Markt&dIechnik

Frank Kremser
Jorg Koch

000

Eine detaillierte bung: MC68000
* Custom-Ci tstellen » Floppy
* Hardware-Ey yergrofierter Speicher
* Genlo nner * Zahlreiche

d Assembler

Auf 3%2"-Diskette enthalten:
Alle Programme als Source-Code
und in lauffahiger Version.

Frank Kremser
Jérg Koch

AMIIGA

SYSTE M-
HANDBUCH

For Amiga 500, 1000 und 2000
Eine detaillierte Hardware-Beschreibung:
MC68000 % Custom-Chips % Slots
* Schnittstellen % Floppy % Hardware-
Erweiterungen wie vergréberter Speicher
* Genlock-Interface % Scanner
* Zahlreiche Beispiele in C und Assembler

Markt&Technik Verlag AG

CIP-Titelaufnahme der Deutschen Bibliothek

Kremser, Frank:
Amiga-System-Handbuch : fiir Amiga 500, 1000 u. 2000 ;
e. detaillierte Hardware-Beschreibung: MC 68000, Custom-Chips, Slots, Schnittstellen, Floppy,
Hardware-Erweiterungen wie vergroBerter Speicher, Genlock-Interface, Scanner,
zahlr. Beispiele in C u. Assembler / Frank Kremser ; Jorg Koch. —
Haar bei Miinchen : Markt-u.-Technik-Verl., 1988
ISBN 3-89090-550-1
NE: Koch, Jorg

Die Informationen in diesem Produkt werden ohne Riicksicht auf einen eventuellen Patentschutz verdffentlicht.
‘Warennamen werden ohne Gewihrleistung der freien Verwendbarkeit benutzt.
Bei der Zusammenstellung von Texten und Abbildungen wurde mit grofter Sorgfalt vorgegangen.
Trotzdem konnen Fehler nicht vollstindig ausgeschlossen werden.
Verlag, Herausgeber und Autoren konnen fiir fehlerhafte Angaben und deren Folgen weder eine juristische
Verantwortung noch irgendeine Haftung iibernehmen.
Fiir Verbesserungsvorschldge und Hinweise auf Fehler sind Verlag und Herausgeber dankbar.

Alle Rechte vorbehalten, auch die der fotomechanischen Wiedergabe und der Speicherung in elektronischen Medien.
Die gewerbliche Nutzung der in diesem Produkt gezeigten Modelle und Arbeiten ist nicht zuldssig.

Anmiga ist eine Produktbezeichnung der Commodore-Amiga Inc., USA
Amiga-BASIC ist ein eingetragenes Warenzeichen der Microsoft Inc., USA
DevPac ist ein eingetragenes Warenzeichen der HiSoft Corp., UK
Lattice C ist ein eingetragenes Warenzeichen der Lattice Corp., USA
Aztec C ist ein eingetragenes Warenzeichen der Manx Software Inc., USA

15 14 13 12 11 10 9 8 7 6 5 4
91 90

ISBN 3-89090-550-1

© 1988 by Markt& Technik Verlag Aktiengesellschaft,
Hans-Pinsel-StraBe 2, D-8013 Haar bei Miinchen/Germany
Alle Rechte vorbehalten
Einbandgestaltung: Grafikdesign Heinz Rauner
Druck: Schoder Druck GmbH & Co. KG, Gersthofen
Printed in Germany

Inhaltsverzeichnis 5

[] o
Inhalisverzeichnis

Vorwort 11

Einfiihrung 13
1 Die Amiga-Serie 32
1.1 Der Amiga 1000 35
1.2 Der Amiga 500 37
1.3 Der Amiga A2000 und B2000 41
2 Der Bootvorgang 45
2.1 Funktion des Boot-ROMs 45
2.2 Initialisierung des Systems 46
2.2.1 Die Abfangvektoren 48
3 Der MC68000 53
31 Der MC68000 im Detail 53
3.2 Die Exceptions 57
4 Die Custom-Chips 59
4.1 Agnus und FatAgnus 59
4.1.1 DiePinbeschreibungzu Agnus 64
4.1.2 Die Pinbeschreibung zu FatAgnus 65
4.1.3 DerCopper 67
4.1.4 DerBlitter 81
4.1.5 DMA-Kontroll-Logik 90
4.2 Denise 91

6 Inhaltsverzeichnis

421
4.2.2
4.2.3
4.2.4
4.2.5
4.3

4.3.1
43.2
4.3.3
4.3.4
4.4

4.5

5

5.1

5.11
512
5.2

521
522
5.3

5.31
5.3.2
5.33
5.4

5.41
5.4.2
543
5.4.4
5.5

5.5.1
5.5.2
5.6

5.6.1
5.6.2

Die Pinbeschreibung zu Denise
Die Sprite-Hardware

Die Playfield-Hardware
DieVideo-Prioritétsregister
DasVideo-Interface

Paula

Die Pinbeschreibung zu Paula
Die Audio-Hardware

Die Interrupt-Kontroll-Logik
Der Game-Port

Gary

Buster

Die Amiga-Slots

Der 86-Pin-Slot

Die 86-Pin-Slot-Belegung

Die Signale des 86-Pin-Slots
Der 100-Pin-Slot

Die 100-Pin-Slot-Belegung
Die Signale des 100-Pin-Slots
Timing-Abldufe

Der Standard-Lesevorgang
Der Standard-Schreibvorgang
DieTakte des Amiga

DieVideo-Slots des Amiga A/B2000

Die Pinbelegung des Standard-Video-Slots
Die Signale des Standard-Video-Slots

Die Pinbelegung des erweiterten Video-Slots
Die Signale des erweiterten Video-Slots

Der PC-Slot

Die Pinbelegung des PC-Slots
Die Signale des PC-Slots

Der AT-Slot

Die Pinbelegung des AT-Slots
Die Signale des AT-Slots

Die Autokonfiguration

Das Hardware-Beispiel

Die CIA-Hardware
Die 8520-Bausteine

92

94
118
142
142
144
145
146
172
175
180
183

185

185
187
190
194
194
198
202
202
203
204
205
206
207
209
210
212
213
215
217
218
219

221
224

226
230

Inhaltsverzeichnis 7

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.10.1
8.10.2
8.10.3
8.10.4
8.10.5
8.10.6
8.10.7
8.10.8
8.10.9
8.11
8.11.1
8.11.2

91
9.2
9.2.1

10

10.1
10.2
10.3
10.4
10.5
10.6

11.1
11.2

Die Amiga-Floppy

Der Aufbau des Amiga-Laufwerks

Der Diskettenantrieb

Die Positionierung des Schreib-/Lesekopfes

Der Schreib-/Lesekopf der Floppy

Der Schreibvorgang

Der Lesevorgang

Die 3.5-Zoll-Diskette

Die physikalische Aufzeichnung

Die Standard-Floppy-Schnittstelle

Paula, der Floppy-Controller

GCR oder MFM?

Das MFM-Aufzeichnungs- und Codierungsverfahren
Das GCR-Aufzeichnungs- und Codierungsverfahren
Das Amiga-Disk-Kontroll-Register ADKCON

Das Disk-Sync-Register

Die Disk-Pointer-Register DSKPTH und DSKPTL
Das DSKLEN-Register

Das Disk-Byte-Read-Register DSKBYTR

Die Disk-Daten-Register DSKDAT und DSKDATR
CIA 8520, die Diskettensteuerung

Das Drive-Select-Register

Das Drive-Status-Register

Die Schnittstellen

Die parallele Schnittstelle
Die serielle Schnittstelle
Paula, der UARTdes Amiga

Die Tastatur

Der Tastaturprozessor

Der Watch-Dog-Timer

Die Initialisierung der Tastatur

Die Kommunikation zwischen Tastatur und Rechner
Die Tastaturverbindung zum Amiga

Der Tastencode-Empfinger im Amiga

Die Maus

Aufbau und Funktionweise der Maus
Empfang der Mausdaten

233

233
233
236
239
241
243
244
245
247
249
249
249
251
252
253
253
254
254
255
255
255
_- 256

269

269
273
277

279

280
282
285
286
290
291

292

294
294

8 Inhaltsverzeichnis

12

12.1
12.11
12.2
12.2.1
12.3
12.3.1
12.4

13

13.1
13.2
13.3
13.3.1
13.3.2
13.3.3
13.3.4

14

14.1
14.11

15

15.1
15.2

16

16.1
16.2
16.3
16.4
16.5

17

171
17.2
17.3
17.4

MS-DOS-Erweiterungen

Das SideCar

Das SideCar am Amiga 500

Die PC/XT-Karte

Die Speicher- und I/O-Belegung der PC/XT-Karte
Die AT-Karte

Die Speicher- und I/O-Belegung der AT-Karte
Die PC/AT-I/O-Register

RAM-Erweiterungen

Statisch oder dynamisch?

Statische RAMs am Amiga

Dynamische RAMs am Amiga

Mehr DRAM per Kontroll-Chip

Die 256-Kbyte-RAM-Erweiterung des A1000
1-Meg-Amiga 1000

Die 512-Kbyte-R AM-Erweiterung des Amiga 500

Die Monitore des Amiga

Verbesserungsmoglichkeiten des A1081/A 1084
Ein Griin-Monitor sieht Blau

PAL fiir den Amiga

Amiga 1000: Aus NTSC wird PAL
PAL-Modulator fiir den Amiga

Bastelanregungen

Der Amiga-Sound-Digitizer

Der Amiga-Scanner

Der Amiga als Schalter
Daslow-cost-Genlock-Interface
DieVerwandlung: Aus Genlock wird ein Digitizer

Das Janus-Library

AllocJanusMem
CheckJanusInt
FreeJanusMem
GetJanusStart

296

297
300
301
303
306
306
308

316

316
319
324
325
326
328
331

336

337
337

339

340
343

344

344
345
349
351
354

355

357
357
357
358

Inhaltsverzeichnis 9

17.5
17.6
17.7
17.8
17.9
17.10
1711
17.12
17.13
17.14
17.15
17.16

18

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12
18.13
18.14
18.15
18.16
18.17
18.18
18.19
18.20

GetParamOffset
JBCopy
JanusLock
JanusMemBase
JanusMemToOffset
JanusMemType
JanusUnLock
SendJanusInt
SetJanusEnable
SetJanusHandler
SetJanusRequest
SetParamOffset

Das Expansion-Library

AddDosNode
MakeDosNode
AddConfigDev
AllocBoardMem
AllocConfigDev
AllocExpansionMem
ConfigBoard
ConfigChain
FindConfigDev
FreeBoardMem
FreeConfigDev
FreeExpansionMem
GetCurrentBinding
ObtainConfigBinding
ReadExpansionByte
ReadExpansionRom
ReleaseConfigBinding
RemConfigDev
SetCurrentBinding
WriteExpansionByte

358
358
358
359
359
359
360
360

360
361
) 361

362

364
364
364
365
365
366
306
366
367
367
368
368
369
369
369
370
370
370
270
371

10 Inhaltsverzeichnis

Anhang A Kartengriofien
B Speicherbelegung
C Die Hardwareregister
D Registeradressen der Portbausteine
E Einsprungadressen der Bibliotheksfunktionen

Der Befehlssatz des MC68000

Yy

Die Jumper des Amiga B2000

Literaturnachweis

mQ

L]

Die beigefiigte Diskette
J Schaltplan fiir die Erweiterungskarte aus Kapitel 6.1

Stichwortverzeichnis

372

376

377

393

395

406

409

409

410

414

418

Vorwort 11

Vorworit

[|

Technologischer Fortschritt und technische Innovation haben im Computerbereich kei-
nen Halt gemacht. Der Amiga bietet derzeit das Neueste vom Neuen. [Er ersetzt die
8-Bit-Spielkameraden im Kinderzimmer, bringt dem Vater Leistungsfdhigkeit beim
Arbeiten mit CAD, Hausverwaltung oder Entspannung mit einem kleinen Spiel].

Um ein so komplexes System zu beherrschen, dem Anwender SpaB bei der Arbeit oder
vielen Jugendlichen Freude beim Spielen zu bereiten, muf3 der Profi, Freak oder Hob-
byprogrammierer néher in die Tiefen des Amiga-Systems einsteigen, denn nur auf die-
ser Ebene wird er die Losungen finden, die seine Software leistungsféhig machen. Dies
wird als maschinennahes Programmieren bezeichnet und soll ein Bestandteil unseres
Hardware-Buches sein.

Maschinennah programmieren bedeutet nicht gleich den verstaubten Assembler aus
der Diskettenbox zu holen, denn maschinennahe Programmierung 148t sich auch in C
verwirklichen. Zwar wird damit nicht die maximale Geschwindigkeit des Systems
erreicht, es lassen sich jedoch Programme einfacher entwickeln und in andere
Programme einbinden. An die Assembler-Freaks haben wir auch gedacht und Demos
in Maschinensprache dem Buch beigefiigt. Alle Programme befinden sich auf Diskette,
so daf3 ein aufwendiges Abtippen der Programme entfillt.

Auch an die Hobbybastler, die keinen Rechner kaufen kénnen, ohne ihn aufzuschrau-
ben und auseinandernehmen zu wollen, haben wir gedacht. Tips und Tricks zu System-
erweiterungen, Funktion des Systems und eine Bauanleitung fiir ein 20-DM-Genlock-
Interface sind sicher grofie Leckerbissen fiir solche Freaks.

Wir haben in diesem Buch versucht, alle Anwender der Amiga-Serie zufriedenzustellen
und gleich das Buch fiir die gesamte Amiga-Palette geschrieben. Dadurch kam oftmals
Chaos in unserem »Entwicklungslabor« auf, denn bei drei »Freundinnen« mit Zubehor
weifl man oftmals nicht, welche Schraube zu welchem Rechner gehort.

Alle Schaltungen und Programme sind weitgehend erprobt, so daf} es keine Schwierig-
keiten beim Nachbau bzw. der Anwendung der Software geben diirfte. Hobbybastler

12 Vorwort

mit nicht allzu groBer Erfahrung konnen sich ruhig an den Nachbau einiger kritischer
Schaltungen, wie interne RAM-Aufriistungen, wagen. Die Amigas sind sehr robust
und koénnen einiges vertragen. Spétestens jedoch, wenn ihr Amiga bei dem Anzeigen
einer Guru-Meditation abstiirzen sollte, raten wir, das jeweilige Kapitel der Bauanlei-
tung nochmals durchzulesen und den Aufbau der Schaltung sorgfiltig zu tiberpriifen.

Zum Schlufl mochten wir noch einigen Personen danksagen, denn an der Entwicklung
eines solchen Buches sind meistens nicht nur die Autoren, die zwar den groBtenTeil der
Arbeit haben, sondern auch viele andere Personen beteiligt, die Tips und Hilfestellun-
gen zu diesem Projekt geben. Unser Dank gilt insbesondere

— allen Mitarbeitern von Markt & Technik, die zur Verwirklichung dieses Buches
beigetragen haben, vor allem Christine Baumann, die uns die Anregung zu diesem
Buchprojekt und permanente Unterstiitzung wéhrend der Verwirklichung dieses
Projektes gegeben hat.

- den Mitarbeitern des Commodore State Support in Frankfurt, hier besonders dem
Leiter Herrn Hértel und Herrn Kakadures, die sicherlich an unseren umfangreichen
Fragestellungen fast verzweifelt sind.

— Herrn Knobel von der Firma Electronic Medical, der uns bei der Entwicklung des
Genlock-Interfaces mit seinem fachlichen Wissen im Bereich der Fernsehtechnik und
mit MeBgeriten mit Rat und Tat zur Seite stand.

— unseren Eltern, die groBes Verstindnis gezeigt haben, daf so manche selbstverstind-
liche Arbeit unerledigt blieb, weil wir noch einige Verbesserungen an dem Buch vor-
nehmen wollten.

Marburg/Karlsruhe im Jahre 1988

Einfithrung 13

[Il

In dieser Einfithrung gehen wir auf die C-Programmierung und auf die Bedienung des
Seka-Assemblers ein, den wir fiir die Entwicklung der Assembler-Programme verwen-
det haben. Natiirlich konnen nicht alle Einzelheiten dargestellt werden, da dies den
Rahmen des Buches sprengen wiirde. Als Einstieg diirften die Informationen allerdings
ausreichend sein.

Die C-Programme, die in diesem Buch aufgefiihrt sind, sind mit dem Lattice-Compiler
Version 3.10 erstellt worden. Aber mit den unten aufgefiihrten Batch-Files diirften sie
auch auf den anderen Versionen, bzw. dem Aztec-Compiler fehlerfrei laufen.

Zur Vereinfachung des Kompiliervorganges bei C-Programmen haben wir ein Batch-
File geschrieben, das alle Kompilier- und Linkphasen selbsténdig durchfiihrt. Dieses
Batch-File haben wir fiir eine Harddisk geschrieben, aber es ist ohne Anderungen auch
fiir die Arbeit mit zwei Laufwerken geeignet.

/

Fiir die Lattice-Version 3.02 oder 3.03:

stack 20000
ifnot exists «<prg>.c
echo "File ist nicht vorhanden"
skip end
endif
echo ""--kompilieren--"
lcl-i:include/ -i:include/lattice/ <prg>.c
ifnot exists «prg>.q
echo“Combiler—Fehler“
quit 20
endif
1cR <prg»
alink : 1lib/1lstartup.obj+«prg> .o library : 1lib/lc.1lib+
:lib/amiga.libto <prg> mapnil:
delete <prg> .o
echo "--Kompilier-undLinkvorgang ist zuEnde —-"
labend

14 Einfiihrung

Fiir die Lattice-Version 3.10:

stack 20000
ifnot exists «prg>.c
echo "File ist nicht vorhanden"
skip end
endif
echo '"*--kompilieren --"
LCl-f-i:include/ -i:include/lattice/ <prg> .c
ifnotexists «<prg>.q
echo "Compiler-Fehler"
quit 20
endif
LC2 —cdb «prg>
BLINK FROMLIB:c.o+ <prg> .o TO <prg> LIBLIB:1c.lib+1lcmffp.lib+
LIB:amiga.lib+LIB:1lcm.1lib
delete <prg> .o
echo "--Kompilier-undLinkvorgang ist zu Ende --*
labend

Fiir die Lattice-Version 4.00:

stack 20000
ifnot exists <prg>.c
echo "File ist nicht vorhanden"
skipend
endif
echo "--Kompilieren--"
LCl-f-i:include/ -i:include/lattice/ <prg>.c
ifnotexists <prg>.q
echo “Compiler-Fehler"
quit 20
endif
LC2 «prg»
BLINKFROMLIB:c.o+ «<prg> .o TO <prg> LIBLIB:1lc.lib+1lcmffp.lib+
LIB:amiga.lib+LIB:1cm.1lib
delete <prg> .o
echo "--Kompilier-undLinkvorgangist zuEnde --"
lab end

Anmerkung: Leider funktionierte bei uns nicht die Compiler-Option »-cdb« — Pro-
grammdaten nur im Chip-Mem - in Verbindung mit LC2V4.00. Abhilfe
schafft einTrick von Peter Wollschlaeger, den Sie im »Liesmich«-File sei-
nes Buches »Amiga Programmierpraxis Intuition« finden:

Variablen wie IntuitionBase sind systemglobal. Deklariert man Sie als extern, kann
man z.B. den Data-Hunk ins Chip-Memory bringen mit:

lc -L -adnone

Den auftretenden Fehler »b ignored« kénnen Sie ignorieren.

Einfiihrung 15

Fiir den Aztec-Compiler:

cc-t«<prg>.c+1
In <prg>.0-1m32 -1c32
‘echo"--Kompilier-undLinkvorgang ist zu Ende --"

Dieses File muf3 mit dem Editor »ed« eingegeben und gespeichert werden. Dazu gehen
Sie von der Workbench aus in das CLI. Dort erscheint »1>«. Nun kommen Sie mit »ed
comp« in den Editor und kénnen das Batch-File, das fiir Ihre Compiler-Version angege-
ben ist, eingeben. Wenn Sie fertig sind, konnen Sie es abspeichern, indem Sie »ESC«
und anschlieBend »x« driicken. Das Batch-File steht nun unter dem Namen »comp« auf
Ihrer Diskette, bzw. Harddisk. Wenn Sie spéter ein selbstgeschriebenes C-Programm
compilieren wollen, starten Sie es mit dem CLI-Befehl »EXECUTE comp« und dem
Programmnamen des C-Programms ohne das ».c«-Kiirzel.

Beispiel: Ihr C-Programm steht unter dem Namen >test.c< auf der Harddisk, bzw. Dis-
kette. Kompilieren Sie es nun, indem Sie >execute comp test<eingeben. Nach
Beendigung des Kompiliervorgangs steht das ausfithrbare Programm unter
dem Namen >test< auf der Harddisk, bzw. Diskette.

/
Nun, was bewirkt dieses Batch-File fiir den Lattice. Zu Beginn wird der Programm-
name der Variablen »prg« iibergeben und anschlieBend der Stack auf eine Gr68e von
20 000 Byte gesetzt, was notig ist, da der Compiler eine Vielzahl von Daten zwischen-
speichern muf3. AnschlieBend iiberpriift es, ob das gewiinschte Programm zum Kompi-
lieren iiberhaupt existiert. Ist das Programm nicht vorhanden, steigt das Batch-File aus
und druckt die Fehlermeldung »File ist nicht vorhanden«. Ist kein Fehler aufgetreten,
so beginnen nun die Kompiliervorgénge »lcl«und »lc2«. »lcl« iiberpriift hauptséchlich
die Syntax des Hauptprogramms und der eingeladenen Include-Files. »lc2« generiert
anschlieBend den Programmcode. Tritt beim Kompiliervorgang »lcl« ein Fehler auf, so
wird auch hier der Ablauf des Batch-Files gestoppt und eine Fehlermeldung »Compiler-
Fehler« ausgegeben. Verliefen jedoch die Kompiliervorgidnge ohne Fehler ab, beginnt
das Programm mit dem Zusammenfiigen, sprich »Linken«, der Bibliotheksmodule mit
dem Programmcode. Eine Meldung teilt dem Benutzer anschlieBend mit, daBl dieser
ProzeB beendet ist. Danach kann das »kompilierte« und »gelinkte« Programm gestar-
tet werden. Das Programm muf} unter dem gewiinschten Namen, mit angehédngtem
».c« erstellt und abgespeichert worden sein, also beispielsweise »test.c«. Nach dem
Kompilier- und Linkvorgang steht der startbare Programmcode in der Datei »test«.
Dieser Programmcode 148t sich nun einfach durch Eintippen des Dateinamens starten.
Bei den meisten Programmen bietet sich auch noch die Moglichkeit an, eine ».info«-
Datei zu kopieren, beispielsweise »copy cli.info to test.info«. Dann kdnnen die Pro-
gramme auch von derWorkbench aus gestartet werden. Eine Ausnahme bilden hier die
Programme, die »printf«, »scanf« oder DOS-Befehle benutzen und mit der Lattice-Ver-
sion 3.02 oder 3.03 kompiliert wurden, da diese Befehle ihre Ein- und Ausgabe iiber

16 Einfiihrung

CLI abwickeln. Aus diesem Grund besitzen auch nicht alle Demonstrationsprogramme
auf der mitgelieferten Diskette sog. Icons, sind also von der Workbench aus nicht sicht-
oder startbar. Sie konnen nur von CLI aus gestartet werden.

Fiir alle nachfolgenden Erkldrungen mochten wir Sie bitten, alle Schritte direkt am
Computer nachzuvollziehen, da es dann leichter fiir Sie wird. Zu Beginn miissen Sie na-
tiirlich den Computer starten. Falls Sie es nicht schon zuvor getan haben, miissen Sie
das Preferences-Programm starten und den CLI-Schalter auf »ON« setzen, da nur in
diesem Fall CLI zu verwenden ist. Anschlieend konnen Sie wieder Preference verlas-
sen, am besten mit »Save«, da dann das CLI-Icon auch nach dem FEinschalten des Com-
puters erscheint. Nun starten Sie bitte CLI durch einen Doppelklick auf das CLI-Icon.
Kurz darauf erscheint das CLI- Window. Ist es das einzige CLI-Window auf dem Bild-
schirm, so miiite das »1>«-Prompt darin erscheinen. Dahinter ist der Cursor zu erken-
nen. Nun kénnen Sie samtliche CLI-Befehle verwenden. Als Beispiel dafiir tippen Sie
bitte »dir« mit anschlieBendem »RETURN« ein. Sie sehen nun das Inhaltsverzeichnis
der Hauptdiskette.

Nun wollen wir mit der Einfithrung in »C« beginnen. »C« dhnelt in vielen Punkten den
Programmiersprachen PASCAL und MODULA, weshalb PASCAL- und/oder MO-
DULA-Programmierer keine Schwierigkeiten haben diirften, auf »C« umzusteigen.

»C« wurde 1972 in den USA entwickelt, 1973/74 verbessert und anfangs vornehmlich
unter dem Betriebssystem UNIX verwendet. Da diese Sprache moglichst flexibel sein
sollte, wurden ihr nur sehr wenige Befehle fest implementiert. Darunter sind:

- if v Bedingte Anweisung
— switch v Bedingte Anweisungen
— for,while ¥» Z#hl- und bedingte Schleifen

Es sind noch einige Befehle mehr vorhanden, auf die wir allerdings nicht eingehen wer-
den, da sie nicht von groerer Bedeutung sind. Diese Befehle geniigen allerdings, um
alle programmkontrollierenden Funktionen durchfiihren zu kénnen, zumal sich die
meisten Befehle in Include-Dateien oder in Bibliotheken befinden, die der Sprache
»C« zu ihrer Leistungsfihigkeit und Flexibilitit verhelfen.

Ein C-Programm setzt sich normalerweise aus drei Grundteilen zusammen. Im ersten
Teil gibt der Programmierer an, welche Include-Dateien oder Bibliotheken er verwen-
den will und somit beim Kompilieren eingelesen werden miissen. Im anschlieBenden,
zweiten Teil werden die globalen Variablen deklariert. Auf diese Variablen kann von
jeder Routine des Programms aus zugegriffen werden. Der dritte Teil besteht aus dem
eigentlichen Progamm. Dieser Teil gliedert sich allerdings wieder in zweiTeile auf. Da
ist zum einen der Teil mit den Unterroutinen — In Pascal auch Procedures oder Func-
tions genannt — und zum anderen der sogenannte »main«-Teil. Dieser Teil stellt die
Hauptroutine des Programms dar, die beim Start des Programms aktiviert wird. Der

Einfiihrung 17

Unterschied zu Pascal besteht darin, daf Unterroutinen und Hauptprogramm keine
festgelegte Reihenfolge haben miissen. Es konnen in »C« also auch Unterroutinen auf-
gerufen werden, die erst spéter im Programm folgen.

C-Programme wirken leider teilweise sehr undurchsichtig, was aber durch das Einfii-
gen von Kommentaren und Unterroutinen wettgemacht werden. Solche Kommentare
werden mit »/*« und »*/« geklammert. Aufpassen sollte man auf solche »Kleinigkeiten«
wie Semikolons oder Kommata, da der Compiler oftmals solche Fehler nicht erkennt,
sondern weiterkompiliert, was zum Absturz beim spateren Starten des Programms fiith-
ren kann. Mit »C« zu arbeiten heif3t also korrekt und sauber arbeiten, sonst kann fiir
nichts garantiert werden.

Zusitzlich zu den oben genannten Befehlen besitzt »C« noch eine Reihe von Funktio-
nen, von denen »printf« und »scanf« die wichtigsten sind. »printf« dient zur Ausgabe
vonTexten, Zahlen u.a. Mittels »scanf« konnen Texte und Zahlen eingelesen werden.
Zu der Funktion »printf« wollen wir an dieser Stelle ein erstes Programm erstellen. Es
soll nur denText »Mein erstes C-Programm« ausgeben. Da Sie sich schon in CLI befin-
den, miissen Sie nur noch den Editor »ed« aktivieren. Zusétzlich mufl noch der Name
angegeben werden, den unser Programm haben soll, gefolgt von ».c«:

1> edtest.c '

Nun befinden Sie sich im Editor. Da wir nur den Befehl »printf« verwenden wollen, der
von »C« bereitgestellt wird, miissen wir keine Include-Dateien einlesen oder Variablen
deklarieren. Also konnen wir gleich mit dem Programm beginnen. Das Programm
besteht in unserem Fall nur aus der Hauptroutine, die mit »main()« eingeleitet wird.
Anschlieend folgen die Anweisungen, die zur Hauptroutine gehoéren. Sie miissen mit
den zwei geschweiften Klammern »{« und » }« geklammert werden. Zwischen diesen
Klammern steht also das Hauptprogramm. In unserem Fall besteht es nur aus »printf-
(“Mein erstes C-Programm/n*);«. »printf« gibt, wie schon zuvor erwihnt, einen Text
aus. Der Text steht anschlieBend in Klammern und von Hochkommata eingegrenzt.
Ein Sonderfall ist noch mit eingebaut: »/n« bewirkt einen Zeilenvorschub, was notig
ist, da »printf« keinen automatischen Zeilenvorschub bewirkt. Neben »/n« gibt es unter
anderem noch »/0«, was den ASCII-Code Null darstellt. Nun sieht unser Programm
also folgendermafBen aus:

main()

{

printf(“Meinerstes C-Programm/n');

}
Betitigen Sie nun die »ESC«-Taste und anschlieBend »X« und »RETURN«, um das
Programm unter dem Namen »test.c« zu speichern. Um das Programm nun starten zu
konnen, muf es zuerst mit dem Compiler in Maschinensprache iibersetzt werden. Dies
kann mit dem oben angegebenen Batch-File geschehen:

1> EXECUTE comp test

18 Einfiihrung

Nach einer Weile ist der Kompilier-Vorgang beendet und es erscheint wieder das »1>«-
Prompt. Nun kann das Programm mittels der Eingabe von »test« mit anschlieBendem
»RETURN« gestartet werden. Das Ergebnis ist zwar nicht aufregend, aber es zeigt
doch die Vorgehensweise beim Erstellen eines C-Programms.

Nun wollen wir einen Schritt weitergehen, wir wollen weitere Funktionen verwenden,
die sich in einer Include-Datei auf der Diskette befinden. Diese Funktionen sind »get-
char« und »putchar, die sich in der Datei »stdio.h« befinden. Zusitzlich deklarieren
wir zwei Variablen. Die Variable »global« kann in allen Routinen verwendet werden.
»lokal« kann nur in der Hauptroutine verwendet werden. Wire eine weitere Routine
vorhanden, so kdnnten in ihr nur die Variable »global«, sowie ihre eigenen lokalen
Variablen verwendet werden.

»getchar« und »putchar« haben im Prinzip die gleiche Funktion wie »scanf« und
»printf«, nur daf sie fiir einzelne Zeichen ausgelegt sind. Um das Programm erstellen
zu konnen, miissen Sie als erstes in den Editor mit »ed test2.c«. Das Programm sieht
dann folgendermaflen aus:

#include <stdio.h>
char global;

main()
sz

char lokal;

lokal = getchar();

global = lokal;

putchar(global);
Sz

Auch dieses Programm muf} nach dem Speichern kompiliert werden. Dies geschieht
mit »)EXECUTE comp test2«.

An dieser Stelle wollen wir auf die moglichen Datentypen eingehen, mit denen Varia-
blen deklariert werden konnen:

Datentyp Wertebereich Speicherldnge
int -32768 bis 32767 2BYTE
long int —2*10hoch 9 bis 2*10 hoch 9 4BYTE
unsigned int 0 bis 65535 2BYTE
char 0 bis 255 (ASCII) 1BYTE
FLOAT +10hoch-37 bis =10hoch 38 4BYTE
DOUBLE +10hoch-307 bis £ 10hoch 308 8BYTE
BYTE -128 bis 255 1BYTE
WORD -32768 bis 32767 2BYTE

LONG -2.15%10hoch9 bis2.15%10hoch 9 4BYTE

Einfiihrung 19

UBYTE 0 bis 255 1BYTE
UWORD 0 bis 65535 2BYTE
ULONG 0 bis4.3*10 hoch 9 4BYTE

Nun wollen wir noch ein Programm schreiben, das Unterroutinen verwendet. Solchen
Routinen kénnen Parameter iibergeben werden, sie konnen aber auch Werte zuriick-
geben. Hier das Programm:

#include <stdio.h>

char eingabe;

routine(wert) /* Routinenkopfmit Parameter */
char wert; /*Datentyp des Parameters */
{

putchar(wert);
eingabe = getchar();
return(eingabe);
}
main() /* Hauptroutine */
{
eingabe = getchar();
eingabe = routine(eingabe); /* Routine aufrufen */
putchar(eingabe);

}

Nun wissen Sie iiber die Struktur von C-Programmen Bescheid. In den nachfolgenden
Teilen gehen wir néher auf die Programmierung ein.

Datentyp-Umwandlungen

»C« bietet die Moglichkeit, Daten innerhalb des Programms auf einfache Weise in an-
dere Datentypen zu wandeln. Dazu braucht nur vor den zu wandelnden Wert, bzw. vor
die Variable, in runden Klammern der Datentyp gesetzt werden, in den gewandelt wer-
den soll. Wenn beispielsweise eine Integerzahl in einer Integervariablen gespeichert ist,
aber einer FLOAT-Variablen zugewiesen werden soll, so geschieht das folgender-
maBen:

floatvar = (FLOAT) intvar;

Dies gilt auch fiir Structures, die spiter erldutert werden. Als Besonderheit gilt an
dieser Stelle, daB in solchen Fallen das Wort »struct« noch davor gesetzt werden muf3.
Beispiel:

struct testl /¥ erste Structure deklarieren */

FLOAT float;
int int;

b

20 Einfithrung

struct test2 /¥ zweite Structure deklarieren */

FLOAT float;
int int;
}s

main()

struct testlvarl; /*Variablenvom Typ testl */
struct test2var?; /*undtest2 deklarieren */

var? = (struct test2) varl; /* Zuweisen und umwandeln, */
/*danicht vomgleichen Typ */

Zeiger

Ein sehr wichtiges Thema sind die Zeiger. Sie gibt es zwar auch in Pascal und Modula,
doch ist ihre Verwendung in »C« besonders flexibel.

Ein Zeiger, auch Pointer oder Ptr genannt, ist eine AdreBvariable. Die Adresse, die sie
enthilt, ist das erste Byte einer Variablen. Man sagt auch, der Zeiger zeigt auf die
Variable. Deklarieren kann man einen Zeiger folgendermaf3en:

FLOAT *f1t;

Wir haben also einen Zeiger auf eine Float-Variable deklariert. Durch den Stern »*«
wird »flt« zum Zeiger. Es muf} aber beachtet werden, dafl durch diese Deklaration nur
Speicherplatz fiir den Zeiger, nicht aber fiir die Variable bereitgestellt wird.

Zu den Zeigern gehort auch der AdreBoperator »&«. Er ermittelt die Adresse einer
Variablen. Das bedeutet, wenn man einen Zeiger auf eine bestimmte Variable setzen
will, so geht man folgendermaBen vor:

FLOAT *f1t; /* Zeiger deklarieren */
FLOAT var; /*Variable deklarieren */

flt = &var; /* Zeiger auf Variable setzen */

Durch den AdreBoperator kann man also die Adresse einer Variablen ermitteln. Umge-
kehrt kann durch den Stern »*« auf den Speicherbereich zugegriffen werden, auf den
*It zeigt:

FLOAT *f1lt; /* Zeiger deklarieren */
FLOAT var; /* Variable deklarieren */

*¥flt =var; /¥ Variablenwert inBereich kopieren,
auf flt zeigen */

Einfiihrung 21

Bedingungen

In der Sprache »C« sind verschiedene Moglichkeiten vorhanden, zu testen, ob eine Be-
dingung wahr oder falsch ist.

Die erste Moglichkeit ist die Verwendung des »if«-Befehls. Er hat folgende Syntax:

if(BEDINGUNG)
DANN;

else
ANSONSTEN;

Alle kleingeschriebenen Worte sind in dieser Form anzugeben. Auf den »else«-Zweig
kann verzichtet werden. »DANN« gibt den Befehl, bzw. die Befehle an, die ausgefiihrt
werden sollen, wenn die Bedingung wahr ist. Wenn nur ein Befehl ausgefiihrt werden
soll, so wird dieser normal angegeben:

if(x==y)
printf(“xist gleichy");

Sollen mehrere Befehle ausgefithrt werden, so miissen diese geklammert werden:

if(x==y)

{

printf("xist gleichy, /n")
printf("also ist yauch gleichx");

};

Das Gleiche gilt auch fiir den Else-Zweig.

Die Bedingung besteht immer aus dem Vergleich zweier Werte miteinander. Folgende
Vergleichsoperatoren stehen zur Verfiigung:

> — GroBerals i

>= — GroBer als oder gleich
< — Kleiner als

<= — Kleiner als oder gleich
== — Qleich

!= — Nicht gleich

Wenn x gleich 4 und y gleich 7 ist, dann ist also die Bedingung (x != y) wahr, da x
ungleich y ist.

Eine weitere Moglichkeit, einen Programmteil nur unter bestimmten Bedingungen
ablaufen zu lassen, stellt der Befehl »switch« dar. Er hat folgende Syntax:

22 Einfiihrung

switch(AUSDR)

case AUSDR1 : DANN;
case AUSDRR2 : DANN;

'L'ISW .
¥
AUSDR ist ein Wert, der mit den Ausdriicken nach den »case«-Marken verglichen

wird. Sind dann beide Werte gleich, so wird der Befehl, bzw. werden die Befehle nach
dem Doppelpunkt ausgefiihrt.

Schleifen

Wiederholungen innerhalb eines Programms nennt man Schleifen. »C« kennt verschie-
dene Arten von Schleifen. Der erste Typ ist die Zahlschleife:

for (INIT; BED; INC)
BEFEHLE;

Bei INIT muB die Schleifenvariable, die fiir die Z#hlschleife benotigt wird, auf den
Anfangswert gesetzt werden. Diese Schleifenvariable mufl von einem ganzzahligen
Typ sein.

BED stellt die Abbruchbedingung der Schleife dar. Wenn diese Bedingung nicht mehr
erfiillt ist, wird die Schleife abgebrochen. Welche Bedingungen méglich sind, kénnen
Sie aus Kapitel 1.3 ersehen.

Da die Schleifenvariable nicht automatisch erhoht oder erniedrigt wird, miissen Sie
selbst diese Aufgabe iibernehmen. Dies geschieht bei INC.

Als Beispiel fithren wir nun eine Zahlschleife an, die von 0 bis 1000 z#hit:
int zaehler;

for(zaehler =0; zaehler <= 1000; zaehler++)
printf("n%d", zaehler);

»zaehler ++« hat die gleiche Bedeutung wie »zaehler = zaehler+1«.

Eine weitere Moglichkeit, Schleifen zu bilden, ist die While-Schleife. Sie wird solange
durchlaufen, bis die Bedingung nicht mehr gilt. Ihre Syntax:

while (BEDINGUNG)
BEFEHL;

Die Bedingung entspricht der der If-Anweisung.

Einfithrung 23

Ahnlich wie die While-Schleife funktioniert die »do..while«-Schleife. Die Besonder-
heit liegt darin, da8 das Abbruchkriterium erst nach einmaligem Durchlaufen der
Befehle innerhalb der Schleife gepriift wird:

do
BEFEHL;
while (BEDINGUNG) ;

Auch in diesem Fall miissen die Befehle innerhalb der Schleife geklammert werden,
wenn die Schleife aus mehr als einem Befehl besteht.

Strukturen

Von grundlegender Bedeutung sind die Strukturen, auch Structures oder Listen ge-
nannt. In ihnen kénnen verschiedene Variablen unter einem Oberbegriff zusammenge-
faBt werden. Eine Structure, wie wir sie nachfolgend nennen wollen, wird von dem
Wort »struct« eingeleitet. Ihm folgt der Name, den die Structure haben soll, gefolgt von
den Eintrigen, die in der Structure zusammengefaflit werden sollen. Solche Fintrige
konnen auch weitere Structures sein. Ein Beispiel:

struct Bsp

{
FLOAT flt;
int i;

struct Test demostruct;
structBsp *ptr;

|5
Die Structure Bsp besteht also aus den Eintrégen flt, i, demostruct und dem Zeiger ptr,
der auf eine weitere Structure vomTyp Bsp zeigt.

Bsp stellt nun einen neuen Datentyp dar. Um ihn verwenden zu konnen, muf} eine
Variable von diesem Typ deklariert werden. Dies geschieht folgendermafen:

struct Bspbeispiel;

Will man nun auf die einzelnen Eintrage zugreifen, so geschieht das folgendermaf3en:
Auf flt, i und demostruct kann sehr einfach zugegriffen werden:

beispiel. flt =2.45;
beispiel.i=3;

also einfach durch einen Punkt zwischen dem Variablennamen und dem Eintrag, auf
den zugegriffen werden soll.
Um auf ptr zugreifen zu konnen, muf} ein »Pfeil« zwischengesetzt werden:

beispiel—ptr=....;

24 Einfiihrung

Man mu8 nicht unbedingt eine Variable vom diesem Structuretyp deklarieren. Es kann
auch ein Zeiger darauf verwendet werden, fiir den die gleichen Bedingungen gelten,
wie fiir die Zeiger in Kapitel 1.2. Ein solcher Zeiger wird folgendermafen deklariert:

struct Bsp *beispiel;

Die Bibliotheken

Die Hardware des Amiga ist von einer Vielzahl von leistungsstarken Software-Modulen
umgeben. Durch diesen modularen Aufbau bieten sich ungeahnte Moglichkeiten. Das
System wird somit flexibler und leistungsstirker. Module koénnen hinzugefiigt oder,
falls notwendig, veréndert werden.

Finen Teil dieser Amiga-System-Software-Module bilden die Libraries, zu deutsch
(Software-)Bibliotheken. Das Amiga-System enthilt bisher 16 Module. Hier eine
Ubersicht :

clist.lib: Enthélt einige niitzliche Routinen, die den Umgang und die
Anwendung von Zeichenketten vereinfachen.

console.lib: Dieses Library enthélt Programme fiir den Umgang mit der Tasta-
tur, der sogenannten Console.

diskfont.lib: Das diskfont.lib ermoglicht die Verwendung der verschiedenen
Schrifttypen,die sich auf der Workbench-Diskette befinden.

dos.lib: Durch dieses Library wird dem Amiga unter anderem der Zugriff
auf die Diskette ermoglicht. Der Zugriff auf die Diskette ist dank
dieses Libraries fast so einfach, wie von der Benutzerschnittstelle
CLI aus.

exec.lib: Dieses Library bildet den System-Kern des Amiga. Dieser Kern
entscheidet z.B. welche Tasks zum Laufen kommen (in der Com-
putersprache bezeichnet man dies mit Scheduling) oder wieviel
Speicherplatz fiir ein Programm bereitgestellt werden mu8.

graphic.lib: Ohne Grafik geht heutzutage nichts mehr. Das graphic.lib ist ein
sehr leistungsstarkes und umfangreiches Bibliotheksmodul, des-
sen Funktionen unter anderem durch den direkten Zugriff auf
den Blitter und Copper phantastische Geschwindigkeitenin
punkto Grafik sowie Animation ermoglichen.

icon.lib: Hier sind verschiedene, durchaus niitzliche Utilities fiir den
Umgang mit den, von der Workbench her bekannten Icons enthal-
ten. Es ist ebenfalls eines der wenigen Libraries, die sich auf der
Workbench-Disk befinden.

Einfithrung 25

info.lib: Dieses Library wird dazu verwendet, um Information {iiber
Dateien, Datei- Verzeichnisse oder ganze Disketten zu be-
kommen.
! Es wird kaum verwendet und befindet sich auf der Workbench-
Diskette.

intuition.lib: Das intuition.lib ist eines der wichtigsten Libraries des Amiga.
Ohne dieses Library wire keine Bedienung mit der Maus oder die
einfache Handhabung von Mentis denkbar.

janus.lib:

layers.lib:

mathffp.lib:

mathieeedoubbas.lib:

mathtrans.lib:

timer.lib:

translator.lib:

Dies ist bisher das letzte Bibliotheks-Modul, das dem Amiga
beigefiigt wurde. Es befindet sich ebenfalls auf der Diskette
und wird zur Steuerung der SideCar-Hardware benétigt.

In diesem Bibliotheks-Modul sind Routinen enthalten, die
dem Anwender beispielsweise das Handling von tiberlappen-
den Display-Elementen erleichtern.

Mit diesem sogenannten FFP-Basic-Mathematik-Library kon-
nen einfache mathematische Aufgaben, wie z.B. die Multipli-
kation oder Division, gelost werden.

Dies ist das erweiterte FFP-Basic-Mathematik-Library. Es be-
findet sich auf der Workbench-Diskette und enthilt eine Viel-
zahl von mathematischen Funktionen, die Zahlen im IEEE-
Standard mit doppelter Genauigkeit verarbeiten.

Fiir schwierigere mathematische Aufgaben, wo Funktionen
wie arcsin, arccos usw. Verwendung finden, enthilt dieses
Bibliotheks-Modul geniigend Befehle. Da diese Funktionen
nicht stidndig verwendet werden, ist dieses Library auf der
Workbench-Disk enthalten.

Wenn Sie zeitlich im Bilde sein wollen, bietet sich die Verwen-
dung dieses Libraries an. Leider kann beim Amiga 1000 nur
die Software-Uhr angesprochen werden. Bei den Versionen
500 und 2000 ist diese Uhr jedoch batteriegepuffert.

Das translator.lib hat die Aufgabe, Sétze, die in englisch
verfaBt sind, fiir die Sprachausgabe vorzubereiten. Es findet
kaum Verwendung und ist deshalb auf der Systemdisk
enthalten. :

Je nach Art des Programms, das der Programmierer entwickeln will, muf er selbstindig
entscheiden, welche Bibliotheks-Module er benétigt. Sicherlich werden Sie nun den-
ken, je mehr Libraries verwendet werden, desto besser wird das Programm. Im Gegen-
teil! Fiir sehr gute Programme reichen schon 2 bis 3 Libraries aus.

26 Einfiihrung

Beim Umgang mit den Libraries miissen bestimmte Regeln eingehalten werden, damit
die jeweiligen Funktionen ansprechbar sind. So hat es z.B.keinen Zweck, Funktionen
eines Libraries aufzurufen, wenn das jeweilige Library nicht ge6ffnet wurde.

Bevor jedoch das jeweilige Library getffnet wird, muf3 der »Basis« des Libraries ein
Zeiger zugewiesen werden, hier am Beispiel des Intuition-Library demonstriert, der
von OpenlLibrary zuriickgegeben wird:

IntuitionBase = (struct IntuitionBase ¥)
OpenLibrary('"intuition.library",0);

AnschlieBend enthélt IntuitionBase die Einsprungadresse der Intuition-Library. Ent-
hilt diese Variable den Wert »NULL«, war es nicht moglich, das Library zu 6ffnen.

Ist der Wertungleich »NULL«, verlief alles normal und das Library konnte geoffnet
werden.

Nachdem Sie ein Library getffnet haben, muf} es natiirlich auch wieder geschlossen
werden:

CloseLibrary(IntuitionBase);

schlieit das jeweilige Library.
Hier zum besseren Verstidndnis nochmals ein Beispiel :

/*0ffnenund SchlieBen einesBibliotheksmodules */

struct GfxBase *GfxBase; /* Zeiger flir die Einsprungadresse */
main()

GfxBase = (struct GfxBase *)
OpenLibrary('graphics.library",0); /* Library 6ffnen */
if (GfxBase == NULL)
}
printf("0ffnendes graphics.librarynichtméglich !/n");
exit (FALSE);
{
/*
*/
/* Zum SchluB Bibliotheks-Module schlieBBen */
CloseLibrary(GfxBase);

}

IntuitionBase und GfxBase diirfen mit

Hier das jeweilige Programmeintragen

struct IntuitionBase *IntuitionBase;

bzw.

struct GfxBase ¥*GfxBase;

deklariert werden, da sie die Einsprungadressen der Intuition- und der Graphics-
Library darstellen. Fiir alle anderen Libraries gilt folgende Deklaration:

Einfithrung 27

Beispiel Diskfont-Library

DiskfontBase = OpenLibrary(‘'diskfont.library",0);
if (DiskfontBase == NULL)

printf("0ffnendesdiskfont.librarynichtméglich !/n");

exit (FALSE);
}
*
i/ Hier das jeweilige Programmeintragen

/¥ Zum SchluB Bibliotheks-Module schlief3en */
CloselLibrary(DiskfontBase);

}

Die Devices

Neben den Libraries, die fiir den Programmierer Erleichterungen und fiir das System
eine grofe Flexibilitit darstellen, steht dem Programmierer weiteres grof3es Hilfsmittel
zur Verfiigung: Die Devices.

Devices, zu deutsch Vorrichtungen, sind die Bindeglieder zwischen der (externen)
Hardware und der Software des Amiga. Durch sie konnen Daten zur Hardware
gesendet oder von ihr empfangen werden. Somit ist, z.B. durch das Veréndern von Pa-
rametern der Trackdisk-Device, das Lesen von fremden Diskettenformaten, wie IBM-
Format moglich. Der Amiga enthilt 17 verschiedene Devices, die sich um die Vorrich-
tungen wie Tastatur, der Seriell- und Parallelschnittstellen und einiges mehr kiimmern.
Nicht alle werden stindig benotigt, sondern befinden sich im »Devs«-Directory auf der
Workbench-Disk.

Die Devices des Amiga im Uberblick:

audio.device: Mit ihr wird der »Sound« des Amiga gesteuert. Je nach Belieben
richtet sie die 4 Audio-Kanéle des Amiga ein, bestimmt die Ampli-
tute desTons und vieles mehr.

bootblock.device: Testet, ob es sich um eine Kickstart- oder um eine DOS-Diskette
handelt. Bei den neuen Amiga’s ist diese Vorrichtung weggefallen,
da bei ihnen keine Kickstartdiskette mehr erforderlich ist.

clipboard.device: =~ Wird benétigt, um Daten zwischen zwei Anwendungen zu transfe-
rieren. Da dies nicht hdufig vorkommt, befindet sich diese Device
auf der Workbench-Disk.

console.device: Regelt die Ein- und Ausgabe des Systems iiber die Tastatur und
den Bildschirm.

28 Einfiihrung

gameport.device:

input.device:

inputevent.device:

jdisk.device:

keyboard.device:
keymap.device:
narrator.device:

parallel.device:

printer.device:

prtbase.device:

serial.device:

timer.device:

trackdisk.device:

Gameport.device iibernimmt die Steuerung der Ein- und Aus-
gabe iliber die GamePorts 1 und 2.

Diese Device regelt die gesamte Ein- und Ausgabe des Amiga. Es
isteine Kombination aus timer-, gameport- und keyboard.device.

Inputevent.device erfa3t die FEreigniseingaben, wie z.B.

Gadgets.

Dies ist die neuste Device des Amiga. Sie tibernimmt die Steue-
rung der Harddisk des Amiga, die sich auf der IBM-PC-kompati-
blen Seite des Amiga2000 oder im SideCar befindet. Da sie sehr
neu ist, befindet sie sich ebenfalls auf der Workbench-Disk.

Hiermit wird der Zugriff auf die Tastatur des Amiga gesteuert.
Damit kann die Belegung der Tastatur verdndert werden.

Narrator.device ist fiir die Steuerung der Sprachausgabe notwen-
dig. Da sie nicht stindig benotigt wird, befindet sie sich auf der
Workbench-Disk.

Hiermit kann der Parallelport gesteuert werden. Diese Device
befindet sich ebenfalls auf der Workbench-Disk.

Diese Device dient zur Kommando-Steuerung des Druckers, um
z.B. einen Wagenvorlauf des Druckers zu bewirken. Printer.
device befindet sich ebenfalls auf der Workbench-Disk.

Prtbase.device iibernimmt die Datendefinition der printer.-
device.

Diese dient zur Deklaration des seriellen Ports des Amiga. Sie be-
findet sich ebenfalls auf der Workbench-Disk.

Mittels timer.device kann auf die Systemzeit zugegriffen werden.

Diese Device kontrolliert die Floppies des Amiga. Sie tibernimmt
Funktionen, wie das Lesen und Schreiben von Daten und einiges
mehr.

Um mit einer Device arbeiten zu konnen, muf3 ein Port angelegt werden. Dies

geschieht mit

printerPort = CreatePort ("printer.port",0);

wobei printerPort zuriickgegeben wird.
Danach mu8 die Device geoffnet werdem, in diesem Fall “printer.device“:

fehler = OpenDevice('printer.device",0,&request,0);

Einfithrung 29

Wenn Fehler gleich ungleich 0 ist, konnte die Device nicht gedffnet werden. &request
ist der Pointer auf eine Structure der jeweiligen Device, die bestimmte »Routinen« wie
z.B. das Drucken eines Screens enthalten oder auf die allgemeine Ein- und Ausgabe-
Structure von EXEC.

Nachdem die Device und der Port gedffnet sind, kann die benétigte Ein- und Ausgabe-
Structure initialisiert werden. Nach der Initialisierung wird die jeweilige »Funktiong,
wie z.B. das Drucken eines Textes, mit

DoIO(&request);
gestartet.
&request ist der Pointer auf die Ein- und Ausgabe-Structure der jeweiligen »Funktion«.

Nachdem die Ein- und Ausgabe beendet ist, muf3 der Port und die Device wieder ge-
schlossen werden. Dies kann mit

DeletePort(printerPort);
CloseDevice(&prefrequest);

erledigt werden.

Der Seka-Assembler

Zur Entwicklung der Assembler-Programme haben wir den Seka-Assembler verwen-
det. An dieser Stelle wollen wir nun auf die Bedienung dieses Assemblers eingehen.

Ist der Assembler gestartet worden, fragt er nach dem Speicherplatz, der ihm zur Verfii-
gung gestellt werden soll. AnschlieBend befindet man sich in der Befehlsebene. Will
man nun ein Programm eingeben, so kann dies durch Driicken der Escape-Taste gesche-
hen. Durch sie gelangt man in den Editor, der zwar etwas umsténdlich und einfach ist,
dem Zweck aber durchaus geniigt. Durch nochmaliges Betétigen der Escape-Taste ge-
langt man wieder in die Befehlsebene.

Zum Editor ist lediglich noch zu sagen, daf3 beliebig mit dem Cursor »herumgefahren«
werden kann und im Text manipuliert werden kann. AuBerst positiv fiel uns auf, daB
TAB’s als solche unterstiitzt wurden und nicht nur ein Einfiigen von Leerzeichen zur
Folge hatten. In der Befehlsebene stehen folgende Befehle zur Verfiigung:

T Cursor in die oberste Zeile setzen

Tn Setzt den Cursor in Zeile n

B Setzt den Cursor an den Schluf} des Textes
U Cursor eine Zeile hochsetzen

Un Cursor um n Zeilen hochsetzen

30 Einfiithrung

D

&

25 EFE

Cursor eine Zeile heruntersetzen
Cursor um n Zeilen heruntersetzen
Loscht die aktuelle Zeile

Loscht n Zeilen ab der aktuellen Zeile
Zeileneditor fiir aktuelle Zeile
Zeileneditor fiir Zeile n

Sucht ab der aktuellen Zeile nach dem eingegebenenText. Dabei wird Grof3-/
Kleinschreibung und Leerzeichen beriicksichtigt

Sucht weiter nach dem obigen Text

Fugt eine Zeile an der aktuellen Zeile ein

Loscht den Quelltext

Macht die Loschung wieder riickgéngig

Druckt die aktuelle Zeile aus

Druckt n Zeilen ab der aktuellen Zeile aus

Gibt das Inhaltsverzeichnis aus

Loscht eine Datei von Diskette

Liest ein Sourcefile von Diskette

Liest ein Objectfile (assembliertes File) von Diskette

Liest eine Datei in den Speicher. Es wird nach der Anfangs- und der
Endadresse des Bereiches gefragt, in den geladen werden soll

Hat die gleiche Funktion wie RI, nur das von der seriellen Schnittstelle
gelesen wird

Liest ein mit Seka erstelltes Linkfile in den Speicher

Schreibt den Sourcecode auf Diskette

Speichert einen Speicherbereich auf Diskette ab

Funktion wie WI, nur das iiber die serielle Schnittstelle iibertragen wird

Schreibt ein Linkfile auf Diskette

Einfithrung 31

G
Glabel
Jlabel

Assembliert den Quellcode. Folgende Optionen stehen zur Verfiigung:
V Ergebnisse werden auf dem Bildschirm ausgegeben
P Ausgabe wird auf den Drucker umgeleitet

H Nach jeder Seite wird die Ausgabe gestoppt und auf einen Tastendruck
gewartet

O Alle Branch-Befehle werden optimiert

L Es wird ein linkfahiger Programmcode erzeugt, der mit WI abgespeichert
werden kann

Starten des assemblierten Programms
Starten des assemblierten Programms ab dem Label label

Wie Glabel, nur das der Aufruf iiber einen JSR-Befehl bewirkt wird.

Dies war nun eine Auflistung der Befehle, die Seka zur Verfiigung stellt. Wir hoffen, dafl
Sie sich mit diesem Assembler anfreunden konnen, denn er hat grofe Stérken, wenn es
darum geht, schnell eine Maschinenroutine auszuprobieren. R

Anwendern, die groBere Projekte in Assembler bearbeiten miissen, sei das DevPac von
HiSoft/Markt & Technik empfohlen.

32 Die Amiga-Serie

Die Amiga-Serie
| |

Die Amiga-Serie besteht zur Zeit aus zwei grundlegend verschiedenen Amigas. Aufder -
einen Seite haben wir die Amiga 500 und 1000 fiir den »Heim«-Bereich, auf der anderen
Seite den A2000 fiir den »Geschiftsbereich«. Beide Seiten sind untereinander kompati-
bel. Der grof3e Vorteil des A2000, im Vergleich zum A500 bzw. A1000, besteht jedoch in
seinem offenen Aufbau. Er kann durch Erweiterungskarten MS-DOS oder sogar
UNIX-fahig oder durch Einsatz eines anderen Prozessors beschleunigt werden. Fiir
den Einstieg in die MS-DOS-Welt mit dem A500 und A1000 besteht die Moglichkeit,
eine Hardware-Emulation, das SideCar, anzuschlieBen. Beim A500 st68t man dabei zu-
nichst auf ein groBes Problem beim Anschliefen, da der 86-Pin-Erweiterungsstecker
um 180 Grad gedreht wurde.

Der technische Fortschritt hat auch bei den Amiga’s keinen Halt gemacht. So ist das
Motherboard der neuen Generation, das des Amiga 500 und Amiga B2000, durch Ein-
satz der FatAgnus und des Garry stark geschrumpft. Somit konnten auch Kosten und
die damit verbundenen Preise der Amigas gesenkt werden. Auch das SideCar wurde in
eine kleine Platine umgesetzt. Die Produktion des Amiga 1000 und des Original-Side-
Cars wurden somit unrentabel, weshalb sie eingestellt wurde.

Die Amiga-Serie 33

il

B2880

- |

]
'

A58 A2008

L_I=]

Alges

Die Amiga-Familie

Es steht also eine reichhaltige Amiga-Palette zur Verfiigung, die bei uns auf dem Markt
erhiltlich ist, bzw. war. Hier ein »geschichtlicher« Uberblick iiber die Amiga-

volution:

Ende 85:

Anfang 86:

Mitte 86:

Ende 86:

Anfang 87:

Mitte 87:

Erste, aus den USA importierte Amiga 1000 werden verkauft. Sie sind
daran erkennbar, daB sie ein zusétzliches Netzteil benotigen, eine NTSC-
Version der Agnus besitzen und ein anderer Monitor mitgeliefert wurde.

Der Amiga 1000 als eingedeutschte Version mit Netzteil fiir 220 Volt, aber
noch mit NTSC-Agnus.

Nun erhalt der Amiga 1000 auch eine PAL-Agnus, besitzt aber noch einen
NTSC-Composite-Video-Ausgang.

Der Amiga 1000 verfiigt nun auch iiber eine PAL-Version des Composite-
Video-Ausgangs. Die Hucke-Pack-Platine, in die das Kickstart geladen
wird, ist auf die Grundplatine verpflanzt worden. Das SideCar wird auf
den Markt gebracht.

Die Amiga-Offensive: Der A1000 erhilt Nachwuchs in Form des Amiga
500 und des Amiga A2000. Gleichzeitig werden die ersten Erweiterungs-
karten fiir den Amiga A2000 présentiert: PC-Karte und RAM-Erweite-
rungen.

Der Amiga A2000 wird runderneuert. Seine Platine wird durch Einsatz
der FatAgnus und des Garry, die schon im Amiga 500 eingesetzt wurden,
erheblich verkleinert. Sein neuer Name ist Amiga B2000.

34 Die Amiga-Serie

PRINTER FLOPPY
ext. int.
4
PARALLEL FLOPPY
PORT PORT

6 CEE L
DI DATA | ID
CPU BUFFER

68000 D| KICK
‘ L" START | o
ROM e

86 pin MMU - Connector

A<123>

Z 1.1: Amiga 1000-Blockdiagramm (7éil 1)

Die Frage ist nun, wie es mit der Entwicklung weitergeht. Commodore hélt sich in die-
ser Frage eher bedeckt, auch wenn zur Zeit Geriichte iiber einen Super-Amiga im Um-
lauf sind. Aber diese Strategie verfolgte Commodore auch vor der Vorstellung der
A1000, A500 und A2000. Wahrend sich der Amiga 1000 seinen Weg zum Renner unter
den Computern bahnte, hatte Commodore schon den Amiga 2000 und Amiga 500 im
Schrank stehen. Im Bereich des Amiga 500 wird sich wohl zunichst nicht sehr viel tun,
was wohl auch nicht nétig ist, da der A500 sich zum 64er-Nachfolger avanciert. Im
2000er-Bereich werden demnichst einige Neuerungen auf dem Markt vorgestellt, die
die Leistung des jetzigen A2000 um ein Vielfaches iibertreffen werden.

Die Amiga-Serie 35

RS 232 AUDIO MOUSE JOY - STICK VIDEO - RGB
PAULA DENISE
SERIAL INTERFACE VIDEO CONTROLLER

MOUSE INTERFACE
JOY - STICK INTERFACE
STEREO AUDIO INTERFACE

i

i

i

i

[

i

i

:

i WITH 4 D/A CONVERTER

! 3A &D A ID

: ' - A<i:8> "ﬁ AGNUS
i ,

' BIT DMA
e B l ID<@:15> _l__,'D CONTROLLER
i

; 1A ADDRESS BLITTER
£ ADDRESS mux [CONTROLLER
! BUFFER

| AA ‘ID

i A

e = L 4| ADDRESS CH?:‘A:"'AM
L MUX e

: . 512K * 8 bit

i 2

! A <1:23

i

i

i

Z 1.1: Amiga 1000-Blockdiagramm (1éil 2)

1.1: Der Amiga 1000

Der Amiga 1000 ist der Ursprung aller Amigas. Er wurde von einer Joystick-Firma ent-
 wickelt, die Commodore aufkaufte und somit an die Rechte dieses fantastischen Com-
~ puters gelangte. Er sollte neue MaBstibe im Computerbereich, speziell im Business-
Bereich, setzen. Seine fantastischen Fihigkeiten lieBen ihn jedoch schon friih als einen
Super-Spielcomputer erscheinen. Neben den groBartigen Soundfihigkeiten, iberzeugt
er die Fachwelt besonders im Grafikbereich. Custom-Chips sind mit Erscheinen dieses
Rechners das Schlagwort. Sie verleihen diesem Rechner ungeahnte Moglichkeiten und
nehmen dem Hauptprozessor einen Grofteil der Arbeit ab. Ein Blockdiagramm veran-
schaulicht das Zusammenwirken dieser Komponenten (Zeichnung 1). (Siehe auch Bild
5 im Farbteil).

36 Die Amiga-Serie

Diese Custom-Chips im A1000 erhielten die Spitznamen Agnus, Denise und Paula. Sie
entlasten den MC 68000 enorm und kiimmern sich um die Grafik, Sound, DMA und
noch einiges mehr. Mausbedienung, ein 16-Bit-Prozessor und Multitasking gehoren
seit der Markteinfithrung dieses Rechners zum Standard. Jedoch kann bisher
kein anderer Computerhersteller mit seinen Produkten diesem Computer das Wasser

reichen.

Beim Amiga 1000 gehen wir in diesem Buch von der Version, die ab Mitte "86 ausgelie-
fert wurde, aus. Diese hat eine PAL-Agnus, konnte somit vertikal 256 bzw. 512 Punkte
anstatt 200/400 Punkte darstellen, hatte aber unter Umstdnden noch einen NTSC Com-
postite-Videoausgang. Fin Piggy-Pack (Huckepack-Platine) war ebenfalls noch vor-
handen. Hier seine Merkmale im Uberblick:

~ Prozessor MC 68000 mit 7.16 Mhz getaktet.

— 256 Kbyte internes RAM, erweiterbar bis 1 Mbyte intern.

- 256 Kbyte RAM (WOM) fiir System-Software (Kickstart).

- Eingebautes 3,5 Zoll Floppy, Speicherkapazitét brutto 880 Kbyte.

- Anschlufmoglichkeit fiir 3 weitere Floppies.

— Programmierbare serielle Schnittstelle.

— Programmierbare paralle Schnittstelle.

— Mitgelieferte Maus.

— Game-Port-Anschliisse fiir Maus, Joystick usw.

— Frei bewegliche Tastatur.

— Multifunktions-Videoausgang, extern synchronisierbar.

— Audioausgénge, Stereo zweikanalig.

— VierTon- und Gerduschkandle.

— Erweiterungsport.

— Grafikauflosung 320 x 256, 320 x 512, 640 x 256, 640 x 512, mit speziellen Grafikmodi
bis zu 4096 verschiedene Farben gleichzeitig

— 3 Custom-Chips: Agnus, Denise, Paula kontrollieren beispielsweise die DMA

Dies war sicherlich nur eine grobe Zusammenfassung der Fahigkeiten des Amiga 1000.
Besonders zu erwdhnen wire noch, daf3 sein Betriebssystem, das »Kickstart«, geson-
dert geladen werden muB3, bevor mit der Workbench das eigentliche »System« aktiviert
wird. Dies hat denVorteil, dal man nicht nur eine andere Kickstart-Software (Kickstart
1.1 oder 1.2) verwenden, sondern auch seine eigene Version schreiben kann. ‘

Vom &uferen hebt er sich erheblich von den Designs des IBM-PCs, oder C64 ab. Intern
zeigt sich der A1000 solide aufgebaut. Ist das Piggy-Pack abgehoben, so erkennt man
die Custom-Chips in voller Pracht. In Bild 7 (Farbteil) sehen Sie das Motherboard in
voller Grofle.

Die Amiga-Serie 37

FEine Besonderheit bei den élteren Amiga-Rechnern ist,wie schon erwéhnt, das Piggy-
Pack (eine Huckepack-Platine). In das RAM, das sich auf dieser Platine befindet, wird
nach dem Finschalten des Rechners die Kickstart-Software geladen. Zudem enthilt sie
3 wichtige PALs (Programmierbare Logik-Chips), die fiir die Erzeugung der Refresh-
Signale der RAM-Chips, fiir das Chip-Select-Signal und noch einiges mehr zustdndig
sind. Bei dem neueren Amiga 1000 ist diese Platine in das Motherboard integriert. Bild
28 (Farbteil) zeigt das Piggy-Pack.

1.2: Der Amiga 500

Der Amiga 500 stellt die low-cost-Version des Amiga 1000 dar. Er basiert auf der Grund-
konzeption des Amiga 1000 und ist fast vollstindig kompatibel zur dlteren Schwester.
Wihrend bei der 1000er-Serie das Kickstart in das Piggy-Pack geladen werden mufte,
steht beim A500 ein ROM zur Verfiigung, das die neuste Version der Kickstart-Software
enthilt. Die Frage, ob der Amiga 500 softwaremiBig 100prozentig kompatibel zum
A1000 ist, ist nicht so leicht zu beantworten. Ohne 512-Kbyte-Erweiterung kann man
sagen, sie sind zu 99 Prozent kompatibel. Es gibt ein paar wenige Programme, die nur
auf 1000er-Amiga’s laufen, auch wenn man bei beiden Rechnern die Kickstart-Version
1.2 verwendet. Die Griinde dafiir konnten wir selbst noch nicht herausfinden.

Mit 512-Kbyte-Erweiterung kénnen ein paar Probleme auftauchen, da verschiedene
Software nur fiir 512-Kbyte-Amigas geschrieben wurde. Hat jedoch ein Amiga 1 MByte
RAM zur Verfiigung, kann es passieren, dafl Daten in den oberen 512 Kbyte (FAST-
MEM) abgelegt werden und somit von den Custom-Chips nicht erreichbar sind.

Auf der Hardwareseite sind verschiedene externe Logik-Chips entfallen und in die
FAT-AGNUS, die Weiterentwicklung des AGNUS-Chips und in Gary integriert wor-
den. Vereinfacht wurde auch die Schaltung zum Composite-Video-Signal, das beim
AS500 aus einer Mischschaltung, einem sogenanntem Hybrid, gewonnen wird. Beim
A1000 muBte hier ein RGB-Encoder herhalten, der jedoch den Vorteil hatte, ein Farb-
signal zu liefern. An den Schnittstellen, seriell und parallel, hat sich ebenfalls einiges ge-
tan. Die Pin-Belegungen sind im Gegensatz zum A1000 nun der IBM-Norm angepaf3t.
Bild 6 im Farbteil zeigt den A 500.

Daf} der Amiga 500 stark zusammengeschrumpft ist, ist auch deutlich an seinem Block-
diagramm (Z 1.2-1) zu erkennen. Viele verschiedene Komponenten wurden zusam-
mengefalit. Sein Aufbau ist somit noch einfacher und kostensparender geworden.

AuBerlich hat sich dieser Amiga sehr verindert. Die portable Tastatur wurde in das Ge-
hiuse eingebaut, das Floppy, welches beim A1000 von vorne zugéingig war, wurde auf
die rechte Seite verpflanzt, was den Nachteil hat, daf der 86-Pin-Erweiterungsport auf
die linke Seite weichen mufte. Eine 100prozentige Hardwarekompatibilitdt zum A1000
ist somit nicht mehr gegeben, denn Geréte wie das SideCar konnen ohne zusitzlichen
Adapter nicht angeschlossen werden, da der Erweiterungsport im Vergleich zum A1000
um 180 Grad gedreht wurde. :

38 Die Amiga-Serie

FULL t 1_
68000 REAL EXPANSION PORT
Bus TIME (Up to 8M Bytes)
CLOCK
4
28 Mhz
Clock
AS AW 4
R/W GARY Control
DTACK Clock
Clocks DBR
68000 /' m
CPU > Address Bus
Bi Directional

Tri State Latch

DATA BUS (16)

A500 BLOCK DIAGRAM

Z 1.2-1: Amiga 500-Blockdiagramm (7éil 1)

Hier die Merkmale der Amiga 500 im Uberblick:

— Prozessor MC 68000 mit 7.16 Mhz getaktet.

— 512 Kbyte internes RAM, erweiterbar bis 1 MByte intern.

— 256 Kbyte ROM.

— Eingebautes 3,5 Zoll Floppy, Speicherkapazitit brutto 880 Kbyte.
— Anschlumoglichkeit fiir 3 weitere Floppies.

— Programmierbare serielle Schnittstelle.

— Programmierbare paralle Schnittstelle.

— Mitgelieferte Maus.

Die Amiga-Serie 39

[KEYBOARD g2 s .
D D =
: w o o On
1 ' sf 5 of #Esg
‘ - »PrinterPot =g B g&§> Q><d
' 8520 CHIPS (2)|—Disk Contro | o ? Cg
: RS232 Control
: £ o | [VIDEC HYBIRD
' I
: RGA— register Adress (8) d
: ;)L 'Yy
: . FAT DENISE | PAULA
! ANGUS
I Q—--———|
: |
' QBa DMA Request
; S8l | (DMAL)
: ol
=0
! 3530
[§<
] I L
- DATA BUS (16)
: =lelh
: SBE
I < |<< |
' o Ol v
- DRAM
: 512 K Std.
' 1 MB optional
: A500 BLOCK DIAGRAM

Z 1.2-1: Amiga 500-Blockdiagramm (7éil 2)

— Game-Port-Anschliisse fiir Maus, Joystick usw.

— Multifunktions-Videoausgang, extern synchronisierbar.

— Audioausginge, Stereo zweikanalig.

— VierTon- und Geriuschkandle.

— Erweiterungsport im Vergleich zum A1000 um 180 Grad gedreht.

— Grafikauflosung 320 x 256, 320 x 512, 640 x 256, 640x 512, mit speziellen Grafikmodi
mit 4096 verschiedenen Farben gleichzeitig. '

~ 4 Custom-Chips Agnus, Denise, Paula, Gary sorgen beispielsweise fiir die DMA-
Kontrolle.

40 Die Amiga-Serie

; : PRINTER FLOPPY !

c-') PC O ext. int. |
O la—p{O :
£ £ |
o a .

3 N |
H <] - [REAL :
5 5 BATTERY—»{ TIME PARALLEL FLOPPY |

Sl S CLOCK PORT PORT |
2 le— 2 |

g e o fo fo :
© © ‘
1O] Rl ,
[] M S |
i AD D D|D |

3 le—»| § [a—p] DATA 5 [B12) aeyem ¢
2 8" 7| BUFFER DR g D) DATA D]

S S £ CPU :

Zl e |2 § .
c1AC < | AC, JconTROL € 191G € :

S 3 BUFFER <—>§ - :
< 2 = 68000 ol Kick |
S| AA |G| AA |ADDRESS| A ala A > START :
S[¢—8 % BUFFER [* S 41> o LA
L el] |
A<1:23> X

‘b :

AMIGA 2000 |

Z 1.3-1: Das A2000-Blockdiagramm (7€il 1)

1.3: Der Amiga A2000 und B2000

Die Weiterentwicklung des A1000 ging nicht nur in Richtung des low-cost-Bereichs
A500, sondern auch in den professionellen Bereich. Fiir diesen Bereich wurde der neue
Amiga 2000 sehr offen gestaltet. Nach altem Apple-Konzept wurde die Grundplatine
mit verschiedenen Slots bestiickt, die kompatibel zum 100-Pin-Zorro-Bus, AT- bzw.
PC-Slot und zum 86-Pin-Amiga-Stecker sind. Eine Vielzahl von Steckkarten, wie PC/
XT-Emulatur / AT-Emulator-Card und Coprozessor-Karte, lassen den Amiga fiir neue
Anwendungsgebiete interessant werden. Bild 14 im Farbteil zeigt das Slot-Prinzip des
2000ers.

Der erste A2000 entstand aus dem A1000. Es wurde, grob beschrieben, ein A1000
Motherboard mit einer Buskontroll-Logik versehen, die fiir die Verwaltung der Amiga-
Slots zusténdig ist. Fiir PC/AT-Anwendungen wurden zu den 5-AMIGA-Slots noch 4

Die Amiga-Serie 41

RS 232 AUDIO MOUSE JOY-STICK VIDEO - RGB

PAULA DENISE

SERIAL INTERFACE VIDEO CONTROLLER
MOUSE INTERFACE
JOY - STICK INTERFACE
STEREO AUDIO INTERFACE

VIDEO - MOD.

\

il

\

1

|

\

1l

]

\

; WITH 4 D/A CONVERTER

| 42 4D ﬁ 4D

[}

. IA<1:8 IA

: e
b ID , ‘ ID<@:15> ”2 CONTROLLER
| g 1A [roprESS BLITTER
: ADDRESS vux [GRAPHIC o
| iyl | CONTROLLE
‘ ,

| A LID

\

| .

‘ MUX >)

| : 512 * 8 bit

\ A <1:23>

: i

| AMIGA 2000

Z 1.3.1: Das A2000-Blockdiagramm (1éil 2)

PC/AT-kompatible Slots hinzugefiigt, die der 2000er Serie den Weg in den Busi-
ness-Bereich ebnen sollen. Zudem enthélt der 2000er einen Video-Slot zum internen
Einstecken eines Genlock-Interfaces oder eines UHF-Modulators. Hinzugefiigt wurde
auch eine batteriegepufferte Uhr. Ansonsten blieb dieTechnik gleich, was das Blockdia-
gramm der Zeichnung Z 1.3-1 beweist:

Mit Verénderung des A1000 zum A500 wurde auch der A2000 im Aufbau grundlegend
verdndert. Als Basis dient nun bei dem neuen 2000er, B2000 genannt, eine 500er
Grundplatine. Die Kontroll-Logik fiir die Slots wurde hier wiederum in einen Custom-
Chip, dem »Buster« gepackt. Somit entstand ein kompakter B2000, dem gleich ein 1
Mbyte RAM und ein erweiterter Video-Slot fiir erweiterte interne Video-Karten ver-
palit wurde.

42 Die Amiga-Serie

PRINTER RS 232 CgNTROL

e

KEYBOARD FOPPY CONTROL

L

REAL PARALLEL FLOPPY
TIME PORT PORT

CLOCK
f0 g0

'

BATTERY

I

DATA
BUFFER

?
{U
VO

D| DATA | ID
CPU ! BUFFER

?

>
(®)
@)

CONTROL
BUFFER

J3

86 pin MMU - Conne

Connector, EG pin Conﬂ |62 pin PC - Conn.|
>
_|
GA - Connector | [36 pin Conn) |62 pin PC - Conn |

68000 p| KICK

A —® START
ROM

“AA |ADDRESS| . A
4— BUFFER [*

f BUFFER f
¥ CONTROL
BUS
CONTROL | BUSTER |e—
+
ARBITRATION

100 pin AMIGA -

<4100 pin AMI

A<1:23>

B 2000

Z 1.3-2: Das B2000-Blockdiagramm (7éi[1)

Von dieser B2000-Version werden wir auch in diesem Buch ausgehen, da sie die neuste
und auf absehbare Zeit die meist verbreiteste Version sein wird. Vom optischen Aufbau
der Grundplatine hat sich einiges geéndert, da, wie schon erwihnt, verschiedene Klein-
teile gegen neue und erweiterte Custom-Chips ausgetauscht wurden. Bild 8 (Farbteil)
zeigt Thnen die Platine des B 2000.

Hier die Merkmale und Fahigkeiten eines Amiga B2000 auf einen Blick:

— Prozessor MC 68000 mit 7.16 Mhz getaktet.

— 1 Mbyte internes RAM, intern aufriistbar bis 9.5 Mbyte.

— 256 Kbyte ROM.

- Eingebautes 3,5 Zoll Floppy, Speicherkapazitét brutto 800 Kbyte, vorgesehene Ein-

Die Amiga-Serie 43

—

RS232 FLOPPY DATA COMPOSITE/MONOCHROME

. DATA AUDIO | POTS 4 VIDEQ-RGB . . G 136
X 4 4 | Video 4 1 Q pin
: + | * ‘ Hybrid [' > =

; 1 O |Video 1
; PAULA DENISE a

! SERIAL INTERFACE VIDEO CONTROLLER >

. MOUSE INTERFACE 36
' JOY - STICK INTERFACE pin
: STEREO AUDIO INTERFACE s

: WITH 4 D/A CONVERTER Video 2
- T o) A &D

l FAT L

. A<1:8> 1A AGNUS

i ID | ID<@:15 ID| BITDMA

b ; — # CONTROLLER

BLITTER

: GRAPHIC

: CONTROLLER

: L AL ¥ RA

: DRAM

; CHIP - RAM

; 512K * 8 BIT

E DRAM

: NONCHIP - RAM

. 512K * 8 BIT

i B 2000

Z 1.3-2: Das B2000-Blockdiagramm (7éil 2)

44 Die Amiga-Serie

schiibe fiir ein 5 1/4 und ein 3 1/2 Zoll Floppy.

— AnschluBmoglichkeit fiir 3 weitere Amiga-Floppies.

— Programmierbare serielle Schnittstelle.

— Programmierbare parallele Schnittstelle.

— Mitgelieferte Maus.

— Game-Port-Anschliisse fiir Maus, Joystick usw.

— Multifunktions-Videoausgang, extern synchronisierbar.

— Audioausgénge, Stereo zweikanalig.

— VierTon- und Geréuschkanile.

— Grafikauflosung 320 x 256, 320 x 512, 640 x 256, 640 x 512, mit speziellen Grafikmodi
4096 verschiedene Farben gleichzeitig.

— 4 Custom-Chips Agnus, Denise, Paula, Gary beispielsweise fiir DMA.

— ExterneTastatur PC-kompatibel.

— Insgesamt 7 Systemsteckplétze, davon
— einen 86-Pin-Expansionsport, kompatibel zum Amiga 500 bzw. 1000,
— 5 Zorro-Bus-Steckplétze mit AutoConfig-Funktion,
— 4 PC/AT-kompatible Steckplitze.

Der Bootvorgang 45

Kapitel 2

Der Bootvorgang
[|

Unter dem Booten des Amiga wird die Initialisierung des Amigas und seiner Hardware
verstanden. Dies ist, wie wir meinen, ein sehr wichtiges Thema, da hier grundlegende
Vorgénge stattfinden, die dem Hardwarefreak die Losung zu einigen Problemen bie-
ten, denn das »Hochfahren« des Rechners bewirkt neben der Initialisierung eine soge-
nannte System-Diagnose, die das Innenleben des Amiga »durchcheckt«.

Dieses Booten des Amiga findet in zwei Schritten statt. Zu Amiga-1000er-Zeiten waren
dies beim Finschalten der Aufruf des Boot-ROM und nach dem Laden der Kickstart-
Software die Initialisierung von EXEC, des sogenannten Multitasking-Betriebs-
systems des Amiga. Vorgesehen waren bei der 1000er-Serie auch mogliche Kickstart-
ROMs, die unterhalb der Ur-Lader-ROMs (Boot-ROMs) eingesetzt werden konnten.
Ein nachtriglicher Umbau zu einem ROM 1000er ist also moglich. Bild 24 im Farbteil
zeigt zwei ROM’s im Amiga 1000.

Beim 500er und 2000er wird das Laden der Kickstart-Software nicht mehr benétigt, da
hier sowohl Boot als auch EXEC in einem ROM (Festwert-Speicher) vorhanden sind.
Ein grofer Teil der Boot-Routinen ist eigentlich iiberfliissig geworden, man hat aber
auf Grund der Kompatibilitdt zum 1000er nur wenig géndert und einfach alles in ein
ROM gepackt. Beim Einschalten des Rechners verhilt er sich dann einfach so, als ob
die Kickstart-Diskette schon geladen ist. Bild 18 (Farbteil zeigt das ROM im 500er/
2000er.

Kickstart im ROM hat sicherlich ein paar Nachteile. So konnen z.B. keine einfachen
Manipulationen am System vorgenommen werden. Der grofie Vorteil, der sich hin-
gegen ohne Laden der Kickstart bietet, ist, daf3 sofort beim Einschalten der Amiga be-
reit ist und man nicht erst noch die Kickstart-Disk suchen mu8.

2.1: Funktion des Boot-ROMs

Das Boot-ROM iibernimmt das eigentliche »Hochfahren« des Amiga. Dieses Boot-
ROM beginnt bei $F80000 und endet bei $F81E86. Es wird immer dann aufgerufen,
wenn CTRL Amiga Amiga bzw. Commodore Amiga betdtigt oder das Netzteil einge-
schaltet wurde. Beim Amiga 1000 blinkt hier, nach diesem Kalt- bzw. Warm-Start die Po-
wer-LED fiinfmal, anschlieBend verfarbt sich der Monitor dunkelgrau.

46 Der Bootvorgang

Nach dieser Verfarbung des Bildschirms wird die Power-LED dunkel aufleuchten und
die DMA und Interrupts werden abgeschaltet. Durch eine Checksum-Priifung des
Bereiches $FC0000 bis $FFFFFF wird getestet, ob sich die Kickstart schon im RAM-
(bzw. ROM-) Bereich findet. Ist dies der Fall, so wird mit der Initialisierung von EXEC
fortgefahren, wenn nicht, wird das Amiga-System getestet, da man davon ausgehen
mufB, daB es sich um einen Kaltstart handelt. Zunichst werden die RAM-Bereiche
iiberpriift, hier zuerst das Kickstart-RAM. Tritt hier ein Fehler auf, so verférbt sich der
Monitor blaugriin und das Boot-ROM wird erneut gestartet. AnschlieBend findet ein
Check des unteren RAM-Bereiches statt. Ein Fehler bewirkt die Griin-Farbung des
Bildschirms und ebenfalls einen Neustart des Boot-ROMs. Danach beginnt ein Check
der allgemeinen Hardware des Amiga, so wird kurz eine Tonfolge iiber die 4 Audio-Ka-
néle des Amiga ausgegeben. AnschlieBend werden die Ausnahmevektoren (2 bis 47)
auf eine kleine Routine gesetzt, die aktiviert wird, falls ein Busfehler oder Interrupt
eintritt. Tritt ein solcher Fehler auf, so verfiarbt sich der Monitior gelb und es wird der
Neustart des Boot-ROMs eingeleitet. Verlief bis hierhin alles klar, so wird das interne
Laufwerk eingeschaltet und bei eingelegter Disk der Block 0 eingelesen. Befindet sich
hier in dem ersten Long-Word die Kennung »KICK«, so wird von Spur 0 an steigend die
eingelegte Diskette eingelesen und von dort aus in das Kickstart-RAM geschrieben.
Wird die Kickstart-Disk nicht erkannt oder tritt ein Fehler beim Lesen auf, so erscheint
eine Hand mit der Kickstart-Disk. Konnte das Kickstart eingelesen werden, so verfirbt
sich der Bildschirm schwarz. Das Urlader-ROM wird abgeschaltet und EXEC gestar-
tet.

Die Veridnderung der Farben beim Booten ist eine sehr gute Systemdiagnose. Mochte
man intern seine Amigas mit mehr RAM aufriisten, kann so festgestellt werden, ob der
Fingriff gelungen ist. Bei der Entwicklung der 512 Kbyte-Erweiterung zum Amiga 500
hatten wir z.B. einen Schluf auf dem Adref8bus der RAM-Erweiterung, der Bildschirm
verfiarbte sich griin beim Einschalten des Amiga. Der Fehler konnte mit dieser Hilfe
schnell analysiert und beseitigt werden.

2.2: Die Initialisierung des Systems

Nachdem das Kickstart geladen bzw. gefunden wurde und das Urlader-ROM sich abge-
schaltet hat, beginnt die Initialisierungsphase des Systems. Fiir diese Initialisierung ist
EXEC zustindig. Am Anfang der Initialisierung wird, wie bei dem Starten der Ur-
Lader-Software im Boot-ROM, die LED dunkel, die DMA und Interrupts werden
gesperrt, der Bildschirm verférbt sich dunkelgrau und die Ausnahmevektoren werden
hier ebenfalls auf eine Fehlerroutine gesetzt, falls eine Ausnahmebedingung, wie z.B.
ein Busfehler, auftritt. Danach wird gepiift, ob EXEC schon initialisiert ist und mittels
Check-Summen-Priifung wird getestet, ob es in Ordnung ist. Da der Abfangvektor
ColdCapture durch den Speichertest des Boot-ROM auf 0 gesetzt wurde, wird mit der

Der Bootvorgang 47

eigentlichen Datenpriifung, nach dieser Priifung der Initialisierung von EXEC, fortge-
fahren. Der ColdCapture-Vektor kann jedoch auch vom Anwender auf die Startadresse
eines eigenen Programmes gesetzt werden. EXEC wird dieses Programm automatisch
durch kurzes Verzweigen auf diesen Vektor starten, bevor mit der eigentlichen Daten-
priifung fortgefahren wird. Zunéchst wird getestet welcher, ob Fast- oder Chip-Me-
mory und wieviel Speicher zur Verfiigung steht. Befindet sich im Bereich von $C00000
bis $DC0000 Fast-Memory, so wird der EXEC-Datenbereich bei $C00000 angelegt,
ansonsten bei $676. Danach wird der maximale Speicher durch Abfragen des Bereiches
von 0 bis 2 Mbyte festgestellt. Ist dieser Bereich kleiner 256 Kbyte, so verfirbt sich der
Bildschirm griin und es wird mit einer Endlosschleife, die stindig die Power-LED blin-
ken 148t, fortgefahren. Wenn dieser Bereich groer oder gleich 256 Kbyte ist, verfirbt
sich der Bildschirm mittelgrau. AnschlieBend beginnt die Einrichtung des EXEC-
Datenbereiches. Die Prozessorbestiickung wird ermittelt und verschiedene Listen und
Header werden installiert. Die EXEC-Sprungliste zu den verschiedenen Befehlen wird
eingerichtet. Die Ausnahmevektoren 2 bis 47 werden belegt, der Interrupt-Server,
sowie der Task-Kontroll-Block und das Debugger-System installiert. Nun ist der Initia-
lisierungsvorgang von EXEC fast am Ende, es wird nur noch der Supervisor-Modus
abgeschaltet und die Tasks werden zum Scheduling freigeben. Die Anfangsadresse der
Libraries wird in einer Liste gesammelt und im EXEC-Datenbereich abgelegt.

AnschlieBend wird die Power-LED auf hell umgeschaltet. An dieser Stelle befindet sich
wieder ein Abfangvektor. Dieser Vektor wird mit CoolCapture bezeichnet. Ist dieser
Vektor im RAM-Base gesetzt, so findet hier nochmals eine Verzweigung statt. Nach
dieser moglichen Verzweigung werden alle residenten Module durch die EXEC-Rou-
tine InitCode initialisiert. Das letzte residente Modul, das initialisiert wird, ist die
DOS-Bootstrap-Routine. Hierbei werden, falls eine Diskette im internen Laufwerk 0
eingelegt ist, die Sektoren 0 und 1 gelesen, in denen sich die DOS-Initialisierungs-
routine befindet. AnschlieBend wird tiberpriift, ob die Kennung »DOS« vorhanden
und die Checksumme fehlerfrei ist. Wird diese Erkennungsmarke nicht gefunden, oder
die Checksumme ist fehlerhaft, so erscheint eine Hand, die das Einlegen der Work-
bench-Disk verlangt. Ist hingegen die Diskette erkannt worden und die Checksumme
fehlerfrei, so wird die gelesene DOS-Initialisierungsroutine gestartet. Diese Routine
offnet das DOS-Library und iibergibt die Kontrolle an Amiga-DOS. Mifllingt diese
Ubergabe beispielsweise wegen eines fehlerhaften Programms, so gibt InitCode die
Kontrolle an EXEC zuriick. Falls der WarmCapture-Vektor gesetzt ist, wird an dieser
Stelle verzweigt, andernfalls wird der residente Debugger-ROM-Wack aufgerufen.
Dieser kann jedoch nur mit einem Terminal an der seriellen Schnittstelle betrieben
werden.

48 Der Bootvorgang

2.2.1: Die Abfangvektoren

Von groBem Nutzen fiir Anwender kénnen die Abfangvektoren ColdCapture und Cool-
Capture sein, da hier EXEC bei der Initialisierung des Systems auf ein eigenes Pro-
gramm verzweigen kann. Der Vektor WarmCapture hingegen ist von keiner grofler
Bedeutung, da er nur bei einem Fehlschlagen der DOS-Inititalisierung aufgerufen
wird.

Durch Verandern der Cold- bzw. CoolCaptureVektoren kann der Anwender sein Pro-
gramm direkt in die Initialisierung des Systems einbinden, wodurch die Programmie-
rung von Vieren oder Reset-Fester-RAM-Disks moglich ist. Bevor jedoch unser Pro-
gramm aufgerufen werden kann, muf3 der Vektor auf die Startadresse des jeweiligen
Programms gesetzt werden, das aufgerufen werden soll. Der erste Vektor, der aufgeru-
fen wird, ist der ColdCapture. Er befindet sich bei $2A(AbsExecBase). Ist dieser Vek-
tor ungleich Null, wird das adressierte ColdCapture-Programm mit »JMP« von EXEC
angesprungen. Da der Stack noch nicht initialisiert wurde, kann das Programm nicht
mit »JSR« aufgerufen werden. Um dennoch von dem ColdCapture-Programm zuriick
zum EXEC zu kommen, wurde die Riickkehradresse in das AdreBregister AS abgelegt.
Eine Riickkehr von dem aufgerufenen Cold-Capture-Programm zum EXEC ist
dadurch nur mit »JMP (a5)« moglich. Hier sollte niemals »RTS« verwendet werden.
Vor dem Sprung in die ColdCapture-Routine 16scht EXEC den gesetzten Vektor. Dies
hat zur Folge, daB3 bei nochmaligem Reset das Programm nicht mehr aufgerufen wird.
Soll dies nicht der Fall sein, mufl am Anfang des Programms der Vektor nochmals neu
gesetzt werden. "

Bei dem CoolCapture-Vektor, er ist zu finden bei $2E(AbsExecBase), ist die Initialisie-
rung des Systems fast am Ende. Im Gegensatz zum ColdCapture wird der CoolCapture
mit JSR aufgerufen, sobald der Vektor ungleich Null ist. Hier kann problemlos mit
»RTS« zum EXEC zuriickgekehrt werden. Dieser Vektor wird nicht gelscht, ein Neu-
setzen ist somit nicht notwendig.

Leider geniigt es nicht, einfach die Startadresse eines beliebigen Programms in einen
der beschriebenen Vektoren einzutragen. Eine Checksumme sorgt hier fiir die notwen-
dige Verwirrung. Es braucht jedoch keine eigene Routine fiir die Checksummenberech-
nung entwickelt zu werden. Hierzu kann man einfach die Checksummenberechnung
von EXEC ($160 bis $182(EXEC)) verwenden.

Bei dem Programmieren von Reset-Routinen sollte man etwas vorsichtig sein, denn
einmal gesetzt und aufgerufen, kann es bei fehlerhaften Programmen dazu fithren, dafl
nur noch Ausschalten weiterhilft.

Der Programmierung von resetfesten Programmen steht nun nichts mehr imWege. Bei
unserem resetfesten Programm wird der ColdCapture-Vektor auf den Beginn einer
Copperanimation gesetzt, die nach dem Betdtigen der Maustaste endet und anschlie-
Bend zum System zuriickkehrt. Der CoolCapture-Vektor dient hier zum Neu-Initiali-

Der Bootvorgang 49

sieren des Speichers fiir die Reset-Routine. Dies ist notwendig, da beim Reset die
Memory-List-Header neu initialisiert werden und somit der Speicher fiir unser Pro-
gramm frei wird. Dies hétte zur Folge, daf} die Reset-Routine von anderen Program-
men iiberschrieben werden kann. So jedoch bleibt das Programm solange erhalten, bis
der Rechner ausgeschaltet wird.

l ; HXEXXEXXX XXX XXXXXXXX

2

3 ; Demonstration fir

4 ; resetfesteProgramme

5 ; lastupdate10/03/88

6 ; vonFrankKremser undJérgKoch

7 ; ©Markt & Technik 1988

10 ;

11 ; Diesist eineDemonstration, wiemanresetfeste Programme kon-

12 ; struiert.DasProgrammsetzt die zwei Resetvektoren>ColdStart «

13 ; und>CoolStart«. VonColdStart auswird dasHauptprogramm ge-

14 ; startet, dasneue Copperlistenaufstellt. Wurde dann eine Maus-

15 ; taste gedriickt, so fdhrt der Rechnerweiter fortmit der

16 ; Initialisierung. DabeiwirddannauchdieMemory-Listeerstellt.
17 ; AnschlieRendwirddanniber denCoolStart eine kurze Routine

18 ; aufgerufen, diedenSpeicherplatz, der vom Programmbendtigt

19 ; wird, inder Memory-Listealsbelegt eintrdgt. Damit ist das

20 ; Programmdannweitgehendvor demUberschreiben geschiitzt. Das

21 ; bedeutet, das Programm 143t sich nur noch durch Ausschalten

22 ; desRechnersbeseitigen.

23 ; MittelsdieserRoutine kdnnte man alsoohne gréB3ere Probleme

24 ; einen AMIGA-Virus schaffen, wovonwir aber ausdriicklich abraten
25 ; wollen.

26 ;

28

29 move.l 4,a6

30 move.l #10000,d0 ;10000Byte fiir dieses Programm

31 lea start(pc),al ;AbProgrammstartbereitstellen

32 jsr —$0cc(a6) ; (AllocAbs)

33 start: move.l 4,ab ;Startadresse von EXEC

34 lea reset(pc),a0 ;StartadressedesHauptprogramms

35 move.l a0.$2a(ab) ;indenColdCapture-Vektor speichern
36 lea mem(pc), a0 ;und AdressederMem-Allocation-Rout.
37 move.l a0,%Re(ab) ;indenCoolCapture-Vektor speichern
38

39 move.w #0,$24(a6) ;anschlieBendneue Checksumme fir den
40 moveq #0,dl ;unterstenDatenbereicherstellen,
41 lea $22(a6),al ;damit EXECckeinenFehler erkennt
42 moveq #+$18,d0

43 sum: add.w (a0)+,dl1

50 Der Bootvorgang

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

88

89
90
91
92
93

sum? :

mem:

dbra
not.w
move.w
moveq
lea
moveq
add.w
bra
not.w
rts

move.1l
lea
jsr
rts

do, sum

dl

dl, $24(a6)

#0,d1

$22(a6),al

#$18,d0

(a0)+dl

do, sum?2

dl ;Endeder Initialisierung

#10000,d0 ;10000Byte fiir dieses Programm
start(pc).al ;AbProgrammstartbereitstellen
—$0cc(ab) ; (AllocAbs)

;Ende der Speicherallokierung

HEEEEEEXX XXX XXX XXX XXXXXRKRXKX

; Dieswar der ersteTeil des Programmes.
; AbhierkanneineigenesProgrammeingefiigt werden.

reset:

clear:

HEXEXEEEXX XX XXX X XXX XX XXX XXX

movem.l d0—d7/a0-a6,—(a7) ;Registerretten

lea.l
move. 1l
clr.l
dbf

jsr
lea.l
bsr
jsr

lea.l
move.w

move.1l

$50000, a0 ;Bitplane ab$50000
#6645, d0 ;6645 Byte

(a0)+ ; 1léschen

d0,clear ;dekrementiere, teste

;d0O=0, neindannclear

start ;Resetvektorenneusetzen
coltab(pc),al ;ZeigeraufFarbtabelle;
copperinit ;Cooperlisteinitialisieren
—-132(a6) ;——>Fortbid();
;Multitaskingabschalten
$d£f000,ab ;a5 =Customchipbase
#$03e0,$96(a5) ;DMA—Controlwrite
;dieBitsDMA enable,

;Bit-PlaneDMA enable,
;CoprocessorDMA enable,
;Blitter DMAenable,
;sowie Sprite DMA enable,
;werden imDMA-Register
;geldscht

#$55000, $80(a5) ;COPLLCH :=$55000
;indirekte JMP — Adressedes
;Copper locationregister
;wirdaufdie Adresse
; $55000 gesetzt (Copperliste)

Der Bootvorgang 51

94 clr.w
95 move.w
96 clr.1l
o7 clr.1l
98

99 move.w
100

101

102

103

104

105 move. 1l
106 main: andi.b
107 beq
108

109 lea.l
110 add.1l
111 cmp.1
112 bne
113 move.l
114 adda.l
115 bsr
116 move.l
117 loop: tst.l
118 dbra
119 bra
120

121 ende: lea.l
122 jsr
123 move.l
124 move.1l
125 clr.w
126 move.w
127

128 jsr
129

130

131 movem. 1
132 move.l
133 jmp
134

135 copperinit:
136 clr.1l
137 lea.l
138

139 move.l
140 move.1l
141 move.1l
142 move.l
143 loopl: move.b

$88(ab)
#$1100,$100(a5)
$102(ab)
$108(a5)

#$8380, $96(a5)

#0,a2
#64,$bfe001
ende

coltab(pc),al
#1,a2
#32,a2
cont

#0,a2
ark,al)
copperinit
#$£f,d3
(ab)

d3, loop
main

gfxname(pc),al
—408(ab)

do, a4
38(a4),$80(ab)
$88(ab)
#$8060, $96(a5)

—-138(a6)
(a7)+,d0d7/a0-a6

#reset.$2a(ab)
(ab)

dl
$55000,a0

#$0000005, (a0)+

#$00e20000, (a0)+ ;

#$01800f00, (a0)+
#80, d0
do, (a0)+

; COPJMP1 loeschen
;BLCONO=#$1100
;16schenvon BLCON1
;16schenvon BL1MOD

;DMAcontrolwrite
;dieBitsDMA enable,
;Bit-PlaneDMA enable,
; CoprocessorDMA enable
;werden gesetzt

;Initialisierungvona?
;IstBit 6 gesetzt?

;Wenn ja, dannwarMaustaste

; gedriickt, Programmbeenden
;ZeigeraufColortabelle
;a2umlerhodhen,
;vergleichenobgleich 32
;wennnicht, dann fortfahren
;wennnein, danna2 zuriickset.
;a2zualhinzuaddieren
;undneue Copperlisteerstel.
;Wert flirWarteschleifesetzen
;Dummybe fehl zur Verzdgerung
;d3erniedrigenundggf. fortf.
;Das ganzenocheinmal

;Zeigeraufgfxname inal
;—>01dOpenLibrary();
;alte Copperlisteholen
;undin COP1LCHsetzen

; COPJMP1 16schen
;SpriteundBlitter DMA
;setzen

;—>Permit();
;Multitaskingein

;Register zurickgeben
;Resetvektornocheinmal set.
;Riickkehr

;dl 16schen
;Startadresse fir
;Cooperliste
;BitPlanel Zeiger setzen
;ColorOaufrot setzen
;AbZeile80Farbrotation
;Wait—-VP

52 Der Bootvorgang

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

move.b #1,(al)+ ;Wait —HP+Bit O gesetzt

move.l #$fffe0180, (0)+ ;Wait +ColoroO

clr.1l de

move.b (al,dl),dé6 ;neue FarbeausTabelleholen

eori #$0rfo,de6 ;bearbeiten

move de, (a0)+ ;u. in Copperli. f. ColorOeintr.

addq #1,dl ;Farbindexuml erhéhen

cmpi #32,d1 ;Wenn32 Farben gezeigt,

bne loopR

clr.1 dl ;dann Index zuriicksetzen
loopR: add.1l #1,d0 ;Zeilenindexumlerhdhen

cmp.1l #255,d0 ;undmit 2565 vergleichen

beq loop3

bra loopl

loop3: move.l #$rfO0lfffe,(al)+ ;warten, bisZeile2b55erreicht
move.l #$01800f00, (a0)+ ;dannColorOaufrotsetzen
move.l #$Lfrffffe,(al0)+ ;Endekennzeichnung fiir Copper
rts ;Rickkehr

;Farbtabelle, doppelt so lang, wie Farbanzahl,

;daRotation

even

coltab: dc.b $00,$10, $20,$30, %40, $50, $60, $70, $80, $90
dc.b $a0, $b0, $c0, $d0, $e0,$r0, $£0, $e0, $d0
dc.b $c0,$b0, $a0, $90,$80,$70, $60, $50, $40, $30
dc.b $20,$10,$00,$00,$10,$20,$30, $40, $50, $60
dc.b $70,$80, $90, $a0, $b0, $c0, $d0, $e0,$£0,$r0
dc.b $e0,$d0, $c0, $b0, $a0, $90, $80, $70, $60, $50
dc.b %40,&30,%20,%10,%00

gfxname:dc.b "graphics.library",0

Der MC68000 53

Kapitel 3
Der MC68000
|

10 Jahre miissen wir zuriickblicken, um die Anfinge dieses Mikroprozessors an das
Tageslicht zu holen. Wir schrieben das Jahr 1977, als man begann, Software auf Silizium-
chips mit minimalen AbmaBen zu bringen. Auch Motorola versuchte dies. Mit neuer
MOS-Technologie und auf den Grundlagen des MC6800, startete Motorola mit ihren
Spezialisten Tom Gunter und Co. das Projekt MC68000. Daraus entstand 1979 der
XC68000, der Mikroprozessor der 80er Jahre, der insgesamt 68000 Transistorfunktio-
nen auf einem Siliziumchip der Grofle 6,2 mal 7,1 mm beherbergt. Bild 20 im Farbteil
zeigt das ,,Herz* des Amigas.

Doch erst 1984 kam dieser Mikroprozessor zu grolem Glanz, in dem Platinencomputer
Gepard, der als Zusatz zum damals populdren Apple oder als Einzelgerét erhéltlich
war. Es zeigte erstmals, welche faszinierenden Moglichkeiten mit diesem Mikroprozes-
sor im Bereich Grafik und Berechnungen von Daten moglich sind. Die Firma Amiga,
damals eine Joystick-Firma, sah in diesem Prozessor die Zukunft und begann 1984 mit
der Entwicklung eines Supercomputers: dem Amiga.

Im Amiga ist er einer der »vier GroBen, die diesem Rechner unglaubliche Fihigkeiten
verleihen. Heute sprechen viele Fakten fiir den Einsatz des MC68000: 16-Bit-Bus,
komfortabler Befehlssatz, ansprechbarer Speicher bis 16 Megabyte usw. Doch der
Trend geht schon zum Einsatz von noch leistungsfihigeren Prozessoren, wie dem
MC68020, dem MC68030 oder sogar dem, noch in Entwicklung befindlichem
MC68040.

3.1: Der MC68000 im Detail

Der MC68000 verfiigt tiber 24 Adrefleitungen, wobei A0 nicht als solche gekennzeich-
net ist, 16 Datenleitungen, 3 Leitungen zur Interrupt-Prioritits-Mitteilung usw. Die
Anschliisse im Uberblick zeigt folgendes Blockschaltbild (Z 3.1-1):

54 Der MC68000

—
V. @& » Adressleitungen
1
GND(2)—» Ar-Agg
Takt- l CLK ,_ Datenleitungen
eingang
— D, -D,,
1
Funk Co —
unktions- —
code FC, +— o——» AS
FC, < b _» DS ésynchrone
I i us-
mces000 | [° > UDS Steuer-
I o——+———» R/W leitungen
RESET <+——gQ oe——— DTACK
I N B
i _
Mesooo | E <+ g—g o
(Synchron-) | VMA <—(© i | Zugriffs-
Bus-Interface VPA oe——— BGACK Steuerung
N E
o+—————— |PL,
System- | HALT <—»d _ Interrupt-
t?gSg;- HALT oe——— |PL, Prioritats-
leitungen BERR —g - IPL, leitungen
g

Z 3.1-1: Einteilung der Leitungen des M68000

Der MC68000 55

Wie die Anschliisse bei dem Originalgehéuse verteilt sind, zeigt Abbildung 3.1-2:

D4 J1e — 641D5
D3 []2 631 D6
23 621 D7
104 611 D8

DO 15 60[—1 D9
_A_sée 591 D10
UDS 17 581 D11
s Sk

— 61

DTACK []10 M68000 55[—1 D14
BG {11 541 D15
BGACK 12 531 GND
BR]13 52[1 A23
Vee []14 511 A22
CLK []15 501 A21
GND []16 491 Vee
HALT 17 48[A20
RESET []18 477 A19
VMA 19 46 18
E []20 451 A17
_VPA (] 21 4411 A16
BERR []22 431 A15
IPL2] 23 421 A14
IPL1 []24 411 A13
IPLO [25 401 A12
FC2 []26 391 A1
FC1 27 38[1 A10
FCO []28 371 A9
A1 []29 36[1 A8
A2 []30 35[1 A7
A3 [31 34[1 A6
A4 132 33[1 A5

Z 3.1-2: Pinbelegung des Dual-In-Line-Gehduses

56 Der MC68000

Die Signale des MC68000:

A1-A23

D0-D15

AS
R/W

23 AdreBleitungen zum direkten Ansprechen von 8 Mbyte. A0 konnte aus
UDS und LDS erzeugt werden, so da3 16 Mbyte ansprechbar sind.

16 Datenleitungen. Daraus resultiert, dal der normale Speicherzugriff
beim MC68000 ein Word-Zugriff ist.

AdreB-Strobe gibt an, daf die auf dem AdreBbus liegende Adresse giiltig ist.

Zeigt an, ob ein Lese- oder ein Schreibzugriff vorliegt.

UDS/LDS Zeigt an, ob das obere/untere Byte auf dem Datenbus giiltige Daten ent-

DTACK
BR

BG
BGACK
IPLO-2

BERR
RESET

HALT

VMA
VPA
FC0-2

CLK
VCC
GND

halt.

Zeigt an, daf der Datentransfer beendet ist.
Fordert den Adre3- und den Datenbus an.

Gibt die Busse frei.

Zeigt an, daB die Busfreigabe empfangen wurde.

Diese Interruptleitungen 10sen eventuell einen Interrupt aus, wenn nicht
bereits ein Interrupt hoherer Prioritét vorliegt.

Signalisiert dem MC68000, daf3 ein Busfehler vorliegt.

Setzt den Prozessor zuriick, wenn mindestens 10Taktzyklen lang der Pin auf
Low liegt.

Halt den MC68000 so lange an, bis an diesem Pin wieder ein High-Signal
anliegt.

Synchrontakt.
Giiltige Speicheradresse liegt vor.
Giiltige Peripherieadresse liegt vor.

Funktioncode-Ausgénge zeigen an, in welchem Zustand sich der MC68000
gerade befindet.

Systemtakt
Versorgungsspannung +5V

Masse

Der MC68000 57

3.2: Die Exceptions

Der MC68000 hat drei definierte Zusténde:

1. Normalzustand, d.h. Programmausfiihrung.

2. Haltezustand, d.h. am HALT-Eingang des Prozessors liegt ein Low-Signal an.
3. Ausnahmezustand (Exceptions).

Im dritten Zustand behandelt der Prozessor bestimmte Routinen. Er kann auf die ver-
schiedensten Arten dazu gebracht werden, solche Routinen abzuarbeiten. Diese Mog-
lichkeiten sind beispielsweise:

Interrupts

— Busfehler

— Reset

— Durch die Befehle TRAP, TRAPYV, CHK und DIV
— AdreBfehler

— Durch denTrace-Modus

Jeder Moglichkeit ist dabei ein bestimmter Vektor zugeteilt, der die Adresse der auszu-
fithrenden Exception-Routine enthilt. Diese Vektoren befinden sich im Speicherbe-
reich $000 bis $3FFund konnen auch vom Benutzer gesetzt werden, wobei die Routine
dann mit RTE verlassen werden muf3. Beim Amiga jedoch besteht dazu noch ein Hin-
dernis, denn das EXEC arbeitet in diesem Bereich mit einer Checksumme, so daf} eine
einfache Anderung nichts nutzt. Zusétzlich muB noch eine neue Checksumme berech-
net werden. Wie diese Checksummenberechnung funktioniert, ersehen Sie aus dem
Programmbeispiel zu Kapitel 2. Welche Exceptions nun welche Vektoren benutzen,
ersehen Sie aus folgender Tabelle:

Adr Nr. Funktion

000 00 Supervisor-Stackpointer ‘

004 01 Anfangsadresse fiir Programmcounter nach RESET
008 02 Busfehler

00C 03 AdreBfehler

010 04 nichtimplementierter Befehl

014 05 Division durch Null

018 06 Befehl CHK

01C 07 BefehI TRAPV

020 08 Privilegverletzung

024 09 Traceroutine

028 0A Emulator fiir 1010-Befehlscode
02C 0B * Emulator fiir 1111-Befehlscode

58 Der MC68000

Adr Nr. Funktion

30 0C

- - reserviert

038 OE

03C OF nichtinitialisierter Interrupt
040 10

- - reserviert

05C 17

060 18 falscher Interrupt

064 19 Interruptvektor Ebene 1
068 1A Interruptvektor Ebene 2
06C 1B Interruptvektor Ebene 3
070 1C Interruptvektor Ebene 4
074 1D Interruptvektor Ebene 5
078 1E Interruptvektor Ebene 6
07C 1F Interruptvektor Ebene 7
080 20

- - Trap-Befehlsvektoren
0BC 2F

0CO 30

- - reserviert

OFC 3F

100 40

- - Anwender-Interruptvektoren
3FC FF

Die Custom-Chips 59

Kapitel 4
Die Custom-Chips
|

Der Amiga besitzt neben dem MC68000 noch weitere »intelligente« Bausteine, die we-
sentliche Aufgaben iibernehmen. Diese Bausteine sind:

Amiga 1000: Agnus, Denise und Paula

Amiga 500: FatAgnus, Denise, Paula und Garry

Amiga A2000: Agnus, Denise und Paula

Amiga B2000: FatAgnus, Denise, Paula, Garry und Buster

Die wichtigsten Bausteine sind wohl Agnus, bzw. FatAgnus, Denise und Paula, da sie
Funktionen iibernehmen, die sofort erkennbar sind, wie beispielsweise die Disk-Kon-
trolle oder die Sprite-Darstellung. Bild 23 (Farbteil) zeigt die Custom-Chips des A 1000.

Garry und Buster sind lediglich Bauteile, die verschiedene Steuerschaltungen erset-
zen, aber nicht softwaremifig angesprochen werden kénnen.

4.1: Agnus und FatAgnus

Im Amiga 1000 wurde als einer der Custom-Chips Agnus eingesetzt. Dieser Chip wurde
in den spéteren Amiga-Produkten, ausgenommen Amiga A2000, durch eine Nachfolge-
version, FatAgnus genannt, ersetzt. Dieser neue Chip enthilt einige Steuerschaltun-
gen, die zuvor noch auf der Platine zu finden waren. Zudem enthilt er die komplette
Refresh-Logik fiir 1 Mbyte, so daBl die RAM-Erweiterung beim A500 sehr einfach ge-
halten werden konnte, bzw. auf dem Amiga B2000 1 Mbyte direkt auf der Platine inte-
griert werden konnten. AuBerdem erzeugt er alle Takte, die dal System benotigt, aus
dem Grundtakt von 28,63636 MHz, was zuvor von einer externen Schaltung itbernom-
men wurde. Vergleiche Bild 21 und 22 im Farbteil.

Die folgenden Abbildungen zeigen die Pinbelegungen von Agnus und FatAgnus, sowie
das Blockschaltbild zu FatAgnus:

60 Die Custom-Chips

"U-'IUU
<o-=

|

\:D
m
(3]

2
Z)
=

2R

>
By
OOOOOOAnnAnnnmmn

RGA

SO0

AGNUS

OoogoOoog
NW AT~ 00
A00nnnn
O©oONOOTAWN =

u4cC

8361 AGNUS

Eriglelviviels i)

<
a9
<

Joiuuduiinguniuiduodoauy

QOO NWhUI®O N

o
P

— a0
ARWN—LO

Z
@)

4%

3

DRA

g2
O

Z 4.1-1: Die Pinbelegung des Agnus-Chips

Die Custom-Chips 61

Custom Animation chip
Fat Angus

M0 9876 54 3 21 a4%Bg 8180797877767574

RD2 =->12 - A15
RD1 - 73 C- Al4
RDO - - A13
VCC - - A12
RST* - - A1
INT3 - - A10
DMAL - - A9
BLS* - - A8
DBR* - - A7
RRW - ‘ - A6
PRW - ~ - A5
RGEN* - - A4
AS* - - A3
RAMEN* - - A2
RGA8 - - At
RGA7 - - A19
RGA6 - - VSS
RGA5 - - RASO*
RGA4 — - RAS1*
RGA3 - - CASU*
RGA2 - - CASL*

32 54
33 34 353063738 59 40 4142 4344 4546 4748 4950 51 52 55

=NX*: S NOX = —ANMTNON 0 *

SEe el e PR LR

CEx$ORQOF "= =5
o

Z 4.1-2: Die Pinbelegung des FatAgnus-Chips

62 Die Custom-Chips

RGA1 - RGA8
T
. Buffer .
18 Al-A Register Address Decoder
= t8) 87> MUX —-)[: -
2 e St» {
< < | AGEN*—»|
‘s_’ J ‘< L £ . N
2 §<: 5 < (18) RAM Address Generator
gl g =y
Qs) {\ 47}
= |.® 8l 1
% 4 =2 Register Address Encoder
o (8¢
{ AL
1 3 A
O
_/J\ P % Spnte DMA
Control Logic
28.63636MHZ Sprite Vertical e
Positon Compare [P
[)
< 8a
CCK :> o8
CCKQ 8o
Z;MH% = Sprite Vertical ©
DAC* Sync. Counters P
5{? TVSYNG |and Light Pen ~[ROSition and
Sy o *—1Registers ontro
ph1 g() CQ LIGHT PFN Registers
o
, 2 s 1 7l
< DATA (RDO - RD15) 5 (16) DATA BUS (16)
m —
Register Address Decoder
Fat Angus Block Diagram

Z 4.1-3: Das Blockschaltbild von FAT-Agnus (7eil 1)

Die Custom-Chips 63

Register Address Decoder

' v v v \

E RAM Address Generator K Data Bus

: = ‘ - e
e

X Register Address Encoder
AL AL AR

I _ —— N Bit Map

! Audio Bit Disk and BLITTER | Image

i DMA Plane Refresh DMA - Manipulator

' Control DMA DMA Control

: Logic Control Control Logic v i
' Logic Logic -

: BLITTER

: Audio Bit Disk and BLITTER

: Control Plane Refresh Control .
' Registers Control Control Registers

: Registers Registers

! {

. Tl T

: Data Bus (16

: | l
: egister Address Decoder

: - Fat Angus Block Diagram

Z 4.1-3: Das Blockschaltbild von FATAgnus (7eil 2)

64 Die Custom-Chips

Weitere wichtige Funktionen, die diese Chips iibernehmen, sind die Kontrolle von 25
DMA-Kandilen, iiber die externe Bauteile auf den Systemspeicher zugreifen konnen,
ohne die CPU damit zu belasten, die Copperfunktionen, die displaysynchronisierte An-
derungen der Custom-Chip-Register erlauben, Blitterfunktionen, um Speicherberei-
che des ChipRams zu manipulieren, fast ohne die CPU zu bremsen, sowie das Erzeu-
gen der Kontrollsignale fiir das ChipRam und die 1Meg-Erweiterungskarte und das zu-
gehorige Multiplexen der Ram-Adressen.

4.1.1: Die Pinbeschreibung zu Agnus

Name PIN I/O Beschreibung

DO0-D8 1-9 /O Datenbusleitungen 0 bis 8

VCC 10 I +5Volt-Versorgungsspannung

RES 11 I Systemreset. Setzt den Custom-Chip zuriick.

INT3 12 0] Interrupt-Level 3 Ausgang. Fordert bei der MC68000 CPU
einen Interrupt an.

DMAL 13 I DMA-Request-Leitung. Ein direkter Speicherzugriff wird
angefordert.

BLS 14 I Der Blitter wird verlangsamt (BLITTER- SLOWDOWN)

DBR 15 O Datenbus-Anfrage an die Busverwaltung.

ARW 16 (@) Agnus-RAM-Write-Signal

RGA8-1 1724 1O Registeradreflleitungen 8 bis 1

CCK 25 1 Eingang fiir Farbsignaltakt

CCKQ 26 I Eingang fiir Farbsignaltakt-Verzogerung

VSS 27 I Masse

DRAO-8 28-36 L/O Dynamische Speicheradrefleitungen 0 bis 8

LP 37 I LightPen-Eingang

VSY 38 I/O Vertikales Synchronsignal

CSY 39 @) Synchronsignal fiir Composite-Ausgang

HSY 40 /0 Horizontales Synchronsignal

VSS 41 1 Masse

D15-D9 4248 1/O Datenbusleitungen 15 bis 9

Die Custom-Chips 65

4.1.2: Die Pinbeschreibung zn FatAgnus

Name PIN I/0

Beschreibung

A19-A1 5977 1

RD15-0 1-14 1O
83/84
AS 24 I

RGEN 23 I
RAMEN 25 I

PRW 22 I
RRW 21 o

MAO-8 43-51 O

LDS 52 I
UDS 53 I

CASL 54 o

AdreBbusleitungen. Die Leitungen A1 bis A8 werden
auch von der CPU benutzt, um die internen Register zu
adressieren.

Dies sind gepufferte Datenbusleitungen, die auch
wihrend eines DM A-Zugriffes verwendet werden.

Dieses Signal zeigt an, daf3 die Daten auf dem AdreBBbus
verwendbar sind.

Ist dieses Signal zusammen mit AS aktiviert, so werden die
Daten auf dem Adref3bus als interne Registeradressen
verstanden.

Ist dieses Signal zusammen mit AS aktiviert, so werden die
Daten des AdreBbusses gemultiplext und auf dem
AdreBBbus MAbereitgestellt.

Ist dieses Signal low, so liegt einWrite-Zugriff vor.
Bei einem High-Signal liegt ein Read-Zugriff vor.

Dieses Signal kennzeichnet einen Read-/Write- Zugriff an
weitere Systemteile. Sonst wie bei PRW.

Auf diesem Adref3bus liegen die gemultiplexten

" Adref3daten an. Diese Daten werden in zwei Phasen

iibergeben. In der ersten Phase werden die Zeilen-
adressen, in der zweiten die Spaltenadressen tibergeben.
Die Adressen beziehen sich auf 256Kbyte-DRAM’s, wobei
nur die unteren 512 Kbyte angesprochen werden konnen.
Allerdings liegen nur gemultiplexte Adressen an, wenn auf
eine Ram-Adresse zugegriffen wird (RAMEN ist low),
oder wenn ein DMA-Zugriff vorliegt (DBR ist low).

Diesist der Lower-Data-Strobe der CPU. Entsprechend
dem Eingangssignal wird CASL gesetzt.

Diesist der Upper-Data-Strobe der CPU. Entsprechend
dem Eingangssignal wird CASU gesetzt.

Wird entsprechend LDS gesetzt und beeinflu3t die
Spalten-Adressierung der DRAMs. Ist dieses Signal aktiv,
entspricht das einem Zugriff auf das Lowbyte des
Datenwortes.

66 Die Custom-Chips

Name

PIN

1’0

Beschreibung

CASU

RASO

RAS1

DBR
RGAS8-1

HSY

VSY

CSY

Lp

RST
INT3

DMAL

BLS

55

57

56

20
26-33

81

79

80

78

16
17

18

19

o

/0

1’0

]

Wird entsprechend UDS gesetzt und beeinfluf3t die
Spalten-Adressierung der DRAMs. Ist dieses Signal aktiv,
entspricht das einem Zugriff auf das Highbyte des
Datenwortes.

Dieses Signal wird aktiv, wenn auf die unteren 512 Kbyte
zugegriffen wird.

Dieses Signal wird aktiv, wenn auf die oberen 512 Kbyte
zugegriffen wird, die FatAgnus verwalten kann.

Dieses Signal ist aktiv, wenn ein DMA-Zyklus bevorsteht.

Diesist ein Register-AdreB-Bus. Uber diesen Bus karin
FatAgnus auf Register weiterer Custom-Chips zugreifen.

Ist dieses Signal als Eingang geschaltet (GenlockVideo on),
so kann iiber diesen Pin der horizontale Rasterstrahl-
Zghler extern synchronisiert werden. Ansonsten liegt hier
der Horizontalsynchronimpuls des Systems an.

Ist dieses Signal als Eingang geschaltet (Genlock Video on),
so kann iiber diesen Pin der vertikale Rasterstrahl-Zhler
extern synchronisiert werden. Ansonsten liegt hier der
Vertikalsynchronimpuls des Systems an.

An diesem Pin liegen die Synchronisationssignale fiir den
Composite-Video-Ausgang an. HSY,VSYund CSYsind
NTSC-Kompatibel.

Wird dieses Signal auf low gesetzt, so zeigt dies an, da3 die
Lightpen-Position mit der des Rasterstrahls iibereinstimmt.

Setzt Fat Agnus zuriick.

Fordert einen Interrupt der Stufe 3 beider CPU an. Ein
solcher Interrupt wird immer dann angefordert, wenn der
Blitter einen Datentransfer beendet hat und fiir neue
Aufgaben bereitsteht. '

Dieses Signal wird aktiv gesetzt, wenn eine externe
Komponente einen Audio- und/oder Disk-DMA-Zugriff
benotigt.

Ist dieses Signal aktiv, so wird der Blitter gestoppt,
so daf} die CPU diesen Zyklus verwenden kann.

Die Custom-Chips 67

Name PIN I/O Beschreibung

28MHZ 34 I An diesem Pin muB der Systemtakt von 28,63636 MHz
anliegen. Dieser Takt gilt als aktiv, wenn XCLKEN High
ist.

XCLK 35 I An diesem Pin kann ein alternativer Systemtakt anliegen,

der als Takt verwendet wird, wenn XCLKEN Low ist. Ein
solcher alternativer Takt ist notig, wenn das System mit
einer externen Videoquelle o.4. synchronisiert werden
soll.

XCLKEN 36 I Dieses Signal kontrolliert, welcher Systemtakt verwendet
werden soll.

©)

CCK 40 Diesist der Takt, der als Farbtrégersignal dient.
CCKQ 39 0] Dies ist der gleiche Takt wie CCK, allerdings um

90 Grad nachhéngend.

7MHZ 38 (@) Diesistder Takt, der beispielsweise von der CPU
verwendet wird.

CDAC 37 (0] Diesist der gleiche Takt wie 7MHZ, nur um 90 Grad
vorlaufend.

TEST 41 1 Ist dieses Signal aktiv, so wird der Prozessorzyklus

unterbrochen und die internen Register konnen in jedem
CCK-Zyklus angesprochen werden
(Copper-Befehlsliste).

4.1.3: Der Copper

Agnus und FatAgnus enthalten einen CoProzessor, der wohl das interessanteste Bau-
stiick des Amiga-Systems darstellt. Er ist mit dem Rasterstrahl synchronisiert. Durch
diese Synchronisierung ist dieser Copper in der Lage, Register der Custom-Chips in
Abhingigkeit der Rasterstrahlposition zu modifizieren. Dazu muf} eine sogenannte
Copper-Liste aufgestellt werden, die im ChipMem abzulegen ist, damit die DMA diese
Daten fortlaufend an den Copper iibertragen kann,

Der groBe Vorteil des Copper’s besteht darin, dafl ohne groien Aufwand Videomanipu-
lationen moglich sind, die ohne ihn gar nicht, oder nur schwer méglich wéren. Beispiele
dafiir lassen sich in groBer Zahl finden. Hier nur zwei davon:

— Die Moglichkeit, mehrere Screens auf einmal auf einem Bildschirm iibereinander
darzustellen, wird erst durch den Copper ermoglicht, da dieser an den jeweiligen Po-
sitionen die Chip-Register auf die Videodaten eines neuen Screens setzt (Bilddaten,
Farbregister, Sprites usw.).

68 Die Custom-Chips

— Durch den Copper ist es moglich, Sprites mehrmals auf einem Bildschirm zu zeigen,
indem, nach der Beendigung der Darstellung des Sprites, die zugehorigen Register
zu diesem Sprite auf neue Daten gesetzt werden.

Im Normalzustand des Rechners steuert der Copper alle Displayfunktionen. Das
heift, das eine Copperliste besteht, die alle Farben, Screendaten usw. fortlaufend setzt.
Das hat natiirlich auch zur Folge, daf§ es keinen Zweck hat, eine neue Hintergrund-
farbe zu setzen, indem einfach ein neuer Wert in das entsprechende Farbregister ge-
schrieben wird, da der Copper bei einer normalen Copperliste auch Befehle vorfindet,
um die Farben zu setzen. Man muf also direkt die Copperliste manipulieren. In diese
Copperliste konnen natiirlich auch eigene Befehle eingeschrieben werden, bzw. es
kann eine ganz neue Copperliste gesetzt werden. Wenn allerdings eine ganz neue Liste
gesetzt wird, bedeutet dies, daf die bisherige Darstellung verschwindet, da sie ja nicht
mehr durch den Copper gesetzt wird. Welche Register vom Copper umgesetzt werden
konnen, entnehmen Sie bitte dem Anhang. Der Copper versteht drei Befehle, aus
denen eine Copperliste zusammengesetzt wird. Diese Befehle sind:

WAIT: Wartet, bis der Rasterstrahl eine bestimmte Bildschirmposition erreicht
hat. Diese Position kann auch in X-Richtung bestimmt werden.

MOVE: Setzt ein Chip-Register auf einen spezifizierten Wert.

SKIP: Uberspringt den nichsten Copperbefehl, wenn eine spezifizierte Raster-
strahlposition schon erreicht wurde.

Jeder Befehl besteht aus zwei 16-Bit-Worten. Die Copperliste wird sequentiell gelesen,
wobei die zwei Befehlsworte immer zusammen gelesen werden.

Der MOVE-Befehl hat folgende Syntax:

Erstes Befehlswort:
Bit0 Ist immer auf 0 zu setzen.

Bit8-1 Enthilt die Registeradresse des Chip-Registers, das gesetzt werden soll. Das
Color0-Register hat beispielsweise die Adresse $DFF180, es ist der Wert $180
einzutragen.

Bit 15-9 Diese Bits werden nicht benutzt, sollten aber auf 0 gesetzt werden.

Zweites Befehlswort:

Bit15-0 Diese 16 Bits enthalten den Wert, der in das Chip-Register, das im ersten
Befehlswort spezifiziert wurde, geschrieben werden soll.

Die Custom-Chips 69

Der WAIT-Befehl hat folgende Syntax:

Erstes Befehlswort:

Bit0

Istimmer auf 1 zu setzen.

Bit 15-8 Vertikale Rasterstrahlposition, auf die gewartet werden soll.

Bit7-1 Horizontale Rasterstrahlposition, auf die gewartet werden soll.

Zweites Befehlswort:

Bit0 Ist immer auf O zu setzen.

Bit15 Blitter-Finished-Disable-Bit. Wenn tiber den Copper Blitterregister gesetzt
werden sollen, muf} erst gewartet werden, bis dieser seine Operationen been-
det hat. Um auf den Blitter zu warten, muf} dieses Bit auf 0 gesetzt werden.
Normalerweise ist es auf 1 gesetzt.

Bit 14-8 Diese Bits bestimmen, welche Bits der vertikalen Position beim Vergleich mit
der Rasterstrahlposition zu verwenden sind. Soll ein Bit verwendet werden,
so ist hier das entsprechende Bit zu setzen..

Bit7-1 Fiir diese Bits gilt das Gleiche, wie fiir die Bits 14 bis 8, nur fiir die horizontale

Position.

Der SKIP-Befehl hat folgende Syntax:

Erstes Befehlswort:

Bit0

Istimmer auf 1 zu setzen.

Bit 15-8 Vertikale Rasterstrahlposition, auf die gewartet werden soll.

Bit7-1

Horizontale Rasterstrahlposition, auf die gewartet werden soll.

Zweites Befehlswort:

Bit0
Bit15

Bit 14-8

Bit7-1

Ist immer auf 1 zu setzen (einziger Unterschied za WAIT).

Blitter-Finished-Disable-Bit. Wenn iiber den Copper Blitterregister gesetzt
werden sollen, muf3 erst gewartet werden, bis dieser seine Operationen been-
det hat. Um auf den Blitter zu warten, muf} dieses Bit auf 0 gesetzt werden.
Normalerweise ist es auf 1 gesetzt.

Diese Bits bestimmen, welche Bits der vertikalen Position beim Vergleich mit
der Rasterstrahlposition zu verwenden sind. Soll ein Bit verwendet werden,
so ist hier das entsprechende Bit zu setzen.

Fiir diese Bits gilt das Gleiche, wie fiir die Bits 14 bis 8, nur fiir die horizontale
Position.

70 Die Custom-Chips

Die Werte fiir die horizontalen Rasterstrahlpositionen konnen Werte zwischen $00 und
$E2 annehmen. Das bedeutet, es konnen alle 4 LoRes- oder alle 8 HiRes-Pixel abge-
fragt werden.

Fir die vertikale Position stehen Werte zwischen $00 und $FF, also 255, zur Verfiigung.
Da der Screen aber 262 Zeilen besitzt, gibt es Probleme, wenn die untersten Zeilen per
Copper angesprochen werden sollen. Hier eine Losungsmoglichkeit:

— Warten, bis Zeile 255 erreicht.
— Dann die folgenden Zeilen als Zeilen 0 bis 6 ansprechen.

Hat man eine Copperliste erstellt, so tridgt man den Zeiger auf diese Liste entweder in
die Register COP1LCH/COP1LCL oder aber in die Register COP2LCH/COP2LCL
ein. AnschlieBend muB noch ein beliebiger Wert in Register COPJMP1 oder in
COPIMP2 geschrieben werden. COPJMP1 bewirkt den Neustart des Coppers mit der
Copperliste aus den Register COP1LCH/COP1LCL, wihrend COPJMP2 einen Neu-
start mit der Liste aus COP2LCH/COP2LCL bewirkt.

Wie man eine Copperliste erstellt, ersehen Sie aus den folgenden Programmen.

/*******************************

1. Cooper-Demonstration

last update 16/02/88

von Frank Kremser und Jérg Koch
© Markt & Technik 1988

/*******************************

—
QOO OAWNH

DieseDemonstration &ndert die Copper-Liste soab, dal die Workbench
Flagge zeigt. Zusdtzlichwerdennochdie Zeichenfarben gedndert.

=
W N

/*******************************

b
o1

#include <exec/types.h> /* Include-Files laden */
#include <exec/tasks.h>
#include <exec/memory.h>
#include <exec/interrupts.h>
#include <exec/execbase.h>
#include <exec/io.h>

#include <exec/libraries.h>
#include <exec/devices.h>
#include <exec/ports.h>
#include <exec/lists.h>
#include <exec/nodes.h>
#include <graphics/gfxmacros.h>

WV =
OO ANWNDHOOOIO®

Die Custom-Chips 71

27
28
29
30
31
32

#include <graphics/copper.h>
#include <graphics/view.h>
#include <hardware/custom.h>

struct IntuitionBase * IntuitionBase; /* Zeiger fiir Libraries */

33 struct GfxBase *GfxBase;

34

35 externstruct Customcustom; /* Externe Structurebereitstellen */
36 /*¥Sieenth&dlt eineVielzahl von */
37 /* Systemvariablen */
38 /* siehe inhardware/custom.h */
39

40 main() /* HAUPTPROGRAMM */

41 {

42 struct UCopList *clist;

43 structView *view;

44

45 GfxBase =OpenLibrary ('graphics.library",0); /¥ Libraries 6ffnen */
46 IntuitionBase =OpenLibrary(»intuition.library«,0);

47

48 /* Speicher fiir eigene Copper-Liste bereitstellen */
49 clist=AllocMem(sizeof(struct UCopList), MEMF__PUBLIC:MEMF__CLEAR);
50 view=ViewAddress();

51 view—>View—>UCopIns =clist; /*¥ Neue Copper-Liste eintragen */

52

53 /* Neue Copper-Listeerstellen */

54 CWAIT(clist,0,0); /*Warten, bisCopperobersteBildpos. erreicht ¥/
55 CMOVE(clist,custom.color[0],0x000); /*Dann Farben &ndern */

56 CMOVE(clist,custom.color[1l],0x777);

57 CMOVE(clist,custom.color[3], OxFFF);

58

59 CWAIT(clist,85,0); /*Warten, bis Copper Zeile 85 erreicht */

60 CMOVE(clist,custom.color[0],0xF00); /*Dann Farben andern */

61 CMOVE(clist,custom.color[1l],0xFFF);

62 CMOVE(clist,custom.color[3],0x000);

63

64 CWAIT(clist,171,0); /*Warten, bis Copper Zeile 171 erreicht */

65 CMOVE(clist,custom.color{[0],0xFEO); /*DannFarben &dndern */

66 CMOVE(clist,custom.color[1l],0x000);

67 CMOVE(clist,custom.color[3],0xF00);

68 CEND(clist); /*Eintragen, daB das Ende der Liste erreicht ist */
69

70 RethinkDisplay(); /* NeueDisplaydaten zur Darstellungbringen */

71

72 CloselLibrary(IntuitionBase); /* Libraries schlieBen */

73 CloseLibrary(GfxBase);

74 }

72 Die Custom-Chips

/******************************

2.Copper-Demonstration

last update 16/02/88

von Frank Kremser und Jérg Koch
© Markt & Technik 1988

HEXEXAEE XXX AXHEXX XXX XXX X KRR

—
CQOWOIOOoNd WNH

DieseDemonstrationzeigt einRechteck, das sich laufend inder Gréle
dndert. Dabeiwirdaber nicht etwa in den Screen gezeichnet, sondern
eswirdandenentsprechendenStellendieHintergrundfarbe gedndert.
Diese Aufgabe libernimmt der Copper.

=
(oI O IR VI

*******************************/

=
< O

#include <exec/types.h> /* Include-Files laden */
#include <exec/tasks.h>
#include <exec/memory.h>
#include <exec/interrupts.h>
#include <exec/execbase.h>
#include <exec/io.h>

#include <exec/libraries.h>
#include <exec/devices.h>
#include <exec/ports.h>
#include <exec/lists.h>
#include <exec/nodes.h>
#include <graphics/gfxmacros.h>
#include <graphics/copper.h>
#include <graphics/regions.h>
#include <graphics/gels.h>
#include <graphics/gfxbase.h>
#include <graphics/gfx.h#
#include <graphics/clip.h>
#include <graphics/view.h>
#include <graphics/rastport.h>
#include <graphics/layers.h>
#include <intuition/intuition.h>
#include <hardware/custom.h>
#include <hardware/blit.h>

BBAR DA NWWWRRRWWREADDDDDDDNDND NN
W HOOOIOODOBN AVHFOOOINDOLANWNMRFO OO

struct IntuitionBase *IntuitionBase; /*Zeiger flir Library-Pointer */
struct GfxBase *GfxBase;

BN
[0 NN}

externstruct Customcustom; /¥ ExterneStructure, siehel. Copperdemo */

NN
35

struct NewWindow nw = /* NewWindow-Structure fiir eigenes Window */
{
0,
0,

(S NN
o 0w

Die Custom-Chips 73

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

316,
10,

2,
1

CLOSEWINDOW,
WINDOWDRAGIWINDOWCLOSE I SMART_REFRESH,
NULL,

NULL,

“Copperdemo!,

NULL,

NULL,

0,
0,
0,
0

b

WBENCHSCREEN

69 main() /* HAUPTPROGRAMM */

70 {
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
91
92
93
94
95
%
97
98
29
100

struct Window *window;
struct ViewPort *vp;
struct UCopList *ucop[26];

UWORD1i,j,w=0;

GfxBase=0OpenLibrary('graphics.library",0); /*Libraries6ffnen*/
IntuitionBase=0penLibrary("intuition.library",0);

window=0penWindow(&nw); /* Window 6ffnen */
vp=ViewPortAddress(window); /* und Viewport ermitteln */

for(j=10;j<=35;j++) /*¥ 26 Copperlisten fiir die verschiedenen */

/* GroBen des Rechteckes erstellen */
ucop[j-10]=AllocMem(sizeof(struct UCopList),MEMF_CHIPIMEMF_CLEAR);
for (i=(j*2);1i>0;i—) /* Speicher fir die Copperliste */

CWAIT

CMOVE

CWAIT

CMOVE
}

for (i=0;i<(j*2);i++)

ucop[j-10],127-1,140~-(j*2));
ucop[j-10], custom.color[0], 0xOF00);
ucop[j-10],127-1,140+(j*2));
ucop[j-10], custom.color[0], 0x0000);

o~~~ —~

CWAIT(ucop[j-10],127+1i,140-(j*R));

CMOVE (ucop[j-10],custom.color[0],0x0F00);
CWAIT (ucop[j-10],1R27+1i,140+(j*2));

CMOVE (ucop[j-10], custom.color[0], 0x0000);
}

CEND (ucop[j-10]); /* Copperliste beenden */

74 Die Custom-Chips

101}

102

103 j=0;

104 while(!GetMsg(window->UserPort)) /* Solange, bis Closegadget */
105

106 WaitTOF(); /*Warten, bis oberer Bildschirmrand erreicht ¥/
107 if(w==0) j+=3;

108 if(w==1) j-=3;

109 if(j==R24)w=1;

110 if(j==0)w=0;

111

112 vp->UCopIns=ucop[j]; /* dann neue Copperliste setzen */
113 RethinkDisplay();

114 }

115 for(j=0;j<=25;j++) /¥ Alle 26 Copperlisten 1l6schen */
116 {

117 vp->UCopIns=ucop[j];

118 FreeVPortCopLists(vp);

119 RemakeDisplay();

120

121 CloseWindow(window); /* Window schlieRen */

122 CloseLibrary(IntuitionBase); /* LibrariesschliefRen */
123 CloseLibrary(GfxBase);

124 }

125

126

1 /******************************

2

3 3.Copper-Demonstration

4 last update 16/02/88

5 von Frank Kremser und Jérg Koch

6 © Markt & Technik 1988

7

8 EXHEEXHHERHHRXXHKXXHXLXXHRKXNXKNNN

9
10 Diese Copper-Demonstrationsetzt laufend neue Copperlisten, soda3ein
11 Screenmit laufenden Farben entsteht.

12

13 *******************************/

14

15 #include <exec/types.h> /* Include-Files laden */

16 #include <exec/tasks.h>

17 #include <exec/memory.h>

18 #include <exec/interrupts.h>
19 dinclude <exec/execbase.h>
20 #include <exec/io.h>

21 #include <exec/libraries.h>
22 #include <exec/devices.h>

23 #include <exec/ports.h>

Die Custom-Chips 75

24 #include <exec/lists.h>

25 #include <exec/nodes.h>

26 #include <graphics/gfxmacros.h>

27 #include <graphics/copper.h>

28 #include <graphics/regions.h>

29 #include <graphics/gels.h>

30 #include <graphics/gfxbase.h>

31 #Finclude <graphics/gfx.h>

32 #include <graphics/clip.h>

33 #include <graphics/view.h>

34 d4include <graphics/rastport.h>

35 #include <graphics/layers.h>

36 #include <intuition/intuition.h>

37 #include <hardware/custom.h>

38 #include <hardware/blit.h>

39

40 struct IntuitionBase *IntuitionBase; /* Zeiger fiir Libraries */

41 struct GfxBase *GfxBase;

42

43 externstruct Customcustom; /* Externe Structure, siehe 1.Copperdemo */
44

45 UWORD colors[] = /* Farben, die zur Animation verwendet werden¥*/

46 {

47 Oxce3, 0xae3, 0x8e3,0x7e3,0x5e3,0x4e3, 0x3e4,0x3e5,0x3e7,0x3e8,
48 0x3ea, 0x3eb, 0x3ec, 0x3ee, 0x3de, 0x3ce, 0x3ae, 0x39e, 0x37e, 0x34e,
49 0x33e,0x43e,0x63¢e,0x73e,0x83¢e,0xa3e, 0xb3e, 0xc3e,0xe3e, 0xe3d,
50 0Oxe3b, 0xe3a, 0xe39,0xe37,0xe36, 0xe34, 0xe33, 0xeb3, 0xe63, 0xe83,
51 0xe93, 0xea3, 0xeb3,0xec3,0xee3,0xde3, 0xbe3, 0x8e3,0x7e3,0x4e3,
52 0x3e4,0x3e5,0x3e6,0x3e8,0x3e9, 0x3ea, 0x3ec, 0x3ed, 0x3ee, 0x3de,
53 0x3be, 0x3ae, 0x38e,0x37e

54 };

55

56 struct NewWindownw = /* NewWindow-Structure fiir eigenes Window */
57 {

58 0,

59 0,

60 640,

61 10,

62 2,

63 1

64 CLOSEWINDOW,
65 WINDOWCLOSE | SMART_REFRESH,

66 NULL,

67 NULL,

68 "Diesist eine Copper-Demonstration, diedenWorkbench-Screen '‘animiert'",
69 NULL,

70 NULL,

71 0,

72 0,

73 0,

76 Die Custom-Chips

74 O,

75 WBENCHSCREEN

76 };

77

78

79 main()

80 {

81 struct Window *window;
82 struct ViewPort *vp;
83 struct UCopList *ucop;

84

85 void *dspins, *sprins, *clrins;
86

87 UWORD1i, j=1;

88

89 GfxBase=OpenLibrary("graphics.library",0); /¥ Libraries éffnen */

90 IntuitionBase=OpenLibrary("intuition.library",0);

91

92 window=0penWindow(&nw); /* Window 6ffnen */

93 vp=ViewPortAddress(window); /¥ undViewport ermitteln */

94

95 while(!GetMsg(window->UserPort)) /* Solange, bis CloseGadget */

96 { /* Speicher fir Copperliste *

o7 ucop=AllocMem(sizeof(struct UCopList),MEMF_CHIP | MEMF_CLEAR);

98

99 for (i=0;i<64;i++) /* Copperlistemit 64 ver. Farbenerstellen */
100

101 CWAIT(ucop,i*4,0);

102 CMOVE (ucop, custom.color[0],colors[(i+j) %64]);
103 }

104

105 CEND(ucop) ;

106 j++;

107 /* Alte Instruktionslisten sichern */

108 dspins=vp->Dsplns; sprins=vp->Sprins; clrins=vp->Clrins;

109

110 Forbid(); /* Intuition voribergehend 'abschalten' */

111

112 vp->DspIns=vp->SprIns=vp->ClrIns=0; /¥ Listen zurlicksetzen */
113 FreeVPortCopLists(vp); /* Alte Copperliste 16schen ¥/

114

115 /*Alte Instruktionslistenwieder setzen */

116 vp->DspIns=dspins; vp->SprIns=sprins; vp->ClrIns=clrins;

117 vp->UCopIns=ucop; /* Neue Copperliste setzen */

118

119 Permit(); /¥ Intuitionwieder einschalten */

120 RethinkDisplay(); /* Anderungen indieDarstellungiibernehmen */
121}

122

123 /*AlleListenldschenundneuerstellen */

Die Custom-Chips 77

124 FreeVPortCopLists(vp);

125 RemakeDisplay();

126

127 CloseWindow(window); /* Window schlieR3en */

128 CloseLibrary(IntuitionBase); /* Libraries schlief3en */
129 CloselLibrary(GfxBase);

130 }

l ;*******************************
2

3 ; 1.Copper -Demonstration

4 ; lastupdate 10/03/88

5 ;von Frank Kremser und JorgKoch

6 ; ©Markt & Technik 1988

T

8 ;*******************************
‘9;
10 ;DieseDemonstration setzt eine neue Copperliste, sodaB ihr
11 ;Amiga 'Flagge' zeigt.

12 ;

13 ;*******************************

14

15 DMACON = $dff096

16

17 ExecBase =4

18 Permit =-138

19 Forbid =-132

20 OpenLibrary = -408

21 CloselLibrary = -414

22

23 move.l ExecBase, a6

24 lea GfxName,al ;GfxLibrary6ffnen

25 jsr OpenLibrary(a6)

26 move.l dO,GfxBase

27

28 move.l ExecBase,ab

29 jsr Forbid(a6) ;Multitaskingabschalten
30

31

32 lea.l $50000,a0 ;Bitplane ab $50000

33 move.l #6645,d0 ;6645 Longwords

34 clear: clr.1 (a0)+ ;16schen

35 dbf d0, clear ;dekrementiere, teste
36 ;d0=0, neindannclear
37

38

39 move.l GfxBase,al

40 add.1l #$32,a0 ;ZeigeraufLOFlist

41

78 Die Custom-Chips

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7

wait:

Copperl:

GfxName:
even
GfxBase:
0ldCopper:

move.
move.
move.
move.

N

btst
bne

move.1l
add.l

move.w
move.l
move.w

move.1l
jsr

move.l
jsr
rts
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

e

dc.b

blk.1

blk.1

#$0080, DMACON
(a0),01dCopper
#Copperl, (a0)
#$80A0, DMACON

#6,$bfe001
wait

GfxBase,al
#$32,a0

#$0080, DMACON
0ldCopper, (a0)
#+$8180, DMACON

ExecBase, a6
Permit(a6)

GfxBase,al

CloselLibrary(a6)

$00e00005
$00e20000
$01800000
$7001fffe
$01800£00
$d001fffe
$01800ff0
$reeefefe

; Copper DMA stoppen
;ZeigeraufalteCopperliste
;NeueListe setzen
;und Copper starten

;Wurde Maustaste gedriickt,
;Wennnein, dannweiterwarten

;ZeigeraufLOFlist

; Copper undSoundabschalten
;AlteCopperlistesetzen
;Copper einschalten

;Multitaskingeinschalten
;GfxLibraryschlieflen

;Rickkehr
;BitPlanel Zeiger setzen

;ColorOaufschwarzsetzen
;Warten, bisZeile$70erreicht
;ColorOaufrot setzen

;Warten, bisZeile$dOerreicht
;ColorOaufgelbsetzen
;Endekennzeichnung fiir Copperliste

‘graphics.library',0

1,0

1,0

Die Custom-Chips 79

[l BEN NN I NI IR VI o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

;*******************************
;2.Copper - Demonstration

;last update 10/03/88

;von Frank Kremser und Jérg Koch
;©Markt & Technik 1988

;*******************************

;Diese Demonstration setzt laufend neue Copperlisten, sodal der
;Eindruck entsteht, die Farbenwandern. Dieser Programmteil
;taucht auch indem Programm 'Resetfest.s' auf.
;*******************************

DMACON = $dffoo6
ExecBase =4
Permit =-138
Forbid =-132

OpenLibrary = -408
CloselLibrary -414

move.l ExecBase,a6

lea GfxName,al ;GfxLibraryoffnen
jsr OpenLibrary(a6)

move.l dO,GfxBase

move.l ExecBase,a6

jsr Forbid(a6) ;Multitaskingabschalten
lea.l $50000,a0 ;Bitplane ab $50000
move.l #6645,d0 ;6645 Longwords

clear: clr.l1 (a0)+ ;16schen
dbf dO, clear ;dekrementiere, teste

;d0=0, neindannclear

lea.l coltab(pc),al ;ZeigeraufFarbtabelle;
bsr copperinit ;Copperlisteinitialisieren

move.l GfxBase,al

add.1l #%$32,a0 ;ZeigeraufLOFlist

move.w #$0080,DMACON ; Copper DMA stoppen

move.l (a0),0ldCopper ;ZeigeraufalteCopperliste
move.l #$55000, (a0) ;NeueListesetzen

move.w #80A0,DMACON ;und Copper starten

move.l #0,a2 ;Initialisierungvona?2

main: btst #6,$bfe001 ;WurdeMaustaste gedriickt,

80 Die Custom-Chips

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
o1
92
93
94
95
96
o7
98
929
100

beq

lea.

1

add.1l

cmp.
bne

1

move.1l

cont:

adda.l
bsr

move.l

loop:

ende:

tst.1l
dbra
bra

add.1l

move.
move.
W

move

move.

jsr

move.

jsr
rts

copperinit:

clr.1l
lea.l

move.
move.
move.
move.

loopl:

move.

move.
move.
clr.1l
move.b

eori
move
addq
cmpi
bne

clr.
add.
cmp.
beq

loop2:

—

move.l

w
1

1

HT O KHHRP

ende

coltab(pc),al

#1,a2
#32,a2
cont

#0, a2
a2,al
copperinit
#$£f,d3
(a6)

d3, loop
main

GfxBase, a0
#$32,a0

#$0080, DMACON
OldCopper, (a0)
#$8180, DMACON

ExecBase, a6

Permit(a6)

GfxBase,al

CloseLibrary(a6)

dl
$55000, a0

#$00e00005, (a0)+
#$00e20000, (a0)+
#$01800f00, (a0)+

#80,d0
do, (a0)+
#1, (a0)+

#$fffe0180, (al)+

de
(al,dl),de
#$0rf0,d6
de, (a0)+
#1,dl
#32,dl
loop2

dl

#1,d0
#255,d0
loop3

;Wenn ja, dann Programmbeenden

;ZeigeraufColortabelle
;a2umlerhdhen,
;vergleichenobgleich 32
;wennnicht, dann fortfahren
;wennnein, danna? zuriicksetzen
;a2 zual hinzuaddieren
;undneue Copperlisteerstellen
;Wert flirWarteschleifesetzen
;Dummybe fehl zur Verzdgerung
;d3erniedrigenundggf. fortfahren
;Das ganzenocheinmal

;ZeigeraufLOFlist

; Copper undSoundabschalten
;AlteCopperlistesetzen
;Copper einschalten

;Multitaskingeinschalten
;GfxLibraryschlie3en

;Rlickkehr

;dl 16schen
;Startadresse fur
;Copperliste
;BitPlanel Zeiger setzen

;ColorOaufrot setzen
;AbZeile80Farbrotation
;Wait - VP
;Wait-HP+Bit O gesetzt
;Wait + Color0

;neue Farbe aus Tabelleholen
;bearbeiten

;undinCopperliste flirColorOeintr.
;Farbindexuml erhéhen

;Wenn 32 Farben gezeigt,

;dann Index zuriicksetzen
;Zeilenindexuml erhdhen
;undmit 255vergleichen

Die Custom-Chips 81

101 bra loopl

102 loop3: move.l #$ffO0lfffe, (a0)+ ;warten, bisZeile255erreicht
103 move.l #$01800f00, (a0)+ ;dannColorOaufrotsetzen

104 move.l #$rffffffe, (a0)+ ;Endekennzeichnung fiir Copper
105 rts

106

017 ;Farbtabelle, doppelt so lang, wie Farbanzahl,
108 ;daRotation

109 even

110 coltab: dc.b $00,$10,$20,$30, $40, $50, $60, $70, $80, $290
111 dc.b $a0,$b0, $c0, $d0, $e0,$0,$£0, $e0,$d0

112 dc.b $c0, $b0, $a0, $90, $80, $70,$60, $50, $40, $30
113 dc.b $20,$10,$00,$00,$10, %20, $30, $40, $50, $60
114 dc.b $70,$80, $90, $a0, $b0, $c0, $d0,$e0,$r0,$ 0
115 dc.b $e0,$d0, $c0, $b0, $a0, $90, $80,$70, $60, $50
116 dc.b $40,$30,$20, %10, $00

117

118 GfxName: dc.b ‘graphics.library‘,0

119 even

120 GfxBase: blk.1 1,0
121 0ldCopper:
122 blk.1 1,0

4.1.4: Der Blitter

Der Blitter ist ein sehr machtvoller Speichermanipulations-Komplex, der hauptséch-
lich fiir Grafikanwendungen verwendet wird. Er benotigt bis zu vier DMA-Kanile
gleichzeitig, um die Daten zu manipulieren. Diese Manipulationen laufen durch den
Blitter erheblich schneller ab, als sie mit dem MC68000 programmiert werden kdnnten.
Der Blitter kann

- Speicherbereiche kopieren,
— rechteckige Bildbereiche kopieren,
— bis zu drei verschiedene Speicherbereiche miteinander logisch verkniipfen usw.

Die drei DMA-Kanile fiir die Speicherbereiche, die miteinander verkniipft werden
konnen, werden mit Source-A, -B und -C bezeichnet. Der vierte DMA-Kanal, iiber
den die verkniipften Daten geschrieben werden, wird mit Destination-D benannt.
Damit nicht alle vier Kanéle gleichzeitig verwendet werden miissen, konnen sie mit den
Bits 8 bis 11 des BLTCONO-Registers einzeln aktiviert, bzw. deaktiviert werden. '

Um nun einen Speicherbereich zu kopieren, setzt man die Register BLTAPTH/
BLTAPTL auf die Startadresse des zu kopierenden Speicherbereiches und BLTDPTH/
BLTDPTL auf die Startadresse des Bereiches, in den kopiert werden soll. Anschlie-
Bend setzt man noch das Register BLTSIZE, das unten noch beschrieben wird. Nun

82 Die Custom-Chips

braucht man nur noch die Kanéle fiir Source-A und Destination-D im BLTCONO-Regi-
ster zu aktivieren und die Blitter-DMA zu starten. Schon wird der angegebene Spei-
cherbereich kopiert.

Will man Datenbereiche manipulieren, so konnen sie entweder aufsteigend oder ab-
steigend eingelesen werden. Dies ist beispielsweise von gro3er Bedeutung, wenn sich
beim Datentransfer der Source-Bereich mit dem Destinations-Bereich iiberschneidet.
Aufsteigend wird eingelesen, wenn Bit 1 des BLTCON1-Registers geloscht ist.

Der Blitter kann lineare Speicherbereiche genauso bearbeiten, wie »rechteckige«. Gra-
fiken sind beispielsweise rechteckig, sind aber im Speicher linear abgelegt. Um nun aus
dieser Grafik einen rechteckigen Teilbereich herauszukopieren, mufl zum einen in
BLTxPTH/BLTXPTL die Startadresse des Teilbereiches angegeben sein und in
BLTSIZE muB in den Bits 0 bis 5 die Breite des Bereiches und in den Bits 6 bis 15 die
Hohe des Bereiches angegeben sein. Zudem muf3 man am Ende einer Zeile dieses Teil-
bereiches eine bestimmte Anzahl von Words hinzuaddieren, um auf die Startadresse der
néchsten Zeile des Teilbereiches zu kommen. Dazu dienen die BLTxMOD-Register.
Diese enthalten die Anzahl der Words, die hinzuaddiert werden sollen. Will man aber
einen linearen Speicherbereich bearbeiten, so gibt man als Hohe oder als Breite den
Wert 1 an, setzt den anderen Wert auf die Lénge des Bereiches und setzt die
BLTxMOD-Register auf 0.

Die oben beschriebenen Handlungen bewirken lediglich ein Kopieren eines Speicher-
bereiches. Der Blitter bietet aber noch die Mdglichkeit, die Speicherbereiche, die mit
Source-A bis -C bezeichnet sind, miteinander zu verkniipfen und dann zu speichern.

Um festzulegen, auf welche Weise die drei Speicherbereiche miteinander verkniipft
werden sollen, miissen die Bits 0 bis 7 im BLTCONO-Register, die auch als LF-Kon-
troll-Byte bezeichnet werden, gesetzt werden.

Im folgenden werden die Source-A- bis -C-Bereiche nur noch mit A, B und C bezeich-
net. Bei den logischen Verkniipfungen bedeutet ein Kleinbuchstabe, dafi eine 0 logisch
wahr ist, und ein Gro8buchstabe, daf} eine 1logisch wahr ist. Beispielsweise ist der Aus-
druck AbC nur dann logisch wahr, wenn ein Bit aus Source-A gleich 1, eines aus B gleich
0 und eines aus C gleich 1 ist. Dann wird auch das Bit in Destination-D auf 1 gesetzt.
Die Bits des LF-Kontroll-Bytes haben folgende Bedeutungen:

Logik: ABC ABc AbC Abc aBC aBc abC abc
Bit: 7 6 5 4 3 2 1 -0

Wird das LF-Byte auf % 10000000 gesetzt, wird ein Bit in Destination-D nur dann auf 1
gesetzt, wenn die Bits in A, B und C gleich 1 sind. Wird das LF-Byte hingegen auf
% 10000001 gesetzt, so wird D nur dann gleich 1, wenn A, B und C alle gleich 1 oder
gleich 0 sind. -

Die Custom-Chips 83

Fine weitere Moglichkeit, die der Blitter zur Verfiigung stellt, ist der Barrel-Shifter.
Dieser Shifter ermoglicht es, die Daten, die iiber die Source-A- und -B-Kanile gelesen
werden, um 0 bis 15 Bits zu shiften. Hierzu wird nicht mehr Zeit benétigt, als ohne die-
ses Shiften, wodurch ein sehr schnelles Bit-Scrolling erméglicht wird. DerWert, um den
»geshiftet« werden soll, ist fiir Source-A in den Bits 12 bis 15 von BLTCONO zu setzen,
und fiir Source-B in den Bits 12 bis 15 von BLTCON1.

Die nédchste Funktion, die der Blitter noch zur Verfiigung stellt, nennt sich » Masking«.
Nicht immer sind die Speicherbereiche, die bearbeitet werden sollen, genau nach
Words ausgerichtet. Um auch diese Bereiche bearbeiten zu konnen, bietet der Blitter
die Moglichkeit, bis zu 16 Bits links und rechts auszumaskieren. BLTAFWM beinhaltet
die 16 Bit, die links auszumaskieren sind. BLTAIWM die, die rechts auszumaskieren
sind. Beginnt eine Zeile beispielsweise mit % 1100110011001100 und ist BLTAFWM auf
% 0000000011111111 gesetzt, so bleibt nur noch % 0000000011001100 iibrig. Das Gleiche
gilt fiir den rechten Rand.

Der Blitter bietet auch die Moglichkeit, beliebig geformte Bereiche zu fiillen. Dazu
mul3 BLTxPTH/BLTXPTL auf die rechte, untere Ecke des Ausschnittes gesetzt werden,
in dem sich der zu fiillende Bereich befindet und BLTxMOD muf} ebenfalls entspre-
chend gesetzt werden. Es wird lediglich ein Source-Kanal benoétigt. Der Destination-
D-Kanal mu8 auf die gleiche Adresse gesetzt werden, wie der Source-Kanal. Anschlie-
Bend wird festgelegt, daB3 Ausschnitt abzéhlend durchlaufen werden soll, dazu Bit 1 von
BLTCONI1 auf 1 setzen. Nun muf3 noch angegeben werden, ob der Bereich au3erhalb
des umrahmten, oder der innerhalb gefiillt werden soll. Wird Bit 2 von BLTCON1 auf
0 gesetzt, wird innerhalb gefiillt.

/******************************

Blitter-Demonstration

last update 16/02/88

von Frank Kremser und Jérg Koch
© Markt & Technik 1988

KEEEXEXX XX XXX XXX XAX XXX XXX

—
QW0 0N WM+

Diese Demonstrationkopiert denWorkbench-Screen laufendauf einen
eigenenScreen, wobei er stdndigetwas verschobenkopiert wird.

el
[CNIRVIN oy

*******************************/

—
I

#include <exec/types.h> /* Include-Files laden */
#include <exec/tasks.h>

#include <exec/libraries.h>

#include <exec/memory.h>

#include <exec/devices.h>

=
[(lN0 BEN RO N

84 Die Custom-Chips

20 #include <devices/keymap.h>

21 #include <graphics/copper.h>

22 Finclude <graphics/display.h>

23 #include <graphics/gfxbase.h>

24 #include <graphics/text.h>

25 #include <graphics/view.h>

26 #include <graphics/gels.h>

27 #include <graphics/regions.h>

28 Finclude <graphics/sprite.h>

29 #include <hardware/blit.h>

30 #include <intuition/intuition.h>
31l #include <intuition/intuitionbase.h>

32

33 struct GfxBase *GfxBase; /¥ Lib Zeiger */
34 struct IntuitionBase *IntuitionBase;

35

36 struct Screen *screen; /* Screen-Structure-Zeiger */

37 struct Window *window;
38 struct RastPort *rpl, *rp2;

39

40 structNewScreenns= /*¥Die New-Screen Structure */
41 {

42 0, /* Linke Ecke */
43 0, /* Obere Ecke */
44 640, /*Breite */

45 256, /* Hoehe */

46 2, /*Tiefe */

47 0, /*DetailPen */
48 1, /* BlockPen */
49 HIRES, /* ViewModes */
50 CUSTOMSCREEN, /* Type */

51 NULL,

52 NULL,

53 NULL,

54 NULL

55 };

56

57 struct NewWindownw= /* NewWindow-Structure */
58 {

59 0,

60 0,

61 640,

62 10,

63 2,

64 1,

65 NULL,

66 NULL,

67 NULL,

68 NULL,

69 "Diesist eineBlitter-Demonstration, die denWorkbench-Screen ‘animiert*",

-

Die Custom-Chips 85

70 NULL,
71 NULL,
72 0,
73 0,
74 0,
75 0,
76 WBENCHSCREEN
7}
78
79
80 main() /* HAUPTPROGRAMM */
81 {
82 intx,y=0;
83
84 /*6ffnender Libs */
85 if ((IntuitionBase = (struct IntuitionBase ¥)
86 OpenLibrary("intuition.library', 0))==0)exit();
87 . :
88 if ((GfxBase = (struct GfxBase *)
89 OpenLibrary("graphics.library", 0))==0)exit();
90 /* Screenund Window 6ffnen */
91 if ((screen= (struct Screen*) OpenScreen(&ns)) == NULL) exit();
92 if ((window = OpenWindow(&nw)) == NULL) exit();
93
94 rpl = &screen->RastPort;
95 rpR2 =&window->WScreen->RastPort;
96 /*RastPort des WBScreens ermitteln */
o7 -
98 SetDrMd(rpl,JAM1);
99 SetAPen(rpl,0);
100 ‘
101 ClipBlit(rp2,0,0,rpl,0,0,640,256,0xc0); /* Screenkopieren */
102 for(x=5;x<640; x+=5) /*Screen laufend etwas verschobenkopieren */
103 { o
104 y+=2;
105 ClipBlit(rp2,0,0,rpl,x,y,640-x,256-y, OxoO)
106 RectFill(rpl,0,0,x,255);/*und freibleibende Flachen 16schen */
107 RectFill(rpl,0,0,639,y);
108 }
109 ClipBlit(rp2,0,0,rpl,0,0,640,256,0xc0);
110 for(x=5;x<640; x+=05) /*Der gleicheEffektmit ScrollRaster */
111 ScrollRaster(rpl,-5,-2,0,0,639,255);
112
113 CloseScreen(screen); /* Screenund Libs */
114 CloseWindow(window);
115
116 CloseLibrary(GfxBase); /* schliessen */
117 CloseLibrary(IntuitionBase); '
118 }

119

86 Die Custom-Chips

l ;*******************************
2

3 ;1.Blitter -Demonstration

4 ; lastupdate 10/03/88

5 ;vonFrank Kremser undJérgKoch ;
6 ©Markt & Technik 1988

7 .

8

i

;*******************************
9 ;
10 ;DieseDemonstrationscrollt einenText vonrechtsnachlinksein,
11 ;wobeiderBefehl ScrollText verwendet wird. Dieser wiederrum
12 ;greiftaufdieBlitterfunktionenzuriick.

13

li ;*******************************

15

16 scroll = $55000; Zwischenspeicher fuer Laufschrift
17

18 Text =-60

19 SetFont =-66

20 CloseFont =-T78

21 Move =-240

22 - InitBitMap =-390

23 InitRastPort =-198

24 ScrollRaster =-396

25 ClearScreen =-48

26

7 AllocAbs =-204

28 OpenLibrary =-408

29 CloseLibrary =-414

30 Forbid =-132

31 Permit =-138

32

33 OpenFont =-30

34

35 ExecBase =$04

36

37 movem.l d0O-d7/a0-a6,-(a7) ;Registerretten

38 move.b #$02, rows

39 move.l ExecBase,ab

40 lea $50000, al ;abAdresse $50000

41 move.l #8000,d0 ;8000Bytealsbelegt kennzeichnen
42 jsr AllocAbs(a6)

43

44 lea gfxname,al

45 jsr OpenLibrary(a6) ;GfxLibrary 6ffnen
46 move.l dO, gfxbase ;Basisadressemerken
47

48 lea diskfontname,al

49 jsr OpenLibrary (a6 ;DiskfontLibrarydffnen

50 move.l dO, fontlbase ;Basisadressemerken

Die Custom-Chips 87

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
8l
82
83
84
85
86
87
88
89
90
o1
92
93
94
95
96
o7
98
929
100

coloop?:

move.l
lea
jsr
move.1l
lea

move.
move.

=

move.

move.

move.

move.

add.w
dbra

= = = =

move.l
jsr

move.l
add.l

move.
move.
move.
move.

s -~ =

move.l
lea
move.
move.
move.l
jsr
move.l

-

lea
jsr
move.l
lea
move.l
jsr

lea
jsr

move.1l

move.l
move.l

fontlbase, a6
textattr,al

OpenFont (a6) ;Zeichensatzladen

do, fontbase ;BasisadresseZeichensatzmerken

waitab, a0 ;Copperlistemit WAIT'sergénzen

#$dr09,dl ;abZeile$df spalte $09

#13,d0 ; 14WAIT'seinfiigen

dl, (a0)+ ;WAIT inCopperlisteschreiben

#$fffe, (a0)+ ' ‘

#$0182, (a0)+ ;Vordergrundfarbe

#$0fff, (a0)+ ;auf schwarzsetzen

#$0100,d1 ;WAIT-WertumeineZeileerhdhen

d0, coloop? ;schonalleWAIT'seingefiigt?

ExecBase, a6

Forbid(a6) ;Multitaskingabschalten

gfxbase, al ;Zur BasisadressevonGfxLibrary

#$32,a0 ;$32addieren=>Anfangsadr.
;deraltenCopperListe

#$0080, $df 096 ; Copper DMA stoppen

(a0),oldcopper ;Alte Adressemerken

#newcopper, (a0) ;Neue CopperListesetzen

#$8080, $dfr096 ;CopperDMAstarten

gfxbase, a6

bitmap, a0 ;ZeigeraufStructure

#$01,d0 ;1BitPlane

#352,d1 ;Breite 352 Punkte

#200,d2 ;Hohe 15Zeilen

InitBitMap(a6) ;DefaultWerte schreiben

#$50000, planel ;AnfangsadressedesGrafik-
;speichersergénzen

RastPort,al ;ZeigeraufStructure

InitRastPort(a6) ;RastportDefaultWerte
#bitmap,r_bitmap ;Bitmap-StructureinRastporteintr.
RastPort,al ;NeuenZeichensatz

fontbase, a0 ;installieren

SetFont (a6) ‘

RastPort,al ;Ggafikspeicherlésohen
ClearScreen(a6) Ve

/
/

#sorollmsg,mesptf/;Anfangsadressed.ScrollText
&

$6¢c,0ldirg ;AltenIRQ-Vektorretten
#newirq, $6c ; IRQ-VektoraufeigeneRoutine setzen

88 Die Custom-Chips

101

102 bra.l wait ;Weiter zur Mausabfrage

103

104 newirq: movem.1l dO0-d7/a0-a6,-(sp) ;Registerretten

105 ;scrolltext imGrafikspeicher umeinen Punkt nach links scrollen

106 move.l gfxbase,ab

107 lea RastPort,al ;RastPort, der gescrollt werdensoll
108 move.l #0,d2 ;linke, obereKoordinate des
109 move.l #179,d3 ;zuverschiebendenRechtecks
110 move.l #352,d4 ;rechte, untereKoordinate

111 move.l #198,d5 ;desRechtecks

112 move.l #$01,d0 ; 1Punkt inx-Richtungverschieben
113 clr.1 dl ;keinenPkt iny-Richtungverschieben
114 jsr ScrollRaster(a6) ;ScrollingiiberBlitterausfiihren
115

116 sub.b #$01, rows ;schonlZeichen (16 Punkte)

117 bne.s continuel ;gescrollt?

118 move.b #16,rows ;Wenn ja, dann

119 bsr.s PrintChar ;neuesZeichenausgeben

120 continuel:

121 lea coltab,al ;Farbtabelleverschieben

122 lea coltab+2,al

123 move.w #28,d0

124 move.w coltab,dl

125 verloopl:

126 move.w (al)+,(a0)+

127 dbra d0,verloopl

128 move.w dl,coltab+56

129

130 move.l #13,d0 ;14FarbeninCopperliste

131 lea coltab,al ;schreiben

132 lea waitab+6,al

133 coloopl: move.w (a0)+,(al)

134 add.1l #$08,al ;AbstandzunéchstemWAIT4Worte
135 dbra d0, coloopl

136

137 movem.l (sp)+,d0-d7/a0-a6 ; Registerzuriickholen

138 de.w $4ef9 ;Interruptroutinemit Sprungzu
139 oldirqg: dec.1 ;altemIRQ-Vektor beenden

140

141 printchar:

142 move.l gfxbase,ab

143 lea RastPort,al ;vorhandenesBitmuster imScroll-
144 jsr ClearScreen(a8) ;zwischenspeicher 16schen

145 lea RastPort,al ;imZwischenspeicher Grafikcursor
146 move.l #320,d0 ;nachx-position 320

147 move.l #193,dl ;undy-pos 14

148 jsr move (a6) ;bewegen

149 lea RastPort,al ;inZwischenspeicher

150 move.l mesptr,al ;ZeichenabAdresse (mesptr)

Die Custom-Chips 89

151
152
153
154
155
156
157 return:
158
159 wait:
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

179 newcopper:

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194 waitab:
195

196

197 even

198 scrollmsg:

199
200 even

move.l
jsr
add.l
cmp.1
bne.s
move.l
rts

btst

. bne.s
.move.

==

move.
move.l
jsr
move.l
move.l
jsr
move.l
jsr
move.1l
add.l
move.w
move.1l
move.w
move.l
jsr

movem.l (a7)+,d0-d7/a0-a6

rts

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc
dc
dc.
dc.
dc.
dc.

s s =s=s=s=ss=s<s<===s

blk.w
dc.w

dc.b

#1,d0
text(a6)
#$01, mesptr
#ende, mesptr
return

#scrollmsg,mesptr

#6,$bfe001

wait

oldirq, $6¢c
gfxbase, ab
fontbase,al
CloseFont(a6)
execbase, ab
fontlbase,al
CloseLibrary(a6)
gfxbase,al
CloseLibrary(a6)
gfxbase, al
#$32,a0
#$0080, $dr 096
oldcopper, (a0)
#$8080, $drr096
ExecBase, a6
Permit(a6)

$0180, $0000
$0182, $0ddd
$008e, $2c81
$0090, $f4cl
$0092, $0038
$0094, $00d0
$0108, $0004
$010a, $0004
$0102, $0000
$0104, $0000
$0100, $1200
$00e0, $0005
$00e2, $0000

56,0
$LLff, $rfe

;1zeichen
;anPositiondesGrafikcursorsprinten
;1lzumTextzeigeraddieren
;EndedesTexteserreicht?
;Wennnein, dannzurick
;AnsonstenZeiger zurliicksetzen

;Warten, bislinkeMaustaste gedriickt

;altenIRQ—Vegtorzurﬁcksohreiben
;Font schlief3en

;DiskfontLibraryschliefen

;GfxLibraryschlieflen

;zur Basisadresseder GfxLibrary $32
;addierenerg. Zeigerauf Copperliste
; Copper DMA stoppen
;alteCopperListesetzen
;Copper DMA starten

;Multitaskingeinschalten
;Register zuriicksetzen
;Rickkehr

:Neue Copperliste

;Speicher flir WAITBefehle
;Ende der Copperliste

"DiesisteineBlitterdemo, dieScrollRasterverwendet",0

90 Die Custom-Chips

ende:
even
gfxbase:
bitmap:
planel:
rastport:

r_bitmap:

OO0 0 d W+

10 oldcopper:

12 gfxname:

dc

dc.

blk.w
blk.1

blk.1

blk.1

dc.
dc.

13 diskfontname:

15 even
16 fontname:

18 even
19 textattr:

24 fohtlbase:
26 fontbase:
28 rows:
29 even

30 mesptr:

32 coltab:

4.1.5: DMA-Kontroll-Logik

dc

dc.

dc.
dc.
dc.

dc.

dc.
dc.

dc.

dc.
dc.
dc.
dc.

.b

1

1
b

.b

=

o =

—

£ € £ 5

0
4,0
10,0
1,0
26,0

0
“graphics.library",0

“diskfont.library",0

;Name des Zeichensatzes

“opal. font",0
;StrukturdesZeichensatzes
;wirdbei OPENFONT ibergeben
fontname ;ZeigeraufFontname
12 ;Hoheder Schrift inPunkten
0 ;Flags
0
0
0
0

;Laufschriftfarben
$0£f0,$0cf0, $0910, $06£0, $03£0, $00r0, $00£3, $00f6
$0019, $00fc, $00ff, $00cf, $0091, $006f, $003 £, $000F
$030f,$060f, $090f, $0cOf, $0f0f, $0f0c, $0£09
$0£06,$0r03,$0r00,$0r30,$0r60, $0r90, $0fc0

Agnus und FatAgnus kontrollieren die 25 DMA-Kanile, die fiir eine Vielzahl von Funktio-
nen des Systems von »lebenswichtiger« Bedeutung sind. Die beiden Chips enthalten zwei
Register, iiber die die DMA-Hardware softwaremiBig gesteuert werden kann. Diese Regi-

ster heiBen DMACONR und DMACON. DMACONR ist lesbar und enthilt die DMA-

Zustande. Dabei bedeuten gesetzte Bits, daB} der zugehorige DMA-Kanal aktiv ist. Ist ein
Bit nicht gesetzt, ist der zugehorige DM A-Kanal nicht aktiv. Will man den Zustand eines
oder mehrerer DMA-Kanile verdndern, so kann dies iiber das Register DMACON

geschehen.

Die Custom-Chips 91

Die Beschreibung zu DMACONR/DMACON:

Bit Name Funktion

15 SET/CLR Dieses Bit bestimmt beim Schreibzugriff auf DMACON, ob bestimmte
Bits gesetzt oder geloscht werden sollen. Ist dieses Bit gleich 1, so werden
alle DMA-Kanile, deren korrespondierendes Bit auf 1 gesetzt sind,
aktiv gesetzt. Die Kanile, deren Bits auf 0 gesetzt sind, bleiben unver-
andert. Das Gleiche gilt fiir das Inaktivieren von Kanilen, wenn dieses
Bit auf 0 gesetzt wird.

14 BBUSY Dieses Bit hat nur im Lesezugriff eine Funktion. Dort zeigt es an, daf3 der
Blitter noch arbeitet.

13 BZERO Dieses Bit hat ebenfalls nur im Lesezugriff eine Funktion. Es ist gleich 1,
wenn das Ergebnis einer Blitteroperation durchweg gleich 0 war.

12 Keine Funktion.
11 Keine Funktiofl.
10 BLTPRI Ist dieses Bit gesetzt, hat der Blitter Vorrang vor dem MC68000.

9 DMAEN Master-DMA-Enable. Ist dieses Bit geloscht, sind alle DMA-Kanile ge-
schlossen. '

8 BPLEN Bit-Plane-DMA.
7 COPEN Copper-DMA.

6 BLIEN Blitter-DMA.

5 SPREN Sprite-DMA.

4 DSKEN Disk-DMA.

3-0 AUDxEN Audio-DMA fiir Kanal x (x = 3,2,1,0).
Kapitel 4.2: Denise

Denise ist fiir die gesamte Videodarstellung verantwortlich, einschlieflich der Sprite-
Kontrolle und der Playfield-Darstellung. Foto 11 im Farbteil zeigt Denise.

92 Die Custom-Chips

Hier die Pinbelegung und das Blockschaltbild von Denise:

DENISE
D6] 1 ~— 48[D7
D5[]2 47 1 D8
D4 []3 46 1 D9
D3 []4 45 1 D10
D2 []5 44 1 D11
D1 []6 43 1 D12
bo 7 42 13
M1H] 8 < 41 14
MOH] 9 < 40 1 D15
8 [_]10 D 39] M1V
7 111 38 [1 MOV
6112 37 1 GND
RGA| 5 E 13 36 [CCK
4 14 L 35 ™
30C]15 2 34
2116 i 33 [12D
117 &) 321
BST [18 g 31 [_1G8
5V I]19 @ 30[1G2
RO []20 29 1 G1
R1 [] 21 28 [1 GO
R2 [] 22 27 [1B3
R3 [] 23 26 [1B2
BO] 24 25 1Bt
Z 4.2-1: Die Pinbelegung von Denise
4.2.1: Die Pinbeschreibung zu Denise
Name PIN I/O Beschreibung
D0-D6 7-1 I/O Datenbusleitungen 0 bis 6.
MI1H 8 I Maus-Eingang von Port 1 horizontal.
MOH 9 I Maus-Eingang von Port 0 horizontal.
RGA1-8 17-10 I Diese Leitungen werden benutzt, um die internen Register *
zu adressieren.
BST 18 O Color-Burst-Indikator.
VCC 19 I +5VoltVersorgungsspannung.
RO-3 20-23 0] RotesVideosignal digital Bit 0 bis 3.
B0-3 24-27 0] BlauesVideosignal digital Bit 0 bis 3.

Die Custom-Chips 93

Collision K 6 6
: Detect L
Logic < 8x2
ZaN
Bit Plane
| Serial.
Collision Bit Plane
Control Data
15 Register Register
N/ 1 6
Collision * | Bit Plane
Storage Control K
Register Register
DB
[9]
516 E= Data Bus (16)
M
RGA[
[O]
é 85) 8 Register Address Decode
@

: Denise Block Diagram

Z 4.2-2: Das Blockschaltbild von Denise (Teil 1)

Name. PIN I/O Beschreibung

G0-3 2831 O GriinesVideosignal digital Bit 0 bis 3.

N/C 32 Nichtbelegt.

ZD 33 O Indikator fiir Hintergrundfarbe. Wird Hintergruncifarbe
' gezeigt, ist dieses Signal low.

N/C 34 Nicht belegt.

CLK 35 I Systemtakt von 7 MHz fiir Denise.

CCK 36 I Diesist derTakt, der als Farbtrigersignal dient.

VSS 37 I Masseanschlu8.

MOV 38 1 Mauseingang von Port 0 vertikal.

M1V 39 I Mauseingang von Port 1 vertikal.

D7-D15 4840 I/0 Datenleitungen 7 bis 15.

94 Die Custom-Chips

! Priorit Color

: 6 > Coqtrgl E Select

: 8x2 > Logic Decode
e g

: Sprite Bit Plane :

! Serialize Priority 32 _\ﬁdﬂeo
! : Sprite Position + Cont. Color .G

. Sprite Compare Logic Registers| | Registers |-»B

: Data ‘ ‘

: Reg;ssters Q @rite (12)

: (N Is-;l%igontal ngizontal “4)

: y Position l

: Counter Registers

; f .t .
{ Data Bus (16 g 5
: ol2 r. =8
¢ > g

: ()

i Register Address Decode |
! Denise Block Diagram

Z 4.2-2: Das Blockschaltbild von Denise ('Teil 2)

4.2.2: Die Sprite-Hardware

Denise unterstiitzt 8 Hardware-Sprites, die als unabhéngige Grafikteile dargestellt wer-
den konnen. Die Sprites werden allerdings immer, also unabhéngig von der Screen-
Auflosung in einer LoRes-Auflgsung dargestellt. Sie sind 16 LoRes-Punkte breit, belie-
big hoch und kénnen mit drei Farben dargestellt werden, als auch teilweise durchsichtig
sein. Wenn ein Sprite komplett dargestellt wurde, kann es nochmals zur Darstellung
eines weiteren Images verwendet werden.

Um ein Sprite darstellen zu kénnen, muf} zuerst eine Datenliste im ChipMem erstellt
werden. Das Spriteimage selbst setzt sich aus zwei Planes zusammen, wodurch der Zu-
griff auf die drei verschiedenen Farben moglich ist. Ist ein Bit in der ersten Plane gleich
0 und das korrespondierende Bit in der zweiten Plane ebenfalls, so erscheint dieser
Punkt transparent. Die Sprites sind immer in Zweiergruppen zusammengefa$t, so daf
immer zwei Sprites auf die gleichen Farben in der Farbtabelle zugreifen. Hier eine Auf-
stellung der Kombinationen:

Die Custom-Chips 95

Sprites Planel/2 Farbregister

01 00 Transparent
01 01 17

01 10 18

01 1 19

23 00 Transparent
23 01 21

23 10 22

23 11 23

45 00 Transparent
45 01 25

45 10 26

45 1 27

67 00 Transparent
67 01 29 :
67 10 30

67 11 31

Die Datenliste hat folgende Form:

Word Funktion

1 Legt die vertikale und horizontale Startposition des Sprites fest, wobei die Position nicht
lativ zum Screen festgelegt ist, sondern relativ zur physikalischen Screenposition. Das erst
Byte legt die vertikale und das zweite Byte die horizontale Position fest.

2 Legt die vertikale Endposition des Sprites fest. Diese Position errechnet sich aus der vert
kalen Startposition plus der Hohe des Sprites.

3 Spritedaten fiir die erste Zeile und erste Plane.
4 Spritedaten fiir die erste Zeile und zweite Plane.
5 Spritedaten fiir die zweite Zeile und erste Plane.
Usw.

n 2 0-Words am Ende der Datenliste

Um ein Sprite, zu dem eine solche Datenliste erstellt wurde, darzustellen, miissen die Reg
ster SPRxPTH/SPRxPTL des Sprites, das verwendet werden soll, auf den Anfang der Dater
liste gesetzt werden. Bevor dann die Sprite-DMA eingeschaltet wird, miissen aber die Sprit«
Datenzeiger fiir die nicht verwendeten Sprites auf eine leere Datenliste gesetzt werden, dam:
sie nicht auch dargestellt werden. Da die Zeiger aber in jedem Darstellungsdurchlauf durc
die Hardware veréndert werden, miissen sie laufend neu gesetzt werden. Dies geschieht ir
Normalfall durch die Copperliste.

96 Die Custom-Chips

/******************************

Sprite-Demonstration

last update 16/02/88

von Frank Kremser und Jorg Koch
© Markt & Technik 1988

XXX XX XX XXX XX XX XXX KRR K ¥ %

[Colo o BEN o) BNG; I NG RV I oo

—
o

DieseDemonstration bewegt einSprite 'natiirlich' tiber denBildschirm

o
N -

*******************************/

=
NN

#include <exec/types.h> /* Include-Files laden */
#include <exec/tasks.h>
#include <exec/libraries.h>
#include <exec/memory.h>
#include <exec/devices.h>
#include <devices/keymap.h>
#include <graphics/copper.h>
#include <graphics/display.h>
#include <graphics/gfxbase.h>
#include <graphics/text.h>
#include <graphics/view.h>
#include <graphics/gels.h>
H#include <graphics/regions.h>
#include <graphics/sprite.h>

WV VDVVNVDNVNI
NLOONWNMDHOWOWOD-JIO O

28 #include <hardware/blit.h>

29 d#include <intuition/intuition.h>

30 #include <intuition/intuitionbase.h>

31

32 struct GfxBase *GfxBase; /*¥LibZeiger */
33 struct IntuitionBase *IntuitionBase;

34

35 struct Screen*screen; /¥ Screen-Structure-Zeiger */
36 ’
37 USHORTDatal[] = /* Sprite-Image */
38 {

39 0,0,

40 0x0FCO, 0xO0FCO,

41 0x3FF0, 0x3030,

42 0x7FF8, 0x4008,

43 0xT7FF8, 0x4008,

44 0xF33C, 0x8CC4,

45 O0xFFFC, 0x8004,

46 OxFFFC, 0x8004,

47 OxFCFC, 0x8304,

48 0xFFFC, 0x8004,

49 OxFFFC, 0x9024,

50 OxTFF8, 0x4848,

Die Custom-Chips 97

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
74
75
76
7
78
79
80
81
82
83
84

OxT7FF8, 0x4788,
0x3FFO0, 0x3030,
0x0FCO, 0xOQFCO,

0,0
}s

structSimpleSpritespritel =

{
&Datal[0],

14,
100,
0,
2

}s

struct NewScreenns =

{
0,
0,
320,
256,
2,
0,
1,
SPRITES,
CUSTOMSCREEN,
NULL,
NULL,
NULL,
NULL
}s

85 main() /* HAUPTPROGRAMM */

86 {

87
88
89
90
91
92
93
94
95
96
o7
98
99
100

int warte,step, x;

USHORT schleife,schleife2,v;

/¥ Libraries 6ffnen */

/¥ Sprite-Structure */

/* Hoehe */

/*X -Position */
/*Y-Position */
/* Sprite Nummer */

/¥ New-Screen-Structure */

/* Linke Ecke */
/* QObere Ecke */
/*¥Breite */

/* Hoehe */
/*Tiefe */
/*DetailPen */
/* BlockPen */
/* ViewModes */
/* Type */

if ((IntuitionBase = (struct IntuitionBase *)
OpenLibrary("intuition.library", 0)) ==0)exit();

if ((GfxBase = (struct GfxBase *)

OpenLibrary('graphics.library", 0)) ==0) exit();
/*Screen6ffnen */
if ((screen= (struct Screen*) OpenScreen(&ns)) ==NULL) exit();

SetRGB4 (&screen->ViewPort,20,9,9,9);

SetRGB4 (&screen->ViewPort,21,11,11,11);

/* Farben setzen */

98 Die Custom-Chips

101 SetRGB4 (&screen->ViewPort,22,13,13,13);
102 SetRGB4(&screen->ViewPort,23,15,15,15);

103

104 schleife = GetSprite(&spritel, 3); /* Sprite 'holen!' ¥/
105

106 v=0; /*Variablenauf Start setzen */

107 x=80;

108 step=10; /*waagerechte Schrittweite */
109 /* Sprite iber den Screen bewegen */
110 for(schleife2 =0; schleife2 <10; schleife2++)

111

112 for (schleife =1; schleife <22; schleife++)

113 {

114 X +=step;

115 if(x>300)

116

117 x = 290;

118 step=-10;

119 }

120 if(x<0)

121 -

122 x=10;

123 step=10;

124 }

125 v+=schleife; /*senkrechteSchrittweitewirdstandiggroBer */
126 MoveSprite(&screen->ViewPort, &spritel, x, v);
127 for (warte =0; warte <5000; warte++);

128 }

129 for (schleife =21; schleife>0; schleife--)

130 {

131 X +=step;

132 if(x>300)

133 {

134 x =290;

135 step=-10;

136 }

137 if(x<0)

138 {

139 x=10;

140 step=10;

141

142 v -=schleife; /* senkrechte Schrittweitewirdstédndigkleiner */
143 MoveSprite(&screen->ViewPort, &spritel, x, v);
144 for (warte =0; warte <5000; warte++);

145 }

146 }

147

148 FreeSprite(3); /* Sprite 16schen */
149

150 CloseScreen(screen); /* Screenund Libs */

Die Custom-Chips 99

151
152
153

[Colo o BEN Be) IN@ I SRV IRV I o

10
11

12 ;

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

CloseLibrary(GfxBase);
CloselLibrary(IntuitionBase);

}

CEEAXXEXEEXAXEEXEEX AKX XRXXAXX AKX
’

’

; 1.Sprite-Demonstration

; last update 10/03/88

;von Frank Kremser und Jérg Koch
; ©Markt & Technik 1988

B

FEHEEKEEEE XXX XX XXX KRR XXXX
B

>

/¥ schlieBen */

;Diese Demonstration bewegt ein Sprite diagonal iiber den Screen.
;Dazuwerden die Befehle aus der Gfx-Library verwendet.

’

R R R R S R R o R R R R e
s

loop:

<

;GraphicsLibrary dffnen.

;SpriteNr. 1lverfiigbarmachen
;Setzt auchSpriteNrinder
;SimpleSprite-Structure

;Variable flirx-posinitialisieren
;Variable fiiry-posinitialisieren

;aktuellerViewPort (keiner)
;ZeigeraufSimpleSprite-Structure
;ZeigeraufSpritedaten
;Warteschleifewait:

;X-Positionerhdhen
;Y-Positionerhdhen

d5,SimpleSprite+6 ;Neue X-Possetzen
d6,SimpleSprite+8 ;NeueY-Possetzen

OpenLibrary =-30-378
FreeSprite =-30-384
GetSprite =-30-378
ChangeSprite = -30 -390
ExecBase =4

move.l ExecBase, a6

lea.l GfxName,al

jsr OpenLibrary(a6)

move.l dO,GfxBase

move.l GfxBase,ab

move.l #1,d0

lea.l SimpleSprite,a0l

jsr GetSprite(a6)

move.w #0,d5

move.w #0,d6

move.l GfxBase,ab

move.l 0,a0

lea.l SimpleSprite,al

lea.l Image,al

move.l #5000,d0

sub.1l #1,d0

bne wait

add.w #5,d5

add.w #4,d6

move.w

move.w

jsr ChangeSprite(a6)

cmp . w

#300,d5

;Spriteneusetzen
;WennX-Positionerreicht

100 Die Custom-Chips

46 bne
47

48 wait2: btst
49 bne

50

51 move.1l
52 move.l
53 jsr

54 rts

55

56 even

57 GfxName: dc.b
58 even

loop

#6,$bfe001
wait?

GfxBase,ab
#1,d0

FreeSprite(a6)

;Warten, bisMaustaste gedriickt

;SpriteNr. lwirdals
; frei gekennzeichnet
; Ruckkehr

'graphics.library',0

;SimpleSprite-Structure
;ZeigeraufImage(wirdspéater gesetzt)

;Hohe, X-undY-Position(wirdspater gesetzt)

;SpriteNummer (wirdspéter gesetzt)

;Spritedaten

$07e00000, $181807e0, $20041 8, $567a2184
$7££e0c30, $bffd5042, $bffd5042, $bffd4002
$9££96186, $80017ffe, $8001 7 fe, $46623ffc
$47e23ffc, $23c41F£8,$181807e0, $07e00000

59 GfxBase: blk.1 1,0
60 even
61 SimpleSprite:
62 dc.w 0,0
63 dc.w 16,0,0
64 dc.w 0
65 even
66 Image: dc.1l 0
67 dec.1
68 dc.1
69 dc.1
70 dec.1
71 dec.1 0

1 ;*******************************
2

3 ; 2.Sprite-Demonstration

4 ; lastupdate 10/03/88

5 ; vonFrank Kremser und JérgKoch
6 ; ©Markt & Technik 1988

T

8 ;*******************************
9 ;

—
o

;DieseDemonstrationzeigt zwei Sprites, die direkt iiber die

11 ;Hardwareregister angesprochenwerden

12 ;LAuft nur iber Seka einwandfrei!

14 EEEEKEXEEXXXXXXXXXXX XXX XXX R XXX
B

13 ;

15

16 ExecBase
17 Level3Int
18 SprBuffer
19 INTREQR
20 DMACON

21 INTENA

22 Permit

=4

=$6¢c
=$45000
=$dffole
=$drfroos
=$dffr09a
=-138

; Interrupt request read

Forbid=-132

Die Custom-Chips 101

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

OpenLibrary
CloseLibrary =-414

loopl:

wait:

move .1l
move.1l
lea
jsr
move.1l
move.l

lea
lea
move.1l
move.b
sub
bne

move.1l
jsr
move.1l

add.1l

move.w
move.
move.

o

move.w

move.
move.
move.
move.

SR e

btst
bne

move.l
add.l

move.w
move.1l
move.w

move.w
move.1l
move .w

move.1l
jsr

=-408

sp,initialSP

ExecBase, a6

GfxName,al ;GfxLibraryoffnen
OpenLibrary(a6)

do, GfxBase

do, d6

SprBuffer,al ;SpritesindenSpritepufferkopieren
Sprites, a0

#144,d0

(a0)+, (al)+

#1,d0

loopl

ExecBase, a6
Forbid(a6) ;Multitaskingabschalten

GfxBase,al
#$32,a0 ;Zeigerauf LOFlist

#$4000, INTENA ;Master Interrupt Enable OFF
Level3Int,0ldVector ;AltenInterruptsichern
#Handler,Level3Int ;NeuenInterruptsetzen

#$c000, INTENA

#$0080, DMACON ; Copper DMA stoppen
(a0),01ldCopper ;ZeigeraufalteCopperliste
#CopList, (a0) ;NeueListesetzen

#$80A0, DMACON ;und Copper starten
#6,$bfe001 ;warten, bislinkeMaustaste
wait ; gedrickt

GfxBase,al

#$32, a0 ;ZeigeraufLOFlist

#$0080, DMACON ;CopperundSoundabschalten
0OldCopper, (a0) ;AlteCopperliste setzen
#$8180, DMACON ; Copper einschalten
#$4000, INTENA ;Interruptsabschalten
0ldvector,Level3Int ;AltenInterrupt setzen
#$c000,INTENA ;Interruptseinschalten

ExecBase, a6
Permit(a6) ;Multitaskingeinschalten

102 Die Custom-Chips

73 move.l GfxBase,al ;GfxLibraryschlieRRen
T4 jsr CloseLibrary(a6)
75 move.l 1initialSP,sp
76 clr.1 dO
7 rts ;Rickkehr
78
79 Handler: movem.1l d0-d2/a0-al,-(a7) ;Registerretten
80 move SR, -(sp) ;Statusregisterretten
81 move.w INTREQR,dO ;Interruptrequestregisterlesen
82 btst #5,d0 ;undpriifen, obVBlank-Interrupt
83 bne.s VBlank ;wenn ja, dannweiter
84 bra EndHandler ;sonst Interrupt beenden
85
86 VBlank: lea X_position,al
87 lea y_position,a2
88 lea index, a3
89 move.b (a3),d2 ;Pos.-Index laden
20 move.b 0(al,d?2.b),do ;neue Positionladen
91 move.b 0(aR,d2.b),dl
92 add.b #1,(a3) ; Index erhthen
93 cmp.b #42, (a3) ;WennallePositionengeladen,
94 bne cont
95 move.l #0, (a3) ;dannneubeginnen
96 cont: move.b dO,SprBuffer ;neuex-position
o7 move.b dl,SprBuffer+1 ;Neue y-position
o8 move.b xpos,SprBuffer+72 ;Letztex-pos. fiir2. Sprite
99 move.b ypos,SprBuffer+73 ;Letztey-pos.
100 move.b dO,xpos ;Neue Positionensichern
101 add.b #16,d1 ;Y-Pos + HohedesSprites
102 move.b dl,SprBuffer+2 ;eintragen
103 move.b ypos,dl ;Dasgleichemit2. Sprite
104 add. #16,d1
105 move.b dl,SprBuffer+74
106 move.b SprBuffer+1,ypos
107
108 EndHandler:
109 move (sp)+,SR ;Statusregister zurilickspeichern
110 movem.l (sp)+,d0-d2/a0-al ;Register zuriick
111
112 dc.w $4erf9 ; Interrupt beenden
113 OldVector:
114 dc.1 $o
115
116 GfxName: dc.b ‘graphics.library' ,0
117
118 even
119 Sprites: dc.1 $a0a0b000 ; x-Pos, y-Pos, y-Pos + Héhe
120 dec.1 $07e00000, $181807e0,$200411f8,$5e7a2184 ;SpriteDaten
121 dec.1 $7rfe0c30,$br£d5042, $bffd5042, $bf£d4002
122 dc.1 $9rf96186, $80017ffe, $80017ffe, $46623f fc

Die Custom-Chips 103

123 dec.1
124 dc.1
125

126 Image: dc.1
127 dc.1
128 dc.1
129 dc.1
130 dec.1
131 dc.1
132

133 CopList: dc.1
134 dec.1
135 dec.1
136 dec.1
137 dec.1
138 dc.1
139 dc.1
140 dc.1
141 dc.1
142 dc.1
142

143 dc.1
144 dc.1
145 dc.1
146 dec.1
147 dc.1
148

149 dec.1
150 dec.1
151

152 de.1
153 dc.1
154

155 dc.1
156 x_position:
157 dc.b
158 dc.b
159 dc.b
160 dc.b
161

162 y_position:
163 dc.b
164 dc.b
165 dc.b
166 dec.b
167

168 GfxBase: blk.1l

169 initialSP:

170

blk.1

171 OldCopper:

$47e23ffc, $23c411f8,$181807e0, $07e00000
0

$b0b0c000 ; x-Pos, y-Pos, y-Pos +Héhe
$07e00000,$181807e0, $20041 118, $5e7a2184 ; SpriteDaten
$7rre0c30,$bf£d5042, $bf£d5042, $bf£d4002
$Orr96186,$80017ffe, $80017ffe, $46623ffc
$47e23ffc,$23c418,$181807e0, $07e00000

0 :

$008e2c81 ; DIWSTRT

$0090f4cl ;DIWSTOP

$00920038 ; DDFSTRT

$009400d0 ; DDFSTOP

$00e00005

$00e20000

$01080000 ;Modulo odd Planes
$01001200 ;2BitPlanes

$01020000

$01040024

$01800000 ;Color0

$01820000 ;Colorl

$01a2000f ;Colorl7

$01a400af ;Colorl8

$01a600dd ;Colorl9

$01200004 ;ZeigerauferstesSprite
$01225000

$01240004 ;Zeiger aufzweitesSprite
$01265048

$refffffe ;Ende der Copperliste

90,95,100,105,110,115,120, 125,130,135, 140
145,150, 155,160,165,170,175, 180,185, 190
185,180,175,170, 165, 160,155,150, 145, 140
135,130,125,120,115,110,105,100,95,90

90,95,100,105,110,115,120,125,130,135, 140
145,150,155,160, 165,170,175, 180,185, 190
185,180,175,170,165,160,155, 150, 145, 140
135,130,125,120,115,110,105,100,95,90

1,0

1,0

104 Die Custom-Chips

172 blk.1 1,0
173 xpos: dc.b 0
174 ypos: dc.b 0
175 index: dc.b 0

l ;*******************************
2 ;
3 ; 3.Sprite-Demonstration
4 ; last update 10/03/88
5 ; von Frank Kremser und Jérg Koch
6 ; ©Markt & Technik 1988
T
8 ;*******************************
9;
10 ;DieseDemonstrationzeigt nundiedritte Méglichkeit Sprites
11 ;darzustellen. Standigwirdeinneuer Mauszeiger gesetzt, soda
12 ;der Eindruck entsteht, der Mauszeiger rotiert.

13 ;

14 ;*******************************
15

16 OpenLibrary =-30-378

17 CloseLibrary = -$19e

18 ViewPortAdr =-30-270

19 SetPointer = -30-240

20 SetRGB4 =-30-258

21 WaitTOF = -30-240

22 Delay =-30-168

23 ExecBase = 4

24

25 jsr Init

26 jsr SetSprCol

27 jsr Rotate

28 rts

29

30 Init: move.l ExecBase,ab

31 lea.l GfxName,al ;GfxLibrary 6ffnen
32 jsr OpenLibrary(a6)
33 move.l dO,GfxBase

34

35 move.l ExecBase,a6

36 lea.l IntName,al ;IntuitionLibrary dffnen
37 jsr OpenLibrary(a6)
38 move.l dO,IntBase

39

40 move.l ExecBase,ab

41 lea.l DosName,al ;DosLibrary 6ffnen
42 jsr OpenLibrary(a6)
43 move.l dO,DosBase

44

Die Custom-Chips 105

45 move.l IntBase,al ;AktuellesWindowermitteln
46 move.l 52(a0),AktWin

47

48 move.l IntBase,a6

49) move.l AktWin,aO

50 jsr ViewPortAdr(a6) ;ViewPortermitteln
51 move.l dO,AktVP

52 rts

53

54 SetSprCol:

55 move.l AktVp,al ;ViewPort

56 move.l GfxBase,ab

57 move.l #17,d0 ;Colorl7

58 move.l #0,dl ;Rot

59 move.l #0,d2 ; Griin

60 move.l #0,d3 ;Blau

61 jsr SetRGB4 (a6) ;Farbe setzen

62 move.l AktVP,al

63 move.l #18,d0

64 move.l #13,dl

65 move.l #2,d2

66 move.l #2,d3

67 jsr SetRGB4(a6)

68 move.l AktVP,al

69 move.l #19,d0

70 move.l #15,dl

71 move.l #12,d2

72 move.l #12,d3

73 jsr SetRGB4(a6)

74 rts

75

76 Rotate: move.l IntBase,a6

77 move.l AktWin,aO ;AktuellesWindow
78 lea.l 1ImageO,al ; Image setzen

79 move.l #14,d0 ;X-Positionsetzen
80 move.l #16,d1 ;Y-Position

8l move.l #-7,d2 ;HotSpot x

82 move.l #-7,d3 ;HotSpoty

83 jsr SetPointer(a6) ;Mauszeiger setzen
84 jsr Warte ;Warten

85 btst #6, $bfe00 ; Ist Maustaste gedrickt?
86 bne contl ;Wennnein, dannweiter
87 bra ende ;Ansonstenbeenden
88 contl: move.l IntBase,a6

89 move.l AktWin,aO

90 lea.l Imagel,al

91 move.l #14,d0

92 move.l #16,dl

93 move.l #-6,d2

94 move.l #-8,d3

106 Die Custom-Chips

95

26

o7

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

cont2:

cont3:

cont4:

cont5:

jsr
jsr
btst
bne
bra
move.
move.
lea.l
move.
move.
move.
move.
jsr
jsr
btst
bne
bra
move.
move.
lea.l
move.
move.
move .
move.
jsr
jsr
btst
bne
bra
move.
move.
lea.l
move.
move.
move.
move.
jsr
jsr
btst
bne
bra
move.
move.
lea.l
move.
move.
move.
move.
jsr
jsr

1
1

]

1
1

=

1
1

el =

1
1

]

SetPointer(a6)
Warte

#6, $bfe001
cont2

ende
IntBase,ab
AktWin, a0
Image?,al
#14,d0

#16,d1

#-5,d2

#-7,d3
SetPointer(a6)
Warte

46, $bfe001
cont3

ende
IntBase, a6
AktWin, a0
Image3,al
#14,d0

#16,d1

#-4,d2

#-6,d3
SetPointer(a6)
Warte

#6, $ofe001
cont4

ende
IntBase, a6
AktWin, a0
Image4,al
#14,d0

#16,d1

#-5,d2

#-5,d3
SetPointer(a6)
Warte

#6, $bfe001
contb

ende
IntBase, a6
AktWin, a0
Imageb,al
#14,d0

#16,d1

#-,d2

#-4,d3
SetPointer(a6)
Warte

Die Custom-Chips 107

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173 Warte:
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193 even

194 GfxName:

cont6:

cont7:

ende:

btst
bne
bra
move.
move.
lea.l
move.
move.
move.
move.
jsr
jsr
btst
bne
bra
move.
move.
lea.l
move.
move.
move.
move.
jsr
jsr
btst
bne
bra

move.
move.
jsr
move.
jsr
move.
jsr
rts
move.

move.
jsr

move.
jsr
move.
jsr
rts

dc.b

1
1

e ==

1
1

1

e

#6, $ofe001
cont6

ende
IntBase, a6
AktWin, a0
Image6,al
#14,d0
#16,d1
#-7,d2
#-5,d3
SetPointer(a6)
Warte
#6,$bfe001
cont7

ende
IntBase, a6
AktWin, a0
Image7,al
#14,d0
#16,d1
#-8,d2
#-6,d3
SetPointer(a6)
Warte
#6,$bfe001
Rotate
ende

DosBase, a66
#2,d1
Delay(a6)
GfxBase, a6
WaitTOF(a6)
GfxBase, ab
WaitTOF (a6)

ExecBase, a6
GfxBase,al
CloseLibrary(a6)

IntBase,al
CloseLibrary(a6)

DosBase,al
CloseLibrary(a6)

graphics.library,O

;Zsékundenwarten
;BiszumnachstenBildaufbauwarten

;Nocheinmal

;GfxLibraryschliefen
;IntuitionLibraryschlieBBen

;DosLibrary schlief3en

108 Die Custom-Chips

195 IntName:
196 DosName:

197 even

198 GfxBase:
199 IntBase:
200 DosBase:

201 AktWin:
202 AktVP:
203

204 even
205 ImageO:
206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222 even
223 Imagel:
224

225

226

227

228

229

230

231

232

233

234

235

236

37

238

239

240 even
241 ImageR:
242

243

244

dc
dc

blk.1
blk.1
blk.1
blk.1
blk.1

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dec.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

dc.
dc.
dc.
dc.

.b
.b

HE=E g€ E€EE<€£EEE 8+

HE £ s 8 8+

£ € 5+

'intuition.library',0
‘dos.library' ,0

%0000000000000000, Z0000000000000000
%0111111000000000, Z0000000000000000
%0111111100000000, %0011111000000000
%0100001100000000, %$0011111000000000
%0100011000000000, %0011110000000000
%0100001100000000, Z0011111000000000
%0100100110000000, %0011011100000000
%0011010011000000, Z0000001110000000
%0000001001100000, Z0000000111000000
%0000000100110000, %0000000011100000
%0000000010100000, Z0000000001000000
%0000000001000000, $0000000000000000
%0000000000000000, F0000000000000000
%0000000000000000, Z0000000000000000
0

0

%0000001100000000, Z0000000000000000
%0000010110000000, Z0000001100000000
%0000100011000000, %0000011110000000
%0001000001100000, %0000111111000000
%0001000111100000, %0000111111000000
%0000110111000000, %0000001100000000
%0000010110000000, Z0000001100000000
%0000010110000000, Z0000001100000000
%0000010110000000, 0000001100000000
%0000010110000000, Z0000001100000000
%0000010110000000, %0000001100000000
%0000010110000000, %0000001100000000
%0000011110000000, Z0000000000000000
%0000000000000000, $0000000000000000
0

0

%0000000000000000, Z0000000000000000
%0000000111111000, Z0000000000000000
%0000001000011000, %0000000111110000

Die Custom-Chips 109

245 dc.w %0000001000011000, 20000000111110000
246 dc.w %0000000100011000, %0000000011110000
247 dc.w %0000001001011000, 20000000111110000
248 dc.w %0000010011111000,%0000001110110000
249 dc.w %0000100110110000, %0000011100000000
250 dc.w %0001001100000000, %0000111000000000
251 dc.w %0010011000000000, %0001110000000000
252 dc.w %0001110000000000, $0000100000000000
253 dc.w %0000100000000000, 20000000000000000
254 dc.w %0000000000000000, 20000000000000000
255 dc.w %0000000000000000, $0000000000000000
256 dec.1 0
257
258 even
259 Image3: dc.l 0
260 dc.w %0000000000000000, 20000000000000000
261 de.w %0000000000000000, 20000000000000000
262 dc.w %0000000000000000, Z0000000000000000
263 dc.w %0000000001100000, $0000000000000000
264 dc.w %0000000010010000, F0000000001100000
265 dc.w %0111111110001000, %0000000001110000
266 dc.w %0100000000000100,%0011111111111000
267 dc.w %0111111111001100,%0011111111111000
268 dc.w %0111111111011000, %0000000001110000
269 dc.w %0000000011110000, $0000000001100000
270 dc.w %0000000001100000, 20000000000000000
271 dc.w %0000000000000000, F0000000000000000
272 dc.w %0000000000000000, $0000000000000000
273 dc.w %0000000000000000, $0000000000000000
274 de.1 0 :
275
276 even
277 Imaged4: dc.l 0
278 dc.w %0000000000000000, 20000000000000000
279 dc.w %0000000000000000, 20000000000000000
280 dc.w %0000100000000000, 20000000000000000
281 dc.w %0001010000000000, $0000100000000000
282 dc.w %0011001000000000, %0001110000000000
283 dc.w %0001100100000000, %0000111000000000
284 dc.w %0000110010110000, %0000011100000000
- 285 dc.w %0000011001001000,%0000001110110000
286 dc.w %0000001100001000, %0000000111110000
287 dc.w %0000000110001000, %0000000011110000
288 dc.w %0000001100001000, $0000000111110000
289 dc.w %0000001111111000,%0000000111110000
290 dc.w %0000000111111000, %0000000000000000
291 dc.w %0000000000000000, 20000000000000000
292 dec.1 0
293 :

294 even

110 Die Custom-Chips

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

Imageb:

even
Image6:

even
Image7:

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

HE=Es=sss££££sf€<<€ g s+ HE s sSss€s£ss<€<€<€< s &

£ £ sfs8EssE<€ €8 5+

0

%0000000000000000, Z0000000000000000
%0000011110000000, £0000000000000000
%0000011010000000, Z0000001100000000
%0000011010000000, %0000001100000000
%0000011010000000, %0000001100000000
%0000011010000000, Z0000001100000000
%0000011010000000, Z0000001100000000
%0000011010000000, Z0000001100000000
%0000111011000000, Z0000001100000000
%0001111000100000, %0000111111000000
%0001100000100000, Z0000111111000000
%0000110001000000, %0000011110000000
%0000011010000000, Z0000001100000000
%0000001100000000, Z0000000000000000
0

0

%0000000000000000, Z0000000000000000
%0000000000000000, £0000000000000000
%0000000001000000, $0000000000000000
%0000000011100000, Z0000000001000000
%0000000110010000, Z0000000011100000
%0000001100100000, Z0000000111000000
%0011011001000000, %0000001110000000
%0111110010000000, %0011011100000000
%0110100100000000, %0011111000000000
%0110001000000000, %0011110000000000
%0110000100000000, %0011111000000000
%0110000100000000, %0011111000000000
%0111111000000000, Z0000000000000000
%0000000000000000, F0000000000000000
0

0

%0000000000000000, Z0000000000000000
%0000000000000000, $0000000000000000
%0000000000000000, Z0000000000000000
%0001100000000000, Z0000000000000000
%0011110000000000, %0001100000000000
%0110111111111000,%0011100000000000
%1100111111111000,%0111111111110000
%1000000000001000,%0111111111110000
%0100011111111000, %0011100000000000
%0010010000000000, Z0001100000000000
%0001100000000000, 0000000000000000
%0000000000000000, 0000000000000000
%0000000000000000, Z0000000000000000

Die Custom-Chips 111

345
346

[Cole s BEN TN) IO I NI VARRIV I ool

—
o

11

12 ;

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

CREEEEXREARAAEXX XXX RERXXX XXX
s

>

dc.w
dc.1

%0000000000000000, Z0000000000000000

0

; 4.Sprite-Demonstration

; last update 10/03/88

; von Frank Kremser und Jorg Koch
; ©OMarkt & Technik 1988

B

CRHEEAEEXXH XXX XX XXX XX
’

5

;Diese Demonstration gleicht der 3. Demonstration, 148t denMauszeiger
;aber Kreise ziehen.

i

CREEEXEXRRAEKXAEXXE XXX XXX R XXNX
s

Init:

OpenLibrary= -30-378
CloseLibrary -$19e

ViewPortAdr = -30-270
SetPointer =-30-240

SetRGB4
WaitTOF
Delay
ExecBase

jsr
jsr
jsr
rts

move.1l
1l ea.l

jsr

move.1l

move. 1l
lea.l
jsr

move.1l

move.l
lea.l
jsr
move.1l

move.l
move.1l

=-30-258
= -30-240
=-30-168
=4

Init
SetSprCol
Circle

ExecBase, a6
GfxName,al
OpenLibrary(a6)
do, GfxBase

ExecBase, a6
IntName,al
OpenLibrary(a6)
dO, IntBase

ExecBase, a6
DosName, al
OpenLibrary(a6)
dO, DosBase

IntBase, a0
52(a0),AktWin

;GfxLibrary 6ffnen

;IntuitionLibrary 6éffnen

;DosLibrary 6ffnen

;AktuellesWindowermitteln

112 Die Custom-Chips

47 move.l IntBase,ab6
48 move.l AktWin,aO
49 jsr ViewPortAdr(a6) ;ViewPortermitteln
50 move.l dO,AktVP
51 rts
52
53 SetSprCol:
54 move.l AktVp,al ;ViewPort
55 move.l GfxBase,a6
56 move.l #17,d0 ;Colorl7
57 move.l #0,dl ;Rot
58 move.l 0,d2 ; Griin
59 move.l 0,d3 ;Blau
60 jsr SetRGB4(a6) ;Farbe setzen
61 move.l AktVP,a0
62 move.l #18,d0
63 move.l #13,dl
64 move.l #2,d2
65 move.l #2,d3
66 jsr SetRGB4 (a6)
67 move.1l AKtVP, a0
68 move.l #19,d0
69 move.l +#15,dl
70 move.l 12,d2
71 move.l #12,d3
72 jsr SetRGB4(a6)
73 ris
74
75 Circle: move. IntBase, a6
76 move.l AktWin,aO ;AktuellesWindow
7 lea.l 1Image0,al ;Spriteimage
78 move.l #14,d0 ;X-Position
79 move.l #16,dl ;Y-Position
80 move.l #-14,d2 ;HotSpot x
81 move.l #1,d3 ;HotSpoty
82 jsr SetPointer(a6) ;neuenMauszeiger setzen
83 jsr Warte ;Warten
84 btst #6,$bfe001 ; Ist linkeMaustaste gedrickt?
85 bne contl ;Wennnein, dannweiter
86 bra ende ' ;Ansonstenbeenden
87 contl: move.l IntBase,a6
88 move.l AktWin,aO
89 lea.l Imagel,al
90 move.l #14,d0
91 move.l #16,dl
92 move.l #-17,d2
93 move.l #-6,d3
94 jsr SetPointer(a6)
95 jsr Warte

96 btst #6, $bfe001

Die Custom-Chips 113

o7

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

cont2:

cont3:

cont4:

contb:

bne
bra
move.
move.
lea.l
move.
move.
move.
move.
jsr
jsr
btst
bne
bra
move.
move.
lea.l
move.
move.
move.
move.
jsr
jsr
btst
bne
bra
move.
move.
lea.l
move.
move.
move.
move.
jsr
jsr
btst
bne
bra
move.
move.
lea.l
move.
move.
move.
move.
jsr
jsr
btst
bne
bra

=

1
1

e

1
1

o

1

1
1

H o

cont?

ende
IntBase, a6
AktWin, a0l
Image2,al
#14,d0
#16,dl
#-14,d2
#-14,d3
SetPointer(a6)
Warte

#6, $bfe001
cont3

ende
IntBase, a6
AktWin, a0
Image3,al
#14,d0
#16,d1
#-7,d2
#-17,d3
SetPointer(a6)
Warte

#6, $bfe001
cont4

ende
IntBase, a6
AktWin, a0
Image4,al
#14,d0
#16,d1
#1,d2
#-14,d3
SetPointer(a6)
Warte

#6, $bfe001
contb

ende
IntBase, a6
AktWin, a0
Imageb,al
#14,d0
#16,d1
#4,d2
#-7,d3
SetPointer(a6)
Warte

#6, $bofe001
conté

ende

114 Die Custom-Chips

147 cont6: move.l IntBase, a6

148 move.l AktWin,aO

149 lea.l Image6,al

150 move.l #14,d0

151 move.l #16,dl

152 move.l 1,dR

153 move.l #1,d3

154 jsr SetPointer(a6)

155 jsr Warte

156 btst #6, $bofe001

157 bne cont7

158 bra ende

159 cont7: move.l IntBase,a6

160 move.l AktWin,aO

161 lea.l Image7,al

162 move.l #14,d0

163 move.l #16,dl

164 move.l #-6,d2

165 move.l #4,d3

166 jsr SetPointer(a6)

167 jsr Warte

168 btst #6,$bfe001

169 bne Circle

170 bra ende

171

172 Warte: move.l DosBase, a6

173 move.l #2,dl ;2 Sekundenwarten
174 jsr Delay(a6)

175 move.l GfxBase,ab ;BiszumnéchstenBildaufbauwarten
176 jsr WaitTOF (a6)

177 move.l GfxBase,ab ;Nocheinmal

178 jsr WaitTOF (a6)

179 rts ende:

180 move.l ExecBase,a6

181 move.l GfxBase,al ;GfxLibraryschlieen
182 jsr CloseLibrary(a6)

183 move.l IntBase,al ;IntuitionLibraryschlieBen
184 jsr CloselLibrary(a6)

185 move.l DosBase,al ;DosLibrary schliel3en
186 jsr CloseLibrary(a6)

187 rts

188

189 even

190 GfxName: dc.b 'graphics.library' ,0

191 IntName: dc.b 'intuition.library',0

192 DosName: dc.b ‘dos.library' ,0

193 even

194 GfxBase: blk.1 1,
195 IntBase: blk.1 1,
196 DosBase: blk.1 1

[eNeoNe)

>

Die Custom-Chips 115

197 AktWin: blk.1 1,0

198 AktVP: blk.1 1,0

199

200 even

201 ImageO: dc.l 0

202 dc.w %0000000000000000, Z0000000000000000
203 dc.w %0111111000000000, Z0000000000000000
204 dc.w %0111111100000000,%0011111000000000
205 dc.w %0100001100000000,%0011111000000000
206 dc.w %0100011000000000,%0011110000000000
207 dc.w %0100001100000000, %0011111000000000
208 dc.w %0100100110000000,%0011011100000000
209 dc.w %0011010011000000, 20000001110000000
210 dc.w %0000001001100000, 20000000111000000
211 dc.w %0000000100110000, %0000000011100000
212 dc.w %0000000010100000, 20000000001000000
213 dc.w %0000000001000000, $0000000000000000
214 dc.w %0000000000000000, 20000000000000000
215 dc.w %0000000000000000, 20000000000000000
216 dc.10

217

218 even

219 Imagel: dc.l 0

220 dc.w %0000001100000000, 20000000000000000
221 dc.w %0000010110000000, $0000001100000000
222 dc.w %0000100011000000, 20000011110000000
223 dc.w %0001000001100000, %0000111111000000
224 dc.w %0001000111100000,%0000111111000000
225 dc.w %0000110111000000, %0000001100000000
226 de.w %0000010110000000, %$0000001100000000
227 dc.w %0000010110000000, %0000001100000000
228 dc.w %0000010110000000, 20000001100000000
229 dc.w %0000010110000000, 20000001100000000
230 dc.w . %0000010110000000, %0000001100000000
231 dc.w %0000010110000000, 20000001100000000
232 dc.w %0000011110000000, Z0000000000000000
233 dc.w %0000000000000000, 30000000000000000
234 dec.1 0

235 :

236 even

237 Image2: dc.l 0

238 dc.w %0000000000000000, 20000000000000000
239 dc.w %0000000111111000,%0000000000000000
240 dc.w %0000001000011000, %0000000111110000
241 dc.w %0000001000011000, $0000000111110000
242 dc.w %0000000100011000, %20000000011110000
243 dc.w %0000001001011000,%0000000111110000
244 dc.w %0000010011111000,%0000001110110000
245 dc.w %0000100110110000, %0000011100000000
246 dc.w %0001001100000000, %0000111000000000

116 Die Custom-Chips

247 dc.w %0010011000000000, 20001110000000000
248 dc.w %0001110000000000, 20000100000000000
249 dc.w %0000100000000000, 20000000000000000
250 dc.w %0000000000000000, $0000000000000000
251 dc.w %0000000000000000, $0000000000000000
2562 dec.1 0

253

254 even

255 Image3: dc.l 0

256 dc.w %0000000000000000, 20000000000000000
257 dc.w %0000000000000000, Z0000000000000000
258 dc.w %0000000000000000, $0000000000000000
259 dc.w %0000000001100000, 20000000000000000
260 dc.w %0000000010010000, %0000000001100000
261 dc.w %0111111110001000, %0000000001110000
262 dc.w %0100000000000100,%0011111111111000
263 dc.w %0111111111001100,%0011111111111000
264 dc.w %0111111111011000,%0000000001110000
265 dc.w %0000000011110000, %$0000000001100000
266 dc.w %0000000001100000, Z0000000000000000
267 dc.w %0000000000000000, $0000000000000000
268 dc.w %0000000000000000, Z0000000000000000
269 dc.w %0000000000000000, $0000000000000000
270 dec.1 0

271

272 even

273 Imaged4: dc.l 0

274 dc.w %0000000000000000, $0000000000000000
275 dc.w %0000000000000000, Z0000000000000000
276 dec.w %0000100000000000, 20000000000000000
77 dc.w %0001010000000000, 20000100000000000
278 dc.w %0011001000000000, %0001110000000000
279 dc.w %0001100100000000, 20000111000000000
280 dc.w %0000110010110000, %20000011100000000
281 dc.w %0000011001001000, %0000001110110000
282 dc.w %0000001100001000, 20000000111110000
283 dec.w %0000000110001000, 20000000011110000
284 dc.w %0000001100001000, %0000000111110000
285 dc.w %0000001111111000,%0000000111110000
286 dc.w %0000000111111000, 20000000000000000
287 dc.w %0000000000000000, Z0000000000000000
288 dc.10

289

290 even

291 Imageb5: dc.1 0

292 dc.w %0000000000000000, 20000000000000000
293 dc.w %0000011110000000, 20000000000000000
294 dc.w %0000011010000000, 20000001100000000
295 dc.w %0000011010000000, 20000001100000000
296 dc.w %0000011010000000, 20000001100000000

Die Custom-Chips 117

297 dc.w %0000011010000000, Z0000001100000000
298 dc.w %0000011010000000, %0000001100000000
299 dc.w %0000011010000000, $0000001100000000
300 dc.w %0000111011000000, %0000001100000000
301 dc.w %0001111000100000, %0000111111000000
302 dc.w %0001100000100000, %0000111111000000
303 dc.w %0000110001000000, %$0000011110000000
304 dc.w %0000011010000000, 30000001100000000
305 dc.w %0000001100000000, 20000000000000000
306 dc.1 0

307

308 even

309 Image6: dc.1l 0

310 dc.w %0000000000000000, Z0000000000000000
311 dc.w %0000000000000000, Z0000000000000000
312 dc.w %0000000001000000, Z0000000000000000
313 dc.w %0000000011100000, 20000000001000000
314 de.w %0000000110010000, %0000000011100000
315 dc.w %0000001100100000,%0000000111000000
316 dc.w %0011011001000000, 20000001110000000
317 dc.w %0111110010000000,%0011011100000000
318 dc.w %0110100100000000,%0011111000000000
319 dc.w %0110001000000000,%0011110000000000
320 dc.w %0110000100000000,%0011111000000000
321 dc.w %0110000100000000,%0011111000000000
322 dc.w %0111111000000000, F0000000000000000
323 dc.w %0000000000000000, 0000000000000000
324 dec.1 0

325

326 even

327 Image7: dc.l 0

328 dc.w %0000000000000000, Z0000000000000000
329 dc.w %0000000000000000, Z0000000000000000
330 dc.w %0000000000000000, $0000000000000000
331 dc.w %0001100000000000, 30000000000000000
332 dc.w %0011110000000000, %$0001100000000000
333 dc.w %0110111111111000,%0011100000000000
334 dc.w %1100111111111000,%0111111111110000
335 dc.w %1000000000001000,%0111111111110000
336 de.w %0100011111111000,%0011100000000000
337 dc.w %0010010000000000, 20001100000000000
338 dc.w %0001100000000000, $0000000000000000
339 de.w %0000000000000000, £0000000000000000
340 dc.w %0000000000000000, 20000000000000000
341 dc.w %0000000000000000, 20000000000000000
342 de.1 0

118 Die Custom-Chips

Eine besondere Moglichkeit der Darstellung bietet noch der Attached-Mode. Es kann
Sprite 1 zu 0,3 zu 2, 5 zu 4 und 7 zu 6 geschaltet werden. Dazu muf3 das Bit 7 des zweiten
Datenwortes der Sprites 1, 3, 5 oder 7 gesetzt werden. Der Attached-Mode bewirkt,
daB aus den zwei angegebenen Sprites jeweils ein einzelnes Sprite wird, das aber nicht
mehr aus drei Farben plusTransparent, sondern aus 15 Farben plusTransparent besteht.
Dazu muB} erstens das oben erwihnte Attached-Bit gesetzt werden, und jeweils eine
Datenliste fiir die beiden Sprites, die zusammen dargestellt werden sollen, erstellt wer-
den. Die Positionsdaten von beiden Sprites miissen iibereinstimmen, aber bei dem
zweiten Datenwort des zugewiesenen Sprites (1, 3, 5 oder 7) muB Bit 7 gesetzt werden.
Die Imagedaten der Sprites 0, 2, 4 oder 6 werden als Planes 0 und 1, die der Sprites 1,
3, Soder 7 als Planes 2 und 3 interpretiert. Als Farben werden die Farbregister 17 bis 31
verwendet.

4.2.3: Die Playfield-Hardware

Fast die gesamte Videodarstellung des Amiga beruht auf den Playfields. Alle normalen
Screens sind als Playfield aufzufassen. Um nun ein solches Playfield zu erstellen, miis-
sen einige Vorarbeiten erledigt werden.

Als erstes muf} natiirlich gentigend Speicherplatz fiir das Playfield bereitgestellt wer-
den, das erstellt werden soll. Soll das Playfield 320 x 200 Punkte grof sein, so werden
8000 Byte fiir ein BitPlane benotigt. Als BitPlanes werden die logischen Speicher-
ebenen eines Playfields bezeichnet, die die verwendeten Farben kennzeichnen. Ein
Playfield mit 3 BitPlanes kann beispielsweise 2 hoch 3, also 8 Farben représentieren.
Fiir ein solches Playfield miissen demnach 3 mal 8000 Byte, also 24000 Byte bereit-
gestellt werden. Maximal kann ein Playfield 6 BitPlanes (im HAM-Modus) besitzen.
Im LoRes-Modus sind maximal 5 Planes moglich und im HiRes-Modus maximal 4.

Hat man diesen Speicherplatz reserviert, so miissen die Zeiger BPLxPTH/BPLxPTL
fiir die Startadressen der einzelnen BitPlanes gesetzt werden. Als nichstes gibt man im
BPLCONO-Register die ViewModi an, die verwendet werden sollen:

Registerbeschreibung BPLCONO:

Bit Name Funktion

15 HIRES Setzt den HiRes-Modus.
14-12 BPU2-0 Setzt die Anzahl der verwendeten BitPlanes (010 = zwei BitPlanes).
11 HOMOD Setzt den Hold-And-Modify-Mode.
10 DBLPF Setzt den Dual-Playfield-Modus.
2 LACE Setzt den Interlace-Mode.

Die Custom-Chips 119

Als néchstes miissen die Register BPLIMOD und BPL2MOD auf 0 gesetzt werden.
Um die genaue Auflosung und Bildpositionierung zu bestimmen, miissen weiterhin die
Register DIWSTRT, DIWSTOP, DDFSTRTund DDFSTOP gesetzt werden.

DIWSTRTIlegt die Display-Position fest, ab der das Playfield gezeigt werden soll. Das
erste Byte von DIWSTRTlegt die vertikale und das zweite Byte die horizontale Posi-
tion fest. Im Normalfall ist DIWSTRT gleich $2C81. DIWSTOP hingegen legt die
rechte untere Endposition des darzustellenden Playfields fest. Sowohl DIWSTRT, als
auch DIWSTOP sind nicht vom Display-Modus abhéngig, bleiben also auch im HiRes-
Modus unverindert. Das erste Byte bei DIWSTOP enthilt die vertikale Endposition.
Das hochste Bit dieses Bytes wird zusétzlich invertiert und als 9. Bit erkannt, wodurch
auch Werte, die groBer als 256 sind, angegeben werden konnen. Von der physikalischen
horizontalen Endposition wird $100 (=256) abgezogen und im zweiten Byte angege-
ben. Wenn DIWSTRT gleich $2C81 ist, ist der Normalwert fiir DIWSTOP gleich
$F4C1.

Die Register DDFSTRT und DDFSTOP legen Datenzugriffsstart und -stop fest. Fiir
DDFSTRT wird zuerst die horizontale Startposition, aus obigem Beispiel ist dies $81,
durch zwei geteilt. Ist die Darstellung im LoRes-Modus, muf3 dann noch der Wert 8*5
und im HiRes-Modus der Wert 4*5 abgezogen werden. Das ergibt fiir DDFSTRTeinen
Wert von $38 im LoRes-Modus und $3C im HiRes-Modus. Der Wert fiir DDFSTOP
errechnet sich dann wie folgt:

DDFSTOP = DDFSTRT + (8*(Screenbreite/16-1)) fiir LoRes
DDFSTOP = DDFSTRT + (4*(Screenbreite/16-1)) fiir HiRes
Mit Screenbreite ist die Breite des darzustellenden Playfields in Punkten gemeint.

Hat man alle oben erwihnten Schritte durchgefiihrt, so braucht man nur noch die Bit-
Plane-DMA zu starten. Wie dies geschieht, ersehen Sie aus dem Kapitel zur DMA-Kon-
troll-Logik. Besonders angemerkt werden muf3 noch, daf es keinen Zweck hat, durch
einfaches Setzen der Register ein Playfield zu erzeugen. Dies sollte durch eine Copper-
liste geschehen.

Das oben erwéhnte Vorgehen erzeugt ein normales Playfield, das auch als Screen be-
kannt ist. Doch es bestehen noch eine Vielzahl von weiteren Moglichkeiten. Zum er-
sten ist hier der Dual-Playfield-Modus zu erwédhnen. Ist dieser Modus durch Setzen von
Bit 10 in BPLCONO eingeschaltet, so werden die BitPlanes mit ungerader Nummer
unabhingig von denen mit gerader Nummer behandelt. Das bedeutet, das die Bit-
Planes 1, 3 und 5, sowie die BitPlanes 2, 4 und 6 jeweils ein eigenes Playfield darstellen,
die weitgehend unabhingig voneinander behandelt werden konnen. Jedes dieser bei-
den Playfields kann also bis zu 3 BitPlanes besitzen, also bis zu 8 Farben darstellen. Das
Playfield mit den ungeraden Planes spricht die Farbregister 0 bis 7 an, wihrend das
andere Playfield die Register 16 bis 23 anspricht. Ist ein Bildpunkt im ersten Playfield

120 Die Custom-Chips

auf Register 0 gesetzt, so erscheint dieser Punkt als transparent, wodurch das zweite
Playfield sichtbar wird.

Ein weiterer Punkt, der Playfields so interessant macht, ist der, daB sie groBer sein kon-
nen als der dargestellte Ausschnitt.

Soll ein Playfield hoher sein als der dargestelite Ausschnitt, soist dies ohne allzu groBen
Aufwand moglich. Dazu erstellt man lediglich geniigend groBe BitPlanes, wobei natiir-
lich die gewiinschte Hohe berticksichtigt werden muf3. Die Hohe des dargestellten Aus-
schnittes ist ja durch DIWSTRTund DIWSTOP festgelegt. Soll der Ausschnitt nun ver-
tikal »bewegt« werden, so addiert, bzw. subtrahiert man einfach Anzahl der Worte pro
Zeile zu den Startzeigern BPLxPTH/BPLXPTL der jeweiligen BitPlane-Zeiger.

Will man aber Playfields erstellen, die breiter sind als der dargestellte Ausschnitt, so
wird es etwas schwieriger. Um dies iiberhaupt durchfiithren zu konnen, sind die Register
BPL1IMOD und BPL2MOD notwendig. Wurde eine Zeile komplett dargestellt, so wird
zu dem momentanen Display-BitPlane-Zeiger der Wert aus BPLxMOD hinzuaddiert,
um bei der néchsten Zeile an der neuen Speicherposition mit der Darstellung der Da-
ten zu beginnen. In den Registern BPLxMOD muf} die Anzahl der Words stehen, die
iibersprungen werden sollen. Wenn man also einen Ausschnitt von 320 Punkten Breite
(=20Words) hat, das Playfield aber 640 (=40Words) breit ist, mul BPLxMOD auf den
Wert 40-20 = 20 gesetzt werden. Es existieren zwei BPLxMOD-Register, damit im
Dual-Playfield-Modus die zwei Playfields verschiedene Abmafe haben koénnen.
BPLIMOD bezieht sich auf alle ungeraden BitPlanes und BPL2MOD auf alle geraden.

Soll ein solches breites Playfield horizontal »bewegt« werden, braucht man nur noch
die einzelnen BitPlane-Zeiger um die Anzahl der Words zu erhéhen, bzw. erniedrigen.
Dies verschiebt das Playfield aber immer um 16 Punkte. Um nur um einen Punkt ver-
schieben zu konnen, muf3 noch das Register BPLCONI1 entsprechend gesetzt werden.
Die Bits 0 bis 3 beeinflussen das Scrolling des ersten Playfields und die Bits 4 bis 7 das
Scrolling von Playfield 2. Will man beispielsweise das erste Playfield um 16 Punkte nach
links bewegen, so setzt man die Bits 0 bis 3 von BPLCONT1 auf 0 und die BitPlane-Zei-
ger auf die Startposition des Playfields. Anschliefend inkrementiert man BPLCON1
jeweils um 1, bis die Bits 0 bis 3 gleich %1111, bzw. $F sind. Dann setzt man sie wieder
zuriick und erhoht den BitPlane-Zeiger um ein Word. Soll ein Playfield hoher und brei-
ter sein als der gezeigte Ausschnitt, so muf3 man nur noch die beiden oben angefiihrten
Methoden kombinieren.

Die Custom-Chips 121

OO0 0 WD

/******************************

1. Playfield-Demonstration
last update 16/02/88

von Frank Kremser und JérgKoch
© Markt & Technik 1988

HXAEEXXXERAXAXX XX XXX EKEKXXXX XA XXXX

DieseDemo zeigt ein einzelnes Playfieldmit einer GréBe von 960 x 600

*******************************/

#include <exec/types.h> /* Include-Files laden */
#include <exec/memory.h>

#include <graphics/gfxbase.h>

#include <graphics/copper.h>

#include <graphics/view.h>

#include <graphics/rastport.h>

#include <devices/gameport.h>

#include <devices/inputevent.h>

UWORD colors[] =
{
0,
0x555,
OxAAA,
OxFFF
}s
structView v, *oldview;
struct ViewPort vp;
struct ColorMap *com;
structRasInfo ri;
structBitMap *bm;

structRastPort rp;
struct GfxBase *GfxBase; /* Library-Zeiger */

main() /* HAUPTPROGRAMM */
{
inti, x,y; ,
/*Library 6ffnen */
if (! (GfxBase = OpenLibrary ('graphics.library", 0)))
exit();
/* Speicher fir BitMap-Structure bereitstellen */
if (! (bm=AllocMen ((long) sizeof (*bm), MEMF_CHIPI|MEMF_CLEAR)))
exit();

InitView (&v); /* Neue View-Structure initialisieren */

122 Die Custom-Chips

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
T
78
79
80
8l
82
83
84
85
86
87
88
89
920
91
92
93
94
95
96
97
98
99
100

InitVPort (&vp); /* Neue Viewport-Structure initialisieren */
InitBitMap (bm, (long) 2, 960, 600); /* BitMap-Structure init. */
InitRastPort (&rp); /* Rastport-Structure initialisieren ¥/

v.ViewPort = &vp; /* ViewPort eintragen */

ri.BitMap =bm; /*BitMap eintragen */
ri.RxOffset =ri.RyOffset =ri.Next = NULL;

vp.DWidth = 320; /* dargestellte Ausschnittgrole festlegen */
vp.DHeight = 256;

vp.RasInfo =&ri; /¥RasInfo-Structure eintragen */

vp.ColorMap = GetColorMap(4); /* Color-Map eintragenund init. ¥/

rp.BitMap = bm; /¥ BitMap eintragen */

for (i=0; i<2; i++) /* Speicher fiir Bitplanes bereitstellen */
if (! (bm->Planes[i] = AllocRaster (960, 600)))
exit();

MakeVPort (&v, &vp); /* ViewPort inView-Structure eintragen */
MrgCop (&v); /¥ View in Copperliste eintragen */

LoadRGB4 (&vp, colors, 4); /* Farben setzen */

oldview = GfxBase->ActiView; /* AltenView sichern */

LoadView (&v); /* NeuenViewdarstellen */

i=1; /% Muster zeichnen */
SetDrMd (&rp, JAM1);

SetRast (&rp, 0);

SetAPen (&rp, 1);

for (x=0, y=0; x<960; x +=8, y +=5)

Move (&rp, (long) x, 0);
Draw (&rp, 959, (long)y);
Draw (&rp, 959-x, 599);
Draw (&rp, 0, 599-y);
Draw (&rp, (long) x, OL);
if (1 (++1&3)) i++;
SetAPen (&rp, (long) i);

SetAPen (&rp, 3); /* Text zeichnen */
Move (&rp, 429, 301);

Text (&rp, "Ein Superplayfield", 18);

SetAPen (&rp, 1);

Move (&rp, 428, 300);

Text (&rp, "Ein Superplayfield", 18);

for(x=0;x<640;x+=4) /* Playfield nach links bewegen */

{
ri.Rx0ffset =x;

Die Custom-Chips 123

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

}

WaitTOF ();
ScrollVPort (&vp);
}
for(y=0;y<344;y+=2) /* Playfield nach oben bewegen */

{

ri.RyOffset =y;

WaitTOF ();

ScrollVPort (&vp);
}

for(x=640;%x>0;x-=4) /* Playfieldnach rechts bewegen */

ri.RxOffset =x;
WaitTOF ();
ScrollVPort (&vp);
}
for(y=344;y>0;y-=2) /* Playfield nah unten bewegen */
{
ri.RyOffset =y;
WaitTOF ();
ScrollVPort (&vp);
}
y=12;
for(x=0;x<640;x+=4) /* Playfielddiagonal bewegen */
{
yt+=2;
ri.Rx0ffset =x;
ri.RyOffset=y;

WaitTOF () ;
ScrollVPort (&vp);
}
LoadView (oldview); /* AltenView setzen */
WaitTOF (); /*Warten, bisoberer Bildschirmrand erreicht */

FreeVPortCopLists (&vp); /* Alte Copperlisten 16schen */
FreeCprList (v.LOFCprList);
FreeColorMap (vp.ColorMap); /* Colormap 16schen */
for (i=0; i<2; i++) /*Bitplanes 16schen */
if (bm->Planes[i])
FreeRaster (bm->Planes[i], 960, 600);
FreeMem (bm, (long) sizeof (*bm)); /* BitMap-Structure 16schen */

CloseLibrary(GfxBase); /* Library schlieBen */

124 Die Custom-Chips

OO0 30 0 WM+

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
_7
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

/******************************

2. Playfield-Demonstration
last update 16/02/88

von Frank Kremser und Jorg Koch
© Markt & Technik 1988

FAEEEXREXKEEXX XXX EXRAERXXXX XXX XX

Diese Playfieldzeigt einGittermuster, das sich bewegt. Dabei werden
jeweilsdieLinien einer Richtungauf eineigenes Playfield gezeichnet.
Die Bewegung kommt dadurch zustande, daB eines der Playfields bewegt
wird. Optischbesteht allerdings zwischen einer Bewegung nach links
und unten, bzw nach rechtsund obenkeinUnterschied. .

*******************************/

#include <exec/types.h> /* Include-Files laden */
#include <intuition/intuition.h>
#include <graphics/gfxbase.h>

struct View v, ¥oldview;
struct ViewPort vp;
struct ColorMap *com;

structBitMap b, b2;
structRastPort rp, rp2;
structRasInfo ri,ri2;

LONG 1i;
SHORT k,n;

struct GfxBase *GfxBase; /* Library-Zeiger */

UWORD colors[] =

0x000, O0xf00, 0, O,
0, 0, 0, O,
0, 0x4f8

}s

UWORD *colorpalette;

short w;

main() /* HAUPTPROGRAMM * /
{
int x;
/* Library 6ffnen */
GfxBase = (struct GfxBase *)OpenLibrary("graphics.library",0);
if (GfxBase == NULL) exit();

Die Custom-Chips 125

51

52 oldview = GfxBase->ActiView; /¥ AltenViewsichern */

53

54 InitBitMap(&b,1,400,400); /*BitMap-Structuresinitialisieren */
55 InitBitMap(&b2,1,320,320);

56
57 for(i=0; i<l; i++) /* Speicher fiir Bitplanesdes 1. Playfields */
58 { /*bereitstellen */

59 b.Planes[i] = (PLANEPTR)AllocRaster(400,400);
60 if(b.Planes[i] ==NULL) exit();
61 BltClear(b.Planes[i],RASSIZE(400,400),0);

62 }

63

64 for(i=0; i<l; i++) /* Genauso bei zweitemPlayfield */
65 {

66 b2.Planes[i] = (PLANEPTR)AllocRaster(320,320);
67 if(b2.Planes[i] ==NULL) exit();
68 BltClear(b2.Planes[i],RASSIZE(320,320),0);

69 }
70
71 ri.BitMap = &b; /*BitMap-Structure eintragen */

72 ri.RxOffset =0;
73 ri.RyOffset =0;
74 ri.Next =&ri2; /* Zeiger auf ndchstes Playfield */
75
76 ri2.BitMap = &b2; /¥ BitMap-Structure eintragen */
77 ri2.Rx0ffset =0;
78 riR2.RyOffset =0;
79 ri2.Next =0;
80
81 InitView(&v); /*NeuenViewinitialisieren */
82 v.ViewPort =&vp; /*undViewPort eintragen */
83
84 InitVPort(&vp); /*ViewPort initialisieren */
85
86 om= (structColorMap*)GetColorMap(10); /¥ ColorMapbereitstellen*/
87 colorpalette = (UWORD *)cm->ColorTable; /* und eintragen */
88 for(i=0; i<10; i++)
89 *colorpalette++ =colors[i]; /¥ Farben setzen */
20
91 vp.ColorMap=cm; /*¥ ColorMap eintragen */
92
93 vp.DWidth =320; /*Breite desAusschnittes*/
94 vp.DHeight = 256;
95 vp.RasInfo =&ri; /*RasInfoeintragen*/
96 vp.Modes =DUALPF; /*Dual-Playfield-Mode einschalten */
o7
98 MakeVPort(&v, &vp); /* ViewPort eintragen */
99 MrgCop(&v); /*Viewin Copperliste eintragen */
100

126 Die Custom-Chips

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

InitRastPort(&rp); /*RastPort initialisieren */
rp.BitMap = &b; /* BitMap-Structure eintragen */

InitRastPort(&rp2); /* zweitenRastPort initialisieren */
rp2.BitMap = &b2; /* zweite BitMap-Structure eintragen */

SetRast (&rp,0);
SetRast (&rp2,0);
LoadView(&v); /* NeuenViewdarstellen */

SetAPen(&rp2,1); /*Muster zeichnen */
for(x=0; x<320; x+=16)

Move (&rp2,0,319-x);
Draw(&rp2,x,319);
Move (&rp2,x,0);
Draw(&rp2,319,319-x);
}

SetAPen(&rp,1);
for(x=0; x<400; x+=20)
{
Move(&rp,0,x);
Draw(&rp,x,0);
Move (&rp,x,399);
Draw(&rp, 399,x);
}

for(w=0; w<'70; w++) /*1. Playfield nach links bewegen */
{

ri.RxOffset++;

MakeVPort (&v, &vp);

MrgCop (&v) ;

LoadView(&v);

WaitTOF();

}

for(w=0; w<130; w++) /*¥1. Playfield nach oben bewegen */
{

ri.RyOffset++;

MakeVPort (&v, &vp) ;

MrgCop(&v) ;

LoadView(&v) ;

WaitTOF();

}

for(w=0; w<'70; w++) /*1. Playfield nach rechts bewegen */

ri.Rx0ffset--;
MakeVPort (&v, &vp);

Die Custom-Chips 127

151 MrgCop (&v) ;
152 LoadView(&v);
153 WaitTOF();

154 }

155

156 for(w=0; w<130; w++) /*1. Playfieldnachunten bewegen */
157 |

158 ri.RyOffset--;

159 MakeVPort (&v, &vp);
160 MrgCop (&v) ;

161 LoadView(&v);

162 WaitTOF();

163 }

64

165 LoadView(oldview); /* AltenViewdarstellen */
166

167 for(i=0; i<l; i++) /*Bitplanes l16schen */
168

169 FreeRaster(b.Planes[i],400,300);

170 FreeRaster(b2.Planes[i],320,200);

171

172 FreeColorMap(cm); /* ColorMap 16schen */

173 FreeVPortCopLists(&vp); /* Copperliste 16schen */
174

175 CloselLibrary(GfxBase); /* Library schlieBen ¥/
176 }

/******************************

3. Playfield-Demonstration
last update 16/02/88

von Frank Kremser und J6rg Koch
© Markt & Technik 1988

EEEXXXEXEXXXXXEXXAXXXX XXX X XX

[CoRe o BENB0) IO I NG RRA VI

—
o

DieseDemo zeigt eineinzelnes Playfieldmit einer Grof3e von 960 x 600
Der Unterschiedzur 1. Playfielddemonstration besteht darin, dasdie
volle Aufldsung von 352 x 362 Punkten zur Darstellung verwendet wird.

= e
B

*******************************/

e
o O1

#include <exec/types.h> /* Include-Files laden */
#include <exec/memory.h>

#include <graphics/gfxbase.h>

#include <graphics/copper.h>

#include <graphics/view.h>

#include <graphics/rastport.h>

#include <devices/gameport.h>

VNN =
VOO

128 Die Custom-Chips

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2

#include <devices/inputevent.h>

UWORD colors[] =

{
0,
0x555,
OxAAA,
OxFFF

¥

structView v, ¥oldview;
structViewPort vp;
struct ColorMap *cm;
structRasInfo ri;
struct BitMap *bm;
structRastPort rp;

struct GfxBase *GfxBase; /*¥ Library-Zeiger */

main() /* HAUPTPROGRAMM */

{

inti, x,y;
/* Library 6ffnen */
if (! (GfxBase = OpenLibrary (" graphics.library', 0)))
exit();
/* Speicher fiir BitMap-Structure bereitstellen */
if (! (bm=AllocMen ((long) sizeof (*bm), MEMF_CHIPIMEMF_CLEAR)))
exit();

InitView (&v); /*NeueView-Structure initialisieren */
InitVPort (&vp);/* Neue Viewport-Structure initialisieren */
InitBitMap (bm, (long) 2, 960, 600); /¥ BitMap-Structure init. */
InitRastPort (&rp); /* Rastport-Structure initialisieren */

v.ViewPort = &vp; /* ViewPort eintragen */
ri.BitMap =bm; /*¥BitMap eintragen */
ri.Rx0ffset =ri.RyOffset = ri.Next =NULL;

vp.DWidth = 352; /* dargestellte AusschnittgroBe festlegen */
vp.DHeight = 262;

vp.RasInfo==&ri; /*¥RasInfo-Structure eintragen */

vp.ColorMap = GetColorMap(4); /¥ Color-Map eintragenund init. ¥/

rp.BitMap =bm; /* BitMap eintragen */
for (i=0; i<?; i++) /* Speicher fir Bitplanes bereitstellen */

if (! (bm->Planes[i] = AllocRaster (960, 600)))
exit();

Die Custom-Chips 129

73 MakeVPort (&v, &vp); /* ViewPort inView-Structure eintragen ¥/
74 MrgCop (&v); /*View in Copperliste eintragen */

75 LoadRGB4 (&vp, colors, 4); /*Farben setzen ¥/

76 oldview = GfxBase->ActiView; /* AltenView sichern */
77 LoadView (&v); /* NeuenViewdarstellen */

78

79 i=1; /* Muster zeichnen */

80 SetDrMd (&rp, JAML);

81 SetRast (&rp, 0);

82 SetAPen (&rp, 1);

83 for (x=0, y=0; x<960; x+=8, y+=5)

84

85 Move (&rp, (long) x, 0);

86 Draw (&rp, 959, (long)y);

87 Draw (&rp, 959-x, 599);

88 Draw (&rp, 0, 599-y);

89 Draw (&rp, (long) x, OL);

90 if (1 (++1&3)) i++;

o1 SetAPen (&rp, (long)i);

92 }

93 SetAPen (&rp, 3); /* Text zeichnen */
94 Move (&rp, 429, 301);

95 Text (&rp, "Ein Superplayfield', 18);

96 SetAPen (&rp, 1);

97 Move (&rp, 428, 300);

98 Text (&rp, "Ein Superplayfield", 18);

929
100 for(x=0;x<608;x+=4) /* Playfield nach links bewegen */
101 {

102 ri.RxOffset =x;
103 WaitTOF ();
104 ScrollVPort (&vp);

105 }
106 for(y=0;y<238;y+=2) /* Playfield nach oben bewegen */
107

108 ri.RyOffset =y;
109 WaitTOF ();
110 ScrollVPort (&vp);

111)
112 for(x=608;x>0;x-=4) /* Playfield nach rechts bewegen ¥/
113

114 ri.Rx0ffset =x;
115 WaitTOF ();
116 ScrollVPort (&vp);

117 } ,
118 for(y=238;y>0;y-=2) /* Playfield nah unten bewegen */
119

120 ri.RyOffset =y;
121 WaitTOF ();
122 ScrollVPort (&vp);

130 Die Custom-Chips

123}

124 y=12;

125 for(x=0;x<608;x+=4) /* Playfield diagonal bewegen */
126 {

127 y+=1;

128 ri.Rx0ffset =x;

129 ri.RyOffset =y;

130 WaitTOF ();

131 ScrollVPort (&vp);

132

133 LoadView (oldview); /* AltenView setzen ¥/

134 WaitTOF (); /*Warten, bis oberer Bildschirmrand erreicht */
135 FreeVPortCopLists (&vp); /¥ Alte Copperlisten 16schen */
136 FreeCprList (v.LOFCprList);

137 FreeColorMap (vp.ColorMap); /* Colormap 1dschen */

138 for (i=0; i<2; i++) /*Bitplanes 1dschen */

139 if (bm->Planes[i])

140 FreeRaster (bm->Planes[i], 960, 600);

141 FreeMem (bm, (long) sizeof (*bm)); /* BitMap-Structure 16schen */
142

143 CloselLibrary(GfxBase); /* Library schlieBen */

144 }

;*******************************
; 1. Playfield - Demonstration

; last update 10/03/88

; von Frank Kremser und Jorg Koch

; ©Markt & Technik 1988

FEEEEXXEEKX XXX XXX X XXX XXX XXX
»

[Co2Ne o BEN o) &) I NI VN RV I ol

10 ;DieseDemonstrationerstellt vier Bitplanesmit der GroBe 640 x 256.
11 ;Der DisplayScreen ist aber lediglich 320 x 256 Punkte grof3.

12 ;Das Programmverschiebt nundenBitplaneausschnitt standig

13 ;bitweise inhorizontaler Richtung.

14 ;

15 ;*******************************
16

17 BitPlanel = $50000
18 BitPlane?2 = $58000
19 BitPlane3 = $60000
20 BitPlane4 = $68000
21 ExecBase =4

22 Permit =-138
23 Forbid =-132
24 OpenLibrary = -408
25 CloseLibrary = -414

26 InitRastPort =-198

Die Custom-Chips 131

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
74
75
76

InitBitMap

loopl:

loop2:

move.l
jsr

move.1l
lea.l
jsr
move.1l

lea
jsr
move.1l
move.1l
add.1l
move.1l

lea
moveq
move.1l
move.1l
jsr
lea
jsr
move.
move.
move.
move.
move.
swapd
move.
move.
move.
move.
dbf

O HKF -

oo+ =

move.
move.
move.
move.
swap
move.
move.
move.
move.
dbf

e e

o0+ =

—

move.
move.
move.1l

[

= -390

ExecBase, a6
Forbid(a6)

ExecBase, a6
dosname, al
OpenLibrary(a6)
d0, dosbase

gfxname,al
OpenLibrary(a6)
do, gfxbase

do, a6

#$32,d0

do, copptr

bitmap, a0
#4,d0

#320,dl1
#256,d2
InitBitMap(a6)
rastport,al

InitRastPort(a6)
#bitmap,R_BitMap

#bitplanel, dO
dO0,planel

do, a0

do, lol

dO,hil
420480, d0
#$00,dl
dl, (a0)+
d0, loopl

#bitplane2, d0
dO,plane2

do, a0

do, 102

do

do,hi2
#20480,d0
#$00,dl

dl, (a0)+

do0, loop2

#bitplane3, do
d0,plane3
do, a0

;Multitaskingaus

;DosLibrary 6ffnen

;GfxLibrary 6ffnen

;Zeigeraufalte Copperliste

;Bitmap-Structureinitialisieren
;Tiefe(4Bitplanes)

;Breite

;HOhe

;Bitmapinitialisieren

;Rastportinitialisieren

;1. Bitplaneinitialisieren
;Zeiger inCopperlisteaktual.
;Hi-Byte ebenfalls

;inCopperlisteeintragen
;Bitplane 16schen

132 Die Custom-Chips

T7
78
79
80
8l
82 loop3:
83
84
85
86
87
88
89
90
o1
92
93 loop4:
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110 loopT:
111 loop8:
112
113
114
115
lle
117
118
119
120 loop9:
121
122
123
124 looplO:
125
126

move.

swap

move.
move.
move.
move.

dbf

move.
move.
move.
move.

swap

move.
move.
move.
move.

dbf

move.
move.
move.

move.
move.
move.
move.
move.
move.
move.
move.
move.

move
move

move.
move.
move.
move.

sub
bne
sub
bne

andi.

beq

move.

sub
bne

— o2k o 2 S lE—} E - o2k o N S}

=

HHRRHRKFRS S £ £

o e e

do, 103

do

do,hi3
#20480, d0
#$00,d1
dl, (a0)+
do, loop3

#bitplane4, doO
d0, plane4

do, a0

do, lo4

do

d0,hi4
#20480, dO
#$00,dl

dl, (a0)+

d0, loop4

copptr, a0 ;Adresseder Copperlistenachal
(a0),o0ldcop ;AlteListesichern
dcopper, (a0) ;Neue Copperlistesetzen

#10, flag ;Variablenmit Startwerten
lol,adrl ;initialisieren

1o2,adr?

103,adr3

lo4,adr4

#bitplanel,al

#bitplanel,al

#bitplane3, a3

#bitplane4,ad

#256,d0 ;GrafikindieBitplane zeichnen
#20,d1
#$££££0000, (al
#$00£fO0fT, (a2
#$££000000, (a3
#$LLLLO0FE, (a4
#1,d1

loop8

#1,d0

loop7

)+
)+
)+
)+

#64,$bfe001 ;Wurde linkeMaustaste gedriickt
ende ;Wenn ja, dannbeenden

#2000, d0 ;Warteschleife
#1,d0
looplO

Die Custom-Chips 133

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
271
172
173
174
175
176

;Die folgende Routine scrollt dasDisplay bitweise horizontal.
;S0ll vertikal gescrollt werden, benétigt mandie Finescrolling-
;routinenicht(die ersten3Zeilen), sondernman braucht zu
;1ol-1o4 lediglichdieBreiteder Bitplane inBytes
;hinzuaddieren. Natiirlichmu die Bitplane auch entsprechend
;hoéher sein, als jetzt.

ende:

even
Copper:

sub.
cmp.

bne

add.
add.
add.
add.

w

=

£ 8 £ =

move.w

sub.

bne

move.
move.
move.
move.
move.

bra

move.
move.
move.
move.

jsr

move.

w

£ € € € 5

]

jsr -

move.

jsr
rts

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

s g€ 8 8§ § ¥

#$11, finescrl
#$0000, finescrl
loop9

#2,10l

#2,102

#2,103

#2,104

#$00ff, finescrl
#1, flag

loop9

#20, flag

adrl, lol

adr?, lo2

adr3, 103

adr4, lo4

loop9

copptr,al
oldcop, (a0)
ExecBase, a6
gfxbase,al
CloseLibrary(a6)
dosbase,al
CloseLibrary(a6)
ExecBase, a6
Permit (a6)

$0180, $0000
$0182,$0fff
$0184, $000f
$0186, $0£00
$0188, $000f
$018a,$0f0f
$018c, $00ff
$018e,$fOff
$0190, $0620
$0192, $0e50
$0194, $09f1
$0196, $0eb0
$0198, $055f
$019a, $092f

;Even/0ddScrollvalue dekrementieren
;Wennnochkeine 16 Bits gescrollt,
;dannweiter scrollen

;ansonstenum?2Byteweiterscrollen

;undEven/0ddScrollvalue zuriicksetzen
;WennEnde desBitMapserreicht,

;dannWerteaufStartposition
;zurlicksetzen

;AlteCopperlistewieder setzen
;Gfxlibraryschlieflen

;DosLibrary schliel3en

;Multitaskingeinschalten
;Ruckkehr

;Color0
;Colorl
;Color2
;Color3
;Color4
;Colord
;Color6
;Color7
;Color8
;Color9
;ColorlO
;Colorll
;Colorl2
;Colorl3

134 Die Custom-Chips

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196 hil:
197
198 lol:
199
200 hiZ2:
201
202 1lo2:
203
204 hi3:
205

- 206 lo3:

207

208 hi4:
209

210 lo4:
211

212

213 finescrl:
214

215

216

217

218

219

220

221

222 BitMap:

223 BytesPerRow:

blk.w
blk.w
blk.b

224
225 Bytes:
226 Flags:

dc.
dc.
dc.
dc.

dc

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

ssfssssssssssssssssssssssssssssss55%%

£E €< s £ =

$019¢, $00f8
$019e, $0ccc
$01a0, $0000
$01a2, $0d22
$01a4, $0000
$01a6,$0fca
$01a8, $0444
$0laa, $0555
$0lac, $0666
$0lae, $0777
$01b0, $0888
$01b2, $0999
$01b4, $0aaa
$01b6, $0bbb
$01b8, $0ccc
$01ba, $0ddd
$01bc, $Oeece
$01lbe, $OLfrL
$00e0
$0002
$00e2
$1000
$00e4
$0002
$00e6
$1000
$00e8
$0002
$00ea
$1000
$00ec
$0002
$00ee
$1000

$0100, $0100000000000000

$0102

$oorr

$0108, $0026
$010a, $0026
$0092, $0030
$0094, $00d0
$008e, $2481
$0090, $24c1
$rrre, $refe

1,0
1,0
1,0

B

;Colorl4
;Colorls
;Colorl6
;Colorl7
;Colorl8
;Colorl9
;Color20
;Color2l
;Color22
;Color23
;Colorz4
;Color25
;Color26
;Color27
;Color28
;Color29
;Color30
;Color3l
;BitPlane Pointer

;BPLCONO: 4Bitplanes
; BPLCON1

;BPL1MOD: Anzahl derBytes, dieam
; BPL2MOD: Ende der Zeilehinzuaddiert
; DDFSTRT; werdensollen, damit der
;DDFSTOP; neue Zeilenanfang stimmt
; DIWSTRT; sokénnenBitplanesbreiter
;DIWSTOP; sein, alsdasDisplay
;Ende der Copperliste

Die Custom-Chips 135

227 Depth:
228 Pad:
229 Planel:
230 Plane2:
231 Plane3:
232 Plane4:
233 Planes:

234 RastPort:

235

236 R_BitMap:

237
238
239
240 cp_x:
241 cp_y:
242
243
244 even

245 gfxname:
246 dosname:

247

248 even
249 copptr:
250 oldcop:

251 gfxbase:
252 dosbase:

253 x:

254 flag:
255 adrl:
256 adr2:
257 adr3:
258 adr4:

’

© o000 h KW+

’

blk.
blk.
blk.
blk.
blk.
blk.
blk.

HHRERRHS o

blk.

-

blk.
blk.
blk.
blk.
blk.
blk.
blk.

£ 0 € € 00 H

dc.b
dc.b

blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.

o e

1,0

2+4+4+4+8,0

4,0

1,0

1,0
8+22+[7*2]+[2%4]+8,0
6,0

‘graphics.library' ,0
‘dos.library' ,0

[eNeoNolNoNoNeoNoNoNelNe)

o e e e

CEREKEXKEEEEEEXERXXXAEXXXX XK XXX
»

; 2. Playfield - Demonstration

; last update 10/03/88

; von Frank Kremser und Jérg Koch
; ©Markt & Technik 1988

CRREAEAEXXEXEXXXXAAEXXXXRXXKXRRRX ¥
’

10 ;DieseDemonstrationerstellt 6Bitplanes der Grofe 640 x 256.
11 ;Dabei werdendurchdeneingeschaltetenDual-Playfield-Modus
12 ;dieBitplanes 1, 3und5 fiir das vordere Playfield verwendet und
13 ;die Planes 2, 4und6 fir das hintere.
14 ;Dasvordereunddashintere Playfieldwerden gegenldufigverschoben.

15 ;

16 CHEEKEEEXR XXX X XXX XXX XXX
s

136 Die Custom-Chips

17 BitPlanel = $50000

18 BitPlane2 = $56000

19 BitPlane3 = $5c000

20 BitPlane4 = $62000

21 BitPlane5 = $68000

22 BitPlane6 = $6e000

23 ExecBase =4

24 Permit =-138

25 Forbid =-132

26 OpenLibrary = -408

27 CloseLibrary =-414

28 InitRastPort =-198

29 InitBitMap = -390

30

31 move.l ExecBase,ab

32 jsr Forbid(a6) ;Multitaskingaus

33 .

34 move.l ExecBase,ab

35 lea.l dosname,al ;DosLibrary 6ffnen

36 jsr OpenLibrary(a6)

37 move.l dO,dosbase

38

39 lea gfxname,al

40 jsr OpenLibrary(a6) ;GfxLibrary 6ffnen

41 move.l dO,gfxbase

42 move.l dO,a6

43 add.l #$32,d0

44 move.l dO,copptr ;Zeigeraufalte Copperliste
45

46 lea bitmap, a0 ;Bitmap-Structureinitialisieren
47 moveq #6,d0 ;Tiefe(6Bitplanes)

48 move.l #320,dl ;Breite

49 move.l #256,d2 ;Hohe

50 jsr InitBitMap(a6) ;Bitmapinitialisieren
51 lea rastport,al

52 jsr InitRastPort(a6) ;Rastportinitialisieren
53 move.l dbitmap,R_BitMap

54

55

56 move.l #bitplanel,dO ;1.Bitplaneinitialisieren
57 move.l dO,planel

58 move.l dO,a0

59 move.w dO,lol ;Zeiger inCopperlisteaktualisieren
60 swap do ;Hi-Byteebenfalls

61 move.w dO,hil ;inCopperlisteeintragen
62 move.l 20480,d0 ;Bitplane 16schen

63 move.b #$00,dl

64 loopl: move.b dl, (a0)+

65 dbf do, loopl

66

Die Custom-Chips 137

67
68
69
70
71
72
73
74
75
76
7
78
79
80
8l
82
83
84
85
86
87
88
89
90
o1
92
93
94
95
96
o7
o8
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

loop2:

loop3:

loop4:

loop5:

move.l
move.1l
move.l
add.l
move.w
swap
move.
move.
move.
move.
dbf

[oaNN o

move.
move.
move.
move.
swap
move.
move.
move.
move.
dbf

E -

oo =

move. 1l
move.l
add.1l

move.w
swap
move.
move.
move.
move.
dbf

oo =

move.
move.
move.
move.
swap
move.
move.
move.
move.
dbf

E P

[oak o Sl |

move.l
move.1l
move.l
add.l

move .w

H#bitplane2,d0
d0,plane?
do, a0
#40,d0
do, 102

do

do,hi2
#20480,d0
#$00,dl
dl, (a0)+
do, loopR

#bitplane3, dol
d0,plane3

do, a0

do, 103

do

do,hi3
#20480, d0
#$00,d1

dl, (a0)+

do, loop3

#bitplane4, d0
d0,plane4
#40,d0

do, lo4

do

do,hi4
#20480, d0
#$00,dl

di, (a0)+

do, loop4

#bitplaneb5, d0
d0,planeb

do, a0

do, 105

do

do,hib -
#20480,d0
#$00,d1

dl, (a0)+

do, loopd

#bitplane6,do
d0,plane6

do, a0

#40,d0

do, 106

;Bei2. PlayfielddierechteHalfte
;zuerstanzeigen

;Bei2. PlayfieldrechteHalfte
;zuerst anzeigen

;Bei2. PlayfieldrechteHalfte
;zuerstanzeigen

138 Die Custom-Chips

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161l
162
163
164
165
166

loop6:

loop7:
loop8:

loop9:

looplO:

swap

move.
move.
move.
move.

dbf

move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.
move.

move
move

move.
move.
move.
move.
move.
move.

sub
bne
sub
bne

andi.

beq

move.

sub
bne

sub.w

add.
cmp.
bne

add.w
add.w
add.w

HHRPHKFHRFSE S8 HHHWF T T+ =

el

do

d0,hi6
#20480, d0
#$00,d1

do, loop6

copptr,al
(a0),0ldcop
#copper, (a0)
#10, flag
lol,adrl
1o2,adr2
1lo3,adr3
lo4,adr4
105,adrb

106, adr6
#bitplanel,al
#bitplanel,a’
#bitplane3, a3
#bitplane4, a4
#bitplaneb,ad
#bitplane6,ab
#256,d0
#20,d1
#$0£0000f0, (
#F$££0000fF, (
#$£000000¢f, (
#$££££0000, (
#$££££0000, (
#$0000ffLf, (
#1,dl

loop8

#1,d0

loop7

1)
3)
5)
2)
4)
6)

O oo

#64,$bfe001
ende

#4000, d0
#1,d0
looplO

#1, finescrl
#$10, finescrl
#$00f0, finescrl
loop9

#2,10l

#2,103

#2,105

++++++

dl, (a0)+

;Adresseder Copperlistenachal
;AlteListesichern

;Neue Copperliste setzen
;Variablenmit Startwerten
;initialisieren

;Grafik fir vorderesPlayfield

;Grafik fiirhinteresPlayfield

;Wurde linke Maustaste gedriickt
;Wenn ja, dannbeenden

;Warteschleife

;Scrollvalue fiir OddPlane erniedrigen
;Scrollvalue fiir EvenPlane erhéhen
;Wennnochkeine 16 Bits gescrollt,
;dannweiterscrollen
;ansonstenum?2Byteweiterscrollen
;0dd Planes

Die Custom-Chips 139

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193 even
194 Copper:
195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

ende:

sub.w
sub.w
sub.w
move.
sub.w
bne
move.
move.
move.
move.
move.
move.
move.
bra

move.
move.
move.
move.
jsr
move.
jsr
move.
jsr
rts

dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.
dc.

fssssssssssssssssssE55s s

w

£ €€ £ =8

]

#2,102
#2,104
#2,106
#$000f, finescrl
#1, flag
loop9
#20, flag
adrl, lol
adr3, 1lo3
adrb, 105
adr2, lo2
adr4, lo4
adré, 1lo6
loop9

copptr,al
oldcop, (a0)
ExecBase, a6
gfxbase,al
CloseLibrary(a6)
dosbase,al
CloseLibrary(a6)
ExecBase, a6
Permit (a6)
;Rickkehr

$0180, $0000
$o0182,%0fff
$0184, $000f
$0186,$0r00
$o0188, $000f
$018a,$0f0f
$018c, $00ff
$018e,$f0Off
$0190, $0620
$0192, $0e50
$0194, $09f1
$0196, $0eb0
$0198, $055¢F
$019a,$092f
$019¢, $o00f8
$019e, $0ccc
$01a0, $0000
$01a2,$0d22
$01a4, $0000
$01a6,$0fca
$01a8, $0444
$0laa, $0555

;EvenPlanes

;und 0ddModulo zuriicksetzen
;WennEnde desBitMapserreicht,

;dannWerteaufStartposition
;zuricksetzen

;AlteCopperlistewieder setzen

;GfxlibraryschlielRen

;DosLibraryschlief3en

;Multitaskingeinschalten

;Color0
;Colorl
;Color2
;Color3
;Color4
;Colorb
;Color6
;Color7
;Color8
;Color9
;ColorlO
;Colorll
;Colorl2
;Colorl3
;Colorl4
;Colorlb
;Colorlé
;Colorl7
;Colorl8
;Colorl®
;Color20
;Color2l

140 Die Custom-Chips

217 dc.w
218 dc.w
219 dc.w
220 dc.w
221 dc.w
222 dc.w
223 dc.w
224 dc.w
225 dc.w
226 dc.w
227 dc.w
228 hil: dc.w
229 dc.w
230 lol: dc.w
231 dc.w
232 hiz: dc.w
233 dc.w
234 1lo2: dc.w
235 dc.w
236 hi3: dc.w
237 dc.w
238 103: dc.w
239 dc.w
240 hi4: dc.w
241 dc.w
242 lo4: dc.w
243 dc.w
244 hib: dc.w
245 dc.w
246 105: dc.w
247 dc.w
248 hi6: dc.w
249 dc.w
250 lo6: dc.w
2561 dc.w
252 dc.w
253 dc.w
254 dc.w
255 dc.w
256 dc.w
257 dc.w
258 dc.w
259 dc.w
260 dc.w
261

262 BitMap:

263 BytesPerRow:
264 blk.w
265 Bytes: blk.w
266 Flags: blk.b

$0lac, $0666
$0lae, $0777
$01b0, $0888
$01b2, $0999
$01b4, $0aaa
$01b6, $Obbb
$01b8, $0ccc
$01ba, $0ddd
$01bc, $0eee
$01lbe, $OFFF
$00e0
$0002
$00e2
$1000
$00e4
$0002
$00e6
$1000
$00e8 -
$0002
$00ea
$1000
$00ec
$0002
$00ee
$1000
$00f0
$0002
$00f2
$1000
$00r4
$0002
$00f6
$2000

$0100, $0110010000000000

$0102

$ooorf

$0108, $0026
$010a, $0026
$0092, $0030
$0094, $00d0
$008e, $2481
$0090, $24c1
$refe, §rffe

1,0
1,0
1,0

B

;Color22
;Color23
;Colorz4
;Color25s
;Color26
;Color27
;Colork8
;Color29
;Color30
;Color3l
;BitPlane Pointer

; BPLCON1 finescrl:

; BPL1MOD
; BPL2MOD
; DDFSTRT
; DDFSTOP
; DINSTRT
; DIWSTOP
;Ende der Copperliste

; BPLCONO: 6BitP1. + DUALPF

Die Custom-Chips 141

267 Depth:
268 Pad:
269 Planel:
270 PlaneZ2:
271 Plane3:
272 Plane4:
273 Planeb:
274 Plane6:
275 Planes:

276 RastPort:

2T7

278 R_BitMap:

279
280
281
282 cp_x:
283 cp_y:
284
285
286 even

287 gfxname:

288

289

290 even
291 copptr:
292 oldcop:

293 gfxbase:
294 dosbase:

295 x:

296 flag:
297 adrl:
298 adr2:
299 adr3:
300 adr4:
301 adrb:
302 adr6:

blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.

HHKHFKFRHHKRS O

blk.

o]

blk.
blk.
blk.
blk.
blk.
blk.
blk.

€ o€ € 00 H

dc.b

blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.
blk.

H o b e

. e e

-

-

o
[eNeNoNeoNoNoNoNoNal

—
o

1,0

2+4+4+4+8,0

4,0 ‘

1,0

1,0
8+22+[7*2]+[2*4]+8,0
6,0

‘tgraphics.library' ,0Odosname:

‘dos.library’,0

v e e

-

v e e

I e R e
[eReNoNoNoNoNoNoNoNoNoNol

~

142 Die Custom-Chips

4.2.4: Die Video-Prioritiitsregister

Der Bildschirm hat normalerweise nur zwei Dimensionen. Aber es existiert noch eine
imaginére dritte Dimension. In dieser Dimension ist festgelegt, in welcher Reihenfolge
die Playfields und Sprites dargestellt werden.

Die Reihenfolge der Spritedarstellung kann nicht geéindert werden. Das bedeutet, dafl
Sprite 0 immer vor Sprite 1, dieses wiederum vor Sprite 2 usw. dargestellt wird. Verén-
dert werden kann allerdings die Videoprioritét der Sprites zu den Playfields. Ist nur ein
normaler Screen dargestellt, so ist dieser als Playfield 1 aufzufassen.

Zu den Sprites ist anzumerken, daB sie in Zweiergruppen aufgeteilt sind. Das bedeu-
tet, Sprite Ound 1, 2und 3,4 und 5, sowie 6 und 7 bilden jeweils eine Gruppe. Die Video-
prioritédt kann also immer nur fiir zwei Sprites zusammen gedndert werden. Die Video-
priorititen werden mit Register BPLCON?2 festgelegt. Nachfolgend die Funktionen
der Bits:

Bit Name Funktion
15-7 Nicht benutzt, sollte aber auf 0 gesetzt werden.
6 PF2PRI Prioritét von Playfield 2 zu Playfield 1. Ist dieses Bit

gesetzt, wird Playfield 2 vor Playfield 1 dargestellt.

53 PF2P2-PF2P0 Playfield 2 Prioritéit zu den Sprites.
2-0 PF1P2-PF1PO Playfield 1 Prioritét zu den Sprites.

Die Bits PF2P2-PF2P0 und PF1P2-PF1P0 k6nnen nach folgender Tabelle gesetzt wer-
den. PFsteht dabei fiir Playfield 1 oder 2, SPxy steht fiir die Spritegruppe der Sprites x
und y. Links steht dabei das Objekt mit der hochsten Videoprioritit:

Wert Darstellung

000 PF SPO1 SP23 SP45 SP67
001 SPO1 PF SP23 SP45 SP67
010 SPO1 -SP23 PF SP45 SP67
011 SPO1 SP23 SP45 PF SP67
100 SPO1 SP23 SP45 SP67 PF

4.2.5: Das Video-Interface

Die Video-Signale, die Denise liefert, werden noch durch nachgeschaltete Baugruppen
nachbearbeitet, bei den Rechnern Amiga 500 und B2000 beispielsweise durch einen Vi-
deo-Hybrid-Baustein. Dadurch wird erreicht, daB ein Composite-Video-, ein Digital-

Die Custom-Chips 143

RGB- und ein Analog-RGB-Signal zur Verfiigung stehen. Das Digital-RGB-Signal
steht allerdings nur als 4-Bit-Signal zur Verfiigung, so daB nur 15 verschiedene Farben
dargestellt werden konnen. Die 4096 Farben, die Denise tiber die 12 Digital-Video-Aus-
géange zur Verfiigung stellt, konnen nur iiber einen Analog-Ausgang dargestellt werden,
was im Normalfall auch geschieht. Hier die Pinbelegung des RGB-Video-Steckers:

RGB-Schnittstelle AMIGA 588/1888/2808

(1] (2] (3] (4] [5] (8] (7] (3] (5]) [11) [z2]
(£3] (14] [15] (16] (1) (x8] 9] [ae] (o] [z2] (23]

23 - Pin D-SUB-Stecker

Die einzelnen Pins haben folgende Funktionen:

Name PIN Bedeutung

XCLK 1 Externer Takt
XCLKEN 2 Externer Takt»Enable«
RED 3 Analog Rot

GREEN 4 Analog Griin

BLUE 5 Analog Blau

DI 6 Digitale Intensitét

DB 7 Digital Blau

DG 8 Digital Griin

DR 9 Digital Rot

CSYNC 10 Composite-Synchronisationssignal
HSYNC 1 Horizontales Synchronisationssignal
VSYNC 12 Vertikales Synchronisationssignal
GNDRTN 13 Riickkehreingang fiir XCLKEN

ZD 14 Null-Level-Kennzeichnung

144 Die Custom-Chips

Name PIN Bedeutung

C1 15 Taktausgang

GND 16-20 Masseanschluf3

-12v 21 -12-Volt-Versorgung (50 mA)
+12V 22 +12-Volt-Versorgung (100 mA)
+5V 23 +5-Volt-Versorgung (100 mA)
4.3: Paula

Paula enthilt 4 Audio-Kandile, die als Stereoausginge geschaltet sind, iiber neun Okta-
ven reichen und komplexe Schwingungen beherrschen. Zudem besteht die Moglichkeit
der Amplituden- und der Frequenz-Modulation. Der zweite Aufgabenschwerpunkt die-
ses Chips ist die Disk-Kontrolle. Paula enthilt die I/O-Kontrollogik fiir die Diskdaten
und die Kontroller-Ports, sowie einen Microdisk-Controller. Ein weiterer Aufgaben-
bereich ist die Interrupt-Kontrolle fiir das System (siehe auch Bild 12 im Farbteil).

PAULA
D8 [1 " 48 1D9
D7 [2 47 1 D10
D6 []3 46 1 D11
D54 45 1 D12
D45 44 1 D13
D316 43 %DM
D217 42 1 D15
GND] 8 w 41 [RxD
D1 9 < 40 1 TxD
DO [] 10) 39 1 DKWE
RES [11 38 [DKWD
DMAL] 12 37 1 DKR
[PLO] 13 36 1 P1Y
IPL1] 14 < 35 1 P1X
IPL2 [] 15 3 34 [1 GND
INT2] 16 < 33 [1 POY
INT3] 17 o 32 [POX
INT6] 18 3 31 1AUDA
1 119 9 30 1 AUDB
2] 20 29 [CCKQ
RGA | 32t 28 [CCK
422 27 C1+5V
5[]23 2618
6124 2517

Z 4.3-1: Die Pin-Belegung von Paula

Die Custom-Chips 145

4.3.1: Die Pinbeschreibung zu Paula

Name PIN I/O Beschreibung

D2-D7 7-1 I/O Datenbusleitungen 2 bis 7.
VSS 8 I MasseanschluB3.
D0,D1 10,9 T/O DatenbusleitungenOund 1.
RES 11 I SetztPaulazuriick.
DMAL 12 O Istdieses Signal aktiv, fordet Paula einen DMA an.
IPLO-2 13-15 O Interrupt-Leitungen O bis2.
I
I

INT2,3,6 16-18
RGA1-8 26-19

Interrupt-Level 2,3 und 6.

Diese Leitungen werden benutzt, um die internen Register.

zu adressieren.
VCC 27 I +5-Volt-Versorgungsspannung.
CCK 28 I Diesist der Takt, der als Farbtrégersignal dient.

CCKQ 29 I Dies ist der gleiche Takt, wie CCK, allerdings um 90 Grad.
nachhéngend.

AUDB 30 @) RechterAudioausgang.

AUDA 31 O Linker Audioausgang.

POTOX 32 I/O AnschluB3 PotX an Port0.

POTOY 33 I/O AnschluB3 PotYan Port0.

VSSANA 34 I Masseanschlufl zum Analog-Ausgang.
POTIX 35 I/O Anschlufl PotX an Port 1.

POT1IY 36 I/O AnschluB3 PotYanPort 1.

DKRD 37 I Disk-Read-Leitung.

DKWD 38 O Disk-Write-Leitung.

DKWE 39 O Disk-Write-Enable-Leitung.
TXD 40 O Serielle Ubertragungsleitung.
RXD 41 I Serielle Empfangsleitung.

D9-D15 48-42 1/O Datenbusleitungen 9 bis 15.

146 Die Custom-Chips

Left Audio Output Right Audio Output
3 A

Paula Block Diagram

v)

DMAL !
DMA |

fo Agnus Request |« ;
Logic %] |

DioA Dto A i

Conv. Conv. :

0&1 2&3 '

L_{Audio L_{Audio :

Control Control '

j — Counters —|Counters X
nterrupt «— Int. X
ID Code <+— Control Bata_l Data :
to 68000 +— Logic egisters Registers !
EXT. —{Int. — ‘ ‘ !
Interrupt —s{Status |« :
Inputs —»{Registers [+ !
4 ; :

DB | o |
@ Data Bus 16 !
RGA |
§:> Register Address Decode 8 .
=] i

m 1

Z 4.3-2: Das Blockschaltbild von Paula (1éil 1)

4.3.2: Die Audio-Hardware

Paula verfiigt iiber 4 Audio-Kanile, die in zwei Gruppen als Stereo-Ausginge geschal-
tet sind. Die Kanile 0 und 3 bilden den linken Stereo-, die Kanile 1 und 2 den rechten
Stereo-Ausgang. Alle vier Kanéle sind vollig unabhingig in Lautstirke und Frequenz
modulierbar. Jeder Kanal kann sogar iiber eigene Wavedaten verfiigen. Diese Wave-
daten stellen wohl den interessantesten Aspekt der Audiohardware des Amiga dar.
Durch diese Wavedaten wird festgelegt, ob ein Kanal als Ger#duschkanal, Musikkanal
0.4. benutzt wird. Jedes Musikinstrument besitzt beispielsweise eine individuelle Wave,
die durch den Amiga, wenn sie digitalisiert wurde, imitiert werden kann: So kann
jeder Audiokanal ein Instrument imitieren, ein komplettes Musikstiick abspielen oder
sogar gesprochene Worte wiedergeben.

Um tiberhaupt etwas iiber die Audiokanile wiedergeben zu kénnen, muf} also eine
solche Wave im Speicher, im ChipMem, vorhanden sein. Die Register AUDXLCH/

Die Custom-Chips 147

! Disk UART POT

! Out In In Out Ports

| A4 4 4 4 4 4 4)
e

: A 4 A v

: Buffers

. S| Gamp REC | TRN Latches

! (Bi-Dir)

; L[Disk UART POT 3
; Control Control Control 8
: — Logic Logic Counters 2
: Data Data Data o}
. Registers Registers Registers S
: 1 1 1 5]
' 1))
S i g
: i =
X Data Bus 16

E Register Address Decode 8

: Paula Block Diagram

Z 4.3-2: Das Blockschaltbild von Paula (7éil 2)

AUDXLCL (das x steht fiir den betreffenden Kanal) miissen auf die Startadresse der
Wave zeigen. Die Wave selbst mufl Word-weise ausgerichtet und immer eine gerad-
zahlige Anzahl von Bytes lang sein. Jedes Byte représentiert dabei einenTeil der Wave.
Die Audiohardware arbeitet mit 8 Bit. Jedes Byte wird aber nicht als Wert von 0 bis 255
aufgefaBt, sondern als Wert von —128 bis +127. Wenn beispielsweise ein Ton mit einer
Rechteckschwingung gespielt werden soll, so muf} das erste Byte der Wave den Wert
—127 (oder —128) und das zweite Byte den Wert +127 besitzen. Es geht natiirlich auch
umgekehrt.

Als nichster Punkt mufl das Register AUDXLEN auf die Lénge der Wave gesetzt wer-
den, wobei die Linge inWords anzugeben ist. Wenn dieWave also 100 Byte lang ist, muf3
AUDxXLEN auf 50 gesetzt werden. AnschlieBend wihlt man die Lautstérke, die mit
AUDxVOL gesetzt wird. Als Lautstarkewerte konnen Werte zwischen 0 und 64 angege-
ben werden, wobei 64 die lauteste Wiedergabe bewirkt.

148 Die Custom-Chips

FEin weiterer, duerst wichtiger Punkt ist die Angabe der »Period«, der Wiedergabe-
geschwindigkeit. Die »Period« 148t sich wie folgt berechnen: Das System benotigt
0.279365 ms pro Wavedata, um es iiber DMA einzulesen und auszugeben. Soll nun ein
Ton von 1 kHz ausgegeben werden, also 1000 Hz, so wird diese Zahl durch die Anzahl
der Wavedaten geteilt. Hat man beispielsweise eine Wave von 8 Byte Linge, so ergibt
sich ein Wert von 125 ms pro Wavedata. Dieser Wert muf3 wiederum durch die oben
angegebenen 0.279365 ms geteilt werden, was 447.xxxx ergibt. Dieser Wert mufl dann
als Period angegeben werden, damit einTon von 1 kHz bei einer Wave von 8§ Byte Linge
gespielt wird. Hier noch einmal die Formel:

Period = Frequenz /Wavelédnge / 0.279365

Hat man alle vorher beschriebenen Schritte durchgefiihrt, so muB nur noch die Audio-
DMA fiir den betreffenden Kanal gestartet werden. Dies geschieht durch DMACON.
Die Bits 3 bis 0 reprisentieren die Audio-DMA-Kanéle der Audiokanile 3 bis 0. Soll
beispielsweise die DMA von Kanal 2 aktiviert werden, so schreibt man den Wert
% 1000000000000100 oder $8004 in DMACON. Vorsichtshalber sollte allerdings noch
Bit 9 gesetzt werden, da dieses Bit den Master-DMA-Enable représentiert, also es
sollte % 1000001000000100 oder $8204 angegeben werden. Néheres hierzu ersehen Sie
aus dem Kapitel zur DMA-Kontroll-Hardware. Soll ein Audiokanal wieder abgeschal-
tet werden, so gibt man den gleichen Wert wie beim Start an, nur ohne das SET/CLR-
Bit zu setzen, im obigen Beispiel also % 0000000000000100 oder $0004. Hier sollte aller-
dings nicht die Maste-DMA-Enable geloscht werden, da dann alle DMA-Kanéle
gesperrt werden, was zur Folge hitte, das beispielsweise der Copper nicht mehr weiter-
arbeiten konnte, die Bildschirmdarstellung also zusammenbrechen wiirde.

/******************************

1. Audio-Demonstration

last update 16/02/88

von Frank Kremser und Jorg Koch
© Markt & Technik 1988

KEEXEKX XXX X XXX XKXKRXRXXRKRXX

OO0 oUW

—
o

Diese Demonstration spielt iiber zwei Soundkandle verschiedene Téne.
Dabeiwirdnicht eineDeviceverwendet, sonderndieKanadlewerdendirekt
angesprochen.

=
BN -

*******************************/

=
oM O

#include <exec/types.h> /* Include-Files laden */
#include <hardware/custom.h>

ol
O 00

externstruct Customcustom; /* Externe Structure laden */

Die Custom-Chips 149

20 /*Uber sie kénnen die Hardwareregister */
21 /* direkt angesprochen werden */
22

23 BYTEdata[] ={0,90,127,90,0,-90,-127,-90}; /* Sinus als Wave */
24

25 main()

26 {

27 ULONGwarte,schleife,schleife2;

28

29 ocustom.aud[0O].ac_len=4; /*Langeder Wave inWords */

30 custom.aud[0].ac_per=30; /* Tonhohe - Period */

31 custom.aud[0].ac_vol=64; /*Lautstarke */

32 custom.aud[0].ac_ptr==&data{@dé¢iger auf Wave */

33 custom.dmacon = 0x8000 + 0x200 + Ox1; /* DMA fiir Kanal O starten */
34

35 custom.aud[l].ac_len=4;

36 custom.aud[l].ac_per =5;

37 custom.aud[l].ac_vol =64;

38 custom.aud[l].ac_ptr==~&data[0];

39 custom.dmacon = 0x8000 + 0x200 + 0x2; /* DMA fiir Kanal 1 starten */
40

41 for(schleife2 =0; schleife2 <5; schleife2++)

42 for(schleife =0; schleife <65; schleife++)

43 {

44 custom.aud[0].ac_per = schleife; /* Period fiir Kanal O und */

45 custom.aud[l].ac_vol =schleife; /* Volume fiir Kanal 1 &ndern */
46 for(warte=0; warte <3000; warte++);

47 }

48

49 custom.dmacon = 0x0000 + Ox1; /* DMA abschalten */
50 custom.dmacon = 0x0000 + 0x2;

51 }

l /******************************

2

3 2. Audio-Demonstration

4 lastupdate 16/02/88

5 vonFrankKremser und JérgKoch

6 ©Markt & Technik 1988

v ‘

8 HEAEXX KA X XXX XXXXXAXXXRXX

9
10 DieseDemonstrationliefertinetwadasgleicheErgebniswiediel. Demo,
11 aber die Audio-Hardware wirdiber die Device angesprochen.
12
14
15 4drinclude <exec/types.h> /* Include-Files laden */
16 #include <exec/memory.h>

150 Die Custom-Chips

17 #include <hardware/custom.h>

18 #include <hardware/dmabits.h>

19 4include <libraries/dos.h>

20 #include <devices/audio.h>

21

22 externstruct MsgPort ¥*CreatePort();

23 struct IOAudio soundl, sound2;

24

25 UBYTE chan0=0x01, chanl=0x02, chan2=0x04, chan3=0x08,data[128];
26

27 main()

28

29 UBYTE i, schleife,schleifel;

30 /¥ Portserstellen */

31 if((soundl.ioa_Request.io_Message.mn_ReplyPort =
32 CreatePort("rp",0))==NULL)
33 exit();

34 if((sound2.ioa_Request.io_Message.mn_ReplyPort =
35 CreatePort("rp",0))==NULL)
36 exit();

37

38 soundl.ioa_Request.io_Message.mn_Node.ln Pri=10;
39 soundl.ioa_Data = &chanO; /*Kanal 0 6ffnen */

40 soundl.ioa_Length = (ULONG)sizeof(chanO);
41 if((OpenDevice(AUDIONAME, O, &soundl,0))!=NULL)
42 exit();

43
44 sound?.ioa_Request.io_Message.mn_Node.ln Pri=10;
45 soundl.ioa_Data = &chanl; /*¥Kanal l6ffnen*/

46 soundl.ioa_Length = (ULONG)sizeof(chanl);

47 if((OpenDevice(AUDIONAME, O, &sound2,0))!=NULL)

48 exit();

49

50 for(i=0; i<128; i++) /* Sagezahnals Wave */

51 datal[i] =1i;

52 /* Request-Structure erstellen */
53 soundl.ioa_Request.io_Command = CMD WRITE;

54 soundl.ioa_Request.io_Flags = ADIOF_PERVOL | IOF_QUICK;
55 soundl.ioa_Cycles =5; /* Dauer des Tones */

56 soundl.ioa_Length =sizeof(data); /* Lange der Wave */
57 soundl.ioa_Period =508; /* Tonhbhe */

58 soundl.ioa_Volume =64; /* Lautstarke */

59 soundl.ioa_Data =data; /* Zeiger auf Wave */

60

61 sound?.ioa_Request.io_Command = CMD_WRITE;

62 sound?.ioa_Request.io_Flags = ADIOF_PERVOL | IOF_QUICK;
63 sound2.ioa_Cycles=5;

64 sound?.ioa_Length =sizeof(data); s

65 sound2.ioa_Period =20;

66 sound?.ioa_Volume =64;

Die Custom-Chips 151

67
68
69
70
71
72
73
74
75
76
7
78
79
80
81

[ColNo BEN RO NN, I N VI o

sound?.ioa_Data = data;

for(schleife2=0; schleife2 <5; schleife2++)
for(schleife=0; schleife <64; schleife++)
{

soundl.ioa_Period = schleife*10+128; /* Period vonKanal Ound */
sound?.ioa_Volume = schleife; /*Volume von Kanal 1 &ndern */
BeginIO(&soundl); /* Toniiber Kanal O und */
BeginIO(&sound2); /* iiber Kanal 1 spielen */
WaitIO(&sound2); /*Warten, bis TonaufKanall */
WaitIO(&soundl); /*undaufKanal O fertig gespielt */

}

CloseDevice(&soundl); /* Kanal O und */
CloseDevice(&sound2); /*Kanal 1 schlieBen */

}

/******************************

3. Audio-Demonstration

last update 16/02/88

von Frank Kremser und Jorg Koch
© Markt & Technik 1988

AEXXX XXX XXXXXEEXXX XXX XX XXX XX

DieseDemonstrationverdeutlicht die Stereoméglichkeitender Audio-
Hardware. Auf Kanal Ound 1 wirdder gleiche Ton gespielt. ZuBeginn
steht Kanal O aufvoller Lautstarke undKanal 1 auf 0. Nach und nachwird
die Lautstéke vonKanal O herabgesetzt unddie vonKanal 1 herauf,
sodafl der Eindruck entsteht, der Ton 'wandere' von links nach rechts.

*******************************/

#include <exec/types.h> /* Include-Files laden */
#include <exec/memory.h>

#include <hardware/custom.h>

F#include <hardware/dmabits.h>

#include <libraries/dos.h>

#include <devices/audio.h>

extern struct MsgPort *CreatePort();
struct I0Audio soundl, sound?;

UBYTE chan0=0x01, chan1=0x02, chan2=0x04, chan3=0x08,data[128];

main()

{

152 Die Custom-Chips

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
74
75
76
7
78
79
80
81
82

}

UBYTE i, schleife;
/* Ports einrichten */
if((soundl.ioa_Request.io_Message.mn_ReplyPort =

CreatePort ("rp",0))==NULL)
exit();
if((sound?2.ioa_Request.io_Message.mn_ReplyPort =
CreatePort ("rp",0))==NULL)
exit();

soundl.ioa_Request.io_Message.mn_Node.ln_Pri=10;
soundl.ioa_Data = &chanO; /*Kanal 0 6ffnen */
soundl.ioa_Length = (ULONG)sizeof(chanO);
if((OpenDevice(AUDIONAME, O, &soundl,0)) ! =NULL)

exit();

sound?.ioa_Request.io_Message.mn_Node.ln_Pri =10;

sound?.ioa_Data = &chanl; /*Kanall&ffnen */
sound?.ioa_Length = (ULONG)sizeof(chanl);
if((OpenDevice(AUDIONAME, O, &sound?,0)) ! =NULL)

exit();
for(i=0; i<128; i++) /¥ Sagezahn als Wave ¥/
data[i] =1i;

/* Request-Structure fiir Kanal 0 */
soundl.ioa_Request.io_Command = CMD_WRITE;
soundl.ioa_Request.io_Flags = ADIOF_PERVOL | IOF_QUICK;
soundl.ioa_Cycles =50; /* Dauer des Tones */
soundl.ioa_Length =sizeof(data); /* Lange der Wave */
soundl.ioa_Period =200; /* Tonhdhe */
soundl.ioa_Volume = 64; /* Lautstarke */
soundl.ioa_Data =data; /* Zeiger auf Wave */

sound?.ioa_Request.io_Command = CMD_WRITE;
sound?.ioa_Request.io_Flags = ADIOF_PERVOL | IOF_QUICK;
sound?.ioa_Cycles =50;

sound2.ioa_Length = sizeof(data);

sound?.ioa_Period =200;

sound?.ioa_Volume = 0;

sound?.ioa_Data = data;

for(schleife=0; schleife <65; schleife++)

{
soundl.ioa_Volume =64-schleife; /* Lautstarkeherab-, */
sound?.ioa_Volume =schleife; /*bzw. heraufregeln */
BeginIO(&soundl); /*und Ton auf beidenKanalen ¥/
BeginIO(&sound2); /* spielen */
WaitIO(&sound2); /*Warten, bis Ton gespielt */

}

CloseDevice(&soundl); /* Device schlieBen */
CloseDevice(&sound2);

Die Custom-Chips 153

[Co2Ne v EEN N0) IS, I NI GNRRAV I ool

[Colo s BEN BN OO NG I SN VARV I

o
WO

14
15
16
17
18
19

;*******************************
; 1. Sound - Demonstration

; last update 10/03<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>