Name Funktion

11 UARTBRK Wird dieses Bit gesetzt, so stoppt die serielle Ausgabe.

TXD wird auf 0 gesetzt.

280 Die Tastatur

Die lastatur
|

Bei der Amiga-Serie können wir von zwei verschiedenen Tastaturen ausgehen. Wäh-

rend der Amiga 1000 mit einer 89-Tasten-Tastatur geliefert wurde, sind bei dem Amiga

500 und Amiga 2000 wegen der Kompatibilität zur PC-Tastatur 5 Tasten hinzugefügt

worden. Sie enthält nun 94 Tasten.

Zudem besitzt die Tastatur des Amiga einen eigenen Prozessor, der die Tastenkombina-

tionen auswertet. Sie kann sozusagen als »intelligent« bezeichnet werden.

Die Daten, die vom Tastaturprozessor gesendet und von einem der CIA-8520-Portbau-

steine empfangen werden, liegen nicht in ASCII-Form vor, was einigen Lesern nun

bestimmt sehr ungewöhnlich vorkommt. Stattdessen erhält man für jede Taste einen

Raw-Key-Code, was eine größere Flexibilität erlaubt, da man nicht an eine länderspezi-

fische Tastaturbelegung gebunden ist.

Die Abbildung Z 10-1 zeigt die AMIGA-Tastatur mit dem jeweiligen Raw-Key-Wert.

~00] 1 “O1] " 2] 8 03/8 04 | % 05|& o6|/ 07 rar: 08]) al

le a iw IE R |T z u | O |.
142 10; 11 12} 13) 14) 15 16} 17) 18)

I 8] 62a 2ols 2b 2dr ade 24H u 26K 27/L 2
L

> Hy 31x DC lv 34]B N 36M a7; 38): 39

40

Z 10-1: Jede Taste hat ihren eigenen Raw-Key-Wert (Teil 1).

DieTastatur 281

10.1: Der Tastaturprozessor

Die Tastatur des Amiga kann als »intelligent« bezeichnet werden, denn zur Verwaltung

der verschiedenen Tastenkombinationen enthält sie einen eigenen Prozessor. Verwen-

dung findet ein 6500, bei der Amiga-1000-Serie, oder ein 6502-Tastatur-Prozessor beim

Amiga 500. Der AMIGA 2000 fällt hierbei ganz aus der Rolle, denn bei seiner’Iastatur

wird ein 8049 eingesetzt, der sonst nur bei IBM bzw. IBM-kompatiblen Tastaturen Ver-

wendung findet.

Diese Bausteine werten die entsprechenden Tastenkombinationen aus und geben die

jeweiligen Signale, je nach Tasten-Code, zum Amiga weiter.

Hier werden wir nur auf die 6500- bwz. 6502-Tastaturprozessoren näher eingehen, da

der 8049 Prozessor in den Funktionen weitgehend identisch ist.

Beide Chips sind 8-Bit- »single chip« Mikroprozessoren. Sie enthalten eine 6502 CPU,

also einen kleinen »64er«, sowie einen internen Clock-Oszillator, 2 Kbyte ROM, 64

Byte RAM und eine flexible Interface-Schaltung. Diese Interface-Schaltung enthält

einen 16 Bit programmierbaren Zähler/Latch für 4 Operations-Modi, 32 bidirektionale

Input-/Output-Eingänge, an denen überwiegend die Tasten der Tastatur angeschlossen

sind, sowie fünf Interrupts und einen Zähler-VO-Eingang. Die Abbildung Z 10.1-1 ver-

anschaulicht die Pinbelegung des 6500/1-Prozessors:

' | F10 _

Tr? OB], och! op] 41 46 SF ı |
+ DEL HELP

B / \ . 4D|ı 4E AF 4B

| P Ü * GO fF +, 7 8 9 _ |

| 19 1A; + B . nn. | SD] SE} SF 4A

‚ 16 2glä 2A] 2B _| . It . n 4 > 6 |+

mp2 | 2D 2E| 2F 49 |
ı T- 3A N 61 | i. of 2 3

Öl ob ar 'o 4E a 1D] El Fl, 43}

Z 10-1: Jede Taste hat ihren eigenen Raw-Key-Wert (Teil 2).

282 Die Tastatur

Tastatur-Prozessor

6502 (auch 6570)

F10.1-1: DerTasta turprozesor des Amiga 1000

Tastatur-Prozessor

6500

F10.1-2: DerTästaturprozessor des Amiga 500

Die Tastatur 283

VRR
PD7 L

PDE.
PDS |
PD4 |
PD3

— PD2 L_
— PDI EL
PDO L

XTLO-

— PC?
-PC6
PC

PC4
— PCS.

PCI
PCO H

O
A

AA

AR
AN

N

—

1
O
©
O

ak

k
k

k
k

ok

dk

—ı

N
O
M
A
I
A
P
W
N
M
-
D
O
O
N
D
A
I
A
W
N
—

18
65

00

/
1

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

=

[EI
N/B

EIR
IEI

N/B
EIR

IEI
NIN

IEJ
NIN

IE
Z 10.1.-1:Die Pinbelegung des 6500/1

Tastatur-Prozessor

F 10.1-3:Der Tastaturprozessor des Amiga 2000

284 Die Tastatur

XTLI— CLOCK EDGE
XTLO*~] | OSCILLATOR || DETECT

RES —*| | INTERRUPT PORTA . MW LOGIC PAO -PA7

CPU PORT B - vec — (6502) | | <8> PBO-PB7
VSS —>

VRR — | 4X8 | PORT C | <a> PCO-PC7

2048 x 8 PORT D - ROH <78/> PDO-PD7

CONTROL |/ counter’ |, onTR
REGISTER LATCH

Z 10.1-2: Das Blockdiagramm des Tastaturprozessors 065001]

Pinbeschreibung MOS 6500/1:

Signal PinNr. Erläuterung

VCC 30 +5V

VRR 1 Externe Spannungsversorgung für das interne RAM.

VSS 12 GND

XTLI 10 Quarz oder RC-Netzwerk.

Eingang fiir internen Oszillator.

XTLO 11 Quarz oder RC-Netzwerk-Ausgang für internen

Oszillator.

[RES 39 Dieser Eingang initialisiert den Prozessor (Reset).

/NMI 40 Non-Maskable-Interrupt, ist auflog. high gelegt und

PAOQ-PA7 38-31

PBO-PB7 29-22

PCO-PC7 20-13

PDO-PD7 9-2

CNTR 21

wird bei der Amiga-Tastatur nicht verwendet.

Vier 8 Bit-Ports für Ein- und Ausgabe.

Hier sind die’ Tasten der Amiga-Tastatur angeschlossen,

wobei PA1 als Clock-Ein-/Ausgang und PAO als

Keyboard-Daten Ein-/Ausgang dient. Auf diese Ports

wird in den nächsten Kapiteln noch ausführlicher

eingegangen.

Dieser Pin wird als Zähler Ein-und Ausgang verwendet.

Er ist bei der AMIGA-Tastatur auf GND gelegt.

10.2: Der Watch-Dog-Timer

Neben dem oben beschriebenen Tastatur-Prozessor sind noch weitere wichtige Schal-

tungen in der Tastatur enthalten. Eine dieser Schaltungen ist ein Watch-Dog-Timer.

Dies ist ein sogenannter »Wachhund««, der vom Ein-/Ausgabe-Port PD7 getriggert

(ausgelöst) wird. Bei den ersten Tastaturen der Amiga-Serie war dieser »Wachhund lei-
der nicht enthalten. Grob beschrieben bewahrt er die Tastatur vor dem »Aufhängen«,

er ist sozusagen ein Reset-Schalter. Der Tastatur-Prozessor überprüft ständig die Key-

Matrix, dabei bekommt auch der Watch-Dog-Timer sein Signal. Fehlt dieses Signal für

54 ms, so sendet diese Schaltung einen Reset-Impuls von 450 us an den Tastatur-

prozessor.

Die Tastatur 285

Reset/
Tastatur- Watchbog-Timer-
Prozessor Logik

Power LED

Floppy LED

F10.2-1: Die Reset/WatchDog-Timer Logik in der A500-Tastatur

Die Tastatur-Matrix:

Die Tastatur-Matrix des Amiga besteht aus 6 Reihen und 15 Spalten. Hinzu kommen

noch 7 Sondertasten. Somit sind insgesamt 97 verschiedene Tastenkombinationen mög-

lich. Jede Reihe ist als ein Eingang zu betrachten und auf +5V gehalten. Die Spalten

hingegen sind Ausgänge. Diese Sondertasten, Spalten und Reihen liegen an den Ein-

und Ausgabeports des Tastaturprozessors an. Er übernimmt die Auswertung, an wel-

cher Spalte und Reihe eine Taste betätigt wurde und gibt diese Werte als serielle Daten

an den Amiga weiter. Insgesamt besitzt der Tastaturprozessor, wie schon erwähnt, 4

Ports mit je 8 Ein- oder Ausgängen. Hier die Belegung der Ein- und Ausgabeports:

Port A Port B

PAO Ein-/AusgangKDAT-Keyboard-Daten PBO Eingang rechte Shift-Taste

PA1 Ausgang KCLK-Keyboard-Clock PB1 Eingang rechte Alt-Taste

PA2 Eingang Reihe 0 PB2 Eingang rechte Amiga-Taste

PA3 Eingang Reihel PB3 Eingang CTRL-Iaste

PA4 Eingang Reihe2 PB4 Eingang linke Shift-Taste

PAS Eingang Reihe 3 PB5 Eingang linke Alt-Taste
PA6 Eingang Reihe 4 PB6 Eingang linke Amiga-Taste

PA7 Eingang Reihe5 PB7 Ausgang Caps-Lock LED

Alle Tasteneingänge sind low, wenn die jeweilige Taste betätigt ist. Wenn der Caps-Lock

LED-Ausgang log. high ist, leuchtet die LED.

286 Die Tastatur

PortC

PCO

PC1

PC2

PC3

PC4

PCS

PC6

PC7

Ausgang

Ausgang

Ausgang

Ausgang

Ausgang

Ausgang

Ausgang

Ausgang

Spalte 0

Spalte 1

Spalte 2

Spalte 3

Spalte 4

Spalte 5

Spalte 6

Spalte 7

Port D

PDO

PD1

PD2

PD3

PD4

PD5

PD6

PD7

Ausgang

Ausgang

Ausgang

Ausgang

Ausgang

Ausgang

Ausgang

Ausgang

Aktiv ist der jeweilige Ausgang, wenn er log. low ist.

Spalte 8

Spalte 9

Spalte 10

Spalte 11

Spalte 12

Spalte 13

Spalte 14

Spalte 15

Die Tasten werden nur im Port A und Port B (Reihen) des Tastaturprozessors gelesen.

Eine Auswahl findet sozusagen durch Ausgänge (Spalten) statt. Somit hat jede Taste

ihre Reihe und Spalte:

Über Port A des Tastaturprozessors können folgende Kombinationen gelesen werden,

wobei das oben stehende Zeichen gültig ist, wenn die Shift-Taste (das Shift-Bit in Port

B gesetzt ist):

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

Spalte Reihe5 | Reihe4 | Reihe3 | Reihe2 | Reihel | ReiheO

15/PD.7

14/PD.6 Caps TAB ß ESC

Lock TAB : ESC

13/PD.5 Z A Q |

Z a q 1

12/PD.4 X S W a Fl

X S Ww 2 Fl

11/PD.3 C D E + F2

c d e 3 F2

10/PD.2 Vv F R $ F3
V f r A F3

9/PD.1 B G T % F4

b g t 5 F4

8/PD.0 N H Y : F5
n h y 6 FS

7/PC.7 M J U &

m J u 7

Die Tastatur 287

Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit2

Spalte Reihe5 | Reihe4 | Reihe3 | Reihe2 | Reihel | ReiheO

1/PD.7

6/PC.6 < K I * F6

k i 8 F6

5/PC.5 > L O (

; | 0 9

4/PC.4 ? P) F7

/ p 0 F7

3/PC.3 “ ä — F8

A - F8

2/PC.2 ü + F9

‚Space U = F9

1/PC.1 - Back | F10

Space Delete Return O F10

0/PC.0 Cursor Cursor Cursor Cursor

runter rechts links hoch Help

Diese Belegung der Tastatur bezieht sich auf die erste 1000er-Serie. Beim Amiga 500

kann diese Belegung leicht abweichen, da hier die Tastatur erweitert wurde. Die wich-

tigsten Tasten des Amiga sind an einem zusätzlichen Port, an den PortB desTastaturpro-

zessors, angeschlossen:

Bit6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0

Amiga ALT Shift CTRL Amiga ALT Shift

links links links rechts rechts rechts

10.3: Die Initialisierung der Tastatur

Nach jedem Einschalten bzw. Neustarten des Amiga, oder kurzzeitigem Abklemmen

der'Tastatur, während der Amiga eingeschaltet ist, beginnt derTastaturprozessor mit ei-

nem Selbsttest. Dies ist an dem Aufleuchten der Caps-Lock LED erkennbar. Bei die-

sem Selbsttest wird das interne ROM getestet, das 64 Byte große RAM überprüft und

zuguterletzt die Funktion des Watch-Dog-Timers kontrolliert. Nach diesem Test findet

eine Synchronisierung zwischen Tastatur und Amiga statt. Die Tastatur geht hierzu in

den »Resync Modus«. Dabei wird die KCLK-Leitung so lange auflog. 1 gehalten, bis

ein Handshake-Signal, d.h. ein Quittungssignal vom Amiga eintrifft. Ist die Synchroni-

sierung beendet, teilt die Tastatur durch spezielle Codes dem Amiga mit, wie der

288 Die Tastatur

Selbsttest ausgefallen ist. Mißlingt der Selbsttest, so wird der Spezialcode Hex $FC

gesendet. Dieses Fehlschlagen können Sie aber auch an dem Blinken der Caps-Lock

LED erkennen. Blinkt die Caps-Lock LED einmal nach dem Aufleuchten beim —

Anklinken derTastatur an den eingeschalteten Rechner oder beim Neustart des Amiga,

so bedeutet dies, daß ein Fehler im ROM des Tastaturprozessors vorhanden ist, zwei-

mal Blinken entspricht einem RAM-Iestfehler, dreimal einem Watch-Dog-Timer-Feh-

ler und viermal einen Fehler in der Key-Matrix. Gelingt hingegen der Selbsttest, so —

wird der Code Hex $FD und anschließend die Tastencodes der momentan betätigtenTa-

sten gesendet. Sind alle Tastencodes gesendet, so wird dies mit dem Schlußcode Hex

$FE signalisiert. Damit ist der Selbsttest derTastatur beendet und die Caps-Lock LED

wird ausgeschaltet.

10.4: Die Kommunikation zwischen Tastatur und Rechner

Die Kommunikation zwischen Tastatur und Rechner findet hauptsächlich durch zwei

Leitungen statt. Die eine, KDAT, enthält die Daten, die seriell gesendet werden. Sie

dient zur Ein- und Ausgabe. Die zweite, KCLK, enthält den Takt, der zum Senden und

Empfangen der Daten notwendig ist. Beide Leitungen sind mit einem Widerstand auf

+5 Volt gehalten und können so nur auf GND gelegt werden.

Bevor mit dem Senden der Daten begonnen wird, werden KDAT und KCLK high

gesetzt. Dann beginnt die Übertragung von 8 Datenbits von der Tastatur zum Amiga.

Jedes Datenbit wird dabei von einem Clockimpuls begleitet. Die 8 Datenbits werden

links rotiert gesendet. Daraus ergibt sich eine Reihenfolge von 6-5-4-2-1-0-7. Die ersten

7 Bits erhalten die Keyinformation. Das Bit 7 ist das up/down-Flag. Ist dieses Flag

gleich 0, bedeutet dies, daß die jeweilige Taste gedrückt ist. Eine 1 hingegen, daß die

jeweilige Taste losgelassen wurde. Sind die 8 Bits beim Amiga angekommen, muß die-

ser der Tastatur ein Handshake (Quittierungssignal) senden. Hierzu wird die KDAT-

Leitung für 75 Mikrosekunden auf low gehalten.

Die Übertragungsrate zwischen Tastatur und Amiga beträgt 17Kbits pro Sekunde. Das

entspricht 60 Mikrosekunden pro Bit. Hier ein Beispiel für die Übertragung eines

Buchstabens:

Jeder Buchstabe hat einen Raw-Key-Code, der 7 Bit lang ist. So entspricht der Buch-

stabe Vdem Raw-Key-Code $34 Hex. Das achte Bit (up/down-Flag) bestimmt, ob die

Taste noch gedrückt, Flag = 0, oder bereits losgelassen wurde, Flag = 1. Beachten müs-

sen wir dabei, daß KDAT logisch Eins ist, wenn sein Pegelwert gleich Null ist. Das

bedeutet, daß hier die negative Logik angewendet werden muß.

Der Raw-Key-Code $34 Hex enspricht dem Bit-Muster 00110110, wenn die Taste

gedrückt wurde. Wird sie losgelassen, wird das achte Bit gesetzt. DerWert lautet dann

10110110. Gesendet werden die Daten links rotiert, somit muß unserer Bit-Muster nach

links rotiert werden. Dabei ergibt sich die Kombination 01101100, bzw. 01101101.

Wenn Taste V gedrückt ist, dann ergeben sich also folgende Signalverlaufe:

Die Tastatur 289

1 KCLK

' KDAT

Ist diese Taste losgelassen, so ergibt sich folgender Signalverlauf:

KCLK
1

0

KDAT
1

0

0 1 1 0 1 1 0 1

1 VFRRRRRRRRRRRRRRKRRRRRRRRR TR RRR

2 1.Tastatur-Demonstration

3 last update 16/02/88

4 vonFrank Kremser und Jorg Koch

5 @©Markt & Technik 1988

6
T FREE RIK RR TRIKE R RR RK TR FR RER RR HR

8

9 Diese Demonstration fragt dasHardwareregister, das den Key-Code der

10 zuletzt gedrückten Taste enthält, ab, wandelt den Code inden

ll Raw-Key-Code um und gibt diesen aus.

12

14 include <exec/types.h> | /* Include-Files laden */

15 +#include <exec/tasks.h>

l
l

see
d

al
l

oe
O

O
N
D
 ttinclude <exec/memory.h>

#include <exec/interrupts.h>

#include <exec/execbase.h>

#+include <exec/io.h>

290 Die Tastatur

20

21

22

23

24

25

26

at

28

29

50

öl

52

55

54

55

56

37

38

39

40

41

42

43

44

495

46

47

O
M
O
o
n
N
o

oa
»k

h
W
N

Fr

+ include <exec/libraries.h>

#include <exec/devices.h><

#include <exec/ports.h>

#include <exec/lists.h>

#include <exec/nodes.h><

#+include <graphics/gfxmacros.h>

#+include <graphics/copper.h>

#include <graphics/view.h>

#+include #hardware/custom.h>

main()

{
SHORTi,taste;

UBYTE *key;

key = OxbfecOl; /* Addresse des Hardwareregisters */

Forbid(); /* Intuition und Interrupts 'abschalten' */

Disable();

for(i=0;i<1000;i++)

taste = *key; /* Key-Code lesen */

taste =0xff-taste; /* invertieren */

taste>>=1; /*undumeinBit nach rechts shiften */

printf("%x",taste); /* anschließend ausgeben */

Permit(); /* Intuition und Interrupts "einschalten! */

Enable();

}

[FR FRRRRRRRKRRRRRRRRRRKRRRRRRKKRRR

2.Tastatur-Demonstration

last update 16/02/88

von Frank Kremser und JörgKoch

© Markt & Technik 1988

KHEEKKKKKKKKKKKKKKKEKKEKKHKKKKEKKKKE

Diese Demonstration liefert das gleiche Ergebnis, wie diel. Demo.

Der Unterschied besteht lediglich darin, daß eine MC-Routine zur

Tastenabfrage verwendet wird.

Um dieses Programm zu kompilieren, geben Sie

'execute tastatur2.comp tastatur2'

ein. Dazumußaber auch die Datei taste.o auf der Disk vorhanden sein.

KEKEKKKEKKKEKKEKKKKKEKKKKKKKKKEKEE /

#+include <exec/types.h> /* Include-Files laden */

+#include <exec/tasks.h>

Die Tastatur 291

Sl +#include <exec/memory.h>

32 +#include <exec/interrupts.h>

33 +#include <exec/execbase.h>

34 +#include <exec/io.h>

35 +#include <exec/libraries.h>

36 +#include <exec/devices.h>

37 +#include <exec/ports.h>

38 +#include <exec/lists.h>

39 +#include <exec/nodes.h>

40 +#include <graphics/gfxmacros.h>

41 include <graphics/copper.h>

42 +#include <graphics/view.h>

43 +include <hardware/custom.h>

44

45 externSHORT taste(); /*Maschinenroutine kenntlich machen */

46 |

47

48 main()

49 {

50 SHORTi,key;

51

52 Forbid(); /* IntuitionundInterrupts 'abschalten' */
53 Disable();

54 for(i=0;i<1000;i++)

55 {

56 key = taste(); /* Taste abfragen und Raw-Key-Code übergeben */

57 key=0Oxff-key; /* Code invertieren */

58 key>>=]; /*undumlBitnach rechts shiften */

59 printf("%x",key);/* endgültigen Raw-Key-Code ausgeben */

60 }

61 Permit(); /* Intuitionund Interrupts wieder 'einschalten' */

62 Enable(); Ä

63 }

a
5 ; MC-Routine zur

4 ;2.Tastatur-Demonstration

5 ;lastupdate 16/02/88 —

6 ;vonFrank Kremser und Jorg Koch

7 3; ©Markt & Technik 1988

8;

10 ;

ll ;Diese kurze Routine fragt einHardware-Register ab, daßden

12 ;Raw-Key-Code der zuletzt gedrückten Taste enthält.

13 ;

a

O
l

292 Die Tastatur

16 CSECT text ;Kennungen fürC

17 XDEF _taste ;

18

19 _taste moveq +#0,d0 ;Datenregister löschen

20 move.b $bfec01,d0 ;Hardwareregister lesenund

21 rts ;inDOanCtbergeben

22 END

10.5: Die Tastaturverbindung zum Amiga

Inzwischen sind drei verschiedene Steckverbindungen zur Amiga-Iastatur bekannt.

Die erste, die des Amiga 1000, enthält nur 4 Leitungen. Beim AMIGA 500 wurden noch

zusätzliche Funktionen auf derTastatur integriert, so daß hier auch die meisten Leitun-

gen zur Tastatur gehen. Sie ist jedoch starr eingebaut. Die Steckverbindung zur Amiga

2000-Tastatur wurde der Commodore PC10-Tastatur angepaßt.

Die wichtigsten Leitungen, neben der Spannungsversorgung, sind zwei Datenleitun-

gen. Wie schon im letzten Kapitel erwähnt, dient eine zur Übertragung des Clockim-

puls zur Tastatur, »KCLK« genannt, die andere, mit »KDATk bezeichnet, zur Übertra-

gung der Keyboard-Daten. Die letztere Leitung dient als Ein- und Ausgabe, während

die erstgenannte nur als Signal von der Tastatur benutzt wird.

Hier nun die Pinbelegung der Stecker zur Tastatur auf dem jeweiligen Motherboard

(Hauptplatine):

Amiga 500 Amiga 1000 Amiga 2000

Pin Signal Pin Signal Pin Signal

KCLK-Clock 1 +5V 1 KCLK - Clock

KDAT-KeyDaten 2 KCLK - Clock 2 KDAT-— Key Daten

+5V 3 KDAT-KeyDaten 3 N.C.

N.C. 4 GND 4 GND

GND 5 +5V

/RESET 6 GND

Power LED 7 GND

Drive LED O
o
n
T
I
N

N
H
B

W
N

m

Die Tastatur 293

10.6: Der Tastencode-Empfänger im Amiga

Als Tastencode-Empfänger wird einer der CIA-8520-Portbausteine des Amiga verwen-

det. Über ihn werden alle Signale an die Tastatur weitergegeben bzw. von ihr empfan-

gen. Wichtig für das Handling mit der Tastatur ist nur der CIA-A-Baustein. Er enthält

verschiedene Register, aus denen die empfangenen Daten gelesen oder Signale an die

Tastatur gesendet werden können. Hier die Adressen der wichtigsten Register:

$BFECO1 Dies ist das serielle Datenregister zur Kommunikation mit der Tastatur.

Hier können die invertierten, linksrotierten Raw-Key-Codes empfangen

werden.

$BFEEO1 Kontrollregister A. Mit diesem Register kann das serielle Daten-

register kontrolliert werden.

Die Abfrage der Portbausteine übernimmt softwaremäßig die im Kickstart-ROM ent-

haltene Keyboard-Device, beginnend bei $FE53E8. Sie wertet die Tasten aus und

regelt das Handshake. Von ihr kann man auch erfahren, wie man direkt auf die CIA

zugreift, um eine entsprechende Taste abzufragen.

Folgende Möglichkeiten zur direkten Manipulation der Tastatur bieten sich an:

1. Sendeleitung derTastatur sperren, d.h. KDAT-Leitung auflogisch low legen, Sende-

leitung der Iastatur freigeben und die empfangenen Daten dekodieren.

Für das Sperren der Sendeleitung, sowie freigeben derselben wird das Kontrollregi-

ster A des CIA-A-Portbausteins verwendet. Das Keyboard kann mit dem Befehl

ori.b #40, $BFEEO1

gesperrt, oder mit

andi.b#$BF,$BFEEOl

freigegeben werden.

2. Das Erkennen der betätigten Taste aus dem seriellen Datenregister der CIA-A ist

schon etwas schwieriger, da die Daten invertiert und linksrotiert empfangen

werden:

move.b$BFECOl1,d0 ;KeycodeindO lesen

ror.b#,d0 ;l1Bitnach rechts rotieren

not .b dd ‚dOinvertieren

Will man dies in C probieren, so muß noch etwas mehr Aufwand betrieben werden. Hier

bieten sich zwei Lösungen an. Einmal ein reines C-Programm, oder eine Kombination

zwischen C und Assembler, wie auf den Seiten 289 bis 292 dargestellt.

294 Die Maus

Die Maus
DI 7

Die Maus ist eine der wichtigsten Eingabeeinheiten des Amiga, oder können Sie sich

die Cursorbewegung des Malprogramms DeluxePaint mit der Tastatur vorstellen?

Sicherlich nicht, denn diese Methoden waren in der »Steinzeit« der Computertechnolo-

gie üblich und sind schon etwas länger her.

Die Maus des Amiga besitzt zwei Tasten. Sie wird auch als optische Maus bezeichnet,

da hier hier über zwei Lichtschranken die Bewegungen in X- und Y-Richtung abgefragt

und durch ein Impuls-Diagramm an den Amiga weitergegeben werden. Auch an der

Maus des Amiga hat sich seit dem ersten Amiga viel getan. Die Top-Maus der ersten

Stunden, ist inzwischen zu einer Low-cost-Maus mit Folientasten geworden, die so

manchen Bediener fast zur Verzweiflung bringen.

Neue Maus Alte Maus

_

»Druck«- richtige
Taster »Druck«-

per Folie Taster

F11-1: Die alte und die neue Maus

Die Maus 295

O
M
A
N

o
o
A

W
D
E

49

[FRFRRRRERRRRRRRKRRRRRRRRRKRRRRRR

1. Joyport-Demonstration

last update 16/02/83

von Frank Kremser und JörgKoch

© Markt & Technik 1988

HHHEKKHKKKKKKHKKHKRKKKKRKKKKHKKKKKHKKE

Diese Joyport-Demonstration setzt den2. PortalsMausport.

Bitte stecken Sie nach demStart des Programms die Maus in diesen Port.

Keine sorge, das kénnen Sie auch bei eingeschaltetemRechner.

KEKE KKKKEKKKEKEKKKKKEKKEKKEKKKEK KEKE /

#include <exec/types.h> /* Include-Files laden */

#include <exec/nodes.h>

#+include <exec/lists.h>

#include <exec/ports.h>

#include <exec/io.h>

#+include <devices/input.h>

struct I0StdReq ior; /*Device-Request-Block */

struct MsgPort mes; /* Messageport */

main() /* HAUPTPROGRAMM * /

UBYTE port =1; /* Portl als Mausport - normal ist Port 0 */

if (OpenDevice("input.device", 0, &ior, 0) !=0) /* Device 6ffnen */

exit(20);

mes.mp_Node.1n_Type =NT_MSGPORT; /* Erstelle einen */

mes.mp_Flags=0; /* Message-Port */

if ((mes.mp_SigBit = AllocSignal(-1)) <0)

CloseDevice(&ior);

exit(20);

}
mes.mp_SigTask = (struct Task *) FindTask((char *) NULL);
NewList(&mes.mp_MsgList) ;

ior.io_Message.mn_ReplyPort = &mes;

ior.io_Command = IND_SETMPORT; /* Initialisiere die Request-Structure */

ior.iopData= Sport; * für das Umschalten auf einen anderen */

ior.io_Length=]; /* Mouse-Post */

DoIO(&ior);

CloseDevice(&ior); /* Schließe Device und lösche

Signalbit */

FreeSignal(mes.mp_SigBit);

}

296 Die Maus

11.1: Aufbau und Funktionsweise der Maus

Eines der wichtigsten Elemente der Maus ist die Rollkugel. Sie wird durch ein Plätt-

chenan der unteren Seite der Maus in einer Kuppel gehalten. Liegt die Maus auf, so

wird sie durch eine Halterolle an zwei weitere Rollen gepreßt, die jede Bewegung der

Kugel mitmachen. Diese zwei Rollen bewegen eine Art Zahnrad, das eine Licht-

schranke abwechselnd öffnet und schließt. Diese Signale werden an einen weiteren

Baustein gegeben, der die Daten für den Amiga vorbereitet.

Lichtschranke
zum Umsetzen der

Bewegung der Maus in
Signale

Anschluß

Amiga Roll-
K

Mouse-Port ugel

Halte-

Rolle

zum
Halten

der Roll-

Baustein Lichtschranke Kugel
zum Umsetzen zum

der Signale, die von Umsetzen der
den Lichtschranken Bewegung der Maus
kommen in Signale

F11.1-1: Der Aufbau der Amiga-Maus

11.2: Empfang der Mausdaten

Die Maus wird normalerweise an den Joyport0 angeschlossen. Bei diesem Port verwen-

det die Maus alle Pins außer Pin 5. Die Pinbelegung an den Joyports zeigt Abbildung

Z 11.2-1:

Die Maus 297

Sa
IPSS?
it
b77708709

Z 11.2-1: PIN-Belegung des Joyports

Hier nun die Signale, die über die einzelnen Pins übertragen werden:

1 V-Impuls 6 linke Maustaste

2 H-Impuls 7 +5V

3 VQ-Impuls 8 GND

4 HO-Impuls 9 rechte Maustaste

5 nicht benutzt

Die Signale V-, H-, VQ- und HO-Impuls werden von einem 2 zu 1 Multiplexer umge-

setzt und anschließend Denise zugeführt. Denise setzt die entsprechenden Register

nach diesen zwei empfangenen Signalen. Diese Register sind JOYODAT für Port 0 und

JOY1DAT für Port 1. Vergleiche Bild 16 im Farbteil. |

Die Bits 0 bis 7 enthalten den horizontalen Zähler der Maus, während die Bits 8 bis 15

den vertikalen Zähler enthalten. Dabei geben die Bits 7, bzw. 15 jeweils die Richtung

an, in die bewegt wurde. Um nun eine genaue Positionsbestimmung durchführen zu

können, muß man von dem letzten gelesenen Wert die neuen Werte abziehen. Man

erhält dann die Richtung und die Anzahl der Steps, um die die Maus bewegt wurde. Die

Maus gibt etwa 79 Steps pro Zentimeter. Hier nun ein paar Beispiele zur Berechnung:

Alter Wert Neuer Richtung Stepdifferenz

100 50 Hoch/Links 50

50 100 Runter/Rechts -50

Die Maustasten kann man über die Register der CIA-Bausteine abfragen. Ist Bit 6 von

$BFE001 gleich 0, so ist die linke Maustaste am Port 0 gedrückt und ist Bit 7 gleich 0,

dann die linke Taste von Port 1. Die anderen Tasten lassen sich nur über die POTGO-

Register abfragen.

Hier ein kurzes Beispiel zur Abfrage der linken Maustaste in Assembler:

wait: btst #,$bfe001 ;Wartet, bis linke Maustaste

bne wait — ‚gedrückt

298 MS-DOS-Erweiterungen

Kapitel 12

MS-DOS-Erweiterungen

IBM hat durch seine PCs und das MS-DOS einen Standard gesetzt, der heute nicht

mehr wegzudenken ist. Obwohl die Technik dieser Computer veraltet ist, sind sie

beherrschend in vielen Anwendungsbereichen und es besteht weiterhin große Nach-

frage nach diesen Rechnern, da ein Softwareangebot vorhanden ist, das es bisher zu

keinem anderen Rechner gibt und auch in absehbarer Zukunft nicht geben wird. So

haben es andere, technisch ausgereiftere Rechner, wie beispielsweise der Amiga, sehr

schwer gegen einen solchen Koloß anzutreten, da sie zunächst ein recht unterentwickel-

tes Softwareangebot besitzen. Um dem Amiga große Chancen im Anwendungsbereich

geben zu können, mußte ein MS-DOS-Emulator her, der sowohl software- als auch

hardwarekompatibel sein sollte. Commodore-Braunschweig entwickelte Anfang 86 ei-

nen solchen Emulator, das SideCar. Es kam im Herbst 86 als Zusatz zum Amiga 1000

heraus. Die Fotos 2-4 im Farbteil zeigen das SideCar.

Anfangs hatte man große Schwierigkeiten bei der Entwicklung, so daß das Layout des

Interface zum Amiga 1000 sich ständig änderte, was auch heute noch an den vielen auf-

getrennten Leiterbahnen und notdürftig gelöteten Brücken erkennbar ist. Auch das

BIOS, das anfangs als Testversion ausgeliefert wurde, hinterläßt durchaus keinen ver-

trauenserweckenden Eindruck. Aber die Bombe eines solchen Beiwagens war einge-

schlagen und die Rechnung von Commodore ging auf. Überall sprach man nun von 2

Rechnern in einem. Es ist schon überwältigend, auf der einen Seite im CLI und auf der

anderen Seite, in einem kleinen Fenster am unteren Rand mit Wordstar zu arbeiten.

Die Fachwelt war begeistert. Auf der CeBit ’87 kam dann der ganz große Clou. Mit dem

Amiga 2000, der mit der PC-Emulator-Karte und dessen Möglichkeiten das SideCar

ablöste, brachte Commodore einen Rechner heraus, der je nach Steckkarte PC/XT

oder sogar AT mit 80286 oder 80386 kompatibel sein konnte. Dies war die Revolution

auf dem Computermarkt. Ein Computer, den man sich je nach Belieben für seine

Zwecke zusammenstellen konnte. Auf der einen Seite der AMIGA mit der kraftvollen

MC68000 CPU und Custom-Chips und auf der anderen Seite PC- oder AT-Kompatibili-

tät, was will man mehr. |

MS-DOS-Erweiterungen 299

Commodore hat mit diesem neuen Prinzip einen großen Schritt nach vorne gewagt. Auf

jeden Fall will Commodore noch weitere Mäßstäbe in diesem Bereich setzen und ihre

2000er Linie weiterführen. Wir sind der Meinung, daß dies eine fantastische Neuerung

auf dem Computer-Markt ist. Wenn man sich erst einmal an einen solchen Rechner

gewöhnt hat, möchte man seine Fähigkeiten nicht mehr missen.

12.1: Das SideCar

Das SideCar stellt eine MS-DOS-Hardware-Emulation für den Amiga 1000 dar. Dort

kann es nur angeschlossen werden, wenn dieser auf eine Speicherkapazität von minde-

stens 512 Kbyte aufgerüstet ist (Farbteil Bild 25).

Beim Anschluß an den Amiga 500 entstehen einige Probleme, da der Expansionsport

des Amiga 500 um 180 Grad gedreht wurde. Das Interface, das die Verbindung vom PC-

zum Amiga-Teil darstellt, ist das wichtigste Teil des SideCar, da hier die Daten über ein

Dual-Ported-RAM zwischen Amiga und SideCar ausgetauscht werden. Weiter enthält

dieses Interface einen Adreß- und Datenbus-»Übersetzer«, der die Daten für das Dual-

Ported-RAM vorbereitet und die Kontrolle übernimmt (Farbteil Bild 26).

Ist das SideCar richtig an den Amiga angeschlossen, so sollte man noch die Dip-Schal-

ter des SideCar überprüfen, bevor man mit dem Starten des Systems beginnt (Farbteil

Bild 27). — |

Hier stehen an der rechten, vorderen Seite, in der Nähe der RAM-Chips, 2 Dip-Schal-

terleisten zur Verfügung. Die erste, mit 8 Schaltern, bestimmt die Konfiguration des

Systems:

Schalter Funktion

1 OFF = Normales Booten des Systems

ON = Systemdiagnose

2 OFF = 8087-Koprozessor nicht installiert

ON = 8087 installiert

3und4 Größe des Hauptspeichers:

3 4

ON ON = 128Kbyte RAM

OFF ON = 256Kbyte RAM

ON OFF = 512Kbyte RAM

OFF OFF = 640KbyteRAM

300 MS-DOS-Erweiterungen

Schalter Funktion

5Sund6 Videomodus beim Start:

5 6

ON ON = KeinVideo

OFF ON = farbig, 40 Zeichen mal 25 Zeilen

ON OFF farbig, 80 Zeichen mal25 Zeilen

OFF OFF = monochrom, 80 Zeichen mal25 Zeilen

7und 8 Anzahl der Floppy-Laufwerke

7 8

ON ON = 1

OFF ON = 2

ON OFF = 3
4 OFF OFF =

Der zweite Dip-Schalter bestimmt die Konfiguration des Dual-Ported-RAM (DPR),

das wir in den kommenden Kapiteln noch näher betrachten werden:

Schalter Funktion

1 OFF = Die Adressen BO000-B1FFFSsind auf dem Interface belegt, das

| bedeutet, daß keine externe monochromeVideo-Karte

verwendet werden darf.

ON = Die Adressen BO000-BIFFFsind auf einer externen

Video-Karte vorhanden.

2 OFF = Die Adresse BS000-BFFFFfür eine Color-Video-Karte sind auf

dem Interface belegt, es darf keine externe Video-Karte

verwendet werden.

ON = Die Adressen B8000-BFFFFsind auf einer externen

Color-Video-Karte vorhanden.

3und 4 Dient zur Verschiebung des Dual-Ported RAM

3 4 LagedesDPR

XX ON = A0000-AFFFF

ON OFF DO0000-DFFFF

OFF OFF E0000-EFFFF

Wird das SideCar speichermäßig aufgerüstet, so muß neben den Schalterstellungen 3

und 4 des ersten Dip-Schalters auch ein Jumper verändert werden. Dieser befindet sich

über dem BIOS-ROM neben den Sockeln für die RAM-Chips. Für eine solche

MS-DOS-Erweiterungen 301

Aufrüstung sollten acht dynamische RAM-Chips mit der Bezeichnung XX256-150, dies

sind 256Kbyte x 1 organisierte RAM-Chips mit einer Zugriffszeit von 150 Nano-Sekun-

den, verwendet werden. Neben diesem Jumper befindet sich noch ein zweiter, der zur

Einstellung einer externen Druckerkarte dient. Bild 19 im Farbteil zeigt die Jumper.

Die parallele Schnittstelle liegt in der Regel bei $378 bis $37Fhex. Sie kann vom Amiga

emuliert werden. Eingeschaltet wird sie vom Amiga mit dem Utility LPT1. Wird eine

PC-Druckerkarte verwendet, so müssen deren Adressen bei LPT2, d.h. $3BC bis $3BF

liegen. Beim Einbau einer solchen Karte muß der erwähnte Jumper umgesteckt

werden.

Das SideCar bietet ebenfalls die Möglichkeit eine Harddisk zu installieren. Anfangs

hatten wir hierbei einige Probleme, da das Interface zwischen Amiga und PC einen Feh-

ler hatte. Mit der Installation einer Festplatte hat man die faszinierende Möglichkeit,

diese gleichzeitig PC-seitig und Amiga-seitig zu benutzen. Amiga-seitig können maxi-

mal 4 Partitionen eingerichtet werden. PC-seitig erlaubt das mitgelieferte MS-DOS 2.1

leider nur eine Partition mit max. 20 Mbyte. Möchte man größere Harddisks verwen-

den, so empfielt es sich mit einer anderen MS-DOS-Version zu arbeiten und mit einem

Utility-Programm die Harddisk in mehrere Partitionen aufzuteilen. Ist alles richtig in-

stalliert, so kann es nach dem Starten des Amiga 1000 mit SideCar und nach dem Laden

der Workbench richtig losgehen. Auf der Workbench findet man hierzu verschiedene

Utilities. Mit PC-Color oder PC-Mono kann das SideCar »gestartet« werden, je nach-

dem ob man Monochrom- oder Color-Video installiert hat. Zum Installieren der Fest-

platte muß nach »BINDRIVERS« noch »DJMOUN% im CLI eingegeben werden.

Mit »ASSIGN« kann dann festgestellt werden, ob dieses »Andocken« gelungen ist.

Dazu müssen Sie natürlich vorher im MS-DOS ihre Amiga-Partition(en) mit ADISK

eingerichtet haben. Auch -das MS-DOS-Laufwerk läßt sich Amiga-seitig benutzen.

Hier gab es jedoch anfangs noch einige Schwierigkeiten, die aber inzwischen behoben

sind. Schwierigkeiten wird man ebenfalls mit der Belegung der Tastatur haben, da die

Amiga 1000-Tastatur nicht IBM-kompatibel ist, sind im PC-Betrieb einige wichtige

Tasten nicht auf Anhieb zu finden:

PC-Taste Amiga-SideCar

Num Lock rechte Amiga + N

Scroll Lock rechte Amiga + S

Schift+PRT SC* rechte Amiga + Shift + P
»+« auf keypad rechte Amiga + »+«

Alles in allem bietet sich dem Anwender mit dem SideCar ein kompaktes Entwickler-

system, mit dem es sich professionell arbeiten läßt.

302 MS-DOS-Erweiterungen

NE

2.) ARITHMETIC =F Ge = |.
fs CO-PROCESSOR LAD 8 0 3 5

50. SUSTOM CHIP” Po

CLOCK & TIMING GENERATION
COUNTER TIMER CONTROLLER

DYNAMIC MEMORY ACCESS LOGIC
INTERRUPT CONTROLLER LOGIC

KEYBOARD INTERFACE
_|CONTROL|

Z 12.2-1: Nur vom Schema der PC-Karte läßt sich noch erkennen, daß diese kleine Karte

einen vollwertigen PC darstellt (Teil 1)

12.1.1: Das SideCar am Amiga 500

Das SideCar ist grundsätzlich für den Amiga 1000 entwickelt worden. Beim Anschluß

an den Amiga 500 entstehen dabei ein paar Probleme. Das erste Problem, das auf-

taucht, ist der, beim Amiga 500, um 180 Grad gedrehte Systembus. Wenn man das

SideCar nicht gerade um 180 Grad gedreht aufstellen will, empfiehlt es sich, einen

Adapter anzuschaffen oder selbst anzufertigen. Das nächste Problem, das auftaucht,

ist die Spannungsversorgung. Beim SideCar ist ein Netzanschluß für den Amiga 1000

durchgeschleift worden, damit sichergestellt ist, daß der Amiga immer vor dem Side-

Car eingeschaltet wird. Möchte man dies auch beim Amiga 500 realisieren, so muß die

Zuleitung zum Netzteil des A500 etwas umgebaut werden. Hierbei sei aber zu empfeh-

len, daß ein solcher Eingriff auch wirklich nur von Kennern des Elektro-Handwerks

vorgenommen wird, denn ein Fehler an diesem Teil könnte dazu führen, daß man kei-

nen weiteren mehr macht. Die zweite, vieleicht bessere Möglichkeit, die sich bietet, ist,

daß der Amiga 500 separat immer zuerst eingeschaltet wird und erst dann das SideCar.

Ist hardwaremäßig alles klar, so braucht man sich nur noch dieWorkbench zum SideCar

einzurichten und schon kann man mit ihm arbeiten.

MS-DOS-Erweiterungen 303

„INTERFACE —

DRAM

512K*8BIT

Z 12.2-1: Nur vom Schema der PC-Karte läßt sich noch erkennen, daß diese kleine Karte

einen vollwertigen PC darstellt (Teil 2)

12.2: Die PC/XT-Karte

Die PC-XT Karte stellt für den Amiga 2000 einen kompletten PC/XT-kompatiblen Per-

sonalcomputer dar, der aus 512 Kbyte RAM, einer 8088 CPU mit einer Taktfrequenz

von 4.77 MHz, dem notwendigen Timer und DMA-Controller, besteht. Ein freier Sok-

kel für einen 8087 Math-CO-Prozessor ist ebenfalls vorhanden (Foto 13 im Farbteil).

Ist diese Karte in den Amiga 2000 eingesteckt, so werden alle Slots links der Karte (von

vorne gesehen) zu PC-Slots. Diese Slots sind voll kompatibel zu den PC/XT-Slots von

IBM. Auf der Emulator-Karte selbst wurde stark aufgeräumt. Eine Parallele zum Side-

Car läßt sich kaum noch feststellen, da wichtige Teile auf dieser Karte in 3 große

Custom-Chips verpackt wurden. Das Schema des PCs ist ansonsten gleich geblieben.

Einer der Custom-Chips enthält, wie aus der Schematik erkennbar ist, den DMA- und

Interrupt-Controller, sowie den Timer. Die anderen beiden Chips ersetzen eine große

Platine, die beim SideCar als Adreßbus- und Datenbus-Translator diente, der die Ver-

bindung zur Amiga-Ebene bewerkstelligte. Die Lage des Dual-Ported-RAM auf der

304 MS-DOS-Erweiterungen

DRAM

128K* 8BIT

ABT

ADDRESS BUS TRANSLATOR

PC - AMIGA ARBITRATION
PC 1/0 & MEMORY INTERFACE

AMIGA REGISTER & MEMORY INTE |
PC & AMIGA INTERRUPT LOGIC

KEYBOARD INTERFACE

Z 12.2-2; Das PC/XT-Emulator-Interface in schematischer Darstellung (Teil 1)

PC-Seite wird bei dieser Karte per Register eingestellt (MODE-Register), was beim

SideCar noch per Dip-Schalter von Hand erledigt werden mußte. In dem 128 Kbyte

großen Dual-Ported-RAM werden alle Informationen zwischen Amiga und PC hin-
und hertransferiert (Farbteil Bild 17).

Schnittstellen, die nach außen führen, wie beispielsweise eine Drucker- oder serielle

Schnittstelle, werden vom Amiga emuliert. Diese sind nun an die IBM-Norm ange-

paßt, so daß keine Spezialkabel nötig sind. Alles im allem stellt diese Karte einen voll-

wertigen PC-10 dar, der sich ohne Schwierigkeiten voll kompatibel zum IBM-PC/XT

verhält. Hier ein Überblick der wichtigsten Daten:

— Prozessor 8088

— Taktfrequenz 4.77 MHz

—Interfaces: 1 internes Floppy 5 1/4“ 360/720 Kbyte

1 internes Floppy 5 1/4“ 360/720 Kbyte

MS-DOS-Erweiterungen 305

ADDRESS ADDRESS

MUX BUFFER

CONTROL

BUFFER

DBT

DATA BUS TRANSLATOR

AUTO CONFIGURATION
DATA BIT SHIFTER FOR |

| BYTE, WORD & GRAPHIC ACCESS |

Z 12.2-2: Das PC/XT-Emulator-Interface in schematischer Darstellung (Teil 2)

MS-DOS formatiert

Parallel-Port (AMIGA-seitig)

— 8087 Co-Prozessor Steckplatz

— benutzt AutoConfig-Funktion des Amiga

- 3 PC/XT-kompatible Steckplätze für Vollformat

- Arbeitsspeicher 512 Kbyte

— Festwertspeicher 16 Kbyte BIOS ROM

12.2.1: Die Speicher- und I/O-Belegung der PC/XT-Karte

Für gewisse Manipulation oder bei direktem Zugriff auf die Speicher- und I/O-Adres-

sen der Amiga- und PC-Seite, ist es von großen Vorteil, die genaue Belegung und Zu-

griffsart, ob Byte, Word oder Grafik, zu wissen. PC-seitig sind diese Adressen fest ein-

gestellt. Beim Amiga muß hingegen ein gewisser Offset hinzuaddiert werden.

306 MS-DOS-Erweiterungen

Die Zugriffsart berechnet sich aus der Basisadresse plus einen bestimmten Offset:

Zugriff = Basisadresse + 00000..1FFFF

Zugriff = Basisadresse + 20000..3FFFF

Zugriff = Basisadresse + 40000..5FFFF

Zugriff = Basisadresse + 60000..7FFFF

Byte _

Word =

Graphik —

I/O Register —

Insgesamt hat der PC-Emulator 128 Kbyte Dual-Portet-RAM, d.h. dieser Speicher

kann von beiden Seiten benutzt werden, sowohl Amiga-, als auch PC-seitig. Aufgeteilt

ist dieser Speicher in 64 Kbyte Disk-Puffer, dieser ist nur ansprechbar mit den Bits 5

und 6 des Mode-Register, 32 Kbyte Color- und 8 Kbyte Mono-Video-RAM, 16 Kbyte

Parameter- RAM und 8K für I/O-Operationen. Da die Belegung PC-seitig in festgeleg-

ten Bereichen verschiebbar ist, enstehen verschiedene Kombinationsmöglichkeiten für

die einzelnen RAM-Bereiche. Man kann so die Belegung einmal Amiga- oder PC-sei-

tig betrachten.

Basisadresse Benutzung Größe

00000. .OFFFF Disk-Puffer 64 Kbyte

10000..17FFF Color-Video 32 Kbyte

18000..1BFFF Parameter 16 Kbyte

1C000..1DFFF Mono-Video 8Kbyte

1E000..1FFFF VO 8 Kbyte

12.2.1.1: Die Amiga-Speicher- und I/O-Belegung

Zugriffs- Amiga- PC-

art Offset Adresse Benutzung Größe

Byte 00000..0OFFFF A0000..AFFFF Disk-Puffer 64 Kbyte

Byte 00000..OFFFF D0000..DFFFF Disk-Puffer 64 Kbyte

Byte 00000..OFFFF E0000..EFFFF Disk-Puffer 64 Kbyte

Byte 10000..17FFF B8000..BFFFF Color-Video 32 Kbyte

Byte 18000..1BFFF F0000..F3FFF Parameter 16 Kbyte

Byte 1C000..1DFFF B0000..B1FFF Mono-Video 8 Kbyte

Byte 1E000..1FFFF 00000. .003FF VO 1 Kbyte

Word 20000..2FFFF A0000..AFFFF Disk-Puffer 64 Kbyte

Word 20000..2FFFF D0000..DFFFF Disk-Puffer 64 Kbyte

Word 20000..2FFFF E0000..EFFFF Disk-Puffer 64 Kbyte

Word 30000..37FFF B8000..BFFFF Color-Video 32 Kbyte

Word 38000..3BFFF F0000..F3FFF Parameter 16 Kbyte

Word 3C000..3DFFE B0000..B1FFF Mono-Video 8 Kbyte

Word 3E000..3FFFF 00000..003FF VO 1 Kbyte

MS-DOS-Erweiterungen 307

Zugriffs- Amiga- PC-

Art Offset Adresse Benutzung Größe

Graphic 40000. .4FFFF A0000.. AFFFF Disk-Puffer 64 Kbyte

Graphic 40000. .4FFFF DO000..DFFFF Disk-Puffer 64 Kbyte

Graphic 40000. .4FFFF E0000..EFFFF Disk-Puffer 64 Kbyte

Graphic 50000..57FFF B8000..BFFFF Color-Video 32 Kbyte

Graphic 58000..5BFFF F0000..F3FFF Parameter 16 Kbyte

Graphic 5C000..5DFFF BO0000..B1FFF Mono-Video 8 Kbyte

Graphic 5E000. .SFFFF 00000. .003FF VO 1 Kbyte

TEO00..7FFFF 00000. .003FF VO 1 Kbyte

12.2.1.2: Die PC-Speicher- und I/O-Belegung

Zugriffs-- PC- Amiga-

art Offset Offset Benutzung Größe

Byte 00000. .003FF 1E000..1FFFF VO 1 Kbyte

Word 3E000..3FFFF

Graphik 5E000..SFFFF

7E000. .7FFFF

Byte A0000..AFFFF 00000..OFFFF Disk-Puffer 64 Kbyte

Word 20000..2FEFFF

Graphik A0000..4FFFF

Byte B0000..B1FFF 1C000..1DFFF Mono-Video 8 Kbyte

Word 3C000..3DFFF

Graphik 5C000..SDFFF

Byte B8000..BFFFF 10000. .17FFF Color-Video 32 Kbyte

Word 30000..37FFF

Graphik | 50000..57FFF

Byte E0000..EFFFF 00000..0FFFF Disk-Puffer 64 Kbyte

Word 20000. .2FFFF

Graphik 40000. .4FFFF

Byte D0000..DFFFF 00000..0OFFFF Disk-Puffer 64 Kbyte

Word 20000. .2FFFF

Graphik 40000..4FFFF

Byte F0000..F3FFF 18000. .1BFFF Parameter 16 Kbyte

Word 38000..3BFFF

Graphik 58000..5BFFF

308 MS-DOS-Erweiterungen

12.3: Die AT-Karte

Wo ein PC-Kompatibler ist, da ist der AI-Kompatible nicht weit. Nach der PC-kompa-

tiblen Karte für den Amiga 2000 folgte die AT-kompatible. Sie ist fast genauso aufge-

baut wie die PC-Karte. Unterschiede finden sich lediglich in der Formatierung von Dis-

ketten, im Prozessorsystem, sowie in der Taktfrequenz. Sollte man sich nicht sicher

sein, ob man eine AT- oder PC-kompatible Karte besitzt, kann dies mit dem MODE-

Register getestet werden. Hier die wichtigsten Daten:

— Prozessor 80286

— Taktfrequenz 8 MHz

- Interfaces: 1 internes Floppy 5 1/4“ 1,2 Mbyte

1 internes Floppy 3 1/2“ 720 Kbyte

MS-DOS formatiert

Parallel-Port (Amiga-seitig)

— 80287 Co-Prozessor Steckplatz

— benutzt AutoConfig-Funktion des Amiga

- 3 AT-kompatible Steckplätze für Vollformat

- Arbeitsspeicher 512 Kbyte

— Festwertspeicher 16 Kbyte BIOS ROM

—Tastatur XT- bzw. AT-kompatibel durch Emulation des Amiga

12.3.1: Die Speicher- und I/O-Belegung der AT-Karte

Die AT-Karte hat ebenfalls, wie schon die PC-Karte, insgesamt 128 Kbyte Dual-Ported-

RAM. Dieser Speicher ist, wie bei der PC-Karte, in 6 4Kbyte Disk-Puffer, dieser ist nur

ansprechbar mit den Bits 5 und 6 des Mode-Registers, 32 Kbyte Color- und 8 Kbyte

Mono-Video- RAM, 16 Kbyte Parameter-RAM und 8 Kbyte fiir I/O-Operationen un-

terteilt. Die Berechnung der Zugriffsart, Byte, Word oder Graphic, sowie die Basisa-

dresse des Interfaces, die das Offset bestimmt, sind im Vergleich zur PC-Karte nahezu ~

identisch. Ein Unterschied besteht lediglich darin, daB bei der AT-Karte das Dual-Por-

ted-RAM auf einen gewissen Bereich nicht eingestellt werden kann, da dieser fiir den

größeren Speicher der Karte verwendet wird.

Da die Adressen hier ebenfalls verschiebbar sind, bieten sich auch hier verschiedene

Kombinationsmöglichkeiten für die einzelnen Bereiche. Die Belegung kann auch hier

Amiga- oder PC-seitig betrachtet werden. Die Belegung für PC- und AT-Karten ist

allerdings nicht völlig identisch, da der AT beispielsweise seinen Disk-Puffer in einem

anderen Bereich haben muß. |

MS-DOS-Erweiterungen 309

12.3.1.1: Die Amiga-Speicher- und I/O-Belegung

Zugriffs-- Amiga- AT-

art Offset Adresse Benutzung Größe

Byte 00000. .OFFFF A0000..AFFFF Disk-Puffer 64 Kbyte

Byte 00000. .O3 FFF Zugriff von AT-Karte nicht möglich

Byte 04000. .OFFFF D4000..DFFFF Disk-Puffer 48 Kbyte

Byte 10000..17FFF B8000..BFFFF Color-Video 32 Kbyte

Byte 18000..1BFFF D0000..D3FFF Parameter 16 Kbyte

Byte 1C000..1DFFF BO0000..B1FFF Mono-Video 8 Kbyte

Byte 1E000..1FFFF 00000. .003FF VO 1 Kbyte

Word 20000. .2FFFF A0000.. AFFFF Disk-Puffer 64 Kbyte

Word 20000. .23FFF Zugriff von AT-Karte nicht möglich

Word 24000. .2FFFF D4000..DFFFF Disk-Puffer 48 Kbyte

Word 30000..37FFF B8000..BFFFF Color-Video 32 Kbyte

Word . 38000..3BFFF D0000..D3FFF Parameter 16 Kbyte

Word -3C000..3DFFF B0000..B1FFF Mono-Video 8 Kbyte
Word .3E000..3FFFF 00000..003FF VO 1 Kbyte

Graphic 40000..4FFFF A0000..AFFFF Disk-Puffer 64 Kbyte

Graphic 40000..43FFF Zugriff von AT-Karte nicht möglich

Graphic 44000..4FFFF D4000..DFFFF Disk-Puffer 8 Kbyte

Graphic 50000..57FFF B8000..BFFFF Color-Video 32 Kbyte

Graphic 58000..5BFFF D0000..D3FFF Parameter 16 Kbyte

Graphic 5C000..5D FFF B0000..B1FFF Mono-Video 8 Kbyte

Graphic S5E000..SFFFF 00000. .003FF VO 1 Kbyte

7E000..7FFFF 00000. .003FF VO 1 Kbyte

Die AT-Speicher- und I/O-Belegung

Zueriffs- PC- Amiga-

art Offset Offset Benutzung Größe

Byte 00000. .003FF 1E000..1FFFF VO 1 Kbyte

Word 3E000..3FFFF

Graphik 5E000..5FFFF

7E000..7FFFF

Byte A0000..AFFFF 00000..OFFFF Disk-Puffer 64 Kbyte

Word 20000. .2FFFF

Graphik 40000. .4FFFF

Byte BO0000..B1FFF 1C000..1DFFF Mono-Video 8 Kbyte

Word 3C000..3DFFF

Graphik 5C000..5SDFFF

310 MS-DOS-Erweiterungen

Zugriffs- PC- Amiga-

art Offset Offset Benutzung Größe

Byte B8000..BFFFF 10000. .17FFF Color-Video 32 Kbyte

Word 30000..37FFF

Graphik 50000..57FFF

Byte D0000..D3FFF 18000..1BFFF Parameter 16 Kbyte

Word 38000..3BFFF

Graphik 48000..5BFFF

Byte D4000..DFFFF 04000. .OFFFF Disk-Puffer 64 Kbyte

Word 24000. .2FFFF

Graphik 44000..4FFFF

12.4: Die PC/AT-I/O-Register

Um beispielsweise eine Umleitung des Drucker-Portes vorzunehmen, ist es nützlich zu

wissen, welche Ein- und Ausgabeadressen man Amiga-seitig ansprechen muß, um eine

bestimmte PC/AT-IO-Adresse zu bekommen.

Bei der Entwicklung von PC-Karten stehen nur max. 512 von 1024 Ein- und Ausgabe-

Adreßleitungen zur Verfügung, wobei nur die AdreBleitungen AO bis A9 Verwendung

finden. Eine wichtige Rolle hierbei spielt die Adreßleitung A9.

A9 schaltet beim Zugriff auf diesen Ein- und Ausgabebereich zwischen Motherboard-

und Erweiterungskarten I/O-Bereich um. Ist A9 logisch low, d.h. gleich OV, so werden

nur die ersten 512 I/O-Portadressen auf dem PC-Motherboard aktiviert. Ist A9 logisch

high, d.h. +5V, stehen die restlichen 512 Portadressen für Erweiterungskarten zur Ver-

fügung. Die übliche PC/AT-Belegung des I/O-Bereiches:

Ein-/Ausgabeadresse

(1/O in Hex) AY Funktion

0000 ... OO1F 0 DMA-Controller #1

0020 ... 003F 0 Interrupt-Contoller (Master)#1

0040 ... OOSF 0 Zähler/Zeitgeber

0060 ... O06F 0 Systemregister

0070... 007F 0 Real-Time-Clock

0080 ... O09F 0 DMA-Seitenregister/NMI Mask

00A0...00BF 0 Interrupt-Controller (Slave) #2

00C0 ... OODF 0 DMA-Controller #2

00F0 0 Clear 8087/80287 Busy
O0F1 0 Reset 8087/80287

OOF8 ... OOFF 0 8087/80287 Math Co-Prozessor

0100 ... OLEF 0 nicht spezifiziert

MS-DOS-Erweiterungen 311

(VO in Hex) A9 Funktion

O1FO ... O1F8 0 Festplatten-Controller

0200 ... 0207 1 Game-Port

0278 ... 027F 1 zweiter Drucker

O2F8 ... O2FF 1 zweite serielle Schnittstelle

0300 ... O31F 1 Prototypkarte

0329 ...032F 1 Festplatten-Controller

0378 ... 037F 1 Parallel-Port/Drucker

Q3B0.,.03BF 41 Monochromadapter/Drucker

03D0...03DF 1 Farbgrafikkarte

O3FO ... 03F7 1 Floppy-Controller

O3F8 ... O3FF 1 serielle Schnittstelle

Hier nun die wichtigsten Register im einzelnen:

PC/AT

VO Offset/Basisadr.

Adr. Interface Amiga Status Kommentar

Systemregister:

060 1E41F T7E41F W Keyboard Daten

061 1E0OSF 1EOSF W System-Register

062 1E03F T7EOS3F W System-Status

serielle Schnittstelle:

2F8 1E07D 7E07D W COM2Sende Daten

2F8 1E09D 7E09D R _COM2 Empfang Daten

2F8 1E09D 7E09D R COM2ResetIRO3_b

2F9 1EOBD 7EOBD W COM 2 Interruptkontrolle

2F9 1EODD 7EODD R COM2 Interruptkontrolle

2FB 1E07F 7EO7F R/W COM2 Divisor Latch (LSB)

2FB 1E07F 7EO7F R COM2 Interrupt Ackn.

2F9 1E09F 7EO9F R/W COM2 Divisor Latch (MSB)

2FA 1EOFF 7EOFF R COM2 Interrupt bestätigen

2FA 1E0IF 7EOIF W COM2 dummy Adresse

2FB 1E11F 7EI1IF W COM2 Line-Control

2FB 1E01F 7EOIF R = COM2 dummy Adresse

2FC 1E13F 7EI13F W COM2 Modem-Control

2FC 1E01F 7EOIF R COM2 dummy Adresse

2FD 1E15F 7EISF R COM2 Line-Status

2FD 1E01F T7EOIF W COM2 dummy Adresse

2FE 1E17F 7EI7F R COM2 Modem-Status

2FE 1E01F 7EOIF W COM2 dummy Adresse

2FF 1E0IF 7EOIF R/W COM2 dummy Adresse

312 MS-DOS-Erweiterungen

Adr. Interface Amiga Status Kommentar

Printer:

378 1E19F 7EI9F R/W LPT Printer Daten

379 1E1BF 7EIBF R LPT 1 Status

379 1E1BF 7E1BF R ~~ LPT1 Reset IRQ7

379 1E19F 7E19F W ~ LPT1 Interruptkontrolle

Bit 6 = 1 Interrupt ein

Bit 6 = 0 Interrupt aus

37A 1E1DF 7EIDF W ~~ LPT1 Kontrolle

37A 1E19F 7EI19F R: LPT1Kontrolle

Mono CTR:

3B0 1E1FF 7EI1FF W MONOCRT ’Adr. Indexregister

3B0 1E01F 7EOI1F R MONO Reset IRQ3_a |

3B2 1E1FF 7EIFF W MONOCRT Adr. Indexregister

3B2 1E01F T7EOI1F R MONO dummy Adresse

3B4 1E1FF 7EIFF W MONOCRT Adr. Indexregister

3B4 1E01F 7EOIF R = MONO dummy Adresse

3B6 1E1FF 7E1FF W MONOCRT Adr. Indexregister

3B6 1E01F 7EOIF R MONO dummy Adresse

3B1 Adressen teilen R/W MONO CRT Datenregister

3B3 sich hier, nach- R/W MONO CRT Datenregister

3B5 dem in das letzte R/W MONO CRT Datenregister

3B7 geschrieben Index R/W MONOCRT Datenregister

auf:

1E2A1 7E2A1 Index = 00

1W2A3 7E2A3 Index = 01

1E2A5 7E2A5 Index = 02

1E2ZA7 7E2A7 Index = 03

1E2A9 7E2A9 Index = 04

1E2AB 7E2AB Index = 05

1E2AD 7E2AD Index = 06

1E2AF 7E2AF Index = 07

1E2B1 7E2B1 Index = 08

1E2B3 7E2B3 Index = 09

1E2B5 7E2B5 Index = 0A

1E2B7 7E2B7 Index = 0B

1E2B9 7E2B9 Index = 0C

1E2BB 7E2BB Index = 0D

1E2BD 7E2BD Index = 0E

1E2BF 7E2BF Index = OF

3B8 1E2FF 7E2FF W MONO Kontrollregister

MS-DOS-Erweiterungen 313

Adr. Interface Amiga Status Kommentar

3BA were wee R MONOStatusregister

Bit 0 = H-Sync (18KHz)

Bit 3 = V-Sync (50 Hz)

3BA 1E0IF 7EOIF W dummy Adresse

3BB 1E01F 7EOIF R/W dummy Adresse

3BC 1E01F 7EOIF R/W dummy Adresse

3BD 1E01F 7EOIF R/W dummy Adresse

3BE 1E01F 7EOIF R/W dummy Adresse

3BF 1E01F 7EOIF R/W dummy Adresse

Color CRT:

3D0 1E21F 7E21F W COLOR CRT Adr. Indexregister

3D0 1E01F 7EOIF R dummy Adresse

3D2 1E21F 7E21F W COLOR CRT Adr. Indexregister

3D2 1E01F 7EOIF R _dummy Adresse

3D4 1E21F T7E2IF W COLOR CRTAdr. Indexregister

3D4 1E01F 7EOIF R dummy Adresse

3D6 1E21F 7E21F W COLORCRT Adr. Indexregister
3D7 1E01F T7EO0I1E R dummy Adresse

3D1 Adressen teilen R/W COLOR CRT Datenregister

3D3 sich hier, nach- R/W COLOR CRT Datenregister

3D5 dem in das letzte R/W COLOR CRT Datenregister

3D7 geschrieben Index R/W COLOR CRT Datenregister

auf:

1E2C1 T7E2C1 Index = 00

1W2C3 7E2C3 Index = 01

1E2C5 7E2CS Index = 02

1E2C7 TE2C7 Index = 03

1E2C9 = 7E2C9 Index = 04

1E2CB 7E2CB Index = 05

1E2CD 7E2CD Index = 06

1E2CF 7E2CF Index = 07

1E2D1 7E2D1 Index = 08

1E2D3 7E2D3 Index = 09

1E2D5 7E2D5 Index = 0A

1E2D7 7E2D7 Index = 0B

1E2D9 7E2D9 Index = 0C

1E2DB 7E2DB Index = 0D

1E2DD 7E2DD Index = 0E

1E2DF 7E2DF Index = OF

3D8 1E23F 7E23F W COLOR Kontrollregister

314 MS-DOS-Erweiterungen

Adr. Interface Amiga Status Kommentar

3D8 1E01F 7EOIF R dummy Adresse

3D9 1E25F 7E25F W COLOR Selectregister

3D9 1E01F 7EOIF R dummy Adresse

3DA 0... mm R COLOR Statusregister

Bit 0 = H-Sync (18 KHz)

Bit 3 = V-Sync (50 Hz)

3DA 1E01F 7EOIF W dummy Adresse

3DD 1E29F 7E29F W Display Systemregister

3DD 1E01F 7EOIF R dummy Adresse

3DE 1E01F 7EOIF R/W dummy Adresse

3DF 1E01F T7EOIF R/W dummy Adresse

8 wichtige Register haben wir in dieser Tabelle absichtlich ausgelassen, da sie nur von

der Amiga-Seite zugreifbar sind: |

Offset/Basisadr.

Amiga-Register Interface Amiga Status

Amiga Interrupt Status 1FFF1 7FFF1 R

PC Interrupt Status 1FFF3 /FFF3 "R

PC Reset unwirksam machen 1FFF5 7FFF5 R

Mode Register 1FFF7 7FFF7 R/W

Interrupt Mask 1FFF9 7FFF9 R/W

PC Interrupt Control 1FFFB 7FFFB R/W

Kontrollregister 1FFFD /FFFD R/W

Keyboard-Register 1FFFF 7FFFF R/W

Die Register im einzelnen:

AMIGA Interrupt Status (IFFF1/7FFF1 Read)

Wenn dieses Register gelesen wird, erhält man die augenblicklichen Interrupt-Ereig-

nisse des PCs. Das Ereignis war gültig, wenn das jeweilige Bit gesetzt wurde. Nach dem

Lesen dieses Registers werden alle Bits auf 0 gesetzt und das Interrupt-Flag wird

negiert. Hier die Interrupt-Bits im einzelnen:

Bit Nr. Funktion

0 Mono Video RAM

1 Color Video RAM

2 Mono CRT

3 Color CRT

4 Keyboard Register

5 LPT1 Kontrollregister

6 COM2 Dataregister

7 PC System Status Reset

MS-DOS-Erweiterungen 315

PC Interrupt Status (1FFF3/7FFF3 Read)

Beim Lesen dieses Registers erhält man die augenblicklichen Interrupts des PCs. Da

PC-seitig nur vier Interrupt-Requests möglich sind, IRQ1, IRQ3_a, IRQ3_b, IRQ7,

wird nur das untere Nibble, d.h. die untern vier Bits benötigt:

Bit Nr. Funktion

0 IRQO1 (Keyboard Interrupt)

1 IRQ3_a

2 IRO3_b

3 IRQ7

4-7 werden nicht benötigt und sind immer

High, d.h. +5V Negate PC Reset (1FFF5/7FFF5SRead)

Wenn auf diese Adresse zugegriffen wird, wird die PC-Reset-Leitung negiert, was ein

Starten der PC-Boot-Procedure bewirkt.

Mode Register (AFFF7/7FFF7 Read/Write)

Mit diesem Register kann der Anwender beim Lesen Systeminformationen erhalten,

bzw. beim Schreiben eine neue Systemkonfiguration setzen. Beim SideCar ist dies nicht

möglich, da hier die Konfiguration mit Dip-Schaltern auf dem PC-Motherboard einge-

stellt wird.

Lesezugriff auf das Mode-Register:

Bit Nr Name Funktion

0 SERON serielle Schnittstelle ein/aus

1 PARON parallele Schnittstelle ein/aus

2 KEYON _Keyboard-Schnittstelle ein/aus
3 MON Mono Display ein/aus

4 COLOR Color Display ein/aus

5 SEL1 bestimmt PC/AT-Speicher-Bank

6 SEL2 bestimmt PC/AT-Speicher-Bank

7 PC/AT Low = AT-Modus, High = PC-Modus

Schreibzugriff auf das Mode-Register:

Bit Nr. Name . Funktion

0 SERON serielle Schnittstelle einschalten

1 PARON parallele Schnittstelle einschalten

2 KEYON _Keyboard-Schnittstelle einschalten

3 MON ermöglicht MonoDisplay-Emulation

/

316 MS-DOS-Erweiterungen

Bit Nr. Name Funktion

4 COLOR ermöglicht ColorDisplay-Emulation

5 SEL1 bestimmt PC/AT-Speicher-Bank(s.u.)

6 SEL2 bestimmt PC/AT-Speicher-Bank

7 /STOPCLK HIGH = einschalten der Clock für Video-Wiederholung

und Keyboard

LOW = ausschalten

SEL1 SEL2 AT-Speicher PC-Speicher

0 0

0 1 A0000..AFFFF A0000..AFFFF

1 0 D0000..DFFFF D4000..DFFFF

1 1 E0000..EFFFF

Interrupt Mask(1FFF9/7FFF9 Read/Write)

Dieses Register dient zum Ausmaskieren von PC-Interrupts. Ausmaskiert wird der

jeweilige Interrupt, dessen Bit auf 1 steht.

Bit Nr. Interrupt

0 Mono Video RAM

1 Color Video RAM

2 Mono CRT

3 Color CRT

A Keyboard-Register

5 LPT1 Kontrollregister

6 COM? Data-Register

7 PC System Status Reset

PC Interrupt Control (1FFFB/7FFFB Read/Write)

Dieses Register dient zur Kontrolle der PC-Interrupts. Ein PC-Interrupt kann durch

Setzen einer 1 in das jeweilige Interrupt-Bit giiltig gemacht werden.

Bit Nr. Interrupt

0 KBSTART

1 IRQ3 a

2 IRO3 b

3 IRQ7

Kontroll-Register(1FFFD/7FFFD Read/Write)

Mit diesem Register kann der Anwender allgemeine Kontrollfunktionen ausüben. Die

jeweilige Kontrollfunktion wird ausgeführt, wenn eine 0 in das jeweilige Bit geschrie-
ben wird.

MS-DOS-Erweiterungen 317

Bit Nr. Funktion

0 Ermöglicht den generellen Interrupt zum Amiga

1 Verhindert den generellen Interrupt zum Amiga

2 Behauptet den PC-Reset

3 Negiert alle PC-Interrupts, ausgenommen den Keyboard-Interrupt

4 Setzt Printer BUSY (379 Hex bit 7) zurück. Gesetzt werdenkanner durch

das Schreiben einer 1 in das BitO der I/O-Adresse $37 A Hex von der

PC-Seite aus.

Keyboard Register (1IFFFF/7FFFFRead/Write)

Dieses Register dient zum Einstellen der Keyboard- Emulation. Hierzu muß ein Cha-

rakter in dieses Register geschrieben werden und in das PC-Interrupt-Kontroll- Regi-

ster Bit 0 KBSTARTeine 1.

318 RAM-Erweiterungen

Kapitel 13

RAM-Erweiterungen
7 |

Der Amiga ist leider zu einer Zeit entwickelt worden, zu der RAMs (Speicherbau-

steine) noch recht teuer waren. Man ging von einer Grundkonfiguration von 256

Kbyte, die auf 512 Kbyte erweiterbar war, aus. Fiir professionelle Anwendung stellte

sich der maximal verfügbare Speicher als zu klein heraus. Multitasking, faszinierende

Grafiken und ein fetziger Sound brauchen nunmal sehr viel Speicher. So wurden die

neuen Amigas mit mehr Speicher ausgestattet (Amiga 500 mit 512 Kbyte, Amiga 2000

mit 1Mbyte), der entsprechend erweiterbar ist.

Da mehr Speicher das A und O für Freaks, Programmierer und Hobbybastler ist, sollte

dieses Kapitel nicht unter den Tisch fallen. Schon zu oft erschien die allgemein

bekannte »Guru Meditation«, die den fehlenden Speicher anzeigte. Für Amiga 500 und

Amiga 1000 sind Erweiterungen im unteren Bereich (256-Kbyte und 768-Kbyte-Erwei-

terungen für A1000 und 512 Kbyte für A500) sehr einfach realisierbar, da hier alle wich-

tigen Signale vom Motherboard bereitgestellt werden.

Höhere RAM-Aufrüstungen sind sehr komplex, da hier eine aufwendige Dekodier-

oder Refresh-Logik benötigt wird. Für dynamische RAMs gibt es inzwischen RAM-

Controller-ICs, die die nötigen Refresh-Signale erzeugen, sie sind aber im Vergleich zu

einer »selbstgestrickten« Refresh-Logik sehr teuer und schwer erhältlich. Auch hier

haben wir in diesem »RAM-Kapitel« ein Beispiel beigefügt. Zuguterletzt seien noch

die statischen RAMs erwähnt. Hier sei aber gleich gesagt, diese Chips sind sehr teuer

(32K8 ca. 20 DM das Stück!!!), so daß recht leicht bei der Anschaffung einer solchen

RAM-Aufrüstung Konflikte mit dem Geldbeutel auftreten können.

13.1: Statisch oder dynamisch?

Die Frage, ob statische oder dynamische RAMs verwendet werden sollen, ist nicht nur

eine Frage des Geldes. Es ist jedoch nicht zu leugnen, daß statische RAMs um ein Viel-

faches teurer sind als dynamische. Oft entscheidet das Einsatzgebiet über die Verwen-

dung verschiedener RAM-Typen. Wird eine Speichererweiterung mit RAMs benötigt,

die leicht gegen EPROMs austauschbar sind, so werden sicherlich statische RAMs ein-

RAM-Erweiterungen 319

gesetzt. Wird hingegen viel Speicher auf kleinem Raum benötigt, finden dynamische

RAMs Verwendung.

Um nun eine RAM-Aufrüstung für einen Amiga anfertigen zu können, muß zunächst

ein Grundwissen über den Aufbau statischer und dynamischer RAM-Chips vorhanden

sein, da sie unterschiedliche »Ansprech-Logiken« benötigen.

Die bedeutendsten Speicherprinzipien, die sich durchgesetzt haben, sind, wie bisher

schon erwähnt, statische und dynamische RAMs. In den Anfangszeiten des Computer-

zeitalters gab es noch mehr Speicherprinzipien, so z.B. Ferritkern-Speicher. Der Platz-

bedarf war jedoch im Vergleich zu heutigen enorm groß und die Fabrikationskosten um

ein Vielfaches teurer als heute.

Eine statische Speicherzelle besteht im Vergleich zur dynamischen aus einer bistabilen

Kippstufe, der man zwei Zustände zuordnen kann (0 und 1). Diese wird durch zwei

rückgekoppelte Inverter nachgebildet. Als Lastwiderstände werden aus Platzgründen

zwei Transistoren verwendet. Die Zeilenauswahl findet wiederum über zwei Transisto-

ren statt. Diese können über eine Zeilenauswahlleitung leitend geschaltet werden. An-

hand des Potentialunterschiedes kann man dann erkennen, ob eine Information anliegt

(0 oder 1). Beim Beschreiben dieser Zelle wird über diese Zeilenauswahlleitung die ge-

wünschte Information zugeführt, die danach einen entsprechenden logischen Zustand

annimmt (0 oder 1). Abbildung Z 13.1-1 zeigt eine solche Speicherzelle im prinzipiellen

Aufbau. Der Nachteil bei dieser Speicherzelle liegt darin, daß für den Aufbau viele

Transistoren benötigt werden und daß jeweils über einen Zweig der Kippstufen ständig

Strom fließt, was den Leistungsbedarf statischer RAMs stark in die Höhe treibt. Vorteil

ist der, daß der gespeicherte Zustand so lange erhalten bleibt, bis die Speicherzelle

spannungslos ist. Es wird keine externe Auffrischung der Zelle benötigt. Geschwindig-

keitsverluste im Vergleich zu dynamischen bestehen kaum, zumal die neueste Genera-

tion statischer RAMs durch Einsatz des Materials Galliumarsenid bei Verwendung der

Molekularstrahl-Epitaxie-Verarbeitung extrem schnell ist.

320 RAM-Erweiterungen

Spaltenauswahl

1 4 j F 12

15 T6

Ba nl

i af IF m

0

Zeilenauswahl ~~

Statischer Speicher

Z 13.1-1: Dieses Bild zeigt eine statische Speicherzelle im prinzipiellen Aufbau.
Es werden sehr viele Bauelemente zum Speichern einer Information benötigt

Dynamische Speicherzellen sind sehr einfach aufgebaut. Hier werden im Vergleich zu

statischen RAMs sehr wenige Bauteile benötigt, was den Preis und den Platzbedarf

stark reduziert. Im Prinzip bestehen sie aus einer einzelnen Transistorzelle. Bei dieser

Zelle wird die Information in einem Kondensator gespeichert und je nach Polarität in

einem Potentialsprung auf der Datenleitung dargestellt (0 oder 1), wenn der zugehö-

rige Transistor über eine Zeilenauswahlleitung leitend geschaltet ist. Abbildung Z 13.1-

2 zeigt diesen Aufbau. Nachteil ist jedoch, daß die Information (0 oder 1), die hier

durch die Kondensatorladung dargestellt wird, aufgrund der unvermeidbaren Leck-

ströme periodisch regeneriert werden muß. Diese Regenerierung, auch bezeichnet als

Refreshing, erfolgt im RAM-Chip durch Lesezyklen auf den Refresh-Adressen. Ex-

tern wird also eine Schaltung benötigt, die einen Spalten- und einen Zeilenrefresh er-

zeugt, damit die gespeicherte Information nicht verloren geht. Der große Vorteil liegt

jedoch im sehr einfachen Aufbau einer Speicherzelle, wodurch eine sehr hohe Speicher-

kapazität auf kleinstem Raum verwirklicht werden kann. Derzeit steht die Entwick-

lung bei

4-Mega-Bit-Chips und 16-Mega-Bit-Chips sind schon als Laborversionen zu bestau-

nen. Zusätzlich zu den nötigen Refresh-Zyklen müssen die zugeführten AdreBleitun-

gen gemultiplext werden, da zum Ansprechen der Speicherzellen jeweils Zeilenadreß-

bits und Spaltenadreßbits benötigt werden.

RAM-Erweiterungen 321

Dynanischer Speicher

Zeilenauswahl

Tl

Uss Datenleitung

Z 13.1.2: Dieses Bild zeigt den Aufbau einer dynamischen Speicherzelle.
Der einfache Aufbau ermöglicht eine hohe Speicherdichte auf kleinstem Raum

13.2: Statische RAMs am Amiga

Statische RAMs benötigen aufgrund ihres internen Aufbaus keine Refresh-Logik. Ein

Multiplexen der Adreßleitungen enfällt. Die jeweiligen Speicherzellen können hier

direkt angesprochen werden. Dies erleichtert die externe Beschaltung ungemein. Zum

Ansprechen dieser RAMs wird somit nur eine Chip-Select- und Write/Output-Enable-

Logik benötigt.

Zum Anschluß an den Amiga eignen sich im Prinzip alle statischen RAMs, die eine Zu-

griffszeit von höchstens 150 ns besitzen. Besser geeignet sind allerdings Chips mit 120

ns. Die Zugriffszeit berechnet sich aus dem Systemtakt von 7.14 Mhz und der Formel F

(die Frequenz) = 1/t (Zeit). Die Zeit lautet also t = 140 ns. Speicher mit einer Zugriffs-

zeit von 150 ns sind also nur bedingt geeignet, da hier für eine korrekte Funktion nicht

hundertprozentig garantiert werden kann. Von Vorteil ist ebenfalls, wenn statische

RAMs xxKBit mal 8, also beispielsweise 32 K 8, organisiert sind, da hier der Anschluß

erheblich vereinfacht wird. Ein einzelnes RAM-IC kann so ein komplettes Byte spei-

chern, während ein Byte bei dynamischen Rams auf 8 Bausteine verteilt ist. Für unsere

statische RAM-Aufrüstung haben wir uns für 32 Kbit mal 8 RAMs entschieden. Im

Fachhandel sind sie unter der Bezeichnung 20256 bzw. 60256 erhältlich. Sie besitzen 15

Adreß-,8 Daten- und 3 Kontrollanschlüsse. Hier eine Pinbelegung und ein Funktions-

diagramm dieser RAM-Bausteine:

322 RAM-Erweiterungen

Pinbelegung statisch RAM 68256 32 K 8

=

ho

w
e

O
O

J

Oy

O
F

o
m

O
O

RS

o
o
 28

26
ad
a4
23
22
al
28
19
18
17
16
13

— WCC

—— Al3
— AB
— Ag
— All

— OF
— Ald

— cs
— 108
— 107
— 106
-— 09
—— 104

AB bis Ald : Adnesseingang
M
OE
cs
101-108

ı Write Enable (Schreiben erlaubt)
: Output Enable (Ausgabe erlaubt)
: Chip Select (Chip Selektierung)
: Daten 10

Z 13.2-1: Die Pinbelegung der 32 K 8 statischen RAMs

Aa —
Al —
Aa —
B—
M—

AS —
Ab —
—
Ag —
Ay —
Al@a—
Ali —
AL2—
Al3—
Ala—

X-Dekoder

A
r
e

s
s

-
—
P
u
t

£
e
r

Funktions-Diagranm statisch RAM 62256 32K x 8

X-Dekoder

| Kontroll-
_| Schal threis

Speicher-

Zellen

64x8 %

Spal ten-Dekoder

1/0 Puffer

Z 13.2-2: Dieses Bild zeigt den internen Aufbau und die Pinbelegung der 32 K x 8 statischen
RAMs. Es werden 15 Adreß-, 3 Kontroll- und 8 Datenleitungen benötigt

Die 15 Adreßleitungen werden intern zu Reihen- und Spaltenadreßleitungen deko-

diert, so daß alle Speicherzellen zu 8 Bit ausgelesen werden können. Als Kontrolle die-

nen 3 Signale Chip-Select, Output-Enable und Write-Enable. Chip-Select dient dazu,

den Speicherbaustein »einzuschalten«, es ist low-aktiv. Output-Enable wird benötigt,

RAM-Erweiterungen 323

um die gewünschten Informationen aus dem statischen RAM auslesen zu können,

hierzu muß dieser Anschluß low-aktiv sein. Soll eine oder mehrere Speicherzellen

beschrieben werden, so muß der Anschluß Write-Enable low-aktiv sein.

Möchten wir eine 512 Kbyte statische RAM-Aufrüstung entwickeln, so werden 8

RAM-Chips für die oberen 256 Kbyte und 8 weitere für die unteren 256 Kbyte benötigt.

Es werden dann insgesamt 16 RAM- Chips, sowie 16 Chip-Select-, 16 Output-Enable-

und 16 Write-Enable-Leitungen benötigt. Die Chip-Select-Leitungen ergeben sich aus

einer Dekodierung der Adreßleitungen, damit die RAM-Chips bei einer bestimmten

Adresse angesprochen werden. Output- und Write-Enable erhält man, indem man die

Chip-Select-Leitungen mit dem R/W-Signal des Mikroprozessors verknüpft. Die benö-

tigten Adreßleitungen können direkt an die Adreßleitungsanschlüsse des RAM-ICs an-

geschlossen und von Chip zu Chip durchgeschleift werden. Die Datenleitungen müssen

hingegen zunächst auf einen Bustreiber geführt werden, der die Richtung der Daten

steuert, womit ein möglicher Busfehler (zusammentreffen mehrer Daten von verschie-

denen Baugruppen) vermieden wird. Nach diesem Bustreiber können die Datenleitun-

gen von Chip zu Chip durchgeschleift werden. Für unsere Schaltung benötigen wir 2

Bustreiber, je einen für die oberen und einen für die unteren 8 Daten-Bits. Sie werden

mit der höchsten benötigten Adreßleitung, dem R/W-, sowie dem LDS- und UDS-Si-

gnal gesteuert. |

Ausgelegt haben wir unsere Schaltung für den Bereich ab 1 Mbyte. Wem dies nicht recht

ist, kann die höchste Adreßleitung in diesem Fall A20, ändern. Die Adressendekodie-

rung der RAM-Chips übernehmen zwei 3-Bit-Binärdekoder mit einer Enable-Schal-

tung. Einer der Dekoder bestimmt das Chip-Select deroberen RAM-Bank, der andere

die der unteren. Gesteuert werden die Dekoder durch /LDS für die untere,

/UDS für die obere, sowie den Adreßleitungen Al9 und A20.

324 RAM-Erweiterungen

i
Alb 2

je +
)

j
e
»

LY

=]

Ge

o
w

a

W
4
E
F

1
3
5
2

Yo
Yi
Ya
Y3
Ya
bt)
Y6
Y?

15 CR
1a Cl

Dekodierlogik fuer 512 KByte statisch RAM/EPROM Erweiterung

Chip-Select

Ais ——cC
A19 Fol Goa
Aza —cı
is ol Gor

W
a
r

L
o
S

fuer obere
32 K 8
statisch
RAM / EPROM

Chip-Select
fuer untere
32K8
statisch
RAM / EPROM

Z 13.2-3: Die Dekodier-Schaltung für 512 Kbyte statische RAM/EPROM

Die Ausgänge des Dekoders sind low-aktiv. Der 3 zu 8 Demultiplexer wird durch /LDS

für die unteren Daten, /UDS für die oberen Daten, sowie A19 und A20 gesteuert. Da-

bei enstehen folgende Chip-Select-Signale bei entsprechender Speicheradresse:

Chip-Select Adresse dezimal

CS1 1 048 576-1 114 112

CS2 1 114 112-1 179 648

CS3 1 179 648-1 245 184

CS4 1 245 184-1 310 720

Die so erhaltenen 64 Kbyte Bank-Chip-Select-Signale werden durch /LDS bzw. /UDS

nochmals aufgeteilt. Somit stehen 16 Signale zur Verfiigung, 8 fiir die oberen 32 Kbyte-

Chips, 8 weitere fiir die unteren 32 Kbyte-Chips, sie miissen jeweils einzeln an die jewei-

ligen RAM-ICs geführt werden, so daß jedes IC sein Chip-Select-Signal erhält. Je ein-

mal wird fiir den RAM-Chip das /OE (output enable) und/WE (write enable) benötigt,

es kann also nach einer Aufbereitung durchgeschleift werden. Aufbereitet muß nur das

Lesesignal, da hier nur bei Low-Signal eine Umschaltung auf Lesen stattfindet. Hier ge-

Chip-Select Adresse dezimal

CS5

CS6

CS7

CS8

nügt ein Invertieren des R/W-Signals.

1 310 720-1 376 256

1 376 256-1 441 792

1 441 792-1 507 328

1 507 328-1 572 864

RAM-Erweiterungen 325

sl2 KByte statisch RAM/EPROM

D8-D15

RA —
| Yo E \ 7

_ oy |

= a Ne D8-D15 ‘ |D8-Di5 ,

Al-A15 wa I

' ‘
CSUB-CSULS ce

UDS oo. a mm | | a
A208 }
pe a

M_)—) | nt

IDs
RM - DIR ENABLE Yo E 2 m

RA en
WE i uy || Deb? ¢ | De-D?

AI-AL5 ly
a N
CSLO-CSU7 og 9

Z 13.2-4: Der Hauptteil der 512 Kbyte statisch RAM/EPROM Erweiterung

326 RAM-Erweiterungen —

13.3: Dynamische RAMs am Amiga

Der Bau dynamischer Speicherkarten für den Amiga ist etwas problematischer, da hier

die Refresh-Signale /CAS und /RAS erzeugt und die Adreßleitungen gemultiplext wer-

den müssen. Der schaltungstechnische Aufwand ist dabei größer als bei statischen

RAM-Erweiterungen. Es empfiehlt sich hier, die Ansteuerungs-Logik in ein PAL zu

brennen. Dies spart Platz und läßt Erweiterung sehr einfach zu.

Die Adreßleitungen werden meistens, bei kleinen RAM-Erweiterungen mit 2 zu 1 Da-

tenselektoren gemultiplext. So auch bei den A 1000- und A2000-Modellen. Verwendung

finden bei einem Multiplexen der Adreßleitungen des Speicherbereiches $0 bis

$1FFFFF zwei 74F157. Zusätzlich besitzt dieser Chip noch eine Steuerschaltung, mit

der das Multiplexen gesteuert werden kann. Selektiert wird der Eingang A bei Low-

Pegel, bei High-Pegel der Eingang B des Multiplexers. Zum Selektieren wird der /C4-

Takt des Systems verwendet, der sich nach der Version, ob PAL oder NTSC, richtet.

»Enabelt« wird der Multiplexer mit einem Signal, das sich aus der Abfrage externer

Signale, ob DMA-Zugriff oder nicht, und der Speichergrenze, hier $0 bis $1FFFFE,

zusammensetzt: |

T4F257

Alb 10- -9 RAT
Alk 13-4],
AU Sy 12 RAS
Ag G —

AS il- -4 RAZ
AG 0 14-||p

Ag 2- -7 RAG
Al 5-

C4 Select 1— ——— gemultiplexte
/RE Strobe 15 Addressleitungen

: fuer 64 K 4

Al3S 137JA |

AlZ 3- -12 RA4

Ald 6

AT 11-7 —4 RAS

Ad 2-718

Az 37 . -7 RAL

4F257

Z 13.3-1: Das Multiplexen von Daten

RAM-Erweiterungen 327

Das Erzeugen der Refresh-Signale /CAS und /RAS ist etwas aufwendiger und von dem

jeweiligem RAM-Typ abhängig. Meistens wird so verfahren, daß ein Signal fest durch

einen Frequenzteiler erzeugt wird, das andere durch Verknüpfen der möglichen

Adresse und verschiedener anderer Signale. Das letztere Signal wird dann in zwei

Signale, eines für die oberen Datenbits und eines für die unteren Datenbits aufgeteilt.

Somit entstehen zwei RAM-Bänke. Diese Dekodierung und Signalgenerierung beim

A1000 und A2000 übernehmen zwei PALs. Das eine PAL, PALEN genannt, über-

nimmt die Enable-Schaltungen, das andere, PALCAS, ist für die Signal-Generierung

zuständig. Beim A500 und B2000 wird die Signal-Generierung durch die FatAgnus

übernommen. Signale zur Erweiterung des RAM-Bereiches sind bei den Amigas,

außer dem B2000, der die max. 1 Mbyte schon besitzt, vorhanden. Man benötigt hier

nur die RAM-Chips und das Know-how der Verdratung. Eine weitere, recht einfache,

aber nicht billige Lösung, ist die Verwendung eines DRAM-Controller-Chips.

13.3.1: Mehr DRAM per Kontroll-Chip

Relativ einfach und ohne viel Aufwand sind RAM-Erweiterungen mit RAM-Kontroll-

Chips zu bauen. Der RAM-Kontroller, z.B. der THCT4502 für 512 Kbyte, erledigt hier-

bei alle wichtigen Aufgaben, die für die Generierung der Refresh-Signale und zum

Multiplexen der Adreßleitungen benötigt werden.

Eingeschaltet wird dieser Kontroller durch das höchste Adreßbit, welches die Start-

adresse des RAM-Bereichs bestimmt. Extern muß eine Steuerung zum Schalten der

Datenbus-Treiber in eine obere und untere RAM-Bank hinzugefügt werden. Weiterhin

wird ein DTACK-Generator benötigt, der dem MC68000-Prozessor mitteilt, daß die

Daten auf dem Bus verfügbar sind, bzw. von dem RAM-Controller assimiliert wurden.

Für den Bau einer DRAM-Aufrüstung ist jedoch nach unserer Meinung ein diskreter

Aufbau mit Steuerungs-PAL lohnenswerter und flexibler, denn ein solcher DRAM-

Kontroller ist ersteinmal sehr schwer in einem Elektronik-Laden zu erhalten, und eine

aufgebaute Platine benötigt sehr viel Platz.

328 RAM-Erweiterungen

Chip-Select RU

41256
Tar 245 Reset

RAM Bank 1 EN DIR

CAS, /RASB] u if Ä

Adressleitungen AL-A19 MAB-MAB N \ pi

8 | aie | ee N " d

| & fe

Systentakt, Reset, AS t |
— |

U

ChipSelect — . o | : | pe-pis
: _— | a

Chipselect 1 || | I m
Logik MAB-HAB rl "

/CAS, /RAS1 | 8 | N

RAM Bank2 EN DIR

Chip-Select RU

Z 13.3.1-1: Der Aufbau einer DRAM-Erweiterung mit dem THCT4502 im Blockdiagramm

13.3.2: Die 256-Kbyte-RAM-Erweiterung des A1000

Im Gegensatz zu größeren RAM-Erweiterungen, ab dem Bereich von 1 Mbyte, sind

Erweiterungen im unteren Bereich leicht zu entwickeln. So wird der Amiga 1000 in

einer Grundausstattung von 256 Kbyte geliefert. Er ist intern maximal bis auf 1 Mbyte

erweiterbar. Durch ein RAM-Modul ist er sehr einfach um weitere 256 Kbyte erweiter-

bar, mit dem erst der Betrieb des SideCar und auch ein komfortables Arbeiten möglich

wird. Alle benötigten Signale, gemultiplexte Adreßleitungen, Refresh-Signale, sind an

den Modul-Port herausgeführt, wodurch der Selbstbau eines solchen RAM-Moduls

auch durch einen Laien sehr einfach nachvollzogen werden kann. Benötigt werden

hierzu acht 64 K4 DRAM-Chips mit einer max. Zugriffszeit von 150 ns, sowie vierzehn

39 OhmWiderstände. Abbildung Z 13.3.2-1 zeigt die Pinbelegung eines 64 K 4 DRAM-

Chip.

RAM-Erweiterungen 329

/E <1 ~ {8 + GND
M 742 I7+ DB
Mw 43 io - /CAS
{MW 14 iS - D2
/RAS 75 4+ A3
2 46 (9 - Ad
AL 7 12 - AS
AW -8 fi L AG
wo 49 {@+ AT

41464 - 15/12
64 K 4 RAM Chip

Z 13.3.2-1: Die Pinbelegung eines 64 K 4 DRAM-Chip

Die Widerstände werden in Reihe geschaltet und dienen so als Strombegrenzer für die

Refresh-, Steuer-, und gemultiplexten Adreßsignale. Die gemultiplexten Adreßsignale

werden nach den Widerständen einfach von RAM zu RAM durchgeschleift. Ebenfalls

geschieht dies mit dem /RAS-, Lese- und Schreibsignal. Die /CAS-Signale hingegen

werden auf die obere und untere RAM-Bank verteilt. Zwischen dem +5V- und dem

Masse-Anschluß des DRAM-Chips sollte jeweils noch ein 22 F Kondensator liegen. Er

dient zum Abfangen von Spannungsimpulsen bzw. Spannungseinbrüchen. Nun braucht

nur noch die Schaltung zusammengelötet zu werden. Der RAM-Modul-Stecker wird

nach dem Entfernen einer Abdeckung in der Mitte der Frontplatte sichtbar. Fertig ist

der 1/2-Meg-Amiga (siehe auch Bild 15 im Farbteil).

330 RAM-Erweiterungen

28 /CAS6L —— — FF/CASIL me ”
26 CASO a — | | DD/CASLU —umm-p we | |

a iis} CAS || zus || ASL aS | as || aS |] AAS | /CAS

V— IWC H wc HCC He 4 VCC | VEC + VCC Fee
23 /RAS— 5I/RAS 1 /RAS +1 /RAS H/RAS H/RAS H/RAS H/RAS RAS
AA ARR — AalnE + ME + ME ME HME HAE HME H ME
21 -mm— 13] A? A? tA? AT MA | A? A? A?
20 MM 12] AG 1 AG + Ab +1 AG + Ab | AG Ab +1 AG
19 — 11] A5 AS Ht AS HM A5 HAS H AS 1 A5 + AS
18 —mm— 10] A4 HAM A + AA + AA | Ad | Ad Aa
Vm- 943 HM Ag 3 3 NA 13 Ht Ag 3
HK -m- 7122 + AR | AD HA HA + AD H AZ HA
X 6] Al Hal Hal HA HAI HAL HAL Hal
Y- 14/A0 + AG + AG + AG 4 AG + Ag 4 Ag 4 Ag

8 x 39 Ohm |D3 D2 D1 DG) |D3 D2 DL DG) |D3 D2 D1 DA| | D3 D2 D1 DBI | D3 D2 DL DO! |D3 D2 Di DG! (D3 D2 D1 DA) D3 D2DL DAT

2 DLS |
B DIA
D D13
4 D2
6 Dil
F Die
Jpg
8 D8
9 97
L D6
N D5
12 D4
4 93
R p2
I Di
16 DB

zwischen +5¥ und GND je .22 Mykrofarad

Z 13.3.2-2: Das Schema einer 256-Kbyte-Erweiterung für den RAM-Modul-Port des Amiga
(Teil 1) j

13.3.3: 1-Meg-Amiga 1000

Der Amiga 1000 besitzt die Möglichkeit, sehr einfach und ohne großen technischem

Aufwand, das Grundgerät von 512 Kbyte maximalem Ausbau (256 Kbyte intern, 256

Kbyte RAM-Modul) nochmals um 512 Kbyte zu erweitern. Hierzu sind ein paar kleine

technische Tricks notwendig. Ein direkter Eingriff in das Gerät läßt sich dabei leider

nicht vermeiden. Dies bedeutet natürlich, daß alle Garantieansprüche erlöschen.

Dieser Eingriff sollte auch nur von Erfahrenen durchgeführt werden, die sich Ihrer

Sache sicher sind und genau wissen, was sie Ihrer Freundin antun. Spätestens dann,

wenn bei einem Guru ein Systemabsturz passiert, sollte die RAM-Aufrüstung entfernt

und nochmals neu aufgebaut werden. Benötigt für die Aufrüstung werden sechszehn 64

K 4-DRAM-Chips mit einer Zugriffszeit von höchstens 150 ns und acht 33-Ohm-

Widerstände, sowie möglichst eine ruhige Hand. Vor dem Eingriff sollte das Netzkabel

entfernt werden. Nach dem Abschrauben der Abdeckungen und dem Entfernen des

RAM-Erweiterungen 331

{ GND -| - GND A

a pi5 - > B4:B

a 4 ob tr cc

4 92 - FD D

5 Gnp -| [+ GND E

6 Dit - fF DIO F
7 ev -| - t¥ od

8 BB 1-2 Jd

9 50 - [+ GND K

am 4 fl L
1a -| FHV M
i2 Mm + - DS ON
13 GND - | GND P
i4 D3 7 + De sR
i565 +¥ | FHV §
kB rM 1
17 GND - | GND U
13 DRAd -| + DRAB Y¥

19 DRAS -| | DRA2 U
28 DRAG -| «| DRAL X
21 DRA? ~| | DRA® ¥
2 GND - - GND zZ
23 RAS -| [RRA AA
24 «GND -| 7 GND BB
ss GND - - GND cc
236 casau-] |- CASI DD
27 GND -| | GND EE-
28 CASGL-| > CASIL FF
a 4 - | HN
| i |

ee Dies ist die Pinbelegung des RAM-Erwei terungs -

| Slot Algae |

Z 13.3.2-2: Das Schema einer 256-Kbyte-Erweiterung für den RAM-Modul-Port des Amiga
(Teil2)

Piggy-Pack (bei älteren Modellen) sind unterhalb der Custom-Chips die RAM-Chips
mit der Beschriftung 41464-15 sichtbar. Auf diese RAM-Chips werden je zwei RAM-

Chips im Huckepack-Verfahren aufgelötet. Dabei muß der Pin 16/CAS abgebogen wer-

den. Zudem müssen noch 3 Chips in ihrer Beschaltung modifiziert werden, damit der

Amiga die erweiterten RAM-Chips mit einem entsprechendem /CAS-Signal versorgen

kann. Hierbei handelt es sich um die ICs mit der Kennung, bei neueren A1000er U1G,

UIH und U2H, bei Amigas mit Piggy-Pack U1H, Ull und U1J. U2H bzw. U1J ist ein

vier 2zu 1 Datenselektor 74F399, welcher die Aufgabe hat, die höchsten Adreß-Bits der

RAM-Chips, die für das /CAS-Signal benötigt werden, zwischen Custom-Chip und

CPU zu multiplexen. Dieses IC muß mit einer weiteren Adreßleitung, A19, beschaltet

werden. Die Adreßleitung A19 kann von dem PAL DPALCAS an Pin 3, welches sich

auf dem Piggy-Pack oder am Laufwerk hinten links bei neueren Modellen befindet, ab-

gegriffen werden. Diese Adreßleitung wird an Pin 11 des 74F399 gelötet.

332 RAM-Erweiterungen

Zuvor muß dieser Pin 11 und der benachbarte Pin 10 von dem +5V Anschluß abge-

trennt werden, damit der Pegel dieses Signals nicht immer auf +5V gehalten wird. Da

die Custom-Chips nur die unteren 512 Kbyte ansprechen können, muß der Pin 12 des

74F399 auf Masse gelegt werden. An Pin 10 dieses ICs liegt nach diesem Umbau die

gemultiplexte Adreßleitung MA 19 an, die von 74F138 weiterverwendet wird (MA 19 er-

halten Sie von Pin 3 des ICs DPAL CAS UP6 bzw. UK6). Diese 74F138, auf der Platine

mit U1G und U1H bzw. U1H und UII bezeichnet, sind zwei 3 Bit Binärdekoder, die

hier zur entgültigen /CAS-Generierung benötigt werden. Bei diesen ICs muß der Pin 3

von Masse abgetrennt werden, da hier die gemultiplexte Adreßleitung MA19, die von

dem Pin 10 des 74F399 kommt, angeschlossen wird. Durch diese dritte angeschlossene

Adreßleitung ergeben sich an den Ausgängen der 74F138 nun 4 weitere /CAS-Signale

pro Dekoder-IC. Diese so gewonnenen /CAS-Signale werden jeweils über einen 33-

Ohm-Widerstand an dem abgebogenen Pin 16 von zwei benachbarten huckepack auf-

gelöteten RAM-ICs angelötet. Die Abbildung Z 13.3.3-1 zeigt den Umbau nochmalsin

bildlicher Form. |

din 9h die oh 19 a (10 af Huckepack-RAW’ s

Sil 88 ail 8) _ | u
giz 7h diz 7k 112 A: 112 A: original RAN

13 6h &13 68 © a : An Pin 3 DPALCAS
14 58) 914 S56 814 58 #42814 58
915 4h 415 46 815 am 415 4h (Ald) UP6 7 UK6

eal 16 3h rewGi6 3h eveié en BE

de Sh] ai Sh] ate EE | die i 18 ip] gis ip] s a.

ces te ELS oe i ari. |

ie cL sets stag üben : UCE üben : LC6 , anil. ls a mins wwe | TRS af 5
| uc4 15 2p US 2 et 2zmi|

6 If |iimiG 1 16 If

aid 95 10 95 Tee ‚1a an en) nd
ail gu ail 8% i u _ |

@i2 78 al2 7a 12 7ER B12 7A py_pe - WIH/ULG || ULI/UiH UIJ/UZH

413 Gh MI cn ONS GH 13 GR AE RR = [rarıaa || 74F138 743990
#14 53 114 53 414 5% 14 58
815 4h #815 48 815 46 815 45
ia ale 3h Pie 3h

ni? 23 i7 2t 1 ch ul ee
| a aig ifs ig if u u RS-RB

| | LC?

IC? üben : LC? u 0b : ni
Unten: UC5 Unten: LC5 UC? —[}

us ——

Z 13.3.3-1: Aus einem 512 K-AmigaMIGA wird der 1-Mega-Amiga

RAM-Erweiterungen 333

F 13.3.3-1: So sollte der Umbau zum Mega-Amiga ungefähr aussehen

_ Abgeschaltet werden kann diese RAM-Aufriistung durch Einlöten eines Wechselschal-

ters an Pin 3 einer der Dekoder 74F138. Wird dieser Pin auf Masse gelegt, ist die RAM-

Aufrüstung nicht aktiv. Dabei muß aber die gemultiplexte Adreßleitung MA19 vom

74F399 abgetrennt werden. Ist der Einbau vollzogen, sollte ersteinmal ein Funktions-

test vollzogen werden. Besitzer des alten 1000er sollten hierbei nicht das Einsetzen des

Piggy-Pack vergessen. Gibt Ihr Rechner beim Booten der Kickstart 1.2 ein Farbspiel

von sich, z.B. ein Umschalten der Bildschirmfarbe auf grün, so sollte eine gründliche

Kontrolle der eingebauten RAM-Aufrüstung stattfinden. Fährt der Rechner normal
hoch, so kann der zusätzliche Speicher mit dem Befehl »AddMem $080000,$100000«

eingebunden werden. Durch Veränderung der AdreBleitung A19 kann die Startadresse

der RAM-Aufrüstung verändert werden. A20 bestimmt z.B. den Start ab $100000 bis

$180000. Diese Einbindung des Speichers hat jedoch den Nachteil, daß Programme,

die ihre Daten im Speichertyp Chip-Mem benötigen (untere 512 Kbyte, auf die die

Custom-Chips nur zugreifen können), nicht 100prozentig laufen, da bei nicht genauer

Deklarierung des Speichertyps die Daten im Fast-RAM (RAM-Speicher über 512

Kbyte) abgelegt werden, welches meistens zum Absturz des Rechners führt.

13.3.4: Die 512-Kbyte-RAM-Erweiterung des Amiga 500

Weniger problematisch ist die Aufüstung des Amiga 500 auf 1 Mbyte. Er besitzt einen

kleinen RAM-Erweiterungsport, der von unten, nach dem Entfernen einer kleinen

Klappe sichtbar ist. Hier sind ebenfalls alle wichtigen Signale, die für eine RAM-Aufrü-

stung benötigt werden, herausgeführt. Es werden nur 16 RAM-Chips benötigt. Die

Entwicklung einer Steckkarte ist hier ebenso möglich, wie das bekannte Huckepack-

334 RAM-Erweiterungen

Verfahren der internen RAM-Aufrüstung beim A1000. Im Gegensatz zum 1000er wer-

den beim 500er 256-K 1-RAM-Chips verwendet. Dadurch wurde auch die ganze

Signal- Generierung für die RAMs umgestrickt, die PALs vom 1000er wurden überflüs-

sig und durch FatAgnus und Garry ersetzt.

Anschluß Seer Bank
an |
512 Kbyte

Erweiterungs-
Stecker

Untere
RAM-Bank

Sockel

für 256 K1

RAM-Chips

F13.3.4-1: Von oben gesehen: ein normaler Aufbau einer Testplatine

F13.3.4.2: Wir werden uns doch wohl nicht verlötet haben?

RAM-Erweiterungen 335

| r Spare Rows ono

Memory

Array

Address |
Buffer 256 K Bits

14
Spa

re
Col

umn
 P

air
s_|

Column Decoder

4 - Bit /0 Buffer

. | Buffer
/O Decoder

we || oı || oo |
Generator | BD

Z 13.3.4-1: Das Blockdiagramm und die Pinbelegung eines 256-K 1-RAM-Chips

336 RAM-Erweiterungen

Die sechszehn 256-K 1-RAM-Chips werden in zwei Bänke, je eine obere und eine

untere aufgeteilt. Sie werden auch jeweils von zwei getrennten /CAS-Signalen ange-

steuert. Der Aufbau einer Steckplatine ist etwas problematisch. Es empfiehlt sich eine

Platine zu ätzen. Ein Aufbau mit diskreter Verdrahtung ist nicht zu empfehlen. Dies ist

nur etwas für Freaks, die total von der Rolle sind, wie folgende Fotos zeigen:

Für die Schnellen unter den Bastlern ist der direkte Einbau in den Amiga 500 zu emp-

fehlen. Der Eingriff ist sehr einfach und dauert nur knapp 5 Minuten. Foto F 13.3.4-3

zeigt einen solchen Umbau.

F13.3.4-3: 512-Kbyte-Aufrüstung in knapp 5 Minuten

Da für eine solche 512-Kbyte-RAM-Aufriistung schon alles vorbereitet ist, brauchen

nur sechszehn 256-K 1-RAM-Chips auf die vorhandenen RAM-Chips, die unterhalb

der Tastatur in der linken Ecke des A500 zu finden sind, mit dem Pin 4 abgebogen, auf-

gesetzt und festgelötet zu werden. Dieser Pin 4 wird von RAM-Chip zu RAM-Chip

durchgeschleift. Am Ende der Kette wird eine Leitung von diesem Pin an den Pin 18

des, rechts vor den RAM-Chips liegenden Treiberbausteins U35, einen 74F255, gelegt.

Zu guterletzt muß noch der Pin 32 des Chips U 5, Garry, auf Masse gelegt werden. Dies

macht die RAM-Aufrüstung aktiv und kann mit einem Schalter versehen werden,

womit die RAM-Aufrüstung jederzeit abschaltbar ist.

RAM-Erweiterungen 337

DEDOB ZZ UN DECO DO UDO OO DO DO Dunn

TOSHIBA
ICLTGBBSAP-BB2S bb ¢

OOOO HOODOO OOODOOOOTHO

| —_ Garry Pin 32
auf GND

312 Exp, enable ss Pin 12
74F 244

1 ul i 1"

| Pin 18

Pin I2

135
. Tarada

= huckepack RAM
een

| FS orig, RAH

Z 13.3.4-2: Der schematische Aufbau der 512-Kbyte-RAM-Aufrüstung

338 Die Monitore des Amiga

Kapitel 14

Die Monitore des Amiga
|]
Neben dem Monitor der ersten Stunden, dem A 1081, sind inzwischen weitere Moni- .

tore, wie der A1084 und der A 2024 auf dem Markt. Während der A 2024 ein Mono- —

chrom-Monitor ist, zählen die anderen beiden zu der Klasse der Spitzen-Farbmonitore.

Die Farbmonitore sind für alle Computer der Commodore-Serie geeignet. Sie lassen

sich sowohl an einen PC, als auch an einen Amiga anschließen. Ebenfalls lassen sie sich

als TV-Monitor oder als Sichtgerät für Videorekorder einsetzen.

In der Praxis überzeugen sie durch ihre hervorragende Farbwiedergabe und die gesto-

chen scharfe Zeilendarstellung. Der Bildschirm hat eine Diagonale von 14 Zoll, die

Video-Bandbreite liegt bei einem FBAS-Signal bei 4.5 MHz, bei RGB um die 12 MHz.

Im Vergleich zum A 1081 ist der A 1084 entspiegelt. Die Auflösung der Monitore beträgt

600 Zeilen in der Bildmitte, bei einer Bildfrequenz von 50/60 Hz und einer Zeilenfre-

quenz von 15.625 Hz. Zudem besitzen die Monitore verschiedene Regler zum Einstel-

len eines optimalen Bildes. Auf der Vorderseite befinden sich Regler für Helligkeit,

Kontrast, Farbsättigung und Bildschärfe, sowie ein Umschalter für RGB-linear bzw.

Videoeingang. Auf der Rückseite sind Regler für vertikale Höhe, horizontale Weite

und vertikale Mitteneinstelllung, sowie ein Umschalter für den Betrieb mit einem

Videorekorder vorhanden. Der Audio-Ausgang der Monitore hat eine Ausgangs-

leistung von 1 Watt, was durchaus ausreichend ist. Auf der Rückseite befinden sich alle

Anschlüsse, die die Monitore mit der Umwelt verbinden. Ein SCART-Anschluß ist

ebenso vorhanden, wie ein Audio- und ein RGB-TTL-Eingang.

Neu auf dem Markt ist der monochrome Monitor A 2024. Dies ist ein hochauflösender

Monitor für den Amiga 500, Amiga 1000 und Amiga 2000, soweit sie mit mind. 1 Mbyte

RAM ausgestattet sind. Er bietet zwar nur vier Graustufen (schwarz, dunkelgrau, hell-

grau und weiß), besitzt dafür aber eine Auflösung auf dem 15 Zoll-Bildschirm von 704

x 256, 704 x 512 und 1008 x 1024 Punkte, die nur im Zusammenhang mit einer speziellen

Workbench erreichbar ist.

Ganz neu auf dem Markt ist noch der Farbmonitor 2040, der ein hervorragendes Bild

auch im Interlace-Modus liefert. Leider stehen dazu noch keine detaillierten Informa-

tionen zur Verfügung.

Die Monitore des Amiga 339

14.1: Verbesserungsmösglichkeiten des A1081/A 1084
Verbesserungen, die auch wirklich durchführbar sind, sind bei einem solchen’ Monitor

nicht leicht zu finden. Eine lohnenswerte Verbesserung wäre sicher, den Monitor 1081

zum Stereo-Monitor umzubauen, oder die, beim Umschalten von RGB- zu FBAS-Be-

trieb auftretenden Störungen abzustellen. Diese Änderungen, so meinen wir, sind mei-

stens überflüssig, da ein Stereo-Sound-Betrieb über die 200 Watt Stereoanlage lohnens-

werter ist und das Umschalten von RGB-Amiga auf »FBAS-Ronnys Pop Show« durch

unser low-cost Genlock Interface, das wir später vorführen, überflüssig wird. Inter-

essanter ist es, beim Umschalten auf die Griindarstellung mal blau zu sehen.

14.1.1: Ein Griin-Monitor sieht Blau

Mit unserer kleinen Schaltung kann man ganz leicht bei einem A 1081-Monitor den

Grünbetrieb auf Blaubetrieb ändern. Bei dieser nun folgenden Umbauanleitung sollte

man sehr sorgfältig umgehen, denn ein paar KV an der Bildröhre werfen sogar den

stärksten Hacker um. |

Der Umbau ist ganz einfach, wenn man von der oben erwähnten Gefahr absieht. Drei

Transistoren vor der RGB-Endstufe bereiten das RGB-Signal des DecodersTDA3505

auf. Es handelt sich hierbei um die Transistoren TS606 bis TS604 (für die Farben Blau,

Grün, Rot). Am Emiter derTransistoren TS606 (Farbe Blau) und TS604 (Farbe Rot) ist

unter anderem eine Diode D604 (Farbe Blau) und D605 (Farbe Rot) angeschlossen.

Diese Dioden leiten beim Einschalten des Grün-Schalters des A 1081-Monitors ca.

+12V auf den Emiter des jeweiligen Transistors, der deshalb nicht mehr durchschalten

kann und somit sein Ausgangswert gleich null ist, d.h. der Blau- und der Rot-Wert wer-

den herausgefiltert. DerTransistor für Grün hingegen kann noch durchsteuern. Es wird

so nur die Farbe Grün angezeigt. Wird nun die Diode D604 (Farbe Blau) von dem Emi-

ter-Anschluß des Transistors TS606 getrennt und auf den Emiter des Transistors TS605

gelegt, so entsteht beim Umschalten von RGB auf Grün-Betrieb diesmal kein grünes,

sondern ein blaues Bild, da nur der Transistor für Blau durchsteuern kann. Der Emiter

des Transistors für die Farbe Grün liegt ebenfalls am Widerstand R612 und R615. Foto

F14.1.1-1 zeigt diesen Umbau.

340 Die Monitore des Amiga

Diode 604

Widerstand

R 612

F 14.1.1: Aus Grün wird Blau

Selbstverständlich kann man auch auf Rot-Betrieb umstellen, oder so, daß nur der

Grün-, Blau- oder Rot-Wert ausgefiltert wird, das überlassen wir ganz Ihnen.

PAL für den Amiga 341

Kapitel 15

PAL für den Amiga
|

Amiga-Besitzer, die ihren Rechner gerne an einen Fernseher anschließen möchten, ste-

hen vorerst vor einem großen Problem. Bei alten Amiga 1000ern kann zum einen das

Farbbild-Austast- und Synchronsignal (FBAS-Signal) in NTSC-Norm vorliegen, bei

den A2000ern ist die Encoder-Logik für dieses Signal komplett entfallen und bei den

500ern und B2000ern ist diese Logik durch einen Video-Hybrid-Baustein ersetzt wor-

den, weshalb kein Farbsignal vorhanden ist. Besitzt jedoch der Farbfernseher eine

Scart-Buchse, so enfällt das Problem eines Modulators. Der RGB-Port kann direkt an

einen solchen Fernseher angeschlossen werden. Hierbei sollte aber bei einer Verbin-

dung die Scart-Stecker-Belegung des Fernsehers und des AMIGA-RGB-Ports genau

verglichen werden. Das so erhaltene Bild vom AMIGA ist fast vergleichbar mit dem

des RGB-Monitors.

Ob PAL- oder NTSC-Norm am Composite-Video-Anschluß des Amiga 1000 anliegt, ist

sehr einfach zu testen. Hierzu muß eine Verbindung zwischen dem Composite-Ausgang

des 1000er und dem Composite-Eingang des Amiga 1081-Monitor geschaffen werden.

Ist das Bild beim Umschalten auf CVBS schwarz-weiß, ist der Encoder- MC1377 in

NTSC-Norm geschaltet. Dies ist zusätzlich daran zu erkennen, daß sich in seiner Nähe

ein R57 bzw. R46 befindet (der MC1377 befindet sich in der Nähe des Composite-Video-

Anschlusses). Zeigt der Composite-Videoanschluß des Amiga 1000 ein schwarz-weißes

Bild, so ist ebenfalls zu prüfen, ob der Custom-Chip AGNUS (der Mittlere von den

dreien, gekennzeichnet auf dem Motherboard mit »A«) in PAL-Norm vorliegt, da von

ihm wichtige Synchronisationssignale geliefert werden. Ist dieser Chip mit 8361 gekenn-

zeichnet, so liegt er in der NTSC-Version vor. Soll der Chip PAL-Signale liefern, so muß

er gegen den AGNUS 8367 ausgetauscht werden (PAL-Version) (Farbteil Bild 30).

Nun, warum ist der Unterschied zwischen PAL und NTSC so wichtig. PAL und NTSC

sind Verfahren zur Modulation eines Farbträgers mit jeweils drei Farbsignalen. Das

NTSC-Vefahren ist schon 1953 von einem Ausschuß von Technikern und Ingenieuren

aus der Industrie der USA entwickelt worden (NTSC = National Television System

Commitee). Das NTSC-Verfahren zum Farbfernsehempfang wird überwiegend in den

USA und Japan eingesetzt. Das PAL-Verfahren (Phase Alternation Line = Zeilenfre-

342 PAL für den Amiga

quenter Phasenwechsel) ist eine Weiterentwicklung des NTSC-Verfahren. Es findet

überwiegend in den europäischen Ländern Verwendung. Ein wesentlicher Unterschied

zwischen dem PAL- und dem NTSC-Verfahren liegt darin, daß bei PAL von Zeile zu

Zeile die Modulationsrichtung des Farbsignals von positiver nach negativer Modula-

tion umgeschaltet wird. So können Unterschiede in der Farbinformation durch Bilden

eines Mittelwertes ausgeglichen werden, was beim NTSC-Verfahren nicht möglich ist.

Trotz dieser Weiterentwicklung kann mit einem PAL-Farbfernsehempfänger ein

NTSC-Signal empfangen werden. Das sichtbare Bild enthält aber keine Farb-, sondern

nur Grauwerte. Dies liegt an den normbedingten Abstimmfrequenzen. Der Farbträger

liegt bei dem PAL-Verfahren auf der Frequenz von 4.43361875 MHz, bei NTSC jedoch

auf 4.4296875 MHz, da hier ein Halbzeilen-Offset-Verfahren benutzt wird.

Soll der Amiga 1000 nun von NTSC auf PAL umgerüstet werden, so muß man den

RGB-Encoder MC1377, der das Composite-Videosignal liefert, mit einem neuen Farb-

träger speisen. Beim Amiga 500 ist die Sache etwas schwieriger, da hier der Video-

Hybrid-Baustein alle wichtigen Funktionen übernimmt (Hybrid = Mischschaltung aus

verschiedenen Technologien). Das Farbträgersignal wird bei dieser Schaltung nicht aus-

gewertet, so daß das Videosignal nur in schwarz-weiß vorliegt (wem dies genügt, kann

auch ein Schwarz-weiß-Signal modulieren). Möchte man ein FBAS-Signal in PAL-

Norm erhalten, so muß eine komplette Encoder-Schaltung des MC1377 an den RGB-

Port angefügt werden. Beim Amiga A2000 fehlt die ganze Logik zum Anschluß eines

normalen Monitors. Hier muß die komplette Encoder-Schaltung in einer Steckkarte

für den Video-Slot aufgebaut werden. Beim B2000 ist wie beim A500 zu verfahren. (ver-

gleiche Bild 29 im Farbteil).

Ist der PAL-Composite-Videoausgang vorhanden, muß dieser noch aufbereitet wer-

den, wenn man den Amiga an einen Farbfernseher anschließen möchte. Damit ist

gemeint, daß dieser Ausgang mit einem’Irägersignal Amplituden-moduliert wird.

15.1: Amiga 1000 - Aus NTSC wird PAL

Amiga 1000-Rechner, die seit Ende ’86 ausgeliefert werden, enthalten den kompletten

Umbau für einen PAL-Amiga. Hier ist sowohl der RGB-Encoder, als auch AGNUS der

PAL-Norm angepaßt. 1000er, die noch Mitte ’86 erhältlich waren, enthielten nur die

PAL-Agnus. Möchte man jedoch den Composite-Videoanschluß auf PAL-Norm um-

stricken, müssen einige Bauteile, die die Beschaltung des RGB-Encoders betreffen,

umgelötet bzw. weggelassen werden. Zudem muß man eine Schaltungserweiterung für

das Farbsignal hinzufügen. Hierzu muß an R38 die Leitung zum Taktgenerator aufge-

trennt werden (der andere Anschluß geht an C51). Die Taktschaltung von 4.43 MHz

wird über 2 Daten-FlipFlops mit Preset und Clear (sie dienen als Frequenzteiler) »Ena-

ble« geschaltet. Der anschließende Transistor Q10 dient als Schalter. Abbildung Z 15.1-

1 zeigt den Aufbau derTaktschaltung.

PAL für den Amiga 343

vor R33
/C4 —— N auftrennen

+5V 741574 +5V +5V

. | R205
[I i I 4.7K

Da D a | | | [oa /see
po ar bP as

|] 56p

neues #5V

Farbträger R201
Signal iK

‘ R202 10K

an RIS ‘R204 470 OSC 4.4336 MHz
Qi

; In|
250945 Cc {uf

R203 Bann 2 820p
6.8K +S pH

Z15.1-1: Ein 4.433 MHz-Quarz sorgt für das bei PAL benötigte Farbsignal

Ist dieser Umbau vollzogen, braucht man nur noch 7 Bauteile, die den RGB-Encoder

MC1377 beschalten, umzulöten. Sehr wichtig bei diesem Encoder ist Pin 20. Hier wird
»eingestellt«, ob ein Composite-PAL- oder NTSC-Signal produziert werden soll. Abbil-

dung Z 15.1-2 zeigt den kompletten Umbau.

344 PAL für den Amiga

+5V

Ro?
R58/Cal6

R286 ”

Cals
R46

6 il /BBST

7 — HC1377
HN GND

Anlog rot —R
3 C38 Analog grun —+G Analog blau—|p CHRMA out" mm

Composit Sync —csyic CHROMA in]
bei PAL 4,43 MHz —— 086

Verzögerung ——
Luninaz 488 ns —— SNOUT

NTSC/PAL
‚a

hi

p
p

_

P
|

on

mam

+12V

R46 Ro? R56/Cal6 (45 C38 R2B6 Cal)

NTSC 1.69K 3.92K 3.32K 4ipF 188pF

PAL

Pin 28 offen = NTSC

O01pF

GND

33pF

= PAL

J6pF 36,aK ANF

Z 15.1-2: Aus NTSC wird PAL. Ca. 7 Bauelemente müssen umgelötet werden.
Dann bekennt der Composite-Video-Ausgang PAL- Farbe

_ Auf richtige Funktion kann man die Beschaltung mit dem Composite-Eingang des

Amiga-Monitors 1081 testen. Zeigt der Amiga beim Umschalten auf CVBS Farbe, so

verlief die Operation einwandfrei. Andernfalls Schaltung nochmals überprüfen.

PAL für den Amiga 345

15.2: PAL-Modulator für den Amiga

Ein PAL-Modulator hat die Aufgabe, ein FBAS/BAS-Signal auf eine gewisse Frequenz

zu modulieren. Üblicherweise wird hier der AV-Kanal verwendet, der auch für Video-

rekorder benutzt wird. Die Modulation, die hier verwendet wird, wird auch als eine

Amplituten-Modulation bezeichnet. Eine Amplituten-Modulation erhält man, indem

z.B. ein Transistor mit einem Trägersignal ausgesteuert wird. Die Signalschwingung

(Composite-Video) verändert die Basis-Vorspannung. Somit wird auch der Verstär-

kungsfaktor B des Transistors im Rhythmus der Signalschwingung verändert. Das Re-

sultat ist eine Frequenz, deren Amplitude sich im Takt des Signals verändert. Mit die-

sem HF-Signal kann nun der Empfänger eines Fernsehers gespeist werden. Die Bild-

qualität ist aber leider nicht so überragend, da der Amiga mit einer sehr hohen Auf-

lösung arbeitet. Dadurch werden feine Konturen verzerrt wiedergegeben. Die fol-

gende Schaltung stellt einen einfachen Modulator dar. Durch die Spule in dem LC-

Schwingkreis kann die Bandbreite des zu empfangenden Kanals eingestellt werden.

BAS ie
2 pF

Signal Out HB. 1
De Re L880

vg BET TER
m T T 108pF 6p F T :

472pF RRS? 42 2pF AT2pF 22092
alle Kondensatoren Keranik tt

Z 15.2-1: Eine sehr einfache Schaltung zum Modulieren eines BAS/FBAS-Signals

346 Bastelanregungen

Kapitel 16

Bastelanregungen
|

In diesem 16. Kapitel soll der Bastler unter den Amiga-Freaks voll auf seine Kosten

kommen. Video- und Sound-Faszination stehen bei unseren ausgewählten Schaltungen

im Vordergrund. Eine der interessantesten Schaltungen, die wir für dieses Buch entwik-

kelt haben, ist das low cost-Genlock-Video-Interface. Im Anfangsstadium der Entwick-

lungsarbeiten glaubten wir selbst nicht so recht daran, daß die Teile, die wir für ca. 20

DM gekauft hatten, ein relativ gutes Genlock-Video-Interface abgeben würden. Das

Ergebnis war von daher erstaunlich. Als wir am Ende der Manuskriptarbeiten zu die-

sem Buch einen Digitalisierer testeten, kam uns die Idee, aus dem Genlock noch einen

Digitizer zu bauen. Leider konnten wir unsere Idee aus Zeitgründen nicht ganz ver-

wirklichen. Oftmals reicht jedoch einem Bastler ein guter Hinweis, um eine große

Sache zu verwirklichen.

16.1: Der Amiga-Sound-Digitizer

Den Sound-Digitizer, der in diesem Kapitel vorgestellt wird, ist der Sound-Digitizer

aus der ehemaligen 68000er von Markt& Technik. Mit wenigen Bauteilen wird hier eine

sehr effektvolle Schaltung verwirklicht. Das Herz der Schaltung ist ein 7574. Dies ist

ein 8-Bit-AD-Wandler mit einer min. Wandlungszeit von 15 Mikrosekunden. Diese 15

Mikrosekunden werden extern durch ein RC-Glied bestimmt. R4 und C5 sind maßge-

bend für die Wandlungszeit und können bei Timingproblemen verändert werden. Der

AD-Wandler ist ständig aktiv, da die Chip-Selekt-Leitung direkt auf Masse gelegt ist.

Gesteuert wird der Wandlungsvorgang mit dem Read/Write-Signal /RD. Es ist an den

Parallel-Port an Pin 13 SEL angeschlossen. Geht SEL nach 0 Volt, so wird die Digitiali-

sierung gestartet und der AD-Wandler signalisiert durch Low-Schalten des Signals

BUSY, daß er mit dem Digitialisieren begonnen hat. Ist der Digitialisierungsvorgang

beendet, wird BUSY wieder auf +5V gelegt. Dies bedeutet, daß die 8-Bit-Daten an den

Datenregistern vorhanden sind. Der Wert kann nun vom Amiga ausgelesen werden.

Die Eingangsempfindlichkeit des AD-Wandlers kann mit dem Poti Pl eingestellt wer-

den. Man sollte darauf achten, daß die angeschlossene Spannung am Eingang dieses

Sound-Digitizers nie größer als 5 Vpp wird, da sonst die Schaltung zerstört wird. Zum

Bastelanregungen 347

Anschluß eignet sich z.B. der Line-Out-Ausgang oder die Köpfhörer-Buchse des Kas-

settenrekorders. Vor dem Eingang des AD-Wandlers befindet sich noch ein Integrier-

glied, mit dem sich die Dauer der zugeführten Impulse vergrößern läßt. Die —-5 V wer-

“den bei dieser Schaltung durch ein MAX 7660 erzeugt. Beachten sollte man beim An-

schluß des Digitizers, ob es sich um einen A 1000 oder A500/2000 handelt. Die Leitung

von Pin 14 muß beim Anschluß an einen Amiga 500/2000 auf Pin 18 und die Leitung von

Pin 23 auf Pin 14 gelegt werden. Nähere Informationen zur parallelen Schnittstelle fin-

den Sie im Kapitel »Die parallele Schnittstelle«.

Die Stückliste:

Pi Potentiometer 10 KOhm linear

R1 Widerstand 1/4 Watt 1 Ohm

R2 Widerstand 1/4 Watt 1 Ohm

R3 Widerstand 1/4 Watt 910 Ohm

R4 Widerstand 1/4 Watt 180 KOhm

C1 Kondensator 10V 100 Mikrofarad

„C2 Kondensator 10V 100 Mikrofarad
C3 Kondensator 680 Nanofarad

C4 Kondensator 22 Nanofarad

C5 Kondensator 120 Picofarad

C6 Kondensator 10V 10 Mikrofarad

C7 Kondensator 10V 10 Mikrofarad

IC AD 7574
Hersteller: Analog Devices 089/570050

IC ICL7660 Spannungswandler

1 25poliger Sub-D-Stecker oder Kupplung, je nach Amiga

Das Ansprechen des Sound-Digitizers ist ebenso einfach wie sein Aufbau. Am besten

eignet sich für ein Steuerprogramm eine Maschinen-Routine, da hier gewährleistet ist,

daß mit der max. Geschwindigkeit gearbeitet wird. Das Beispielprogramm schreibt

direkt in den Speicher des Amiga und spielt die Daten sofort ab. Dies geschieht mit ei-

ner kleinen Verzögerung. Verwendet werden können auch handelsübliche Abspielpro-

gramme. Das Programm finden Sie im Kapitel zur parallelen Schnittstelle.

16.2: Der Amiga-Scanner

Es gibt verschiedene Möglichkeiten ein Bild zu digitialisieren. Die einfachste und billig-

ste Variante ist die eines Scanners. Der Scanner, den wir hier vorstellen, ist ebenso ein-

fach aufgebaut wie der Sound-Digitizer im vorhergehenden Kapitel. Er besteht aus

einem Abtastkopf, der auf den Druckkopf des Druckers aufgesetzt wird, dieser wird

per Software schrittweise bewegt und tastet so helle oder dunkle Punkte ab. Der Wert.

348 Bastelanregungen

Z 16.1-1: Die Schaltung des M&T-Sound-Ddigitizers (Teil 1)

den wir von dem Abtastkopf erhalten, wird auf einen AD-Wandler gegeben, der uns 2*8

verschiedene Grauwerte liefern kann. Ausgelesen wird der AD-Wandler über den

GamePort 0 und 1, da der Parallel-Port für den Drucker benötigt wird. Als Abtast-Kopf

findet ein Optoreflexkoppler CNY70 Verwendung. Er wird in einem kleinen Röhrchen

auf einer Platine anstelle des Druckkopfs auf dem Schlitten montiert. Der Sensor

liefert bei einem dunklen Punkt die höchste Spannung. Er muß wie folgt beschaltet

werden:

Bastelanregungen 349

Z 16.2-1: Die Beschaltung des Sensors

Die zwei Versorgungsleitungen und die Datenleitung werden mit einer flexiblen Lei-

tung zur Hauptplatine des Scanners geführt. Auf dieser Platine befindet sich der AD-

Wandler. Ausgewählt wurde der Typ ADC 0804. Er läßt sich sehr einfach beschalten.

Somit ist es möglich, die Schaltung auf nur wenige Bauteile zu begrenzen. Die Daten-

350 Bastelanregungen

leitungen des AD-Wandler sind über Schutzdioden mit den Game-Ports des AMIGA

verbunden. Die minimale Referenzspannung kann mit dem Poti Pl eingestellt werden.

Der nachgeschaltete OP dient als Impedanzwandler. Die maximale Referenzspannung

wird mit dem Poti P2 eingestellt. Vor jedem Scannen des Bildes ist ein Abgleich des

Scanners notwendig, da nicht jedes Bild ein- und denselben Referenzspannungsbereich

besitzt. Mit R1 und C1 wird der Takt des AD-Wandlers festgelegt. Die Wandlungszeit _

spielt hier keine Rolle, da es nicht auf Geschwindigkeit ankommt. Mit dem Schalter S1

kann der Scanner eingeschaltet werden.

VCC

CLKR

—@ PIN 7 PORT 0

SV D1
D2 RZ ping ¢ PORTO

—K
tq

D3
D4
D5 HK} PIN 2
pe HK —o PIN 3 PORT |
D7 ko PIN 4

@——o PINS PORTO

Lo PING PORT I

P1

Z16.2-2: Wenige Bauteile werden für den M&T-Scanner benötigt

Die Stückliste:

R1 10 KOhm P1,P2 50 KOhm Poti

R2 150 Ohm D1-D8 1N4148

R3 180 Ohm D9 LED rot

R5 15 KOhm Cl 150 Pikofarad

R6 33 KOhm C2 0.1 Mikrofarad

R7 22 KOhm IC1 ADC0804

RS 150 Ohm IC2 LM358

Bastelanregungen 351

Die gescannten Daten können über die Register des Game-Port ausgelesen werden.

_Der Drucker kann mit folgenden Steuercodes gesteuert werden (Werte für den Epson

FX80):

Kopf bewegen / Drucker initialisieren:

ESC,A,CHR$() Line spacing auf 1/72 Zoll.

ESC,D,CHR$(64),CHR$(0) Horizontaler Tabulator an die Stelle 64 setzen.

ESC,< Eine Zeile unidirektional drucken.

CHR$(10) Zeilenvorschub auf 1/72 Zoll setzen.

Scannen starten: .

CHR$(9) Zur Tab.-Position fahren vorbereiten.

ESC,K,CHR$(1).CHR$(0),CHR$(0) Druckerkopf losfahren.

Tips zum Umgang mit der Printer-Device und die Anwendung der Steuercodes finden

Sie im Amiga-Programmierhandbuch M&T-Nr. 90491.

16.3: Der Amiga als Schalter

Oftmals möchte man mit dem Computer auch externe Geräte schalten. Hierzu wird

eine einfache Optokopplerkarte für den Computer benötigt. Das direkte Schalten von

Transistoren als Schalter, ist nicht empfehlenswert. Zwischen externen Geräten und

dem Computer sollte immer eine Trennung vorhanden sein, so daß bei einem Fehlerfall

nie der Computer beschädigt wird. Für eine solche Anwendung bietet der Parallel-Port

des Amiga wieder ideale Eigenschaften, da hier 8 Daten- und Steuerleitungen zur Ver-

fügung stehen. Die Schaltung ist wieder ganz einfach. Ein 8-Bit-Daten-Register emp-

fängt sieben der 8-Bit-Daten des Amiga. Pin 1 des 8-Bit Datenregisters wird auf Masse

gelegt, somit ist der Baustein immer »eingeschaltet«. Bit 7 der Datenleitungen dient

hier alsTakt. Bei jedem positiven Flankenwechsel werden die Daten vom Eingang zum

Ausgang weitergeschoben. Somit stehen 6 Bit zur Verfügung, die je ein elektronisches

Lastrelais (ELR) schalten können. Der Schaltspannungsbereich dieser Relais reicht

von 24 bis 280 Volt. Je nach Ausführung können 2 A bis 40 A geschaltet werden. Die.

Steuerleistung ist gering, da mit einer Steuerspannung von 3 bis 30 Volt gearbeitet wer-

den kann. Somit sind sie TTL-kompatibel. Der Type B1 (Best.: V23100-S0032-B105)

von Siemens kann z.B. 5 Ampere schalten. Dies entspricht ungefähr einer 1000-Watt-

Glühbirne.

352 Bastelanregungen

“Parallel-Port AMIGA1088 u yee

GND [
a

14 | >— » GND
20 D4 u

% Di m—ly p En —

4 D2 pt 2 —

Vo D3 a— ER
by —: 240 — zum

on DM ® 13 12 elektronischen
> . D5 nu se Las treilais
, Dé a alle

% D7 n—t rman
0 gi 18 gg

23 | 9 R e+ 5V WC
0

0

9

m EIR Kl...K?

7 Ausgangsschal tung f

4...07 3 Steuer“ _ = sank te . 0

tung 4 sehal- vd i 24-240,

‘ AML WE: of
Optokoppler Last

Ri...R? 168 Ohn

GND

Z 16.3-1: Mit dieser kleinen Schaltung kann der Amiga sehr einfach für Steueraufgaben
eingesetzt werden

Das softwaremäßige Setzen der Ausgänge ist denkbar einfach. In dem zu schreibenden

Byte werden in den unteren 6 Bit die Bits gesetzt, dessen Ausgang eingeschaltet werden

soll. Das höchste Bit, Bit 7, bleibt noch auf logisch low. Der Schreibvorgang wird noch-

mals wiederholt, diesmal mit gesetztem Bit 7:

move.b #%01010101,$BFE101

move.b #%11010101,$BFE101

16.4: Das low-cost-Genlock-Interface

Ein Genlock-Interface ist ein Bildmischer-Interface. Eine externe Videoquelle wird mit

dem Bild des Amiga vermischt, wobei das Amiga-Bild in den Vordergund oder in den

Hintergrund »gelegt« werden kann. Professionelle Genlocks splitten das externe Vi-

deosignal auf, wobei man die einzelnen Farben Rot, Blau, Grün in analogen Werten

erhält. Die wichtigsten Signale, die man bei einem solchen Zerlegen des Videosignals

erhält, sind die vertikalen und horizontalen Synchronimpulse. Diese Impulse signalisie-

ren den Start des Bildaufbaus, sowie den Start jeder einzelnen Zeile. Der vertikale Syn-

Bastelanregungen 353

chronimpuls hat eine Frequenz von 50 Hz, was einem kompletten Bildaufbau von 20

Millisekunden entspricht. Der horizontale Synchronimpuls hat eine Dauer von 64

Mikrosekunden. Dies entspricht einer Zeilenfrequenz von 15625 Hz. Diese Synchron-

impulse werden über den RGB-Stecker dem Amiga zugeführt. Die /VSYNC- und

/HSYNC-Signale des RGB-Steckers gehen direkt zum Custom-Chip AGNUS. Ist bei

diesem Chip im Register BPLICONO das Genlock-Video-Bit gesetzt, so versucht

AGNUS seinen Bildaufbau mit den externen Signalen zu synchronisieren. Dieses Bit

wird automatisch beim Booten des Amiga gesetzt, wenn externe Synchronsignale anlie-

gen. Der Synchronisiervorgang dauert ca. 2 bis 4 Sekunden. Nachdem der Bildaufbau

des Amiga mit dem externen Bild synchron ist, kann das Mischen der Bilder beginnen.

Am einfachsten ist das Zusammenlegen der einzelnen Farben. Hierbei ergeben sich

aber Mischwerte, die unerwünscht sind. Eine Schaltung muß her, die die Hintergrund-

farbe des Amiga, z.B. schwarz, gegen das externe Signal austauscht. Dies kann über

schnelle CMOS-Schalter erzielt werden. Der Amiga stellt hierfür ein Signal /ZD am

RGB-Port zur Verfügung, mit dem ein solcher Schalter gesteuert werden kann. /ZD si-

gnalisiert die Verwendung des BitPlane-Registers 0 (Hintergrundfarbe) des Amiga.

Durch Abfrage der digitalen RGB-Werte ist auch das Herausfiltern von anderen Farben

(BitPlanes) möglich.

Ein Aufsplitten in RGB-Werte ist sehr aufwendig. In unserer Schaltung verwenden wir

deshalb die komplette Bildinformation, d.h. das Videosignal wird zwischen Amiga und

externer Quelle, je nach Farbe des Amiga, umgeschaltet. Es ergibt sich dabei fast die

gleiche Qualität wie bei einem Umschalten der RGB-Werte. Der Nachteil, der sich bei

unserer Version bemerkbar macht, zeigt sich beim Mischen von Farb- und Schwarz-

weißbildern. Wird ein Farb- und Schwarzweißbild gemischt, können die Farbsignale

nicht einwandfrei ausgewertet werden. Das Resultat ist ein Schwarzweißbild. Da der

Amiga 500 nur ein BAS- und kein FBAS-Signal enhält, ist das resultierende Bild immer

schwarzweiß. Für Amiga 1000-Anwender möchten wir hier auf das Kapitel »PAL für

den Amiga« hinweisen, da der Bildmischer nur bei einem PAL-FBAS/BAS- Signal

funktioniert.

Aufgrund dieses Verfahrens ist unser Bildmischer sehr einfach aufgebaut. Die

Synchronimpulse werden mit einer Transistorabtrennstufe, die aus einem Entst6rfilter,

sowie einem Hochpaß- und Tiefpaßfilter zum Herausfiltern der Synchron-Impulse

besteht, herausgefiltert. Diese werden nochmals invertiert und dem Amiga zugeführt.

Mit einer Schwarzwertklemmschaltung wird das externe Signal auf ein Pegelniveau an-

gehoben, mit der die weitere Verarbeitung vereinfacht wird. Zudem läßt sich mit die-

sem Baustein der Kontrast und die Helligkeit nachregeln. Das so erhaltene Signal wird

auf einen CMOS-Schalter gegeben, der erst bei der Hintergrundfarbe des Amiga das Si-

gnal durchschaltet. Das Amiga-BAS-Signal wird ebenfalls auf einen solchen Schalter

gegeben, der nur dann durchschaltet, wenn nicht die Hintergrundfarbe des Amiga vor-

liegt. Die beiden Signale werden nach diesem Schalter addiert und auf die Transistor-

Endstufe gegeben. Fertig ist das Genlock-Interface.

354 Bastelanregungen

Genlock-Video-Interface - Schwarz-Wert Klemmschal tung extern Video

{AUF 4 +12V
+ +12V

ar 1 16 auf a 27K 21
extern 114 tt 10K Helligkeit
Video in A, 4+12V i+, ii

13K — TBA97@ 2.7K

zu H-Syne

8 9 +
1.5K i [

‚böuF as extern Video out

Z 16.4-1: Genlock-Video-Interface - Impuls-Abtrennung (Teil 1)

Genlock-Video-Interface - Imuls-Abtrennung

+5V 45V

extern Video in BOSS ANSYNC

oI 12k
470F | |yaak DH Bes WLS14

stk 100nF &

ik

454 H-Sync TRA 976 Pin 18

1K Tap /NSYNC

BC348 74LS14

Z 16.4-1: Genlock-Video-Interface - Impuls-Abtrennung (Teil 2)

Bastelanregungen 355

Genlock-Video-Interface - Mischstufe

DI —

DR ——
I — 1/4066
DB ——

AMIGA BAS-Signal 17

2/4066
extern Video out
von TBA976 a

ot

AVSYNC /HSYNC
tv

nixed

BO348 Video out

488 Ohn

Z 16.4-1: Genlock-Video-Interface —Impuls-Abtrennung (Teil 3)

Stückliste:

ICs: Pott:

1 TBA970 (Fairchild) 1 5KOhm

1 74LS 14 Inverter/Schmitttrigger 1 10KOhm

1 4016/4066 CMOS-Analog-Schalter 2 25 KOhm

1 74LS 20 NAND 4 Eingänge 1 50KOhm

Transistoren: Kondensatoren:

3 BC548 2 .68 Mikrofarad /Tantal 20V

1 BC559 2 1 Mikrofarad /Tantal 20V

Widerstände: 1 4.7 Mikrofarad /Tantal 20V

1 10 Mikrofarad /Tantal 20V

139 Ohm 1 100 Pikofarad
1 400 Ohm (390 Ohm) -
1 750 Ohm 1 14 Nanofarad

1 47 Nanofarad

I 1KOhm 1 100 Nanofarad
3 1.5KOhm

1 2.7KOhm

4 12KOhm

1 27KOhm

1 100 KOhm

356 Bastelanregungen

Das externe Videosignal kann von einem Videorekorder mit FBAS-Ausgang geliefert

werden. Sollte der Amiga beim Booten nicht hochfahren, so ist die Sync-Abtrennstufe

nicht richtig abgestimmt. Mit dem 50 KOhm-Poti am Eingangs-Iransistor der

Abtrennstufe ist die Schwellwertspannung für die folgenden Transistoren einzustellen.

Bei jedem Verändern des Potis ist neu zu booten. Sollte das 50 KOhm-Poti schon auf

Anschlag 0 Ohm stehen und der Amiga bootet nicht, so ist der in Reihe geschaltete

1 K-Widerstand zu entfernen. Die genaueste Einstellung kann man hier mit einem

Oszilloskop machen, somit entfällt das lange Probieren.

Mit den 2 Potis am TBA970 läßt sich der Kontrast und die Helligkeit des externen

Videosignals einstellen.

Die zwei 25 KOhm-Potis in der Mischstufe dienen zum Ein- und Ausblenden des jewei- ~

ligen Signals.

Die digitalen Farbwerte dienen hier zum Steuern der CMOS-Schalter. Dies kann auch

das Signal /ZD (Hintergrundfarbe null) übernehmen.

16.5: Die Verwandlung: Aus Genlock wird ein Digitizer

In diesem Kapitel wollen wir eine Anregung geben, wie man aus dem oben angeführten

Genlock-Interface einen Digitizer baut.

Da bei dem Genlock-Interface alle wichtigen Signale zur Verfügung stehen, ist der Um-

bau zum Video-Digitizer sehr einfach. Das vertikale Synchronsignal dient zur Erken-

nung, wann das Bild beginnt, das horizontale, wann die jeweilige Zeile beginnt. Somit

kann unser Video-Digitzer mit dem vertikalen Signal gestartet werden. Nach diesem

Signal folgen 312.5 Zeilen, ein Halbbild des Videosignals. Nach dem nächsten vertika-

len Impuls werden die nächsten 312.5 Zeilen um eine Zeile versetzt gezeichnet, so daß

sich ein komplettes Bild aus 625 Zeilen zusammensetzt. Ein Halbbild ist für das Digitia-

lisieren vollkommend ausreichend.

Mit dem horizontalen Impuls wird signalisiert, daß nun die Bildinformation kommt.

Ein horizontaler Impuls dauert 64 Mikrosekunden, wobei ca. 57 Mikrosekunden für

die Bildinformation zur Verfügung steht. Bei einer horizontalen Auflösung von 320

Pixels haben wir dann für jeden Punkt ca. 57 Mikrosekunden / 320 Pixels = 178 Nanose-

kunden Zeit, um einen Punkt zu digitialisieren und einzulesen. Ein Buszyklus dauert

aber schon ca. 279 Nanosekunden. Dies bedeutet, entweder weniger Punkte einzule-

sen, oder eine Zeile mehrmals zu digitialisieren. Die letztere Möglichkeit ist sicherlich

die beste, hat aber den Nachteil, daß das Bild sich nicht bewegen darf, um Verzerrun-

gen zu vermeiden. Für einen Punkt hat man so 2 mal 20 Millisekunden Zeit, ihn zu ver-

arbeiten (da nur ein Halbbild ausgewertet wird). Für eine gesamte Zeile von 320 Pixels

wird so max. ca. 1/100 Sekunde benötigt. Ein ganzes Bild benötigt somit, bei 200 Pixel

vertikal, gerade ein paar Sekunden. Die eingelesenen Daten brauchen dann nur noch

in das BitPlane-Format umgesetzt zu werden, um mehrere Grauabstufungen zu erhalten.

Das Janus-Library 357

Kapitel 17

Die Janus-Library
|

Das Janus-Library ist das neueste Library, das an das Amiga-System »geheftet« wurde.

Es dient als Brücke, beim Amiga 2000 und auch beim 500er bzw. 1000er mit SideCar,

zur Kommunikation bzw. dem Datenaustausch zwischen dem PC- oder AT-kompati-

blen Teil und dem Amiga-Hauptteil. Für C-Programmierer ist ein Link-File mit Namen

»Janus.Library« auf der Workbench enthalten. Ein einfaches Beispiel, das zeigt, wie

man Daten zwischen dem Amiga und dem PC austauschen kann, folgt nun:

O
O
N
o
o
n
k
K
h

W
N
P

N
U
N
N
N
N
N
N
N
H
P
H
E
P
R
P

RE
PR

E
R
R
P

R
H

O
N
O
K
R
W
N
A
N
F
P
O
W
O
M
D
N
D
O
N
A
W
N
E
O

Janus- Demonstration

last update 16/02/88

von Frank Kremser und Jorg Koch

© Markt & Technik 1988

HKHKKKKKKEKKKKEKKKKKKKKKKKKKEKEKKKEKE

Diese Demonstration sendet eine Datei namens Amigafile zum PC.

Dabei darf die Datei maximal 65535 Byte lang sein und das Amiga-

Programm, also dieses, muß zuerst gestartet werden.

Anschließend muß das zugehörige PC-Programm gestartet werden.

Auf dieser Diskette befindet sich ein Turbo-Pascal-Programm, das

aber zuerst zum PC gebracht werden muß. Dazu 'PCDisk' von der Work-

bench startenundanschließend imPC-Modus 'AREADdfO:pcjanus janus.pas'

starten.

Nun befindet sich das Programm auf dem PC. Esmußdannallerdingsnoch

mit Turbo-Pascal kompiliert werden. Das PC-Programm empfangt lediglich

die Daten, speichert sie aber nicht ab, was aber keine großen Ander—

rungen néotig machen würde.

Nach diesem Schema könnten beispielsweise auch die Positionsdaten der

Maus übertragen werden, sodaßmanmittels der Amiga-Maus auch eine

PC-Maus emulieren könnte, wenn noch der geeignete Treiber dazu vor-

handenist. Eine lohnende Aufgabe!

KERKRKRRRRRRRERRKRRRRRRERRERRRRRRRR /

358 Das Janus-Library

28

29

50

Sl

32

55

54

55

56

37

58

59

40

41

42

43

44

45

46

47

48

49

0

ol

2

85

94

59

56

OT

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Te

73

74

#include <exec/types.h> /* Include-Files laden */

#include <exec/memory.h>

#include <exec/ports.h>

#include <exec/devices.h>

#include <exec/io.h>.
#include <exec/libraries.h>

#include <devices/trackdisk.h>

#include <libraries/dos.h>

+include <libraries/dosextens.h>

#extern struct MsgPort *CreatePort(); /*MsgPort extern deklarieren */

extern struct FileHandle *Open();

struct IOExtTD *request;

struct MsgPort *port;

struct FileHandle *fileh;

UBYTE *buffer;

main()

{
APTR mempos;

UWORD *lang,i,len;

UBYTE *data;

/* Pufferspeicher bereitstellen */

buffer = (UBYTE *)AllocMem(65535,MEMF_CLEAR);

mempos = AllocAbs(4,0x202000) ; /* Addresse zur Datentibertragung */

/* freihalten (4Byte) */

lang = data =0x202000; /* Variablen werden auf diese */

/* Addresse gelegt */

fileh = Open("Amigafile",MODE_OLDFILE) ; /* Datei wird geéffnet */

len=Read(fileh,buffer,65535); /*undinden Puffer gelesen */_

Close(fileh) ; /* Datei wird geschlossen */
lang=len; / Dateilange wird tbertragen */

while(*lang!=0); /*Warten, bisÜbertragung
bestätigt */

for(i=0; i<len; i++)

{
data=(buffer+i); /* Byte tibertragen */

while(*data !=255-(*(buffert+i)));/* Warten auf Bestatigung */

}

data=(buffer+len-1); /* Weiteres Byte übertragen, um */

/* PC-Programm zu beenden */

FreeMem(buffer, 65535); /* Datenpuffer löschen */

Das Janus-Library 359

17.1: AllocJanusMem

Syntax: Ptr = AllocJanusMem (Size,Type);

Funktion: Stellt Speicher für den Datenaustausch mit dem PC-Teil zur Verfügung.

Parameter: Size - Größe des benötigten Speicherbereiches

Type - Speichertyp

Ergebnis: Ptr- Zeiger auf den Speicherbereich

Datentyp: Long Size - DO

Long Type - D1

Zeiger Ptr - DO

Sonstiges: Type kann mit folgenden Makros gesetzt werden:

MEMF PARAMETER

MEMF BUFFER

sowie

MEM BYTEACCESS

MEM_WORDACCESS

MEM_GRAPHICACCESS

MEM_IOACCESS

17.2: CheckJanusInt

Syntax: Status = CheckJanusInt (Jintnum) ;

Funktion: Liest ein Statusbyte für einen PC-Interrupt aus dem DualPorted-RAM.

Parameter: Jintnum — Interruptnummer

Ergebnis: Status — gelesenes Statusbyte

Datentyp: Byte Jintnum — DO

Byte Status — DO

17.3: FreeJanusMem

Syntax: FreeJanusMen (Ptr,Size) ;

Funktion: Gibt den belegten Speicherbereich für den Datenaustausch wieder frei.

Parameter: Ptr - Zeiger auf den Speicherbereich

Size — Größe des Speicherbereiches

Datentyp: Zeiger Ptr-Al

Long Size - DO

Sonstiges: Falls ein Speicherbereich freigesetzt werden soll, der schon frei ist, stürzt

das System ab.

360 Das Janus-Library

17.4: GetJanusStart

Syntax: Ptr =GetJanusStart ();

Funktion: Gibt die Anfangsadresse des DualPorted-RAM’s zurück.

Ergebnis: Ptr - Zeiger auf das DualPorted-RAM

Datentyp: Zeiger Ptr - DO

17.5: GetParam Offset

Syntax: Offset = GetParamOffset (Jintnum) ;

Funktion: Gibt den Offsetwert für den bezeichneten Interrupt zurück.

Parameter: Jintnum-Interrupt, dessen Offset zurückgegeben werden soll.

Ergebnis: Offset - Offsetadresse des Interrupts

Datentyp: Byte Jintnum — DO

Word Offset — DO

17.6: JBCopy

Syntax: JBCopy (Source, Destination, Length) ;

Funktion: Kopiert einen Speicherbereich.

Parameter: Source — Anfangsadresse des zu kopierenden Speicherbereiches

Destination - Anfangsadresse des Bereiches, in den kopiert werden soll |

Length — Länge des Bereiches, der kopiert werden soll.

Datentyp: Zeiger Source - AO

Zeiger Destination -— Al

Long Length — DV

17.7: JanusLock

Syntax: JanusLock (Ptr);

Funktion: Ermittelt ein »Lock«, das für andere Janus-Library-Befehle benötigt wird.

Parameter: Ptr-nicht belegter Zeiger. Dieser Zeiger zeigt nach Aufruf dieser Funk-

tion auf die Lock-Structure.

Datentyp: Zeiger Ptr — AO

Das Janus-Library 361

17.8: JanusMemBase

Syntax: Ptr = JanusMemBase (Type);

Funktion: Ermittelt die Startadresse eines bestimmten Speicherblockes des Dual-

Ported-RAMs.

Parameter: Type - Speichertyp, dessen Startadresse ermittelt werden soll.

Ergebnis: Ptr - Zeiger auf den Start des gesuchten Speichers.

Datentyp: LONGType - DO

Zeiger Ptr - DO

Sonstiges: Die möglichen Speichertypen ersehen Sie aus Kapitel 17.1.

17.9: JanusMemToOffset

Offset = JanusMemToOffset (Ptr); Syntax:

Funktion: Wenn »Ptr« auf einen Speicherbereich des Dual-Ported-RAMs zeigt, so

wird der Offset ermittelt, also die Adresse, die zur Basisadresse des ange-

sprochenen Bereiches hinzuaddiert werden muß.

Parameter: Ptr-Zeiger auf eine Speicherstelle, zu der der Offset ermittelt werden

soll.

Ergebnis: Offset - Offset zur angegebenen Adresse.

Datentyp: ZeigerPtr -DO

Zeiger Offset — DO

Sonstiges: Als Offset wird die relative Adresse genannt, zu der man die Basisadresse

des anzusprechenden Speicherbereiches addieren muß, um die absolute

Adresse zu erhalten.

17.10: JanusMemType

Syntax: Type = JanusMemType (Ptr);

Funktion: Ermittelt den Speichertyp zu einer angegebenen Adresse.

Parameter: Ptr-Zeiger auf die Speicherstelle, deren Speichertyp ermittelt werden

soll.

Ergebnis: Type - Ermittelter Speichertyp.

Datentyp: ZeigerPtr -DO

LONG’Type - DO

362 Das Janus-Library

17.11: JanusUnLock

Syntax: JanusUnLock (Ptr);

Funktion: Löscht ein »Lock«, auf das »Ptr« zeigt.

Parameter: Ptr - Zeiger auf die zu löschende Lock-Structure.

Datentyp: Zeiger Ptr-A0

Referenz: siehe auch JanusLock

17.12: SendJanusInt

Syntax: SendJanusInt (Jintnum) ;

Funktion: Erzeugt einen Interrupt mit der Nummer jintnum auf der PC-Seite.

Parameter: Jintnum — Nummer des Interrupts, der erzeugt werden soll.

Datentyp: LONG Jintnum - DO

Referenz: siehe auch CheckJanusInt

17.13: SetJanusEnable

Syntax: OldEnable = SetJanusEnable (Jintnum, Newvalue);

Funktion: Setzt einen Interrupt ein oder aus.

Parameter: Jintnum - Interrupt, der ein- oder ausgeschaltet werden soll.

Newvalue - Ist dieser Wert gleich 0, wird der Interrupt ausgeschaltet, bei

1 wird er eingeschaltet. |

Ergebnis: OldEnable -Alter Zustand des Interrupts. Es gilt das Gleiche, wie bei

Newvalue.

Datentyp: LONG Jintnum — DO

Byte Newvalue —D1

Byte OldEnable— DO

17.14: SetJanusHandler

Syntax: OldHandler = SetJanusHandler (Jintnum, Intserver);

Funktion: Setzt eine neue Interruptroutine für einen bestimmten Interrupt.

Parameter: Jintnum - Interruptnummer, zu dem eine Routine gesetzt werden soll.

Das Janus-Library 363

Intserver — Zeiger auf die Routine, die als Interruptroutine gesetzt wer-

den soll.

Ergebnis: OldHandler - Zeiger auf die alte Interruptroutine. —

Datentyp: LONG Jintnum - D0

Zeiger Intserver -Al

Zeiger OldHandler — DO

17.15: SetJanusRequest

Syntax: OldRequest = SetJanusRequest (Jintnum, Newvalue);

Funktion: Setzt oder löscht einen »Interruptrequest«.

Parameter: Jintnum - Nummer des Interrupts, dessen Request modifiziert werden

soll.

Newvalue -Wird hier eine 0 übergeben, so wird der Request gelöscht, bei

einer 1 wird er gesetzt.

Ergebnis: OldRequest - Alter Zustand des Interruptrequests.

Datentyp: LONG Jintnum -DO

Byte Newvalue -D1

Byte OldRequest - DO

17.16: SetParam Offset

Syntax: OldoOffset =SetParamOffset (Jintnum, Offset);

Funktion: Diese Funktion setzt einen neuen Offset für den betroffenen Interrupt.

Parameter: Jintnum -Interruptnummer, für den ein neuer Offset gesetzt werden

soll.

Offset - Zu setzender Offset.

Ergebnis: OldOffset - Alter Offset des betroffenen Interrupts.

Datentyp: LONG Jintnum -DO

WORD Offset -Di

WORD OldOffset — DO

364 Das Expansions-Library

Das Expansion-Library

Das Expansion-Library bietet die Möglichkeit, ohne großen Aufwand Änderungen an

der Systemkonfiguration vorzunehmen. Um die Funktionen auch von der Maschinen-

ebene aufrufen zu können, sind unter dem Punkt Datentyp auch die Register angege-

ben, in denen die Parameter angegeben werden.

Eine Anwendung der Expansion-Library ist das Ändern der Systemdaten eines

Floppy-Laufwerkes. Hierzu nun ein Beispielprogramm, daß dies handhabt.

[FRFRRRRRRRRKRKRRKRRRRRKKRRRRRRRRRRR

Demonstration zur

Expansion- Library

last update 16/02/88

von Frank Kremser und JörgKoch

© Markt & Technik 1988

KHEEKRKKKKEKKRKKKKEKKKKKKRKRKKEKKKKEKHEKE

O
M
O
o
O
N

o
a
»

W
D

HH

10 Diese Demonstration andert die Parameter des 2. Laufwerkes so ab, daß

11 keine normale Diskette mehr gelesen werden kann.

12 Einenormal formatierte Diskette kann allerdings in diesem Format

13 beschriebenundanschließend auch gelesen werden.

14 Die uns bekannten Formatierprogramme unterstützenallerdings nicht

15 solche Parameteränderungen.

16 Trickreiche Programmierer können auf diese Weise unerhört einfach

17 einenKopierschutz erstellen.

18
19 HRKEKKKEKKKKEKEKKKEKKKEKKEKKKKKKEKE /

20

21 +#include <exec/types.h /* Include-Files laden */

22 +#include <exec/memory.h

23 +#include <exec/ports.h

24 +#include <exec/devices.h

25 +#include <exec/io.h

26 +#include <exec/libraries.h

27 +#include <devices/trackdisk.h

Das Expansions-Library 365

28

29

50

Sl

52

55

54

30

36

ST

58

59

40

41

42

43

44

45

46

47

48

49

50

ol

02

95

54

sts)

56

o7

58

9

60

61

62

63

64

65

66

+include <libraries/dos.h

+include <libraries/dosextens.h

+#include <libraries/expansion.h

char dosName|[| = "aAfl:"; /*Dos-Name des ersten Laufwerkes */

char execName[] = "trackdisk.device'"; /* Device-Name * /

ULONG parmPkt[] = /* Parameter */
{

/* Frei */.

/* Frei */

/* Geraete-Numnmer */

/* OpenDevice-Flags */

/* table upper bound */

>>2, /* Anzahl der Langworte imBlock *#/
/* Sektor-Anfang */

/* Anzahl der Schreib-/Lesekoepfe */

/* Sektoren pro log. Block */ .

/*Norm: 11*/ /* Sektoren pro Track */

/* 2Bootblocks */

/* unbenutzt */

/* Interleave-Paktor */

/* erster Cylinder */

,/*Norm: | 79 */ /* letzter Cylinder */
/* Anzahl der Buffer */

h
e

b
t
»

“
“

N
)
»

“

»

“e

“

“

w
e

struct DeviceNode *node, *MakeDosNode ();

struct ExpansionBase *ExpansionBase;

main() /* HAUPTPROGRAMM * /
{
parmPkt[0O] = (ULONG)dosName; /* Zusatzinformationen eintragen */

parmPkt[1] = (ULONG)execName; /* Library 6ffnen */

ExpansionBase = OpenLibrary("expansion.library",0O);

AddDosNode(0,1,MakeDosNode(parmPkt)); /* Neue Parameter setzen */

CloseLibrary(ExpansionBase); /* Library schließen */

366 Das Expansion-Library

18.1: AddDosNode

Syntax: ok = AddDodNode (BootPri,Flags,DeviceNode);

Funktion: Diese Funktion fügt ein Disk-Laufwerk in das System ein.

Parameter: BootPri — Boot-Priotität

Flags -Wird hier 1 angegeben, so wird ein Handlerprozeß sofort

begonnen.

DeviceNode — Dies ist eine normale Device-Node-Structure, die dem

Laufwerk zugewiesen wird.

Ergebnis: Ok — ist ungleich 0, wenn alles in Ordnung war

Datentyp: BYTEBootPri -D0

BIT Flags -Dl

Node DeviceNode - AU

BYTE Ok -DO

Referenz: siehe auch MakeDosNode

18.2: MakeDosNode

Syntax: DeviceNode = MakeDosNode (ParameterPkt);

Funktion: Diese Funktion erstellt eine DOS-Node-Structure für ein bestimmtes

Laufwerk. Die dazu benötigten Daten müssen mit übergeben werden.

Parameter: ParameterPkt - Ist ein Longword-Array, das alle benötigten Daten ent-

hält.

Ergebnis: DeviceNode - Zeiger auf die initialisierte DOS-Node-Structure für das

Laufwerk.

Datentyp: Array ParameterPkt -A0

Pointer DeviceNode - DO

Sonstiges: Ein Beispiel für die Verwendung dieses Befehls und besonders der Para-

meter-Liste finden Sie oben.

Referenz: siehe auch AddDosNode

18.3: AddConfigDev

Syntax: AddConfigDev(ConfigDev);

Funktion: Fügt eine neue ConfigDev-Structure in das System ein.

Das Expansion-Library 367

Parameter: ConfigDev - eine initialisierte Structure.

Datentyp: Pointer ConfigDev -A0

Sonstiges: Diese Structure wird in eine Liste von Configuration-Devices des Systems
eingebunden.

Referenz: siehe auch RemConfigDev

18.4: AllocBoardMem

Syntax: StartSlot = AllocBoardMem(SlotSpec) ;

Funktion: Stellt Speicherbereich aus einer Erweiterung zur Verfügung.

Parameter: SlotSpec — Speichergröße aus der Konfiguration der Karte

(siehe Autokonfiguration).

Ergebnis: StartSlot — Die Slotnummer, in der sich die Karte befindet.

Datentyp: Byte SlotSpec - DO

Byte StartSlot - DO

Sonstiges: Diese Funktion kehrt mit der Slotnummer der Karte zurück, auf deren

Speicher zugegriffen werden darf. Mittels dem EC_ MEMADDR-Makro

kann diese Nummer in eine Speicheradresse gewandelt werden.

Referenz: siehe auch AllocExpansionMem

FreeExpansionMem

FreeBoardMem

18.5: AllocConfigDev

Syntax: ConfigDev = AllocConfigDev();

Funktion: Stellt eine ConfigDev-Structure zur Verfügung.

Ergebnis: ConfigDev - Zeiger auf eine ConfigDev-Structure.

Datentyp: Zeiger ConfigDev — DO

Sonstiges: Die Structure, deren Startadresse zuriickgegeben wird, ist noch nicht

initialisiert.

Referenz: siehe auch FreeConfigMem

368 Das Expansion-Library

18.6: AllocExpansionMem

Syntax:

Syntax: StartSlot = AllocExpansionMem(NumSlots,SlotOffset);

Funktion: Diese Funktion stellt Speicher aufeiner Erweiterungskarte zurVerfügung.

Parameter: NumSlots — Die Anzahl der benötigten Slots

SlotOffset — Begrenzungsoffset für StartSlot

Ergebnis: StartSlot - Die Slotnummer des belegten Slots

Datentyp: ByteNumSlots — DO

Byte SlotOffset - D1

ByteStartSlot - DO

Sonstiges: Diese Funktion berücksichtigt alle Regeln, die für Erweiterungskarten in

Hinsicht auf Speicherbelegungen gelten (siehe Autokonfiguration).

Referenz: siehe auch FreeExpansionMem

AllocBoardMem

FreeBoardMem

18.7: ConfigBoard

Syntax: Error = ConfigBoard(Board, ConfigDev) ;

Funktion: Erweiterungskartenkonfigurierung

Parameter: Board — Die Adresse, an der das Erweiterungsboard liegt.

ConfigDev - eine initialisierte ConfigDev-Structure.

Ergebnis: Error —ist ungleich 0, wenn ein Fehler aufgetreten ist.

Datentyp: Zeiger Board -AO

Zeiger ConfigDev -Al

Byte Error DO

Sonstiges: Diese Funktion wird nur beim Booten des Systems benötigt. Zu dieser

Zeit liegen alle Erweiterungskarten an der gleichen Stelle im Speicherbe-

reich, doch wegen der Kompatibilität mit späteren Systemen muß diese

Adresse als Parameter angegeben werden.

Referenz: siehe auch FreeConfigDev

18.8: ConfigChain

Error =ConfigChain(BaseAddr);

Das Expansion-Library 369

Funktion: Zentrale Konfigurationsroutine

Parameter: BaseAddr - Zeiger auf die Basisadresse des Expansionsbereiches.

Ergebnis: Error — Ist ungleich 0, falls ein Fehler aufgetreten ist.

Datentyp: Zeiger BaseAddr -A0

Byte Error - DO

Sonstiges: Dies ist die zentrale Routine der Autokonfiguration. Diese Routine ruft

alle anderen Funktionen auf, die zur Konfiguration benötigt werden und

bindet alle gefundenen Karten in das System ein.

Referenz: siehe auch FreeConfigDev

18.9: FindConfigDev

Syntax: ConfigDev = FindConfigDev(OldConfigDev,Manufacturer, Pro-

duct);

Funktion: Sucht nach einer bestimmten ConfigDev-Structure.

Parameter: OldConfigDev — Zu suchende Structure

Manufacturer - Herstellercode

Product — Produktcode

Ergebnis: ConfigDev — gefundene Structure

Datentyp: Zeiger OldConfigDev - AO

| Long Manufacturer -DO

Long Product -Di

Zeiger ConfigDev - DO

Sonstiges: Diese Funktion sucht im Prinzip in allen eingebundenen Erweiterungskar-

ten nach den Eintragungen, die als Parameter angegeben werden und gibt

eventuell die gefundene ConfigDev-Structure zurück.

18.10: FreeBoardMem

Syntax: FreeBoardMem(StartSlot,SlotSpec) ;

Funktion: Diese Funktion gibt einen mit AllocBoardMem reservierten Speicherbe-

reich auf einer Erweiterungskarte wieder frei.

Parameter: StartSlot —Slotnummer der betroffenden Karte

SlotSpec —Speichergr6Be als Index (siehe Autokonf.)

370 Das Expansion-Library

Datentyp: Byte StartSlot —- DO

Byte SlotSpec - D1

Sonstiges: Falls ein Speicherbereich freigegeben werden soll, der bereits frei ist,

stürzt das System ab.

Referenz: siehe auch AllocExpansionMem

FreeExpansionMem
AllocBoardMem

18.11: FreeConfigDev

Syntax: FreeConfigDev(ConfigDev);

Funktion: Löscht eine ConfigDev-Structure

Parameter: ConfigDev - Zeiger auf eine ConfigDev-Structure

Datentyp: Zeiger ConfigDev - AO

Sonstiges: FreeConfigDev stellt den für eine ConfigDev-Structure reservierten Spei-

cherbereich wieder zur Verfügung.

Referenz: siehe auch AllocConfigDev

18.12: FreeExpansionMem

Syntax:

Funktion:

Parameter:

Datentyp:

Sonstiges:

Referenz:

FreeExpansionMem(StartSlot, NumSlots);

Diese Funktion stellt den von Erweiterungskarten belegten Speicherplatz

wieder zur Verfügung.

StartSlot - Nummer des Slots, ab dem freigestellt werden soll.

NumSlots— Anzahl der Slots, die freigestellt werden sollen.

StartSlot — DO

NumSlots— D1

Soll ein Speicherbereich zur Verfiigung gestellt werden, der bereits frei ist,

so stiirzt das System ab. |

siehe auch AllocExpansionMem

AllocBoardMem

FreeBoardMem

Das Expansion-Library 371

18.13: GetCurrentBinding

Syntax: Actual = GetCurrentBinding(CurrentBinding,Size);

Funktion: Liest den Konfigurationsbereich eines Erweiterungsboards.

Parameter: CurrentBinding - Zeiger auf eine CurrentBinding-Structure

Size — Größe der Benutzer-Binddriver-Structure

Ergebnis: Actual - Die wirkliche Größe der CurrentBinding-Structure

Datentyp: Zeiger CurrentBinding - AO

Byte Size -DO

Actual - DO

Referenz: siehe auch SetCurrentBinding

18.14: ObtainConfigBinding

Syntax: ObtainConfigBinding();

Funktion: Bindet die Driver der Erweiterungskarten zu den ConfigDev-Structures.

Referenz: siehe auch ReleaseConfigBinding

18.15: ReadExpansionByte

Syntax: Byte = ReadExpansionByte(Board,Offset);

Funktion: Liest ein Konfigurationsbyte aus der Erweiterungskarte.

Parameter: Board - Zeiger auf den Erweiterungskartenbereich

Offset — Zu lesendes Konfigurationsbyte

Ergebnis: Byte -gelesenes Konfigurationsbyte

Datentyp: Zeiger Board - AO

Long Offset - DO

Byte Byte -DVO

Sonstiges: Das Konfigurationsbyte setzt sich aus zwei Nibbles zusammen. Diese

Nibbles sind im Kapitel 6 ausführlich beschrieben.

Referenz: siehe auch WriteExpansionByte

ReadExpansionRom

372 Das Expansion-Library

18.16: ReadExpansionRom

Syntax: Error =ReadExpansionRom(Board,ConfigDev);

Funktion: Liest einen Bereich aus dem ROM der Erweiterungskarte in den Bereich

| cd_ROM der ConfigDev-Structure.

Parameter: Board — Zeiger auf den Beginn des Erweiterungskarten-Dekodierbe-

reiches.

ConfigDev - Zeiger auf eine ConfigDev-Structure

Ergebnis: Error — Ist ungleich 0, wenn ein Fehler aufgetreten ist.

Datentyp: Zeiger Board - AO

Zeiger ConfigDev - Al

Byte Error - DO

Sonstiges: Bis auf die ersten zwei Nibbles werden alle Nibbles invertiert.

Referenz: siehe auch ReadExpansionByte

WriteExpansionByte

18.17: ReleaseConfigBinding

Syntax: ReleaseConfigBinding();

Funktion: Erlaubt anderen Funktionen das Einbinden von Erweiterungskarten.

Referenz: siehe auch ObtainConfigBinding

18.18: RemConfigDev

Syntax: RemConfigDev(ConfigDev);

Funktion: Löscht eine ConfigDev-Structure aus dem System.

Parameter: ConfigDev — Zu löschende ConfigDev-Structure.

Datentyp: Zeiger ConfigDev-A0

Referenz: siehe auch AddConfigDev

18.19: SetCurrentBinding

Syntax: SetCurrentBinding(CurrentBinding,Size);

Funktion: Setzt den Konfigurationsbereich einer Erweiterungskarte.

Das Expansion-Library 373

Parameter:

Datentyp:

Sonstiges:

Referenz:

CurrentBinding — Zeiger auf eine CurrentBinding-Structure

Size — Größe der Benutzer-Binddriver-Structure

Zeiger CurrentBinding — AO

Byte Size — DO

Wenn Size größer angegeben wird, als die ideale CurrentBinding-Größe,
wird nichts gesetzt.

siehe auch GetCurrentBinding

18.20: WriteExpansionByte

Syntax:

Funktion:

Parameter:

Ergebnis:

Datentyp:

Sonstiges:

Referenz:

Error = WriteExpansionByte(Board, Offset, Byte)

Schreibt ein Byte in den Konfigurationsbereich einer Erweiterungskarte.

Board — Zeiger auf den Beginn des Erweiterungskarten-Decodierberei-

ches

Offset — Logische Adresse des zu schreibenden Bytes

Byte -Zu schreibendes Byte

Error - ist ungleich 0, falls ein Fehler aufgetreten ist.

Zeiger Board - AQ

Long Offset - DO

ByteByte -D1

Byte Error -DVO

Das Byte wird Nibbleweise geschrieben. Die Funktionsweise wird noch

klarer, wenn Kapitel 6 betrachtet wird.

siehe auch ReadExpansionByte

ReadExpansionRom

374 Anhang

Anhang A: Kartengrößen

_ MAX 337.19
pn

P
N

aN
a

4
A a

A
A
4

4

Z A-1: Diese Abbildung zeigt die Abmaße einer Karte für den 86-Pin-Erweiterungsslot im
Amiga 2000 (Teil 1)

Anhang 375

NE

MAX337.19

Z A-1: Diese Abbildung zeigt die Abmaße einer Karte für den 86-Pin-Erweiterungsslot im
Amiga 2000 (Teil 2)

376 Anhang

ZA-2: Hier werden die Abmessungen für eine Brückenkarte, bzw. Amiga
2000-Erweiterungskarte gezeigt (Teil 1)

Anhang 377

u

a
m
e

a

a
r

u u” er a . Mr Rat a i Baur Sale” RT ol FS SOO

—
_

a
e

a
r

a,

i

ch
N“.
ve

N

a

a
r

a
e

a
a

a
e
 p
r

Sa
ge

a
d
a
p
t
e
r

S
t
.

m

T
G

>

E
T

G
T

AR
E

a
i
r
.
.
.

e
r
.
.
.

E
T

E
T
.

T
T
S
”

a
g
e

g
e
r

n
a
l

a
i
"

H
R

E
u
r
"
.

u
h
r

RE
R“

E
G

Z
u
r

D
R

Do
ne

E
T

S
U

E
R

e
u
r

D
r

r
c

ZA-2: Hier werden die Abmessungen für eine Brückenkarte, bzw. Amiga
2000-Erweiterungskarte gezeigt (Teil 2)

378 Anhang

| | ma

| | | | Conn. Space

47.98 +O.1_

PIN 1 PIN I

aa St

17SP.@254 | | [
a oo | An > 23.495
17P. @254 | ((48PIN) | eo a 76.835 | 4 2
GSPN) |

Amiga 2 2000 Video Card

Z A-3: Diese Abbildung zeigt die Abmessungen einer Erweiterungskarte für den Amiga 2000
Video-Slot

Anhang B: Speicherbelegung

000000 - 07FFFF 512 Kbyte-Chip-RAM

080000 - 1FFFFF belegt für System

200000 - 9FFFFF Bereich für Speichererweiterung (Fast-RAM)

A00000 - BEFFFF belegt für System

BFD000 - BFDFOO Registeradressen für Portbaustein 8520-B

BFEO01 - BFEFO1 Registeradressen für Portbaustein 8520-A

C00000 - DFEO00 belegt für System

DFFO00 - DFFFFF Registeradressen für Custom-Chips

E00000 - E7FFFF belegt für System

E80000 - EFFFFF Expansionslot-Decodierung

F00000 - F7FFFF belegt für System

F80000 - FFFFFF System-ROM

Anhang 379

Anhang C: Die Hardwareregister

Dies ist die komplette Auflistung der Hardwareregister. Über sie kann man direkt die

Hardware ansprechen. Zu den angegebenen Adressen muß noch $DFF000 hinzuad-

diert werden. Dies ist die Chip-Basisadresse.

Verwendete Abkürzungen:

A —Agnus-Chip R — Read-Register

D - Denise-Chip | W-Write-Register

P -Paula-Chip S - Strobe-Register

Die Hardwareregister nach Adressen geordnet (eine ausführliche Funktionsbeschrei-

bung befindet sich bei der alphabetisch geordneten Registerliste im Anschluß an diese

Liste):

Register Adr Chip R/W Funktionsbeschreibung

~BLIDDAT 000

DMACONR 00

VPOSR 004

VHPOSR 006

DSKDATR 008

JOYODAT 00A

JOYIDAT DOC

CLXDAT OOE

ADKCONR _ 010

POTODAT 012

POTIDAT 014

POTGOR 016

SERDATR 018

DSKBYTR 01A

INTENAR O1C

INTREOR 0IE

DSKPIH 020

DSKPIL 022

DSKLEN 024

DSKDAT 026

REFPTR 028

VPOSW 02A

BLiTter-Destination-Data (Dummy-Adresse)

DMA-CONtrol-Read

Vertical-POSition-Read (höchstes Bit)

Vertical-and-Horizontal-POSition-Read

DiSK-DATa-Read (Dummy-Adresse)

JOYport0-DATa

JOYporti-DATa

CoLission-Data

Audio-DisK-CONtrol-Read

POTO-DATa

POT1-DATa

POT-data-Read

SERial-DATa-Read

DiSK-dataBYTe-Read

INTerrupt-ENAble-bits-Read

INTerrupt-REQuest-bits-Read

DiSK-PoinTer-High

DiSK-PoinTer-Low

DiSK-data-LENgth

DiSK-dma-DATA-write

REFresh-PoinTeR

Vertical-POSition-Write (höchstes Bit) >>

UU
S>

>

VV
DV

UT
P

T
U
T

UO

OU

TI

>
>

>
rg

S
S
S
S
e
S
a
S
A
R
A
A
A
A
R
Z
A
A
A
D
A
R
A
Z
A
A
A
R

380 Anhang

Register Adr Chip R/W Funktionsbeschreibung

VHPOSW 02C

COPCON 02E

SERDAT 030

SERPER 032

POTGO 034

JOYTEST 036

STREQU 038

Vertical-and-Horizontal-POSition-Write

COProzessor-CONtrol-register

SERial-port-DATa

SERial-port-PERiod

POT-port-data-write-and-go

JOYport-TEST

STRobe-for-horizontal-syncronisation-with-

vertical-blank-and-EQU

wo

Bu
Zu

ze

Zu

r
z
z
z
z
z
z

STRVBL 03A D S STRobe-for-horizontal-syncronisation-with-

Vertical-BLank

STRHOR 03C DP S STRobe-for-HORizontal-syncronisation

STRLONG O3E D S STRobe-for-identification-of-LONG-horizontal-

line

BLTCONO 040 A W ~ BLiTter-CONtrol-register-0

BLICONI 042 A W ~ BLiTter-CONtrol-register-1

BLIAFWM 044 A W BLiTter-First-Word-Mask-for-source-A

BLIALWM 046 A W BLiTter-Last-Word-Mask-for-source-A

BLICPTH 048 A W ~ BLiTter-PoinTer-High-to-source-C

BLICPTL 04A A W BLiTter-PoinTer-Low-to-source-C

BLIBPTH 04C A W ~~ BLiTter-PoinTer-High-to-source-B

BLIBPTL 0O4E A W BL1Tter-PoinTer-Low-to-source-B

BLTAPTH 050 A W ~~ BLiTter-PoinTer-High-to-source-A

BLTAPTL 052 A W BLiTter-PoinTer-Low-to-source-A

BLIDPTH 054 A W ~ BLiTter-PoinTer-High-to-destination-D

BLIDPTL 056 A W BLiTter-PoinTer-Low-to-destination-D

BLISIZE 058 A W BLiTter-start-and-SIZE

OSA

05C

OSE

BLTCMOD 060 A W BLiTter-MODulo-for-source-C

BLIBMOD 062 A W ~~ BLiTter-MODulo-for-source-B

BLIAMOD 064 A W BLiTter-MODulo-for-source-A

BLIDMOD 066 A W BLiTter-MODulo-for-destination-D

068

06A

06C

06E

BLICDAT 070 A W BLiTter-source-C-DATa-register

BLIBDAT 072 A W ~~ BLiTter-source-B-DATa-register

Anhang 381

Register

BLIADAT

DSKSYNC

COPILCH

COPILCL

COP2LCH

COP2LCL

COPJMPI

COPJMP2

COPINS

DIWSTRT

DIWSTOP

DDFSTRT

DDFSTOP

DMACON

CLXCON

INTENA

INTREO
ADKCON

AUDOLCH

AUDOLCL

AUDOLEN

AUDOPER

AUDOVOL

AUDODAT

AUDILCH

AUDILCL

AUDILEN

AUDIPER

AUDIVOL

AUDIDAT

AUD2LCH

Adr

074
076
078
07A
07C
07E
080
082
084
086
088
08A
08C
08E
090
092
094
096
098.
09A
09C
09E
0AO
0A2
0A4
0A6
OAS
0AA
OAC
OAE
OBO
0B2
0B4
0B6
0B8
OBA
OBC
OBE
0co

C
U
U
V
U
S

PSP

U
V
U
I
V
I
O
S

SS
P

r
r
r

r
r
r

r
r
r

Chip R/W Funktionsbeschreibung

A

DP

D
r
r
r
d
i
>
>

W

=
<

<
<
<

<
<

Z
z

=z
=

=

BLiTter-source-A-DATa-register

DiSK-SYNCronisation-pattern-register

COPper-first-LoCation-High

COPper-first-LoCation-Low

COPper-second-LoCation-High

COPper-second-LoCation-Low

restart-COPper-at-first-location

restart-COPper-at-second-location

COPper-INStruction-fetch-identify

DIsplay-Window-STaRT

DIsplay-Window-STOP

Display-bitplane-Data-Fetch-STaRT

Display-bitplane-Data-Fetch-STOP

DMA-CONtrol-register

CoLlision-CONtrol

INTerrupt-EN Able-bits

INTerrupt-REQuest-bits

Audio-and-DisK-CONtrol

AUDio0-LoCation-High

AUDio0-LoCation-Low

AUDio0-data-LENgth

AUDi00-PERiod

AUDio0-VOLume

AUDi00-DATa-register

AUDio1-LoCation-High

AUDio1-LoCation-Low

AUDiol-data-LENgth

AUDiol-PERiod

AUDiol-VOLume

AUDio1-DATa-register

AUDio2-LoCation

382 Anhang

Register Adr Chip R/W Funktionsbeschreibung

AUD2-LCL 0C2 W AUDi02-LoCation-Low

AUD2LEN 0C4 P W AUD2?2-data-LENegth

AUD2PER 0C6 P W AUDi02-PERiod

AUD2VOL OC8& P W AUDio02-VOLume
AUD2DAT OCA P W AUDi02-DATa-register

OCC

OCE

AUD3LCH 0D0
AUD3LCL 0D2
AUD3LEN 0D4
AUD3PER 0D6
AUD3VOL 0D8
AUD3DAT ODA

AUDio3-LoCation-High

AUDio3-LoCation-Low

AUDio3-data-LENgth

AUDi03-PERiod

AUDi03-VOLume

AUDio03-DATa-register D
o
v
 D>

>

z
e
i
g
e

ODC

ODE

BPLIPTH OEO A W _sCOBit-PLane1-PoinTer-High

BPLIPTL 0E2 A W _ Bit-PLanel-PoinTer-Low

BPL2PTH 0EA A W _ Bit-PLane2-PoinTer-High

BPL2PTL OF6 A W _ Bit-PLane2-PoinTer-Low

BPL3PTH 0E8 A W _ Bit-PLane3-PoinTer-High

BPL3PTL OFA A W _ Bit-PLane3-PoinTer-Low

BPL4PTH OEC A W _ Bit-PLane4-PoinTer-High

BPL4PTL ORE A W _ Bit-PLane4-PoinTer-Low

BPLSPTH OFO A W Bit-PLane5-PoinTer-High

BPLSPTL OF2 A W ~~ Bit-PLane5-PoinTer-Low

BPL6PTH OF4 A W _ Bit-PLane6-PoinTer-High

BPL6PTL OF6 A W _ Bit-PLane6-PoinTer-Low

OF8

OFA

OFC

OFE

BPLCONO 100 AD W _— Bit-PLane-CONtrol-register-0

BPLCONI 1022 D W _ Bit-PLane-CONtrol-register-1

BPLCON2 104. D W _ Bit-PLane-CONtrol-register-2

106

BPLIMOD 108 A W Bit-PLane-MODulo-for-odd-planes (1,3,5)

BPL2MOD 1A A W _ Bit-PLane-MODulo-for-even-planes (2,4,6)

10C

10E

BPLIDAT 110 D = Bit-PLane-1-DATa

Anhang 383

Register

BPL2DAT

BPL3DAT

AUD2LCH

AUD2LCL

AUD2LEN

BPL4DAT

BPLSDAT

BPL6DAT

SPROPTH

SPROPTL

SPRIPTH

SPRIPTL

SPR2PTH

SPR2PTL

SPR3PTH

SPR3PTL

SPR4PTH

SPR4PTL

SPRSPTH

SPRSPTL

SPR6PTH

SPR6PTL

SPR7PTH

SPR7PTL

SPROPOS

SPROCTL

SPRODATA

SPRODATB

SPR1POS

SPRICTL

SPRIDATA

SPRIDATB

SPR2POS

SPR2CTL

SPR2DATA

SPR2DATB

SPR3POS

Adr

112

114

OCO

0C2

0C4

116

118

11A

11C

11E

120

122

124

126

128

IA

12C

12E

130

132

134

136

138

13A

13C

13E

140

142

144

146

148

14A

14C

14E

150

152

154

156

158

Chip R/W Funktionsbeschreibung

U
u
u
v
>
>

UY

D

D

D

D

D

D

P
O
U
>

>
U
U
>
>
-
U

U
>
>

ee
ee

a
ee

ee

ee
e
e

ee
>
>
>
»

D

<
E
<
I
<
I
E
E

H
E

S
S
P

HP
SP
SS

S
S
S

S
T
S

S
S
S

S
S
H

SE
H

HE
H

TH
T

H
Z
H
Z
S

Bit-PLane-2-DATa

Bit-PLane-3-DATa

AUDio2-LoCation-High

AUDio2LoCation-Low

AUDio2-data-LENgth

Bit-PLane-4-DAla

Bit-PLane-5-DATa

Bit-PLane-6-DAla

SPRiteO-PoinTer-High

SPRite0-PoinTer-Low

SPRite1-PoinTer-High

SPRite1-PoinTer-Low

SPRite2-PoinTer-High

SPRite2-PoinTer-Low

SPRite3-PoinTer-High

SPRite3-PoinTer-Low |

SPRite4-PoinTer-High

SPRite4-PoinTer-Low

SPRite5-PoinTer-High

SPRite5-PoinTer-Low

SPRite6-PoinTer-High

SPRite6-PoinTer-Low

SPRite7-PoinTer-High

SPRite7-PoinTer-Low

SPRite0-vertical-and-horizontal-start-POSition

SPRite0-vertical-stop-position-and-ConTroL-data

SPRite0-image-DATa-register-A

SPRite0-image-DATa-register-B

SPRitel-vertical-and-horizontal-start-POSition

SPRite1-vertical-stop-position-and-ConTroL-data

SPRite1l-image-DATa-register-A

SPRite1-image-DATa-register-B

SPRite2-vertical-and-horizontal-start-POSition

SPRite2-vertical-stop-position-and-ConTroL-data

SPRite2-image-DATa-register-A |

SPRite2-image-DATa-register-B

SPRite3-vertical-and-horizontal-start-POSition

384 Anhang

Register

SPR3CTL

SPR3DATA

SPR3DATB

SPR4POS

SPR4CTL

SPR4DATA

SPR4DATB

SPR4POS

SPR4CTL

SPRADATA

SPRADATB

SPRSPOS

SPRSCTL

SPRSDATA

SPRSDATB

SPR6POS

SPR6CTL

SPR6DATA

SPR6DATB

SPR7POS

SPR7CTL

SPR7DATA

SPR7DATB

COLOROO

COLORO01

COLORO2

COLORO3

COLORO04

COLORO05

COLOR06

COLORO7

COLORO8

COLORO9

COLOR10

COLOR1l

COLOR22

COLORI13

COLOR14

COLORI5

COLORI6

Adr

15A

15C

15E

160

162

164

166

160

162

164

166

168

16A

16C

16E

170

172

174

176

178

17A

17C

VE

180

182

184

186

188

18A

18C

18E

190

192

194

196

198

19A

19C

19E

1A0

Chip R/W Funktionsbeschreibung

AD W

D

D

AD

> 0
O
O

O
oO

O

Q
S
I
T
S
I
S
Z
T
I
T
I
S
S
T
T
I
S
E
S
I
T
E
S
I
S
I
T
E
I
S
S
T
S
E
E
S
S
T
S
E
L
S
S
E
T
I
S
S
T
S
E
S
S
S
L
E
N
S

O
D

0
U
O
D
U
U
T
D
U
U
U
D
U

D
U

D
OU

UT

O
U

U
>
,

O
U

>
,

„
U

U
>
.

DO
I
>
>
U
O
O
D
O

SPRite3-vertical-stop-position-and-ConTroL-data
SPRite3-image-DATa-register-A

SPRite3-image-DATa-register-B |

SPRite4-vertical-and-horizontal-start-POSition
SPRite4-vertical-stop-position-and-Con TroL-data

SPRite4-image-DATa-register-A |

SPRite4-image-DATa-register-B

SPRite4-vertical-and-horizontal-start-POSition

SPRite4-vertical-stop-position-and-ConTroL-data

SPRite4-image-DATa-register-A

SPRite4-image-DATa-register-B

SPRite5-vertical-and-horizontal-start-POSition

SPRite5-vertical-stop-position-and-ConTroL-data

SPRite5-image-DATa-register-A :
SPRite5-image-DATa-register-B

SPRite6-vertical-and-horizontal-start-POSition

SPRite6-vertical-stop-position-and-ConTroL-data

SPRite6-image-DATa-register-A

SPRite6-image-DATa-register-B

SPRite7-vertical-and-horizontal-start-POSition

SPRite7-vertical-stop-position-and-ConTroL-data

SPRite7-image-DATa-register-A

SPRite7-image-DATa-register-B

COLOR-register-00

COLOR-register-01

COLOR-rtegister-02

COLOR -register-03

COLOR -register-04

COLOR-register-05

COLOR-register-06

COLOR -register-07

COLOR-register-08

COLOR-tegister-09

COLOR-register-10

COLOR-register-11

COLOR-register-12

COLOR-register-13

COLOR-register-14

COLOR-register-15

COLOR-register-16

Anhang 385

Register

COLORI7

COLORI8

COLORI9

COLOR20

COLOR21

COLOR22

COLOR24

COLOR23

COLOR25

COLOR26

COLOR27

COLOR28

COLOR29

COLOR30

COLOR31

Adr

1A2.

1A4

1A6

1A8

1AA

1AC

1B0

1AE

1B2

1B4

1B6

1B8

1BA

1BC

1BE

Chip R/W Funktionsbeschreibung

U
U
U
U
U
U
U
U
U
U
U
D
U
D
U
D

E
L
L
E

<
<
<

COLOR-register-17

COLOR-register-18

COLOR -Tregister-19

COLOR -register-20

COLOR-register-21

COLOR-register-22

COLOR-register-24

COLOR-register-23

COLOR-register-25

COLOR-register-26

COLOR-register-27

COLOR-register-28

COLOR-register-29

COLOR-register-30

COLOR-register-31

Die Hardwareregister alphabetisch geordnet mit ausführlichen Funktionsbeschrei-

bungen:

Register

ADKCON

Adr

09E

Chip R/W Funktionsbeschreibung

W Audio-and-DisK-CONtrol P

ADKCONR 010 P

Bit

15
14
13
12
11

10

09

08

07

06

05

R Audio-DisK-CONtrol-Read

Funktion

SET/CLR

PRECOMP

MFMPREC

UARTBRK

Set/Clear-Bit (1=Set)

00=kein, 01=140ns

10=280ns, 11=560ns

MFM oder BCR-Format (1=MFM)

UART-Break (1=Break)

WORDSYNC Disk-Synchronisation. Wartet, bis

gelesener Wert gleich dem Wert in

MSBSYNC

FAST

USE3PN

USE2P3

USEIP2

DSKSYNC ist.

Disk-Synchronisation mit MSB.

Wird beispielsweise bei APPLE-Format

verwendet.

Clock-Rate: 1=Fast=MFM

Ben. Kan. 3 um nichts zumod.

Ben. Kan. 2um Period Kan. 3zumod.

Ben. Kan. 1 um Period Kan. 2 zu mod.

386 Anhang

Register

AUDxLCH

AUDxLCL

AUDxLEN

AUDxPER

AUDxVOL

AUDxDAT

Adr

0x0

0x2

0x4

0x6

0x8

OxA

Chip R/W Funktionsbezeichnung

04 USEOP1 Ben. Kan. Oum Period Kan. 1zumod.

03 USE3VN Ben. Kan. 3 um nichts zu mod.

02 USE2V3 Ben. Kan. 2umVolume Kan. 3zumod.

01 USE1V2 Ben. Kan. 1 um Volume Kan. 2 zu mod.

00 USEOV1 Ben. Kan. 0um Volume Kan. 1zumod.

A W AUDiox-LoCation-High

A W AUDiox-LoCation-Low

Diese beiden Register enthalten die Startadresse der Audio-

daten für Kanal x. Die 19-Bit-Adresse steht mit 3 Bits im High-

Register und mit 16 Bits im Low-Register. Die Adresse muß

Word-alligned sein.

Diese beiden Register enthalten die Startadresse der Audio-

daten für Kanal x. Die 19-Bit-Adresse steht mit 3 Bits im High-

Register und mit 16 Bits im Low-Register. Die Adresse muß

‘Word-alligned sein.

P W AUDiox-data-LENgsth

Dieses Register enthält die Länge der Audiodaten für Kanal x in

Words.

P W AUDiox-PERiod

Dieses Register enthält die DMA-Datenübertragungsrate in

Clockzyklen. Der Minimalwert beträgt 124, welcher gleichzeitig

die maximale Abspielgeschwindigkeit von 28,86 khz darstellt.

P W AUDiox-VOLume

Enthält die Lautstärke von Kanal x. Der maximale Wert beträgt

64.

Bit Funktion

15-7 Werden nicht benutzt

06 Istdieses Bit gesetzt, so wird die Lautstärke auf den

maximalenWert gesetzt, egal, wie die anderen Bits

gesetztsind.

05-0 Geben die Lautstärke von Obis 63 an.

P W AUDiox-DATa-register

Dieses Register enthalt jeweils zwei Byte der Sounddaten, die aus-

gegeben werden sollen als Zweierkomplement. Im Normalfall

schreibt die DMA diese Daten aus dem Speicher in dieses Register.

Es kann aber auch durch direktes Ansprechen mit der CPU ein

Sound erzeugt werden.

Anhang 387

Register

BLEIxPTH

BLIxPTL

BLIxMOD

BLIAFWM

BLIALWM

BLIxDAT

BLICONO

BLTCONI

BLISIZE

BPLxPTH

BPLxPTL

BPLxDAT

BPLIMOD

Adr

Oxx

Oxx

Oxx

044
046

Oxx

040

042

058

Oxx

Oxx

11A

108

Chip R/W Funktionsbezeichnung

A W BLiTter-PoinTer-High-to-x

A W BLiTter-PoinTer-Low-to-x

Zeiger auf Blitterdaten für Source oder Destination-Data.

A WwW BLiTter-MODulo-for-x

Dieses Register enthält den Modulowert für die Source-, bzw. Desti-

nationdaten. Ist eine Zeile vom Blitter verarbeitet worden, so wird

der Modulowert hinzuaddiert, die neue Zeile beginnt also entspre-

chend später im Speicher. Dies ist sehr wichtig, wenn der zu bearbei-

tende Bereich ein Ausschnitt aus einer größeren Bitplane ist.

A W BLiTter-First-Word-Mask-for-source-A

A W BLiTter-Last-Word-Mask-for-source-A

Die Bitmuster werden per AND mit dem ersten, bzw. letzten

Word einer Zeile aus Source A verkniipft.

A W BLiTter-source-x-DATa-register

Dieses Register enthält ein Word von Daten aus Source x. Nor-

malerweise wird es durch die DMA geschrieben, kann aber auch

durch die CPU gesetzt werden.

A W BLiTter-CONtrol-register-0

A W BLiTter-CONtrol-register-1

A W BLiTter-start-and-SIZE

Dieses Register enthält die Höhe und Breite des Bereiches, der

bearbeitet werden soll. Die Bits 6-15 enthalten die Höhe, und

Bits 0-5 enthalten die Breite.

A W Bit-PLanex-PoinTer-High

A W Bit-PLanex-PoinTer-Low

Diese Register enthalten die Startadresse der Bitplane x.

D W Bit-PLane-x-DATa

Dieses Register enthält jeweils ein Word an Displaydaten, die

ausgegeben werden. Normalerweise werden die Daten durch

die DMA geschrieben, theoretisch kann dies aber auch durch

die CPU geschehen. Bit 15 wird immer zuerst dargestellt, d.h. es

erscheint links von den anderen Bits.

A W Bit-PLane-MODulo-for-odd-planes

(1,3,5)

Dieses Register enthält den Modulowert für die ungeraden Bit-

Planes. Ist eine Bildschirmzeile komplett dargestellt, so wird zur

aktuellen Adresse der Modulowert hinzuaddiert, so daB die Bit-

Plane größer als der dargestellte Bildbereich sein kann.

388 Anhang

Register

BPL2MOD

Adr Chip R/W Funktionsbeschreibung

DA A W _ Bit-PLane-MODulo-for-even-planes

(2,4,6)

Für dieses Register gilt das oben gesagte. Da es zwei getrennte

Register fiir ungerade und gerade BitPlanes gibt, besteht die

Möglichkeit im Dualplayfield-Modus zwei verschiedengroße

Playfields darzustellen.

BPLCONO 100 AD W _— Bit-PLane-CONtrol-register-0

BPLCONI 102 D W _ Bit-PLane-CONtrol-register-1

BPLCON2 104 D W _ Bit-PLane-CONtrol-register-2

Diese Register kontrollieren die Bildschirmdarstellung:

Bit BPLCONO DBPLCONI1 BPLCON2

15 HIRES

14 BPU2

13 BPUI1

12 BPUO

11 HOMOD

10 DUALPF

09 COLOR

08 GAUD

07 PF2H3

06 PF2H2 PF2PRI

05 PF2H1 PF2P2

04 PF2H0 PF2P1

03 LPEN PF1H3 PF2PO

02 LACE PF1H2 PF1P2

01 ERSY PF1H1 PF1P1

00 PF1HO PF1PO

Abkürzungen:

HIRES - High-Resolution-Modus

BPU - Anzahl der BitPlanes (000-110 = 0-6)

HOMOD - Hold-and-Modify-Modus

DUALPF- Dual-Playfield-Modus

Die ungeraden BitPlanes werden als PF1 und die

geraden als PF2 dargestellt.

COLOR - Composite-Video-Modus

GAUD - Genlock-Audio-Modus

LPEN - Lightpen-Modus

LACE - Interlace-Modus

Anhang 389

CLXDAT OOE

ERSY- Externe Video-Synchronisation

PF2PRI — PF2 wird vor PF1 dargestellt

PF2P — PF2-Priorität zu Sprites

PF1P — PF1-Prioritat zu Sprites

PF2H — PF2-Horizontal-Code

PF1H - PF1-Horizontal-Code

CLXCON 098 D W CoLlision-CONtrol

Dieses Register setzt die Objekte, die auf Kollision getestet

werden sollen:

Bit Objekt

15 Sprite6+7

14 Sprite4+5

13 Sprite2+3

12 SpriteO+1

11 BitPlane 6

10 BitPlane 5

09 BitPlane 4

08 BitPlane 3

07 BitPlane 2

06 BitPlane 1

05 Kollisions-Code fiir BitPlane6

04 Kollisions-Code fiir BitPlane5

03 Kollisions-Code fiir BitPlane4

02 Kollisions-Code fiir BitPlane3

01 Kollisions-Code für BitPlane2

00 Kollisions-Code für BitPlane1

D R CoLission-Data

Dieses Register zeigt die registrierten Kollisionen an:

Bit registrierte Kollision

15 _ nicht benutzt

14 = Sprite 4 oder 5 zu Sprite 6 oder 7

13 = Sprite 2 oder 3 zu Sprite6oder 7

12 =Sprite 2 oder 3 zu Sprite 4 oder 5

11 Sprite 0 oder 1 zu Sprite 6 oder 7

10 Sprite 0 oder 1 zu Sprite 4 oder 5

09 Sprite 0 oder 1 zu Sprite 2 oder 3

08 Playfield 2 zu Sprite 6 oder 7

07 Playfield 2 zu Sprite 4 oder 5

390 Anhang

COLORxx

COPCON

COPJMPI

COPJMP2

COPILCH

COPILCL

COP2LCH

COP2LCL

COPINS

DIWSTRT

DIWSTOP

1xx

02E

088

08A

080

082

084

086

0SC

O8E

090

06 Playfield2zu Sprite 2 oder 3

05 Playfield2zu Sprite 0 oder 1

04 Playfield 1 zu Sprite 6 oder 7

03 Playfield 1 zu Sprite 4 oder 5

02 Playfield 1 zu Sprite 2 oder 3

01 Playfield 1 zu Sprite 0 oder 1

00 ‘Playfield 1 zu Playfield 2

D W COLOR-register-xx

Diese Register enthalten die aktuellen Farben, die dargestellt

werden. Bits 0 bis 3 enthalten den Blauanteil, Bits 4 bis 7 den

Grünanteil und die Bits 8 bis 11 den Rotanteil der Farbe.

A W ~~ COProzessor-CONtrol-register |

Wenn Bit 1 dieses Registers gesetzt ist, kann der Copper auch

die Blitterhardware (-register) ansprechen.

A S restart-COPper-at-first-location

A S restart-COPper-at-second-location

Wird eine dieser Adressen angesprochen, so wird der Copper

mit einem Zeiger auf eine neue Copperliste neu gestartet. Wird

COPJMP1 angesprochen, so wird die Adresse im Register

COPILCHIL verwendet.

A W _ COPper-first-LoCation-High

A W COPper-first-LoCation-Low

A W ~~ COPper-second-LoCation-High

A W ~ COPper-second-LoCation-Low

Diese Register enthalten die Adresse der Copperliste, die mit

COPJMP1/2 angesprochen werden kann.

A W _COPper-INStruction-fetch-identify

Dies ist eine Dummy-Adresse des Coppers.

A W Dlsplay-Window-STaRT

A W Dilsplay-Window-STOP

Diese Register legen die Displaygröße und Position fest.

DIWSTRT legt die vertikale und horizontale Startposition und

DIWSTOP die Stopposition fest. Die Bits 0 bis 7 enthalten die

horizontale und Bits 8 bis 15 die vertikale Position. Stellt man

sich zu diesen je 8 Bits noch ein neuntes vor, so ist dieses bei

DIWSTRT gleich 0 und bei DIWSTOP gleich 1. D.h.

DIWSTRTist vertikal auf die oberen 2/3 und horizontal auf die

linken 3/4 des Screens beschränkt und DIWSTOP vertikal auf

die untere Hälfte und horizontal auf das rechte Viertel.

Anhang 391

DDFSTRT

DDFSTOP

DMACON

DMACONR

DSKPTH

DSKPTL

DSKLEN

DSKDAT

DSKDATR

092

094

096

002

020

022

024

026

008

A W Display-bitplane-Data-Fetch-STaRT

A W Display-bitplane-Data-Fetch-STOP

Diese Register kontrollieren das horizontale Timing der Dis-

play-DMA im Zugriff auf die Daten.

ADP W DMA-CONtrol-register

AP R DMA-CONtrol-Read

Diese Register kontrollieren alle DMA-Kanäle. Im Lesezugriff

kann noch der Blitterzustand abgefragt werden. Bit Funktion 15

Ist dieses Bit auf 1 gesetzt, so werden alle Kanäle, deren kore-

spondierende Bits gesetzt sind, eingeschaltet. Die nicht gesetz-

ten Bits werden nicht geändert. Ist dieses Bit auf 0 gesetzt, so

werden alle Kanäle, deren Bits auf 1 stehen, abgeschaltet.

14 _ Blitter beschäftigt (Nur Lesezugriff)

13 _— Blitter logisch zurückgesetzt (Nur Lesezugriff)

12 ~—keine Funktion

11 keine Funktion

10 Blitter hat Priorität vor CPU

09 Aktiviertalle folgenden DMA-Kanäle

08 BitPlane-DMA

07 Copper-DMA

06 Blitter-DMA

05 Sprite-DMA

04 Disk-DMA

03 AudiokanalÜ-DMA

022 Audiokanall-DMA

01 Audiokanal2-DMA

00 Audiokanal3-DMA

A W ~~ DiSK-PoinTer-High

A W ~~ DiSK-PoinTer-Low

Dieses Registerpaar enthalt die Adresse des Datenpuffers ftir

die Diskdaten.

P W ~~ DiSK-data-LENegth

Die Bits 0 bis 13 enthalten die Anzahl der Words, die geschrie-

ben/gelesen werden soll. Ist Bit 14 auf 1 gesetzt, so wird geschrie-

ben, ansonsten wird gelesen. Ist Bit 15 gesetzt, so wird die Disk-

DMA eingeschaltet.

P W = DiSK-dma-DATA-write

P R DiSK-DATa-Read (Dummy-Adresse)

Diese Register werden benötigt, um Daten von und zur Diskette

zu übertragen.

392 Anhang

Register

DSKBYTR

DSKSYNC

INTREO
INTREOR

INTENA

INTENAR

JOYODAT

JOYIDAT

Adr

01A

O7E

09C

O1E

09A

BIC

00A

Chip R/W Funktionsbeschreibung

P R DiSK-dataBYTe-Read

Dieses Register korrespondiert direkt mit der Floppyhardware. _

Im Lesezugriff wird jedes gelesene Byte in die unteren 8 Bits ein-

geschrieben und Bit 15 auf 1 gesetzt.

P R DiSK-SYNChronisation-pattern-register

Ist Bit 10 im ADKCON-Register gesetzt, wird erst von der Dis-

kette in das RAM gelesen, wenn ein gelesenes Word mit dem

Word in diesem Register übereinstimmt (Synchronisation).

P W 1NTerrupt-REQuest-bits

P R INTerrupt-REQuest-bits-Read

Diese Register enthalten Interrupt-Request-Bits.

Die Bits stimmen mit den unter INTENA/R aufgelisteten tiber-

ein.

P W 1NTerrupt-ENAble-bits

P R INTerrupt-ENAble-bits-Read

Diese Register enthalten die eingeschalteten Interrupts:

Bit Funktion/Interrupt

15 SET/CLR siehe unter DMACON

14 Master-Interrupt (kein Request)

13 Externer Interrupt

12 DISKSYNC-Word stimmt mit gelesenem Word überein

(Synchronisation).

11 Empfangspuffer für serielle Schnittstelle ist voll

10 Audiokanal3 hat Sounddaten abgespielt

09 Audiokanal2 hat Sounddaten abgespielt

08 Audiokanall hat Sounddaten abgespielt

07 Audiokanal 0 hat Sounddaten abgespielt

06 Blitterfunktion beendet

05 Neuer Bildaufbau beginnt

04 Copperinterrupt

03 E/A-Ports undTimer

02 Reserviert für Softwareinterrupts

01 Diskblock komplett eingelesen

00 Puffer für serielle Schnittstelle ist leer

D R JOYport0-DATa

00C D R JOYporti-DATa

Anhang 393

Register

JOYTEST

POTODAT

POTIDAT

POTGO

POTGOR

REFPTR

SERDAT

Adr

036

012

014

034

016

028

030

Chip R/W Funktionsbeschreibung

JOYODAT repräsentiert den linken Joyport und 1 den rechten.

Alle Bits sind »low-active«. Folgendermaßen kann man einen

Joystick abfragen:

Joystick vorne = Bit 9 XOR Bit 8

links = Bit9

hinten = Bit 1 XOR Bit 0

rechts = Bit 1

D W = JOYport-TEST

Schreibt den Wert in die Register JOY 1/2DAT. Bis auf die Bits 0,

1, 8 und 9 müssen dort alle Bits mit den hier geschriebenen über-

einstimmen.

P R POT0-DATa

P R POT1-DATa

Diese Register enthalten die Pot(-entiometer)-Werte der zwei

Joyports.

P W ~~ POT-port-data-write-and-go

P R POT-data-Read

Diese Register kontrollieren einen bidirektionalen 4-Bit-IO-

Port, der die Pot-Pins verwendet.

Bit Funktion

15 Ausgabe für Pot-Pin 36 einschalten

14 Datenbit Pin 36

13 Ausgabe für Pot-Pin 35 einschalten

12 Datenbit Pin 35

11 Ausgabe für Pot-Pin 33 einschalten

10 Datenbit Pin 33

09 Ausgabe für Pot-Pin 32 einschalten

08 Datenbit Pin 32

7-1 Reserviert für Custom-Chips

00 Potszurücksetzen

A W REFresh-PoinleR

Dieses Register wird für das dynamische RAM-Refresh verwen-

det.

P W _ SERial-port-DATa

Über dieses Register läßt sich auf die serielle Schnittstelle zu-

greifen. Bits 0 bis 8 enthalten die Datenbits und 9 ist das Stopbit.

394 Anhang

Register

SERDATR

SERPER

SPRxPTH

SPRxPTL

SPRxPOS

SPRxCTL

SPRxDATA

SPRxDATB

Adr

018

032

XXX

XXX

XXX

XXX

XXX

XXX

Chip R/W Funktionsbeschreibung

P R SERial-DATa-Read |

Dieses Register wird immer dann neu gesetzt, wenn über die

serielle Schnittstelle ein kompletter Datensatz, also bis zum

Stopbit, empfangen wurde.

Bit Funktion

15 _ Serieller Port ist überlaufen

14 Empfangspuffer voll

13 _ Übertragungspuffer leer
12 Wandlungspuffer leer

11 UART-Data empfangen

10 nicht benutzt

09 Stopbit
08 Jenach Übertragungsart Stop- oder Datenbit.

Ist in SERPER Bit 15 gesetzt, so ist es ein Datenbit.

7-0 Datenbits

P W _ SERial-port-PERiod

Dieses Register setzt die Baudrate und die Datenlänge. Ist Bit

15 gesetzt, so werden 9 Datenbits verwendet, ansonsten nur 8.

Die Bits 0 bis 14 legen die Baudrate fest. Wird hier der Wert X

gesetzt, so resultiert daraus die Baudrate 1/((X+1)*0.2794ms).

A W _ sPRitex-PoinTer-High

A W _ SPRitex-PoinTer-Low

Diese Register enthalten die Startadressen der Spriteimage-

daten.

AD W SPRitex-vertical-and-horizontal-start-POSition

AD W _ SPRitex-vertical-stop-position-and-ConTroL-data

Die Bits 8 bis 15 in SPRxPOS und Bit 2 in SPRxCTL als Highbit

setzen die vertikale Startposition des Sprites. Bits 0 bis 7 in

SPRxPOS und Bit 0 in SPRxCTL als Lowbit setzen die horizon-

tale Startposition des Sprites. Die Bits 8 bis 15 im SPRxCTL und

Bit 1 im gleichen Register als Highbit setzen die vertikale End-

position des Sprites.

D W ~~ SPRitex-image-DATa-register-A

D W _ SPRitex-image-DATa-register-B

Diese Register werden verwendet um die Sprites darzustellen.

Normalerweise werden die Daten von der DMA in diese Regi-

ster geschrieben, theoretisch ist dies aber auch mit der CPU

möglich.

Anhang 395

Register

STREQU

STRVBL

STRHOR

STRLONG

VPOSR

VPOSW

VHPOSR

VHPOSW

Adr

038

03A .

03C

O3E

004

02A

006

02C

Chip R/W Funktionsbeschreibung

D S STRobe-for-horizontal-synchronisation-

with-vertical-blank-and-EQU

D S STRobe-for-horizontal-synchronisation-

with-Vertical-BLank

DP S STRobe-for-HORizontal-synchronisation-

D S STRobe-for-identification-of-LONG-horizontal-

line

Strobes zur Synchronisation der Videoausgabe.

A R Vertical-POSition-Read (höchstes Bit)

A W Vertical-POSition-Write (höchstes Bit)

Diese Register enthalten das höchste Bit der vertikalen Position

des Rasterstrahls.

A R Vertical-and-Horizontal-POSition-Read

A W _ Vertical-and-Horizontal-POSition-Write

Diese Register enthalten die vertikale und horizontale Position

des Rasterstrahls. Die Bits 0 bis 7 enthalten die horizontale und

8 bis 15 die vertikale Position.

Anhang D: Registeradressen der Portbausteine

Der Amiga verfügt über zwei Portbausteine, den 8520-A und 8520- B. Der 8520-A wird

auch mit CIAA und der 8520-B mit CIAB bezeichnet. Diese Bausteine lassen sich über

folgende Speicheradressen ansprechen, die Portregister. Diese Register sind jeweils 8

Bits lang.

Register von CIAA und CIAB:

CIAA

BFEOO1

BFE101

BFE201

BFE301

BFE401

BFES01

BFE601

BFE701

BFE801

BFE901

BFEAO01

BFEBO1

CIAB

BFDO00

BFD100

BFD200

BFD300

BFD400

BFDS500

BFD600

BFD700

BFD800

BFD900

BFDA00

BFDBO00

Reg. Funktion

PRA Peripherie-Datenregister A

PRB Peripherie-Datenregister B

DDRB Datenrichtungs-Register Afür PRA

DDRA Datenrichtungs-Register B für PRA

TALO TIMERALow-Register

TAHI TIMER AHigsh-Register

TBLO TIMER B Low-Register

TBHI - TIMER B High-Register

: Event LSB

Event 8-15

Event MSB

Keine Funktion

396 Anhang

Register von CIAA und CIAB:

BFECO1

BFEDO1

BFEEO1

BFEFO1

BFDCOO

BFDDO0

BFDEOO

BFDFO00

SDR Datenregister fiir serielle Schnittstelle

ICR Interrupt-Kontroll-Register

CRA Kontroll-Register A

CRB Kontroll-Register B

Die Peripherie-Datenregister spielen eine zentrale Rolle, da fast alle IO-Operationen

der Peripherie über diese Register abgewickelt werden. Hier diese Register im Detail:

Port Adr. Reg.

CIAA BFEO01 PRAA

Bit 7: FIR1 Ist rechte’Iaste gedrückt

Bit 6: FIRO Ist linke Taste gedrückt

Bit 5: RDY Ist Disklaufwerk betriebsbereit

Bit 4: TKO Ist Head vom Disklaufwerk überTrack 0

Bit 3: WPRO Ist Disk schreibgeschiitzt

Bit 2: CHNG Wurde Diskette gewechselt

Bit 1: LED LED-Status (1=hell, 0=dunkel)

Bit 0: OVL

Port Adr. Reg.

CIAA BFE101 PRBA

Dieses Register ist direkt an die Datenleitungen des Parallell-Ports angeschlossen.

Port Adr. Reg.

CIAB BFDO00 PRAB

Bit7: DTR

Bit 6: RTS

Bit 5: CD

Bit 4: CTS

Bit 3: DSR

Bit 2: SEL

Bit 1: POUT

Bit 0: BUSY

Port Adr. Reg.

CIAB BFDO00 PRAB

Bit 7: MTR

Bit 6: SEL3

Bit 5: SEL2

Bit 4: SEL1

Bit 3: SELO

Bit 2: SIDE

Bit 1: DIR

Bit 0: STEP

Anhang 397

Anhang E: Einsprungadressen der Bibliotheksfunktionen

Im folgenden werden sämtliche Bibliotheksfunktionen aufgeführt. In Klammern wer-

den dann die Parameter angegeben, die mit übergeben werden müssen. Für die Assem-

blerprogrammierer sind noch die zugehörigen Register aufgeführt, die diese Parameter

repräsentieren. -

Um die Funktionen aufrufen zu können, muß zuvor die jeweilige Library geöffnet wor-

den sein, und zu dem Index der Funktion die Librarybase hinzuaddiert werden. Um

beispielsweise die Funktion Supervisor() der Execlibrary aufzurufen, geht man folgen-

dermaßen vor:

move.1 #$4,a6 ;Execbase zuweisen

jsr -30(a6) ;Supervisor aufrufen

Die Tabelle ist folgendermaßen aufgebaut:

clist.library (Libraryname)

-$001E -30 InitCLPool (CLPool,Size)(A0,D0)
Einsprungadressen Funktionsname mit Parametern und Registern hex.

und dez.

clist.library

-$001E -30 InitCLPool (CLPool,Size)(A0,D0)

—$0024 -36 AllocCList (CLPool)(A1)

—$002A —42 FreeCList (CList)(A0)

-$0030 48 FlushCList (CList)(A0

-$0036 54 SizeCList (CList)(A0)

-$003C -60 PutCLChar (CList, Byte)(A0,D0)

—$0042 -66 GetCLChar (CList)(A0)

—$0048 -72 UnGetCLChar (CList,Byte)(A0,D0)

-$004E -78 UnPutCLChar (CList)(A0)

—$0054 —84 PutCLWord (CList, Word)(A0,D0)

—$005A -90 GetCLWord (CList)(A0)

-$0060 -96 UnGetCLWord (CList, Word)(A0,D0)

-$0066 -102 UnPutCLWord (CList)(A0)
-$006C -108 PutCLBuf (CList, Buffer, Length)(A0,A1,D1)

—$0072 —114 GetCLBuf (CList, Buffer, MaxLength)(A0,A1,D1)

-$0078 -120 MarkCList (CList,Offset)(A0,D0)
-$007E -126 IncrCLMark (CList)(A0)
-$0084 -132 PeekCLMark (CList)(A0)

-$008A -138 SplitCList (CList)(A0)

-$0090 ~144 CopyCList (CList)(A0)

398 Anhang

-50096 150

-$009C -156

SubCList (CList,Index,Length)(A0,D0,D1)

ConcatCList (SourceCL ist, DestCList)(A0,A1)

console.library

-$002 A -42

-$0030 -48

CDInputHandler (Events,Device)(A0,A1)

RawKeyConvert (Events,Buffer, Length, KeyMap)

diskfont.library

(A0,A1,D1,A2)

-$001E -30 OpenDiskFont (TextAttr)(A0)

-$0024 -36 AvailFonts (Buffer,BufBytes,Flags)(A0,D0,D1)

dos.library

-$001E —30 Open (Name, AccessMode)(D1,D2)

—$0024 -36 Close (File)(D1)

-$002A 42 Read (File Buffer, Length)(D1,D2,D3)

-$0030 48 Write (File,Buffer,Length)(D1,D2,D3)

-$0036 54 Input ()
-$003C -60 Output ()

—$0042 -66 Seek (File,Position, Offset) (D1,D2,D3)

-$0048 -72 DeleteFile (Name)(D1)

-$004E -78 Rename (OldName,NewName)(D1,D2)

80054 —84 Lock (Name, Type)(D1,D2)

-$005A -90 UnLock (Lock)(D1)
-$0060 -96 DupLock (Lock)(D1)

-$0066 -102 Examine (Lock ‚FileInfoBlock)(D1,D2)

-$006C -108 ExNext (Lock ‚FileInfoBlock)(D1,D2)

—$0072 -114 Info (Lock ‚FileInfoBlock)(D1,D2)
-$0078 -120 CreateDir (Name)(D1)

-$007E -126 CurrentDir (Lock)(D1)

-$0084 -132 IoErr ()
—$008A -138 CreateProc (Name,Pri,SegList,StackSize)

(D1,D2,D3,D4)

-$0090 —144 Exit (ReturnCode)(D1)

-$0096 -150 LoadSeg (FileName)(D1)

—$009C -156 UnLoadSeg (Segment)(D1)

-$00A2 -162 GetPacket (Wait)(D1)
-$00A8 -168 Queue (Packet)(D1)

-$00AE -174 DeviceProc (Name)(D1)

-$00B4 —180 SetComment (Name,Comment)(D1,D2)

Anhang 399

-$00BA
-$00C0
-$00C6
-$0O0CC
-$00D2
-$00D8
-$00DE

exec.library

-$001E
—$0024

-$002 A

-$0030

-$0036

-$003C

-$0042

—$0048

-$004E

-$0054

—$005A

-$0060

-$0066

-$006C

-$0072

-$0078

-$007E
-$0084

-$008A

-$0090

-$0096

—$009C

-$00A2

—$00A8

-$00AE
-$00B4

-$00BA
-$00C0

-$00C6

—$00CC

—186

-192

—198

—204

—210

—216

—222

SetProtection (Name,Mask)(D1,D2)

DateStamp (Date)(D1)

Delay (Timeout)(D1)

WaitForChar (File, Timeout)(D1,D2)

ParentDir (Lock)(D1)

IsInteractive (File)(D1)

Execute (String,File,File)(D1,D2,D3)

Supervisor ()

ExitIntr Q

Schedule ()

Reschedule ()

Switch ()

Dispatch ()

Exception ()

InitCode (StartClass, Version)(D0,D1)

InitStruct (InitTable, Memory,Size)(A1,A2,D0)

MakeLibrary (Funclnit,Structlnit,Liblnit,DataSize,

CodeSize)(A0,A1,A2,D0,D1)

MakeFunctions (Target,Function Array,FuncDispBase)

(A0,A1,A2)

FindResident (Name)(A1)

InitResident (Resident ,SegList)(A1,D1)

Alert (AlertNum,Parameters)(D7,A5)

Debug ()

Disable ()

Enable ()

Forbid ()

Permit ()

SetSR (NewSR,Mask)(D0,D1)

SuperState ()

UserState (SysStack)(D0)

SetInt Vector (IntNumber,Interrupt)(D0,A1)

AddIntServer (IntNumber, Interrupt)(D0,A1)

RemIntServer (IntNumber,Interrupt)(D0,A1)

Cause (Interrupt)(A1)

Allocate (FreeList, ByteSize)(A0,D0)

Deallocate (FreeList, MemoryBlock ‚ByteSize) (A0,A1,D0)

AllocMem (ByteSize,Requirements)(D0,D1)

AllocAbs (ByteSize,Location)(D0,A1)

400 Anhang

-$00D2
-$00D8
-$00DE
-$00E4
-$00E A
-$00F0
-$00F6
-$00FC
-$0102
-$0108
-$010E
-$0114
-$011A
-$0120
-$0126
-$012C
-$0132
-$0138
-$013E
-$0144
-$014A
-$0150
-$0156
-$015C
-$0162
-$0168
-$016E

-$0174
-$017A
-$0180
-$0186
~$018C
-$0192
-$0198
-$019E
-$01A4

-$01AA

-$01B0

-$01B6
-$01BC

—210

—216

—222

—228

—234

—240

—246

—252

—258

—264

—270

—276

—282

—288

—294

—300

-306

-312

-318

324

-330

-336

-342

348
354

-360

-366

-372

-378

384

-390

-396

—402

—408

—414

—420

426
432
_438
_444

FreeMem (MemoryBlock,ByteSize)(A1,D0)

AvailMem (requirements)(D1)

AllocEntry (Entry)(A0)

FreeEntry (Entry)(A0)

Insert (List, Node,Pred)(A0,A1,A2)

AddHead (List, Node)(A0,A1)

AddTail (List, Node)(A0,A1)

Remove (Node)(A1)

RemHead (List)(A0)

RemTail (List)(A0)

Enqueue (List, Node)(A0,A1)

FindName (List, Name)(A0,A1)

AddTask (Task, InitPC,FinalPC)(A1,A2,A3)

RemTask (Task)(A1)

FindTask (Name)(A1)

SetTaskPri (Task ,Priority)(A1,D0)

SetSignal (NewSignals,SignalSet)(D0,D1)

SetExcept (NewSignals,SignalSet)(D0,D1)

Wait (SignalSet)(DO)

Signal (Task ,SignalSet)(A1,D0)

AllocSignal (SignalNum)(D0)

FreeSignal (SignalNum)(D0)

llocTrap (TrapNum)(D0)

FreeTrap (TrapNum)(D0)

AddPort (Port)(A1)

RemPort (Port)(A1)

PutMsg (Port,Message)(A0,A1)

GetMsg (Port)(A0)

ReplyMsg (Message)(A1)

WaitPort (Port)(A0)

FindPort (Name)(A1)

AddLibrary (Library)(A1)

RemLibrary (Library)(A1)

OldOpenLibrary (LibName)(A1)

CloseLibrary (Library)(A1)

SetFunction (Library, FuncOffset,FuncEntry)
(A1,A0,D0)

SumLibrary (Library)(A1)

AddDevice (Device)(A1)

RemDevice (Device)(A1)

OpenDevice (DevName, Unit, IORequest,Flags)
(A0,D0,A1,D1)

Anhang 401

-$01C2

-$01C8
—$01CE

-$01D4

--$01DA

~$01E0
-$01E6

-$01EC
-$01F2
-$01F8
-$01FE

-$0204

5020 A
~$0210
-$0216
-$021C
-$0222

~$0228

—450

—456

—462

—468

—474

—480

—486

—492

—498

-504

-510

-516

-522

-528

-534

-540

-546

-552

graphics.library _

-$001E

80024

-$002 A
-$0030
-$0036
-$003C
-$0042
-$0048
-$004E

-$0054
-$005 A
-$0060
-$0066
-$006C
-$0072
-$0078
-$007E

-$0084

-30

CloseDevice (IORequest)(A1)

~ DoIO (IORequest)(A1)

SendIO (IORequest)(A1l)

CheckIO (IORequest)(A1)

WaitIO (IORequest)(Al)

AbortIO TORequest)(A1)

AddResource (Resource)(A1)

RemResource (Resource)(A1)

OpenResource (ResName, Version)(A1,D0)

RawlOlnit ()

RawMayGetChar ()

RawPutChar (Char)(D0)

RawDoFmt ()

GetCC ()

TypeOfMem (Address)(A1)

Procedure (Semaport,BidMsg)(A0,A1)

Vacate (Semaport)(A0)

OpenLibrary (LibName, Version)(A1,D0)

BltBitMap (SrcBm,SrcX,SrcY, DestBm,DestX,DestY,

SizeX,Size Y,Minterm,Mask, TempA)

(A0,D0,D1,A1,D2,D3,D4,D5,D6,D7,A2)

BltTemplate (Source,SrcX,SrcMod,DestRP, DestX,

DestY,SizeX ‚SizeY)(A0,D0,D1,A1,D2,D3,D4,D5)

ClearEOL (RastPort)(A1)

ClearScreen (RastPort)(Al)

TextLength (RastPort,String,Count)(A1,A0,D0)

Text (RastPort,String,Count)(A1,A0,D0)

SetFont (RastPortID,TextFont)(A1,A0)

OpenFont (Text Attr)(A0)

CloseFont (TextFont)(A1)

AskSoftStyle (RastPort)(A1)

SetSoftStyle (RastPort,Style,Enable)(A1,D0,D1)

AddBob (Bob, RastPort)(A0,A1)

AddVSprite (VSprite, RastPort)(A0,A1)

DoCollision (RastPort)(A1)

DrawG List (RastPort, ViewPort)(A1,A0)

InitGels (DummyHead,DummyTail,GelsInfo)(A0,A1,A2)

InitMasks (VSprite)(A0)

RemIBob (Bob, RastPort, ViewPort)(A0,A1,A2)

402 Anhang

-$008A -138 RemVSprite (VSprite)(A0)
—$0090 —144 SetCollision (Type, Routine ‚GelsInfo)(D0,A0,A1)

-$0096 -150 SortGList (RastPort)(A1)
-$009C -156 AddAnimObj (Obj, AnimationKey,RastPort)(A0,A1 A2)

—$00A2 -162 Animate (AnimationKey)(RastPort)(A0,A1)

—$00A8 —168 GetGBuffers (AnimationObj, RastPort, DoubleBuffer)

(A0,A1,D0) =

-$00AE -174 InitGMasks (AnimationObj)(A0)

-$00B4 -180 GelsFuncE ()

-$00BA -186 GelsFuncF()

-$00C0 —192 LoadRGB4 (ViewPort,Colors,Count)(A0,A1,D0)

-$00C6 -198 InitRastPort (RastPort)(A1)

—$00CC —204 InitVPort (ViewPort)(A0)

-$00D2 —210 MrgCop (View)(A1)
-$00D8 —216 MakeVPort (View, ViewPort)(A0,A1)

-$00DE —222 Load View (View)(A1)
-$00E4 -228 WaitBlit ()
-$00EA —234 SetRast (RastPort,Color)(A1,D0)

-$00F0 —240 Move (RastPort,x,y)(A1,D0,D1)

-$00F6 -246 Draw (RastPort,x,y)(A1,D0,D1)

—$00FC —252 AreaMove (RastPort,x,y)(A1,D0,D1)

-$0102 —258 AreaDraw (RastPort,x,y)(A1,D0,D1)

-$0108 264 AreaEnd (RastPort)(Al)

-$00E ~—s_ -270 WaitTOF()
-$0114 -276 OBlit (Blit)(A1)
-$011A —282 InitArea (AreaInfo, VectorTable, VectorTableSize)

(A0,A1,D0)

-$0120 288 SetRGB4 (ViewPort,Index,r,g,b)(A0,D0,D1,D2,D3)

-$0126 294 OBSBIit (Blit)(A1)
-$012C -300 BltClear (Memory,Size,Flags)(A1,D0,D1)

-$0132 -306 RectFill (RastPort,xl,yl,xu,yu)(A1,D0,D1,D2,D3)
-$0138 -312 BltPattern (RastPort,Ras,xl,yl,MaxX,MaxY,FillBytes)

(A1,A0,D0,D1,D2,D3,D4)

-$013E -318 ReadPixel (RastPort,x,y)(A1,D0,D1)
— —$0144 —324 WritePixel (RastPort,x,y)(A1,D0,D1)

-$014A -330 Flood (RastPort,Mode,x,y)(A1,D2,D0,D1)
-$0150 -336 PolyDraw (RastPort,Count,PolyTable)(A1,D0,A0)

-$0156 -342 SetAPen (RastPort,Pen)(A1,D0)

—$015C —348 SetBPen (RastPort,Pen)(A1,D0)

—$0162 —354 SetDrMd (RastPort, DrawMode)(A1,D0)

-$0168 -360 Init View (View)(A1)

Anhang 402

-$016E
-$0174
-$017 A
-$0180
-$0186
-$018C

-$0192
-$0198
-$019E
-$01A4
-$01LAA

-$01B0
-$01B6
-$01BC
-$01C2
-$01C8
-$01CE
-$01D4
-$01DA
—$01E0
-$01E6
-$OLEC
-$01F2
-$01F8
—$01FE

-$0204
-$0210
-$0216
-$021C
-$0222
-$0228

-$022E
—$0234

—$023A

—$0240

-$0246

-$024C

-$0252

-$0258

-366

-372

-378

384

-390

-396

_402
_408
_414
_420
_426
_432
_438
444
_450
456
462

—468

474

—480

—486

—492

—498

—504

-510

-516

-528

-534

-540

-546

-552

-558

-564

-570

-576

-582

-588

—594

-600

CBump (CopperList)(A1)

CMove (CopperList, Destination, Data)(A1,D0,D1)

CWait (CopperList,x,y)(A1,D0,D1)

VBeamPos ()

InitBitMap (Bm,Depth, Width, Height)(A0,D0,D1,D2)

ScrollRaster (RastPort,dx,dy,MinX,Min Y,MaxX,MaxY)

(A1,D0,D1,D2,D3,D4,D5)

WaitBOVP (ViewPort)(A0)

GetSprite (SimpleSprite, Num)(A0,D0)

FreeSprite (Num)(D0)

ChangeSprite (Vp,SimpleSprite, Data)(A0,A1,A2)

MoveSprite (Vp,SimpleSprite,x,y)(A0,A1,D0,D1)

LockLayerRom (Layer)(A5)

UnlockLayerRom (Layer)(A5)

SyncSBitMap (1)(A0)

CopySBitMap (11,12)(A0,A1)

OwnBlitter ()

DisownBlitter ()

InitTmpRas (Tmpras,Buffer,Size)(A0,A1,D0)

AskFont (RastPort,TextAttr)(A1,A0)

AddFont (TextFont)(A1)

RemFont (TextFont)(A1)

AllocRaster (Width, Height)(D0,D1)

FreeRaster (PlanePtr, Width, Height)(A0,D0,D1)

AndRectRegion (Rgn,Rect)(A0,A1)

OrRectRegion (Rgn,Rect)(A0,A1)

NewRegion ()

ClearRegion (Rgn)(A0)

DisposeRegion (Rgn)(A0)

Free VPortCopLists (ViewPort)(A0)

FreeCopList (CopList)(A0)

ClipBlit (SrcRp,SreX,SrcY,DestRp,DestX,DestY,SizeX,

Size Y,Minterm)(A0,D0,D1,A1,D2,D3,D4,D5,D6)

XorRectRegion (Rgn,Rect)(A0,A1)

FreeCprList (CprList)(A0)

GetColorMap (Entries)(D0)

FreeColorMap (ColorMap)(A0)

GetRGB4 (ColorMap,Entry)(A0,D0)

Scroll VPort (Vp)(A0)

UCopperListInit (Copperlist, Num)(A0,D0)

FreeGBuffers (AnimationObj,RastPort, DoubleBuffer)

(A0,A1,D0)

404 Anhang

-$025E

icon.library

-$001E

-$0024
-$002A
-$0030
-$0036
-$003C
-$0042
-$0048
-$004E
-$0054
-$005 A
-$0060
-$0066
-$006C

-606

-102

-108

intuition.library

-$001E

-$0024
-$002 A

-$0030

—$0036

-$003C

—$0042
-$0048
-$004E

—$0054

—$005A

-$0060

-$0066

—$006C

~$0072

-$0078
-$007E

~30
36
42

—108

—114

—120

—126

BltBitMapRastPort (SrcBm,SrcX,SrcY,DestRp,DestX,

Dest Y,SizeX,Size Y,Minterm)

(A0,D0,D1,A1,D2,D3,D4,D5,D6)

GetWBObject (Name)(A0)

PutWBObject (Name,Object)(A0,A1)

Getlcon (Name,Icon,FreeList)(A0,A1,A2)

PutIcon (Name,Icon)(A0,A1)

FreeFreeList (FreeList)(A0)

FreeWBObject (WBObject)(A0)

AllocWBObject ()

AddFreeList (FreeList,Mem,Size)(A0,A1,A2)

GetDisk Object (Name)(A0)

PutDiskObject (Name,DiskObj)(A0,A1)

FreeDiskObject (Diskobj)(A0)

FindToolType (ToolTypeArray, TypeName)(A0,A1)

MatchTool Value (TypeString, Value)(A0,A1)

dumpRevision (NewName,OldName)(A0,A1)

OpenIntuition ()

Intuition (IEvent)(A0)

AddGadget (AddPtr,Gadget,Position)(A0,A1,D0)

ClearDMRequest (Window)(A0)

ClearMenuStrip (Window)(A0)

ClearPointer (Window)(A0)

CloseScreen (Screen)(A0)

Close Window (Window)(A0)

Close WorkBench ()

CurrentTime (Seconds, Micros)(A0,A1)

DisplayAlert (AlertNumber,String, Height)(D0,A1,D1)

DisplayBeep (Screen)(A0)

DoubleClick (SSeconds,SMicros,CSeconds,CMicros)

(D0,D1,D2,D3)

DrawBorder (RPort,Border,LeftOffset ,TopOffset)

(A0,A1,D0,D1)

Drawlmage (RPort,Image,LeftOffset, TopOffset)

(A0,A1,D0,D1)

EndRequest (Requester, Window)(A0,A1)

GetDefPrefs (Preferences,Size)(A0,D0)

Anhang 405

-$0084

-$008 A

-$0090
-$0096

-$009C

-$00A2
-$00A8
-$00AE
-$00B4
-$00BA
-$00C0
-$00C6
-~$00CC
-$00D2
-$00D8
-$00DE
-$00E4
-$00EA
-$00F0
-$00F6
-$00FC
-$0102
-$0108
-$010E

—$0114

-$011A

-$0120
-$0126
-$012C
-$0132
-$0138
-$013E

-$0144
-$014A

-$0150
-$0156
-$015C

-132

—138

—144

—150

—156

-162

—168

—174

—180

—186

-192

—198

—204

—210

—216

—222

~228

—234

—240

—246

—252

—258

—264

—270

—276

—282

—288

—294

-300

-306

-312

-318

324

-330

-336

-342

348

GetPrefs (Preferences,Size)(A0,D0)

InitRequester (Reg)(A0)

Item Address (MenuStrip,MenuNumber)(A0,D0)

ModifyIDCMP (Window,Flags)(A0,D0)

ModifyProp (Gadget,Ptr,Reg,Flags,HPos, VPos Body,

VBody)(A0,A1,A2,D0,D1,D2,D3,D4)

MoveScreen (Screen,dx,dy)(A0,D0,D1)

Move Window (Window,dx,dy)(A0,D0,D1)

OffGadget (Gadget,Ptr,Req)(A0,A1,A2)

OffMenu (Window, MenuNumber)(A0,D0)

OnGadget (Gadget,Ptr,Req)(A0,A1,A2)

OnMenu (Window,MenuNumber)(A0,D0)

OpenScreen (OSArgs)(A0)

Open Window (OWArgs)(A0)

OpenWorkBench ()

PrintIText (Rp, IText,Left,Top)(A0,A1,D0,D1)

RefreshGadgets (Gadgets,Ptr,Req)(A0,A1,A2)

RemoveGadgets (RemPtr,Gadget)(A0,A1)

ReportMouse (Window,Boolean)(A0,D0)

Request (Requester, Window)(A0,A1)

ScreenToBack (Screen)(A0)

ScreenToFront (Screen)(A0)

SetDMRequest (Window,Req)(A0,A1)

SetMenuStrip (Window,Menu)(A0,A1)

SetPointer (Window, Pointer, Height, Width, X Offset,

YOffset)(A0,A1,D0,D1,D2,D3)

Set Window Titles (Window, WindowTitle,ScreenTitle)

(A0,A1,A2)

ShowTitle (Screen ,ShowIt)(A0,D0)

Size Window (Window,dx,dy)(A0,D0,D1)

View Address ()

ViewPortAddress (Window)(A0)

WindowToBack (Window)(A0)

WindowToFront (Window)(A0)

WindowLimits (Window, Min Width, MinHeight,Max Width,

MaxHeight)(A0,D0,D1,D2,D3)

SetPrefs (Preferences,Size,Flag)(A0,D0,D1)

IntuiTextLength (IText)(A0)

WBenchToBack ()

WBenchToFront ()
AutoRequest (Window, Body,PText, NText,PFlag,NFlag,

Width, Height)(A0,A1,A2,A3,D0,D1,D2,D3)

406 Anhang

-$0162

-$0168

-$016E

—$0174

-$017A
-$0180

-$0186

-$018C

-$0192

-$0198

-$019E

-$01A4

354

—360

—366

-372

-378

384

—390

-396

—402

—408

—414

—420

layers. library

-$001E

-$0024

—$002A

-$0030
-$0036
-$003C
-$0042
-$0048
--$004E
-$0054
-$005 A

-$0060
-$0066
-$006C
-$0072
-$0078
-$007E

-$0084
-$008A
-$0090
-$0096
-$009C
-$00A2
-$00A8

—30

-36

42

BeginRefresh (Window)(A0)

BuildSysRequest (Window,Body,PText,NText,Flags,

Width, Height)(A0,A1,A2,A3,D0,D1,D2) |

EndRefresh (Window,Complete)(A0,D0)

FreeSysRequest (Window)(A0)

MakeScreen (Screen)(A0)

RemakeDisplay ()

RethinkDisplay ()

AllocRemember (RememberKey,Size,Flags)(A0,D0,D1)

AlohaWorkbench (WBPort)(A0)

FreeRemember (RememberKey,ReallyForget)(A0,D0)

LockIBase (DontKnow)(D0)

UnlockIBase (IBlock)(A0)

InitLayers (Li)(A0)

Create UpfrontLayer (Li,Bm,x0,y0,x1,y1,Flags,Bm2)

(A0,A1,D0,D1,D2,D3,D4,A2) .

CreateBehindLayer (Li,Bm,x0,y0,x1,y1,Flags,Bm2)

(A0,A1,D0,D1,D2,D3,D4,A2)

UpfrontLayer (Li, Layer)(A0,A1)

BehindLayer (Li,Layer)(A0,A1)

MoveLayer (Li, Layer,dx,dy)(A0,A1,D0,D1)

SizeLayer (Li,Layer,dx,dy)(A0,A1,D0,D1)

ScrollLayer (Li,Layer,dx,dy)(A0,A1,D0,D1)

BeginUpdate (Layer)(A0)

EndUpdate (Layer)(A0)

DeleteLayer (Li,Layer)(A0,A1)

LockLayer (Li,Layer)(A0,A1)

UnlockLayer (Li,Layer)(A0,A1)

LockLayers (Li)(A0)

UnlockLayers (Li)(A0)

LockLayerInfo (Li)(A0)

SwapBitsRastPortClipRect (Rp,Cr)(A0,A1)

WhichLayer (Li,x,y)(A0,D0,D1)

UnlockLayerInfo (Li)(A0)

NewLayerInfo ()

DisposeLayerInfo (Li)(A0)

FattenLayerInfo (Li)(A0)

ThinLayerInfo (Li)(A0

MoveLayerInFrontOf (LayerToMove,LayerToBeIn

FrontOf) (A0,A1)

Anhang 407

mathffp.library

-$001E

-$0024
-$002 A
-$0030
-$0036
-$003C
-$0042
-$0048
-$004E
-$0054

mathieeedoubbas.library

-$001E

-50024

-$002 A

-$0030

-$0036

-$003C
50042

-$0048

-$004E

-$0054

mathtrans.library

-$001E
-$0024
~$002A
-$0030
-$0036
-$003C
-$0042
-$0048
-$004E

-$0054

-30
36
42

_30
_36
42

—30

SPFix (Float)(D0)

SPFIt (Integer)(DO)

SPCmp (LeftFloat, RightFloat)(D1,D0)

SPTst (Float)(D1)

SPAbs (Float)(DO)

SPNeg (Float)(D0)

SPAdd (LeftFloat,RightFloat)(D1,D0)

SPSub (LeftFloat, RightFloat)(D1,D0)

SPMul (LeftFloat,RightFloat)(D1,D0)

SPDiv (LeftFloat, RightFloat)(D1,D0)

IEEEDPFix (Integer, Integer)(D0,D1)

IEEEDPFit(Integer)(D0)

IEEEDPCmp (Integer, Integer, Integer, Integer)

(D0,D1,D2,D3)

IEEEDPTst(Integer, Integer)(D0,D1)

IEEEDPAbs(Integer, Integer)(D0,D1)

IEEEDPNeg(Integer,Integer)(D0,D1)

IEEEDPAdd(Integer, Integer, Integer, Integer)

(D0,D1,D2,D3)

IEEEDPSub(Integer, Integer, Integer, Integer)

(D0,D1,D2,D3)

IEEEDPMul (Integer, Integer, Integer, Integer)

(D0,D1,D2,D3)

IEEEDPDiv (Integer, Integer, Integer, Integer)

(D0,D1,D2,D3)

SPATan (Float)(D0)

SPSin (Float)(DO)

SPCos (Float)(D0)

SPTan (Float)(DO)

SPSincos (LeftFloat, RightFloat)(D1,D0)

SPSinh (Float)(D0)

SPCosh (Float)(D0)

SPTanh (Float)(DO)

SPExp (Float)(D0)

SPLog (Float)(DO)

408 Anhang

-$005.A -90 SPPow (LeftFloat,RightFloat)(D1,D0) |

-$0060 -96 SPSart (Float)(D0)

-$0066 -102 SPTieee (Float)(D0)
-$006C -108 SPFieee (Float)(DO)
80072 114 SPAsin (Float)(D0)
—$0078 -120 SPAcos (Float)(D0)

-$007E -126 SPLog10 (Float)(D0O)

potgo.library

-$0006 -6 AllocPotBits (Bits) (DO)

-$000C —12 ' FreePotBits (Bits)(DO)

-$0012 -18 WritePotgo (Word,Mask)(D0,D1)

timer. library

-$002A 42 AddTime (Dest,Src)(A0,A1)
-$0030 48 SubTime (Dest,Src)(A0,A1)

-$0036 -54 CmpTime (Dest,Src)(A0,A1)

translator. library

-$001E -30 Translate (InputString,InputLength, OutputBuffer,

BufferSize)(A0,D0,A1,D1)

Anhang F: Der Befehlssatz des MC68000

Der MC68000 besitzt einen umfangreichen Befehlssatz und eine Vielzahl von Adressie-

rungsarten. An dieser Stelle wollen wir nun die Befehle des MC68000 auflisten.

Abkürzungen:

Label Sprungkennzeichnung, bzw. Adresse

Reg Register

An Adressregistern

Dn Datenregistern

Rn Adress- oder Datenregistern

Quelle Quelloperand

Ziel Zieloperand

<ea> Effektive Adresse

+n Konstante des Wertes n

Anhang 409

Der Befehlssatz:

ABCD Quelle,Ziel

ADD Quelle, Ziel

ADDA Quelle,An

ADDI tn ,<ea>

ADDQ ten ,<ea>

ADDX Quelle, Ziel

AND Quelle, Ziel

ANDI #n,<ea>

ASL n,<ea>

ASR n,<ea>

Bcc Label

BCHG #n,<ea>

BCLR +#n,<ea>

BRA Label

BSET +n,<ea

BSR Label

BTST +#n,<ea>

CHK <ea>,Dn

CLR <ea>

CMP Quelle, Ziel

CMPA <ea,An

CMPI ten ,<ea>

CMPM Quelle, Ziel

DBcc Reg,Label

DIVS Quelle, Ziel

DIVU Quelle, Ziel

EOR Quelle, Ziel

EORI ttn, <ea

EXG Reg,Reg

EXT Dn

JMP Label

JSR Label

Addition zweiter BCD-Zahlen

Binäre Addition

Binäre Addition mit einem Adreßregister

Addition mit einer Konstanten

Schnelle Addition einer 3-Bit-Konstanten

Addition mit Übertrag im X-Flag
Logisches UND

Logisches UND mit einer Konstanten

Arithmetische Linksverschiebung (*2*n)

Arithmetische Rechtsverschiebung (/2“n)

Bedingte Verzweigung zum Label

_ (beispielsweise BPL,BMI,BNE,BEQ)

Negiere Bitn

LöscheBitn

Verzweige nach Label (ähnlich wie JMP)

SetzeBitn

Verzweige in Unterprogramm (ähnlich wie JSR).

Riicksprungadresse wird auf den Stack gelegt.

Test Bitn. Ergebnis steht im Z-Flag

Prüfe ein Datenregister aufeine Grenze,

löse gegebenenfalls die CHK-Exception aus.

Löschen eines Operanden

Vergleiche zwei Operanden

Vergleich mit einem Adreßregister

Vergleich mit einer Konstanten

Vergleich zweier RAM-Operanden

Prüfe auf Bedingung, dekrementiere Register

und verzweige gegebenenfalls (ähnlich Bcc).

Vorzeichenrichtige Division eines 32-Bit- durch einen

16-Bit-Operanden. Das Ergebnis steht im Low-Word des

Zielregisters und der Divisionsrest im High-Word.

Vorzeichenlose Division

Exklusives-Oder

Exklusives-Oder mit einer Konstanten

Tauschen zweier Registerinhalte

Vorzeichenrichtige Erweiterung auf doppelt Größe

Byte —>Word,Word —> Longword)

Verzweigung zum Label (ähnlich BRA)

Verzweigung zu einer Unterroutine, wobei die Rücksprung-

adresse auf dem Stack gespeichert wird (ähnlich wie BSR).

410 Anhang

LEA

LINK

LSL

LSR

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVEA

MOVEM

MOVEM

MOVEP

MOVEQ
MULS

MULU

NBCD

NEG

 NEGX

NOP

NOT

OR

ORI

PEA

RESET

ROL

ROR

ROXL

ROXR

RTE

RTR

RTS

SBCD

Scc

STOP

SUB

SUBA

SUBI

<ea>, An

An,#n

n,<ea>

n,<ea>

Quelle, Ziel

SR,<ea

<e@, SR

<ea,CCR

USP, <ea

<ea,USP

<ea,An

Reg,<ea

<ea, Reg

Quelle, Ziel

#n,Dn

Quelle, Ziel

Quelle, Ziel

Quelle, Ziel

<Ca>

<ea>

<ea>

Quelle, Ziel

#n,<ea>

<ea>

n,<ea

n,<ea

n,<ea>

n,<ea

Quelle, Ziel

<Ca@>

Quelle, Ziel

cea, An

#Fn,<ea>

Lade eine Adresse in ein AdreBregister

Stackbereich aufbauen

Logische Linksverschiebung

Logische Rechtsverschiebung

Übertragung einesWertes von Quelle nach Ziel

Statusregisterinhalt wird übertragen

Statusregisterinhalt wird gesetzt

Flags werden gesetzt

Userstackpointer wird übertragen

Userstackpointer wird gesetzt

Wert wird in Adreßregister übertragen

Mehrere Register werden übertragen

Mehrere Register werden gesetzt

Übertrage Daten zur Peripherie
Eine Byte-Konstante wird übertragen

Vorzeichenrichtige Multiplikation zweierWords.

Das Ergebnis steht als Longword im Ziel.

Multiplikation ohne Vorzeichen

Negation einer BCD-Zahl (Neunerkomplement)

Negation eines Operanden (Zweierkomplement)

Negation mit Übertrag im X-Flag
No Operation/Keine Funktion

Inversion eines Operanden

Logisches ODER

Logisches ODER mit einer Konstanten

Adresse wird auf Stack abgelegt

Peripherie zurücksetzen

Linksrotation

Rechtsrotation

Linksrotation mit Übertrag im X-Flag
Rechtsrotation mit Übertrag im X-Flag
Rückkehr aus einer Exception

Rückkehr mit Laden der Flags

Rückkehr aus einer Unterroutine (JSR, BSR)

Subtraktion zweier BCD-Zahlen

Setze Byte auf-1, wenn Bedingung erfüllt.

(siehe auch Bcc und DBcc)

Prozessor stoppen ‚evtl. TRAPV-Exception starten

Binäre Subtraktion

Binäre Subtraktion mit einem Adreßregister

Subtraktion einer Konstanten

Anhang 41

SUBO +n ,<ea> Schnelle Subtraktion einer 3-Bit-Konstanten

SUBX Quelle,Ziel Subtraktion mit Ubertrag im X-Flag

SWAP Dn Tauschen der beiden Registerwords (obere 16 Bits mit

unteren 16 Bits tauschen)

TAS <ea> Prüfe Byte und setze Bit 7

TRAP +#Fn Springe in Exception Nr. n

TRAPV Priifen, ob Overflow-Flag gesetzt

UNLK An Stackbereich abbauen

Anhang G: Die Jumper des Amiga B2000

Der Amiga B2000 besitzt einige Jumper, bzw Lötbrücken auf der Platine, mit denen

verschiedene Funktionen konfiguriert werden können:

J101: Dieser Jumper verbindet in der Normalstellung die Pins 1 und 2. In dieser Stel-

lung verwendet FatAgnus die Adressleitung A23 zur Speicherverwaltung. In der ande-

ren Stellung wird die Adressleitung A19 verwendet.

J200: Dieser Jumper setzt den Port, der für den Light-Pen verwendet werden soll. In

der normalen Position sind die Pins 2 und 3 verbunden, wodurch der Port 1 gesetzt

wird, also wie beim Amiga 500. In der anderen Position wird Port 0 verwendet, also wie

beim Amiga 1000.

J300: Dieser Jumper setzt das Signal, das als Time-Base für die CIA-Chips verwendet

werden soll. In der Normalstellung sind die Pins 1 und 2 verbunden, wodurch das AC-

Line-Frequenz- Signal verwendet wird. In der anderen Position wird das Vertikale Syn-

chronisationssignal verwendet.

J301: Ist dieser Jumper geschlossen, so wird ein zweites internes Laufwerk konfigu-

riert. Ist er offen, dann nicht.

J500: Normalerweise ist dieser Jumper geschlossen. Wird er geöffnet, so wird kein

FastRam verwendet.

iguriert werden können:

Anhang H: Literaturnachweis

Folgende Literatur haben wir zu Informationszwecken herangezogen:

1.) Addison-Wesley Referenzmanuals ’Hardware’ und ’Libraries and Devices’

2.) Commodore Technical Referencemanuals A500, A1000, A2000A , A2000B und

SideCar.

3.) Amiga Programmierhandbuch von Frank Kremser & Jörg Koch MT-Nr. 90491,

ISBN 3-89090-491-2 |

412 Anhang

Anhang: I: Die beigefügte Diskette

Dieser Anhang enthält ein Inhaltsverzeichnis der Unterverzeichnisse »CPrg« und
»MCPrg«, die sich auf Diskette befinden. Diese Diskette enthält alle Programme, die

in diesem Buch als Source und als lauffähiges Programm angeführt sind, wobei eventu-

ell benötigte Dateien ebenfalls vorhanden sind. Um die Programe starten zu können,

wird empfohlen, das CLI zu starten, mittels »cd«-Befehl auf das betreffende Programm

zu starten. Es muß noch angemerkt werden, daß es vorkommen kann, daß einige C-

Programme nicht laufen, wenn sie mit einem C-Compiler älteren Datums nachkompi-

liert werden. Zu den Assembler-Programmen ist anzumerken, daß eine eventuell vor-

handene Speichererweiterung mittels »NoFastMem« abgeschaltet werden sollte, damit

diese einwandfrei laufen.

Die C-Programme:

Taste. ASM

„fastdir AMIGAFILE

Audiol Audiol.c

Audio2 Audio2.c

Audio3 Audio3.c

Blitter Blitter.c

BOOTBLOCK BOOTBLOCK.S

Copperl Copperl.c

Copper? Copper2.c

Copper3 Copper3.c

Disk Disk.c

Expansion Expansion.c

Janus Janus.c

Joyportl Joyportl.c

Joyport2 Joyport2.c

PCJANUS Playi

Playl.c Play2

Play2.c Play3

Play3.c Sprite

Sprite.c Tastaturl

Tastaturl.c Tastatur2.COMP

Taste.o

Anhang 413

Die Maschinenprogramme:

„fastdir

Beam.S

Blitter1.S

Copper1.S

Copper2.S

Floppyl

Floppy2

Floppy3

Floppy4

Irq

Led

Parallel

Playl

Play2

Resetfest

SOUND

Soundl.S

Sound2.S

Sound3.S

Sound4.S

Sound5.S

Sound6.S

Spritel.S

Sprite2.S

Sprite3.S

Sprite4.S

Beam

Blitterl

Copperl

Copper2

DEMOSOUND

Floppy1.S

Floppy2.S

Floppy3.S

Floppy4.S

Irq.S

Led.S

Parallel.S

Play1.S

Play2.S

Resetfest.S

Soundl

Sound2

Sound3

Sound4

Sounds

Sound6

Spritel

Sprite2

Sprite3

Sprite4

414 Anhang J: Schaltplan für die Erweiterungskarte aus Kapitel 6.1

T
+

T
e

|

u
|

H
R
S

[
D
T
P
A

D
T
U

IATA
a

s
a
u

}
| M
E
T

“
K
d

O
S
T
A
N
O
O
 .

"
A
S
T
A

(
S
0
G
/
>

S
E
0
U
l
L
S

S
E
R
K
K
K

C
e
a
s
e

.
|

(
=
=

E0/
vt

|
7

;
7

9

bLAßL.
r
i

TP

4

L
I
S
T

S
I
O
P
O
W
N
O
D

(D>
F
I
A
K
I

O
l
d

D

47

n wo

¢

am

Fal

Ty
Ei

er
5

gu
OE

vo
Fr

"a
a
s

5
7
7
0

c
o

e
r

x
y

T

=
mdS0

SI
|

I
S

ST
spre

U
N
S
I
N
N
 Bud“

EO
|

7
Fe

2°
"Tas"

aod
/

:
5%

2
ES

D
E
E
,

C
d
a
a
r

Tad
SI

YwaASYHOS dT
LOHS

+
]

ıNId

Gr
(UTd

@BT>
1018

*
HBT

.
GAGE

VOTH
and

LNO-OTINCO/—“*

Der Schaltplan fiir die Erweiterungskarte aus Kap. 6.1 (Teil 1).

415
ec)

+

pid
[SesT

e
r
r
a
n
g

H
R
S

T
E
I
T
P
S
A
4

>
T
U
0
U
,
3
3
1
3

Jagumy
374

?
a
i
e

g

a
=
T

2
3
6
7

S
u
O
P
O
U
N
M
I
O
D

C
D
)

T
i
d
w
x
S

D
i
d

ALS
ODOT

TN
@TN

gem
>
P
r

ser

20

=
me

$&
bo

po
bd

Ee
eo

€d
zo

2
2a

8
tT

Ta
28

3-15
oa TH

d
d

T
O
O
O
w
”

L
N
O

S
I
A
N
S
O
/

TT

:
N
I
d

C
U
T
d

B
O
T
>

1
0
1
5

*
B
a
a
?

98

Der Schaltplan für die Erweiterungskarte aus Kap. 6.1 (Teil2).

a
y
e

e
l

H
E

TesTpau
Stuongasız]

U
J
a
q
u
n
y

}Uusumaod
art

C86ET
S
I
O
P
O
U
M
O
)

C
I

F
I
E
I
X
Z
I

D
I
A

W
e
e

S
U
B
O
T

B
E

X
2
"
a
a
a

s
a

v
l
a
d

: :
Bo Ha siae eK

FODTONAG

o000000a

Lice
S
p

62
Ty

&
a)

v
a
r

Td
T
a
l
e
r

22
a

TY
Tq

3

29
EI.

3
2

E
I

u

2
a

f
y

€98
>

pe
ry

>
EI

ed
Po

Pa
are

Tt2
Q
e

P
Y

p
a

s
g

s
a

>

e2
E
r

oY
gd

SJ
98a

<>
32

ay
>

a

aq
ey

29g
<>

Ge
Sy

el
a

4a
Sy

699
tin

Ze
ay

m
Ex

5
ve

ety
&

ey
er

Soa
gE

Tty
=

ote

es
aro

>
2ty

g
i

BE
ety

™

Ino
SIaNooy

I
s

>
3

S
T

A
L
M

|

E

ao
vind

heey
&

<
:

NId
wT

-

CUTd
BOT>

1015
‘ag

KEN
SUBDT

BOB.
BOBZ

VOTING
a4

r
e
r
 a

=

28
fy

64
by

ba
ga

sq
a3

58
$a

iy
28

eq
ay

88

5 ura

NAG
Ade
cas

SER QUT apes

tee “a Il
Pe ee Teese

Haas
sacha

"

aaaa hi aa

416

Der Schaltplan für die Erweiterungskarte aus Kap. 6.1 (Teil 3).

SaagRORe

417

Wir danken der Firma Commodore Büromaschinen GmbH für die freundliche Erlaub-

nis, verschiedene Zeichnungen und Programme aus dem ,,A500/A 2000Technical Refe-

rence Manual“ und dem „A 500 Technical-Manual“ übernehmen zu dürfen.

A 500/A 2000 Technical Reference Manual:

— Seite 2 Figure 1.1: Key Codes

— Seite 14, 15 und 16: Blockdiagramme

— Seite 119 und 120: PC-Emulator

— Seite 188 und 189: FATAgnus

 — Seite 213 f.: CIA 8520

— App. A, A-4, A-5, A-6, A-7

— Seite 43: PAL-Programm

- App. A A-2: Demoplatine

A 500 Technical Manual:

— Seite 3-6: MC 68000

— Seite 3-8, 3-9: Paula und Blockdiagramm

— Seite 3-10, 3-11: Denise und Blockdiagramm

— Seite 3-14, 3-15: Garry und Blockdiagramm

418 Stichwortverzeichnis

Stichwortverzeichnis

1-Meg-Amiga 1000 330

100-Pin-Slot 195, 199 ff.

256-Kbyte-RAM-

Erweiterung 328

3.5-Zoll-Diskette 245

512-Kbyte-RAM-

Erweiterung 333

8520 227

8520-Register 229

86-Pin-Slot 186, 188, 191,

194

A1081 339

A1084 339

A |
Abfangvektoren 48

AD-Wandler 346

AddConfigDev 366

AddDosNode 366

ADISK 301

ADKCON 253

ADKCON-Register 171

Adreßbus-Iranslator 303

Agnus 36 f. 59 f., 64, 205,

353

AllocBoardMem 367

AllocConfigDev 367

AllocExpansionMem 368

AllocJanusMem 359

Amiga 1000 35

— 500 37

Amiga-Floppy 234

Amplituden-

Modulation 144, 171

Analog-RG-Signal 143

Äquivalenzgatter 205
ASCH 280

ASCH-Code 17

Assign 301

AT-Emulator-Card 40

AT-Karte 308

AT-Slot 218 ff.

AT-Steckplätze 185

Audio-Ausgang 338

Audio-Hardware 146

Audio-Kanäle 144

Audio.device 27

Autokonfiguration 222

Aztec-Compiler 13, 15

\ B

Barrel-Shifter 83

Bastelanregungen 346

Befehlssatz des MC68000

408

Bibliotheksfunktionen

397

Bildfrequenz 338

Bindrivers 301

BIOS-ROM 300

BitPlanes 118

Blitter 64, 81

Boot-ROM 45

Booten 45

Bootlock.device 27

Bootvorgang 45

BPLCONO 118

Buster 59, 183

BUSY 346

C
Caps-Lock LED 288

CAS 326

CDAC-Tak 209

Centronics-Schnittstelle

270

CheckJanusInt 359

Checksum 46

Checksummenberech-

nung 48

Chip-Select 322

ChipMem 94, 146

CIA 8520 256, 280

CIA-8520-Portbausteine

293

CIA-A-Portbaustein

293

CIA-Hardware 227

CIA-Portbausteine

270

CIAA 395

CIAB 395

CLI 15 ff., 298

CLI-Icon 16

CLI-Window 16

Clipboard.device 27

Clist.lib 24

Clock-Oszillator 281

CMOS-Schalter 353

ColdCapture 48

Composite-Video 142

ConfigBoard 368

ConfigChain 368

CONFIGIN 225

CONFIGIN-Signal 222

CONFIGOUT 225

CONFIGOUTSignal 222

Console.device 27

Console.lib 24

Controller 234, 251

CoolCapture 47, 48

Copper 64, 67

Copper-Liste 67, 95

CPU 64, 222

Custom-Chip 35, 59,

303

Cylinder 245

Stichwortverzeichnis 419

D
Data-Direction-Register

230

Datenbus-Ireiber 327

_ Datenflipflops 205

Datenbus-Iranslator 303

. Debugger-ROM-Wack 47

Denise 36, 59, 91 f.

. Devices 27

Digital-RGB-Signal 143

Digitizer 356

. Direction 239
Disk-Sync-Register 254

Diskfont.lib 24

DJMOUNT 301

DMA-Kanäle 81

DMA-Kontroll-Logik 90

DMACON 90

DMACONR 90

DOS-Library 47

Dos.lib 24

DRAM 327

DRAM-Controller 327

Drive-Select-Register 256

Drive-Status-Register 257

DSKBYTR 255

DSKDAT 256

DSKDATR 256

DSKLEN 255

DSKPTH 254

DSKPTL 254

DSUB-Buchse 270

Dual-Playfield-Modus

119

Dual-Ported-RAM 299,

303 ff.

E
Ed 15

Einsprungadressen 397

Erweiterungskarten 222

Exceptions 57

Exec 45,48

Exec.lib 24

Execute 15,18

Expansion-Library 364

F
Farbtabelle 94

Fast-Mem 37

FAT-AGNUS 37

FATAGNUS 32, 59 ff.

FBAS-Betrieb 339

FBAS-Signal 338, 353

FindConfigDev 369

Flip-Flop 248

FLOAT-Variablen 19

Floppy-Controller 250

Flußwechselabstand 247

FM 246, 247

FreeBoardMem 369

FreeConfigDev 370

FreeExpansionMem 370

FreeJanusMem 359

Frequenz-Modulation
144,171 |

G
Game-Port 175

Gameport.device 28

Garry 32,59

Gary 37, 180

GCR 246, 252 f.

GCR-Format 234, 250

Genlock 356

Genlock-Interface 206,

352
Genlock-Video-Inter-

face 346

GetCurrentBinding 371

GetJanusStart 360

GetParamOffset 360

GND 191

Graphic.lib 24

Ground 191

H
Handshake 288, 293

Handshaking 227

Hardwareregister 379

I
VO-Belegung 306 ff.

V/O-Belegung 308

Icon.lib 24

If-Befehl 21

Indentifikationsdaten 222

Info 15

Info.lib 25

Input.device 28

Inputevent.device 28

INTENA 173

INTENAR 173

Interlace-Modus 338

Interrupt-Kontroll-Logik

172

Interrupt-Kontrolle 144

Interrupts 46, 57

INTREQ 173

INTREQR 173

Intuition.lib 25

IO-Bausteine 227

J |
Janus-Library 357

Janus.lib 25

JanusLock 360

JanusMemBase 361

JanusMemToOffset 361

JanusmemType 361

JanusUnLock 362

JBCopy 360

Jdisk.device 28

420 Stichwortverzeichnis

Joyport 296

Joystick 175

Jumper 411

K
Kartengrößen 374

KCLK 288, 292

KDAT 288

KDAT-Leitung 293

Key-Matrix 284

Keyboard.device 28

Keymap.device 28

Kickstart 36, 45

Komperator 244

Kontroll-Chip 327

L
Lattice-Compiler 13

Lautstärkermodulation

172

Layers.lib 25

Lesevorgang 203, 244

M

MakeDosNode 366

Mathffp.lib 25

Mathieeedoubbas.lib 25

Mathtrans.lib 25

Matrix 284

Maus 294, 296

Maus, optische 294

Mausdaten 296

MC 68000 36, 53

MFM 246 f., 252 f.

MFM-Format 234, 250

MODE -Register 304, 308

Modula 16

Monitor 338

— A2024 338

Mono-Flop 244

Move-Befehl 68

MS-DOS 32

MS-DOS-Emulator 298

MS-DOS-Erweiterungen

298

Multiplexen 321, 327

N
NAND-Gatter 248

-Narrator.device 28

Nibble 222

NTSC 209, 342

— Compostite-Video-

ausgang 36

O
ObtainConfigBinding 371

Output-Enable 322

pP
PAL 209, 342

PAL-Agnus 36

PAL-Composite-Video-

ausgang 342

PAL-Modulatoren

206, 343

Parallel.device 28

Pascal 16

Paula 36, 59, 144 f., 250,

278

PC-Slots 213 f., 216 £.

PC-Steckplätze 185

PC/AT-I/O-Register 310

PC/XT-Emulator 40

PC/XT-Karte 303, 305

Periodmodulation 171

Piggy-Pack 36 f., 331

Playfield-Hardware 118

Playfields 142

Portbausteine 395

POTGO-Register 297

Power-LED 46

Printer.device 28

Prtbase.device 28

R
RAM 46, 288, 318

RAM, dynamischer 318,
326

RAM, statischer 318, 321

RAM-Chip 299, 301, 320 —

RAM-Controller 327

RAM-Controller-IC 318

RAM-Erweiterungen 318

RAS 326

Rasterstrahl 67

Raw-Key-Code 280, 288

ReadExpansionByte 371

ReadExpansionRom 372

Ready-Pin 248

Refresh-Logik 59, 318

Refresh-Signale 318, 326 f.

Refresh-Zyklen 320

Registeradressen 395

ReleaseConfigBinding

372

RemConfigDev 372

RGB-Betrieb 339

RGB-Encoder MC1377

342

RGB-TTL-Eingang 338

RGB-Video-Stecker 143

RGB-Wert 353

ROM 37, 46, 288, 297

S
Scanner 347

SCART-Anschluß 338

Schalter 351

Schleifen 22

Schnittstelle 270

— parallele 212, 270

— serielle 228, 270, 274

Stichwortverzeichnis 421

Schreib/Lesekopf 234

240

— positionieren 237

Schreibvorgang 204

Schrittmotor 234, 237

“ Seka-Assembler 13, 29

Select-Leitung 248

SendJanusInt 362

SERDAT 278

SERDATR 278

Serial.device 28

SERPER 279

SetCurrentBindung 372

SetJanusEnable 362

SetJanusHandler 362

SetJanusRequest 363

SetParamOffset 363

Shugart-Bus 248

SideCar 37, 213, 298 £.,

302

Skip-Befehl 69

Slota 185

Sound-Digitizer 346

Speicherbelegung 306 ff.,

378

Sprite-Hardware 94

Sprites 142

Standard-Floppy-Schnitt-

stelle 248

Standard-Video-Slot

207 ff.

Steckkarte 40

Step 239

Sync-Wort 250

System-Clock 212

T

Takte 205

Tastatur 280

Tastatur-Initialisierung

287

Tastatur-Matrix 285

Tastaturprozessor

281

Timer.device 28

Timer.lib 25

Timing 203

Track 245

Trackdisk.device 28

Translator.lib 25

TTL-Lasten 230

U

UART 279

Unix 16, 32

Vv
Video-Hybrid-Baustein

142

Video-Interface 142

Video-Prioritats-

register 142

Video-Signale 212

Video-Slot 41, 206, 210 ff.

Ww
Wait-Befehl 69

WarmCapture 48

Watch-Dog-Timer 284

Write-Enable 322

WriteExpansionByte 373

Z
Zeiger 20

Zeilenfrequenz 338

Zorro-Bus 40

Zorro-Slots 185

AMIGA System-Handbuch
Die Autoren:

JÖRG KOCH, geboren 1967, befindet sich zur Zeit
in der Ausbildung zum Energie-Anlagen-Elektroni-
ker. Neben der Ausbildung beschäftigt er sich als
freier Autor auf dem Spezialgebiet Software-
Entwicklung unter anderem mit den Programmier-
sprachen Modula und C auf verschiedenen 16-Bit-

Rechnern.

FRANK KREMSER, geboren 1967, erwarb auf vie-

len Gebieten der Informatik Grundkenntnisse, die
er in Form von Programmen und Berichten in Fach-
zeitschriften einem breiten Publikum zugänglich

gemacht hat.

Beide Autoren haben 1987 mit einem Lernpro-

gramm für den Amiga den Wettbewerb »Goldene
Diskette«, unter der Schirmherrschaft von Bundes-

forschungsminister Dr. Heinz Riesenhuber, erneut
gewonnen, nachdem sie bereits 1986 mit einem Bundesforschungsminister Dr. Heinz Riesenhuber

Programm für den Apple erfolgreich waren.

Warum soll Computerkenntnis
bei der Anwendung von Soft-
ware enden? Es gibt schließlich
auch bei der Hardware des
Amiga 500, 1000, A2000 und
B2000 viele Dinge, die wissens-
wert sind. Das Amiga-System-
Handbuch hilft sowohl dem
Computer-Einsteiger weiter, der
seinen Arbeitsspeicher vergrö-
Bern will, als auch dem erfahre-
nen Bastler, der Agnus, Denise,
Paula, Garry und Buster, die
Custom-Chips des Amigas, end-
lich einmal persönlich kennen-
lernen möchte. Zu allen Kapiteln
gibt es Schaubilder und Schalt-
pläne. Und damit Sie sich im
Dschungel der Elektronik gut
zurechtfinden, sind fast alle
Amiga-Ecken und -Winkel mit
Farbfotos dokumentiert. Auf der
beigefügten Diskette befinden
sich alle im Buch als Listing auf-
geführten Utilities in ablauffähi-
ger Version. Somit können Sie
ohne lästige Tipparbeit in die
Tiefen Ihres Amigas hinabsinken.

Aus dem Inhalt:

e Geschichte des Amigas
e Vorgänge beim Booten
e Die Chips: Funktionen und

Pinbelegungen
e Die Slots: Belegung der

Steckplätze des Amigas - die
Möglichkeiten der Video-, PC-
und AT-Slots - Beschreibung
der Autokonfiguration der
Erweiterungskarten - Hard-
warebeispiel

@ Die Peripherie: Aufbau, Funk-
tionsweise und Aufzeich-
nungsverfahren der Floppy -
Belegung und Ansteuerung
der parallelen und seriellen
Schnittstelle - Arbeitsweise
der Tastatur - Aufbau und
Steuerung der Maus -
Beschreibung der Monitore
und Verbesserungsvorschläge

e MS-DOS-Erweiterung: alle In-
formationen zum SideCar, zur
PC/XT- und zur PC/AT-Karte
und deren RAM-Speicher

@ RAM-Erweiterungen: _ stati-

übergibt Frank Kremser und Jörg Koch aus Marburg
die »Goldene Diskette«.

sches und dynamisches RAM
- Möglichkeiten und Schwie-
rigkeiten der Speicherer-
weiterung

e Bastelanregungen: Anleitun-
gen zum Bau eines Digitizers,
eines Scanners und eines
Low-Cost-Genlock-Interfaces
für ca. 20 DM - Bestückungs-
listen und Schaltpläne

e Janus- und Expansion-Library
e Anhang: Speicherbelegung -

Hardwareregister - Einsprung-
adressen der Bibliotheks-
funktionen - Befehlssatz des
MC68000 - Literaturhinweise

Die Begleitdiskette:

Auf der Begleitdiskette sind alle
im Buch aufgeführten Pro-
gramme als C- oder Assembler-
Source-Code sowie in ablauf-
fähiger Version enthalten.

Hardware-Anforderungen:

Amiga 500, 1000, A2000 oder
B2000

Markt&dechnik

ig

(q
a)

C

4 "001057

DM 79,-

ISBN 3-89090-550-1
| 07900

905504

sFr 72,70 0S 616,20

